1
|
Malami I, Bunza AM, Alhassan AM, Muhammad A, Abubakar IB, Yunusa A, Waziri PM, Etti IC. Dihydroartemisinin as a potential drug candidate for cancer therapy: a structural-based virtual screening for multitarget profiling. J Biomol Struct Dyn 2020; 40:1347-1362. [PMID: 32964804 DOI: 10.1080/07391102.2020.1824811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cancer is a rapidly growing non-communicable disease worldwide that is responsible for high mortality rates, which account for 9.6 million death in 2018. Dihydroartemisinin (DHA) is an active metabolite of artemisinin, an active principle present in the Chinese medicinal plant Artemisia annua used for malaria treatment. Dihydroartemisinin possesses remarkable and selective anticancer properties however the underlying mechanism of the antitumor effects of DHA from the structural point of view is still not yet elucidated. In the present study, we employed molecular docking simulation techniques using Autodock suits to access the binding properties of dihydroartemisinin to multiple protein targets implicated in cancer pathogenesis. Its potential targets with comprehensive pharmacophore were predicted using a PharmMapper database. The co-crystallised structures of the protein were obtained from a Protein Data Bank and prepared for molecular docking simulation. Out of the 24 selected protein targets, DHA has shown about 29% excellent binding to the targets compared to their co-crystallised ligand. Additionally, 75% of the targets identified for dihydroartemisinin binding are protein kinases, and 25% are non-protein kinases. Hydroxyl functional group of dihydroartemisinin contributed to 58.5% of the total hydrogen interactions, while pyran (12.2%), endoperoxide (9.8%), and oxepane (19.5%) contributed to the remaining hydrogen bonding. The present findings have elucidated the possible antitumor properties of dihydroartemisinin through the structural-based virtual studies, which provides a lead to a safe and effective anticancer agent useful for cancer therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ibrahim Malami
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.,Centre for Advanced Medical Research and Training (CAMRET), Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Aisha Muktar Bunza
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Alhassan Muhammad Alhassan
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | | | - Abdulmajeed Yunusa
- Department of Pharmacology and Therapeutics, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Peter M Waziri
- Department of Biochemistry, Kaduna State University, Kaduna, Nigeria
| | - Imaobong C Etti
- Department of Pharmacology and Toxicology, University of Uyo, Uyo, Nigeria
| |
Collapse
|
2
|
Heat Shock Protein 90 (Hsp90)-Inhibitor-Luminespib-Loaded-Protein-Based Nanoformulation for Cancer Therapy. Polymers (Basel) 2020; 12:polym12081798. [PMID: 32796651 PMCID: PMC7465148 DOI: 10.3390/polym12081798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 01/08/2023] Open
Abstract
Drugs targeting heat shock protein 90 (Hsp90) have been extensively explored for their anticancer potential in advanced clinical trials. Nanoformulations have been an important drug delivery platform for the anticancer molecules like Hsp90 inhibitors. It has been reported that bovine serum albumin (BSA) nanoparticles (NPs) serve as carriers for anticancer drugs, which have been extensively explored for their therapeutic efficacy against cancers. Luminespib (also known as NVP-AUY922) is a new generation Hsp90 inhibitor that was introduced recently. It is one of the most studied Hsp90 inhibitors for a variety of cancers in Phase I and II clinical trials and is similar to its predecessors such as the ansamycin class of molecules. To our knowledge, nanoformulations for luminespib remain unexplored for their anticancer potential. In the present study, we developed aqueous dispensable BSA NPs for controlled delivery of luminespib. The luminespib-loaded BSA NPs were characterized by SEM, TEM, FTIR, XPS, UV-visible spectroscopy and fluorescence spectroscopy. The results suggest that luminespib interacts by non-covalent reversible interactions with BSA to form drug-loaded BSA NPs (DNPs). Our in vitro evaluations suggest that DNP-based aqueous nanoformulations can be used in both pancreatic (MIA PaCa-2) and breast (MCF-7) cancer therapy.
Collapse
|
3
|
Synthetic approaches, anticancer potential, HSP90 inhibition, multitarget evaluation, molecular modeling and apoptosis mechanistic study of thioquinazolinone skeleton: Promising antibreast cancer agent. Bioorg Chem 2020; 101:103987. [DOI: 10.1016/j.bioorg.2020.103987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/23/2020] [Accepted: 05/29/2020] [Indexed: 11/18/2022]
|
4
|
Koca İ, Yiğitcan S, Gümüş M, Gökce H, Sert Y. A new series of sulfa drugs containing pyrazolyl acylthiourea moiety: Synthesis, experimental and theoretical spectral characterization and molecular docking studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Yan F, Liu X, Zhang S, Zhang Q, Chen J. Understanding conformational diversity of heat shock protein 90 (HSP90) and binding features of inhibitors to HSP90 via molecular dynamics simulations. Chem Biol Drug Des 2019; 95:87-103. [PMID: 31560152 DOI: 10.1111/cbdd.13623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/06/2019] [Accepted: 08/26/2019] [Indexed: 12/23/2022]
Abstract
Heat shock protein 90 (HSP90) is a promising target for treatment of cancer, and inhibitor bindings can generate efficient suppression on tumor in multiple ways. In this work, 140-ns molecular dynamics simulations were performed on six systems. Principal component analysis was subsequently carried out to explore the conformational diversity of HSP90. The results suggest that inhibitor bindings induce large conformational changes of HSP90, which tends to enlarge the volume of the binding pocket to facilitate the entrance of inhibitors. Hierarchical clustering analyses, the calculation of the energy contribution of each atom, and the analyses of hydrogen-bonding interactions were performed. The results indicate that 20 residues in group A of the hierarchical tree are responsible for major contributions, and van der Waals interactions as well as hydrogen-bonding interactions between important residues in HSP90 and key regions of inhibitors are the main force for promoting inhibitor bindings. We expect that this work can provide useful theoretical information for development of efficient inhibitors targeting HSP90.
Collapse
Affiliation(s)
- Fangfang Yan
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
6
|
Kim HH, Hyun JS, Choi J, Choi KE, Jee JG, Park SJ. Structural ensemble-based docking simulation and biophysical studies discovered new inhibitors of Hsp90 N-terminal domain. Sci Rep 2018; 8:368. [PMID: 29321504 PMCID: PMC5762686 DOI: 10.1038/s41598-017-18332-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/08/2017] [Indexed: 12/17/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is one of the most abundant cellular proteins and plays a substantial role in the folding of client proteins. The inhibition of Hsp90 has been regarded as an attractive therapeutic strategy for treating cancer because many oncogenic kinases are Hsp90 client proteins. In this study, we report new inhibitors that directly bind to N-terminal ATP-binding pocket of Hsp90. Optimized structure-based virtual screening predicted candidate molecules, which was followed by confirmation using biophysical and cell-based assays. Among the reported crystal structures, we chose the two structures that show the most favourable early enrichments of true-positives in the receiver operating characteristic curve. Four molecules showed significant changes in the signals of 2D [1H, 15N] correlation NMR spectroscopy. Differential scanning calorimetry analysis supported the results indicating direct binding. Quantified dissociation constant values of the molecules, determined by a series of 2D NMR experiments, lie in the range of 0.1–33 μM. Growth inhibition assay with breast and lung cancer cells confirmed the cellular activities of the molecules. Cheminformatics revealed that the molecules share limited chemical similarities with known inhibitors. Molecular dynamics simulations detailed the putative binding modes of the inhibitors.
