1
|
Li Y, Kang Z, Zhang X, Sun Y, Han Z, Zhang H, Liu Z, Liang Y, Zhang J, Ren J. Fluoroamphiphiles for enhancing immune response of subunit vaccine against SARS-CoV-2. Eur J Pharm Biopharm 2024; 204:114528. [PMID: 39383977 DOI: 10.1016/j.ejpb.2024.114528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/19/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024]
Abstract
In recent decades, protein-based therapy has garnered valid attention for treating infectious diseases, genetic disorders, cancer, and other clinical requirements. However, preserving protein-based drugs against degradation and denaturation during processing, storage, and delivery poses a formidable challenge. Herein, we designed a novel fluoroamphiphiles polymer to deliver protein. Two different formulations of nanoparticles, cross-linked (CNP) and micelle (MNP) polymer, were prepared rationally by disulfide cross-linked and thin-film hydration techniques, respectively. The size, zeta potential, and morphology of both formulations were characterized and the delivery efficacy of both in vitro and in vivo was also assessed. The in vitro findings demonstrated that both formulations effectively facilitated protein delivery into various cell lines. Moreover, in vivo experiments revealed that intramuscular administration of the two formulations loaded with a SARS-CoV-2 recombinant receptor-binding domain (RBD) vaccine induced robust antibody responses in mice without adding another adjuvant. These results highlight the potential use of our carrier system as a safe and effective platform for the in vivo delivery of subunit vaccines.
Collapse
Affiliation(s)
- Yuan Li
- Immunological Materials Research Group 1, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Ziyao Kang
- Immunological Materials Research Group 1, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Xuefeng Zhang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Yun Sun
- Immunological Materials Research Group 1, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Zibo Han
- National Engineering Center for Novel Vaccine Research, Beijing, China; Immunological Evaluation Unit, National Vaccine and Serum Institute (NVSI), Beijing, China
| | - Hao Zhang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Zhaoming Liu
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Yu Liang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Jing Zhang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China.
| | - Jin Ren
- Immunological Materials Research Group 1, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China.
| |
Collapse
|
2
|
Zhang Y, Tian J. Strategies, Challenges, and Prospects of Nanoparticles in Gynecological Malignancies. ACS OMEGA 2024; 9:37459-37504. [PMID: 39281920 PMCID: PMC11391544 DOI: 10.1021/acsomega.4c04573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
Gynecologic cancers are a significant health issue for women globally. Early detection and successful treatment of these tumors are crucial for the survival of female patients. Conventional therapies are often ineffective and harsh, particularly in advanced stages, necessitating the exploration of new therapy options. Nanotechnology offers a novel approach to biomedicine. A novel biosensor utilizing bionanotechnology can be employed for early tumor identification and therapy due to the distinctive physical and chemical characteristics of nanoparticles. Nanoparticles have been rapidly applied in the field of gynecologic malignancies, leading to significant advancements in recent years. This study highlights the significance of nanoparticles in treating gynecological cancers. It focuses on using nanoparticles for precise diagnosis and continuous monitoring of the disease, innovative imaging, and analytic methods, as well as multifunctional drug delivery systems and targeted therapies. This review examines several nanocarrier systems, such as dendrimers, liposomes, nanocapsules, and nanomicelles, for gynecological malignancies. The review also examines the enhanced therapeutic potential and targeted delivery of ligand-functionalized nanoformulations for gynecological cancers compared to nonfunctionalized anoformulations. In conclusion, the text also discusses the constraints and future exploration prospects of nanoparticles in chemotherapeutics. Nanotechnology will offer precise methods for diagnosing and treating gynecological cancers.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jing Tian
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| |
Collapse
|
3
|
Yuan W, Shi X, Lee LTO. RNA therapeutics in targeting G protein-coupled receptors: Recent advances and challenges. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102195. [PMID: 38741614 PMCID: PMC11089380 DOI: 10.1016/j.omtn.2024.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
G protein-coupled receptors (GPCRs) are the major targets of existing drugs for a plethora of human diseases and dominate the pharmaceutical market. However, over 50% of the GPCRs remain undruggable. To pursue a breakthrough and overcome this situation, there is significant clinical research for developing RNA-based drugs specifically targeting GPCRs, but none has been approved so far. RNA therapeutics represent a unique and promising approach to selectively targeting previously undruggable targets, including undruggable GPCRs. However, the development of RNA therapeutics faces significant challenges in areas of RNA stability and efficient in vivo delivery. This review presents an overview of the advances in RNA therapeutics and the diverse types of nanoparticle RNA delivery systems. It also describes the potential applications of GPCR-targeted RNA drugs for various human diseases.
Collapse
Affiliation(s)
- Wanjun Yuan
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Leo Tsz On Lee
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau, China
| |
Collapse
|
4
|
Yun H, Wang K, Zhang J, Peng G, Zhao H. Construction of Peptide-Lipoic Acid Cationic Polymers with Redox Responsiveness and Low Toxicity for Gene Delivery. ACS OMEGA 2024; 9:3499-3506. [PMID: 38284089 PMCID: PMC10809251 DOI: 10.1021/acsomega.3c07194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/30/2024]
Abstract
As gene therapy continues to evolve, the development of safe and effective cationic polymer carriers is critical. In this work, three polymers have been prepared by ring-opening polymerization on the basis of peptide-lipoic acid monomers. By adjusting the sequence of the peptides, redox-responsive cationic polymers with different positive charge numbers were obtained, as well as investigating their performance as gene carriers. The results showed that the polymers complexed with negatively charged genes by electrostatic interaction and successfully transported the genes into the cells, additionally degrading and releasing the genes under glutathione (GSH) conditions. Furthermore, the polymers as gene carriers in different cell lines demonstrated lower cytotoxicity, with an excellent cell survival rate of 8 times higher than the "gold standard" polyethylenimine (PEI) at the same concentration. In vitro transfection experiments showed that the polymers successfully released and transfected genes into cells, demonstrating their immense potential in gene therapy.
Collapse
Affiliation(s)
- Hui Yun
- School
of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kang Wang
- School
of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Zhang
- Shandong
Pharmaceutical Glass Co., Ltd., Zibo 256100, China
| | - Guofeng Peng
- Shandong
Rike Chemical Co., Ltd, Changle 262400, China
| | - Hui Zhao
- School
of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Deng Y, Zhang J, Sun X, Li L, Zhou M, Liu S, Chen F, Pan C, Yu Z, Li M, Zhong W, Zeng M. Potent gene delivery from fluorinated poly(β-amino ester) in adhesive and suspension difficult-to-transfect cells for apoptosis and ferroptosis. J Control Release 2023; 363:597-605. [PMID: 37793484 DOI: 10.1016/j.jconrel.2023.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/19/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Tremendous efforts have been made to improve polymeric property in gene delivery performances, especially when obstacle of transferring gene construct into difficult-to-transfect cells occurs. Innovations in the area of fluorination and fluorinated compounds with biomedical potential in medicinal chemistry are believed to assist in the development of new therapeutics. Fluorine modified polymers have shown to navigate the gene transfection cellular barriers and promoted the transfection outcomes. Gene transfer into some liver cancer cells and human leukemia cells has always been a challenge. Here, by facile incorporation of a fluorine containing amine monomer, 1H,1H-undecafluorohexylamine, fluorinated poly(β-amino ester) (FPAE) was synthesized to significantly improve the transfection performance, achieving high transfection efficiency of 87% and 55% in two representative difficult-to-transfect cells, HepG2 and Molt-4, which were cultured in adhesive and suspension condition, respectively. However, the potency of Lipofectamine 3000 was very limited. More importantly, functional studies revealed that FPAE can dramatically outperform Lipofectamine 3000 in delivering Bcl-xL and PKCβII to either provide the protection against apoptosis or promote the ferroptosis in HepG2 cells. This work facilitates gene therapies by overcoming biological barriers for targeting difficult-to-transfect cells and disease models when medically necessary.
