1
|
Chen WJ, Wang XL, Wang YF, Liu DM, Yue MY, Wei J, Li J, Chen TT, Tu HJ. LPL-RH suppresses bone loss in ovariectomised rat models. BMC Microbiol 2024; 24:545. [PMID: 39732687 DOI: 10.1186/s12866-024-03683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/29/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Evidence has revealed that oestrogen deprivation-induced osteolysis is microbiota-dependent and can be treated by probiotics. However, the underlying mechanism require further investigation. This study aims to provide additional evidence supporting the use of probiotics as an adjuvant treatment and to explore the pathophysiology of oestrogen-deprived osteolysis. METHODS Forty-five SD rats were randomly divided into five groups (n = 9). Rats from four groups were ovariectomised and treated with NS, calcium, probiotics, or calcium + probiotics, while one group underwent a sham operation and was treated with NS. The osteometabolic effects were evaluated, and the mechanistic role of the probiotic supplement was explored. RESULTS Intragastric administration of Bifidobacterium animalis subsp. lactis LPL-RH (LPL-RH) markedly suppressed osteoclastic activation and bone calcium loss by downregulating TRAP enzymatic activity, the OPG/RANKL ratio, and the downstream signalling pathway RANKL/TRAF6/NF-κB/NFATc1/TRAP in ovariectomised SD rats. LPL-RH also reduced CD4+IL-17 A+ TH17 cells in the bone marrow, the pro-osteoclastogenic cytokine IL-17 A, pro-inflammatory molecules (LPS), and its binding protein (LBP) in the blood. LPL-RH restored intestinal ZO-1, occludin, claudin 2, claudin 12, and claudin 15, which improved ileal histopathology, reduced ileal oxidative stress, and attenuated the LPS-responsive TLR4/MyD88/NF-κB pathway. Furthermore, 16 S rRNA sequencing revealed that LPL-RH altered the faecal microbiome by reducing the relative abundance of S24-7 at the family level and promoting Prevotella and Bacteroides at the genus level. CONCLUSION Collectively, LPL-RH suppressed osteoclastogenesis and osteolysis by modulating type 17 immunity and gut microbiome.
Collapse
Affiliation(s)
- Wen-Jie Chen
- Departments of Geriatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China
- National Engineering Research Centre of Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, P. R. China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China
| | - Xin-Liang Wang
- National Engineering Research Centre of Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, P. R. China
| | - Yu-Fan Wang
- National Engineering Research Centre of Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, P. R. China
| | - Ding-Ming Liu
- National Engineering Research Centre of Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, P. R. China
| | - Meng-Yun Yue
- National Engineering Research Centre of Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, P. R. China
| | - Jing Wei
- National Engineering Research Centre of Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, P. R. China
| | - Jian Li
- The Key Laboratory of Hematology of Jiangxi Province, The Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China
| | - Ting-Tao Chen
- Departments of Geriatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China.
- National Engineering Research Centre of Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, P. R. China.
| | - Huai-Jun Tu
- Departments of Geriatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China.
| |
Collapse
|
2
|
Rizzoli R, Chevalley T. Nutrition and Osteoporosis Prevention. Curr Osteoporos Rep 2024; 22:515-522. [PMID: 39322861 PMCID: PMC11499541 DOI: 10.1007/s11914-024-00892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
PURPOSE OF REVIEW Osteoporosis affects 50% of women and 20% of men after the age of 50. Fractures are associated with significant morbidity, increased mortality and altered quality of life. Lifestyle measures for fragility fracture prevention include good nutrition including adequate protein and calcium intakes, vitamin D sufficiency, and regular weight bearing physical exercise. RECENT FINDINGS Dietary protein is one of the most important nutritional considerations as it affects bone mineral density, trabecular and cortical microstructure, and bone strength. When calcium intake is sufficient, higher dietary protein intake is associated with lower risk of fracture. Dairy products are a valuable source of calcium and high quality protein. Dairy product consumption, particularly fermented dairy products, are associated with a lower risk of hip fracture and vegan diets are associated with increased fracture risk. Other dietary factors associated with reduced fracture risk include at least 5 servings per day of fruits and vegetables, regular tea drinking, adherence to a Mediterranean diet and other dietary patterns which provide fibers, polyphenols and fermented dairy products. Such dietary patterns may confer health benefits through their effect on gut microbiota composition and/or function. A balanced diet including minerals, protein, fruits and vegetables is an important element in the prevention of osteoporosis and of fragility fracture.
Collapse
Affiliation(s)
- René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, 1211, Geneva 14, Switzerland.
| | - Thierry Chevalley
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, 1211, Geneva 14, Switzerland
| |
Collapse
|
3
|
Zou SB, Zeng ZH. Effects of tibolone combined with zoledronic acid on bone density, bone metabolism, and pain in postmenopausal patients with osteoporosis. Am J Transl Res 2024; 16:3395-3404. [PMID: 39114689 PMCID: PMC11301455 DOI: 10.62347/ydkm2312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE To explore the efficacy and safety of tibolone combined with zoledronic acid in the treatment of postmenopausal osteoporosis (PMO). METHODS We conducted a retrospective analysis of 121 PMO patients from March 2019 to July 2021. Patients were divided into two groups based on treatment regimen: an observation group (n=62) receiving zoledronic acid combined with tibolone and a control group (n=59) receiving tibolone monotherapy. We evaluated and compared therapeutic efficacy, bone mineral density, bone metabolism markers (osteocalcin, serum C-terminal telopeptide of type I collagen, and bone alkaline phosphatase), pain, knee joint function, incidence of fragility fractures, and adverse reactions. Logistic regression analysis was used to evaluate risk factors affecting treatment efficacy. RESULTS The observation group showed a significantly higher therapeutic effect (96.77%) compared to the control group (83.05%), and a lower incidence of fragility fractures (P=0.012). Before treatment, there were no significant differences in bone mineral density, bone metabolism markers, pain status, or knee function between the two groups (all P>0.05). However, after treatment, evaluations showed marked improvements in these parameters in both groups, with more significant enhancements observed in the observation group (all P<0.001). The incidence of adverse reactions did not significantly differ between the groups (20.97% vs 13.56%, P=0.282). Logistic regression analysis identified the use of tibolone combined with zoledronic acid as a protective factor for effective treatment. CONCLUSIONS Tibolone combined with zoledronic acid significantly increases bone mineral density, improves bone metabolism, and reduces pain in PMO patients, with a safety profile comparable to that of monotherapy. This regimen should be considered for clinical use in treating PMO.
Collapse
Affiliation(s)
- San-Bao Zou
- Department of Pain, Zhejiang Jiashan County First People's Hospital Jiashan County, Jiaxing 314100, Zhejiang, China
| | - Zhen-Hua Zeng
- Department of Pain, Zhejiang Jiashan County First People's Hospital Jiashan County, Jiaxing 314100, Zhejiang, China
| |
Collapse
|
4
|
Gao Y, Huang A, Zhao Y, Du Y. PMAIP1 regulates autophagy in osteoblasts via the AMPK/mTOR pathway in osteoporosis. Hum Cell 2024; 37:1024-1038. [PMID: 38691334 DOI: 10.1007/s13577-024-01067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Osteoporosis (OP) is a highly prevalent disorder characterized by low bone mass that severely reduces patient quality of life. Although numerous treatments for OP have been introduced in clinic, many have side effects and high costs. Therefore, there is still an unmet need for optimal solutions. Here, raw signal analysis was used to identify potential high-risk factors for OP, and the biological functions and possible mechanisms of action (MOAs) of these factors were explored via gene set enrichment analysis (GSEA). Subsequently, molecular biological experiments were performed to verify and analyze the discovered risk factors in vitro and in vivo. PMAIP1 was identified as a potential risk factor for OP and significantly suppressed autophagy in osteoblasts via the AMPK/mTOR pathway, thereby inhibiting the proliferation and differentiation of osteoblasts. Furthermore, we constructed an ovariectomy (OVX) model of OP in rats and simultaneously applied si-PMAIP1 for in vivo interference. si-PMAIP1 upregulated the expression of LC3B and p-AMPK and downregulated the expression of p-mTOR, and these effects were reversed by the autophagy inhibitor. Micro-CT revealed that, si-PMAIP1 significantly inhibited the development of osteoporosis in OVX model rats, and this therapeutic effect was attenuated by treatment with an autophagy inhibitor. This study explored the role and mechanism of PMAIP1 in OP and demonstrated that PMAIP1 may serve as a novel target for OP treatment.
Collapse
Affiliation(s)
- Yijie Gao
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
- Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Anquan Huang
- Department of Joint Surgery, Dalian Municipal Central Hospital, Dalian, Liaoning, People's Republic of China
| | - Yantao Zhao
- Department of Joint Surgery, Dalian Municipal Central Hospital, Dalian, Liaoning, People's Republic of China.
| | - Yunxia Du
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China.
| |
Collapse
|
5
|
Cheng Y, Chen X, Li Y, Tan Z, Yao X, Jiang R, Wu H. Incidence and risk factors of subsequent vertebral fracture following percutaneous vertebral augmentation in postmenopausal women. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024:10.1007/s00586-024-08331-5. [PMID: 38853178 DOI: 10.1007/s00586-024-08331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/19/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE Subsequent vertebral fracture (SVF) is a severe advent event of percutaneous vertebral augmentation (PVA). However, the incidence and risk factors of SVF following PVA for OVCF in postmenopausal women remain unclear. This research aims to investigative the incidence and risk factors of SVF after PVA for OVCF in postmenopausal women. METHODS Women who underwent initial PVA for OVCF between August 2019 and December 2021 were reviewed. Univariate logistic regression analysis was performed to identify possible risk factors of SVF, and independent risk factors were determined by multivariate logistic regression. RESULTS A total of 682 women after menopause were enrolled in the study. Of these women, 100 cases had an SVF after PVA, with the incidence of 14.66%. Univariate logistic regression analysis demonstrated that age (p = 0.001), body mass index (BMI) (p < 0.001), steroid use (p = 0.008), history of previous vertebral fracture (p < 0.001), multiple vertebral fracture (p = 0.033), postoperative wedge angle (p = 0.003), and HU value (p < 0.001) were significantly correlated with SVF following PVA. Furthermore, BMI (OR [95%CI] = 0.892 [0.825 - 0.965]; p = 0.004), steroid use (OR [95%CI] = 3.029 [1.211 - 7.574]; p = 0.018), history of previous vertebral fracture (OR [95%CI] = 1.898 [1.148 - 3.139]; p = 0.013), postoperative wedge angle (OR [95%CI] = 1.036 [1.004 - 1.070]; p = 0.028), and HU value (OR [95%CI] = 0.980 [0.971 - 0.990]; p < 0.001) were identified as independent risk factors of SVF after PVA by multivariate logistic regression analysis. CONCLUSIONS The incidence of SVF following PVA for OVCF in postmenopausal women was 14.66%. BMI, steroid use, history of previous vertebral fracture, postoperative wedge angle, and HU value were independent risk factors of SVF after PVA for OVCF in postmenopausal women.
Collapse
Affiliation(s)
- Yuanpei Cheng
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, China
| | - Xipeng Chen
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, China
| | - Yongbo Li
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhe Tan
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, China
| | - Xingchen Yao
- The Third Bethune Hospital of Jilin University, Changchun, China
| | - Rui Jiang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, China.
| | - Han Wu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, China.
| |
Collapse
|
6
|
Li Y, Liu C, Han X, Sheng R, Bao L, Lei L, Wu Y, Li Q, Zhang Y, Zhang J, Wang W, Zhang Y, Li S, Wang C, Wei X, Wang J, Peng Z, Xu Y, Si S. The novel small molecule E0924G dually regulates bone formation and bone resorption through activating the PPARδ signaling pathway to prevent bone loss in ovariectomized rats and senile mice. Bioorg Chem 2024; 147:107364. [PMID: 38636434 DOI: 10.1016/j.bioorg.2024.107364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Osteoporosis is particularly prevalent among postmenopausal women and the elderly. In the present study, we investigated the effect of the novel small molecule E0924G (N-(4-methoxy-pyridine-2-yl)-5-methylfuran-2-formamide) on osteoporosis. E0924G significantly increased the protein expression levels of osteoprotegerin (OPG) and runt-related transcription factor 2 (RUNX2), and thus significantly promoted osteogenesis in MC3T3-E1 cells. E0924G also significantly decreased osteoclast differentiation and inhibited bone resorption and F-actin ring formation in receptor activator of NF-κB ligand (RANKL)-induced osteoclasts from RAW264.7 macrophages. Importantly, oral administration of E0924G in both ovariectomized (OVX) rats and SAMP6 senile mice significantly increased bone mineral density and decreased bone loss compared to OVX controls or SAMR1 mice. Further mechanistic studies showed that E0924G could bind to and then activate peroxisome proliferator-activated receptor delta (PPARδ), and the pro-osteoblast effect and the inhibition of osteoclast differentiation induced by E0924G were significantly abolished when PPARδ was knocked down or inhibited. In conclusion, these data strongly suggest that E0924G has the potential to prevent OVX-induced and age-related osteoporosis by dual regulation of bone formation and bone resorption through activation of the PPARδ signaling pathway.
