1
|
Lazzeri G, Lenzi P, Busceti CL, Puglisi-Allegra S, Ferrucci M, Fornai F. Methamphetamine Increases Tubulo-Vesicular Areas While Dissipating Proteins from Vesicles Involved in Cell Clearance. Int J Mol Sci 2024; 25:9601. [PMID: 39273545 PMCID: PMC11395429 DOI: 10.3390/ijms25179601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Cytopathology induced by methamphetamine (METH) is reminiscent of degenerative disorders such as Parkinson's disease, and it is characterized by membrane organelles arranged in tubulo-vesicular structures. These areas, appearing as clusters of vesicles, have never been defined concerning the presence of specific organelles. Therefore, the present study aimed to identify the relative and absolute area of specific membrane-bound organelles following a moderate dose (100 µM) of METH administered to catecholamine-containing PC12 cells. Organelles and antigens were detected by immunofluorescence, and they were further quantified by plain electron microscopy and in situ stoichiometry. This analysis indicated an increase in autophagosomes and damaged mitochondria along with a decrease in lysosomes and healthy mitochondria. Following METH, a severe dissipation of hallmark proteins from their own vesicles was measured. In fact, the amounts of LC3 and p62 were reduced within autophagy vacuoles compared with the whole cytosol. Similarly, LAMP1 and Cathepsin-D within lysosomes were reduced. These findings suggest a loss of compartmentalization and confirm a decrease in the competence of cell clearing organelles during catecholamine degeneration. Such cell entropy is consistent with a loss of energy stores, which routinely govern appropriate subcellular compartmentalization.
Collapse
Affiliation(s)
- Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Paola Lenzi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Carla L Busceti
- IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | | | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| |
Collapse
|
2
|
Costa G, Caputi FF, Serra M, Simola N, Rullo L, Stamatakos S, Sanna F, Germain M, Martinoli MG, Candeletti S, Morelli M, Romualdi P. Activation of Antioxidant and Proteolytic Pathways in the Nigrostriatal Dopaminergic System After 3,4-Methylenedioxymethamphetamine Administration: Sex-Related Differences. Front Pharmacol 2021; 12:713486. [PMID: 34512343 PMCID: PMC8430399 DOI: 10.3389/fphar.2021.713486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/12/2021] [Indexed: 12/29/2022] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) is an amphetamine-related drug that may damage the dopaminergic nigrostriatal system. To investigate the mechanisms that sustain this toxic effect and ascertain their sex-dependence, we evaluated in the nigrostriatal system of MDMA-treated (4 × 20 mg/kg, 2 h apart) male and female mice the activity of superoxide dismutase (SOD), the gene expression of SOD type 1 and 2, together with SOD1/2 co-localization with tyrosine hydroxylase (TH)-positive neurons. In the same mice and brain areas, activity of glutathione peroxidase (GPx) and of β2/β5 subunits of the ubiquitin-proteasome system (UPS) were also evaluated. After MDMA, SOD1 increased in striatal TH-positive terminals, but not nigral neurons, of males and females, while SOD2 increased in striatal TH-positive terminals and nigral neurons of males only. Moreover, after MDMA, SOD1 gene expression increased in the midbrain of males and females, whereas SOD2 increased only in males. Finally, MDMA increased the SOD activity in the midbrain of females, without affecting GPx activity, decreased the β2/β5 activities in the striatum of males and the β2 activity in the midbrain of females. These results suggest that the mechanisms of MDMA-induced neurotoxic effects are sex-dependent and dopaminergic neurons of males could be more sensitive to SOD2- and UPS-mediated toxic effects.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Francesca Felicia Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Serena Stamatakos
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Fabrizio Sanna
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Marc Germain
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,CERMO-FC UQAM, Québec, QC, Canada
| | - Maria-Grazia Martinoli
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval and CHU Research Center, Québec, QC, Canada