Collapse
Affiliation(s)
- Yihui Deng
- Central Laboratory of the First Affiliated Hospital of Jinan University, Guangzhou Overseas Chinese Hospital, Jinan University, Guangzhou 510630, China
| | - Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ximeng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liangtao Li
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou Overseas Chinese Hospital, Jinan University, Guangzhou 510630, China
| | - Mandi Zhou
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou Overseas Chinese Hospital, Jinan University, Guangzhou 510630, China
| | - Shuang Liu
- Ministry of Education (MOE) Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Fuying Chen
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Chaolan Pan
- Dermatology Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ming Li
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Wenbin Zhong
- Ministry of Education (MOE) Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Ming Zeng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou Overseas Chinese Hospital, Jinan University, Guangzhou 510630, China; Department of Dermatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China.
| |
Collapse
|
6
|
Wang X, Li Y, Wang X, Sandoval DM, He Z, A S, Sáez IL, Wang W. Guanidyl-Rich Poly(β Amino Ester)s for Universal Functional Cytosolic Protein Delivery and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Cas9 Ribonucleoprotein Based Gene Editing. ACS NANO 2023; 17:17799-17810. [PMID: 37669145 PMCID: PMC10540258 DOI: 10.1021/acsnano.3c03269] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
Protein therapeutics are highly promising for complex disease treatment. However, the lack of ideal delivery vectors impedes their clinical use, especially the carriers for in vivo delivery of functional cytosolic protein. In this study, we modified poly(β amino ester)s (PAEs) with a phenyl guanidine (PG) group to enhance their suitability for cytosolic protein delivery. The effects of the PG group on protein binding, cell internalization, protein function protection, and endo/lysosomal escape were systematically evaluated. Compared to the unmodified PAEs (L3), guanidyl rich PAEs (L3PG) presented superior efficiency of protein binding and protein internalization, mainly via clathrin-mediated endocytosis. In addition, both PAEs showed robust capabilities to deliver cytosolic proteins with different molecular weight (ranging from 30 to 464 kDa) and isoelectric points (ranging from 4.3 to 9), which were significantly improved in comparison with the commercial reagents of PULsin and Pierce Protein Transection Reagent. Moreover, L3PG successfully delivered Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Cas9 ribonucleoprotein (RNP) into HeLa cells expressing green fluorescent protein (GFP) and achieved more than 80% GFP expression knockout. These results demonstrated that guanidyl modification on PAEs can enhance its capabilities for intracellular delivery of cytosolic functional proteins and CRISPR/Cas9 ribonucleoprotein. The guanidyl-rich PAEs are promising nonviral vectors for functional protein delivery and potential use in protein and nuclease-based gene editing therapies.
Collapse
Affiliation(s)
- Xianqing Wang
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Research
and Clinical Translation Center of Gene Medicine and Tissue Engineering,
School of Public Health, Anhui University
of Science and Technology, Huainan 232001, China
| | - Yinghao Li
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Xi Wang
- Research
and Clinical Translation Center of Gene Medicine and Tissue Engineering,
School of Public Health, Anhui University
of Science and Technology, Huainan 232001, China
| | - Dario M. Sandoval
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Zhonglei He
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Research
and Clinical Translation Center of Gene Medicine and Tissue Engineering,
School of Public Health, Anhui University
of Science and Technology, Huainan 232001, China
| | - Sigen A
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Research
and Clinical Translation Center of Gene Medicine and Tissue Engineering,
School of Public Health, Anhui University
of Science and Technology, Huainan 232001, China
| | - Irene Lara Sáez
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Wenxin Wang
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Research
and Clinical Translation Center of Gene Medicine and Tissue Engineering,
School of Public Health, Anhui University
of Science and Technology, Huainan 232001, China
| |
Collapse
|
7
|
Song N, Chu Y, Tang J, Yang D. Lipid-, Inorganic-, Polymer-, and DNA-Based Nanocarriers for Delivery of the CRISPR/Cas9 system. Chembiochem 2023; 24:e202300180. [PMID: 37183575 DOI: 10.1002/cbic.202300180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 05/16/2023]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (CRISPR/Cas9) system has been widely explored for the precise manipulation of target DNA and has enabled efficient genomic editing in cells. Recently, CRISPR/Cas9 has shown promising potential in biomedical applications, including disease treatment, transcriptional regulation and genome-wide screening. Despite these exciting achievements, efficient and controlled delivery of the CRISPR/Cas9 system has remained a critical obstacle to its further application. Herein, we elaborate on the three delivery forms of the CRISPR/Cas9 system, and discuss the composition, advantages and limitations of these forms. Then we provide a comprehensive overview of the carriers of the system, and focus on the nonviral nanocarriers in chemical methods that facilitate efficient and controlled delivery of the CRISPR/Cas9 system. Finally, we discuss the challenges and prospects of the delivery methods of the CRISPR/Cas9 system in depth, and propose strategies to address the intracellular and extracellular barriers to delivery in clinical applications.
Collapse
Affiliation(s)
- Nachuan Song
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Yiwen Chu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
8
|
Ding L, Rong G, Cheng Y. Fluorous Tagged Peptides for Intracellular Delivery and Biomedical Imaging. Macromol Biosci 2023; 23:e2300048. [PMID: 36918279 DOI: 10.1002/mabi.202300048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Indexed: 03/16/2023]
Abstract
Fluorous tagged peptides have shown promising features for biomedical applications such as drug delivery and multimodal imaging. The bioconjugation of fluoroalkyl ligands onto cargo peptides greatly enhances their proteolytic stability and membrane penetration via a proposed "fluorine effect". The tagged peptides also efficiently deliver other biomolecules such as DNA and siRNA into cells via a co-assembly strategy. The fluoroalkyl chains on peptides with antifouling properties enable efficient gene delivery in the presence of serum proteins. Besides intracellular biomolecule delivery, the amphiphilic peptides can be used to stabilized perfluorocarbon-filled microbubbles for ultrasound imaging. The fluorine nucleus on fluoroalkyls provides intrinsic probes for background-free magnetic resonance imaging. Labeling of fluorous tags with radionuclide 18 F also allows tracing the biodistribution of peptides via positron emission tomography imaging. This mini-review will discuss properties and mechanism of the fluorous tagged peptides in these applications.
Collapse
Affiliation(s)
- Lei Ding
- Department of Ultrasound Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, P. R. China
| | - Guangyu Rong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, P. R. China
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
- Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Fengxian District Central Hospital, Shanghai, 200241, P. R. China
| |
Collapse
|
9
|
Yu Y, Gao Y, He L, Fang B, Ge W, Yang P, Ju Y, Xie X, Lei L. Biomaterial-based gene therapy. MedComm (Beijing) 2023; 4:e259. [PMID: 37284583 PMCID: PMC10239531 DOI: 10.1002/mco2.259] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/08/2023] Open
Abstract
Gene therapy, a medical approach that involves the correction or replacement of defective and abnormal genes, plays an essential role in the treatment of complex and refractory diseases, such as hereditary diseases, cancer, and rheumatic immune diseases. Nucleic acids alone do not easily enter the target cells due to their easy degradation in vivo and the structure of the target cell membranes. The introduction of genes into biological cells is often dependent on gene delivery vectors, such as adenoviral vectors, which are commonly used in gene therapy. However, traditional viral vectors have strong immunogenicity while also presenting a potential infection risk. Recently, biomaterials have attracted attention for use as efficient gene delivery vehicles, because they can avoid the drawbacks associated with viral vectors. Biomaterials can improve the biological stability of nucleic acids and the efficiency of intracellular gene delivery. This review is focused on biomaterial-based delivery systems in gene therapy and disease treatment. Herein, we review the recent developments and modalities of gene therapy. Additionally, we discuss nucleic acid delivery strategies, with a focus on biomaterial-based gene delivery systems. Furthermore, the current applications of biomaterial-based gene therapy are summarized.
Collapse
Affiliation(s)
- Yi Yu
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yijun Gao
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Liming He
- Department of StomatologyChangsha Stomatological HospitalChangshaChina
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Wenhui Ge
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoyan Xie
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
10
|
He X, Xiong S, Sun Y, Zhong M, Xiao N, Zhou Z, Wang T, Tang Y, Xie J. Recent Progress of Rational Modified Nanocarriers for Cytosolic Protein Delivery. Pharmaceutics 2023; 15:1610. [PMID: 37376059 DOI: 10.3390/pharmaceutics15061610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Therapeutic proteins garnered significant attention in the field of disease treatment. In comparison to small molecule drugs, protein therapies offer distinct advantages, including high potency, specificity, low toxicity, and reduced carcinogenicity, even at minimal concentrations. However, the full potential of protein therapy is limited by inherent challenges such as large molecular size, delicate tertiary structure, and poor membrane penetration, resulting in inefficient intracellular delivery into target cells. To address these challenges and enhance the clinical applications of protein therapies, various protein-loaded nanocarriers with tailored modifications were developed, including liposomes, exosomes, polymeric nanoparticles, and nanomotors. Despite these advancements, many of these strategies encounter significant issues such as entrapment within endosomes, leading to low therapeutic efficiency. In this review, we extensively discussed diverse strategies for the rational design of nanocarriers, aiming to overcome these limitations. Additionally, we presented a forward-looking viewpoint on the innovative generation of delivery systems specifically tailored for protein-based therapies. Our intention was to offer theoretical and technical support for the development and enhancement of nanocarriers capable of facilitating cytosolic protein delivery.