Collapse
Affiliation(s)
- Yining Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Xiaowan Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Ren Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Li Bao
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijuan Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yexiang Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Quanjie Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yuyan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Weizhi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yuhao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Shunwang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Chenyin Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Xinwei Wei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Jingrui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Zonggen Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China.
| | - Yanni Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China.
| | - Shuyi Si
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China.
| |
Collapse
|
7
|
Ünver G, Özlü A, Erdoğan A, Özdemir MF, Üstündağ S. Osteoporotic quality of life, self-efficacy, and fracture protection behaviors in postmenopausal women. Arch Osteoporos 2024; 19:22. [PMID: 38561582 PMCID: PMC10984879 DOI: 10.1007/s11657-024-01377-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
It is important for postmenopausal women to acquire bone health protective behaviors to protect them from fractures. For this reason, it is necessary to evaluate bone health during menopause and to inform women. PURPOSE This study was conducted to examine osteoporotic fracture protection behaviors, quality of life, and self-efficacy in postmenopausal women. METHODS In the study, the data were evaluated with the socio-demographic data form, Osteoporotic Fracture Protection Scale, Osteoporosis Self-Efficacy-Efficacy Scale, European Osteoporosis Foundation Quality of Life Questionnaire-41, which includes introductory information on socio-demographic characteristics. RESULTS It was determined that the postmenopausal women included in our study were between the ages of 45-92; more than half of them had chronic diseases; their average BMI was 29; and their DEXA score was - 3.00 ± 0.41. Among the people included in our study, those with a history of fractures had lower self-efficacy scores. It was determined that the fracture prevention scale scores of the participants were above the average, and the average of the osteoporosis-related quality of life score was high. In addition, it was determined that there was a strong positive correlation between self-efficacy and fracture prevention scale. CONCLUSION It is important to determine behaviors to prevent osteoporotic fractures in postmenopausal women, to raise the necessary awareness and to inform patients about the precautions to be taken. It is thought that it will increase patients' quality of life by increasing their disease-related self-efficacy. Therefore, there is a need for research on providing education to op patients and examining the results.
Collapse
Affiliation(s)
- Gamze Ünver
- Faculty of Health Sciences, Department of Internal Medicine Nursing, Kutahya Health Sciences University, Kutahya, Turkey.
| | - Aysun Özlü
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Kutahya Health Sciences University, Kutahya, Turkey
| | - Ahmet Erdoğan
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Kutahya Health Sciences University, Kutahya, Turkey
| | - Muhammed Fatih Özdemir
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Kutahya Health Sciences University, Kutahya, Turkey
| | - Sema Üstündağ
- Faculty of Health Sciences, Department of Internal Medicine Nursing, Kutahya Health Sciences University, Kutahya, Turkey
| |
Collapse
|
8
|
Xu F, Wang Y, Zhu X. The Safety and Efficacy of Abaloparatide on Postmenopausal Osteoporosis: A Systematic Review and Meta-analysis. Clin Ther 2024; 46:267-274. [PMID: 38307725 DOI: 10.1016/j.clinthera.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/19/2023] [Accepted: 12/24/2023] [Indexed: 02/04/2024]
Abstract
PURPOSE The aging of the population increases the incidence of postmenopausal osteoporosis, which threatens the health of elderly women. Abaloparatide is a synthetic peptide analogue of the human parathyroid hormone-related protein that has recently been approved for the treatment of postmenopausal osteoporosis. Its efficacy and safety have not been systematically evaluated. Therefore, studies on the efficacy and safety of abaloparatide could be of assistance in the clinical medication of postmenopausal osteoporosis. The aim of this study was to evaluate the clinical efficacy and safety of abaloparatide in postmenopausal osteoporosis. METHODS PubMed, Cochrane Library, EMBASE, and Web of Science databases were electronically searched from inception to July 6, 2023, for relevant randomized controlled trials. Two review authors independently conducted the study screening, quality assessment (based on the Risk of Bias Assessment Tool recommended in the Cochrane handbook), and data extraction. Outcome measures included bone mineral density (BMD), bone turnover and metabolic markers, incidence of fractures, and adverse events. Data analyses were processed by using Stata SE15. FINDINGS Ultimately, 8 randomized controlled trials, involving a total of 3705 postmenopausal women, were included. Meta-analysis showed that abaloparatide administration significantly increased the BMD of the lumbar vertebrae (standardized mean difference [SMD], 1.28 [95% CI, 0.81-1.76); I2 = 78.5%]), femoral neck (SMD, 0.70 [95% CI, 0.17-1.23; I2 = 75.7%]), and hip bone (SMD, 0.86 [95% CI, 0.53-1.20; I2 = 60.4%]) in postmenopausal women compared with the control group. Type I procollagen N-terminal propeptide, a bone formation marker, was also elevated after abaloparatide administration. The incidence of vertebral fracture was lower in the abaloparatide group than in the control group (risk ratio, 0.13; 95% CI, 0.06-0.26; I2 = 0%). There was no significant difference in the incidence of adverse events between the abaloparatide and the placebo groups (risk ratio, 1.03; 95% CI, 0.99-1.06; I2 = 0%). IMPLICATIONS Abaloparatide has a protective effect on women with postmenopausal osteoporosis. It could reduce their risk for vertebral fracture; increase their BMD of the lumbar spine, femoral neck, and hip; and alleviate symptoms and complications of postmenopausal osteoporosis with considerable safety. Limitations of this study include not searching the gray literature and not performing a subgroup analysis. PROSPERO Registration No.: CRD42022370944.
Collapse
Affiliation(s)
- Fuxin Xu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Yurun Wang
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
9
|
Zhang YY, Xie N, Sun XD, Nice EC, Liou YC, Huang C, Zhu H, Shen Z. Insights and implications of sexual dimorphism in osteoporosis. Bone Res 2024; 12:8. [PMID: 38368422 PMCID: PMC10874461 DOI: 10.1038/s41413-023-00306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 02/19/2024] Open
Abstract
Osteoporosis, a metabolic bone disease characterized by low bone mineral density and deterioration of bone microarchitecture, has led to a high risk of fatal osteoporotic fractures worldwide. Accumulating evidence has revealed that sexual dimorphism is a notable feature of osteoporosis, with sex-specific differences in epidemiology and pathogenesis. Specifically, females are more susceptible than males to osteoporosis, while males are more prone to disability or death from the disease. To date, sex chromosome abnormalities and steroid hormones have been proven to contribute greatly to sexual dimorphism in osteoporosis by regulating the functions of bone cells. Understanding the sex-specific differences in osteoporosis and its related complications is essential for improving treatment strategies tailored to women and men. This literature review focuses on the mechanisms underlying sexual dimorphism in osteoporosis, mainly in a population of aging patients, chronic glucocorticoid administration, and diabetes. Moreover, we highlight the implications of sexual dimorphism for developing therapeutics and preventive strategies and screening approaches tailored to women and men. Additionally, the challenges in translating bench research to bedside treatments and future directions to overcome these obstacles will be discussed.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao-Dong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Huili Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
10
|
Wang X, Sun B, Wang Y, Gao P, Song J, Chang W, Xiao Z, Xi Y, Li Z, An F, Yan C. Research progress of targeted therapy regulating Th17/Treg balance in bone immune diseases. Front Immunol 2024; 15:1333993. [PMID: 38352872 PMCID: PMC10861655 DOI: 10.3389/fimmu.2024.1333993] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Rheumatoid arthritis (RA) and postmenopausal osteoporosis (PMOP) are common bone-immune diseases. The imbalance between helper (Th17) and regulatory T cells (Tregs) produced during differentiation of CD4+ T cells plays a key regulatory role in bone remodelling disorders in RA and PMOP. However, the specific regulatory mechanism of this imbalance in bone remodelling in RA and PMOP has not been clarified. Identifying the regulatory mechanism underlying the Th17/Treg imbalance in RA and PMOP during bone remodelling represents a key factor in the research and development of new drugs for bone immune diseases. In this review, the potential roles of Th17, Treg, and Th17/Treg imbalance in regulating bone remodelling in RA and PMOP have been summarised, and the potential mechanisms by which probiotics, traditional Chinese medicine compounds, and monomers maintain bone remodelling by regulating the Th17/Treg balance are expounded. The maintenance of Th17/Treg balance could be considered as an therapeutic alternative for the treatment of RA and PMOP. This study also summarizes the advantages and disadvantages of conventional treatments and the quality of life and rehabilitation of patients with RA and PMOP. The findings presented her will provide a better understanding of the close relationship between bone immunity and bone remodelling in chronic bone diseases and new ideas for future research, prevention, and treatment of bone immune diseases.
Collapse
Affiliation(s)
- Xiaxia Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Bai Sun
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yujie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhipan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yongbin Xi
- Orthopaedics Department, The No.2 People's Hospital of Lanzhou, Lanzhou, Gansu, China
| | - Zhonghong Li
- Pathological Research Centre, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fangyu An
- Teaching Experiment Training Centre, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Sun W, Xie Q, Yan JJ, Huang Y, Zhou Y, Xiao H, Wang CQ. Observation of the Short-term Efficacy of Technetium-99 Conjugated with Methylene Diphosphonate Combined Therapy in the Treatment of Postmenopausal Osteoporosis. Comb Chem High Throughput Screen 2024; 27:1930-1937. [PMID: 38357942 DOI: 10.2174/0113862073266467231228124942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 02/16/2024]
Abstract
OBJECTIVE To investigate the short-term efficacy and safety of Yunke (technetium-99 conjugated methylene diphosphonate) combined with pulsed electromagnetic field (PEMF) and Gukang capsule in the treatment of postmenopausal osteoporosis (PMOP). METHODS A total of 112 patients with PMOP who received treatment in the Department of Nuclear Medicine of the hospital from January 2019 to June 2020 were selected and randomly divided into 4 groups of 28 patients each. Group A received Yunke and PEMFs, group B received Gukang capsules and PEMFs, group C received Yunke and Gukang capsules and PEMFs, and group D received PEMFs. All groups were given adequate amounts of calcium and active vitamin D. Intervention 2 sessions of 3 months each. Outcome measures were bone mineral density (BMD) and pain improvement. RESULTS Compared with 1 course of treatment, the symptoms of bone pain were relieved more significantly after 2 courses of treatment in group A (50.0% vs. 64.3%), group B (46.4% vs. 64.3%), group C (78.6% vs. 92.9%) and group D (21.4% vs. 28.6%) (P < 0.05). After 2 courses of treatment, bone pain symptoms were less relieved in group A (96.4% vs. 64.3%), group B (96.4% vs. 64.3%), and group D (96.4% vs. 28.6%) compared with group C (P < 0.05). Compared with group C, BMD values of L4 vertebrae and femoral neck were significantly decreased in groups A, B, and D (P < 0.05). Compared with those before treatment, BMD of L4 vertebrae and femoral neck increased significantly in groups A, B, C, and D after 2 courses of treatment (P < 0.05). CONCLUSION Yunke combined therapy can effectively relieve the pain symptoms, increase BMD, and reduce the risk of fracture in patients with PMOP in a short period, which is an effective method for the treatment of PMOP.
Collapse
Affiliation(s)
- Wen Sun
- Department of Nuclear Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Quan Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Juan-Juan Yan
- Department of Nuclear Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Ying Huang
- Department of Nuclear Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Ying Zhou
- Department of Nuclear Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Huan Xiao
- Department of Nuclear Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Chao-Qun Wang
- Department of Nuclear Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| |
Collapse
|
12
|
Rizzoli R, Chevalley T. Bone health: biology and nutrition. Curr Opin Clin Nutr Metab Care 2024; 27:24-30. [PMID: 37922025 PMCID: PMC10720787 DOI: 10.1097/mco.0000000000000988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
PURPOSE OF REVIEW Recent findings in the influence of dietary patterns, dairy products, beverages and microbiota composition and function on bone health are reviewed and discussed. RECENT FINDINGS Evidence is accumulating on the increased risk of fracture in individuals following a vegan diet. Meta-analysis of randomized controlled trials indicates a favourable, though of low amplitude, effect of dairy products on bone mass accrual during childhood and adolescence. Though mostly based on results from observational studies, it seems that dairy product consumption, particularly fermented dairy products, is associated with a lower risk of hip fracture. Regular green tea drinkers may have a lower fracture risk than tea abstainers. Magnesium intake is beneficial for bone health. Prune supplements prevents bone loss in untreated postmenopausal women. This seems to be associated with modification of gut microbiota. SUMMARY This information should help the medical practitioners facing questions from their patients on how to protect bone health through nutrition.
Collapse
Affiliation(s)
- René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | | |
Collapse
|
13
|
Schroeder RJ, Staszkiewicz J, O'Quin C, Carroll B, Doan N, Patel S, Ahmadzadeh S, Kallurkar A, Viswanath O, Varrassi G, Shekoohi S, Kaye AD. Oral Therapeutics Post Menopausal Osteoporosis. Cureus 2023; 15:e42870. [PMID: 37664395 PMCID: PMC10474253 DOI: 10.7759/cureus.42870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Osteoporosis affects a significant number of postmenopausal women in the United States. Screening is performed using clinical assessments and bone mineral density scans via dual x-ray absorptiometry. Oral therapy is indicated to prevent pathologic fractures in those deemed at increased risk following screening. Bisphosphonates including alendronate, ibandronate, and risedronate are currently first-line oral therapeutics in fracture prevention following the diagnosis of osteoporosis. Hormonal therapies include estrogen-containing therapies, selective estrogen receptor modulators, and other compounds that mimic the effects of estrogen such as tibolone. Lifestyle modifications such as supplementation and physical activity may also contribute to the prevention of osteoporosis and are used as adjuncts to therapy following diagnosis. These therapeutics are limited primarily by their adverse effects. Treatment regimens should be tailored based on significant risk factors demonstrated by patients, adverse effects, and clinical response to treatment. The most severe risk factors relevant to pharmacological selection involve hormone replacement therapies, where concern for venous thrombosis, coronary artery disease, breast, and uterine cancer exist. Bisphosphonates are most commonly associated with gastrointestinal discomfort which may be mitigated with proper administration. Although adverse effects exist, these medications have proven to be efficacious in the prevention of vertebral and non-vertebral fractures in post-menopausal women. Fracture risk should be weighed against the risk of adverse events associated with each of the regimens, with clinical judgment dictating the treatment approach centered around patient goals and experiences.