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.,National Research Council of Italy, Neuroscience Institute, Cagliari, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Changes on proteomic and metabolomic profile in serum of mice induced by chronic exposure to tramadol. Sci Rep 2021; 11:1454. [PMID: 33446901 PMCID: PMC7809287 DOI: 10.1038/s41598-021-81109-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/04/2021] [Indexed: 01/01/2023] Open
Abstract
Tramadol is an opioid used as an analgesic for treating moderate or severe pain. The long-term use of tramadol can induce several adverse effects. The toxicological mechanism of tramadol abuse is unclear. Limited literature available indicates the change of proteomic profile after chronic exposure to tramadol. In this study, we analyzed the proteomic and metabolomic profile by TMT-labeled quantitative proteomics and untargeted metabolomics between the tramadol and the control group. Proteomic analysis revealed 31 differential expressed serum proteins (9 increased and 22 decreased) in tramadol-treated mice (oral, 50 mg/kg, 5 weeks) as compared with the control ones. Bioinformatics analysis showed that the dysregulated proteins mainly included: enzyme inhibitor-associated proteins (i.e. apolipoprotein C-III (Apoc-III), alpha-1-antitrypsin 1–2 (Serpina 1b), apolipoprotein C-II (Apoc-II), plasma protease C1 inhibitor, inter-alpha-trypsin inhibitor heavy chain H3 (itih3)); mitochondria-related proteins (i.e. 14-3-3 protein zeta/delta (YWHAZ)); cytoskeleton proteins (i.e. tubulin alpha-4A chain (TUBA4A), vinculin (Vcl)). And we found that the differential expressed proteins mainly involved in the pathway of the protein digestion and absorption. Metabolomics analysis revealed that differential expressed metabolites mainly involved in protein ingestion and absorption, fatty acid biosynthesis, steroid hormone biosynthesis and bile secretion. Our overall findings revealed that chronic exposure to tramadol changed the proteomic and metabolomic profile of mice. Moreover, integrated proteomic and metabolomic revealed that the protein digestion and absorption is the common enrichment KEGG pathway. Thus, the combination of proteomics and metabolomics opens new avenues for the research of the molecular mechanisms of tramadol toxicity.
Collapse
|
4
|
De Felice B, Mondellini S, Salgueiro-González N, Castiglioni S, Parolini M. Methamphetamine exposure modulated oxidative status and altered the reproductive output in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137728. [PMID: 32169646 DOI: 10.1016/j.scitotenv.2020.137728] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Methamphetamine (METH) is a central nervous system stimulant drug whose use has increased in the last few years worldwide. After the ingestion of even a single dose, METH is excreted by the organism and enters the aquatic ecosystems, whereby concentrations up to hundreds of ng/L were measured in both sewage and surface waters. Although the environmental concentrations are currently quite low, the high biological activity of METH might cause adverse effects towards non-target organisms. However, to date the information on METH toxicity towards aquatic organisms is limited. Thus, the present study aimed at investigating biochemical and behavioral effects induced by METH exposure towards the Cladoceran Daphnia magna. A 21-days exposure to two environmental concentrations of METH (50 ng/L and 500 ng/L) was performed. At selected time points (7, 14 and 21 days) the amount of pro-oxidant molecules, the activity of antioxidant enzymes (SOD, CAT, GPx) and levels of lipid peroxidation (LPO) were measured as oxidative stress-related endpoints. Changes in swimming activity and reproductive output were assessed as behavioral endpoints. METH exposure affected the oxidative status of D. magna specimens at both tested concentrations, although no oxidative damage occurred. Although METH did not modulate the swimming activity of D. magna, a significant, positive effect on reproductive output, in terms of number of offspring was found. Our results showed that low concentrations of METH might represent a threat for D. magna, affecting the health status of this aquatic species at different level of biological organization.