Collapse
Affiliation(s)
- Hyun-Hwi Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Ja-Shil Hyun
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Joonhyeok Choi
- Research Institute of Pharmaceutical Researches, College of Pharmacy, Kyungpook, National University, Daegu, 41566, Republic of Korea
| | - Kwang-Eun Choi
- Research Institute of Pharmaceutical Researches, College of Pharmacy, Kyungpook, National University, Daegu, 41566, Republic of Korea
| | - Jun-Goo Jee
- Research Institute of Pharmaceutical Researches, College of Pharmacy, Kyungpook, National University, Daegu, 41566, Republic of Korea.
| | - Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea.
| |
Collapse
|
7
|
Blinded predictions of binding modes and energies of HSP90-α ligands for the 2015 D3R grand challenge. Bioorg Med Chem 2016; 24:4890-4899. [DOI: 10.1016/j.bmc.2016.07.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 01/14/2023]
|
8
|
Al-Sha'er MA, Mansi I, Khanfar M, Abudayyh A. Discovery of new heat shock protein 90 inhibitors using virtual co-crystallized pharmacophore generation. J Enzyme Inhib Med Chem 2016; 31:64-77. [DOI: 10.1080/14756366.2016.1218485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
| | - Iman Mansi
- Faculty of Pharmaceutical Sciences, the Hashemite University, Zarqa, Jordan
| | - Malak Khanfar
- Faculty of Pharmacy, Zarqa University, Zarqa, Jordan and
| | - Alaa Abudayyh
- Faculty of Pharmacy, Zarqa University, Zarqa, Jordan and
| |
Collapse
|
9
|
Regulation of calreticulin-major histocompatibility complex (MHC) class I interactions by ATP. Proc Natl Acad Sci U S A 2015; 112:E5608-17. [PMID: 26420867 DOI: 10.1073/pnas.1510132112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The MHC class I peptide loading complex (PLC) facilitates the assembly of MHC class I molecules with peptides, but factors that regulate the stability and dynamics of the assembly complex are largely uncharacterized. Based on initial findings that ATP, in addition to MHC class I-specific peptide, is able to induce MHC class I dissociation from the PLC, we investigated the interaction of ATP with the chaperone calreticulin, an endoplasmic reticulum (ER) luminal, calcium-binding component of the PLC that is known to bind ATP. We combined computational and experimental measurements to identify residues within the globular domain of calreticulin, in proximity to the high-affinity calcium-binding site, that are important for high-affinity ATP binding and for ATPase activity. High-affinity calcium binding by calreticulin is required for optimal nucleotide binding, but both ATP and ADP destabilize enthalpy-driven high-affinity calcium binding to calreticulin. ATP also selectively destabilizes the interaction of calreticulin with cellular substrates, including MHC class I molecules. Calreticulin mutants that affect ATP or high-affinity calcium binding display prolonged associations with monoglucosylated forms of cellular MHC class I, delaying MHC class I dissociation from the PLC and their transit through the secretory pathway. These studies reveal central roles for ATP and calcium binding as regulators of calreticulin-substrate interactions and as key determinants of PLC dynamics.
Collapse
|
10
|
Kumalo HM, Bhakat S, Soliman ME. Heat-shock protein 90 (Hsp90) as anticancer target for drug discovery: an ample computational perspective. Chem Biol Drug Des 2015; 86:1131-60. [PMID: 25958815 DOI: 10.1111/cbdd.12582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There are over 100 different types of cancer, and each is classified based on the type of cell that is initially affected. If left untreated, cancer can result in serious health problems and eventually death. Recently, the paradigm of cancer chemotherapy has evolved to use a combination approach, which involves the use of multiple drugs each of which targets an individual protein. Inhibition of heat-shock protein 90 (Hsp90) is one of the novel key cancer targets. Because of its ability to target several signaling pathways, Hsp90 inhibition emerged as a useful strategy to treat a wide variety of cancers. Molecular modeling approaches and methodologies have become 'close counterparts' to experiments in drug design and discovery workflows. A wide range of molecular modeling approaches have been developed, each of which has different objectives and outcomes. In this review, we provide an up-to-date systematic overview on the different computational models implemented toward the design of Hsp90 inhibitors as anticancer agents. Although this is the main emphasis of this review, different topics such as background and current statistics of cancer, different anticancer targets including Hsp90, and the structure and function of Hsp90 from an experimental perspective, for example, X-ray and NMR, are also addressed in this report. To the best of our knowledge, this review is the first account, which comprehensively outlines various molecular modeling efforts directed toward identification of anticancer drugs targeting Hsp90. We believe that the information, methods, and perspectives highlighted in this report would assist researchers in the discovery of potential anticancer agents.
Collapse
Affiliation(s)
- Hezekiel M Kumalo
- School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Soumendranath Bhakat
- School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa.,Division of Biophysical Chemistry, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | - Mahmoud E Soliman
- School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| |
Collapse
|
11
|
Brandvold KR, Morimoto RI. The Chemical Biology of Molecular Chaperones--Implications for Modulation of Proteostasis. J Mol Biol 2015; 427:2931-47. [PMID: 26003923 DOI: 10.1016/j.jmb.2015.05.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/09/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
Protein homeostasis (proteostasis) is inextricably tied to cellular health and organismal lifespan. Aging, exposure to physiological and environmental stress, and expression of mutant and metastable proteins can cause an imbalance in the protein-folding landscape, which results in the formation of non-native protein aggregates that challenge the capacity of the proteostasis network (PN), increasing the risk for diseases associated with misfolding, aggregation, and aberrant regulation of cell stress responses. Molecular chaperones have central roles in each of the arms of the PN (protein synthesis, folding, disaggregation, and degradation), leading to the proposal that modulation of chaperone function could have therapeutic benefits for the large and growing family of diseases of protein conformation including neurodegeneration, metabolic diseases, and cancer. In this review, we will discuss the current strategies used to tune the PN through targeting molecular chaperones and assess the potential of the chemical biology of proteostasis.