Collapse
Affiliation(s)
- Ryan J Schroeder
- Medicine, Louisiana State University Health Sciences Center New Orleans, New Orleans, USA
| | - Julia Staszkiewicz
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Collyn O'Quin
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Brandon Carroll
- Medicine, Louisiana State University Health Sciences Center New Orleans, New Orleans, USA
| | - Nicolette Doan
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sagar Patel
- Anaesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Shahab Ahmadzadeh
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Anusha Kallurkar
- Anaesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Omar Viswanath
- Pain Management, Valley Pain Consultants - Envision Physician Services, Phoenix, USA
| | | | - Sahar Shekoohi
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Alan D Kaye
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| |
Collapse
|
14
|
Chen T, Li G, Xu Y. Study on the Effect of Bushen Zhuanggu Tablet Combined with Conventional Regimen on Bone Mineral Density Improvement, Functional Recovery and Fracture Risk Prevention in Patients with Postmenopausal Osteoporosis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:4846392. [PMID: 37455682 PMCID: PMC10348851 DOI: 10.1155/2023/4846392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/16/2022] [Accepted: 09/17/2022] [Indexed: 07/18/2023]
Abstract
Objective This case-control study was to explore the effect of Bushen Zhuanggu tablet combined with routine regimen on bone mineral density (BMD) improvement, functional recovery, and fracture prevention in postmenopausal osteoporosis (PMOP) patients. Methods 180 postmenopausal osteoporosis patients were randomly selected from communities A, B, and C cohorts as research subjects from January to May 2021. The study subjects were divided into three groups. The groups were in a 1 : 1 ratio according to the principles of nonrandomised, concurrent controlled trials, and methods. There were 60 participants in each group (group A, group B, and group C). Group A was treated with Bushen Zhuanggu tablet for antiosteoporosis + basic treatment (calcium supplement and vitamin D). Group C was given Bushen Zhuanggu tablet for antiosteoporosis intervention. Group B was given basic treatment (calcium supplement and vitamin D supplementation) as a control group. The follow-up time was 6 months after treatment. Finally, we compare the differences in calcium and phosphorus metabolism indexes, BMD, bone metabolism indexes, upper and lower limb muscle strength, and quality of life scores. Results Group A, B, and C's effective rate was 98.33%, 80.00%, and 93.33%, respectively. The group A's effective rate was significantly higher than that in group B and C, and the difference was statistically significant (P < 0.05). After 6 months intervention, the levels of serum Ca2+, serum phosphorus (P), serum creatinine (Cr), and parathyroid hormone (PTH) in 3 groups decreased. Ca, P, Scr, and PTH levels in group A were the lowest among study groups, and the difference was statistically significant (P < 0.05). The increase in the BMD of lumbar spine, the left femoral neck, and Ward's triangle area of the three groups were observed with the highest data in group A. After 6 months of treatment, the levels of serum N-terminal propeptide of type I procollagen, PINP, and serum osteocalcin (OC) increased, while the levels of β-cross-linked C-terminal telopeptide of type I collagen (β-CTX) and alkaline phosphatase (ALP) decreased in the three groups. The improvement of all bone metabolic indexes in group A was significantly better than that in B and C groups, and the difference was statistically significant (P < 0.05). The enhanced upper limb muscle strength and the shorter standing-walking timing test (TUGT) time were observed after 6 months of treatment. The improvement effect of upper and lower limb muscle strength in group A was significantly better than that in B and C groups, and the difference was statistically significant (P < 0.05). There were significant differences in physiological function, life function, general health status, physical pain, mental state, emotional function, vitality, and social function among the three groups after 6 months treatment, and the difference was statistically significant (P < 0.05). The score of quality of life in group A was higher than that in B and C groups, and the difference was statistically significant (P < 0.05). Conclusion Bushen Zhuanggu tablet combined with conventional therapy is effective in the postmenopausal osteoporosis treatment, which effectively increase the BMD, regulate calcium and phosphorus metabolism, promote the recovery of limb function, prevent the recurrence of fracture, and improve the patients' quality of life. This treatment scheme is worth popularizing.
Collapse
Affiliation(s)
- Tianliang Chen
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, China
- Department of Orthopedics, Gaozhou Hospital of Traditional Chinese Medicine, China
| | - Guilan Li
- Department of Encephalopathy, Gaozhou Hospital of Traditional Chinese Medicine, China
| | - Yongtao Xu
- Department of Orthopedics, Gaozhou Hospital of Traditional Chinese Medicine, China
| |
Collapse
|
15
|
Giordani C, Matacchione G, Giuliani A, Valli D, Scarpa ES, Antonelli A, Sabbatinelli J, Giacchetti G, Sabatelli S, Olivieri F, Rippo MR. Pro-Osteogenic and Anti-Inflammatory Synergistic Effect of Orthosilicic Acid, Vitamin K2, Curcumin, Polydatin and Quercetin Combination in Young and Senescent Bone Marrow-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2023; 24:ijms24108820. [PMID: 37240169 DOI: 10.3390/ijms24108820] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
During aging, bone marrow mesenchymal stromal cells (MSCs)-the precursors of osteoblasts-undergo cellular senescence, losing their osteogenic potential and acquiring a pro-inflammatory secretory phenotype. These dysfunctions cause bone loss and lead to osteoporosis. Prevention and intervention at an early stage of bone loss are important, and naturally active compounds could represent a valid help in addition to diet. Here, we tested the hypothesis that the combination of two pro-osteogenic factors, namely orthosilicic acid (OA) and vitamin K2 (VK2), and three other anti-inflammatory compounds, namely curcumin (CUR), polydatin (PD) and quercetin (QCT)-that mirror the nutraceutical BlastiMin Complex® (Mivell, Italy)-would be effective in promoting MSC osteogenesis, even of replicative senescent cells (sMSCs), and inhibiting their pro-inflammatory phenotype in vitro. Results showed that when used at non-cytotoxic doses, (i) the association of OA and VK2 promoted MSC differentiation into osteoblasts, even when cultured without other pro-differentiating factors; and (ii) CUR, PD and QCT exerted an anti-inflammatory effect on sMSCs, and also synergized with OA and VK2 in promoting the expression of the pivotal osteogenic marker ALP in these cells. Overall, these data suggest a potential role of using a combination of all of these natural compounds as a supplement to prevent or control the progression of age-related osteoporosis.
Collapse
Affiliation(s)
- Chiara Giordani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Debora Valli
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy
| | | | - Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Gilberta Giacchetti
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Sofia Sabatelli
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy
- Clinic of Laboratory and Precision Medicine, IRCCS Istituto Nazionale di Ricovero e Cura per Anziani, 60121 Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
16
|
Carvalho ACL, Gomes FDA, Bernardo Silva AV, Araújo MS, Barbosa GM, Avila MA, de Souza MC. Self-care during the COVID-19 pandemic: Development of a virtual educational booklet for postmenopausal women with osteoporosis. J Bodyw Mov Ther 2023; 34:74-80. [PMID: 37301561 PMCID: PMC10079320 DOI: 10.1016/j.jbmt.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/25/2022] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
OBJECTIVE To describe the development of a virtual educational booklet for self-care promotion of postmenopausal women with osteoporosis during the COVID-19 pandemics. METHOD This methodological study was conducted in three steps: bibliographic search, development of virtual educational booklet by 12 evaluators and ten representatives of the target audience. A questionnaire adapted from the literature was used to evaluate the educational booklet. The questionnaire consisted of seven items: scientific accuracy, content, language, illustrations, specificity and comprehension, readability, and quality of information. A minimum score of 0.75 in the content validity index (CVI) of each questionnaire item and minimum agreement of 75% among positive responses of postmenopausal women were required to validate the virtual booklet. RESULTS Health professionals and representatives of the target audience suggested changes regarding layout, illustrations, and content of the virtual booklet. CVI of the final version was 0.84 between health professionals and agreement among the target audience was 90%. CONCLUSION The virtual educational booklet with exercises and instructions for postmenopausal women with osteoporosis was valid and should be used by health professionals for advice on self-care and health promotion during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ana Cristina Lima Carvalho
- Postgraduate Program in Collective Health, Faculty of Health Sciences of Trairi, Universidade Federal do Rio Grande do Norte, Santa Cruz, Rio Grande do Norte, Brazil
| | - Flávia de Araújo Gomes
- Universidade Federal do Rio Grande do Norte, Faculty of Health Sciences of Trairi, Santa Cruz, Rio Grande do Norte, Brazil
| | - Alana Vallessa Bernardo Silva
- Universidade Federal do Rio Grande do Norte, Faculty of Health Sciences of Trairi, Santa Cruz, Rio Grande do Norte, Brazil
| | - Marcelo Souza Araújo
- Universidade Federal do Rio Grande do Norte, Faculty of Health Sciences of Trairi, Santa Cruz, Rio Grande do Norte, Brazil
| | - Germana Medeiros Barbosa
- Universidade Federal do Rio Grande do Norte, Faculty of Health Sciences of Trairi, Santa Cruz, Rio Grande do Norte, Brazil
| | - Mariana Arias Avila
- Study Group on Chronic Pain (NEDoC), Laboratory of Research on Electrophysical Agents (LAREF), Physical Therapy Department, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Marcelo Cardoso de Souza
- Postgraduate Program in Rehabilitation Sciences, Universidade Federal do Rio Grande do Norte, Physical Therapy Department, Natal, RN, Brazil.
| |
Collapse
|
17
|
Chen X, He B, Zhou Y, Zhang X, Zhao L. Investigating the effect of history of fractures and hypertension on the risk of all-cause death from osteoporosis: A retrospective cohort study. Medicine (Baltimore) 2023; 102:e33342. [PMID: 37000086 PMCID: PMC10063279 DOI: 10.1097/md.0000000000033342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 03/02/2023] [Indexed: 04/01/2023] Open
Abstract
To assess the coexistence effect between history of fractures and hypertension on the all-cause death risk of osteoporosis. In this retrospective cohort study, some characteristics of osteoporosis patients aged ≥ 20 years were extracted from the National Health and Nutrition Examination Survey (NHANES) database (2005-2010, 2013-2014), such as age, gender, smoking, drinking, the history of diabetes, cardiovascular and cerebrovascular diseases, fractures and hypertension. The outcome of this study was defined as all-cause death of osteoporosis. These patients were followed up until 2015 with an average follow-up time of 62.00 ± 34.79 months. Univariate and multivariate logistic regression was utilized to evaluate the association of history of fractures and hypertension on all-cause death risk of osteoporosis, respectively. The death risk factors were presented by using relative risk (RR) and 95% confidence interval (CI). The attributable proportion (AP) to explore the interaction between history of fractures and hypertension on the all-cause death risk of osteoporosis. Of the total 801 osteoporosis patients, 227 died. After adjusting age, gender, marital status, education background, annual household income, diabetes, the prior use of prednisone or cortisone medication, cardiovascular and cerebrovascular diseases, the history of fractures (RR = 1.502, 95% CI: 1.035-2.180), spine fracture (RR = 2.944, 95% CI: 1.244-6.967), hip fracture (RR = 2.033, 95% CI: 1.066-3.875) was significantly associated with the increased death risk of osteoporosis. However, there was no significant difference between hypertension and the all-cause death risk of osteoporosis (P > .05). Additionally, there was a significant interaction between the history of fractures and hypertension on the all-cause death risk of osteoporosis, and the interaction was an enhancement effect (AP = 0.456, 95% CI: 0.005-0.906). The co-existence of the history of fractures and hypertension could increase the all-cause death risk of osteoporosis, which indicated that osteoporosis patients with the history of fractures should actively monitor blood pressure levels and prevent the occurrence of hypertension.
Collapse
Affiliation(s)
- Xiao Chen
- Department of TCM Orthopedics, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, P.R. China
| | - Binbin He
- Department of TCM Orthopedics, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, P.R. China
| | - Youliang Zhou
- Department of TCM Orthopedics, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, P.R. China
| | - Xinguo Zhang
- Department of TCM Orthopedics, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, P.R. China
| | - Liang Zhao
- Department of TCM Orthopedics, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, P.R. China
| |
Collapse
|
18
|
Comparison of In Vitro Estrogenic Activity of Polygoni multiflori Radix and Cynanchi wilfordii Radix via the Enhancement of ERα/β Expression in MCF7 Cells. Molecules 2023; 28:molecules28052199. [PMID: 36903444 PMCID: PMC10005224 DOI: 10.3390/molecules28052199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Postmenopausal women experience several symptoms, including inflammation and a sharp rise in oxidative stress caused by estrogen deprivation. Although estrogen replacement therapy (ERT) is generally regarded as an effective treatment for menopause, it has been used less frequently due to some adverse effects and high costs. Therefore, there is an immediate need to develop an effective herbal-based treatment that is affordable for low-income populations. Acordingly, this study explored the estrogen-like properties of methanol extracts from Cynanchum wilfordii (CW) and Poligonum multiflorum (PM), two important medicinal plants in Republic of Korea, Japan, and China. Due to the similar names and morphologies of these two radixes, they are frequently confused in the marketplace. Our previous colleagues discriminated between these two plants. In this study, we investigated the estrogenic activity of PM and CW using several in vitro assays with their possible mechanism of action. First, their phytochemical contents, such as gallic acid, 2,3,5,4'-tetrahydroxystilbene-2-O-glucoside (TSG) and emodin, were quantified using high-performance liquid chromatography (HPLC). Secondly, estrogen-like activity was assessed utilizing the well-known E-screen test and gene expression analysis in estrogen receptor (ER)-positive MCF7 cells. ROS inhibition and anti-inflammatory effects were analyzed using HaCaT and Raw 264.7 cells, respectively. Our findings demonstrate that PM extracts significantly increased the expression of the estrogen-dependent genes (ERα, ERβ, pS2) and boosted MCF7 cell proliferation in comparison to CW extracts. Additionally, PM extract demonstrated a significant reduction in reactive oxygen species (ROS) production as well as an enhanced antioxidant profile compared to the CW extract. Further, the PM extract treatment significantly reduced the generation of nitric oxide (NO) in RAW 264.7 cells, a murine macrophage cell line, demonstrating the anti-inflammatory properties of the extract. Finally, this research offers an experimental foundation for the use of PM as a phytoestrogen to minimize menopausal symptoms.
