1
|
Bulangalire N, Claeyssen C, Agbulut O, Cieniewski-Bernard C. Impact of MG132 induced-proteotoxic stress on αB-crystallin and desmin phosphorylation and O-GlcNAcylation and their partition towards cytoskeleton. Biochimie 2024; 226:121-135. [PMID: 38636798 DOI: 10.1016/j.biochi.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/19/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Small Heat Shock Proteins are considered as the first line of defense when proteostasis fails. Among them, αB-crystallin is expressed in striated muscles in which it interacts with desmin intermediate filaments to stabilize them, maintaining cytoskeleton's integrity and muscular functionalities. Desmin is a key actor for muscle health; its targeting by αB-crystallin is thus crucial, especially in stress conditions. αB-crystallin is phosphorylated and O-GlcNAcylated. Its phosphorylation increases consecutively to various stresses, correlated with its recruitment for cytoskeleton's safeguarding. However, phosphorylation as unique signal for cytoskeleton translocation remains controversial; indeed, O-GlcNAcylation was also proposed to be involved. Thus, there are still some gaps for a deeper comprehension of how αB-crystallin functions are finely regulated by post-translational modifications. Furthermore, desmin also bears both post-translational modifications; while desmin phosphorylation is closely linked to desmin intermediates filaments turnover, it is unclear whereas its O-GlcNAcylation could impact its proper function. In the herein paper, we aim at identifying whether phosphorylation and/or O-GlcNAcylation are involved in αB-crystallin targeting towards cytoskeleton in proteotoxic stress induced by proteasome inhibition in C2C12 myotubes. We demonstrated that proteotoxicity led to αB-crystallin's phosphorylation and O-GlcNAcylation patterns changes, both presenting a dynamic interplay depending on protein subfraction. Importantly, both post-translational modifications showed a spatio-temporal variation correlated with αB-crystallin translocation towards cytoskeleton. In contrast, we did not detect any change of desmin phosphorylation and O-GlcNAcylation. All together, these data strongly support that αB-crystallin phosphorylation/O-GlcNAcylation interplay rather than changes on desmin is a key regulator for its cytoskeleton translocation, preserving it towards stress.
Collapse
Affiliation(s)
- Nathan Bulangalire
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France; CHU Lille, Université de Lille, F-59000, Lille, France; Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Charlotte Claeyssen
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France.
| |
Collapse
|
2
|
Xia Y, Zhang X, Zhang X, Zhu H, Zhong X, Song W, Yuan J, Sha Z, Li F. Gene structure, expression and function analysis of the MyoD gene in the Pacific white shrimp Litopenaeus vannamei. Gene 2024; 921:148523. [PMID: 38703863 DOI: 10.1016/j.gene.2024.148523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The Pacific white shrimp Litopenaeus vannamei is a representative species of decapod crustacean and an economically important marine aquaculture species worldwide. However, research on the genes involved in muscle growth and development in shrimp is still lacking. MyoD is recognized as a crucial regulator of myogenesis and plays an essential role in muscle growth and differentiation in various animals. Nonetheless, little information is available concerning the function of this gene among crustaceans. In this study, we identified a sequence of the MyoD gene (LvMyoD) with a conserved bHLH domain in the L. vannamei genome. Phylogenetic analysis revealed that both the overall protein sequence and specific functional sites of LvMyoD are highly conserved with those of other crustacean species and that they are evolutionarily closely related to vertebrate MyoD and Myf5. LvMyoD expression is initially high during early muscle development in shrimp and gradually decreases after 40 days post-larval development. In adults, the muscle-specific expression of LvMyoD was confirmed through RT-qPCR analysis. Knockdown of LvMyoD inhibited the growth of the shrimp in body length and weight. Histological observation and transcriptome sequencing of muscle samples after RNA interference (RNAi) revealed nuclear agglutination and looseness in muscle fibers. Additionally, we observed significant effects on the expression of genes involved in heat shock proteins, myosins, actins, protein synthesis, and glucose metabolism. These findings suggest that LvMyoD plays a critical role in regulating muscle protein synthesis and muscle cell differentiation. Overall, this study highlights the involvement of LvMyoD in myogenesis and muscle growth, suggesting that it is a potentially important regulatory target for shrimp breeding efforts.
Collapse
Affiliation(s)
- Yanting Xia
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Institute of Aquatic Biotechnology, Collage of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xiaojun Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Institute of Aquatic Biotechnology, Collage of Life Sciences, Qingdao University, Qingdao 266071, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xiaoxi Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Haochen Zhu
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Institute of Aquatic Biotechnology, Collage of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xiaoyun Zhong
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Jianbo Yuan
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, Collage of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Fuhua Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
3
|
Zhang Y, Huang W, Tian Q, Bai G, Wu W, Yin H, Hu L, Chen X. Network pharmacology and biochemical experiments reveal the antiapoptotic mechanism of huperzine A for treating diabetic retinopathy. Br J Ophthalmol 2024; 108:989-998. [PMID: 37339867 DOI: 10.1136/bjo-2023-323639] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND/AIMS Diabetic retinopathy is the most common eye disease that causes blindness in the working population. Neurodegeneration is the early sign of diabetic retinopathy, but no drug has been approved for delaying or reversing retinal neurodegeneration. Huperzine A, a natural alkaloid isolated from Huperzia serrata, displays neuroprotective and antiapoptotic effects in treating neurodegenerative disorders. Our study aims to investigate the effect of huperzine A in preventing retinal neurodegeneration of diabetic retinopathy and its possible mechanism. METHODS Diabetic retinopathy model was induced by streptozotocin. H&E staining, optical coherence tomography, immunofluorescence staining and angiogenic factors were used to determine the degree of retinal pathological injury. The possible molecular mechanism was unrevealed by network pharmacology analysis and further validated by biochemical experiments. RESULTS In our study, we demonstrated that huperzine A has a protective effect on the diabetes retina in a diabetic rat model. Based on the network pharmacology analysis and biochemical studies, huperzine A may treat diabetic retinopathy via key target HSP27 and apoptosis-related pathways. Huperzine A may modulate the phosphorylation of HSP27 and activate the antiapoptotic signalling pathway. CONCLUSION Our findings revealed that huperzine A might be a potential therapeutic drug to prevent diabetic retinopathy. It is the first-time combining network pharmacology analysis with biochemical studies to explore the mechanism of huperzine A in preventing diabetic retinopathy.
Collapse
Affiliation(s)
- Ying Zhang
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wunan Huang
- Lanzhou University First Affiliated Hospital, Lanzhou University, Lanzhou, Gansu, China
| | - Qing Tian
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guannan Bai
- National Clinical Research Center for Child Health, Zhejiang University School of Medicine Children's Hospital, Hangzhou, Zhejiang, China
| | - Wei Wu
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Houfa Yin
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lidan Hu
- National Clinical Research Center for Child Health, Zhejiang University School of Medicine Children's Hospital, Hangzhou, Zhejiang, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Muranova LK, Vostrikova VM, Shatov VM, Sluchanko NN, Gusev NB. Interaction of the C-terminal immunoglobulin-like domains (Ig 22-24) of filamin C with human small heat shock proteins. Biochimie 2024; 219:146-154. [PMID: 38016530 DOI: 10.1016/j.biochi.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Small heat shock proteins are the well-known regulators of the cytoskeleton integrity, yet their complexes with actin-binding proteins are underexplored. Filamin C, a dimeric 560 kDa protein, abundant in cardiac and skeletal muscles, crosslinks actin filaments and contributes to Z-disc formation and membrane-cytoskeleton attachment. Here, we analyzed the interaction of a human filamin C fragment containing immunoglobulin-like domains 22-24 (FLNC22-24) with five small heat shock proteins (HspB1, HspB5, HspB6, HspB7, HspB8) and their α-crystallin domains. On size-exclusion chromatography, only HspB7 or its α-crystallin domain formed complexes with FLNC22-24. Despite similar isoelectric points of the small heat shock proteins analyzed, only HspB7 and its α-crystallin domain interacted with FLNC22-24 on native gel electrophoresis. Crosslinking with glutaraldehyde confirmed the formation of complexes between HspB7 (or its α-crystallin domain) and the filamin С fragment, inhibiting intersubunit FLNC crosslinking. These data are consistent with the structure modeling using Alphafold. Thus, the C-terminal fragment (immunoglobulin-like domains 22-24) of filamin C contains the site for HspB7 (or its α-crystallin domain) interaction, which competes with FLNC22-24 dimerization and its probable interaction with different target proteins.
Collapse
Affiliation(s)
- Lydia K Muranova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russia
| | - Varvara M Vostrikova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russia
| | - Vladislav M Shatov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow 119071, Russia
| | - Nikolai B Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russia.
| |
Collapse
|
5
|
Claeyssen C, Bulangalire N, Bastide B, Agbulut O, Cieniewski-Bernard C. Desmin and its molecular chaperone, the αB-crystallin: How post-translational modifications modulate their functions in heart and skeletal muscles? Biochimie 2024; 216:137-159. [PMID: 37827485 DOI: 10.1016/j.biochi.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Maintenance of the highly organized striated muscle tissue requires a cell-wide dynamic network through protein-protein interactions providing an effective mechanochemical integrator of morphology and function. Through a continuous and complex trans-cytoplasmic network, desmin intermediate filaments ensure this essential role in heart and in skeletal muscle. Besides their role in the maintenance of cell shape and architecture (permitting contractile activity efficiency and conferring resistance towards mechanical stress), desmin intermediate filaments are also key actors of cell and tissue homeostasis. Desmin participates to several cellular processes such as differentiation, apoptosis, intracellular signalisation, mechanotransduction, vesicle trafficking, organelle biogenesis and/or positioning, calcium homeostasis, protein homeostasis, cell adhesion, metabolism and gene expression. Desmin intermediate filaments assembly requires αB-crystallin, a small heat shock protein. Over its chaperone activity, αB-crystallin is involved in several cellular functions such as cell integrity, cytoskeleton stabilization, apoptosis, autophagy, differentiation, mitochondria function or aggresome formation. Importantly, both proteins are known to be strongly associated to the aetiology of several cardiac and skeletal muscles pathologies related to desmin filaments disorganization and a strong disturbance of desmin interactome. Note that these key proteins of cytoskeleton architecture are extensively modified by post-translational modifications that could affect their functional properties. Therefore, we reviewed in the herein paper the impact of post-translational modifications on the modulation of cellular functions of desmin and its molecular chaperone, the αB-crystallin.