Collapse
Affiliation(s)
- Kristoffer R Brandvold
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
12
|
rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS Comput Biol 2014; 10:e1003571. [PMID: 24722481 PMCID: PMC3983074 DOI: 10.1371/journal.pcbi.1003571] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/19/2014] [Indexed: 11/19/2022] Open
Abstract
Identification of chemical compounds with specific biological activities is an important step in both chemical biology and drug discovery. When the structure of the intended target is available, one approach is to use molecular docking programs to assess the chemical complementarity of small molecules with the target; such calculations provide a qualitative measure of affinity that can be used in virtual screening (VS) to rank order a list of compounds according to their potential to be active. rDock is a molecular docking program developed at Vernalis for high-throughput VS (HTVS) applications. Evolved from RiboDock, the program can be used against proteins and nucleic acids, is designed to be computationally very efficient and allows the user to incorporate additional constraints and information as a bias to guide docking. This article provides an overview of the program structure and features and compares rDock to two reference programs, AutoDock Vina (open source) and Schrödinger's Glide (commercial). In terms of computational speed for VS, rDock is faster than Vina and comparable to Glide. For binding mode prediction, rDock and Vina are superior to Glide. The VS performance of rDock is significantly better than Vina, but inferior to Glide for most systems unless pharmacophore constraints are used; in that case rDock and Glide are of equal performance. The program is released under the Lesser General Public License and is freely available for download, together with the manuals, example files and the complete test sets, at http://rdock.sourceforge.net/
Collapse
|
13
|
Aeluri M, Chamakuri S, Dasari B, Guduru SKR, Jimmidi R, Jogula S, Arya P. Small Molecule Modulators of Protein–Protein Interactions: Selected Case Studies. Chem Rev 2014; 114:4640-94. [DOI: 10.1021/cr4004049] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Madhu Aeluri
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Srinivas Chamakuri
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Bhanudas Dasari
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Shiva Krishna Reddy Guduru
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Ravikumar Jimmidi
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Srinivas Jogula
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Prabhat Arya
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| |
Collapse
|
14
|
Brasca MG, Mantegani S, Amboldi N, Bindi S, Caronni D, Casale E, Ceccarelli W, Colombo N, De Ponti A, Donati D, Ermoli A, Fachin G, Felder ER, Ferguson RD, Fiorelli C, Guanci M, Isacchi A, Pesenti E, Polucci P, Riceputi L, Sola F, Visco C, Zuccotto F, Fogliatto G. Discovery of NMS-E973 as novel, selective and potent inhibitor of heat shock protein 90 (Hsp90). Bioorg Med Chem 2013; 21:7047-63. [DOI: 10.1016/j.bmc.2013.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 12/27/2022]
|
15
|
Meiby E, Simmonite H, le Strat L, Davis B, Matassova N, Moore JD, Mrosek M, Murray J, Hubbard RE, Ohlson S. Fragment Screening by Weak Affinity Chromatography: Comparison with Established Techniques for Screening against HSP90. Anal Chem 2013; 85:6756-66. [DOI: 10.1021/ac400715t] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Elinor Meiby
- Department of Chemistry and Biomedical
Sciences, Linnaeus University, SE-391 82
Kalmar, Sweden
| | | | - Loic le Strat
- Vernalis, Granta Park, Cambridge CB21 6GB, United Kingdom
| | - Ben Davis
- Vernalis, Granta Park, Cambridge CB21 6GB, United Kingdom
| | | | | | - Michael Mrosek
- Vernalis, Granta Park, Cambridge CB21 6GB, United Kingdom
| | - James Murray
- Vernalis, Granta Park, Cambridge CB21 6GB, United Kingdom
| | - Roderick E. Hubbard
- Vernalis, Granta Park, Cambridge CB21 6GB, United Kingdom
- YSBL, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Sten Ohlson
- Department of Chemistry and Biomedical
Sciences, Linnaeus University, SE-391 82
Kalmar, Sweden
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
16
|
Lauria A, Abbate I, Gentile C, Angileri F, Martorana A, Almerico AM. Synthesis and biological activities of a new class of heat shock protein 90 inhibitors, designed by energy-based pharmacophore virtual screening. J Med Chem 2013; 56:3424-8. [PMID: 23520985 DOI: 10.1021/jm4002023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The design through energy-based pharmacophore virtual screening has led to aminocyanopyridine derivatives as efficacious new inhibitors of Hsp90. The synthesized compounds showed a good affinity for the Hsp90 ATP binding site in the competitive binding assay. Moreover, they showed an excellent antiproliferative activity against a large number of human tumor cell lines. Further biological studies on the derivative with the higher EC50 confirmed its specific influence on the cellular pathways involving Hsp90.
Collapse
Affiliation(s)
- Antonino Lauria
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche "STEBICEF", Sezione di Chimica Farmaceutica e Biologica, Università di Palermo, Via Archirafi 32, I-90123 Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Analysis of structure-based virtual screening studies and characterization of identified active compounds. Future Med Chem 2012; 4:603-13. [PMID: 22458680 DOI: 10.4155/fmc.12.18] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Structure-based virtual screening makes explicit or implicit use of 3D target structure information to detect novel active compounds. Results of nearly 300 currently available original applications have been analyzed to characterize the state-of-the-art in this field. Compound selection from docking calculations is much influenced by subjective criteria. Although submicromolar compounds are identified, the majority of docking hits are only weakly potent. However, only a small percentage of docking hits can be reproduced by ligand-based methods. When docking calculations identify potent hits, they often originate from specialized compound sources (e.g., pharmaceutical compound decks or target-focused libraries) and also display a notable bias towards kinase targets. Structure-based virtual screening is the dominant approach to computational hit identification. Docking calculations frequently identify active compounds. Limited accuracy of compound scoring and ranking currently presents a major caveat of the approach that is often compensated for by chemical intuition and knowledge.
Collapse
|
18
|
Al-Sha'er MA, Taha MO. Application of docking-based comparative intermolecular contacts analysis to validate Hsp90α docking studies and subsequent in silico screening for inhibitors. J Mol Model 2012; 18:4843-63. [PMID: 22707278 DOI: 10.1007/s00894-012-1479-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/21/2012] [Indexed: 12/23/2022]
Abstract
Heat shock protein (Hsp90α) has been recently implicated in cancer, prompting several attempts to discover and optimize new Hsp90α inhibitors. Towards this end, we docked 83 diverse Hsp90α inhibitors into the ATP-binding site of this chaperone using several docking-scoring settings. Subsequently, we applied our newly developed computational tool--docking-based comparative intramolecular contacts analysis (dbCICA)--to assess the different docking conditions and select the best settings. dbCICA is based on the number and quality of contacts between docked ligands and amino acid residues within the binding pocket. It assesses a particular docking configuration based on its ability to align a set of ligands within a corresponding binding pocket in such a way that potent ligands come into contact with binding site spots distinct from those approached by low-affinity ligands, and vice versa. The optimal dbCICA models were translated into valid pharmacophore models that were used as 3D search queries to mine the National Cancer Institute's structural database for new inhibitors of Hsp90α that could potentially be used as anticancer agents. The process culminated in 15 micromolar Hsp90α ATPase inhibitors.
Collapse
|
19
|
Buchstaller HP, Eggenweiler HM, Sirrenberg C, Grädler U, Musil D, Hoppe E, Zimmermann A, Schwartz H, März J, Bomke J, Wegener A, Wolf M. Fragment-based discovery of hydroxy-indazole-carboxamides as novel small molecule inhibitors of Hsp90. Bioorg Med Chem Lett 2012; 22:4396-403. [PMID: 22632933 DOI: 10.1016/j.bmcl.2012.04.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 04/26/2012] [Accepted: 04/29/2012] [Indexed: 12/22/2022]
Abstract
Inhibitors of the Hsp90 molecular chaperone are showing considerable promise as potential molecular therapeutic agents for the treatment of cancer. Here we describe the identification of novel small molecular weight inhibitors of Hsp90 using a fragment based approach. Fragments were selected by docking, tested in a biochemical assay and the confirmed hits were crystallized. Information gained from X-ray structures of these fragments and other chemotypes was used to drive the fragment evolution process. Optimization of these high μM binders resulted in 3-benzylindazole derivatives with significantly improved affinity and anti-proliferative effects in different human cancer cell lines.