Collapse
Affiliation(s)
- Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy.
| | - Simona Mondellini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Noelia Salgueiro-González
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Sciences, Via Mario Negri 2, 20156 Milan, Italy
| | - Sara Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Sciences, Via Mario Negri 2, 20156 Milan, Italy
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| |
Collapse
|
5
|
Integrative proteomics and pharmacogenomics analysis of methylphenidate treatment response. Transl Psychiatry 2019; 9:308. [PMID: 31740662 PMCID: PMC6861257 DOI: 10.1038/s41398-019-0649-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/09/2019] [Accepted: 11/01/2019] [Indexed: 02/02/2023] Open
Abstract
Transcriptomics and candidate gene/protein expression studies have indicated several biological processes modulated by methylphenidate (MPH), widely used in attention-deficit/hyperactivity disorder (ADHD) treatment. However, the lack of a differential proteomic profiling of MPH treatment limits the understanding of the most relevant mechanisms by which MPH exerts its pharmacological effects at the molecular level. Therefore, our aim is to investigate the MPH-induced proteomic alterations using an experimental design integrated with a pharmacogenomic analysis in a translational perspective. Proteomic analysis was performed using the cortices of Wistar-Kyoto rats, which were treated by gavage with MPH (2 mg/kg) or saline for two weeks (n = 6/group). After functional enrichment analysis of the differentially expressed proteins (DEP) in rats, the significant biological pathways were tested for association with MPH response in adults with ADHD (n = 189) using genome-wide data. Following MPH treatment in rats, 98 DEPs were found (P < 0.05 and FC < -1.0 or > 1.0). The functional enrichment analysis of the DEPs revealed 18 significant biological pathways (gene-sets) modulated by MPH, including some with recognized biological plausibility, such as those related to synaptic transmission. The pharmacogenomic analysis in the clinical sample evaluating these pathways revealed nominal associations for gene-sets related to neurotransmitter release and GABA transmission. Our results, which integrate proteomics and pharmacogenomics, revealed putative molecular effects of MPH on several biological processes, including oxidative stress, cellular respiration, and metabolism, and extended the results involving synaptic transmission pathways to a clinical sample. These findings shed light on the molecular signatures of MPH effects and possible biological sources of treatment response variability.
Collapse
|
6
|
A Mutation in Hnrnph1 That Decreases Methamphetamine-Induced Reinforcement, Reward, and Dopamine Release and Increases Synaptosomal hnRNP H and Mitochondrial Proteins. J Neurosci 2019; 40:107-130. [PMID: 31704785 DOI: 10.1523/jneurosci.1808-19.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/03/2023] Open
Abstract
Individual variation in the addiction liability of amphetamines has a heritable genetic component. We previously identified Hnrnph1 (heterogeneous nuclear ribonucleoprotein H1) as a quantitative trait gene underlying decreased methamphetamine-induced locomotor activity in mice. Here, we showed that mice (both females and males) with a heterozygous mutation in the first coding exon of Hnrnph1 (H1+/-) showed reduced methamphetamine reinforcement and intake and dose-dependent changes in methamphetamine reward as measured via conditioned place preference. Furthermore, H1+/- mice showed a robust decrease in methamphetamine-induced dopamine release in the NAc with no change in baseline extracellular dopamine, striatal whole-tissue dopamine, dopamine transporter protein, dopamine uptake, or striatal methamphetamine and amphetamine metabolite levels. Immunohistochemical and immunoblot staining of midbrain dopaminergic neurons and their forebrain projections for TH did not reveal any major changes in staining intensity, cell number, or forebrain puncta counts. Surprisingly, there was a twofold increase in hnRNP H protein in the striatal synaptosome of H1+/- mice with no change in whole-tissue levels. To gain insight into the mechanisms linking increased synaptic hnRNP H with decreased methamphetamine-induced dopamine release and behaviors, synaptosomal proteomic analysis identified an increased baseline abundance of several mitochondrial complex I and V proteins that rapidly decreased at 30 min after methamphetamine administration in H1+/- mice. In contrast, the much lower level of basal synaptosomal mitochondrial proteins in WT mice showed a rapid increase. We conclude that H1+/- decreases methamphetamine-induced dopamine release, reward, and reinforcement and induces dynamic changes in basal and methamphetamine-induced synaptic mitochondrial function.SIGNIFICANCE STATEMENT Methamphetamine dependence is a significant public health concern with no FDA-approved treatment. We discovered a role for the RNA binding protein hnRNP H in methamphetamine reward and reinforcement. Hnrnph1 mutation also blunted methamphetamine-induced dopamine release in the NAc, a key neurochemical event contributing to methamphetamine addiction liability. Finally, Hnrnph1 mutants showed a marked increase in basal level of synaptosomal hnRNP H and mitochondrial proteins that decreased in response to methamphetamine, whereas WT mice showed a methamphetamine-induced increase in synaptosomal mitochondrial proteins. Thus, we identified a potential role for hnRNP H in basal and dynamic mitochondrial function that informs methamphetamine-induced cellular adaptations associated with reduced addiction liability.