Collapse
Affiliation(s)
- Charlotte Claeyssen
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Nathan Bulangalire
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France; Université de Lille, CHU Lille, F-59000 Lille, France
| | - Bruno Bastide
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France.
| |
Collapse
|
6
|
Wang Y, Wang X, Wu H, Wang L, Wang H, Lu Z. Characterization of Hsp17, a Novel Small Heat Shock Protein, in Sphingomonas melonis TY under Heat Stress. Microbiol Spectr 2023; 11:e0136023. [PMID: 37436164 PMCID: PMC10434288 DOI: 10.1128/spectrum.01360-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023] Open
Abstract
Bacteria are constantly exposed to a variety of environmental stresses. Temperature is considered one of the most important environmental factors affecting microbial growth and survival. As ubiquitous environmental microorganisms, Sphingomonas species play essential roles in the biodegradation of organic contaminants, plant protection, and environmental remediation. Understanding the mechanism by which they respond to heat shock will help further improve cell resistance by applying synthetic biological strategies. Here, we assessed the transcriptomic and proteomic responses of Sphingomonas melonis TY to heat shock and found that stressful conditions caused significant changes in functional genes related to protein synthesis at the transcriptional level. The most notable changes observed were increases in the transcription (1,857-fold) and protein expression (11-fold) of Hsp17, which belongs to the small heat shock protein family, and the function of Hsp17 in heat stress was further investigated in this study. We found that the deletion of hsp17 reduced the capacity of the cells to tolerate high temperatures, whereas the overexpression of hsp17 significantly enhanced the ability of the cells to withstand high temperatures. Moreover, the heterologous expression of hsp17 in Escherichia coli DH5α conferred to the bacterium the ability to resist heat stress. Interestingly, its cells were elongated and formed connected cells following the increase in temperature, while hsp17 overexpression restored their normal morphology under high temperature. In general, these results indicate that the novel small heat shock protein Hsp17 greatly contributes to maintaining cell viability and morphology under stress conditions. IMPORTANCE Temperature is generally considered the most important factor affecting metabolic functions and the survival of microbes. As molecular chaperones, small heat shock proteins can prevent damaged protein aggregation during abiotic stress, especially heat stress. Sphingomonas species are widely distributed in nature, and they can frequently be found in various extreme environments. However, the role of small heat shock proteins in Sphingomonas under high-temperature stress has not been elucidated. This study greatly enhances our understanding of a novel identified protein, Hsp17, in S. melonis TY in terms of its ability to resist heat stress and maintain cell morphology under high temperature, leading to a broader understanding of how microbes adapt to environmental extremes. Furthermore, our study will provide potential heat resistance elements for further enhancing cellular resistance as well as the synthetic biological applications of Sphingomonas.
Collapse
Affiliation(s)
- Yihan Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Lvjing Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Haixia Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Melamed Kadosh D, Beenstock J, Engelberg D, Admon A. Differential Modulation of the Phosphoproteome by the MAP Kinases Isoforms p38α and p38β. Int J Mol Sci 2023; 24:12442. [PMID: 37569817 PMCID: PMC10419006 DOI: 10.3390/ijms241512442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The p38 members of the mitogen-activated protein kinases (MAPKs) family mediate various cellular responses to stress conditions, inflammatory signals, and differentiation factors. They are constitutively active in chronic inflammatory diseases and some cancers. The differences between their transient effects in response to signals and the chronic effect in diseases are not known. The family is composed of four isoforms, of which p38α seems to be abnormally activated in diseases. p38α and p38β are almost identical in sequence, structure, and biochemical and pharmacological properties, and the specific unique effects of each of them, if any, have not yet been revealed. This study aimed to reveal the specific effects induced by p38α and p38β, both when transiently activated in response to stress and when chronically active. This was achieved via large-scale proteomics and phosphoproteomics analyses using stable isotope labeling of two experimental systems: one, mouse embryonic fibroblasts (MEFs) deficient in each of these p38 kinases and harboring either an empty vector or vectors expressing p38αWT, p38βWT, or intrinsically active variants of these MAPKs; second, induction of transient stress by exposure of MEFs, p38α-/-, and p38β-/- MEFs to anisomycin. Significant differences in the repertoire of the proteome and phosphoproteome between cells expressing active p38α and p38β suggest distinct roles for each kinase. Interestingly, in both cases, the constitutive activation induced adaptations of the cells to the chronic activity so that known substrates of p38 were downregulated. Within the dramatic effect of p38s on the proteome and phosphoproteome, some interesting affected phosphorylation sites were those found in cancer-associated p53 and Hspb1 (HSP27) proteins and in cytoskeleton-associated proteins. Among these, was the stronger direct phosphorylation by p38α of p53-Ser309, which was validated on the Ser315 in human p53. In summary, this study sheds new light on the differences between chronic and transient p38α and p38β signaling and on the specific targets of these two kinases.
Collapse
Affiliation(s)
| | - Jonah Beenstock
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - David Engelberg
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore 138602, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Arie Admon
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
| |
Collapse
|
8
|
Gu C, Fan X, Yu W. Functional Diversity of Mammalian Small Heat Shock Proteins: A Review. Cells 2023; 12:1947. [PMID: 37566026 PMCID: PMC10417760 DOI: 10.3390/cells12151947] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
The small heat shock proteins (sHSPs), whose molecular weight ranges from 12∼43 kDa, are members of the heat shock protein (HSP) family that are widely found in all organisms. As intracellular stress resistance molecules, sHSPs play an important role in maintaining the homeostasis of the intracellular environment under various stressful conditions. A total of 10 sHSPs have been identified in mammals, sharing conserved α-crystal domains combined with variable N-terminal and C-terminal regions. Unlike large-molecular-weight HSP, sHSPs prevent substrate protein aggregation through an ATP-independent mechanism. In addition to chaperone activity, sHSPs were also shown to suppress apoptosis, ferroptosis, and senescence, promote autophagy, regulate cytoskeletal dynamics, maintain membrane stability, control the direction of cellular differentiation, modulate angiogenesis, and spermatogenesis, as well as attenuate the inflammatory response and reduce oxidative damage. Phosphorylation is the most significant post-translational modification of sHSPs and is usually an indicator of their activation. Furthermore, abnormalities in sHSPs often lead to aggregation of substrate proteins and dysfunction of client proteins, resulting in disease. This paper reviews the various biological functions of sHSPs in mammals, emphasizing the roles of different sHSPs in specific cellular activities. In addition, we discuss the effect of phosphorylation on the function of sHSPs and the association between sHSPs and disease.
Collapse
Affiliation(s)
- Chaoguang Gu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Hangzhou 310018, China;
| | - Xinyi Fan
- Faculty of Arts and Science, University of Toronto, Toronto, ON M5S1A1, Canada;
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Hangzhou 310018, China;
| |
Collapse
|
9
|
The Emerging Role of Heat Shock Factor 1 (HSF1) and Heat Shock Proteins (HSPs) in Ferroptosis. PATHOPHYSIOLOGY 2023; 30:63-82. [PMID: 36976734 PMCID: PMC10057451 DOI: 10.3390/pathophysiology30010007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Cells employ a well-preserved physiological stress response mechanism, termed the heat shock response, to activate a certain type of molecular chaperone called heat shock proteins (HSPs). HSPs are activated by transcriptional activators of heat shock genes known as heat shock factors (HSFs). These molecular chaperones are categorized as the HSP70 superfamily, which includes HSPA (HSP70) and HSPH (HSP110) families; the DNAJ (HSP40) family; the HSPB family (small heat shock proteins (sHSPs)); chaperonins and chaperonin-like proteins; and other heat-inducible protein families. HSPs play a critical role in sustaining proteostasis and protecting cells against stressful stimuli. HSPs participate in folding newly synthesized proteins, holding folded proteins in their native conformation, preventing protein misfolding and accumulation, and degrading denatured proteins. Ferroptosis is a recently identified type of oxidative iron-dependent cell demise. It was coined recently in 2012 by Stockwell Lab members, who described a special kind of cell death induced by erastin or RSL3. Ferroptosis is characterized by alterations in oxidative status resulting from iron accumulation, increased oxidative stress, and lipid peroxidation, which are mediated by enzymatic and non-enzymatic pathways. The process of ferroptotic cell death is regulated at multiple, and it is involved in several pathophysiological conditions. Much research has emerged in recent years demonstrating the involvement of HSPs and their regulator heat shock factor 1 (HSF1) in ferroptosis regulation. Understanding the machinery controlling HSF1 and HSPs in ferroptosis can be employed in developing therapeutic interventions for ferroptosis occurrence in a number of pathological conditions. Therefore, this review comprehensively summarized the basic characteristics of ferroptosis and the regulatory functions of HSF1 and HSPs in ferroptosis.
Collapse
|
10
|
Colin A, Kotila T, Guérin C, Orhant-Prioux M, Vianay B, Mogilner A, Lappalainen P, Théry M, Blanchoin L. Recycling of the actin monomer pool limits the lifetime of network turnover. EMBO J 2023; 42:e112717. [PMID: 36912152 PMCID: PMC10152149 DOI: 10.15252/embj.2022112717] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called "dynamic steady state," allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase-associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long-term network assembly with a limited amount of building blocks.
Collapse
Affiliation(s)
- Alexandra Colin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Tommi Kotila
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Christophe Guérin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Magali Orhant-Prioux
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Benoit Vianay
- CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), University of Paris, INSERM, CEA, Paris, France
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA.,Department of Biology, New York University, New York, NY, USA
| | - Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Manuel Théry
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.,CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), University of Paris, INSERM, CEA, Paris, France
| | - Laurent Blanchoin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.,CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), University of Paris, INSERM, CEA, Paris, France
| |
Collapse
|
11
|
Lv Q, Li S, Miao M, Jin S, Li F. IAG Regulates the Expression of Cytoskeletal Protein-Encoding Genes in Shrimp Testis. Genes (Basel) 2023; 14:genes14030564. [PMID: 36980836 PMCID: PMC10048434 DOI: 10.3390/genes14030564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Insulin-like androgenic gland hormone (IAG) is the master regulator of sexual differentiation and testis development in male crustaceans. However, the molecular mechanism on how IAG functions during testis development is still largely unknown. Here, the transcriptional changes were analyzed in the testes of shrimp after LvIAG knockdown in Litopenaeus vannamei. Differential expression analysis identified 111 differentially expressed genes (DEGs), including 48 upregulated DEGs and 63 downregulated DEGs, in testes of shrimp after LvIAG knockdown. Gene ontology (GO) analysis showed that these DEGs were apparently enriched in cytoskeleton-related GO items. Gene function analysis showed that genes enriched in these GO items mainly encoded actin, myosin, and heat shock protein. Interestingly, these genes were all downregulated in testis after LvIAG knockdown, which was confirmed by qRT-PCR detection. Furthermore, injection of LvIAG protein that was recombinantly expressed in insect cells upregulated the expression levels of these genes. The present study revealed that shrimp IAG might function in testis development through regulating the expression of cytoskeletal protein-encoding genes, which would provide new insights into understanding the functional mechanisms of IAG on male sexual development of crustaceans.
Collapse
Affiliation(s)
- Qian Lv
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence:
| | - Miao Miao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songjun Jin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
12
|
Hyväri L, Vanhatupa S, Ojansivu M, Kelloniemi M, Pakarinen TK, Hupa L, Miettinen S. Heat Shock Protein 27 Is Involved in the Bioactive Glass Induced Osteogenic Response of Human Mesenchymal Stem Cells. Cells 2023; 12:cells12020224. [PMID: 36672159 PMCID: PMC9856363 DOI: 10.3390/cells12020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
Bioactive glass (BaG) materials are increasingly used in clinics, but their regulatory mechanisms on osteogenic differentiation remain understudied. In this study, we elucidated the currently unknown role of the p38 MAPK downstream target heat shock protein 27 (HSP27), in the osteogenic commitment of human mesenchymal stem cells (hMSCs), derived from adipose tissue (hASCs) and bone marrow (hBMSCs). Osteogenesis was induced with ionic extract of an experimental BaG in osteogenic medium (OM). Our results showed that BaG OM induced fast osteogenesis of hASCs and hBMSCs, demonstrated by enhanced alkaline phosphatase (ALP) activity, production of extracellular matrix protein collagen type I, and matrix mineralization. BaG OM stimulated early and transient activation of p38/HSP27 signaling by phosphorylation in hMSCs. Inhibition of HSP27 phosphorylation with SB202190 reduced the ALP activity, mineralization, and collagen type I production induced by BaG OM. Furthermore, the reduced pHSP27 protein by SB202190 corresponded to a reduced F-actin intensity of hMSCs. The phosphorylation of HSP27 allowed its co-localization with the cytoskeleton. In terminally differentiated cells, however, pHSP27 was found diffusely in the cytoplasm. This study provides the first evidence that HSP27 is involved in hMSC osteogenesis induced with the ionic dissolution products of BaG. Our results indicate that HSP27 phosphorylation plays a role in the osteogenic commitment of hMSCs, possibly through the interaction with the cytoskeleton.