Collapse
|
20
|
Kang H, Sheng Z, Zhu R, Huang Q, Liu Q, Cao Z. Virtual drug screen schema based on multiview similarity integration and ranking aggregation. J Chem Inf Model 2012; 52:834-43. [PMID: 22332590 DOI: 10.1021/ci200481c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The current drug virtual screen (VS) methods mainly include two categories. i.e., ligand/target structure-based virtual screen and that, utilizing protein-ligand interaction fingerprint information based on the large number of complex structures. Since the former one focuses on the one-side information while the later one focuses on the whole complex structure, they are thus complementary and can be boosted by each other. However, a common problem faced here is how to present a comprehensive understanding and evaluation of the various virtual screen results derived from various VS methods. Furthermore, there is still an urgent need for developing an efficient approach to fully integrate various VS methods from a comprehensive multiview perspective. In this study, our virtual screen schema based on multiview similarity integration and ranking aggregation was tested comprehensively with statistical evaluations, providing several novel and useful clues on how to perform drug VS from multiple heterogeneous data sources. (1) 18 complex structures of HIV-1 protease with ligands from the PDB were curated as a test data set and the VS was performed with five different drug representations. Ritonavir ( 1HXW ) was selected as the query in VS and the weighted ranks of the query results were aggregated from multiple views through four similarity integration approaches. (2) Further, one of the ranking aggregation methods was used to integrate the similarity ranks calculated by gene ontology (GO) fingerprint and structural fingerprint on the data set from connectivity map, and two typical HDAC and HSP90 inhibitors were chosen as the queries. The results show that rank aggregation can enhance the result of similarity searching in VS when two or more descriptions are involved and provide a more reasonable similarity rank result. Our study shows that integrated VS based on multiple data fusion can achieve a remarkable better performance compared to that from individual ones and, thus, serves as a promising way for efficient drug screening, taking advantages of the rapidly accumulated molecule representations and heterogeneous data in the pharmacological area.
Collapse
Affiliation(s)
- Hong Kang
- School of Life Sciences and Technology, Tongji University, 200092, China
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Hsp90 is a highly abundant and ubiquitous molecular chaperone which plays an essential role in many cellular processes including cell cycle control, cell survival, hormone and other signalling pathways. It is important for the cell's response to stress and is a key player in maintaining cellular homeostasis. In the last ten years, it has become a major therapeutic target for cancer, and there has also been increasing interest in it as a therapeutic target in neurodegenerative disorders, and in the development of anti-virals and anti-protozoan infections. The focus of this review is the structural and mechanistic studies which have been performed in order to understand how this important chaperone acts on a wide variety of different proteins (its client proteins) and cellular processes. As with many of the other classes of molecular chaperone, Hsp90 has a critical ATPase activity, and ATP binding and hydrolysis known to modulate the conformational dynamics of the protein. It also uses a host of cochaperones which not only regulate the ATPase activity and conformational dynamics but which also mediate interactions with Hsp90 client proteins. The system is also regulated by post-translational modifications including phosphorylation and acetylation. This review discusses all these aspects of Hsp90 structure and function.
Collapse
|
22
|
Pharmacophore based virtual screening, molecular docking studies to design potent heat shock protein 90 inhibitors. Eur J Med Chem 2011; 46:2937-47. [DOI: 10.1016/j.ejmech.2011.04.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/30/2011] [Accepted: 04/04/2011] [Indexed: 11/19/2022]
|
23
|
Roughley SD, Hubbard RE. How Well Can Fragments Explore Accessed Chemical Space? A Case Study from Heat Shock Protein 90. J Med Chem 2011; 54:3989-4005. [DOI: 10.1021/jm200350g] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Roderick E. Hubbard
- Vernalis (R&D) Ltd., Granta Park, Abington, Cambridge, CB21 6GB, U.K
- York Structural Biology Laboratory and Hull York Medical School, University of York, Heslington, York, YO10 5DD, U.K
| |
Collapse
|
24
|
Patel HJ, Modi S, Chiosis G, Taldone T. Advances in the discovery and development of heat-shock protein 90 inhibitors for cancer treatment. Expert Opin Drug Discov 2011; 6:559-587. [PMID: 22400044 DOI: 10.1517/17460441.2011.563296] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION: Over the last 15 - 20 years, targeted anticancer strategies have focused on therapies aimed at abrogating a single malignant protein. Agents that are directed towards the inhibition of a single oncoprotein have resulted in a number of useful drugs in the treatment of cancers (i.e., Gleevec, BCR-ABL; Tarceva and Iressa, EGFR). However, such a strategy relies on the notion that a cancer cell is dependent on a single signaling pathway for its survival. The possibility that a cancer cell may mutate or switch its dependence to another signaling pathway can result in the ineffectiveness of such agents. Recent advances in the biology of heat-shock protein 90 (Hsp90) have revealed intimate details into the complexity of the chaperoning process that Hsp90 is engaged in and, at the same time, have offered those involved in drug discovery several unique ways to interfere in this process. AREAS COVERED: This review provides the current understanding of the chaperone cycle of Hsp90 and presents the multifaceted approaches used by researchers in the discovery of potential Hsp90 drugs. It discusses the phenotypic outcomes in cancer cells on Hsp90 inhibition by these several approaches and also addresses several distinctions observed among direct Hsp90 ATP-pocket competitors providing commentary on the potential biological outcomes as well as the clinical relevance of such features. EXPERT OPINION: The significantly different phenotypic outcomes observed from Hsp90 inhibition by the many inhibitors developed suggest that the clinical development of Hsp90 inhibitors would be better served by careful consideration of the pharmacokinetic/pharmacodynamic properties of individual candidates rather than a generic approach directed towards the target.
Collapse
Affiliation(s)
- Hardik J Patel
- Sloan Kettering Institute, Department of Molecular Pharmacology and Chemistry, NY, USA
| | | | | | | |
Collapse
|
25
|
Doddareddy MR, Thorat DA, Seo SH, Hong TJ, Cho YS, Hahn JS, Pae AN. Structure based design of heat shock protein 90 inhibitors acting as anticancer agents. Bioorg Med Chem 2011; 19:1714-20. [PMID: 21306907 DOI: 10.1016/j.bmc.2011.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 01/06/2023]
Abstract
Structure based drug design (SBDD) was used to discover heat shock protein 90 (HSP90) inhibitors useful in the treatment of cancer. By using the crystal structure of HSP90-ligand complex (1uyi), a docking model was prepared and was validated by external dataset containing known HSP90 inhibitors. This validated model was then used to virtually screen commercial databases, selected hits of which were bought and sent for real biological evaluation. Further as an alternative method, pharmacophores were generated using crystal structure conformations of ligands in HSP90 complexes (1uyi and 2bz5) and where used for virtual screening. Both cases yielded several hits containing novel scaffolds, particularly compound KHSP8 showed an IC(50) value of 0.902 μM in case of colon cancer (HT29), which is comparable to doxorubicin (0.828 μM). These compounds were being now used as leads for constructing small molecular libraries to get compounds with favourable pharmacokinetics and drug like properties.