Collapse
|
19
|
Wang Z, Zhang X, Cheng X, Ren T, Xu W, Li J, Wang H, Zhang J. Inflammation produced by senescent osteocytes mediates age-related bone loss. Front Immunol 2023; 14:1114006. [PMID: 36814916 PMCID: PMC9940315 DOI: 10.3389/fimmu.2023.1114006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/11/2023] [Indexed: 02/08/2023] Open
Abstract
Purpose The molecular mechanisms of age-related bone loss are unclear and without valid drugs yet. The aims of this study were to explore the molecular changes that occur in bone tissue during age-related bone loss, to further clarify the changes in function, and to predict potential therapeutic drugs. Methods We collected bone tissues from children, middle-aged individuals, and elderly people for protein sequencing and compared the three groups of proteins pairwise, and the differentially expressed proteins (DEPs) in each group were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). K-means cluster analysis was then used to screen out proteins that continuously increased/decreased with age. Canonical signaling pathways that were activated or inhibited in bone tissue along with increasing age were identified by Ingenuity Pathway Analysis (IPA). Prediction of potential drugs was performed using the Connectivity Map (CMap). Finally, DEPs from sequencing were verified by Western blot, and the drug treatment effect was verified by quantitative real-time PCR. Results The GO and KEGG analyses show that the DEPs were associated with inflammation and bone formation with aging, and the IPA analysis shows that pathways such as IL-8 signaling and acute-phase response signaling were activated, while glycolysis I and EIF2 signaling were inhibited. A total of nine potential drugs were predicted, with rapamycin ranking the highest. In cellular experiments, rapamycin reduced the senescence phenotype produced by the H2O2-stimulated osteocyte-like cell MLO-Y4. Conclusion With age, inflammatory pathways are activated in bone tissue, and signals that promote bone formation are inhibited. This study contributes to the understanding of the molecular changes that occur in bone tissue during age-related bone loss and provides evidence that rapamycin is a drug of potential clinical value for this disease. The therapeutic effects of the drug are to be further studied in animals.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Zhang
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Cheng
- Health Care Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianxing Ren
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihua Xu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Department of Medical Genetics, Basic School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jinxiang Zhang, ; Hui Wang,
| | - Jinxiang Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jinxiang Zhang, ; Hui Wang,
| |
Collapse
|
20
|
Wang X, Lu C, Chen Y, Wang Q, Bao X, Zhang Z, Huang X. Resveratrol promotes bone mass in ovariectomized rats and the SIRT1 rs7896005 SNP is associated with bone mass in women during perimenopause and early postmenopause. Climacteric 2023; 26:25-33. [PMID: 35674253 DOI: 10.1080/13697137.2022.2073809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE This study aimed to examine the effects of SIRT1 agonist resveratrol on bone mass in ovariectomized (OVX) rats and the SIRT1 single-nucleotide polymorphism (SNP) rs7896005 on bone mass in women during menopause and early postmenopause. METHODS An animal experiment was conducted on rats that were sham-operated (SHAM), OVX or OVX and different administered doses of resveratrol. Serum markers and femur microstructure and staining were assessed. A cross-sectional study was conducted in women undergoing menopause. SIRT1 protein and SIRT1 SNP rs7896005 were evaluated. RESULTS OVX rats administered resveratrol, especially high doses, showed lower bone loss than OVX rats. Serum osteoprotegerin (OPG) and femur SIRT1, β-catenin and bone mineral density (BMD) were significantly increased, whereas receptor activator of NF-κB ligand (RANKL) was significantly decreased. Serum SIRT1 levels were significantly lower in women with low bone mass (p < 0.01). Women with the CA genotype of rs7896005 had lower bone mass than those with the CC genotype. The A allele showed a significant negative effect on bone loss risk (odds ratio = 3.48; p = 0.025). CONCLUSIONS Resveratrol stimulated SIRT1 expression and Wnt/β-catenin signaling to promote bone mass in rat femurs. Among women in perimenopause and early postmenopause, SIRT1 protected bone mass, and the A allele of SIRT1 rs7896005 was a risk factor for reduced bone mass.
Collapse
Affiliation(s)
- X Wang
- Department of Reproduction Center, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| | - C Lu
- Department of Gynecology, The First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Y Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Q Wang
- Nanjing Medical University, Nanjing, China
| | - X Bao
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Z Zhang
- Department of Reproductive Endocrinology Center, Hangzhou Women's Hospital, Hangzhou, China
| | - X Huang
- Department of Reproduction Center, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| |
Collapse
|
21
|
Yang D, Tan Y, Xie X, Xiao W, Kang J. Zingerone attenuates Ti particle-induced inflammatory osteolysis by suppressing the NF-κB signaling pathway in osteoclasts. Int Immunopharmacol 2023; 115:109720. [PMID: 37724956 DOI: 10.1016/j.intimp.2023.109720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/22/2023]
Abstract
Aseptic loosening caused by inflammatory osteolysis is one of the most frequent and serious long-term complications after total joint arthroplasty (TJA). Development of a new therapeutic drug is required due to the lack of effective therapy and serious adverse effects. This study aimed to explore the pharmacological properties of zingerone (ZO) in attenuating osteoclast-mediated periprosthetic osteolysis and how ZO modulates osteoclastogenesis. The nontoxic concentration of ZO was clarified by the CCK-8 method. Then, we explored the efficacy of ZO on suppressing osteoclast differentiation, F-actin ring formation, bone resorption, and NF-κB luciferase activity in vitro as well as osteoprotection in vivo. Polymerase chain reaction and western blotting were applied to detect the underlying mechanisms involved in osteoclastogenesis. ZO showed an obvious inhibitory effect on osteoclastogenesis and bone resorption in a dose-dependent manner by mainly suppressing the activation of NF-κB signaling pathways. Furthermore, ZO administration successfully attenuated titanium (Ti) particle-stimulated periprosthetic osteolysis and osteoporosis by regulating osteoclast formation. Our findings demonstrated the pharmacological properties of ZO in inhibiting osteoclast formation and function by downregulation of NF-κB signaling activation. As a result, these findings could be expected to provide a novel reagent for regulating inflammatory osteolysis caused by prosthetic loosening.
Collapse
Affiliation(s)
- Daishui Yang
- The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Yejun Tan
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN 55455, US
| | - Xi Xie
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Wenbiao Xiao
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Jin Kang
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| |
Collapse
|
22
|
Atkinson EG, Adaway M, Horan DJ, Korff C, Klunk A, Orr AL, Ratz K, Bellido T, Plotkin LI, Robling AG, Bidwell JP. Conditional Loss of Nmp4 in Mesenchymal Stem Progenitor Cells Enhances PTH-Induced Bone Formation. J Bone Miner Res 2023; 38:70-85. [PMID: 36321253 PMCID: PMC9825665 DOI: 10.1002/jbmr.4732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/12/2022] [Accepted: 10/29/2022] [Indexed: 11/24/2022]
Abstract
Activation of bone anabolic pathways is a fruitful approach for treating severe osteoporosis, yet FDA-approved osteoanabolics, eg, parathyroid hormone (PTH), have limited efficacy. Improving their potency is a promising strategy for maximizing bone anabolic output. Nmp4 (Nuclear Matrix Protein 4) global knockout mice exhibit enhanced PTH-induced increases in trabecular bone but display no overt baseline skeletal phenotype. Nmp4 is expressed in all tissues; therefore, to determine which cell type is responsible for driving the beneficial effects of Nmp4 inhibition, we conditionally removed this gene from cells at distinct stages of osteogenic differentiation. Nmp4-floxed (Nmp4fl/fl ) mice were crossed with mice bearing one of three Cre drivers including (i) Prx1Cre+ to remove Nmp4 from mesenchymal stem/progenitor cells (MSPCs) in long bones; (ii) BglapCre+ targeting mature osteoblasts, and (iii) Dmp1Cre+ to disable Nmp4 in osteocytes. Virgin female Cre+ and Cre- mice (10 weeks of age) were sorted into cohorts by weight and genotype. Mice were administered daily injections of either human PTH 1-34 at 30 μg/kg or vehicle for 4 weeks or 7 weeks. Skeletal response was assessed using dual-energy X-ray absorptiometry, micro-computed tomography, bone histomorphometry, and serum analysis for remodeling markers. Nmp4fl/fl ;Prx1Cre+ mice virtually phenocopied the global Nmp4-/- skeleton in the femur, ie, a mild baseline phenotype but significantly enhanced PTH-induced increase in femur trabecular bone volume/total volume (BV/TV) compared with their Nmp4fl/fl ;Prx1Cre- controls. This was not observed in the spine, where Prrx1 is not expressed. Heightened response to PTH was coincident with enhanced bone formation. Conditional loss of Nmp4 from the mature osteoblasts (Nmp4fl/fl ;BglapCre+ ) failed to increase BV/TV or enhance PTH response. However, conditional disabling of Nmp4 in osteocytes (Nmp4fl/fl ;Dmp1Cre+ ) increased BV/TV without boosting response to hormone under our experimental regimen. We conclude that Nmp4-/- Prx1-expressing MSPCs drive the improved response to PTH therapy and that this gene has stage-specific effects on osteoanabolism. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Emily G. Atkinson
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
| | - Michele Adaway
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
| | - Daniel J. Horan
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| | | | - Angela Klunk
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
| | - Ashley L. Orr
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Present Address: Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University Indianapolis, IN 46222
| | - Katherine Ratz
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Present Address: Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University Indianapolis, IN 46222
| | - Teresita Bellido
- Department of Physiology and Cell Biology University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205
| | - Lilian I. Plotkin
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Indiana Center for Musculoskeletal Health, IUSM
| | - Alexander G. Robling
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
- Indiana Center for Musculoskeletal Health, IUSM
| | - Joseph P. Bidwell
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Indiana Center for Musculoskeletal Health, IUSM
| |
Collapse
|
23
|
de Oliveira RDJ, de Oliveira RG, de Oliveira LC, Santos-Filho SD, Sá-Caputo DC, Bernardo-Filho M. Effectiveness of whole-body vibration on bone mineral density in postmenopausal women: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int 2023; 34:29-52. [PMID: 36282343 DOI: 10.1007/s00198-022-06556-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/16/2022] [Indexed: 01/07/2023]
Abstract
The present study observed significant effects of whole-body vibration (WBV) on bone mineral density (BMD) in postmenopausal women, with high-quality evidence for high-frequency, low-magnitude, and high-cumulative-dose use. The aim was to update a previous systematic review with meta-analysis to observe the effects of WBV on BMD in postmenopausal women. For the meta-analysis, the weighted mean difference between WBV and control groups, or WBV and conventional exercise, was used for the area of bone mineral density (aBMD) of the lumbar spine, femoral neck, total hip, trochanter, intertrochanter, and Ward's area, or volumetric trabecular bone mineral density (vBMDt) of the radius and tibia. Methodological quality was assessed using the PEDro scale and the quality of evidence using the GRADE system. In total, 23 studies were included in the systematic review and 20 in the meta-analysis. Thirteen studies showed high methodological quality. WBV compared with control groups showed significant effects on aBMD in the primary analysis (lumbar spine and trochanter), sensitivity (lumbar spine), side-alternating vibration (lumbar spine and trochanter), synchronous vibration (lumbar spine), low frequency and high magnitude (lumbar spine and trochanter), high frequency and low magnitude (lumbar spine), high frequency and high magnitude (lumbar spine, trochanter, and Ward's area), high cumulative dose and low magnitude (lumbar spine), low cumulative dose and high magnitude (lumbar spine and trochanter), and positioning with semi-flexed knees (trochanter). Of these results, only high frequency associated with low magnitude and high cumulative dose with low magnitude showed high-quality evidence. At this time, considering the high quality of evidence, it is possible to recommend WBV using high frequency (≈ 30 Hz), low magnitude (≈ 0.3 g), and high cumulative dose (≈ 7000 min) to improve lumbar spine aBMD in postmenopausal women. Other parameters, although promising, need to be better investigated, considering, when applicable, the safety of the participants, especially in vibrations with higher magnitudes (≥ 1 g).
Collapse
Affiliation(s)
| | - Raphael Gonçalves de Oliveira
- Programa de Pós-Graduação em Ciências do Movimento Humano, Centro de Ciências da Saúde, Universidade Estadual do Norte do Paraná (UENP), Alameda Padre Magno, CEP: 86.400-000, Jacarezinho, Nova Alcântara PR, 841, Brazil.
| | - Laís Campos de Oliveira
- Programa de Pós-Graduação em Ciências do Movimento Humano, Centro de Ciências da Saúde, Universidade Estadual do Norte do Paraná (UENP), Alameda Padre Magno, CEP: 86.400-000, Jacarezinho, Nova Alcântara PR, 841, Brazil
| | - Sebastião David Santos-Filho
- Laboratório de Vibrações Mecânicas e Práticas Integrativas, Instituto de Biologia Roberto Alcântara Gomes e Policlínica Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Danúbia Cunha Sá-Caputo
- Laboratório de Vibrações Mecânicas e Práticas Integrativas, Instituto de Biologia Roberto Alcântara Gomes e Policlínica Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Fisiopatologia Clínica e Experimental, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mario Bernardo-Filho
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- Laboratório de Vibrações Mecânicas e Práticas Integrativas, Instituto de Biologia Roberto Alcântara Gomes e Policlínica Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
24
|
Cistanche Deserticola for Regulation of Bone Metabolism: Therapeutic Potential and Molecular Mechanisms on Postmenopausal Osteoporosis. Chin J Integr Med 2023; 29:74-80. [PMID: 35930138 DOI: 10.1007/s11655-022-3518-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 12/24/2022]
Abstract
Osteoporosis is a generalized disease of bone that leads to a loss of bone density and bone mass, destruction of bone microstructure, increased brittleness and therefore fracture. At present, the main treatment of Western medicine is drug therapy such as bisphosphonates, calcitriol, vitamin D, etc. However, long-term use of these drugs may bring some adverse reactions. Chinese herbal medicine Cistanche deserticola could regulate bone metabolism by promoting osteoblast activity and inhibiting osteoclast activity with low toxicity and adverse reactions. Therefore, Cistanche deserticola has attracted increasing attention for its efficacy in the prevention and treatment of osteoporosis in recent years. Here we present a literature review of the molecular pathways involved in osteoporosis and the effects of Cistanche deserticola on bone metabolism. Our objective is to clarify the mechanism of Cistanche deserticola in the treatment of osteoporosis.