Collapse
Affiliation(s)
- Laura Hyväri
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520 Tampere, Finland
| | - Sari Vanhatupa
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520 Tampere, Finland
| | - Miina Ojansivu
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520 Tampere, Finland
| | - Minna Kelloniemi
- Department of Plastic and Reconstructive Surgery, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520 Tampere, Finland
| | - Toni-Karri Pakarinen
- Regea Cell and Tissue Center, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520 Tampere, Finland
- Correspondence: ; Tel.: +358-40-1901789
| |
Collapse
|
13
|
Phosphoserine-86-HSPB1 (pS86-HSPB1) is cytoplasmic and highly induced in rat myometrium at labour. Histochem Cell Biol 2023; 159:149-162. [PMID: 36260112 PMCID: PMC9922239 DOI: 10.1007/s00418-022-02158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/04/2022]
Abstract
Uterine myocytes during pregnancy proceed through a series of adaptations and collectively transform into a powerfully contractile tissue by term. Previous work has indicated that members of the heat shock protein (HSP) B family of stress proteins are associated with the process of adaptation and transformation. Utilizing immunoblot analyses, widefield epifluorescence and total internal reflection (TIRF) microscopy, this study investigated the temporal and spatial detection of HSPB1 phosphorylated on serine-86 (pS86-HSPB1) in rat myometrium during pregnancy, the role of uterine distension in regulation of pS86-HSPB1, and the comparative localization with pS15-HSPB1 in rat myometrial tissue as well as in an immortalized human myometrial cell line. Immunoblot detection of pS86-HSPB1 was significantly elevated during late pregnancy and labour. In particular, pS86-HSPB1 was significantly increased at day (d)22 and d23 (labour) compared with all other timepoints assessed. Localization of pS86-HSPB1 in myometrium became prominent at d22 and d23 with cytoplasmic detection around myometrial cell nuclei. Furthermore, pS86-HSPB1 detection was found to be significantly elevated in the gravid rat uterine myometrium compared with the non-gravid tissue at d19 and d23. Both widefield epifluorescence and TIRF microscopy examination of human myometrial cells demonstrated that pS15-HSPB1 was prominently localized to focal adhesions, while pS82-HSPB1 (homologous to rodent pS86-HSPB1) was primarily located in the cell cytoplasm. Our data demonstrate that levels of phosphorylated HSPB1 increase just prior to and during labour, and that uterine distension is a stress-inducing signal for HSPB1 phosphorylation. The exact roles of these phosphorylated forms in myometrial cells remain to be determined.
Collapse
|
14
|
Ruan HY, Meng JY, Yang CL, Zhou L, Zhang CY. Identification of Six Small Heat Shock Protein Genes in Ostrinia furnacalis (Lepidoptera: Pyralidae) and Analysis of Their Expression Patterns in Response to Environmental Stressors. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:7. [PMID: 36469365 PMCID: PMC9721345 DOI: 10.1093/jisesa/ieac069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 06/17/2023]
Abstract
Ostrinia furnacalis (Guenée) is a major insect pest in maize production that is highly adaptable to the environment. Small heat shock proteins (sHsps) are a class of chaperone proteins that play an important role in insect responses to various environmental stresses. The present study aimed to clarify the responses of six O. furnacalis sHsps to environmental stressors. In particular, we cloned six sHsp genes, namely, OfHsp24.2, OfHsp21.3, OfHsp20.7, OfHsp21.8, OfHsp29.7, and OfHsp19.9, from O. furnacalis. The putative proteins encoded by these genes contained a typical α-crystallin domain. Real-time quantitative polymerase chain reaction was used to analyze the differences in the expression of these genes at different developmental stages, in different tissues of male and female adults, and in O. furnacalis under UV-A and extreme temperature stresses. The six OfsHsp genes were expressed at significantly different levels based on the developmental stage and tissue type in male and female adults. Furthermore, all OfsHsp genes were significantly upregulated in both male and female adults under extreme temperature and UV-A stresses. Thus, O. furnacalis OfsHsp genes play important and unique regulatory roles in the developmental stages of the insect and in response to various environmental stressors.
Collapse
Affiliation(s)
- Hong-Yun Ruan
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, People’s Republic of China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, Guizhou 550081, People’s Republic of China
| | - Chang-Li Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, People’s Republic of China
| | - Lv Zhou
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, People’s Republic of China
| | | |
Collapse
|
15
|
Hoffman LM, Jensen CC, Beckerle MC. Phosphorylation of the small heat shock protein HspB1 regulates cytoskeletal recruitment and cell motility. Mol Biol Cell 2022; 33:ar100. [PMID: 35767320 DOI: 10.1091/mbc.e22-02-0057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The small heat shock protein HspB1, also known as Hsp25/27, is a ubiquitously expressed molecular chaperone that responds to mechanical cues. Uniaxial cyclic stretch activates the p38 mitogen-activated protein kinase (MAPK) signaling cascade and increases the phosphorylation of HspB1. Similar to the mechanosensitive cytoskeletal regulator zyxin, phospho-HspB1 is recruited to features of the stretch-stimulated actin cytoskeleton. To evaluate the role of HspB1 and its phosphoregulation in modulating cell function, we utilized CRISPR/Cas9-edited HspB1-null cells and determined they were altered in behaviors such as actin cytoskeletal remodeling, cell spreading, and cell motility. In our model system, expression of WT HspB1, but not nonphosphorylatable HspB1, rescued certain characteristics of the HspB1-null cells including the enhanced cell motility of HspB1-null cells and the deficient actin reinforcement of stretch-stimulated HspB1-null cells. The recruitment of HspB1 to high-tension structures in geometrically constrained cells, such as actin comet tails emanating from focal adhesions, also required a phosphorylatable HspB1. We show that mechanical signals activate posttranslational regulation of the molecular chaperone, HspB1, and are required for normal cell behaviors including actin cytoskeletal remodeling, cell spreading, and cell migration.
Collapse
Affiliation(s)
- Laura M Hoffman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112
| | | | - Mary C Beckerle
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
16
|
Muranova LK, Shatov VM, Slushchev AV, Gusev NB. Is the small heat shock protein HSPB7 (cvHsp) a genuine actin-binding protein? Biochimie 2022; 202:103-109. [PMID: 35977674 DOI: 10.1016/j.biochi.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/02/2022]
Abstract
It is postulated that the small heat shock proteins directly interact with actin, affect formation and stabilize actin filaments. To verify this suggestion, we have analyzed interaction of recombinant human small heat shock protein HspB7 with skeletal muscle actin. In blot overlay HspB7 binds both G- and F-actin. The sites of interaction are located in the C-terminal large core domain of actin. In the course of ultracentrifugation F-actin and F-actin/tropomyosin complexes were pelleted and trapped HspB7. However, HspB7 pelleting was nonspecific and saturation was not achieved even at very high HspB7 concentration. HspB7 was unable to retard or prevent heat-induced F-actin aggregation. Native gel electrophoresis and chemical crosslinking failed to detect interaction of G-actin with HspB7, although both these methods clearly demonstrated formation of complexes formed by G-actin with DNAse I and cofilin-2. It is concluded that HspB7 is not a genuine actin-binding protein and its effect on actin filaments seems to be determined by interaction of HspB7 with minor regulatory proteins of actin filaments.
Collapse
Affiliation(s)
- Lydia K Muranova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119234, Russian Federation
| | - Vladislav M Shatov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119234, Russian Federation
| | - Andrei V Slushchev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119234, Russian Federation
| | - Nikolai B Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119234, Russian Federation.
| |
Collapse
|
17
|
Muranova LK, Shatov VM, Gusev NB. Role of Small Heat Shock Proteins in the Remodeling of Actin Microfilaments. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:800-811. [PMID: 36171660 DOI: 10.1134/s0006297922080119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 06/16/2023]
Abstract
Small heat shock proteins (sHsps) play an important role in the maintenance of proteome stability and, particularly, in stabilization of the cytoskeleton and cell contractile apparatus. Cell exposure to different types of stress is accompanied by the translocation of sHsps onto actin filaments; therefore, it is commonly believed that the sHsps are true actin-binding proteins. Investigations of last years have shown that this assumption is incorrect. Stress-induced translocation of sHsp to actin filaments is not the result of direct interaction of these proteins with intact actin, but results from the chaperone-like activity of sHsps and their interaction with various actin-binding proteins. HspB1 and HspB5 interact with giant elastic proteins titin and filamin thus providing an integrity of the contractile apparatus and its proper localization in the cell. HspB6 binds to the universal adapter protein 14-3-3 and only indirectly affects the structure of actin filament. HspB7 interacts with filamin C and controls actin filament assembly. HspB8 forms tight complex with the universal regulatory and adapter protein Bag3 and participates in the chaperone-assisted selective autophagy (CASA) of actin-binding proteins (e.g., filamin), as well as in the actin-depending processes taking place in mitoses. Hence, the mechanisms of sHsp participation in the maintenance of the contractile apparatus and cytoskeleton are much more complicated and diverse than it has been postulated earlier and are not limited to direct interactions of sHsps with actin. The old hypothesis on the direct binding of sHsps to intact actin should be revised and further detailed investigation on the sHsp interaction with minor proteins participating in the formation and remodeling of actin filaments is required.
Collapse
Affiliation(s)
- Lydia K Muranova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladislav M Shatov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai B Gusev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
18
|
The division protein FtsZ interacts with the small heat shock protein IbpA in Acholeplasma laidlawii. Biochim Biophys Acta Gen Subj 2022; 1866:130220. [DOI: 10.1016/j.bbagen.2022.130220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/26/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022]
|
19
|
Rajeswaren V, Wong JO, Yabroudi D, Nahomi RB, Rankenberg J, Nam MH, Nagaraj RH. Small Heat Shock Proteins in Retinal Diseases. Front Mol Biosci 2022; 9:860375. [PMID: 35480891 PMCID: PMC9035800 DOI: 10.3389/fmolb.2022.860375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 11/29/2022] Open
Abstract
This review summarizes the latest findings on small heat shock proteins (sHsps) in three major retinal diseases: glaucoma, diabetic retinopathy, and age-related macular degeneration. A general description of the structure and major cellular functions of sHsps is provided in the introductory remarks. Their role in specific retinal diseases, highlighting their regulation, role in pathogenesis, and possible use as therapeutics, is discussed.
Collapse
Affiliation(s)
- Vivian Rajeswaren
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Jeffrey O. Wong
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Dana Yabroudi
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Rooban B. Nahomi
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Johanna Rankenberg
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Mi-Hyun Nam
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
- *Correspondence: Mi-Hyun Nam, ; Ram H. Nagaraj,
| | - Ram H. Nagaraj
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States
- *Correspondence: Mi-Hyun Nam, ; Ram H. Nagaraj,
| |
Collapse
|
20
|
Tedesco B, Cristofani R, Ferrari V, Cozzi M, Rusmini P, Casarotto E, Chierichetti M, Mina F, Galbiati M, Piccolella M, Crippa V, Poletti A. Insights on Human Small Heat Shock Proteins and Their Alterations in Diseases. Front Mol Biosci 2022; 9:842149. [PMID: 35281256 PMCID: PMC8913478 DOI: 10.3389/fmolb.2022.842149] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The family of the human small Heat Shock Proteins (HSPBs) consists of ten members of chaperones (HSPB1-HSPB10), characterized by a low molecular weight and capable of dimerization and oligomerization forming large homo- or hetero-complexes. All HSPBs possess a highly conserved centrally located α-crystallin domain and poorly conserved N- and C-terminal domains. The main feature of HSPBs is to exert cytoprotective functions by preserving proteostasis, assuring the structural maintenance of the cytoskeleton and acting in response to cellular stresses and apoptosis. HSPBs take part in cell homeostasis by acting as holdases, which is the ability to interact with a substrate preventing its aggregation. In addition, HSPBs cooperate in substrates refolding driven by other chaperones or, alternatively, promote substrate routing to degradation. Notably, while some HSPBs are ubiquitously expressed, others show peculiar tissue-specific expression. Cardiac muscle, skeletal muscle and neurons show high expression levels for a wide variety of HSPBs. Indeed, most of the mutations identified in HSPBs are associated to cardiomyopathies, myopathies, and motor neuropathies. Instead, mutations in HSPB4 and HSPB5, which are also expressed in lens, have been associated with cataract. Mutations of HSPBs family members encompass base substitutions, insertions, and deletions, resulting in single amino acid substitutions or in the generation of truncated or elongated proteins. This review will provide an updated overview of disease-related mutations in HSPBs focusing on the structural and biochemical effects of mutations and their functional consequences.