Collapse
|
26
|
Al-Sha'er MA, Taha MO. Elaborate ligand-based modeling reveals new nanomolar heat shock protein 90α inhibitors. J Chem Inf Model 2011; 50:1706-23. [PMID: 20831219 DOI: 10.1021/ci100222k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Heat shock protein (Hsp90α) has been recently implicated in cancer prompting several attempts to discover and optimize new Hsp90α inhibitors. Toward this end, we explored the pharmacophoric space of 83 Hsp90α inhibitors using six diverse sets of inhibitors to identify high-quality pharmacophores. Subsequently, genetic algorithm and multiple linear regression analysis were employed to select an optimal combination of pharmacophoric models and 2D physicochemical descriptors capable of accessing a self-consistent quantitative structure activity relationship (QSAR) of optimal predictive potential (r(67)(2)=0.811, F 42.8, r(LOO)(2)=0.748, r(PRESS)(2) (against 16 external test inhibitors) = 0.619). Three orthogonal pharmacophores emerged in the QSAR equation suggesting the existence of at least three binding modes accessible to ligands within the Hsp90α binding pocket. Receiver operating characteristic (ROC) curves analysis established the validity of QSAR-selected pharmacophores. We employed the pharmacophoric models and associated QSAR equation to screen the national cancer institute (NCI) list of compounds and our in-house-built drugs and agrochemicals database (DAC). Twenty-five nanomolar and low micromolar Hsp90α inhibitors were identified. The most potent were formoterol, amodaquine, primaquine, and midodrine with IC(50) values of 3, 5, 6, and 20 nM, respectively.
Collapse
Affiliation(s)
- Mahmoud A Al-Sha'er
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| | | |
Collapse
|
27
|
Roughley S, Wright L, Brough P, Massey A, Hubbard RE. Hsp90 Inhibitors and Drugs from Fragment and Virtual Screening. Top Curr Chem (Cham) 2011; 317:61-82. [DOI: 10.1007/128_2011_181] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Sheikha GA, Al-Sha'er MA, Taha MO. Some sulfonamide drugs inhibit ATPase activity of heat shock protein 90: investigation by docking simulation and experimental validation. J Enzyme Inhib Med Chem 2010; 26:603-9. [PMID: 21190426 DOI: 10.3109/14756366.2010.541394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Eight selected sulfonamide drugs were investigated as inhibitors of heat shock protein 90 (Hsp90). The investigation included simulated docking experiments to fit the selected compounds within the binding pocket of Hsp90. The selected molecules were found to readily fit within the ATP-binding pocket of Hsp90 in low-energy poses. The sulfonamides torsemide, sulfathiazole, and sulfadiazine were found to inhibit the ATPase activity of Hsp90 with IC(50) values of 1.0, 2.6, and 1.5 μM, respectively. Our results suggest that these well-established sulfonamides can be good leads for subsequent optimization into potent Hsp90 inhibitors.
Collapse
Affiliation(s)
- Ghassan Abu Sheikha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Zaytoonah Private University of Jordan, Amman, Jordan
| | | | | |
Collapse
|
29
|
In silico discovery of 2-amino-4-(2,4-dihydroxyphenyl)thiazoles as novel inhibitors of DNA gyrase B. Bioorg Med Chem Lett 2010; 20:958-62. [DOI: 10.1016/j.bmcl.2009.12.060] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/11/2009] [Accepted: 12/14/2009] [Indexed: 11/18/2022]
|
30
|
Saxena AK, Saxena S, Chaudhaery SS. Molecular modelling and docking studies on heat shock protein 90 (Hsp90) inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2010; 21:1-20. [PMID: 20373211 DOI: 10.1080/10629360903560504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
An adenosine tri-phosphate (ATP)-dependent molecular chaperone heat shock protein (Hsp90) is of current interest as a potential anticancer drug target. It has several oncogenic client proteins involved in signal transduction, cell cycle regulation and apoptosis. In order to identify essential chemical functional features for Hsp90 inhibition, a pharmacophore model consisting of one hydrogen bond donor, two hydrogen bond acceptor lipid and one hydrophobic feature has been developed using Hypogen (Catalyst 2.0 software) on a total set of 103 inhibitors consisting of 16 and 87 compounds in the training and the test set, respectively. The model shows good correlation for the training (r(2)= 0.887) and the test set ( [image omitted] = 0.692). In view of the X-ray data structure of Hsp90, GOLD 3.2 docking software was used to dock the 16 training set compounds. A good correlation (r(2)= 0.699) was observed between the experimental biological activity and the top-ranked Goldscore. The analysis of conserved patterns across the Hsp90 family, using the human Hsp90 X-ray structure as an alignment template, led to the identification of important amino acids involved in the ligand-binding interactions, which were found to be similar to those observed in docking studies. Hence, the best-generated pharmacophore model can be used for designing new Hsp90 inhibitors.
Collapse
Affiliation(s)
- A K Saxena
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow 226001, India
| | | | | |
Collapse
|
31
|
|
32
|
Brough PA, Barril X, Borgognoni J, Chene P, Davies NGM, Davis B, Drysdale MJ, Dymock B, Eccles SA, Garcia-Echeverria C, Fromont C, Hayes A, Hubbard RE, Jordan AM, Jensen MR, Massey A, Merrett A, Padfield A, Parsons R, Radimerski T, Raynaud FI, Robertson A, Roughley SD, Schoepfer J, Simmonite H, Sharp SY, Surgenor A, Valenti M, Walls S, Webb P, Wood M, Workman P, Wright L. Combining hit identification strategies: fragment-based and in silico approaches to orally active 2-aminothieno[2,3-d]pyrimidine inhibitors of the Hsp90 molecular chaperone. J Med Chem 2009; 52:4794-809. [PMID: 19610616 DOI: 10.1021/jm900357y] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inhibitors of the Hsp90 molecular chaperone are showing considerable promise as potential molecular therapeutic agents for the treatment of cancer. Here we describe novel 2-aminothieno[2,3-d]pyrimidine ATP competitive Hsp90 inhibitors, which were designed by combining structural elements of distinct low affinity hits generated from fragment-based and in silico screening exercises in concert with structural information from X-ray protein crystallography. Examples from this series have high affinity (IC50 = 50-100 nM) for Hsp90 as measured in a fluorescence polarization (FP) competitive binding assay and are active in human cancer cell lines where they inhibit cell proliferation and exhibit a characteristic profile of depletion of oncogenic proteins and concomitant elevation of Hsp72. Several examples (34a, 34d and 34i) caused tumor growth regression at well tolerated doses when administered orally in a human BT474 human breast cancer xenograft model.