Collapse
Affiliation(s)
- Xiao He
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen 518036, China
| | - Su Xiong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yansun Sun
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen 518036, China
| | - Min Zhong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Nianting Xiao
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Ziwei Zhou
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Ting Wang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yaqin Tang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Jing Xie
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
11
|
Cai X, Dou R, Guo C, Tang J, Li X, Chen J, Zhang J. Cationic Polymers as Transfection Reagents for Nucleic Acid Delivery. Pharmaceutics 2023; 15:pharmaceutics15051502. [PMID: 37242744 DOI: 10.3390/pharmaceutics15051502] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Nucleic acid therapy can achieve lasting and even curative effects through gene augmentation, gene suppression, and genome editing. However, it is difficult for naked nucleic acid molecules to enter cells. As a result, the key to nucleic acid therapy is the introduction of nucleic acid molecules into cells. Cationic polymers are non-viral nucleic acid delivery systems with positively charged groups on their molecules that concentrate nucleic acid molecules to form nanoparticles, which help nucleic acids cross barriers to express proteins in cells or inhibit target gene expression. Cationic polymers are easy to synthesize, modify, and structurally control, making them a promising class of nucleic acid delivery systems. In this manuscript, we describe several representative cationic polymers, especially biodegradable cationic polymers, and provide an outlook on cationic polymers as nucleic acid delivery vehicles.
Collapse
Affiliation(s)
- Xiaomeng Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Rui Dou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Chen Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jiaruo Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Xiajuan Li
- Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), China National Center for Bioinformation, Beijing 100101, China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jiayu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| |
Collapse
|
12
|
Wang R, Li Y, Gao P, Lv J, Cheng Y, Wang H. Piperazine-modified dendrimer achieves efficient intracellular protein delivery via caveolar endocytosis bypassing the endo-lysosomal pathway. Acta Biomater 2023; 158:725-733. [PMID: 36599402 DOI: 10.1016/j.actbio.2022.12.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 01/02/2023]
Abstract
Intracellular protein delivery has been a major challenge due to various physiological barriers including low proteolytic stability and poor membrane permeability of the biologics. Nanoparticles were widely proposed to deliver cargo proteins into cells by endocytosis, however, the materials and complexes with proteins are often entrapped in endosomes and subject to lysosome degradation. In this study, we report a piperazine modified dendrimer for stabilizing the complexes via a combination of electrostatic interaction and hydrophobic interactions. The complexes show rapid cell internalization and the loaded proteins are released into the cytosols as early as half an hour post incubation. Mechanism study suggests that the complexes are endocytosed into cells via caveolae-based pathways, which could be inhibited by inhibitors such as genistein, filipin III, brefeldin A and nystatin. The phenylpiperazine-modified polymer enables the delivery of cargo proteins with reserved bioactivity and show high permeability in three-dimensional cell spheroids. The results prove the beneficial roles of phenylpiperazine ligands in polymer-mediated cytosolic protein delivery systems. STATEMENT OF SIGNIFICANCE: We synthesized a list of piperazine and derivatives modified dendrimers as cytosolic protein delivery vectors via facile reactions. Phenylpiperazine modification enables the efficient protein binding through the combination of electrostatic, hydrogen bonding and hydrophobic interactions. Phenylpiperazine modified dendrimers were internalized into the cells via a caveolae-based endo/lysosome-independent path and could release the cargo proteins into the cytosols as early as half an hour post incubation. Phenylpiperazine modified dendrimers delivered cargo proteins with reserved bioactivity and showed high permeability in three-dimensional cell spheroids.
Collapse
Affiliation(s)
- Ruijue Wang
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P.R. China
| | - Yuhan Li
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P.R. China
| | - Peng Gao
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P.R. China
| | - Jia Lv
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China.
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P.R. China.
| |
Collapse
|
13
|
Han H, Xing J, Chen W, Jia J, Li Q. Fluorinated polyamidoamine dendrimer-mediated miR-23b delivery for the treatment of experimental rheumatoid arthritis in rats. Nat Commun 2023; 14:944. [PMID: 36805456 PMCID: PMC9941585 DOI: 10.1038/s41467-023-36625-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
In rheumatoid arthritis (RA), insufficient apoptosis of macrophages and excessive generation of pro-inflammatory cytokines are intimately connected, accelerating the development of disease. Here, a fluorinated polyamidoamine dendrimer (FP) is used to deliver miR-23b to reduce inflammation by triggering the apoptosis of as well as inhibiting the inflammatory response in macrophages. Following the intravenous injection of FP/miR-23b nanoparticles in experimental RA models, the nanoparticles show therapeutic efficacy with inhibition of inflammatory response, reduced bone and cartilage erosion, suppression of synoviocyte infiltration and the recovery of mobility. Moreover, the nanoparticles accumulate in the inflamed joint and are non-specifically captured by synoviocytes, leading to the restoration of miR-23b expression in the synovium. The miR-23b nanoparticles target Tab2, Tab3 and Ikka to regulate the activation of NF-κB pathway in the hyperplastic synovium, thereby promoting anti-inflammatory and anti-proliferative responses. Additionally, the intravenous administration of FP/miR-23b nanoparticles do not induce obvious systemic toxicity. Overall, our work demonstrates that the combination of apoptosis induction and inflammatory inhibition could be a promising approach in the treatment of RA and possibly other autoimmune diseases.
Collapse
Affiliation(s)
- Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Jiakai Xing
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Wenqi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Jiaxin Jia
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China.
| |
Collapse
|
14
|
Engineering CRISPR/Cas-based nanosystems for therapeutics, diagnosis and bioimaging. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Abstract
INTRODUCTION Gene delivery vectors are a crucial determinant for gene therapeutic efficacy. Usually, it is necessary to use an excess of cationic vectors to achieve better transfection efficiency. However, it will cause severe cytotoxicity. In addition, cationic vectors are not resistant to serum, suffering from reduced transfection efficiency by forming large aggregates. Therefore, there is an urgent need to develop optimized gene delivery vectors. Recently, fluorination of vectors has been extensively applied to increase the gene delivery performance because of the unique properties of both hydrophobicity and lipophobicity, and chemical and biological inertness. AREAS COVERED This review will discuss the fluorophilic effects that impact gene delivery efficiency, and chemical modification approaches for fluorination. Next, recent advances and applications of fluorinated polymeric and lipidic vectors in gene therapy and gene editing are summarized. EXPERT OPINION Fluorinated vectors are a promising candidate for gene delivery. However, it still needs further studies to obtain pure and well-defined fluorinated polymers, guarantee the biosafety, and clarify the detailed mechanism. Apart from the improvements in gene delivery, exploiting other versatility of fluorinated vectors, such as oxygen-carrying ability, high affinity with fluorine-containing drugs, and imaging property upon introducing 19F, will further facilitate their applications in gene therapy.