Collapse
Affiliation(s)
- B. Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - R. Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - P. Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - E. Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - F. Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - A. Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- *Correspondence: A. Poletti,
| |
Collapse
|
21
|
Oligomeric Structural Transition of HspB1 from Chinese Hamster. Int J Mol Sci 2021; 22:ijms221910797. [PMID: 34639138 PMCID: PMC8509488 DOI: 10.3390/ijms221910797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
HspB1 is a mammalian sHsp that is ubiquitously expressed in almost all tissues and involved in regulating many vital functions. Although the recent crystal structure of human HspB1 showed that 24 monomers form the oligomeric complex of human HspB1 in a spherical configuration, the molecular architecture of HspB1 is still controversial. In this study, we examined the oligomeric structural change of CgHspB1 by sedimentation velocity analytical ultracentrifugation. At the low temperature of 4 °C, CgHspB1 exists as an 18-mer, probably a trimeric complex of hexamers. It is relatively unstable and partially dissociates into small oligomers, hexamers, and dodecamers. At elevated temperatures, the 24-mer was more stable than the 18-mer. The 24-mer is also in dynamic equilibrium with the dissociated oligomers in the hexameric unit. The hexamer further dissociates to dimers. The disulfide bond between conserved cysteine residues seems to be partly responsible for the stabilization of hexamers. The N-terminal domain is involved in the assembly of dimers and the interaction between hexamers. It is plausible that CgHspB1 expresses a chaperone function in the 24-mer structure.
Collapse
|
22
|
Davis RJ, Belikoff EJ, Dickey AN, Scholl EH, Benoit JB, Scott MJ. Genome and transcriptome sequencing of the green bottle fly, Lucilia sericata, reveals underlying factors of sheep flystrike and maggot debridement therapy. Genomics 2021; 113:3978-3988. [PMID: 34619342 DOI: 10.1016/j.ygeno.2021.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
The common green bottle blow fly Lucilia sericata (family, Calliphoridae) is widely used for maggot debridement therapy, which involves the application of sterile maggots to wounds. The larval excretions and secretions are important for consuming necrotic tissue and inhibiting bacterial growth in wounds of patients. Lucilia sericata is also of importance as a pest of sheep and in forensic studies to estimate a postmortem interval. Here we report the assembly of a 565.3 Mb genome from long read PacBio DNA sequencing of genomic DNA. The genome contains 14,704 predicted protein coding genes and 1709 non-coding genes. Targeted annotation and transcriptional analyses identified genes that are highly expressed in the larval salivary glands (secretions) and Malpighian tubules (excretions) under normal growth conditions and following heat stress. The genomic resources will underpin future genetic studies and in development of engineered strains for genetic control of L. sericata and for biotechnology-enhanced maggot therapy.
Collapse
Affiliation(s)
- Rebecca J Davis
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA.
| | - Esther J Belikoff
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA.
| | - Allison N Dickey
- Bioinformatics Research Center, North Carolina State University, Campus Box 7566, Raleigh, NC 27695-7566, USA.
| | - Elizabeth H Scholl
- Bioinformatics Research Center, North Carolina State University, Campus Box 7566, Raleigh, NC 27695-7566, USA.
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211, USA.
| | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA.
| |
Collapse
|
23
|
Yang CL, Meng JY, Zhou L, Yao MS, Zhang CY. Identification of five small heat shock protein genes in Spodoptera frugiperda and expression analysis in response to different environmental stressors. Cell Stress Chaperones 2021; 26:527-539. [PMID: 33609257 PMCID: PMC8065089 DOI: 10.1007/s12192-021-01198-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/30/2021] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
Spodoptera frugiperda (J. E. Smith) is a highly adaptable polyphagous migratory pest in tropical and subtropical regions. Small heat shock proteins (sHsps) are molecular chaperones that play important roles in the adaptation to various environment stressors. The present study aimed to clarify the response mechanisms of S. frugiperda to various environmental stressors. We obtained five S. furcifera sHsp genes (SfsHsp21.3, SfsHsp20, SfsHsp20.1, SfsHsp19.3, and SfsHsp29) via cloning. The putative proteins encoded by these genes contained a typical α-crystallin domain. The expression patterns of these genes during different developmental stages, in various tissues of male and female adults, as well as in response to extreme temperatures and UV-A stress were studied via real-time quantitative polymerase chain reaction. The results showed that the expression levels of all five SfsHsp genes differed among the developmental stages as well as among the different tissues of male and female adults. The expression levels of most SfsHsp genes under extreme temperatures and UV-A-induced stress were significantly upregulated in both male and female adults. In contrast, those of SfsHsp20.1 and SfsHsp19.3 were significantly downregulated under cold stress in male adults. Therefore, the different SfsHsp genes of S. frugiperda play unique regulatory roles during development as well as in response to various environmental stressors.
Collapse
Affiliation(s)
- Chang-Li Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, Guizhou, 550081, People's Republic of China
| | - Lv Zhou
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Meng-Shuang Yao
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Chang-Yu Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
| |
Collapse
|
24
|
Jee B, Dhar R, Singh S, Karmakar S. Heat Shock Proteins and Their Role in Pregnancy: Redefining the Function of "Old Rum in a New Bottle". Front Cell Dev Biol 2021; 9:648463. [PMID: 33996811 PMCID: PMC8116900 DOI: 10.3389/fcell.2021.648463] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Pregnancy in humans is a multi-step complex physiological process comprising three discrete events, decidualization, implantation and placentation. Its overall success depends on the incremental advantage that each of the preceding stages passes on to the next. The success of these synchronized sequels of events is an outcome of timely coordination between them. The pregnancy events are coordinated and governed primarily by the ovarian steroid hormones, estrogen and progesterone, which are essentially ligand-activated transcription factors. It's well known that intercellular signaling of steroid hormones engages a plethora of adapter proteins that participate in executing the biological functions. This involves binding of the hormone receptor complex to the DNA response elements in a sequence specific manner. Working with Drosophila melanogaster, the heat shock proteins (HSPs) were originally described by Ferruccio Ritossa back in the early 1960s. Over the years, there has been considerable advancement of our understanding of these conserved families of proteins, particularly in pregnancy. Accumulating evidence suggests that endometrial and uterine cells have an abundance of HSP27, HSP60, HSP70 and HSP90, implying their possible involvement during the pregnancy process. HSPs have been found to be associated with decidualization, implantation and placentation, with their dysregulation associated with implantation failure, pregnancy loss and other feto-maternal complications. Furthermore, HSP is also associated with stress response, specifically in modulating the ER stress, a critical determinant for reproductive success. Recent advances suggest a therapeutic role of HSPs proteins in improving the pregnancy outcome. In this review, we summarized our latest understanding of the role of different members of the HSP families during pregnancy and associated complications based on experimental and clinical evidences, thereby redefining and exploring their novel function with new perspective, beyond their prototype role as molecular chaperones.
Collapse
Affiliation(s)
- Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
25
|
Lin HM, Qi XE, Shui SS, Benjakul S, Aubourg SP, Zhang B. Label-free proteomic analysis revealed the mechanisms of protein oxidation induced by hydroxyl radicals in whiteleg shrimp (Litopenaeus vannamei) muscle. Food Funct 2021; 12:4337-4348. [PMID: 33881120 DOI: 10.1039/d1fo00380a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The oxidative effects of hydroxyl radicals derived from a FeCl3/ascorbic acid/H2O2 system on the stability of muscle proteins in peeled shrimp (Litopenaeus vannamei) were investigated. Physicochemical analysis indicated negative effects on the color (a* value), springiness, and pH of shrimp muscle, which appeared to be significantly exacerbated by higher concentrations of generated hydroxyl radicals when compared with the control. The microstructural results confirmed that a radical attack induced the incompact structure and disintegrated myofibers, thereby leading to weakened connective tissues and decreased stability of muscle proteins. Furthermore, label-free proteomic analysis revealed several differentially abundant proteins (DAPs) (i.e., ribosomal protein subunits, putative cytoskeleton proteins, and ion-binding proteins), which were detected and identified in oxidation-treated shrimp when compared with the control. The gene ontology (GO) and eukaryotic clusters of orthologous group (KOG) analyses further confirmed that the active hydroxyl radicals attacked vulnerable amino acids, modified peptide chains, and/or protein structures and/or conformations, which were responsible for a significant decrease in the muscle texture and stability of proteins in oxidation-treated shrimp. This study provides novel insight into the molecular mechanisms of muscle protein changes during oxidation development.
Collapse
Affiliation(s)
- Hui-Min Lin
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, China.
| | | | | | | | | | | |
Collapse
|
26
|
Hsa_circ_0072309 inhibits proliferation and invasion of glioblastoma. Pathol Res Pract 2021; 222:153433. [PMID: 33862563 DOI: 10.1016/j.prp.2021.153433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/27/2021] [Accepted: 04/01/2021] [Indexed: 12/30/2022]
Abstract
Increasing literature reported that circRNAs play vital roles in the occurrence and progression of GBM and regulate GBM cell proliferation, metastases, and chemosensitivity. However, the expression pattern and function of circRNAs in GBM still need further studies. In our work, hsa_circ_0072309 was remarkably downregulated in GBM. Hsa_circ_0072309 inhibits proliferation and invasion of glioblastoma and affects cytoskeletal of GBM cells. Moreover, we found that the function of hsa_circ_0,072,309 in GBM was associated with HSP27, which was reported to be an important regulator of cell proliferation, invasion and cytoskeletal. Our study provides a novel view of hsa_circ_0072309 in GBM cell proliferation and invasion, indicating that hsa_circ_0072309 may act as a potential therapeutic target for GBM comprehensive treatment.
Collapse
|
27
|
Bartelt-Kirbach B, Wiegreffe C, Birk S, Baur T, Moron M, Britsch S, Golenhofen N. HspB5/αB-crystallin phosphorylation at S45 and S59 is essential for protection of the dendritic tree of rat hippocampal neurons. J Neurochem 2020; 157:2055-2069. [PMID: 33220080 DOI: 10.1111/jnc.15247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/26/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022]
Abstract
Rarefaction of the dendritic tree leading to neuronal dysfunction is a hallmark of many neurodegenerative diseases and we have shown previously that heat shock protein B5 (HspB5)/αB-crystallin is able to increase dendritic complexity in vitro. The aim of this study was to investigate if this effect is also present in vivo, if HspB5 can counteract dendritic rarefaction under pathophysiological conditions and the impact of phosphorylation of HspB5 in this process. HspB5 and eight mutants inhibiting or mimicking phosphorylation at the three phosphorylation sites serine (S)19, S45, and S59 were over-expressed in cultured rat hippocampal neurons with subsequent investigation of the complexity of the dendritic tree. Sholl analysis revealed significant higher complexity of the dendritic tree after over-expression of wild-type HspB5 and the mutant HspB5-AEE. All other mutants showed no or minor effects. For in vivo investigation in utero electroporation of mouse embryos was applied. At embryonal day E15.5 the respective plasmids were injected, cornu ammonis 1 (CA1) pyramidal cells transfected by electroporation and their basal dendritic trees were analyzed at post-natal day P15. In vivo, HspB5 and HspB5-AEE led to an increase of total dendritic length as well as a higher complexity. Finally, the dendritic effect of HspB5 was investigated under a pathophysiological condition, that is, iron deficiency which reportedly results in dendritic rarefaction. HspB5 and HspB5-AEE but not the non-phosphorylatable mutant HspB5-AAA significantly counteracted the dendritic rarefaction. Thus, our data suggest that up-regulation and selective phosphorylation of HspB5 in neurodegenerative diseases may preserve dendritic morphology and counteract neuronal dysfunction.