Collapse
|
25
|
Lan X, Ma H, Cheng Q, Xiao Y, Zou L, Yuan Z, Luo J. SIRT1/Notch1 signal axis involves in the promoting effect of Segetalin B on bone formation. Drug Dev Res 2022; 83:1845-1857. [PMID: 36207817 DOI: 10.1002/ddr.22001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 12/29/2022]
Abstract
Phytoestrogens are a class of potential natural medicines for treating postmenopausal osteoporosis (PMOP). Segetalin B (SB) is a cyclic peptide compound showing estrogenic activity. This study reports the effect of SB on bone formation among ovariectomized (OVX) rats. The bone marrow mesenchymal stem cells (BMSCs) from OVX rats were cultured in vitro. Alizarin Red staining was utilized to observe the effect of SB on the mineralization of BMSCs. The levels of alkaline phosphatase (ALP), osteocalcin, bone morphogenetic protein (BMP-2), and Sirtuin 1 (SIRT1) activities were detected. The OVX rats were treated with SB in vivo. Micro-CT was utilized for imaging analysis. Urine calcium and phosphorus, and ALP activity in bone marrow were assayed. Western blot analysis and immunofluorescence were incorporated to detect protein expressions in vitro and in vivo. The results showed that SB dose-dependently promoted mineralization of OVX rat-derived BMSCs in vitro increased the level of Osteocalcin, BMP-2, ALP, and SIRT1 activity. Moreover, it upregulated expressions of Runx2, Osterix, and SIRT1, downregulated expressions of Notch intracellular domain (NICD), acetyl-NICD, and hairy and enhancer of split 1 (Hes1). In addition, SB treatment significantly decreased bone loss, inhibited calcium and phosphorus loss, elevated ALP activity, upregulated Runx2, Osterix, and SIRT1, and downregulated NICD and Hes1 in OVX rats in vivo. However, EX527, a SIRT1-selective inhibitor, could reverse the above effects of SB in vitro or in vivo. These results indicate that SB is a potential natural medicine to improve PMOP. Thus, its mechanism of promoting bone formation involves the SIRT1/Notch1 signaling axis.
Collapse
Affiliation(s)
- Xiaoyong Lan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Haiping Ma
- Nursing Department of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Qingfeng Cheng
- Nursing Department of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yuhong Xiao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Lingfeng Zou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhen Yuan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
26
|
Downregulation of METTL14 improves postmenopausal osteoporosis via IGF2BP1 dependent posttranscriptional silencing of SMAD1. Cell Death Dis 2022; 13:919. [PMID: 36319624 PMCID: PMC9626483 DOI: 10.1038/s41419-022-05362-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/19/2022] [Accepted: 10/20/2022] [Indexed: 11/21/2022]
Abstract
Osteoporosis (OP) tends to occur in postmenopausal women, making them prone to fractures. N6-methyladenosine (m6A) methylation plays a crucial role in OP. Herein, we aimed to explore the effects of METTL14 on osteogenesis and the underlying mechanism. Osteogenic differentiation was assessed through osteoblast markers expression, cell proliferation, ALP activity, and mineralization, which were detected by qRT-PCR, CCK-8, EdU assay, ALP staining assay, and ARS staining assay, respectively. Osteoporosis was evaluated in OVX mice using qRT-PCR, microcomputed tomography, and H&E staining assay. The levels of METTL14 and SMAD1 were measured using qRT-PCR and western blot, and their interaction was assessed using RIP and luciferase reporter assay. M6A methylation was analyzed using the Me-RIP assay. The results indicated that m6A, METTL14, and SMAD1 levels were downregulated in patients with OP and OVX mice, and upregulated in osteogenic BMSCs. Knockdown of METTL14 suppressed osteogenesis of BMSCs and reduced bone mass of OVX mice. Moreover, silencing of METTL14 positively related to SMAD1 and inhibited m6A modification of SMAD1 by suppressing its stability. IGF2BP1 was identified as the methylation reader, and which knockdown reversed the upregulation induced by SMAD1. Overexpression of SMAD1 reversed the suppression of osteogenic differentiation induced by METTL14 knockdown. In conclusion, interference with METTL14 inhibited osteogenic differentiation of BSMCs by m6A modification of SMAD1 in an IGFBP1 manner, suggesting that METTL14 might be a novel approach for improving osteoporosis.
Collapse
|
27
|
Zhao S, Wu Y, Qian Y, Qian Y, Xue S, Chen J, Zeng Q, Gu M. Chemical profiling and identification of anti-osteoporosis chemical-markers of Cinnamomum cassia (L.) presl extracts using GC-MS and spectrum-activity analyses. Nat Prod Res 2022; 37:1902-1906. [PMID: 36098221 DOI: 10.1080/14786419.2022.2123480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Cinnamomum cassia (L.) Presl (cinnamon), an important folk medicine is widely used to prevent osteoporosis for long time in China. Our study aimed to investigate the anti-osteoporosis activity and mechanisms of cinnamon extracts obtained by supercritical CO2 extraction (SFE) and identify activity associated chemical components by gas chromatography-mass spectrometry. The cinnamon SFE exhibited superior anti-osteoporosis efficacy in an ovariectomised mice model to common alcohol extracts. It could induce calcified nodules and ALP activity, upregulate the mRNA expression of ALP, BMP-2, and RUNX2 in MC3T3-E1 cells. The major chemical classes of cinnamon extracts were alcohol esters (28.2%), and terpenes (16.1%). The spectrum-activity analysis indicated that the potential chemical-markers of extracts could be (E)-Cinnamaldehyde, γ-Sitosterol, and (Z, Z)-9,12-Octadecadienoic acid, which could induce the proliferation and ALP activity in MC3T3-E1 cells. Our study revealed the promising applications of the cinnamon SFE in prevention of osteoporosis, and identified its anti-osteoporosis associated compounds.
Collapse
Affiliation(s)
- Shan Zhao
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yali Wu
- Hangzhou Linping Traditional Chinese Medical Hospital, Hangzhou, China
| | - Yafang Qian
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, China
| | - Yifan Qian
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Xue
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junyan Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinghe Zeng
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mancang Gu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
28
|
Seijo M, Bonanno MN, Bryk G, Zeni Coronel ME, Pita Martin de Portela ML, Zeni SN. Does Vitamin D Insufficiency Influence Prebiotic Effect on Calcium Absorption and Bone Retention? Calcif Tissue Int 2022; 111:300-312. [PMID: 35505249 DOI: 10.1007/s00223-022-00984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/12/2022] [Indexed: 11/02/2022]
Abstract
Higher calcium (Ca) absorption would partially compensate for Ca intake below requirements for bone health. Previously, we found that GOS/FOS prebiotic mixture (PM) increases Ca absorption in the colon and retention in bone. Ca absorption and retention are regulated by vitamin D (VD). Hence, it is relevant to explore whether VD insufficiency influences the effect of the PM in the colon. The effect of the PM on Ca, phosphate (IP), and magnesium (Mg) absorption and retention under conditions of VD sufficiency and insufficiency (VDInsuff) was compared using a preclinical model of VDInsuff and low bone mass. Ovariectomized rats were fed isocaloric semisynthetic diets according to AIN-93 M. The diets varied in Ca (0.5% or 0.3%), VD [100 IU% (+ D) or 0 IU% (- D)], and PM (2.5% or 0%) content. The following eight groups were studied: + D0.5; + D0.3; + DPM0.5; + DPM0.3; - D0.5; - D0.3; - DPM0.5; and - DPM0.3. Irrespective of Ca content, VDInsuff did not affect the prebiotic effect of the PM on caecum pH, lactobacillus colony growth, or Mg absorption but significantly decreased its effect on colonic crypt length and cell/crypt and Ca and IP absorption. The PM failed to counterbalance the pro-inflammatory effect of VDInsuff. Moreover, bone retention i.e., bone mineral content and density, bone volume, and bone quality parameters were significantly lower (p < 0.05) and bone turnover significantly was higher (p < 0.05). Although the PM is a useful tool to improve mineral absorption and bone retention, it would seem important to monitor VD nutritional status to ensure the full prebiotic effect in the large intestine.
Collapse
Affiliation(s)
- Mariana Seijo
- Laboratory of Metabolic Bone Diseases, School of Pharmacy and Biochemistry (FFyB), Clinical Hospital "José de San Martín", Institute of Immunology, Genetics and Metabolism (INIGEM), National Council for Scientific and Technological Research (CONICET), Buenos Aires University (UBA), Buenos Aires, Argentina
| | - Marina N Bonanno
- Laboratory of Metabolic Bone Diseases, School of Pharmacy and Biochemistry (FFyB), Clinical Hospital "José de San Martín", Institute of Immunology, Genetics and Metabolism (INIGEM), National Council for Scientific and Technological Research (CONICET), Buenos Aires University (UBA), Buenos Aires, Argentina
- Department of Embryology and Histology, School of Dentistry, UBA, Buenos Aires, Argentina
| | - Gabriel Bryk
- Laboratory of Metabolic Bone Diseases, School of Pharmacy and Biochemistry (FFyB), Clinical Hospital "José de San Martín", Institute of Immunology, Genetics and Metabolism (INIGEM), National Council for Scientific and Technological Research (CONICET), Buenos Aires University (UBA), Buenos Aires, Argentina
- Laboratory Division, Assuta Ashdod Medical Center, Faculty of Health Sciences, Ben-Gurion University, Ashdod, Israel
| | - Magali E Zeni Coronel
- Laboratory of Metabolic Bone Diseases, School of Pharmacy and Biochemistry (FFyB), Clinical Hospital "José de San Martín", Institute of Immunology, Genetics and Metabolism (INIGEM), National Council for Scientific and Technological Research (CONICET), Buenos Aires University (UBA), Buenos Aires, Argentina
- Department of Biostatistics, School of Veterinary Sciences (FVet), UBA, Buenos Aires, Argentina
| | | | - Susana N Zeni
- Laboratory of Metabolic Bone Diseases, School of Pharmacy and Biochemistry (FFyB), Clinical Hospital "José de San Martín", Institute of Immunology, Genetics and Metabolism (INIGEM), National Council for Scientific and Technological Research (CONICET), Buenos Aires University (UBA), Buenos Aires, Argentina.
- , Cordoba Ave 2351, 8th floor, Zip Code 1120, Buenos Aires, Argentina.
| |
Collapse
|
29
|
Livshits G, Kalinkovich A. Targeting chronic inflammation as a potential adjuvant therapy for osteoporosis. Life Sci 2022; 306:120847. [PMID: 35908619 DOI: 10.1016/j.lfs.2022.120847] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Systemic, chronic, low-grade inflammation (SCLGI) underlies the pathogenesis of various widespread diseases. It is often associated with bone loss, thus connecting chronic inflammation to the pathogenesis of osteoporosis. In postmenopausal women, osteoporosis is accompanied by SCLGI development, likely owing to estrogen deficiency. We propose that SCGLI persistence in osteoporosis results from failed inflammation resolution, which is mainly mediated by specialized, pro-resolving mediators (SPMs). In corroboration, SPMs demonstrate encouraging therapeutic effects in various preclinical models of inflammatory disorders, including bone pathology. Since numerous data implicate gut dysbiosis in osteoporosis-associated chronic inflammation, restoring balanced microbiota by supplementing probiotics and prebiotics could contribute to the efficient resolution of SCGLI. In the present review, we provide evidence for this hypothesis and argue that efficient SCGLI resolution may serve as a novel approach for treating osteoporosis, complementary to traditional anti-osteoporotic medications.
Collapse
Affiliation(s)
- Gregory Livshits
- Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
30
|
Combined Therapy of Yishen Zhuanggu Decoction and Caltrate D600 Alleviates Postmenopausal Osteoporosis by Targeting FoxO3a and Activating the Wnt/ β-Catenin Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7732508. [PMID: 35873637 PMCID: PMC9307327 DOI: 10.1155/2022/7732508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
Abstract
Background Postmenopausal osteoporosis (PMO) is the most prevalent metabolic bone disease in women. Yishen Zhuanggu (YSZG) decoction and Caltrate D600 reportedly affects bone formation. This study aimed to investigate the efficacy and mechanism of YSZG decoction combined with Caltrate D600 in PMO treatment. Methods Ovariectomy-induced PMO rat model was treated with YSZG or/and Caltrate D600 for 12 weeks. Femur bone mineral density (BMD), osteoporosis-related protein expression, and serum parameters were measured. Pathological features of femur bone tissues were observed using hematoxylin and eosin staining. Serum levels of oxidative stress parameters were measured using corresponding commercial kits. The mRNA and protein expression of FoxO3a, Wnt, and β-catenin was detected using qRT-PCR and western blotting. Results The BMD and ultimate load of PMO rats were increased after treatment with YSZG. YSZG treatment promoted the bone trabeculae formation of PMO rats. YSZG treatment also induced bone differentiation and suppress oxidative stress in PMO rats, evidenced by the increased BALP, Runx2, OPG, SOD, and CAT levels, as well as the decreased TRACP 5b, RANKL, ROS, and MDA levels. Additionally, YSZG treatment downregulated the FoxO3a expression and upregulated the levels of Wnt and β-catenin in PMO rats. Caltrate D600 addition showed an auxiliary effect for YSZG. Conclusion YSZG decoction exerts the antiosteoporotic effect on PMO by restraining the FoxO3a expression and activating the Wnt/β-catenin pathway, which has an impressive synergistic effect with Caltrate D600.