Collapse
Affiliation(s)
- Yu Wan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuhan Yang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Mingyu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
16
|
Zhao L, Li D, Zhang Y, Huang Q, Zhang Z, Chen C, Xu CF, Chu X, Zhang Y, Yang X. HSP70-Promoter-Driven CRISPR/Cas9 System Activated by Reactive Oxygen Species for Multifaceted Anticancer Immune Response and Potentiated Immunotherapy. ACS NANO 2022; 16:13821-13833. [PMID: 35993350 DOI: 10.1021/acsnano.2c01885] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To address the low response rate to immune checkpoint blockade (ICB) therapy, we propose a specific promoter-driven CRISPR/Cas9 system, F-PC/pHCP, that achieves permanent genomic disruption of PD-L1 and elicits a multifaceted anticancer immune response to potentiate immunotherapy. This system consists of a chlorin e6-encapsulated fluorinated dendrimer and HSP70-promoter-driven CRISPR/Cas9. F-PC/pHCP under 660 nm laser activated the HSP70 promoter and enabled the specific expression of the Cas9 protein to disrupt the PD-L1 gene, preventing immune escape. Moreover, F-PC/pHCP also induced immunogenic cell death (ICD) of tumor cells and reprogrammed the immunosuppressive tumor microenvironment. Overall, this specific promoter-driven CRISPR/Cas9 system showed great anticancer efficacy and, more importantly, stimulated an immune memory response to inhibit distant tumor growth and lung metastasis. This CRISPR/Cas9 system represents an alternative strategy for ICB therapy as well as enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Liang Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Dongdong Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
| | - Yuxi Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
| | - Qiaoyi Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
| | - Zhenghai Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
| | - Chaoran Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
| | - Cong-Fei Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
| | - Xiao Chu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Xianzhu Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| |
Collapse
|
17
|
Sorokina SA, Shifrina ZB. Dendrimers as Antiamyloid Agents. Pharmaceutics 2022; 14:760. [PMID: 35456594 PMCID: PMC9031116 DOI: 10.3390/pharmaceutics14040760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Dendrimer-protein conjugates have significant prospects for biological applications. The complexation changes the biophysical behavior of both proteins and dendrimers. The dendrimers could influence the secondary structure of proteins, zeta-potential, distribution of charged regions on the surface, the protein-protein interactions, etc. These changes offer significant possibilities for the application of these features in nanotheranostics and biomedicine. Based on the dendrimer-protein interactions, several therapeutic applications of dendrimers have emerged. Thus, the formation of stable complexes retains the disordered proteins on the aggregation, which is especially important in neurodegenerative diseases. To clarify the origin of these properties and assess the efficiency of action, the mechanism of protein-dendrimer interaction and the nature and driving force of binding are considered in this review. The review outlines the antiamyloid activity of dendrimers and discusses the effect of dendrimer structures and external factors on their antiamyloid properties.
Collapse
Affiliation(s)
| | - Zinaida B. Shifrina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia;
| |
Collapse
|
18
|
Protein corona-driven nanovaccines improve antigen intracellular release and immunotherapy efficacy. J Control Release 2022; 345:601-609. [PMID: 35346769 DOI: 10.1016/j.jconrel.2022.03.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 01/18/2023]
Abstract
During vaccine delivery in vivo, the vaccine carrier dynamically adsorbs the surrounding proteins or biomacromolecules to form a protein corona layer, which determines the physiological and therapeutic responses of the vaccine. Although the importance of the protein corona effect in drug delivery is widely accepted, understanding of the rational use of the protein corona to improve antigen controlled release is still sparse. Here, we constructed a protein corona-driven nanovaccine (PCNV), which has the dual effects of resisting the protein corona-induced antigen extracellular release and promoting protein corona-triggered antigen cytosolic release under reductive conditions. Specifically, the nanovaccine was formulated via the assembly of fluorinated dendrigraft-poly-lysine and cleavable antigen-CpG conjugate. Before entering antigen-presenting cells (APCs), the anchoring effect of CpG was used to avoid the dissociation of antigens from the carrier even under the protein corona effect. While nanovaccine enters the APCs, the intracellular reducing conditions can induce a break in the disulfide bond between CpG and antigen. Notably, at the same time, the intracellular protein corona effect triggers antigen release from the carrier and achieves efficient antigen presentation. In addition, the PCNV produced a significant prophylactic and therapeutic antitumor response in the mouse model. Therefore, the rational use of the protein corona effect provides an effective strategy for vaccine delivery.
Collapse
|
19
|
Lv J, Wang H, Rong G, Cheng Y. Fluorination Promotes the Cytosolic Delivery of Genes, Proteins, and Peptides. Acc Chem Res 2022; 55:722-733. [PMID: 35175741 DOI: 10.1021/acs.accounts.1c00766] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cytosolic delivery of biomolecules such as genes, proteins, and peptides is of great importance for biotherapy but usually limited by multiple barriers during the process. Cell membrane with high hydrophobic character is one of the representative biological barriers for cytosolic delivery. The introduction of hydrophobic ligands such as aliphatic lipids onto materials or biomolecules could improve their membrane permeability. However, these ligands are lipophilic and tend to interact with the phospholipids in the membrane as well as serum proteins, which may hinder efficient intracellular delivery. To solve this issue, our research group proposed the use of fluorous ligands with both hydrophobicity and lipophobicity as ideal alternatives to aliphatic lipids to promote cytosolic delivery.In our first attempt, fluorous ligands were conjugated onto cationic polymers to increase their gene delivery efficacy. The fluorination dramatically increased the gene delivery performance at low polymer doses. In addition, the strategy greatly improved the serum tolerance of cationic polymers, which is critical for efficient gene delivery in vivo. Besides serum tolerance, mechanism studies revealed that fluorination increases multiple steps such as cellular uptake and endosomal escape. Fluorination also allowed the assembly of low-molecular-weight polymers and achieved highly efficient gene delivery with minimal material toxicity. The method showed robust efficiency for polymers, including linear polymers, branched polymers, dendrimers, bola amphiphilies, and dendronized polymers.Besides gene delivery, fluorinated polymers were also used for intracellular protein delivery via a coassembly strategy. For this purpose, two lead fluoropolymers were screened from a library of amphiphilic materials. The fluoropolymers are greatly superior to their nonfluorinated analogues conjugated with aliphatic lipids. The fluorous lipids are beneficial for polymer assembly and protein encapsulation, reduced protein denaturation, facilitated endocytosis, and decreased polymer toxicity compared to nonfluorinated lipids. The materials exhibited potent efficacy in therapeutic protein and peptide delivery to achieve cancer therapy and were able to fabricate a personalized nanovaccine for cancer immunotherapy. Finally, the fluorous lipids were directly conjugated to peptides via a disulfide bond for cytosolic peptide delivery. Fluorous lipids drive the assembly of cargo peptides into uniform nanoparticles with much improved proteolytic stability and promote their delivery into various types of cells. The delivery efficacy of this strategy is greatly superior to traditional techniques such as cell-penetrating peptides both in vitro and in vivo. Overall, the fluorination techniques provide efficient and promising strategies for the cytosolic delivery of biomolecules.
Collapse
Affiliation(s)
- Jia Lv
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangyu Rong
- South China Advanced Institute for Soft Matter Science and Technology, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
20
|
Baoum AA. The fluorination effect on the transfection efficacy of cell penetrating peptide complexes. Plasmid 2022; 119-120:102619. [DOI: 10.1016/j.plasmid.2022.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
|
21
|
Song T, Gao Y, Song M, Qian J, Zhang H, Zhou J, Ding Y. Fluoropolymers-mediated efficient biomacromolecule drug delivery. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Aghajanzadeh M, Zamani M, Rajabi Kouchi F, Eixenberger J, Shirini D, Estrada D, Shirini F. Synergic Antitumor Effect of Photodynamic Therapy and Chemotherapy Mediated by Nano Drug Delivery Systems. Pharmaceutics 2022; 14:pharmaceutics14020322. [PMID: 35214054 PMCID: PMC8880656 DOI: 10.3390/pharmaceutics14020322] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
This review provides a summary of recent progress in the development of different nano-platforms for the efficient synergistic effect between photodynamic therapy and chemotherapy. In particular, this review focuses on various methods in which photosensitizers and chemotherapeutic agents are co-delivered to the targeted tumor site. In many cases, the photosensitizers act as drug carriers, but this review, also covers different types of appropriate nanocarriers that aid in the delivery of photosensitizers to the tumor site. These nanocarriers include transition metal, silica and graphene-based materials, liposomes, dendrimers, polymers, metal–organic frameworks, nano emulsions, and biologically derived nanocarriers. Many studies have demonstrated various benefits from using these nanocarriers including enhanced water solubility, stability, longer circulation times, and higher accumulation of therapeutic agents/photosensitizers at tumor sites. This review also describes novel approaches from different research groups that utilize various targeting strategies to increase treatment efficacy through simultaneous photodynamic therapy and chemotherapy.
Collapse
Affiliation(s)
- Mozhgan Aghajanzadeh
- Department of Chemistry, College of Science, University of Guilan, Rasht 41335-19141, Iran; (M.A.); (M.Z.)
| | - Mostafa Zamani
- Department of Chemistry, College of Science, University of Guilan, Rasht 41335-19141, Iran; (M.A.); (M.Z.)
| | - Fereshteh Rajabi Kouchi
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (F.R.K.); (D.E.)
| | - Josh Eixenberger
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (F.R.K.); (D.E.)