Collapse
Affiliation(s)
| | - Christoph Wiegreffe
- Institute of Molecular and Cellular Anatomy, University of Ulm, Ulm, Germany
| | - Samuel Birk
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Tina Baur
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Margarethe Moron
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, University of Ulm, Ulm, Germany
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| |
Collapse
|
28
|
Shear Stress Modulates Osteoblast Cell and Nucleus Morphology and Volume. Int J Mol Sci 2020; 21:ijms21218361. [PMID: 33171812 PMCID: PMC7664694 DOI: 10.3390/ijms21218361] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Mechanical loading preserves bone mass and function—yet, little is known about the cell biological basis behind this preservation. For example, cell and nucleus morphology are critically important for cell function, but how these morphological characteristics are affected by the physiological mechanical loading of bone cells is under-investigated. This study aims to determine the effects of fluid shear stress on cell and nucleus morphology and volume of osteoblasts, and how these effects relate to changes in actin cytoskeleton and focal adhesion formation. Mouse calvaria 3T3-E1 (MC3T3-E1) osteoblasts were treated with or without 1 h pulsating fluid flow (PFF). Live-cell imaging was performed every 10 min during PFF and immediately after PFF. Cytoskeletal organization and focal adhesions were visualized, and gene and protein expression quantified. Two-dimensional (2D) and three-dimensional (3D) morphometric analyses were made using MeasureStack and medical imaging interaction toolkit (MITK) software. 2D-images revealed that 1 h PFF changed cell morphology from polygonal to triangular, and nucleus morphology from round to ellipsoid. PFF also reduced cell surface area (0.3-fold), cell volume (0.3-fold), and nucleus volume (0.2-fold). During PFF, the live-cell volume gradually decreased from 6000 to 3000 µm3. After PFF, α-tubulin orientation was more disorganized, but F-actin fluorescence intensity was enhanced, particularly around the nucleus. 3D-images obtained from Z-stacks indicated that PFF increased F-actin fluorescence signal distribution around the nucleus in the XZ and YZ direction (2.3-fold). PFF increased protein expression of phospho-paxillin (2.0-fold) and integrin-α5 (2.8-fold), but did not increase mRNA expression of paxillin-a (PXNA), paxillin-b (PXNB), integrin-α5 (ITGA51), or α-tubulin protein expression. In conclusion, PFF induced substantial changes in osteoblast cytoskeleton, as well as cell and nucleus morphology and volume, which was accompanied by elevated gene and protein expression of adhesion and structural proteins. More insights into the mechanisms whereby mechanical cues drive morphological changes in bone cells, and thereby, possibly in bone cell behavior, will aid the guidance of clinical treatment, particularly in the field of orthodontics, (oral) implantology, and orthopedics.
Collapse
|
29
|
Hu W, Ye T, Yang Y, Liu B, Zheng W. Effects of transport stress on pathological injury and expression of main heat shock proteins in the caprine stomach. BMC Vet Res 2020; 16:347. [PMID: 32962700 PMCID: PMC7507251 DOI: 10.1186/s12917-020-02569-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/11/2020] [Indexed: 11/24/2022] Open
Abstract
Background Transportation is necessary to introduce new breeds of goats to the farm and move the adult meat goat from the farm to the slaughterhouse. However, these actions may give rise to transport stress. Heat shock proteins (HSPs) are playing some important regulate roles during transport stress. The aim of this study was to evaluate the effects of transport stress on the pathological injury and HSPs expression in the stomach of goats. A total of three batches of Ganxi goats from western Jiangxi province were enrolled in this study. For each batch, twelve healthy adult male goats were randomly divided into three groups (four goats per batch and per group): Control group, stress group transported during 2 h and stress group transported during 6 h. Results Our results showed that the different degrees of stomach walls damage, with the change of expression levels of heat shock protein 27 (HSP27), heat shock protein 70 (HSP70) and heat shock protein 90 (HSP90), occurred after goats transportation. In rumen, the mRNA and protein expressions of HSP27 and HSP70 were increased after transport stress, but not HSP90. In reticulum, all three HSPs mRNA and protein levels were upregulated after 2 h transport, but decreased after 6 h transport. In omasum, HSP27 and HSP70 mRNA and protein were increased after transport stress, however, HSP90 mRNA level only had a slightly enhancement after transport stress. In abomasum, HSP70 and HSP90 mRNA and protein levels were increased after transport stress, but HSP27 was decreased after transport stress. Conclusions Taken together, these results revealed that the pathological changes in the gastric tissues and the stomach HSPs expression in goats are related to transport stress and duration. Moreover, this study also provides some new data to advocate reducing transport stress of goats and improving animal welfare.
Collapse
Affiliation(s)
- Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun, 336000, Jiangxi, China
| | - Tian Ye
- College of Life Science and Resources and Environment, Yichun University, Yichun, 336000, Jiangxi, China
| | - Yanzhen Yang
- College of Life Science and Resources and Environment, Yichun University, Yichun, 336000, Jiangxi, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, 336000, Jiangxi, China. .,Jiangxi Lvke Agriculture and Animal Husbandry Technology co. LTD, Yichun, 336000, Jiangxi, China. .,Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun, 336000, Jiangxi, China.
| | - Wenya Zheng
- College of Life Science and Resources and Environment, Yichun University, Yichun, 336000, Jiangxi, China.
| |
Collapse
|
30
|
Gagaoua M, Terlouw EMC, Mullen AM, Franco D, Warner RD, Lorenzo JM, Purslow PP, Gerrard D, Hopkins DL, Troy D, Picard B. Molecular signatures of beef tenderness: Underlying mechanisms based on integromics of protein biomarkers from multi-platform proteomics studies. Meat Sci 2020; 172:108311. [PMID: 33002652 DOI: 10.1016/j.meatsci.2020.108311] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Over the last two decades, proteomics have been employed to decipher the underlying factors contributing to variation in the quality of muscle foods, including beef tenderness. One such approach is the application of high-throughput protein analytical platforms in the identification of meat quality biomarkers. To broaden our understanding about the biological mechanisms underpinning meat tenderization across a large number of studies, an integromics study was performed to review the current status of protein biomarker discovery targeting beef tenderness. This meta-analysis is the first to gather and propose a comprehensive list of 124 putative protein biomarkers derived from 28 independent proteomics-based experiments, from which 33 robust candidates were identified worthy of evaluation using targeted or untargeted data-independent acquisition proteomic methods. We further provide an overview of the interconnectedness of the main biological pathways impacting tenderness determination after multistep analyses including Gene Ontology annotations, pathway and process enrichment and literature mining, and specifically discuss the major proteins and pathways most often reported in proteomics research.
Collapse
Affiliation(s)
- Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - E M Claudia Terlouw
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Anne Maria Mullen
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - Robyn D Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Peter P Purslow
- Centro de Investigacion Veterinaria de Tandil (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil B7001BBO, Argentina
| | - David Gerrard
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - David L Hopkins
- NSW DPI, Centre for Red Meat and Sheep Development, Cowra, NSW 2794, Australia
| | - Declan Troy
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Brigitte Picard
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| |
Collapse
|
31
|
Ni G, Chen S, Chen M, Wu J, Yang B, Yuan J, Walton SF, Li H, Wei MQ, Wang Y, Chen G, Liu X, Wang T. Host-Defense Peptides Caerin 1.1 and 1.9 Stimulate TNF-Alpha-Dependent Apoptotic Signals in Human Cervical Cancer HeLa Cells. Front Cell Dev Biol 2020; 8:676. [PMID: 32850805 PMCID: PMC7412766 DOI: 10.3389/fcell.2020.00676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/03/2020] [Indexed: 01/07/2023] Open
Abstract
Host defense caerin 1.1 and 1.9 peptides, isolated from the glandular secretion of Australian tree frogs, the genus Litoria, have been previously shown to have multiple biological activities, including the inhibition of human papillomavirus (HPV) 16 early protein E7 transformed murine as well as human cancerous cell proliferation both in vitro and in vivo. However, the mechanism underlying their anti-proliferative activities against HPV18+ cervical cancer HeLa cells remains unknown. This study comparatively investigated the anti-proliferation on HeLa cells by caerin 1.1, 1.9, and their mixture, followed by confocal microscopy examination to assess the cellular intake of the peptides. Tandem mass tag labeling proteomics was employed to reveal the proteins that were significantly regulated by the peptide treatment in cells and cell growth environment, to elucidate the signaling pathways that were modulated. Western blot was performed to confirm the modulation of the pathways. Both caerin 1.1 and 1.9 highly inhibited HeLa cell proliferation with a significant additive effect compared to untreated and control peptide. They entered the cells with different magnitudes. Intensive protein-protein interaction was detected among significantly upregulated proteins. Translation, folding and localization of proteins and RNA processing, apoptosis process was significantly enriched post the treatments. The apoptotic signaling was suggested as a result of tumor necrosis factor-α (TNF-α) pathway activation, indicated by the dose-dependent elevated levels of caspase 3 and caspase 9. The epidermal growth factor receptor and androgen receptor pathways appeared inhibited by the peptides. Moreover, the activation of T-cell receptor derived from the quantitation results further implies the likelihood of recruiting more T cells to the cell growth environment post the treatment and more sensitive to T cell mediated killing of HeLa cells. Our results indicate that caerin 1.1 and 1.9 mediate apoptotic signals of HeLa cells and may subsequently enhances adaptive T cell immune responses.
Collapse
Affiliation(s)
- Guoying Ni
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan, China
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, QLD, Australia
- The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Shu Chen
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan, China
| | - Mo Chen
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Southport, QLD, Australia
| | - Jialing Wu
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan, China
| | - Binbin Yang
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Southport, QLD, Australia
- Department of Laboratory Medicine, Institute of Nanomedicine Technology, Weifang Medical University, Weifang, China
| | - Jianwei Yuan
- The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Shelley F. Walton
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Hejie Li
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, QLD, Australia
- Department of Mechanical and Biofunctional System, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Ming Q. Wei
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Southport, QLD, Australia
| | - Yuejian Wang
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan, China
| | - Guoqiang Chen
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan, China
| | - Xiaosong Liu
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan, China
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, QLD, Australia
- The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
32
|
Collier MP, Benesch JLP. Small heat-shock proteins and their role in mechanical stress. Cell Stress Chaperones 2020; 25:601-613. [PMID: 32253742 PMCID: PMC7332611 DOI: 10.1007/s12192-020-01095-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
The ability of cells to respond to stress is central to health. Stress can damage folded proteins, which are vulnerable to even minor changes in cellular conditions. To maintain proteostasis, cells have developed an intricate network in which molecular chaperones are key players. The small heat-shock proteins (sHSPs) are a widespread family of molecular chaperones, and some sHSPs are prominent in muscle, where cells and proteins must withstand high levels of applied force. sHSPs have long been thought to act as general interceptors of protein aggregation. However, evidence is accumulating that points to a more specific role for sHSPs in protecting proteins from mechanical stress. Here, we briefly introduce the sHSPs and outline the evidence for their role in responses to mechanical stress. We suggest that sHSPs interact with mechanosensitive proteins to regulate physiological extension and contraction cycles. It is likely that further study of these interactions - enabled by the development of experimental methodologies that allow protein contacts to be studied under the application of mechanical force - will expand our understanding of the activity and functions of sHSPs, and of the roles played by chaperones in general.