Collapse
Affiliation(s)
- Paul A Brough
- Vernalis Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sgobba M, Rastelli G. Structure-Based and in silico Design of Hsp90 Inhibitors. ChemMedChem 2009; 4:1399-409. [DOI: 10.1002/cmdc.200900256] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Feldman RI, Mintzer B, Zhu D, Wu JM, Biroc SL, Yuan S, Emayan K, Chang Z, Chen D, Arnaiz DO, Bryant J, Ge XS, Whitlow M, Adler M, Polokoff MA, Li WW, Ferrer M, Sato T, Gu JM, Shen J, Tseng JL, Dinter H, Buckman B. Potent triazolothione inhibitor of heat-shock protein-90. Chem Biol Drug Des 2009; 74:43-50. [PMID: 19519743 DOI: 10.1111/j.1747-0285.2009.00833.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heat-shock protein-90 is an attractive target for anticancer drugs, as heat-shock protein-90 blockers such as the ansamycin 17-(allylamino)-17-demethoxygeldanamycin greatly reduce the expression of many signaling molecules that are disregulated in cancer cells and are key drivers of tumor growth and metastasis. While 17-(allylamino)-17-demethoxygeldanamycin has shown promise in clinical trials, this compound class has significant template-related drawbacks. In this paper, we describe a new, potent non-ansamycin small-molecule inhibitor of heat-shock protein-90, BX-2819, containing resorcinol and triazolothione rings. Structural studies demonstrate binding of BX-2819 to the ADP/ATP-binding pocket of heat-shock protein-90. The compound blocked expression of heat-shock protein-90 client proteins in cancer cell lines and inhibited cell growth with a potency similar to 17-(allylamino)-17-demethoxygeldanamycin. In a panel of four cancer cell lines, BX-2819 blocked growth with an average IC(50) value of 32 nM (range of 7-72 nM). Efficacy studies demonstrated that treatment with BX-2819 significantly inhibited the growth of NCI-N87 and HT-29 tumors in nude mice, consistent with pharmacodynamic studies showing inhibition of heat-shock protein-90 client protein expression in tumors for greater than 16 h after dosing. These data support further studies to assess the potential of BX-2819 and related analogs for the treatment of cancer.
Collapse
|
35
|
Lauria A, Ippolito M, Almerico AM. Principal component analysis on molecular descriptors as an alternative point of view in the search of new Hsp90 inhibitors. Comput Biol Chem 2009; 33:386-90. [PMID: 19660987 DOI: 10.1016/j.compbiolchem.2009.07.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 07/06/2009] [Accepted: 07/16/2009] [Indexed: 01/01/2023]
Abstract
Inhibiting a protein that regulates multiple signal transduction pathways in cancer cells is an attractive goal for cancer therapy. Heat shock protein 90 (Hsp90) is one of the most promising molecular targets for such an approach. In fact, Hsp90 is a ubiquitous molecular chaperone protein that is involved in folding, activating and assembling of many key mediators of signal transduction, cellular growth, differentiation, stress-response and apoptothic pathways. With the aim to analyze which molecular descriptors have the higher importance in the binding interactions of these classes, we first performed molecular docking experiments on the 187 Hsp90 inhibitors included in the BindingDB, a public database of measured binding affinities. Further, for each frozen conformation obtained from the docking, a set of 250 molecular descriptors was calculated, and the resulting Structure/Descriptors matrix was submitted to Principal Component Analysis. From the factor scores it emerged a good clusterization among similar compounds both in terms of structural class and activity spectrum, while examination of the loadings of the first two factors also allowed to study the classes of descriptors which mainly contribute to each one.
Collapse
Affiliation(s)
- Antonino Lauria
- Dipartimento Farmacochimico, Tossicologico e Biologico, Università di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | | | | |
Collapse
|
36
|
Hong TJ, Park H, Kim YJ, Jeong JH, Hahn JS. Identification of new Hsp90 inhibitors by structure-based virtual screening. Bioorg Med Chem Lett 2009; 19:4839-42. [PMID: 19560353 DOI: 10.1016/j.bmcl.2009.06.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 05/27/2009] [Accepted: 06/10/2009] [Indexed: 11/30/2022]
Abstract
Structure-based virtual screening identified pyrimidine-2,4,6-trione and 4H-1,2,4-triazole-3-thiol as novel scaffolds of Hsp90 ATPase inhibitors. Their binding modes in the ATP-binding pocket of Hsp90 were analyzed using AutoDoc program combined with molecular dynamics (MD) simulations.
Collapse
Affiliation(s)
- Tae-Joon Hong
- School of Chemical and Biological Engineering, Seoul National University, Gwanak-gu, Seoul 151-744, Republic of Korea
| | | | | | | | | |
Collapse
|
37
|
Barker J, Barker O, Boggio R, Chauhan V, Cheng RK, Corden V, Courtney S, Edwards N, Falque V, Fusar F, Gardiner M, Hamelin EM, Hesterkamp T, Ichihara O, Jones R, Mather O, Mercurio C, Minucci S, Montalbetti CA, Müller A, Patel D, Phillips B, Varasi M, Whittaker M, Winkler D, Yarnold C. Fragment-based Identification of Hsp90 Inhibitors. ChemMedChem 2009; 4:963-6. [DOI: 10.1002/cmdc.200900011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Knox AJS, Price T, Pawlak M, Golfis G, Flood CT, Fayne D, Williams DC, Meegan MJ, Lloyd DG. Integration of ligand and structure-based virtual screening for the identification of the first dual targeting agent for heat shock protein 90 (Hsp90) and tubulin. J Med Chem 2009; 52:2177-80. [PMID: 19331414 DOI: 10.1021/jm801569z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the discovery of a novel indazole-based scaffold that represents the "first-in-class" dual Hsp90/tubulin binding compound. Individual known ligands for both targets shared similar 3',4',5'-trimethoxyphenyl cores, and from this it was hypothesized that application of an integrated ligand and structure-based virtual screening (VS) workflow could yield a single scaffold with dual binding affinity. Following validation of the VS protocol, we successfully identified a novel dual inhibitor, sourced from a commercial screening collection of 160 000 compounds.
Collapse
Affiliation(s)
- Andrew J S Knox
- Molecular Design Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Thepchatri P, Min J, Ganesh T, Du Y, Lewis I, Kurtkaya S, Prussia A, Li L, Plemper RK, Fu H, Liotta DC, Snyder JP, Dingledine R, Sun A. Cancer and virus leads by HTS, chemical design and SEA data mining. Curr Top Med Chem 2009; 9:1159-71. [PMID: 19807668 PMCID: PMC4442615 DOI: 10.2174/156802609789753581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Accepted: 10/18/2008] [Indexed: 11/22/2022]
Abstract
A variety of medicinal chemistry approaches can be used for the identification of hits, generation of leads and to accelerate the development of drug candidates. The Emory Chemical and Biology Discovery Center (ECBDC) has been an active participant in the NIH's high-throughput screening (HTS) endeavor to identify potent small molecule probes for poorly studied proteins. Several of Emory's projects relate to cancer or virus infection. We have chosen three successful examples including discovery of potent measles virus RNA-dependent RNA polymerase inhibitors, development of Heat Shock Protein 90 (Hsp90) blockers and identification of angiogenesis inhibitors using transgenic Zebrafish as a HTS model. In parallel with HTS, a unique component of the Emory virtual screening (VS) effort, namely, substructure enrichment analysis (SEA) program has been utilized in several cases.