- Center for Advanced Energy Studies, Boise State University, Boise, ID 83725, USA
- Correspondence: (J.E.); or (F.S.)
| | - Dorsa Shirini
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - David Estrada
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (F.R.K.); (D.E.)
- Center for Advanced Energy Studies, Boise State University, Boise, ID 83725, USA
| | - Farhad Shirini
- Department of Chemistry, College of Science, University of Guilan, Rasht 41335-19141, Iran; (M.A.); (M.Z.)
- Correspondence: (J.E.); or (F.S.)
| |
Collapse
|
23
|
Liu Y, Zhang J, Tu Y, Zhu L. Potential-Independent Intracellular Drug Delivery and Mitochondrial Targeting. ACS NANO 2022; 16:1409-1420. [PMID: 34920667 PMCID: PMC9623822 DOI: 10.1021/acsnano.1c09456] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this study, two types of the fluoroamphiphile analogs were synthesized and self-assembled into the "core-shell" micellar nanocarriers for intracellular delivery and organelle targeting. Using the fluorescent dyes or vitamin E succinate as the cargo, the drug delivery and targeting capabilities of the fluoroamphiphiles and their micelles were evaluated in the cell lines, tumor cell spheroids, and tumor-bearing mice. The "core-fluorinated" micelles exhibited favorable physicochemical properties and improved the cellular uptake of the cargo by around 20 times compared to their "shell-fluorinated" counterparts. The results also indicated that the core-fluorinated micelles underwent an efficient clathrin-mediated endocytosis and a rapid endosomal escape thereafter. Interestingly, the internalized fluoroamphiphile micelles preferentially accumulated in mitochondria, by which the efficacy of the loaded vitamin E succinate was boosted both in vitro and in vivo. Unlike the popularly used cationic mitochondrial targeting ligands, as a charge-neutral nanocarrier, the fluoroamphiphiles' mitochondrial targeting was potential independent. The mechanism study suggested that the strong binding affinity with the phospholipids, particularly the cardiolipin, played an important role in the fluoroamphiphiles' mitochondrial targeting. These charge-neutral fluoroamphiphiles might have great potential to be a simple and reliable tool for intracellular drug delivery and mitochondrial targeting.
Collapse
Affiliation(s)
- Yin Liu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang Province 330106, China
| | - Jian Zhang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| | - Ying Tu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| | - Lin Zhu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
24
|
Yu XQ, Zhan YR, Tan J, Hei MW, Zhang S, Zhang J. Construction of GSH-triggered cationic fluoropolymer as two-in-one nanoplatform for combined chemo/gene therapy. J Mater Chem B 2022; 10:1308-1318. [DOI: 10.1039/d1tb02602j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combined chemo-gene therapy has become a promising approach for enhanced anti-cancer treatment. However, effective co-delivery of therapeutic gene and drug into target cells and tissues remains a major obstacle....
Collapse
|
25
|
Chis AA, Dobrea CM, Rus LL, Frum A, Morgovan C, Butuca A, Totan M, Juncan AM, Gligor FG, Arseniu AM. Dendrimers as Non-Viral Vectors in Gene-Directed Enzyme Prodrug Therapy. Molecules 2021; 26:5976. [PMID: 34641519 PMCID: PMC8512881 DOI: 10.3390/molecules26195976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023] Open
Abstract
Gene-directed enzyme prodrug therapy (GDEPT) has been intensively studied as a promising new strategy of prodrug delivery, with its main advantages being represented by an enhanced efficacy and a reduced off-target toxicity of the active drug. In recent years, numerous therapeutic systems based on GDEPT strategy have entered clinical trials. In order to deliver the desired gene at a specific site of action, this therapeutic approach uses vectors divided in two major categories, viral vectors and non-viral vectors, with the latter being represented by chemical delivery agents. There is considerable interest in the development of non-viral vectors due to their decreased immunogenicity, higher specificity, ease of synthesis and greater flexibility for subsequent modulations. Dendrimers used as delivery vehicles offer many advantages, such as: nanoscale size, precise molecular weight, increased solubility, high load capacity, high bioavailability and low immunogenicity. The aim of the present work was to provide a comprehensive overview of the recent advances regarding the use of dendrimers as non-viral carriers in the GDEPT therapy.
Collapse
Affiliation(s)
| | | | | | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.A.C.); (C.M.D.); (L.-L.R.); (A.B.); (M.T.); (A.M.J.); (F.G.G.); (A.M.A.)
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.A.C.); (C.M.D.); (L.-L.R.); (A.B.); (M.T.); (A.M.J.); (F.G.G.); (A.M.A.)
| | | | | | | | | | | |
Collapse
|
26
|
Lv S, Sylvestre M, Prossnitz AN, Yang LF, Pun SH. Design of Polymeric Carriers for Intracellular Peptide Delivery in Oncology Applications. Chem Rev 2021; 121:11653-11698. [PMID: 33566580 DOI: 10.1021/acs.chemrev.0c00963] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent decades, peptides, which can possess high potency, excellent selectivity, and low toxicity, have emerged as promising therapeutics for cancer applications. Combined with an improved understanding of tumor biology and immuno-oncology, peptides have demonstrated robust antitumor efficacy in preclinical tumor models. However, the translation of peptides with intracellular targets into clinical therapies has been severely hindered by limitations in their intrinsic structure, such as low systemic stability, rapid clearance, and poor membrane permeability, that impede intracellular delivery. In this Review, we summarize recent advances in polymer-mediated intracellular delivery of peptides for cancer therapy, including both therapeutic peptides and peptide antigens. We highlight strategies to engineer polymeric materials to increase peptide delivery efficiency, especially cytosolic delivery, which plays a crucial role in potentiating peptide-based therapies. Finally, we discuss future opportunities for peptides in cancer treatment, with an emphasis on the design of polymer nanocarriers for optimized peptide delivery.
Collapse
Affiliation(s)
| | | | - Alexander N Prossnitz
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | | | | |
Collapse
|
27
|
Calorimetric and spectroscopic studies of interactions of PPI G4 dendrimer with tegafur in aqueous solutions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Li Q, Dong Z, Chen M, Feng L. Phenolic molecules constructed nanomedicine for innovative cancer treatment. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Zhu D, Feng L, Feliu N, Guse AH, Parak WJ. Stimulation of Local Cytosolic Calcium Release by Photothermal Heating for Studying Intra- and Intercellular Calcium Waves. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008261. [PMID: 33949733 PMCID: PMC11469046 DOI: 10.1002/adma.202008261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/16/2021] [Indexed: 06/12/2023]
Abstract
A methodology is described that allows for localized Ca2+ release by photoexcitation. For this, cells are loaded with polymer capsules with integrated plasmonic nanoparticles, which reside in endo-lysosomes. The micrometer-sized capsules can be individually excited by near-infrared light from a light pointer, causing photothermal heating, upon which there is a rise in the free cytosolic Ca2+ concentration ([Ca2+ ]i ). The [Ca2+ ]i can be analyzed with a Ca2+ indicator fluorophore. In this way, it is possible to excite local lysosomal Ca2+ release in a desired target cell.