Collapse
Affiliation(s)
- Miranda P Collier
- Department of Biology, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA
| | - Justin L P Benesch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
33
|
Boelens WC. Structural aspects of the human small heat shock proteins related to their functional activities. Cell Stress Chaperones 2020; 25:581-591. [PMID: 32253739 PMCID: PMC7332592 DOI: 10.1007/s12192-020-01093-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 01/18/2023] Open
Abstract
Small heat shock proteins function as chaperones by binding unfolding substrate proteins in an ATP-independent manner to keep them in a folding-competent state and to prevent irreversible aggregation. They play crucial roles in diseases that are characterized by protein aggregation, such as neurodegenerative and neuromuscular diseases, but are also involved in cataract, cancer, and congenital disorders. For this reason, these proteins are interesting therapeutic targets for finding molecules that could affect the chaperone activity or compensate specific mutations. This review will give an overview of the available knowledge on the structural complexity of human small heat shock proteins, which may aid in the search for such therapeutic molecules.
Collapse
Affiliation(s)
- Wilbert C Boelens
- Department of Biomolecular Chemistry 284, Institute for Molecules and Materials (IMM), Radboud University, PO Box 9101, NL-6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
34
|
Muranova LK, Sudnitsyna MV, Strelkov SV, Gusev NB. Mutations in HspB1 and hereditary neuropathies. Cell Stress Chaperones 2020; 25:655-665. [PMID: 32301006 PMCID: PMC7332652 DOI: 10.1007/s12192-020-01099-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is major hereditary neuropathy. CMT has been linked to mutations in a range of proteins, including the small heat shock protein HspB1. Here we review the properties of several HspB1 mutants associated with CMT. In vitro, mutations in the N-terminal domain lead to a formation of larger HspB1 oligomers when compared with the wild-type (WT) protein. These mutants are resistant to phosphorylation-induced dissociation and reveal lower chaperone-like activity than the WT on a range of model substrates. Mutations in the α-crystallin domain lead to the formation of yet larger HspB1 oligomers tending to dissociate at low protein concentration and having variable chaperone-like activity. Mutations in the conservative IPV motif within the C-terminal domain induce the formation of very large oligomers with low chaperone-like activity. Most mutants interact with a partner small heat shock protein, HspB6, in a manner different from that of the WT protein. The link between the altered physico-chemical properties and the pathological CMT phenotype is a subject of discussion. Certain HspB1 mutations appear to have an effect on cytoskeletal elements such as intermediate filaments and/or microtubules, and by this means damage the axonal transport. In addition, mutations of HspB1 can affect the metabolism in astroglia and indirectly modulate the viability of motor neurons. While the mechanisms of pathological mutations in HspB1 are likely to vary greatly across different mutations, further in vitro and in vivo studies are required for a better understanding of the CMT disease at molecular level.
Collapse
Affiliation(s)
- Lydia K Muranova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation, 119991
| | - Maria V Sudnitsyna
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation, 119991
| | - Sergei V Strelkov
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Biocrystallography, KU Leuven, 3000, Leuven, Belgium
| | - Nikolai B Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation, 119991.
| |
Collapse
|
35
|
Muranova LK, Strelkov SV, Gusev NB. Effect of cataract-associated mutations in the N-terminal domain of αB-crystallin (HspB5). Exp Eye Res 2020; 197:108091. [PMID: 32533979 DOI: 10.1016/j.exer.2020.108091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 11/18/2022]
Abstract
Physico-chemical properties of three cataract-associated missense mutants of αB-crystallin (HspB5) (R11H, P20S, R56W) were analyzed. The oligomers formed by the R11H mutant were smaller, whereas the oligomers of the P20S and R56W mutants were larger than those of the wild-type protein. The P20S mutant possessed lower thermal stability than the wild-type HspB5 or two other HspB5 mutants. All HspB5 mutants were able to form heterooligomeric complexes with αA-crystallin (HspB4), a genuine component of eye lens. However, the P20S and R56W mutants were less effective in the formation of these complexes and properties of heterooligomeric complexes formed by these mutants and HspB4 and analyzed by ion-exchange chromatography were different from those formed by the wild-type HspB5 and HspB4. All HspB5 variants also heterooligomerized with another partner protein, HspB6. Specifically for the P20S mutant forming two distinct sizes of homooligomers, only the smaller homooligomer population was able to interact with HspB6. P20S and R56W mutants possessed lower chaperone-like activity than the wild-type HspB5 when UV-irradiated βL-crystallin was used as a model substrate. Importantly, all three mutations are localized in three earlier postulated short α-helical regions present in the N-terminal domain of αB-crystallin. These observations suggest an important structural and functional role of these regions. Correspondingly, therein localized mutations ultimately result in clinically relevant cataracts.
Collapse
Affiliation(s)
- Lydia K Muranova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991, Russian Federation
| | - Sergei V Strelkov
- Laboratory of Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium
| | - Nikolai B Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991, Russian Federation.
| |
Collapse
|
36
|
Santana E, de los Reyes T, Casas-Tintó S. Small heat shock proteins determine synapse number and neuronal activity during development. PLoS One 2020; 15:e0233231. [PMID: 32437379 PMCID: PMC7241713 DOI: 10.1371/journal.pone.0233231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/30/2020] [Indexed: 01/31/2023] Open
Abstract
Environmental changes cause stress, Reactive Oxygen Species and unfolded protein accumulation which hamper synaptic activity and trigger cell death. Heat shock proteins (HSPs) assist protein refolding to maintain proteostasis and cellular integrity. Mechanisms regulating the activity of HSPs include transcription factors and posttranslational modifications that ensure a rapid response. HSPs preserve synaptic function in the nervous system upon environmental insults or pathological factors and contribute to the coupling between environmental cues and neuron control of development. We have performed a biased screening in Drosophila melanogaster searching for synaptogenic modulators among HSPs during development. We explore the role of two small-HSPs (sHSPs), sHSP23 and sHSP26 in synaptogenesis and neuronal activity. Both sHSPs immunoprecipitate together and the equilibrium between both chaperones is required for neuronal development and activity. The molecular mechanism controlling HSP23 and HSP26 accumulation in neurons relies on a novel gene (CG1561), which we name Pinkman (pkm). We propose that sHSPs and Pkm are targets to modulate the impact of stress in neurons and to prevent synapse loss.
Collapse
|
37
|
Ke J, Wu G, Zhang J, Li H, Gao S, Shao M, Gao Z, Sy MS, Cao Y, Yang X, Xu J, Li C. Melanoma migration is promoted by prion protein via Akt-hsp27 signaling axis. Biochem Biophys Res Commun 2019; 523:375-381. [PMID: 31870551 DOI: 10.1016/j.bbrc.2019.12.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
Patients with metastatic melanoma have a poorer prognosis. Prion protein (PrP) in melanoma is known to play an important role in cancer cell migration and invasion by interacting with filamin A (FLNa), a cytolinker protein. To investigate if PrP may contribute to cancer cell mobility independent of its binding to FLNa, we knocked out PRNP in M2 melanoma cell, which lacked FLNa expression. We found that deletion of PRNP in M2 significantly reduced its motility. When PRNP was deleted, the level of Akt was decreased. As a consequence, phosphorylation of small heat shock protein (hsp27) was also reduced, which resulted in polymerization of F-actin rendering the cells less migratory. Accordingly, when PrP was re-expressed in PRNP null M2 cells, the mobility of the recurred cells was rescued, so were the expression levels of Akt and phosphorylated hsp27, resulting in a decrease in the polymerization of F-actin. These results revealed that PrP can play a FLNa independent role in cytoskeletal organization and tumor cell migration by modulating Akt-hsp27-F-actin axis.
Collapse
Affiliation(s)
- Jingru Ke
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, 78 Hengzhigang Road, Guangzhou, 510095, China
| | - Guiru Wu
- The Joint Laboratory for Translational Precision Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, China
| | - Jie Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, 78 Hengzhigang Road, Guangzhou, 510095, China; Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, No. 107 North 2nd Road, Shihezi, Xinjiang, 832008, China
| | - Huan Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, China
| | - Shanshan Gao
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, China
| | - Ming Shao
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, China
| | - Zhenxing Gao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, 78 Hengzhigang Road, Guangzhou, 510095, China
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yuchun Cao
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiaowen Yang
- Department of the First Abdominal Surgery, Jiangxi Tumor Hospital, Nanchang, Jiangxi, 330029, China.
| | - Jiang Xu
- Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, No. 107 North 2nd Road, Shihezi, Xinjiang, 832008, China.
| | - Chaoyang Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, 78 Hengzhigang Road, Guangzhou, 510095, China.
| |
Collapse
|
38
|
Heat-Shock Protein 27 (HSPB1) Is Upregulated and Phosphorylated in Human Platelets during ST-Elevation Myocardial Infarction. Int J Mol Sci 2019; 20:ijms20235968. [PMID: 31783528 PMCID: PMC6928972 DOI: 10.3390/ijms20235968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
Heat-shock proteins are a family of proteins which are upregulated in response to stress stimuli including inflammation, oxidative stress, or ischemia. Protective functions of heat-shock proteins have been studied in vascular disease models, and malfunction of heat-shock proteins is associated with vascular disease development. Heat-shock proteins however have not been investigated in human platelets during acute myocardial infarction ex vivo. Using two-dimensional electrophoresis and immunoblotting, we observed that heat-shock protein 27 (HSPB1) levels and phosphorylation are significantly increased in platelets of twelve patients with myocardial infarction compared to patients with nonischemic chest pain (6.4 ± 1.0-fold versus 1.0 ± 0.9-fold and 5.9 ± 1.8-fold versus 1.0 ± 0.8-fold; p < 0.05). HSP27 (HSPB1) showed a distinct and characteristic intracellular translocation from the cytoskeletal fraction into the membrane fraction of platelets during acute myocardial infarction that did not occur in the control group. In this study, we could demonstrate for the first time that HSP27 (HSPB1) is upregulated and phosphorylated in human platelets during myocardial infarction on a cellular level ex vivo with a characteristic intracellular translocation pattern. This HSP27 (HSPB1) phenotype in platelets could thus represent a measurable stress response in myocardial infarction and potentially other acute ischemic events.
Collapse
|
39
|
Sha E, Nakamura M, Ankai K, Yamamoto YY, Oka T, Yohda M. Functional and structural characterization of HspB1/Hsp27 from Chinese hamster ovary cells. FEBS Open Bio 2019; 9:1826-1834. [PMID: 31441240 PMCID: PMC6768103 DOI: 10.1002/2211-5463.12726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/04/2019] [Accepted: 08/20/2019] [Indexed: 11/20/2022] Open
Abstract
Small heat shock proteins (sHsps) endow cells with stress tolerance. Of the various sHsps in mammals, HspB1, also known as Hsp27, is the most ubiquitous. To examine the structure and function of HspB1, we expressed, purified, and characterized HspB1 from Chinese hamster (Cricetulus griseus) ovary cells (CgHspB1). CgHspB1 forms a large oligomeric structure. We observed a monodisperse 16‐mer with an elongated sphere, but this is affected by changes in various conditions, including temperature. Under dilute conditions, CgHspB1 dissociates into small oligomers at elevated temperatures. The dissociated conformers interacted with the gel filtration column through hydrophobic interactions. In contrast, dissociation of the oligomer was not observed by small‐angle X‐ray scattering at 55 °C. The result partially coincides with the results of size exclusion chromatography, showing that dissociation did not occur at high protein concentrations. However, a significant structural change in the oligomeric conformations appears to occur between room and higher temperatures. Reflecting their status as homeotherms, mammalian sHsps are regulated by phosphorylation. A phosphorylation mimic mutant of CgHspB1 with the replacement of Ser15 to Asp exhibited relatively lower oligomer stability and greater protective ability against thermal aggregation than the wild‐type protein. The result clearly shows a correlation between oligomer dissociation and chaperone activity.