Collapse
|
31
|
Wang J, Xing F, Sheng N, Xiang Z. Associations of the Geriatric Nutritional Risk Index With Femur Bone Mineral Density and Osteoporosis in American Postmenopausal Women: Data From the National Health and Nutrition Examination Survey. Front Nutr 2022; 9:860693. [PMID: 35656160 PMCID: PMC9152150 DOI: 10.3389/fnut.2022.860693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe geriatric nutritional risk index (GNRI) has been used as a significant tool to access the nutritional status of the elderly. However, the relationship between the GNRI and femur bone mineral density (BMD) and the risk of osteoporosis remains unclear in American postmenopausal women.ObjectivesWe aimed to explore associations between the GNRI with femur BMD and the risk of osteoporosis in American postmenopausal women.MethodsWe merged the continuous National Health and Nutrition Examination Survey (NHANES) 2005–2006, 2007–2008, 2009–2010, 2013–2014, and 2017–2018 to ensure a large and representative sample, including 3,152 participants. The linear relationship between the GNRI and femur BMD was assessed via a weighted multivariate linear regression model. The odds ratios (ORs) and 95% confidence intervals (95% CIs) for the association between the GNRI and the risk of osteoporosis were assessed by a weighted logistic regression model. Moreover, the nonlinear relationship was also characterized by smooth curve fitting (SCF) and a weighted generalized additive model (GAM).ResultsAfter adjusting for all covariates, the weighted multivariable linear regression models demonstrated that the GNRI was positively correlated with femur BMD. The weighted logistic regression models demonstrated that each unit of increased GNRI value was associated with a decreased risk of osteoporosis of 4.13%. When categorizing GNRI based on quartiles, ORs between the risk of osteoporosis and the GNRI across quintiles 2, 3, and 4 compared with quintile 1 were 0.5565 (95% CI: 0.4791, 0.6463; P < 0.000001), 0.5580 (95% CI: 0.4600, 0.6769; P < 0.000001), and 0.3475 (95% CI: 0.2681, 0.4505; P < 0.000001). The trends similar to the above were also observed in SCF and GAM.ConclusionThis study indicated that nutritional status, represented by the GNRI, was positively associated with femur BMD and negatively associated with the risk of osteoporosis in American postmenopausal women. The GNRI may be a good tool to identify American postmenopausal women who need further bone health nutritional support.
Collapse
|
32
|
Yang JJ, Peng WX, Zhang MB. LncRNA KCNQ1OT1 promotes osteogenic differentiation via miR-205-5p/RICTOR axis. Exp Cell Res 2022; 415:113119. [PMID: 35341776 DOI: 10.1016/j.yexcr.2022.113119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
Osteoporosis is a prevalent degenerative disease that is characterized by decreased bone density and strength, resulting in gradually increasing bone fragility. Osteoporosis is caused by an imbalance between osteoblastic bone formation and osteoclastic bone resorption. Recently, increasing evidence has suggested that long non-coding RNAs (lncRNAs) participate in the occurrence and development of osteoporosis. Herein, we explored the role of lncRNA KCNQ1OT1 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). QPCR results indicated that KCNQ1OT1 and RICTOR were down-regulated, while miR-205-5p was up-regulated in the osteoporotic patients, as compared with non-osteoporotic controls. During the osteogenic differentiation of BMSCs, the expression of KCNQ1OT1 and RICTOR was upregulated, whereas miR-205-5p was downregulated. The interaction among KCNQ1OT1, miR-205-5p and RICTOR was validated by dual luciferase reporter system. KCNQ1OT1 promoted RICTOR expression via inhibiting miR-205-5p, therefore promoting osteogenesis as demonstrated by ALP assay, alizarin red staining and the increased expression of osteogenic markers (OPN, RUNX2 and OCN). Furthermore, KCNQ1OT1 overexpression or miR-205-5p inhibition could promote ALP activity and mineralization of BMSCs, while overexpressed miR-205-5p could reverse the effects of overexpressed KCNQ1OT1, and knockdown of RICTOR could reverse the effects of miR-205-5p inhibition. In conclusion, our study illustrated that KCNQ1OT1 might inhibit miR-205-5p in BMSCs, thus upregulating the expression of RICTOR and promoting osteogenic differentiation.
Collapse
Affiliation(s)
- Jing-Jin Yang
- Department of Endocrinology, The First People's Hospital of Huaihua, HuaiHua, 418000, Hunan Province, PR China.
| | - Wei-Xia Peng
- Department of Endocrinology, Yiyang Central Hospital, YiYang, 413000, Hunan Province, PR China
| | - Mei-Biao Zhang
- Department of Endocrinology, The First People's Hospital of Huaihua, HuaiHua, 418000, Hunan Province, PR China
| |
Collapse
|
33
|
de Sire A, Ferrillo M, Lippi L, Agostini F, de Sire R, Ferrara PE, Raguso G, Riso S, Roccuzzo A, Ronconi G, Invernizzi M, Migliario M. Sarcopenic Dysphagia, Malnutrition, and Oral Frailty in Elderly: A Comprehensive Review. Nutrients 2022; 14:nu14050982. [PMID: 35267957 PMCID: PMC8912303 DOI: 10.3390/nu14050982] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Frailty is a highly prevalent condition in the elderly that has been increasingly considered as a crucial public health issue, due to the strict correlation with a higher risk of fragility fractures, hospitalization, and mortality. Among the age-related diseases, sarcopenia and dysphagia are two common pathological conditions in frail older people and could coexist leading to dehydration and malnutrition in these subjects. “Sarcopenic dysphagia” is a complex condition characterized by deglutition impairment due to the loss of mass and strength of swallowing muscles and might be also related to poor oral health status. Moreover, the aging process is strictly related to poor oral health status due to direct impairment of the immune system and wound healing and physical and cognitive impairment might indirectly influence older people’s ability to carry out adequate oral hygiene. Therefore, poor oral health might affect nutrient intake, leading to malnutrition and, consequently, to frailty. In this scenario, sarcopenia, dysphagia, and oral health are closely linked sharing common pathophysiological pathways, disabling sequelae, and frailty. Thus, the aim of the present comprehensive review is to describe the correlation among sarcopenic dysphagia, malnutrition, and oral frailty, characterizing their phenotypically overlapping features, to propose a comprehensive and effective management of elderly frail subjects.
Collapse
Affiliation(s)
- Alessandro de Sire
- Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
- Correspondence: (A.d.S.); (M.F.)
| | - Martina Ferrillo
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
- Correspondence: (A.d.S.); (M.F.)
| | - Lorenzo Lippi
- Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy; (L.L.); (M.I.)
| | - Francesco Agostini
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy;
| | - Roberto de Sire
- Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy;
| | - Paola Emilia Ferrara
- University Polyclinic Foundation Agostino Gemelli IRCSS, Catholic University of Sacred Heart, 00168 Rome, Italy; (P.E.F.); (G.R.)
| | - Giuseppe Raguso
- Department of Otolaryngology-Head and Neck Surgery, University of Verona, 37129 Verona, Italy;
| | - Sergio Riso
- Dietetic and Clinical Nutrition Unit, Maggiore della Carità Hospital, 28100 Novara, Italy;
| | - Andrea Roccuzzo
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland;
- Department of Oral and Maxillofacial Surgery, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark
| | - Gianpaolo Ronconi
- University Polyclinic Foundation Agostino Gemelli IRCSS, Catholic University of Sacred Heart, 00168 Rome, Italy; (P.E.F.); (G.R.)
| | - Marco Invernizzi
- Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy; (L.L.); (M.I.)
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Mario Migliario
- Dental Clinic, Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| |
Collapse
|
34
|
Waltman N, Kupzyk KA, Flores LE, Mack LR, Lappe JM, Bilek LD. Bone-loading exercises versus risedronate for the prevention of osteoporosis in postmenopausal women with low bone mass: a randomized controlled trial. Osteoporos Int 2022; 33:475-486. [PMID: 34519832 DOI: 10.1007/s00198-021-06083-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE This randomized controlled trial compared changes in bone mineral density (BMD) and bone turnover in postmenopausal women with low bone mass randomized to 12 months of either risedronate, exercise, or a control group. METHODS Two hundred seventy-six women with low bone mass, within 6 years of menopause, were included in analysis. Treatment groups were 12 months of (a) calcium and vitamin D supplements (CaD) (control), (b) risedronate + CaD (risedronate), or (c) bone-loading exercises + CaD (exercise). BMD and serum markers for bone formation (Alkphase B) and resorption (Serum Ntx) were analyzed at baseline, 6, and 12 months. RESULTS Using hierarchical linear modeling, a group by time interaction was found for BMD at the spine, indicating a greater improvement in the risedronate group compared to exercise (p ≤ .010) or control groups (p ≤ .001). At 12 months, for women prescribed risedronate, changes in BMD at the spine, hip, and femoral neck from baseline were + 1.9%, + 0.9%, and + .09%; in exercise group women, + 0.2%, + 0.5%, and - 0.4%; and in control group women, - 0.7%, + 0.5%, and - 0.5%. There were also significant differences in reductions in Alkphase B (RvsE, p < .001, RvsC, p < .001) and Serum Ntx (RvsE, p = .004, RvsC, p = .007) in risedronate women compared to exercise and control groups. For risedronate, 12-month changes in Alkphase B and Serum Ntx were - 20.3% and - 19.0%; for exercise, - 6.7% and - 7.0%; and for control, - 6.3% and - 9.0%. CONCLUSION Postmenopausal women with low bone mass should obtain adequate calcium and vitamin D and participate in bone-loading exercises. Additional use of BPs will increase BMD, especially at the spine.
Collapse
Affiliation(s)
- Nancy Waltman
- College of Nursing, University of Nebraska Medical Center, 550 N 19th, Street, Suite 350E, Lincoln, NE, 6850-0620, USA.
| | - Kevin A Kupzyk
- Center for Nursing Science, University of Nebraska Medical Center, 4101 Dewey Avenue, Omaha, NE, 68198-5330, USA
| | - Laura E Flores
- College of Allied Health Professions, 984000 Nebraska Medical Center, Omaha, NE, 68198-4000, USA
| | - Lynn R Mack
- Diabetes, Endocrinology, & Metabolism, Nebraska Medicine, Omaha, NE, 68198-4130, USA
| | - Joan M Lappe
- Creighton Osteoporosis Research Center, 601 North 30th, Omaha, NE, 68131, USA
| | - Laura D Bilek
- College of Allied Health Professions, 984000 Nebraska Medical Center, Omaha, NE, 68198-4000, USA
| |
Collapse
|
35
|
McCloskey E, Rathi J, Heijmans S, Blagden M, Cortet B, Czerwinski E, Hadji P, Payer J, Palmer K, Stad R, O'Kelly J, Papapoulos S. Prevalence of FRAX risk factors and the osteoporosis treatment gap among women ≥ 70 years of age in routine primary care across 8 countries in Europe. Arch Osteoporos 2022; 17:20. [PMID: 35064844 PMCID: PMC8783912 DOI: 10.1007/s11657-021-01048-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/06/2021] [Indexed: 02/03/2023]
Abstract
We studied whether elderly women at risk for fractures receive primary care treatment to prevent fracture. We found that across Europe, women at risk are often not identified, and less than half of such women receive appropriate treatment. Finally, women diagnosed with osteoporosis are much more likely to receive treatment. PURPOSE To examine the relationship between risk factors for fragility fracture (FF) and osteoporosis (OP) treatment gap in elderly women across Europe, and compare the prevalence of risk factors between countries. METHODS Demographic and clinical information was collected from women ≥ 70 years visiting primary care physicians in Belgium, France, Germany, Ireland, Poland, Slovakia, Switzerland, and the UK. Increased risk of FF was defined by the presence of 1 or more criteria (history of fracture, 10-year fracture probability, or T-score ≤ - 2.5). RESULTS There were 3798 women in total. Treatment gap (proportion at increased risk of FF not receiving treatment for OP) varied from 53.1 to 90.8% across countries, and the proportion of patients at increased risk of FF varied from 41.2 to 76.1%. Across countries, less than 50% of patients with increased risk of FF had a diagnosis of OP. Previous fracture was the most common risk factor, with similar prevalence across most countries; other risk factors varied widely. The treatment gap was reduced in patients with an OP diagnosis in all countries, but this reduction varied from 36.5 to 79.4%. The countries with the lowest rates of bone densitometry scans (Poland, France, and Germany; 8.3-12.3%) also had the highest treatment gap (82.2 to 90.8%). CONCLUSIONS This study highlights differences across Europe in clinical risk factors for fracture, rates of densitometry scanning, and the rates of OP diagnosis. More emphasis is needed on risk assessment to improve the identification and treatment of elderly women at risk for fracture.
Collapse
Affiliation(s)
- Eugene McCloskey
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK.
| | | | | | | | - Bernard Cortet
- Department of Rheumatology and EA 4490, University-Hospital of Lille, Lille, France
| | - Edward Czerwinski
- Department of Bone and Joint Diseases, FHS, Jagiellonian University Medical College, Kopernika 32, 31-501, Krakow, Poland
| | - Peyman Hadji
- Frankfurt Center of Bone Health, Frankfurt, Germany.,Philipps-University of Marburg, Marburg, Germany
| | - Juraj Payer
- Faculty of Medicine, 5th Department of Internal Medicine in University Hospital Bratislava, Comenius University, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
36
|
Li X, Wu K, Dong Q, Chen H, Li C, Ren Z, Liu F, Yue X, Xia C, Wang Y, Luo Y, Li L, Zhao R, Wang Z, Qin D. Overall adjustment acupuncture improves osteoporosis and exerts an endocrine-modulating effect in ovariectomized rats. Front Endocrinol (Lausanne) 2022; 13:1074516. [PMID: 36465626 PMCID: PMC9712736 DOI: 10.3389/fendo.2022.1074516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Acupuncture is a widely practiced, convenient, and safe treatment modality within complementary and integrative medicine. Increasing studies have revealed the efficacy of acupuncture for the treatment of osteoporosis in both human and non-human subjects. The aim of the present study was to assess the improvement of osteoporosis after overall adjustment acupuncture (OA) as well as its endocrine-modulating effect in an ovariectomized rat model. METHODS In total, 32 female Sprague-Dawley (SD) rats were randomly divided into the sham, model, ovariectomy+estrogen (OVX+E), and OVX+OA (OVX+A) groups with eight rats in each group. The postmenopausal osteoporosis (PMOP) rat model was induced by bilateral ovariectomy. At 12 weeks after surgery, rats in the OVX+E group received estradiol (0.2 mg/kg/i.g./qod) for 12 weeks, and rats in the OVX+A group were treated with acupuncture at Zusanli (ST36), Shenshu (BL23), and Dazhu (BL11) points (qod) for 12 weeks. At the end of the treatment, all rats were sacrificed, and the body weight, uterus index, bone mineral density (BMD), bone mineral content (BMC), bone trabeculae structural parameters, femoral biomechanical properties, femoral histomorphology, and several hormone levels were examined. RESULTS In OVX rats, OA abrogated the body weight gain and improved osteoporosis in terms of BMD, BMC, bone trabeculae structural parameters, bone strength, and bone tissue histomorphology. Moreover, OA modulated the serum levels of estradiol, corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (CORT). CONCLUSIONS OA improves osteoporosis and exerts an endocrine-modulating effect in ovariectomized rats.