Collapse
Affiliation(s)
- Dingcheng Zhu
- Fachbereich PhysikCHyNUniversität HamburgLuruper Chaussee 14922761HamburgGermany
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal UniversityYuhangtang road 2318Hangzhou311121China
| | - Lili Feng
- Fachbereich PhysikCHyNUniversität HamburgLuruper Chaussee 14922761HamburgGermany
| | - Neus Feliu
- Fachbereich PhysikCHyNUniversität HamburgLuruper Chaussee 14922761HamburgGermany
- CANFraunhofer InstitutGrindelallee 11720146HamburgGermany
| | - Andreas H. Guse
- Department of Biochemistry and Molecular Cell BiologyUniversity Medical Center Hamburg‐EppendorfMartinistraße 5220246HamburgGermany
| | - Wolfgang J. Parak
- Fachbereich PhysikCHyNUniversität HamburgLuruper Chaussee 14922761HamburgGermany
- National Engineering Center for Nanotechnology (NECN)Shanghai Jiao Tong UniversityDongchuan road 800Shanghai200240China
| |
Collapse
|
30
|
Affiliation(s)
- Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences East China Normal University Shanghai 200241 China
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| |
Collapse
|
31
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
32
|
Wang H, Zhang S, Lv J, Cheng Y. Design of polymers for siRNA delivery: Recent progress and challenges. VIEW 2021. [DOI: 10.1002/viw.20200026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Jia Lv
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
- Shanghai Key Laboratory of Regulatory Biology School of Life Sciences East China Normal University Shanghai China
| |
Collapse
|
33
|
Liu H, Liu C, Ye L, Ma D, He X, Tang Q, Zhao X, Zou H, Chen X, Liu P. Nanoassemblies with Effective Serum Tolerance Capability Achieving Robust Gene Silencing Efficacy for Breast Cancer Gene Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003523. [PMID: 33354783 DOI: 10.1002/adma.202003523] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/08/2020] [Indexed: 06/12/2023]
Abstract
The transfection efficiency of siRNA mediated by cationic polymers is limited due to the instability of polymers/siRNA complexes in the presence of serum. Poly(ethylene glycol) (PEG) is usually applied to modify cationic polymers, so as to reduce protein and cell adsorption and then to improve siRNA transfection efficiency. However, the polymers' modification with PEG mostly consumes the free amino of the polymers, which can, in turn, reduce the charge density and limit their siRNA transfection efficacy. Here, a new PEG modification strategy that need not consume the surface aminos of polymers is proposed. Catechol-PEG polymers are coated on the surface of phenylboronic acid (PBA)-modified Generation 5 (G5) poly(amidoamine) dendrimers (G5PBA) via reversible boronate esters to establish PEG-modified dendrimer/siRNA nanoassemblies for efficient siRNA delivery. The PEG/G5PBA/siRNA nanoassemblies have positive charge and show excellent gene silencing efficacy in the absence of serum in vitro. More importantly, the PEG/G5PBA/siRNA nanoassemblies also exhibit excellent serum resistance and gene silencing efficacy in serum-containing medium. Furthermore, the effective antiserum and gene silencing efficacy elicited by these nanoassemblies lead to excellent antitumor effects in vivo. This proposed strategy constitutes an important approach to reach an excellent gene silencing efficacy in the presence of serum.
Collapse
Affiliation(s)
- Hongmei Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Chongyi Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Li Ye
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ding Ma
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaozhen He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Qianyun Tang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Xue Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Hanbing Zou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Xiaojing Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| |
Collapse
|
34
|
Wang S, Jin S, Shu Q, Wu S. Strategies to Get Drugs across Bladder Penetrating Barriers for Improving Bladder Cancer Therapy. Pharmaceutics 2021; 13:166. [PMID: 33513793 PMCID: PMC7912621 DOI: 10.3390/pharmaceutics13020166] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Bladder cancer is a significant public health concern and social burden due to its high recurrence risk. Intravesical drug instillation is the primary therapy for bladder cancer to prevent recurrence. However, the intravesical drug therapeutic effect is limited by bladder penetrating barriers. The inadequate intravesical treatment might cause the low drug concentration in lesions, resulting in a high recurrence/progression rate of bladder cancer. Many strategies to get drugs across bladder penetrating barriers have been developed to improve intravesical treatment, including physical and chemical methods. This review summarizes the classical and updated literature and presents insights into great therapeutic potential strategies to overcome bladder penetrating barriers for improving the intravesical treatment of bladder cancer.
Collapse
Affiliation(s)
- Shupeng Wang
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (S.W.); (S.J.)
| | - Shaohua Jin
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (S.W.); (S.J.)
| | - Qinghai Shu
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (S.W.); (S.J.)
| | - Song Wu
- School of Medicine, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
35
|
Lv J, Cheng Y. Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chem Soc Rev 2021; 50:5435-5467. [DOI: 10.1039/d0cs00258e] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomedical applications of fluoropolymers in gene delivery, protein delivery, drug delivery, 19F MRI, PDT, anti-fouling, anti-bacterial, cell culture, and tissue engineering.
Collapse
Affiliation(s)
- Jia Lv
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| |
Collapse
|
36
|
Cai Y, Xu Z, Shuai Q, Zhu F, Xu J, Gao X, Sun X. Tumor-targeting peptide functionalized PEG-PLA micelles for efficient drug delivery. Biomater Sci 2020; 8:2274-2282. [PMID: 32162618 DOI: 10.1039/c9bm02036e] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Because of their excellent capacity to significantly improve the bioavailability and solubility of chemotherapy drugs, block copolymer micelles are widely utilized for chemotherapy drug delivery. In order to further improve the anti-tumor ability and reduce unwanted side effects of drugs, tumor-targeting peptides were used to functionalize the surface of polymer micelles so that the micelles can target tumor tissues. Herein, we synthesized a kind of PEG-PLA that is maleimide-terminated and then conjugated with a specific peptide F3 which revealed specific capacity binding to nucleolin that is overexpressed on the surface of many tumor cells. Then, F3 conjugated, paclitaxel loaded nanoparticles (F3-NP-PTX) were prepared as stable micelles that displayed an enhanced accumulation via a peptide-mediated cellular association in human breast cancer cells (MCF-7). Furthermore, F3-NP-PTX showed a prominent anti-tumor efficacy compared with non-targeting nanoparticles (NP-PTX) both in vitro and in vivo, and showed great potential as an efficacious targeting drug delivery system for breast cancer treatment.
Collapse
Affiliation(s)
- Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China.
| | - Zhuomin Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China.
| | - Qi Shuai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China.
| | - Fangtao Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China.
| | - Jiao Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China.
| | - Xin Gao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China.
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China.
| |
Collapse
|
37
|
Wang X, Rong G, Yan J, Pan D, Wang L, Xu Y, Yang M, Cheng Y. In Vivo Tracking of Fluorinated Polypeptide Gene Carriers by Positron Emission Tomography Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45763-45771. [PMID: 32940028 DOI: 10.1021/acsami.0c11967] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluorinated polymers have attracted increasing attention in gene delivery and cytosolic protein delivery in recent years. In vivo tracking of fluorinated polymers will be of great importance to evaluate their biodistribution, clearance, and safety. However, tracking of polymeric carriers without changing their chemical structures remains a huge challenge. Herein, we reported a series of fluorinated poly-l-(lysine) (F-PLL) with high gene transfection efficiency and excellent biodegradation. Radionuclide 18F was radiolabeled on F-PLL by halogen replacement without chemical modification. The radiolabeling of F-PLL offers positron emission tomography (PET) imaging for in vivo tracking of the polymers. The biodistribution of F-PLL and the DNA complexes revealed by micro-PET imaging illustrated the rapid clearance of fluorinated polymers from liver and intestine after intravenous administration. The results demonstrated that the polymer F-PLL will not be accumulated in the liver and spleen when administrated as a gene carrier. This work presents a new strategy for in vivo tracking fluorinated polymers via PET imaging.
Collapse
Affiliation(s)
- Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Guangyu Rong
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Lizhen Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
38
|
Noske S, Karimov M, Aigner A, Ewe A. Tyrosine-Modification of Polypropylenimine (PPI) and Polyethylenimine (PEI) Strongly Improves Efficacy of siRNA-Mediated Gene Knockdown. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1809. [PMID: 32927826 PMCID: PMC7557430 DOI: 10.3390/nano10091809] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022]
Abstract
The delivery of small interfering RNAs (siRNA) is an efficient method for gene silencing through the induction of RNA interference (RNAi). It critically relies, however, on efficient vehicles for siRNA formulation, for transfection in vitro as well as for their potential use in vivo. While polyethylenimines (PEIs) are among the most studied cationic polymers for nucleic acid delivery including small RNA molecules, polypropylenimines (PPIs) have been explored to a lesser extent. Previous studies have shown the benefit of the modification of small PEIs by tyrosine grafting which are featured in this paper. Additionally, we have now extended this approach towards PPIs, presenting tyrosine-modified PPIs (named PPI-Y) for the first time. In this study, we describe the marked improvement of PPI upon its tyrosine modification, leading to enhanced siRNA complexation, complex stability, siRNA delivery, knockdown efficacy and biocompatibility. Results of PPI-Y/siRNA complexes are also compared with data based on tyrosine-modified linear or branched PEIs (LPxY or PxY). Taken together, this establishes tyrosine-modified PPIs or PEIs as particularly promising polymeric systems for siRNA formulation and delivery.