Collapse
Affiliation(s)
- Eiryo Sha
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| | - Manami Nakamura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| | - Kazuya Ankai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| | - Yohei Y Yamamoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| | - Toshihiko Oka
- Department of Physics, Faculty of Science, Shizuoka University, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| |
Collapse
|
40
|
Bhandari S, Biswas S, Chaudhary A, Dutta S, Suguna K. Dodecameric structure of a small heat shock protein from Mycobacterium marinum M. Proteins 2019; 87:365-379. [PMID: 30632633 DOI: 10.1002/prot.25657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/24/2018] [Accepted: 01/05/2019] [Indexed: 12/31/2022]
Abstract
Small heat shock proteins (sHSPs) are ATP-independent molecular chaperones present ubiquitously in all kingdoms of life. Their low molecular weight subunits associate to form higher order structures. Under conditions of stress, sHSPs prevent aggregation of substrate proteins by undergoing rapid changes in their conformation or stoichiometry. Polydispersity and dynamic nature of these proteins have made structural investigations through crystallography a daunting task. In pathogens like Mycobacteria, sHSPs are immuno-dominant antigens, enabling survival of the pathogen within the host and contributing to disease persistence. We characterized sHSPs from Mycobacterium marinum M and determined the crystal structure of one of these. The protein crystallized in three different conditions as dodecamers, with dimers arranged in a tetrahedral fashion to form a closed cage-like architecture. Interestingly, we found a pentapeptide bound to the dodecamers revealing one of the modes of sHSP-substrate interaction. Further, we have observed that ATP inhibits the chaperoning activity of the protein.
Collapse
Affiliation(s)
- Spraha Bhandari
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Sreeparna Biswas
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Anuradha Chaudhary
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Kaza Suguna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
41
|
Gorter RP, Stephenson J, Nutma E, Anink J, de Jonge JC, Baron W, Jahreiβ MC, Belien JAM, van Noort JM, Mijnsbergen C, Aronica E, Amor S. Rapidly progressive amyotrophic lateral sclerosis is associated with microglial reactivity and small heat shock protein expression in reactive astrocytes. Neuropathol Appl Neurobiol 2018; 45:459-475. [PMID: 30346063 PMCID: PMC7379307 DOI: 10.1111/nan.12525] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022]
Abstract
AIMS Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease characterized by progressive loss of motor neurons, muscle weakness, spasticity, paralysis and death usually within 2-5 years of onset. Neuroinflammation is a hallmark of ALS pathology characterized by activation of glial cells, which respond by upregulating small heat shock proteins (HSPBs), but the exact underlying pathological mechanisms are still largely unknown. Here, we investigated the association between ALS disease duration, lower motor neuron loss, TARDNA-binding protein 43 (TDP-43) pathology, neuroinflammation and HSPB expression. METHODS With immunohistochemistry, we examined HSPB1, HSPB5, HSPB6, HSPB8 and HSP16.2 expression in cervical, thoracic and sacral spinal cord regions in 12 ALS cases, seven with short disease duration (SDD), five with moderate disease duration (MDD), and ten age-matched controls. Expression was quantified using ImageJ to examine HSP expression, motor neuron numbers, microglial and astrocyte density and phosphorylated TDP-43 (pTDP-43+) inclusions. RESULTS SDD was associated with elevated HSPB5 and 8 expression in lateral tract astrocytes, while HSP16.2 expression was increased in astrocytes in MDD cases. SDD cases had higher numbers of motor neurons and microglial activation than MDD cases, but similar levels of motor neurons with pTDP-43+ inclusions. CONCLUSIONS Increased expression of several HSPBs in lateral column astrocytes suggests that astrocytes play a role in the pathogenesis of ALS. SDD is associated with increased microgliosis, HSPB5 and 8 expression in astrocytes, and only minor changes in motor neuron loss. This suggests that the interaction between motor neurons, microglia and astrocytes determines neuronal fate and functional decline in ALS.
Collapse
Affiliation(s)
- R P Gorter
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - J Stephenson
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - E Nutma
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - J Anink
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - J C de Jonge
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Deltacrystallon, Leiden, The Netherlands
| | - W Baron
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Deltacrystallon, Leiden, The Netherlands
| | - M-C Jahreiβ
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - J A M Belien
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | | | - C Mijnsbergen
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - E Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - S Amor
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
42
|
Gorter RP, Nutma E, Jahrei M, de Jonge JC, Quinlan RA, van der Valk P, van Noort JM, Baron W, Amor S. Heat shock proteins are differentially expressed in brain and spinal cord: implications for multiple sclerosis. Clin Exp Immunol 2018; 194:137-152. [PMID: 30014472 PMCID: PMC6194336 DOI: 10.1111/cei.13186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2018] [Indexed: 01/10/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disease characterized by demyelination, inflammation and neurodegeneration throughout the central nervous system. Although spinal cord pathology is an important factor contributing to disease progression, few studies have examined MS lesions in the spinal cord and how they differ from brain lesions. In this study we have compared brain and spinal cord white (WM) and grey (GM) matter from MS and control tissues, focusing on small heat shock proteins (HSPB) and HSP16.2. Western blotting was used to examine protein levels of HSPB1, HSPB5, HSPB6, HSPB8 and HSP16.2 in brain and spinal cord from MS and age-matched non-neurological controls. Immunohistochemistry was used to examine expression of the HSPs in MS spinal cord lesions and controls. Expression levels were quantified using ImageJ. Western blotting revealed significantly higher levels of HSPB1, HSPB6 and HSPB8 in MS and control spinal cord compared to brain tissues. No differences in HSPB5 and HSP16.2 protein levels were observed, although HSPB5 protein levels were higher in brain WM versus GM. In MS spinal cord lesions, increased HSPB1 and HSPB5 expression was observed in astrocytes, and increased neuronal expression of HSP16.2 was observed in normal-appearing GM and type 1 GM lesions. The high constitutive expression of several HSPBs in spinal cord and increased expression of HSPBs and HSP16.2 in MS illustrate differences between brain and spinal cord in health and upon demyelination. Regional differences in HSP expression may reflect differences in astrocyte cytoskeleton composition and influence inflammation, possibly affecting the effectiveness of pharmacological agents.
Collapse
Affiliation(s)
- R. P. Gorter
- Pathology DepartmentAmsterdam UMC, VUMCGroningenUK
| | - E. Nutma
- Pathology DepartmentAmsterdam UMC, VUMCGroningenUK
| | - M.‐C. Jahrei
- Pathology DepartmentAmsterdam UMC, VUMCGroningenUK
| | - J. C. de Jonge
- Department of Cell BiologyUniversity of Groningen, University Medical Center GroningenGroningenUK
| | - R. A Quinlan
- Department of BiosciencesDurham UniversityDurhamUK
| | | | | | - W. Baron
- Department of Cell BiologyUniversity of Groningen, University Medical Center GroningenGroningenUK
| | - S. Amor
- Pathology DepartmentAmsterdam UMC, VUMCGroningenUK
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| |
Collapse
|
43
|
Hocking KM, Evans BC, Komalavilas P, Cheung-Flynn J, Duvall CL, Brophy CM. Nanotechnology Enabled Modulation of Signaling Pathways Affects Physiologic Responses in Intact Vascular Tissue. Tissue Eng Part A 2018; 25:416-426. [PMID: 30132374 DOI: 10.1089/ten.tea.2018.0169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
IMPACT STATEMENT Subarachnoid hemorrhage (SAH) is associated with vasospasm that is refractory to traditional vasodilators, and inhibition of vasospasm after SAH remains a large unmet clinical need. SAH causes changes in the phosphorylation state of the small heat shock proteins (HSPs), HSP20 and HSP27, in the vasospastic vessels. In this study, the levels of HSP27 and HSP20 were manipulated using nanotechnology to mimic the intracellular phenotype of SAH-induced vasospasm, and the effect of this manipulation was tested on vasomotor responses in intact tissues. This work provides insight into potential therapeutic targets for the development of more effective treatments for SAH induced vasospasm.
Collapse
Affiliation(s)
- Kyle M Hocking
- 1 Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.,2 Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Brian C Evans
- 1 Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.,2 Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Padmini Komalavilas
- 1 Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.,3 VA Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Joyce Cheung-Flynn
- 1 Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Craig L Duvall
- 2 Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Colleen M Brophy
- 1 Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.,3 VA Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
44
|
Tang S, Yin B, Xu J, Bao E. Rosemary Reduces Heat Stress by Inducing CRYAB and HSP70 Expression in Broiler Chickens. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7014126. [PMID: 30425783 PMCID: PMC6218721 DOI: 10.1155/2018/7014126] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/20/2018] [Accepted: 09/12/2018] [Indexed: 11/17/2022]
Abstract
Heat stress negatively affects poultry production and animal health. In response, animals invoke a heat stress response by inducing heat shock proteins (HSPs). Scientists are actively seeking natural products that can enhance the heat shock response. The present study aimed at assessing the effects of a purified rosemary extract comprising antioxidant compounds on the heat shock response and HSP expression profile in broiler chickens. The response of broilers to HS in the presence of purified rosemary extract was assessed using an in vivo myocardial cell model. Pathological lesions of heart tissue were examined microscopically. The levels and activities of enzymes associated with heart damage and oxidative damage were detected. Immunohistochemical staining was performed for HSPs in myocardial cells. The results showed that lactate dehydrogenase (LDH), creatine kinase (CK), and myocardial CK (CKMB) levels were reduced by the purified rosemary extract before and during heat stress. Heat stress alone increased CK and CKMB levels. The levels of oxidative damage-associated enzymes were compared between the rosemary + heat stress and heat stress-alone groups. The results indicated that in terms of these enzymes, the purified rosemary extract induced a more antioxidative state. Pathological examinations showed that heat stress caused myocardial fiber fracture, karyopyknosis, and degeneration. The addition of purified rosemary extract ameliorated these lesions to some degree, preserving more of the basic structure. Heat stress decreased the cellular levels of crystallin alpha B (CRYAB) and HSP70. The addition of the purified rosemary extract significantly increased the levels of CRYAB and HSP70 during heat stress (p < 0.0001). Immunohistochemistry showed that after rosemary treatment, CRYAB and HSP70 showed more intense staining compared with the no heat stress control group. In the rosemary + heat group, after 10 hours of heat stress, the staining intensity of these two proteins remained higher than in the heat stress group. Thus, purified rosemary extract could induce high levels of HSP70 and CRYAB in chicken hearts before and during heat stress. Purified rosemary extract could be used to alleviate heat stress in broiler chickens.