Collapse
Affiliation(s)
- Xiang Li
- The First Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Kenan Wu
- The Second Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qinzuo Dong
- The Second Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Hongxi Chen
- The Second Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chunyan Li
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, Yunnan, China
| | - Zeqin Ren
- Department of Rehabilitation, The First Affiliated Hospital of Dali University, Dali University, Dali, Yunnan, China
| | - Fan Liu
- The Second Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xianwu Yue
- The Second Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chunlin Xia
- The Second Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuanfeng Wang
- Department of Acupuncture, Qujing Hospital of Traditional Chinese Medicine, Qujing, Yunnan, China
| | - Yingjing Luo
- The Affiliated Hospital, Yunnan Institute of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Li Li
- Department of Acupuncture and Rehabilitation, Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, Hubei, China
| | - Rong Zhao
- The First Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Dongdong Qin, ; Rong Zhao, ; Zuhong Wang,
| | - Zuhong Wang
- Department of Acupuncture, Kunming Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Dongdong Qin, ; Rong Zhao, ; Zuhong Wang,
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Dongdong Qin, ; Rong Zhao, ; Zuhong Wang,
| |
Collapse
|
37
|
Testini V, Paparella MT, Gangai I, Guglielmi G. Postmenopausal osteoporosis: current status of bone densitometry. Minerva Obstet Gynecol 2021; 73:730-743. [PMID: 34905878 DOI: 10.23736/s2724-606x.20.04674-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Osteoporosis is the most common of all metabolic bone disorders characterized by loss of bone strength, due to modifications in bone turnover. It leads to bone fragility and increased fracture risk. Because of the increasing aging of the world population, the number of people affected by osteoporosis is continuously increasing. The WHO operational definition of osteoporosis, based on a measurement of bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA), identifies patients at greatest risk of fracture. However, in the population overall a greater total number of fractures occurs in individuals with BMD values above threshold for osteoporosis diagnosis; for this reason, algorithms have been developed to improve the identification of individuals at high fracture risk, including clinical risk factors for fracture. The correct diagnosis of osteoporosis with an appropriate and accurate use of diagnostic imaging results in better management in terms of adequate treatment and follow-up. Moreover, screening strategies will improve identification of patients who are most likely to benefit from drug treatment to prevent fracture. All women after the age of 65 years previously untested and women after the age of 50 years with previous low trauma fractures should be screened by DXA. In fact, osteoporosis-related fractures cause a significant increase in morbidity and mortality, decreasing the quality of life, with an increasing social and economic burdens. For this reason, fracture risk assessment should be a high priority amongst health measures.
Collapse
Affiliation(s)
- Valentina Testini
- Department of Clinical and Experimental Medicine, Foggia University School of Medicine, Foggia, Italy
| | - Maria T Paparella
- Department of Clinical and Experimental Medicine, Foggia University School of Medicine, Foggia, Italy
| | - Ilaria Gangai
- Department of Clinical and Experimental Medicine, Foggia University School of Medicine, Foggia, Italy
| | - Giuseppe Guglielmi
- Department of Clinical and Experimental Medicine, Foggia University School of Medicine, Foggia, Italy - .,Radiology Unit, Barletta University Campus UNIFG, "Dimiccoli Hospital", Barletta, Barletta-Andria-Trani, Italy
| |
Collapse
|
38
|
Rodríguez V, Rivoira M, Picotto G, de Barboza GD, Collin A, de Talamoni NT. Analysis of the molecular mechanisms by flavonoids with potential use for osteoporosis prevention or therapy. Curr Med Chem 2021; 29:2913-2936. [PMID: 34547992 DOI: 10.2174/0929867328666210921143644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteoporosis is the most common skeletal disorder worldwide. Flavonoids have the potential to alleviate bone alterations in osteoporotic patients with the advantage of being safer and less expensive than the conventional therapies. OBJECTIVE The main objective is to analyze the molecular mechanisms triggered in bone by different subclasses of flavonoids. In addition, this review provides an up-to-date overview on the cellular and molecular aspects of osteoporotic bones versus healthy bones, and a brief description of some epidemiological studies indicating that flavonoids could be useful for osteoporosis treatment. METHODS The PubMed database was searched in the range of years 2001- 2021 using the keywords osteoporosis, flavonoids, and their subclasses such as flavones, flavonols, flavanols, isoflavones, flavanones and anthocyanins, focusing the data on the molecular mechanisms triggered in bone. RESULTS Although flavonoids comprise many compounds that differ in structure, their effects on bone loss in postmenopausal women or in ovariectomized-induced osteoporotic animals are quite similar. Most of them increase bone mineral density and bone strength, which occur through enhancement of osteoblastogenesis and osteoclast apoptosis, decrease in osteoclastogenesis as well as increase in neovascularization on the site of the osteoporotic fracture. CONCLUSION Several molecules of signaling pathways are involved in the effect of flavonoids on osteoporotic bone. Whether all flavonoids have a common mechanism or they act as ligands of estrogen receptors remain to be established. More clinical trials are necessary to know better their safety, efficacy, delivery and bioavailability in humans, as well as comparative studies with conventional therapies.
Collapse
Affiliation(s)
- Valeria Rodríguez
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - María Rivoira
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Gabriela Picotto
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Gabriela Díaz de Barboza
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Alejandro Collin
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Nori Tolosa de Talamoni
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| |
Collapse
|
39
|
Li YJ, Niu XR, Hu S. Efficacy evaluation of different forms of traditional Chinese health-preservation exercises for osteoporosis: a network meta-analysis. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2021. [DOI: 10.1007/s11726-021-1256-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Long-Term Administration of Abacavir and Etravirine Impairs Semen Quality and Alters Redox System and Bone Metabolism in Growing Male Wistar Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5596090. [PMID: 34373766 PMCID: PMC8349296 DOI: 10.1155/2021/5596090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/24/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022]
Abstract
Highly active antiretroviral therapy (HAART) is used in HIV-infected patients. Alongside the prolongation of patients' life, adverse side effects associated with long-term therapy are becoming an increasing problem. Therefore, optimizing of HAART is extremely important. The study is aimed at evaluating the toxicity of abacavir and etravirine in monotherapy on the reproductive system, liver, kidneys, and bones in young, sexually mature, male rats. Thirty-six 8-week-old male Wistar rats randomized into three 12-animal groups received either normal saline (control), abacavir 60 mg/kg (AB group), or etravirine 40 mg/kg (ET group) once daily for 16 weeks. Semen morphology, oxide-redox state parameters (MDA, SOD, catalase, GPx, glutathione, GSH/GSSG ratio) in tissue homogenates (testes, liver, kidneys), and serum samples were studied. In bones, microcomputed tomography and a four-point bending test were performed. Total sperm count, sperm concentration, motility, and sperm morphology did not differ significantly in AB or ET groups compared to the control. In the flow cytometry of semen, an increased percentage of cells with denatured DNA was noticed for both tested drugs. However, no significant changes of oxide-redox state in testicular homogenates were found, except of increased SOD activity in the AB-receiving group. Additionally, ET significantly altered catalase and GPx in the liver and SOD activity in kidneys. Abacavir decreased catalase in the liver and GSH levels in kidneys. AB caused significant changes to bone microarchitecture (bone volume fraction, trabecular number, connectivity density, total porosity) and increased Young's modulus. Etravirine had a greater impact on macrometric parameters of bones (tibial index, mid-tibial diameter, femur length). After 4 weeks in the ET group, a lower 1,25-dihydroxyvitamin D3 serum concentration was found. The results showed that abacavir and etravirine disturb oxidative stress. An increase in the percentage of sperms with chromatin damage suggests decreased fertility in rats receiving the studied drugs. Both drugs affected bone formation in growing rats. Additionally, etravirine disturbed vitamin D metabolism.
Collapse
|
41
|
Lin H, Li J, Xu Z, Liu T, Zhou X. IDUA Gene Variants and Response to Zoledronic Acid Treatment in Chinese Women with Postmenopausal Osteoporosis. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:859-866. [PMID: 34285554 PMCID: PMC8286146 DOI: 10.2147/pgpm.s315404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/30/2021] [Indexed: 12/04/2022]
Abstract
Purpose Alpha-L-iduronidase (IDUA) rs3755955 and rs6831280 polymorphisms have been demonstrated to be associated with bone mineral density (BMD). However, no study has investigated the association of these two polymorphisms with osteoporosis (OP) susceptibility in Chinese postmenopausal women. Patients and Methods IDUA gene polymorphisms were genotyped in 278 women with OP and 303 healthy controls via polymerase chain reaction and Sanger sequencing. Results Our data indicated that IDUA rs3755955 and rs6831280 polymorphisms increased the risk of OP in homozygous, dominant, and allelic models. We observed lower lumbar spine BMD in younger women with the AA genotype of rs3755955 polymorphism. Finally, mutant genotypes with rs6831280 polymorphism were more sensitive to zoledronic acid treatment, and the treatment effect was significant in terms of BMD levels. Conclusion In conclusion, IDUA rs3755955 and rs6831280 polymorphisms demonstrated susceptibility to OP in Chinese postmenopausal women. IDUA rs6831280 polymorphism caused differences in response to zoledronic acid treatment.
Collapse
Affiliation(s)
- Haiqing Lin
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People's Republic of China
| | - Jin Li
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People's Republic of China
| | - Zhonghua Xu
- Department of Orthopedics, Jintan Hospital Affiliated to Jiangsu University, Changzhou, 213200, People's Republic of China
| | - Ting Liu
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, People's Republic of China
| | - Xindie Zhou
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, People's Republic of China
| |
Collapse
|
42
|
Calcium-Enriched Pumpkin Affects Serum Leptin Levels and Fat Content in a Rat Model of Postmenopausal Osteoporosis. Nutrients 2021; 13:nu13072334. [PMID: 34371845 PMCID: PMC8308801 DOI: 10.3390/nu13072334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/27/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Because the world’s population is deficient in dietary calcium, it is important to search for new sources of this essential mineral for the bones and the entire body. One of the innovative foods that could act as such a source is pumpkin enriched with calcium lactate by means of osmotic dehydration. Providing the body with easily absorbable calcium may have beneficial effects on the reconstruction of bone tissue. Postmenopausal osteoporosis is associated with body weight and fat mass gain, and the aim of the present study was to evaluate the effect of consuming enriched pumpkin on the levels of adipokines and cytokines produced by the adipose tissue. This study was conducted on 12-month-old female Wistar rats that received nutritional intervention for 12 weeks. After termination of the rats, the levels of leptin, adiponectin, interleukin 31 and interleukin 33 in serum and adipose tissue were determined, and the femurs were examined histopathologically. It was demonstrated that calcium-enriched pumpkin reduced bone marrow femoral adipocytes and also markedly decreased serum leptin levels in groups of rats after ovariectomy, which was associated with a decrease of fat content. Additionally, it seems that calcium-enriched pumpkin may reduce body weight gain often observed after menopause.
Collapse
|
43
|
Wang P, Xu Q, Cao RR, Deng FY, Lei SF. Global Public Interests and Dynamic Trends in Osteoporosis From 2004 to 2019: Infodemiology Study. J Med Internet Res 2021; 23:e25422. [PMID: 36260400 PMCID: PMC8406103 DOI: 10.2196/25422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/22/2020] [Accepted: 04/27/2021] [Indexed: 12/26/2022] Open
Abstract
Background With the prolonging of human life expectancy and subsequent population aging, osteoporosis (OP) has become an important public health issue. Objective This study aimed to understand the global public search interests and dynamic trends in “osteoporosis” using the data derived from Google Trends. Methods An online search was performed using the term “osteoporosis” in Google Trends from January 1, 2004, to December 31, 2019, under the category “Health.” Cosinor analysis was used to test the seasonality of relative search volume (RSV) for “osteoporosis.” An analysis was conducted to investigate the public search topic rising in RSV for “osteoporosis.” Results There was a descending trend of global RSV for “osteoporosis” from January 2004 to December 2014, and a slowly increasing trend from January 2015 to December 2019. Cosinor analysis showed significant seasonal variations in global RSV for “osteoporosis” (P=.01), with a peak in March and a trough in September. In addition, similar decreasing trends of RSV for “osteoporosis” were found in Australia, New Zealand, Ireland, and Canada from January 2004 to December 2019. Cosinor test revealed significant seasonal variations in RSV for “osteoporosis” in Australia, New Zealand, Canada, Ireland, UK, and USA (all P<.001). Furthermore, public search rising topics related to “osteoporosis” included denosumab, fracture risk assessment tool, bone density, osteopenia, osteoarthritis, and risk factor. Conclusions Our study provided evidence about the public search interest and dynamic trends in OP using web-based data, which would be helpful for public health and policy making.
Collapse
Affiliation(s)
- Peng Wang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University Medical College, Soochow University, Suzhou, China
| | - Qing Xu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University Medical College, Soochow University, Suzhou, China
| | - Rong-Rong Cao
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University Medical College, Soochow University, Suzhou, China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University Medical College, Soochow University, Suzhou, China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University Medical College, Soochow University, Suzhou, China
| |
Collapse
|
44
|
Canals-Ruiz L, Comellas M, Lizán L. Preferences, satisfaction and decision-making processes in osteoporosis treatment: a systematic review of the literature. J Comp Eff Res 2021; 10:629-645. [PMID: 33880940 DOI: 10.2217/cer-2020-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To synthesize information available in the literature on patients' preferences and satisfaction with osteoporosis treatment and their unmet needs on the treatment decision-making process. Materials & methods: Systematic literature review consulting international database and grey literature of articles published between January 1, 2009 and January 1, 2019. Results: Nineteen publications were reviewed, 79% of them focused on evaluating the importance that patients attached to the mode and frequency of administration, adverse events and treatment efficacy. 21% of them provided information about treatment satisfaction and 26% regarding unmet needs on treatment-decision making process. Conclusion: Aligning treatment with patients' preferences, promoting physician-patient communication and identifying patients' concerns with treatment may contribute to improve treatment satisfaction and adherence and ultimately achieve the treatment goal.