Collapse
Affiliation(s)
| | | | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany; (S.N.); (M.K.)
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany; (S.N.); (M.K.)
| |
Collapse
|
39
|
Wang N, Liu C, Lu Z, Yang W, Li L, Gong S, He T, Ou C, Song L, Shen M, Wu Q, Gong C. Multistage Sensitive NanoCRISPR Enable Efficient Intracellular Disruption of Immune Checkpoints for Robust Innate and Adaptive Immune Coactivation. ADVANCED FUNCTIONAL MATERIALS 2020. [DOI: 10.1002/adfm.202004940] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ning Wang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Chao Liu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Zhenghao Lu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Wen Yang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Lu Li
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Songlin Gong
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Tao He
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Chunqing Ou
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Linjiang Song
- School of Medical and Life Sciences Chengdu University of Traditional Chinese Medicine Chengdu 611137 P. R. China
| | - Meiling Shen
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
40
|
Chen G, Wang Y, Ullah A, Huai Y, Xu Y. The effects of fluoroalkyl chain length and density on siRNA delivery of bioreducible poly(amido amine)s. Eur J Pharm Sci 2020; 152:105433. [PMID: 32590121 DOI: 10.1016/j.ejps.2020.105433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/22/2020] [Indexed: 02/05/2023]
Abstract
Fluorination is an attractive strategy for the improvement of transfection efficiency of nucleic acid delivery vectors. Bioreducible poly(amido amine)s (bPAAs) are an important class of biomaterials exhibited to effectively deliver multiple nucleic acids. However, still, the effects of fluoroalkyl chain length and density of bPAA on siRNA delivery are unveiled. Here, we synthesized bPAAs and grafted with different chain lengths and densities of fluorocarbon compounds. Furthermore, we prepared a library of complexes of fluorinated bPAA and siRNA, and investigated the effects of fluorination on the siRNA delivery in vitro and in vivo. We found that all the synthesized bPAAs readily formed complexes with siRNA and the fluorinated complexes considerably achieved improved gene silencing efficacies both in vitro and in vivo. Dramatically, the gene silencing efficacy was increased with increasing fluorine contents. Heptafluorobutyric anhydride (HF) modified bPAAs achieved better gene silencing efficacy when compared with bPAAs fluorinated by trifluoroacetic anhydride (TF) and pentafluoropropionic anhydride (PF) providing the evidence for choosing of best one among fluorocarbon compounds. In addition, a combination of fluorination with bioreducibility enables efficient and safe siRNA delivery.
Collapse
Affiliation(s)
- Gang Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| | - Yixin Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Aftab Ullah
- Shantou University Medical College, Shantou 515041, China
| | - Yuying Huai
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yuehua Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
41
|
Zocchi MR, Tosetti F, Benelli R, Poggi A. Cancer Nanomedicine Special Issue Review Anticancer Drug Delivery with Nanoparticles: Extracellular Vesicles or Synthetic Nanobeads as Therapeutic Tools for Conventional Treatment or Immunotherapy. Cancers (Basel) 2020; 12:cancers12071886. [PMID: 32668783 PMCID: PMC7409190 DOI: 10.3390/cancers12071886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Both natural and synthetic nanoparticles have been proposed as drug carriers in cancer treatment, since they can increase drug accumulation in target tissues, optimizing the therapeutic effect. As an example, extracellular vesicles (EV), including exosomes (Exo), can become drug vehicles through endogenous or exogenous loading, amplifying the anticancer effects at the tumor site. In turn, synthetic nanoparticles (NP) can carry therapeutic molecules inside their core, improving solubility and stability, preventing degradation, and controlling their release. In this review, we summarize the recent advances in nanotechnology applied for theranostic use, distinguishing between passive and active targeting of these vehicles. In addition, examples of these models are reported: EV as transporters of conventional anticancer drugs; Exo or NP as carriers of small molecules that induce an anti-tumor immune response. Finally, we focus on two types of nanoparticles used to stimulate an anticancer immune response: Exo carried with A Disintegrin And Metalloprotease-10 inhibitors and NP loaded with aminobisphosphonates. The former would reduce the release of decoy ligands that impair tumor cell recognition, while the latter would activate the peculiar anti-tumor response exerted by γδ T cells, creating a bridge between innate and adaptive immunity.
Collapse
Affiliation(s)
- Maria Raffaella Zocchi
- Division of Immunology Transplants and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Francesca Tosetti
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.T.); (R.B.)
| | - Roberto Benelli
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.T.); (R.B.)
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.T.); (R.B.)
- Correspondence:
| |
Collapse
|
42
|
Wang C, You J, Gao M, Zhang P, Xu G, Dou H. Bio-inspired gene carriers with low cytotoxicity constructed via the assembly of dextran nanogels and nano-coacervates. Nanomedicine (Lond) 2020; 15:1285-1296. [PMID: 32468909 DOI: 10.2217/nnm-2020-0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: To achieve safe and biocompatible gene carriers. Materials & methods: A core/shell-structured hierarchical carrier with an internal peptide/gene coacervate 'core' and a dextran nanogel 'shell' on the surface has been designed. Results: The dextran nanogels shield coacervate (DNSC) can effectively condense genes and release them in reducing environments. The dextran nanogel-based 'shell' can effectively shield the positive charge of the peptide/gene coacervate 'core', thus reducing the side effects of cationic gene carriers. In contrast with the common nonviral gene carriers that had high cytotoxicities, the DNSC showed a high transfection efficiency while maintaining a low cytotoxicity. Conclusion: The DNSC provides an effective environmentally responsive gene carrier with potential applications in the fields of gene therapy and gene carrier development.
Collapse
Affiliation(s)
- Chenglong Wang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jiayi You
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Miaomiao Gao
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Peipei Zhang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, PR China
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
43
|
Cao M, Gao Y, Qiu N, Shen Y, Shen P. Folic acid directly modified low molecular weight of polyethyleneimine for targeted pDNA delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
44
|
Cell-Penetrating Peptide Modified PEG-PLA Micelles for Efficient PTX Delivery. Int J Mol Sci 2020; 21:ijms21051856. [PMID: 32182734 PMCID: PMC7084196 DOI: 10.3390/ijms21051856] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/24/2022] Open
Abstract
On account of their excellent capacity to significantly improve the bioavailability and solubility of chemotherapy drugs, amphiphilic block copolymer-based micelles have been widely utilized for chemotherapy drug delivery. In order to further improve the antitumor ability and to also reduce undesired side effects of drugs, cell-penetrating peptides have been used to functionalize the surface of polymer micelles endowed with the ability to target tumor tissues. Herein, we first synthesized functional polyethylene glycol-polylactic acid (PEG-PLA) tethered with maleimide at the PEG section of the block polymer, which was further conjugated with a specific peptide, the transactivating transcriptional activator (TAT), with an approved capacity of aiding translocation across the plasma membrane. Then, TAT-conjugated, paclitaxel-loaded nanoparticles were self-assembled into stable nanoparticles with a favorable size of 20 nm, and displayed a significantly increased cytotoxicity, due to their enhanced accumulation via peptide-mediated cellular association in human breast cancer cells (MCF-7) in vitro. But when further used in vivo, TAT-NP-PTX showed an acceleration of the drug’s plasma clearance rate compared with NP-PTX, and therefore weakened its antitumor activities in the mice model, because of its positive charge, its elimination by the endoplasmic reticulum system more quickly, and its targeting effect on normal cells leading towards being more toxic. So further modification of TAT-NP-PTX to shield TAT peptide’s positive charges may be a hot topic to overcome the present dilemma.
Collapse
|
45
|
Chenglong W, Shuhan X, Jiayi Y, Wencai G, Guoxiong X, Hongjing D. Dextran-based coacervate nanodroplets as potential gene carriers for efficient cancer therapy. Carbohydr Polym 2020; 231:115687. [PMID: 31888837 DOI: 10.1016/j.carbpol.2019.115687] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/16/2019] [Accepted: 11/26/2019] [Indexed: 11/30/2022]
Abstract
The intractable toxicity of cationic polymers limits their applicability in gene transport and controlled release. In consideration of the good biocompatibility and biofunctionality of dextran, herein we design and synthesize two types of amino group-containing cationic copolymers based on dextran by the copolymerization of cationic monomers from dextran backbones. Additionally, allyl crosslinkers containing disulfide bonds were introduced into polymerization, that made the copolymer crosslinked by disulfide. The resultant coacervates were formed from the self-assembly of cationic coplymers and anionic genes, and redox-responsive disulfide branch points endow coacervates with reducing environment responsiveness. The in vitro experiments showed that the dextran-based coacervates were sensitive to the reducing environment and underwent cleavage, which resulted in an effective release, uptake, and transfection of the genes by 293T cells. In addition, dextran-based coacervates can be used to carry siRNA into cancer cells with a high transfection efficiency, demonstrating their potential applicability in treatment against cancer.