Collapse
Affiliation(s)
- Pahk Thepchatri
- Chemical Biology Discovery Center, 1510 Clifton Road, Emory University, Atlanta, GA 30322
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322
| | - Jaeki Min
- Chemical Biology Discovery Center, 1510 Clifton Road, Emory University, Atlanta, GA 30322
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322
| | - Thota Ganesh
- Chemical Biology Discovery Center, 1510 Clifton Road, Emory University, Atlanta, GA 30322
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322
| | - Yuhong Du
- Chemical Biology Discovery Center, 1510 Clifton Road, Emory University, Atlanta, GA 30322
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta GA 30322
| | - Iestyn Lewis
- Chemical Biology Discovery Center, 1510 Clifton Road, Emory University, Atlanta, GA 30322
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta GA 30322
| | - Serdar Kurtkaya
- Chemical Biology Discovery Center, 1510 Clifton Road, Emory University, Atlanta, GA 30322
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322
| | - Andrew Prussia
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322
| | - Lian Li
- Chemical Biology Discovery Center, 1510 Clifton Road, Emory University, Atlanta, GA 30322
| | - Richard K. Plemper
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Emory Children’s Center, 2015 Uppergate Drive, Emory University School of Medicine, Atlanta, GA 30322
| | - Haian Fu
- Chemical Biology Discovery Center, 1510 Clifton Road, Emory University, Atlanta, GA 30322
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta GA 30322
| | - Dennis C. Liotta
- Chemical Biology Discovery Center, 1510 Clifton Road, Emory University, Atlanta, GA 30322
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322
| | - James P. Snyder
- Chemical Biology Discovery Center, 1510 Clifton Road, Emory University, Atlanta, GA 30322
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322
| | - Raymond Dingledine
- Chemical Biology Discovery Center, 1510 Clifton Road, Emory University, Atlanta, GA 30322
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta GA 30322
| | - Aiming Sun
- Chemical Biology Discovery Center, 1510 Clifton Road, Emory University, Atlanta, GA 30322
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta GA 30322
| |
Collapse
|
40
|
Hadden MK, Hill SA, Davenport J, Matts RL, Blagg BSJ. Synthesis and evaluation of Hsp90 inhibitors that contain the 1,4-naphthoquinone scaffold. Bioorg Med Chem 2008; 17:634-40. [PMID: 19101151 DOI: 10.1016/j.bmc.2008.11.064] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/20/2008] [Accepted: 11/24/2008] [Indexed: 12/18/2022]
Abstract
High-throughput screening of a library of diverse molecules has identified the 1,4-naphthoquinone scaffold as a new class of Hsp90 inhibitors. The synthesis and evaluation of a rationally-designed series of analogues containing the naphthoquinone core scaffold has provided key structure-activity relationships for these compounds. The most active inhibitors exhibited potent in vitro activity with low micromolar IC(50) values in anti-proliferation and Her2 degradation assays. In addition, 3g, 12, and 13a induced the degradation of oncogenic Hsp90 client proteins, a hallmark of Hsp90 inhibition. The identification of these naphthoquinones as Hsp90 inhibitors provides a new scaffold upon which improved Hsp90 inhibitors can be developed.
Collapse
Affiliation(s)
- M Kyle Hadden
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Dr., Malott 4070, Lawrence, KS 66045-7563, United States
| | | | | | | | | |
Collapse
|
41
|
Lauria A, Ippolito M, Almerico AM. Inside the Hsp90 inhibitors binding mode through induced fit docking. J Mol Graph Model 2008; 27:712-22. [PMID: 19084447 DOI: 10.1016/j.jmgm.2008.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 10/01/2008] [Accepted: 11/03/2008] [Indexed: 12/29/2022]
Abstract
During the last few decades, the development of new anticancer strategies had to face the instability of many tumors, occurring when the genetic plasticity of cells produces new drug-resistant cancers. It has been shown that a chaperone protein, heat shock protein 90 (Hsp90), is one of the fundamental factors involved in the cell response to stresses, and its role in many biochemical pathways has been demonstrated. Thus, the inhibition of Hsp90 represents a new target of antitumor therapy, since it may influence many specific signaling pathways. The natural antibiotic Geldanamycin is the first Hsp90 inhibitor that has been identified. Nevertheless, more potent and water-soluble small molecules are currently in development, and many X-ray crystallographic structures of Hsp90-inhibitor complexes are available for drug discovery purposes. Here we used the complexes of Hsp90 with eight different ligands, belonging to several chemical classes, to perform molecular docking experiments, using a novel technique called induced fit. Through this approach, it was possible to take into account the flexibility of the residues in the active site and to maintain a high level of precision in docking algorithms. The results allowed to identify several conserved residues involved in the interaction between Hsp90 and its inhibitor. Moreover, the exposition of the active site to solvent allows many water molecules to insert within the complex, providing additional hydrogen and polar interactions. Our models also provided template structures for further experiments and reproduces with a good degree of reliability, the conformations of the inhibitors as observed in experimental structures.
Collapse
Affiliation(s)
- Antonino Lauria
- Dipartimento Farmacochimico, Tossicologico e Biologico, Università di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | | | | |
Collapse
|
42
|
Taldone T, Sun W, Chiosis G. Discovery and development of heat shock protein 90 inhibitors. Bioorg Med Chem 2008; 17:2225-35. [PMID: 19017562 DOI: 10.1016/j.bmc.2008.10.087] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 10/18/2008] [Accepted: 10/31/2008] [Indexed: 12/18/2022]
Abstract
Heat shock protein 90 (Hsp90) is an important target in cancer because of its role in maintaining transformation and has recently become the focus of several drug discovery and development efforts. While compounds with different modes of action are known, the focus of this review is on those classes of compounds which inhibit Hsp90 by binding to the N-terminal ATP pocket. These include natural product inhibitors such as geldanamycin and radicicol and synthetic inhibitors comprised of purines, pyrazoles, isoxazoles and other scaffolds. The synthetic inhibitors have been discovered either by structure-based design, high throughput screening and more recently using fragment-based design and virtual screening techniques. This review will discuss the discovery of these different classes, as well as their development as potential clinical agents.
Collapse
Affiliation(s)
- Tony Taldone
- Program in Molecular Pharmacology and Chemistry and Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 482, New York, NY 10021, USA
| | | | | |
Collapse
|
43
|
|
44
|
Synthesis and SAR study of N-(4-hydroxy-3-(2-hydroxynaphthalene-1-yl)phenyl)-arylsulfonamides: heat shock protein 90 (Hsp90) inhibitors with submicromolar activity in an in vitro assay. Bioorg Med Chem Lett 2008; 18:4982-7. [PMID: 18762423 DOI: 10.1016/j.bmcl.2008.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 08/06/2008] [Accepted: 08/08/2008] [Indexed: 01/15/2023]
Abstract
Heat shock protein 90 is emerging as an important target in cancer chemotherapy. In a program directed toward identifying novel chemical probes for Hsp90, we found N-(4-hydroxy-3-(2-hydroxynaphthalene-1-yl)phenyl)benzene sulfonamide as an Hsp90 inhibitor with very weak activity. In this report, we present a new and general method for the synthesis of a variety of analogs around this scaffold, and discuss their structure-activity relationships.