Collapse
Affiliation(s)
| | | | - Luís Lizán
- Outcomes10, Castellon, Spain.,Department of Medicine, University Jaume I, Castellon, Spain
| |
Collapse
|
45
|
Zheng D, Cui C, Shao C, Wang Y, Ye C, Lv G. Coenzyme Q10 inhibits RANKL-induced osteoclastogenesis by regulation of mitochondrial apoptosis and oxidative stress in RAW264.7 cells. J Biochem Mol Toxicol 2021; 35:e22778. [PMID: 33754447 DOI: 10.1002/jbt.22778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/06/2021] [Accepted: 03/12/2021] [Indexed: 01/21/2023]
Abstract
Coenzyme Q10 (CoQ10) has been reported to improve bone density and the number of trabeculae in postmenopausal osteoporosis, but the mechanism remains to be elucidated. We aimed to investigate the effects of CoQ10 on receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and the underlying molecular mechanisms. RAW264.7 cells were treated with different concentrations of RANKL to differentiate into osteoclasts, and then these cells were treated with different concentrations of CoQ10 with or without H2 O2 . Tartrate-resistant acid phosphatase staining was performed to detect osteoclasts. Cell viability was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell apoptosis was examined by flow cytometry, and the effects of CoQ10 on protein and messenger RNA expression of mitochondrial apoptosis-associated proteins and osteoclast marker proteins were measured by quantitative reverse transcription polymerase chain reaction and western blot, respectively. Furthermore, enzyme-linked immunosorbent assay was conducted to analyze the activities of malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT). RANKL significantly induced osteoclastogenesis in RAW264.7 cells, with the greatest efficiency at 50 ng/ml. CoQ10 had no significant effects on cell viability but it significantly increased the percentages of cell apoptosis. Mechanically, CoQ10 statistically decreased the levels of Bcl-2 and cytochrome C in mitochondria and upregulated the levels of Bax, cleaved caspase 3, and cytochrome C in the cytoplasm. Moreover, CoQ10 significantly decreased RANKL-induced osteoclastogenesis regardless of exposure to H2 O2 . In addition, CoQ10 statistically reduced MDA activity and elevated the activities of SOD and CAT, as well as the expression of oxidative stress-related proteins. CoQ10 may inhibit RANKL-induced osteoclastogenesis by regulation of mitochondrial apoptosis and oxidative stress in RAW264.7 cells.
Collapse
Affiliation(s)
- Delu Zheng
- Department of Endocrinology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Chenli Cui
- The Operative Surgery Laboratory, Bengbu Medical College, Bengbu, Anhui, China
| | - Chen Shao
- Department of Endocrinology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yanqiu Wang
- Department of Endocrinology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Chengsong Ye
- Department of Endocrinology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Gaoyou Lv
- Department of Endocrinology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
46
|
Castrejón-Delgado L, Castelán-Martínez OD, Clark P, Garduño-Espinosa J, Mendoza-Núñez VM, Sánchez-Rodríguez MA. Effect of Tibolone on Bone Mineral Density in Postmenopausal Women: Systematic Review and Meta-Analysis. BIOLOGY 2021; 10:211. [PMID: 33802101 PMCID: PMC8000366 DOI: 10.3390/biology10030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 11/29/2022]
Abstract
Low bone mineral density (BMD) on postmenopausal women causes bone fragility and fracture risk. Tibolone seems to prevent bone loss. Therefore, this systematic review with meta-analysis synthesizes the tibolone effect on BMD percent change in lumbar spine (LS), femoral neck (FN), and total hip (TH) in postmenopausal women. Controlled trials that provided tibolone evidence on the efficacy of tibolone in preventing loss of BMD were included. Regarding the included studies, a pooled mean difference (MD) with 95% confidence intervals (95%CI) was estimated to determine the BMD percentage change. Eleven studies were identified and eight were included in the quantitative analysis. Tibolone at a dose of 2.5 mg increased BMD compared with non-active controls at 24 months in LS (MD 4.87%, 95%CI: 4.16-5.57, and MD 7.35%, 95%CI: 2.68-12.01); and FN (MD 4.85%, 95%CI: 1.55-8.15, and 4.21%, 95%CI: 2.99-5.42), with Hologic and Lunar scanners, respectively. No difference was observed when tibolone 2.5 mg dose was compared with estrogen therapy (ET) at 24 months, LS (MD -0.58%, 95%CI: -3.77-2.60), FN (MD -0.29%, 95%CI: -1.37-0.79), and TH (MD -0.12%, 95%CI: -2.28-2.53). Therefore, tibolone increases BMD in LS and FN compared to non-active controls, and there was no showed difference with ET.
Collapse
Affiliation(s)
- Lizett Castrejón-Delgado
- Research Unit on Gerontology, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico; (L.C.-D.); (V.M.M.-N.)
| | - Osvaldo D. Castelán-Martínez
- Clinical Pharmacology Laboratory, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico;
| | - Patricia Clark
- Clinical Epidemiology Research Unit, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Juan Garduño-Espinosa
- Research Department, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Víctor Manuel Mendoza-Núñez
- Research Unit on Gerontology, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico; (L.C.-D.); (V.M.M.-N.)
| | - Martha A. Sánchez-Rodríguez
- Research Unit on Gerontology, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico; (L.C.-D.); (V.M.M.-N.)
| |
Collapse
|
47
|
Waltman N, Cole MA, Kupzyk KA, Lappe JM, Mack LR, Bilek LD. Promoting adherence to bone-loading exercises in postmenopausal women with low bone mass. J Am Assoc Nurse Pract 2021; 34:50-61. [PMID: 33560754 DOI: 10.1097/jxx.0000000000000564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/19/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND We recently completed a parent study (Bone Loading Exercises versus Risedronate on Bone Health in Post-menopausal Women [NIH# R01NR015029]) examining bone-loading exercises to prevent bone loss in postmenopausal women with low bone mass. Forty-three million US women have low bone mass and increased risk for fractures. Bone-loading exercises (weight-bearing and resistance training) can preserve bone mass and decrease risk of fractures. However, multiple barriers prevent women from exercising and adherence rates are low. PURPOSE This secondary analysis of the parent study (a) examined barriers specific to women participating in bone-loading exercises; (b) described effectiveness of self-efficacy strategies used in the parent study for increasing confidence in knowledge and reducing barriers; and (c) applied study findings and principles of self-efficacy and self-regulation in development of guidelines for promoting adherence to exercises. METHODS Seventy-two women were randomized to the exercise group and completed 12 months of exercises. Instruments for self-efficacy were completed at 2 weeks and barriers interference at 6 months. Percent adherence was measured as the number of exercise sessions attended divided by the number prescribed. RESULTS In the 12-month study, average adherence to exercises was 58.9%. Lower adherers reported lack of self-regulation skills such as "lack of time" as the most frequent barriers to exercise. IMPLICATIONS FOR PRACTICE Guidelines developed included promotion of skills for self-regulation (such as regulation of time) as well as self-efficacy to improve adherence rates. Nurse practitioners may be the most motivated of all providers to use guidelines promoting exercise for women in their clinical practice.
Collapse
Affiliation(s)
- Nancy Waltman
- College of Nursing, University of Nebraska Medical Center, College of Nursing, Lincoln, Nebraska
| | - Melissa A Cole
- Research Study Project, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kevin A Kupzyk
- Center for Nursing Science, University of Nebraska Medical Center, Omaha, Nebraska
| | - Joan M Lappe
- Creighton Osteoporosis Research Center, Creighton University, Omaha, Nebraska
| | - Lynn R Mack
- Department of Diabetes, Endocrinology & Metabolism, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Laura D Bilek
- College of Allied Health Professions, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
48
|
Yang D, Liu T, Jiang G, Hu X, Zheng T, Li T, Gao Z, Ouyang Z, Zhu B. Senkyunolide H attenuates osteoclastogenesis and postmenopausal osteoporosis by regulating the NF-κB, JNK and ERK signaling pathways. Biochem Biophys Res Commun 2020; 533:510-518. [PMID: 32977943 DOI: 10.1016/j.bbrc.2020.09.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 01/11/2023]
Abstract
Osteoporosis is a common disease characterized by reduced bone mineral density and impaired bone strength and is currently one of the leading causes of fracture and morbidity among the elderly worldwide. The pathological generation of osteoclasts is an important event in the development of extensive bone resorption. Thus, the development of a drug that targets osteoclasts may be beneficial in treating osteoporosis. Accordingly, in this study, we investigated the effects of senkyunolide H (SNH), an active component extracted from ligusticum chuanxiong Hort, on osteoporosis through a series of in vivo and in vitro experiments. First, we found that SNH had a therapeutic effect in ovariectomized mice by inhibiting osteoclast formation. Then, the inhibitory effect on osteoclast differentiation was confirmed in vitro. Further western blotting analysis revealed that SNH downregulated receptor activator of nuclear factor (NF)-κΒ ligand-induced NF-κB signaling activation, c-Jun N-terminal kinase (JNK) in the mitogen-activated protein kinase and extracellular signal-regulated kinase (ERK) signaling pathway. These data indicated that SNH may be a potential treatment for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Daishui Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Guangyao Jiang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Xuantao Hu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Tao Zheng
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Tao Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Zhi Gao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China.
| | - Baoyu Zhu
- Department of Orthopedics, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan, 412007, China.
| |
Collapse
|
49
|
Li YQ, Chen Y, Fang JY, Jiang SQ, Li P, Li F. Integrated network pharmacology and zebrafish model to investigate dual-effects components of Cistanche tubulosa for treating both Osteoporosis and Alzheimer's Disease. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112764. [PMID: 32173426 DOI: 10.1016/j.jep.2020.112764] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osteoporosis (OP) and Alzheimer's disease (AD) are common geriatric concurrent diseases, and many studies indicate the connection of their pathogenesis. Cistanche tubulosa (Schenk) Wight (CT) is a widely used traditional Chinese medicine and has been extensively applied to treat OP and AD, respectively. However, the active ingredients for both concurrent diseases simultaneously and underlying mechanisms are limited. AIM OF STUDY This work aimed at establishing an effective and reliable network screening method to find dual-effects compounds in CT that can protect AD and OP concurrently. And it will provide new perspectives of the link between OP and AD on molecular mechanisms. MATERIAL AND METHODS The dual-effects of CT were systematically analyzed with integrating multiple databases and extensive analysis at a network pharmacology level. Classified drug-target interaction network was constructed to reveal differences in effects between different types of compounds. To prove the effectiveness of this network, some compounds were selected to verify in Pre-induced OP model and AlCl3-induced AD model of zebrafish according to the topological parameters. RESULTS 22 dual-effects active ingredients in CT were initially screened out via network pharmacology with a closely connection with 81 OP and AD-related targets. Classified network analysis found the better bioactivities of phenylethanoid glycosides and flavonoids. The dual-effects of four selected compounds demonstrated that the network is reasonable and effective, suggesting the dual-effects of the remaining 18 compounds. Moreover, we identified 9 putative targets and two pathways that were significantly related to OP and AD. CONCLUSIONS We successfully identified 22 dual-effects active components in CT. This systematic screening strategy provided a new protocol to objectively discover multi-effects compounds of traditional Chinese medicine, and even a macroscopic perspective that will improve our understanding of the link between OP and AD on molecular mechanisms.
Collapse
Affiliation(s)
- Ying-Qi Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jia-Yi Fang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Si-Qi Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
50
|
Zhang Y, Zhang ZN, Li N, Zhao LJ, Xue Y, Wu HJ, Hou JM. Nbr1-regulated autophagy in Lactoferrin-induced osteoblastic differentiation. Biosci Biotechnol Biochem 2020; 84:1191-1200. [PMID: 32141386 DOI: 10.1080/09168451.2020.1737505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The molecular mechanism of autophagy in Lactoferrin (LF) induced osteoblast differentiation is not fully demonstrated. In this study, alkaline phosphatase (ALP) activity, alizarin red S staining and ELISA were used to study N-terminal propeptide of type I procollagen (PINP) expression. mRFP-GFP-LC3 adenoviruses, mono-dansylcadaverine (MDC) staining, scanning electron microscopy, and western blot analysis was employed to probe the LF induced autophagy. The interaction between autophagy receptor Neighbor of Brca1 gene (Nbr1) and pp38 was studied. 3-methyladenine (3-MA) and chloroquine (CQ) could inhibit the activity of ALP, PINP and the autophagy in LF group. LF treatment could up-regulate and down-regulate the expressions of pp38 and Nbr1with a dose-dependent manner, respectively. LF could inhibit the recognition of pp38 and Nbr1. In addition, LF can prompt Nbr1-medicated autophagy and prevent pp38 degradation by autophagy. LF can induce Nbr1-mediated autophagy and inhibit pp38 entering into autophagy flux in the physiological process of osteoblast differentiation.Abbreviations: CQ:chloroquine;LF: Lactoferrin; 3-MA: 3-methyladenine; ALP: Alkaline phosphatase; ANOVA: Analysis of variance; CCK-8: Cell Counting Kit-8; LC3: Microtubule-associated protein light chain3; MDC: Monodansylcadaverine; Nbr1: neighbor of Brca1 gene; PINP: N-terminal propeptide of type I procollagen; PVDF: Polychlorotrifluoroethylene; pp38: phosphorylation p38; RAPA: Rapamycin; SDS: sodium dodecyl sulfate.
Collapse
Affiliation(s)
- Yang Zhang
- Department of endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.,Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Zi-Nan Zhang
- Department of Neurological Rehabilitation, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Na Li
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Li-Jie Zhao
- Department of Geriatrics, General Hospital of Daqing Oil Field, Daqing, China
| | - Ying Xue
- Department of endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.,Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Hao-Jie Wu
- Department of endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.,Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Jian-Ming Hou
- Department of endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.,Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|