Collapse
Affiliation(s)
- Wang Chenglong
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiong Shuhan
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - You Jiayi
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Guan Wencai
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, PR China
| | - Xu Guoxiong
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, PR China.
| | - Dou Hongjing
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
46
|
Ma D, Liu H, Zhao P, Ye L, Zou H, Zhao X, Dai H, Kong X, Liu P. Programing Assembling/Releasing Multifunctional miRNA Nanomedicine to Treat Prostate Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9032-9040. [PMID: 31986004 DOI: 10.1021/acsami.9b21707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) therapy has shown to have great promise for the treatment of androgen-independent prostate cancer (AIPC) due to the low efficiency of hormonal therapy. However, instability of RNA and inefficiency of RNA therapy limit the use of miRNAs in the treatment of AIPC. Here, we report a pH/ATP-activated nanocomplexes for increasing cytosolic delivery of miR146a which can effectively inhibit the expression of epidermal growth factor receptor (EGFR) in AIPC. The nanocomplexes show identical suppressing effect in invasion, colony formation, migration ability, and growth of DU145 cells compared with Lipofectamine 2000 (lipo). But for in vivo experiments, the nanocomplexes vigorously suppress the growth of tumor volumes comparing to lipo group after five weeks' treatment. These results demonstrate the potential of the pH/ATP-activated nanocarriers for AIPC gene therapy.
Collapse
Affiliation(s)
- Ding Ma
- Central Laboratory, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Hongmei Liu
- Central Laboratory, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Peipei Zhao
- Central Laboratory, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Li Ye
- State Key Laboratory of Oncogenes and Related Genes , Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032 , China
| | - Hanbing Zou
- Central Laboratory, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Xue Zhao
- Central Laboratory, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Huili Dai
- Central Laboratory, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
- State Key Laboratory of Oncogenes and Related Genes , Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032 , China
| | - Xianming Kong
- Central Laboratory, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
- Shanghai University of Medicine and Health Sciences , Shanghai 201318 , China
| | - Peifeng Liu
- Central Laboratory, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
- State Key Laboratory of Oncogenes and Related Genes , Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032 , China
- Shanghai University of Medicine and Health Sciences , Shanghai 201318 , China
| |
Collapse
|
47
|
Non-Viral in Vitro Gene Delivery: It is Now Time to Set the Bar! Pharmaceutics 2020; 12:pharmaceutics12020183. [PMID: 32098191 PMCID: PMC7076396 DOI: 10.3390/pharmaceutics12020183] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/31/2023] Open
Abstract
Transfection by means of non-viral gene delivery vectors is the cornerstone of modern gene delivery. Despite the resources poured into the development of ever more effective transfectants, improvement is still slow and limited. Of note, the performance of any gene delivery vector in vitro is strictly dependent on several experimental conditions specific to each laboratory. The lack of standard tests has thus largely contributed to the flood of inconsistent data underpinning the reproducibility crisis. A way researchers seek to address this issue is by gauging the effectiveness of newly synthesized gene delivery vectors with respect to benchmarks of seemingly well-known behavior. However, the performance of such reference molecules is also affected by the testing conditions. This survey points to non-standardized transfection settings and limited information on variables deemed relevant in this context as the major cause of such misalignments. This review provides a catalog of conditions optimized for the gold standard and internal reference, 25 kDa polyethyleneimine, that can be profitably replicated across studies for the sake of comparison. Overall, we wish to pave the way for the implementation of standardized protocols in order to make the evaluation of the effectiveness of transfectants as unbiased as possible.
Collapse
|
48
|
Gene/paclitaxel co-delivering nanocarriers prepared by framework-induced self-assembly for the inhibition of highly drug-resistant tumors. Acta Biomater 2020; 103:247-258. [PMID: 31846802 DOI: 10.1016/j.actbio.2019.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022]
Abstract
While drug resistance has been recognized as the main cause of unsuccessful chemotherapy, the efficient inhibition of highly drug-resistant tumors still remains a significant challenge, especially for in vivo treatments. Drug resistance has been associated with the high expression of the multi-drug resistance gene 1 (MDR1), which can encode an efflux transporter known as P-glycoprotein (P-gp) that is located in the cellular membrane. Therefore, the combined delivery of MDR1-inhibited genes and chemotherapeutic drugs is anticipated to enable the effective inhibition of drug-resistant tumors. Herein, highly paclitaxel (PTX)-resistant ovarian (OV) cancer with a drug resistance index reaching up to ~ 60 was chosen to evaluate the performance of an efficient gene/drug co-delivery nanocarrier. Inspired by the self-assembly that occurs in cells and exosomes, we designed a biomimetic lipid/dextran hybrid nanocarrier with a diameter of ~ 100 nm to enhance the endocytosis and the efficiency of drug/gene release within the cells. This nanocarrier was fabricated via the frame-guided self-assembly of lipid amphiphiles on the surfaces of redox-cleavable dextran-based nanogels. The anionic MDR1-siRNA and the hydrophobic drug PTX were respectively loaded into the cationic lipid shell and the hydrophobic internal core of the hybrid nanocarriers. MDR1-siRNA can knock down MDR1, promoting the accumulation of PTX in cells, and thus is expected to achieve an efficient inhibitory effect against highly PTX-resistant cancer cells. Both in vitro and in vivo studies revealed that this dual-delivery system significantly enhanced the therapeutic effect in comparison with that provided by a PTX-only system. Thus, the construction of gene/chemo co-delivered lipid/dextran nanocarriers provides a new strategy to inhibit highly drug-resistant tumors both in vitro and in vivo. In addition, this work will contribute toward the development of urgently needed tumor nanotherapy that is able to overcome drug resistance while also offering an unmatched range of effective therapeutic nanocarriers. STATEMENT OF SIGNIFICANCE: The biomimetic lipid/dextran hybrid nanocarrier with a diameter of ~ 100 nm, which was fabricated via the frame-guided self-assembly of lipid amphiphiles onto the surface of redox-cleavable dextran-based nanogels, provides a model carrier to co-deliver MDR1-siRNA and PTX. The MDR1-siRNA/PTX co-loaded biomimetic lipid/dextran hybrid nanocarriers demonstrate good capability in overcoming the PTX-resistance in highly chemo-resistant human ovarian (OV) cancer cells both in vitro and in vivo.
Collapse
|
49
|
Self-assembled PEI nanomicelles with a fluorinated core for improved siRNA delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Gigante A, Li M, Junghänel S, Hirschhäuser C, Knauer S, Schmuck C. Non-viral transfection vectors: are hybrid materials the way forward? MEDCHEMCOMM 2019; 10:1692-1718. [PMID: 32180915 PMCID: PMC7053704 DOI: 10.1039/c9md00275h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
Abstract
Transfection is a process by which oligonucleotides (DNA or RNA) are delivered into living cells. This allows the synthesis of target proteins as well as their inhibition (gene silencing). However, oligonucleotides cannot cross the plasma membrane by themselves; therefore, efficient carriers are needed for successful gene delivery. Recombinant viruses are among the earliest described vectors. Unfortunately, they have severe drawbacks such as toxicity and immunogenicity. In this regard, the development of non-viral transfection vectors has attracted increasing interests, and has become an important field of research. In the first part of this review we start with a tutorial introduction into the biological backgrounds of gene transfection followed by the classical non-viral vectors (cationic organic carriers and inorganic nanoparticles). In the second part we highlight selected recent reports, which demonstrate that hybrid vectors that combine key features of classical carriers are a remarkable strategy to address the current challenges in gene delivery.
Collapse
Affiliation(s)
- A Gigante
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - M Li
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Junghänel
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
- Biomedical Technology Center of the Medical Faculty , University of Muenster , Muenster , Germany
| | - C Hirschhäuser
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Knauer
- Faculty of Biology , University of Duisburg-Essen , 45141 Essen , Germany
| | - C Schmuck
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| |
Collapse
|