Collapse
|
45
|
Ganesh T, Min J, Thepchatri P, Du Y, Li L, Lewis I, Wilson L, Fu H, Chiosis G, Dingledine R, Liotta D, Snyder JP, Sun A. Discovery of aminoquinolines as a new class of potent inhibitors of heat shock protein 90 (Hsp90): Synthesis, biology, and molecular modeling. Bioorg Med Chem 2008; 16:6903-10. [PMID: 18571929 DOI: 10.1016/j.bmc.2008.05.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/08/2008] [Accepted: 05/22/2008] [Indexed: 12/29/2022]
Abstract
The molecular chaperone Hsp90 plays important roles in maintaining malignant phenotypes. Recent studies suggest that Hsp90 exerts high-affinity interactions with multiple oncoproteins, which are essential for the growth of tumor cells. As a result, research has focused on finding Hsp90 probes as potential and selective anticancer agents. In a high-throughput screening exercise, we identified quinoline 7 as a moderate inhibitor of Hsp90. Further hit identification, SAR studies, and biological investigation revealed several synthetic analogs in this series with micromolar activities in both fluorescent polarization (FP) assay and a cell-based Western blot (WB) assay. These compounds represent a new class of Hsp90 inhibitors with simple chemical structures.
Collapse
Affiliation(s)
- Thota Ganesh
- Chemical Biology Discovery Center, 1510 Clifton Road, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Burlison JA, Avila C, Vielhauer G, Lubbers DJ, Holzbeierlein J, Blagg BSJ. Development of novobiocin analogues that manifest anti-proliferative activity against several cancer cell lines. J Org Chem 2008; 73:2130-7. [PMID: 18293999 DOI: 10.1021/jo702191a] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent studies have shown that the DNA gyrase inhibitor, novobiocin, binds to a previously unrecognized ATP-binding site located at the C-terminus of Hsp90 and induces degradation of Hsp90-dependent client proteins at approximately 700 microM. As a result of these studies, several analogues of the coumarin family of antibiotics have been reported and shown to exhibit increased Hsp90 inhibitory activity; however, the monomeric species lacked the ability to manifest anti-proliferative activity against cancer cell lines at concentrations tested. In an effort to develop more efficacious compounds that produce growth inhibitory activity against cancer cell lines, structure-activity relationships were investigated surrounding the prenylated benzamide side chain of the natural product. Results obtained from these studies have produced the first novobiocin analogues that manifest anti-proliferative activity against several cancer cell lines.
Collapse
Affiliation(s)
- Joseph A Burlison
- Department of Medicinal Chemistry, 1251 Wescoe Hall Drive, Malott 4070, The University of Kansas, Lawrence, Kansas 66045-7563, USA
| | | | | | | | | | | |
Collapse
|
47
|
Waszkowycz B. Towards improving compound selection in structure-based virtual screening. Drug Discov Today 2008; 13:219-26. [PMID: 18342797 DOI: 10.1016/j.drudis.2007.12.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 12/06/2007] [Accepted: 12/15/2007] [Indexed: 10/22/2022]
Abstract
Structure-based virtual screening is now an established technology for supporting hit finding and lead optimisation in drug discovery. Recent validation studies have highlighted the poor performance of currently used scoring functions in estimating binding affinity and hence in ranking large datasets of docked ligands. Progress in the analysis of large datasets can be made through the use of appropriate data mining techniques and the derivation of a broader range of descriptors relevant to receptor-ligand binding. In addition, simple scoring functions can be supplemented by simulation-based scoring protocols. Developments in workflow design allow the automation of repetitive tasks, and also encourage the routine use of simulation-based methods and the rapid prototyping of novel modelling and analysis procedures.
Collapse
Affiliation(s)
- Bohdan Waszkowycz
- Argenta Discovery Ltd., 8/9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, UK.
| |
Collapse
|
48
|
Park H, Kim YJ, Hahn JS. A novel class of Hsp90 inhibitors isolated by structure-based virtual screening. Bioorg Med Chem Lett 2007; 17:6345-9. [PMID: 17869098 DOI: 10.1016/j.bmcl.2007.08.069] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 08/27/2007] [Accepted: 08/29/2007] [Indexed: 01/22/2023]
Abstract
A novel class of 3-phenyl-2-styryl-3H-quinazolin-4-one Hsp90 inhibitors with in vitro anti-tumor activity are identified by structure-based virtual screening of a chemical database with docking simulations in the N-terminal ATP-binding site, in vitro ATPase assay using yeast Hsp90, and cell-based Her2 degradation assay in a consecutive fashion. These results exemplify the usefulness of the structure-based virtual screening with molecular docking in drug discovery. The structural features responsible for a tight binding of the inhibitors in the active site of Hsp90 are discussed in detail.
Collapse
Affiliation(s)
- Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, 98 Kunja-dong, Gwangjin-gu, Seoul, Republic of Korea
| | | | | |
Collapse
|
49
|
Shen G, Wang M, Welch TR, Blagg BSJ. Design, synthesis, and structure--activity relationships for chimeric inhibitors of Hsp90. J Org Chem 2007; 71:7618-31. [PMID: 16995666 DOI: 10.1021/jo061054f] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibition of the 90 kDa heat shock protein (Hsp90) family of molecular chaperones represents a promising new chemotherapeutic approach toward the treatment of several cancers. Previous studies have demonstrated that the natural products, radicicol and geldanamycin, are potent inhibitors of the Hsp90 N-terminal ATP binding site. The cocrystal structures of these molecules bound to Hsp90 have been determined, and through molecular modeling and superimposition of these ligands, hybrids of radicicol and geldanamycin have been designed. A series of macrocylic chimeras of radicicol and geldanamycin and the corresponding seco-agents have been prepared and evaluated for both antiproliferative activity and their ability to induce Hsp90-dependent client protein degradation.
Collapse
Affiliation(s)
- Gang Shen
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045-7563, USA
| | | | | | | |
Collapse
|
50
|
Richardson CM, Nunns CL, Williamson DS, Parratt MJ, Dokurno P, Howes R, Borgognoni J, Drysdale MJ, Finch H, Hubbard RE, Jackson PS, Kierstan P, Lentzen G, Moore JD, Murray JB, Simmonite H, Surgenor AE, Torrance CJ. Discovery of a potent CDK2 inhibitor with a novel binding mode, using virtual screening and initial, structure-guided lead scoping. Bioorg Med Chem Lett 2007; 17:3880-5. [PMID: 17570665 DOI: 10.1016/j.bmcl.2007.04.110] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 04/30/2007] [Accepted: 04/30/2007] [Indexed: 11/16/2022]
Abstract
Virtual screening against a pCDK2/cyclin A crystal structure led to the identification of a potent and novel CDK2 inhibitor, which exhibited an unusual mode of interaction with the kinase binding motif. With the aid of X-ray crystallography and modelling, a medicinal chemistry strategy was implemented to probe the interactions seen in the crystal structure and to establish SAR. A fragment-based approach was also considered but a different, more conventional, binding mode was observed. Compound selectivity against GSK-3beta was improved using a rational design strategy, with crystallographic verification of the CDK2 binding mode.
Collapse
|