Collapse
|
7
|
Tropomodulin Isoform-Specific Regulation of Dendrite Development and Synapse Formation. J Neurosci 2018; 38:10271-10285. [PMID: 30301754 DOI: 10.1523/jneurosci.3325-17.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 11/21/2022] Open
Abstract
Neurons of the CNS elaborate highly branched dendritic arbors that host numerous dendritic spines, which serve as the postsynaptic platform for most excitatory synapses. The actin cytoskeleton plays an important role in dendrite development and spine formation, but the underlying mechanisms remain incompletely understood. Tropomodulins (Tmods) are a family of actin-binding proteins that cap the slow-growing (pointed) end of actin filaments, thereby regulating the stability, length, and architecture of complex actin networks in diverse cell types. Three members of the Tmod family, Tmod1, Tmod2, and Tmod3 are expressed in the vertebrate CNS, but their function in neuronal development is largely unknown. In this study, we present evidence that Tmod1 and Tmod2 exhibit distinct roles in regulating spine development and dendritic arborization, respectively. Using rat hippocampal tissues from both sexes, we find that Tmod1 and Tmod2 are expressed with distinct developmental profiles: Tmod2 is expressed early during hippocampal development, whereas Tmod1 expression coincides with synaptogenesis. We then show that knockdown of Tmod2, but not Tmod1, severely impairs dendritic branching. Both Tmod1 and Tmod2 are localized to a distinct subspine region where they regulate local F-actin stability. However, the knockdown of Tmod1, but not Tmod2, disrupts spine morphogenesis and impairs synapse formation. Collectively, these findings demonstrate that regulation of the actin cytoskeleton by different members of the Tmod family plays an important role in distinct aspects of dendrite and spine development.SIGNIFICANCE STATEMENT The Tropomodulin family of molecules is best known for controlling the length and stability of actin myofilaments in skeletal muscles. While several Tropomodulin members are expressed in the brain, fundamental knowledge about their role in neuronal function is limited. In this study, we show the unique expression profile and subcellular distribution of Tmod1 and Tmod2 in hippocampal neurons. While both Tmod1 and Tmod2 regulate F-actin stability, we find that they exhibit isoform-specific roles in dendrite development and synapse formation: Tmod2 regulates dendritic arborization, whereas Tmod1 is required for spine development and synapse formation. These findings provide novel insight into the actin regulatory mechanisms underlying neuronal development, thereby shedding light on potential pathways disrupted in a number of neurological disorders.