Collapse
Affiliation(s)
- Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Yin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiao Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
45
|
Park AM, Tsunoda I, Yoshie O. Heat shock protein 27 promotes cell cycle progression by down-regulating E2F transcription factor 4 and retinoblastoma family protein p130. J Biol Chem 2018; 293:15815-15826. [PMID: 30166342 DOI: 10.1074/jbc.ra118.003310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/23/2018] [Indexed: 02/05/2023] Open
Abstract
Heat shock protein 27 (HSP27) protects cells under stress. Here, we demonstrate that HSP27 also promotes cell cycle progression of MRC-5 human lung fibroblast cells. Serum starvation for 24 h induced G1 arrest in these cells, and upon serum refeeding, the cells initiated cell cycle progression accompanied by an increase in HSP27 protein levels. HSP27 levels peaked at 12 h, and transcriptional up-regulation of six G2/M-related genes (CCNA2, CCNB1, CCNB2, CDC25C, CDCA3, and CDK1) peaked at 24-48 h. siRNA-mediated HSP27 silencing in proliferating MRC-5 cells induced G2 arrest coinciding with down-regulation of these six genes. Of note, the promoters of all of these genes have the cell cycle-dependent element and/or the cell cycle gene-homology region. These promoter regions are known to be bound by the E2F family proteins (E2F-1 to E2F-8) and retinoblastoma (RB) family proteins (RB1, p107, and p130), among which E2F-4 and p130 were strongly up-regulated in HSP27-knockdown cells. E2F-4 or p130 knockdown concomitant with the HSP27 knockdown rescued MRC-5 cells from G2 arrest and up-regulated the six cell cycle genes. Moreover, we observed cellular senescence in MRC-5 cells on day 3 after the HSP27 knockdown, as evidenced by increased senescence-associated β-gal activity and up-regulated inflammatory cytokines. The cellular senescence was also suppressed by the concomitant knockdown of E2F-4/HSP27 or p130/HSP27. Our findings indicate that HSP27 promotes cell cycle progression of MRC-5 cells by suppressing expression of the transcriptional repressors E2F-4 and p130.
Collapse
Affiliation(s)
- Ah-Mee Park
- From the Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan and
| | - Ikuo Tsunoda
- From the Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan and
| | - Osamu Yoshie
- From the Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan and.,the Health and Kampo Institute, 1-11-10 Murasakiyama, Sendai, Miyagi 981-3205, Japan
| |
Collapse
|
46
|
Herrera-Uribe J, Jiménez-Marín Á, Lacasta A, Monteagudo PL, Pina-Pedrero S, Rodríguez F, Moreno Á, Garrido JJ. Comparative proteomic analysis reveals different responses in porcine lymph nodes to virulent and attenuated homologous African swine fever virus strains. Vet Res 2018; 49:90. [PMID: 30208957 PMCID: PMC6134756 DOI: 10.1186/s13567-018-0585-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/05/2018] [Indexed: 01/07/2023] Open
Abstract
African swine fever (ASF) is a pathology of pigs against which there is no treatment or vaccine. Understanding the equilibrium between innate and adaptive protective responses and immune pathology might contribute to the development of strategies against ASFV. Here we compare, using a proteomic approach, the course of the in vivo infection caused by two homologous strains: the virulent E75 and the attenuated E75CV1. Our results show a progressive loss of proteins by day 7 post-infection (pi) with E75, reflecting tissue destruction. Many signal pathways were affected by both infections but in different ways and extensions. Cytoskeletal remodelling and clathrin-endocytosis were affected by both isolates, while a greater number of proteins involved on inflammatory and immunological pathways were altered by E75CV1. 14-3-3 mediated signalling, related to immunity and apoptosis, was inhibited by both isolates. The implication of the Rho GTPases by E75CV1 throughout infection is also evident. Early events reflected the lack of E75 recognition by the immune system, an evasion strategy acquired by the virulent strains, and significant changes at 7 days post-infection (dpi), coinciding with the peak of infection and the time of death. The protein signature at day 31 pi with E75CV1 seems to reflect events observed at 1 dpi, including the upregulation of proteosomal subunits and molecules described as autoantigens (vimentin, HSPB1, enolase and lymphocyte cytosolic protein 1), which allow the speculation that auto-antibodies could contribute to chronic ASFV infections. Therefore, the use of proteomics could help understand ASFV pathogenesis and immune protection, opening new avenues for future research.
Collapse
Affiliation(s)
- Júber Herrera-Uribe
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Ángeles Jiménez-Marín
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Anna Lacasta
- International Livestock Research Intitute (ILRI), Nairobi, 00100, Kenya.,Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Paula L Monteagudo
- Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Sonia Pina-Pedrero
- Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Fernando Rodríguez
- Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Ángela Moreno
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.,Instituto de Agricultura Sostenible, Campus Alameda del Obispo, 14080 CSIC, Córdoba, Spain
| | - Juan J Garrido
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.
| |
Collapse
|
47
|
Kim KW. Prokaryotic cytoskeletons: in situ and ex situ structures and cellular locations. Antonie van Leeuwenhoek 2018; 112:145-157. [PMID: 30128891 DOI: 10.1007/s10482-018-1142-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/11/2018] [Indexed: 01/12/2023]
Abstract
Cytoskeletons have long been perceived to be present only in eukaryotes. However, this notion changed drastically in the 1990s, with observations of cytoskeleton-like structures in several prokaryotes. Homologs of the main components of eukaryotic cytoskeletons, such as microtubules, microfilaments, and intermediate filaments, have been identified in bacteria and archaea. Tubulin homologs include filamenting temperature-sensitive mutant Z (FtsZ), bacterial tubulin A/B (BtubA/B), and tubulin/FtsZ-like protein (TubZ), whereas actin homologs comprise murein region B (MreB) and crenactin. Unlike other proteins, crescentin (CreS) is a homolog of intermediate filaments. Recent findings elucidated their localization, structural organization, and helical properties in prokaryotes, thus revising traditional models. FtsZ is involved in cell division, forming a bundle of overlapping filaments that cover the entire division plane. Cryogenic transmission electron microscopy identified tubular structures of BtubA/B that were not previously identified using conventional ultrathin plastic sections. TubZ generates two joint filaments to form a quadruplex structure. After a long debate, MreB, a cell shape determinant, was shown to form filament stretches that move circumferentially around rod-shaped bacteria. Initially characterized as single-stranded, crenactin was eventually identified as right-handed double-stranded helical filaments. CreS, another cell shape determinant, forms filament bundles located inside the inner membrane of the concave side of cells. These observations suggest that the use of in situ or ex situ microscopy in combination with structural analysis techniques will enable the elucidation and further understanding of the current models of prokaryotic cytoskeletons.
Collapse
Affiliation(s)
- Ki Woo Kim
- School of Ecology and Environmental System, Kyungpook National University, Sangju, 37224, Korea. .,Tree Diagnostic Center, Kyungpook National University, Sangju, 37224, Korea.
| |
Collapse
|
48
|
Tsikitis M, Galata Z, Mavroidis M, Psarras S, Capetanaki Y. Intermediate filaments in cardiomyopathy. Biophys Rev 2018; 10:1007-1031. [PMID: 30027462 DOI: 10.1007/s12551-018-0443-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022] Open
Abstract
Intermediate filament (IF) proteins are critical regulators in health and disease. The discovery of hundreds of mutations in IF genes and posttranslational modifications has been linked to a plethora of human diseases, including, among others, cardiomyopathies, muscular dystrophies, progeria, blistering diseases of the epidermis, and neurodegenerative diseases. The major IF proteins that have been linked to cardiomyopathies and heart failure are the muscle-specific cytoskeletal IF protein desmin and the nuclear IF protein lamin, as a subgroup of the known desminopathies and laminopathies, respectively. The studies so far, both with healthy and diseased heart, have demonstrated the importance of these IF protein networks in intracellular and intercellular integration of structure and function, mechanotransduction and gene activation, cardiomyocyte differentiation and survival, mitochondrial homeostasis, and regulation of metabolism. The high coordination of all these processes is obviously of great importance for the maintenance of proper, life-lasting, and continuous contraction of this highly organized cardiac striated muscle and consequently a healthy heart. In this review, we will cover most known information on the role of IFs in the above processes and how their deficiency or disruption leads to cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Mary Tsikitis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Zoi Galata
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece.
| |
Collapse
|
49
|
Picard B, Gagaoua M, Al-Jammas M, De Koning L, Valais A, Bonnet M. Beef tenderness and intramuscular fat proteomic biomarkers: muscle type effect. PeerJ 2018; 6:e4891. [PMID: 29892502 PMCID: PMC5994332 DOI: 10.7717/peerj.4891] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022] Open
Abstract
Tenderness and intramuscular fat content are key attributes for beef sensory qualities. Recently some proteomic analysis revealed several proteins which are considered as good biomarkers of these quality traits. This study focuses on the analysis of 20 of these proteins representative of several biological functions: muscle structure and ultrastructure, muscle energetic metabolism, cellular stress and apoptosis. The relative abundance of the proteins was measured by Reverse Phase Protein Array (RPPA) in five muscles known to have different tenderness and intramuscular lipid contents: Longissimus thoracis (LT), Semimembranosus (SM), Rectus abdominis (RA), Triceps brachii (TB) and Semitendinosus (ST). The main results showed a muscle type effect on 16 among the 20 analyzed proteins. They revealed differences in protein abundance depending on the contractile and metabolic properties of the muscles. The RA muscle was the most different by 11 proteins differentially abundant comparatively to the four other muscles. Among these 11 proteins, six were less abundant namely enolase 3 (ENO3), phosphoglucomutase 1 (PGK1), aldolase (ALDOA), myosin heavy chain IIX (MyHC-IIX), fast myosin light chain 1 (MLC1F), triosephosphate isomerase 1 (TPI1) and five more abundant: Heat shock protein (HSP27, HSP70-1A1, αB-crystallin (CRYAB), troponin T slow (TNNT1), and aldolase dehydrogenase 1 (ALDH1A1). Four proteins: HSP40, four and a half LIM domains protein 1 (FHL1), glycogen phosphorylase B (PYGB) and malate dehydrogenase (MDH1) showed the same abundance whatever the muscle. The correlations observed between the 20 proteins in all the five muscles were used to construct a correlation network. The proteins the most connected with the others were in the following order MyHC-IIX, CRYAB, TPI1, PGK1, ALDH1A1, HSP27 and TNNT1. This knowledge is important for understanding the biological functions related to beef tenderness and intramuscular fat content.
Collapse
Affiliation(s)
- Brigitte Picard
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Mohammed Gagaoua
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Marwa Al-Jammas
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Leanne De Koning
- Institut Curie Centre de Recherche, Université de recherche PSL, Plateforme RPPA, Paris, France
| | - Albéric Valais
- S.I.C.A. Rouge des Prés, Domaines des rues, Chenillé-Champteussé, France
| | - Muriel Bonnet
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| |
Collapse
|
50
|
Nam DE, Nam SH, Lee AJ, Hong YB, Choi BO, Chung KW. Small heat shock protein B3 (HSPB3) mutation in an axonal Charcot-Marie-Tooth disease family. J Peripher Nerv Syst 2018; 23:60-66. [PMID: 29341343 DOI: 10.1111/jns.12249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/11/2022]
Abstract
Heat shock protein B3 (HSPB3) gene encodes a small heat-shock protein 27-like protein which has a high sequence homology with HSPB1. A mutation in the HSPB3 was reported as the putative underlying cause of distal hereditary motor neuropathy 2C (dHMN2C) in 2010. We identified a heterozygous mutation (c.352T>C, p.Tyr118His) in the HSPB3 from a Charcot-Marie-Tooth disease type 2 (CMT2) family by the method of targeted next generation sequencing. The mutation was located in the well conserved alpha-crystalline domain, and several in silico predictions indicated a pathogenic effect of the mutation. Clinical and electrophysiological features of the patients indicated the axonal type of CMT. Clinical symptoms without sensory involvements were similar between the present family and the previous family. Mutations in the HSPB1 and HSPB8 genes have been reported to be relevant with both types of CMT2 and dHMN. Our findings will help in the molecular diagnosis of CMT2 by expanding the phenotypic range due to the HSPB3 mutations.
Collapse
Affiliation(s)
- Da E Nam
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Soo H Nam
- Department of Biological Sciences, Kongju National University, Gongju, Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Ah J Lee
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Young B Hong
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Byung-Ok Choi
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki W Chung
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| |
Collapse
|