Collapse
|
8
|
Epigenetic Effects Induced by Methamphetamine and Methamphetamine-Dependent Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4982453. [PMID: 30140365 PMCID: PMC6081569 DOI: 10.1155/2018/4982453] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/10/2018] [Indexed: 12/21/2022]
Abstract
Methamphetamine is a widely abused drug, which possesses neurotoxic activity and powerful addictive effects. Understanding methamphetamine toxicity is key beyond the field of drug abuse since it allows getting an insight into the molecular mechanisms which operate in a variety of neuropsychiatric disorders. In fact, key alterations produced by methamphetamine involve dopamine neurotransmission in a way, which is reminiscent of spontaneous neurodegeneration and psychiatric schizophrenia. Thus, understanding the molecular mechanisms operated by methamphetamine represents a wide window to understand both the addicted brain and a variety of neuropsychiatric disorders. This overlapping, which is already present when looking at the molecular and cellular events promoted immediately after methamphetamine intake, becomes impressive when plastic changes induced in the brain of methamphetamine-addicted patients are considered. Thus, the present manuscript is an attempt to encompass all the molecular events starting at the presynaptic dopamine terminals to reach the nucleus of postsynaptic neurons to explain how specific neurotransmitters and signaling cascades produce persistent genetic modifications, which shift neuronal phenotype and induce behavioral alterations. A special emphasis is posed on disclosing those early and delayed molecular events, which translate an altered neurotransmitter function into epigenetic events, which are derived from the translation of postsynaptic noncanonical signaling into altered gene regulation. All epigenetic effects are considered in light of their persistent changes induced in the postsynaptic neurons including sensitization and desensitization, priming, and shift of neuronal phenotype.
Collapse
|
9
|
Untargeted Metabolomic Analysis of Rat Neuroblastoma Cells as a Model System to Study the Biochemical Effects of the Acute Administration of Methamphetamine. Metabolites 2018; 8:metabo8020038. [PMID: 29880740 PMCID: PMC6027511 DOI: 10.3390/metabo8020038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022] Open
Abstract
Methamphetamine is an illicit psychostimulant drug that is linked to a number of diseases of the nervous system. The downstream biochemical effects of its primary mechanisms are not well understood, and the objective of this study was to investigate whether untargeted metabolomic analysis of an in vitro model could generate data relevant to what is already known about this drug. Rat B50 neuroblastoma cells were treated with 1 mM methamphetamine for 48 h, and both intracellular and extracellular metabolites were profiled using gas chromatography–mass spectrometry. Principal component analysis of the data identified 35 metabolites that contributed most to the difference in metabolite profiles. Of these metabolites, the most notable changes were in amino acids, with significant increases observed in glutamate, aspartate and methionine, and decreases in phenylalanine and serine. The data demonstrated that glutamate release and, subsequently, excitotoxicity and oxidative stress were important in the response of the neuronal cell to methamphetamine. Following this, the cells appeared to engage amino acid-based mechanisms to reduce glutamate levels. The potential of untargeted metabolomic analysis has been highlighted, as it has generated biochemically relevant data and identified pathways significantly affected by methamphetamine. This combination of technologies has clear uses as a model for the study of neuronal toxicology.
Collapse
|
10
|
Bettinsoli P, Ferrari-Toninelli G, Bonini SA, Guarienti M, Cangelosi D, Varesio L, Memo M. Favorable prognostic role of tropomodulins in neuroblastoma. Oncotarget 2018; 9:27092-27103. [PMID: 29930753 PMCID: PMC6007461 DOI: 10.18632/oncotarget.25491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma is a pediatric tumor of the sympatoadrenal lineage of the neural crest characterized by high molecular and clinical heterogeneity, which are the main causes of the poor response to standard multimodal therapy. The identification of new and selective biomarkers is important to improve our knowledge on the mechanisms of neuroblastoma progression and to find the targets for innovative cancer therapies. This study identifies a positive correlation among tropomodulins (TMODs) proteins expression and neuroblastoma progression. TMODs bind the pointed end of actin filaments, regulate polymerization and depolymerization processes modifying actin cytoskeletal dynamic and influencing neuronal development processes. Expression levels of TMODs genes were analyzed in 17 datasets comprising different types of tumors, including neuroblastoma, and it was demonstrated that high levels of tropomodulin1 (TMOD1) and tropomodulin 2 (TMOD2) correlate positively with high survival probability and with favorable clinical and molecular characteristics. Functional studies on neuroblastoma cell lines, showed that TMOD1 knockin induced cell cycle arrest, cell proliferation arrest and a mature functional differentiation. TMOD1 overexpression was responsible for particular cell morphology and biochemical changes which directed cells towards a neuronal favorable differentiation profile. TMOD1 downregulation also induced cell proliferation arrest but caused the loss of mature cell differentiation and promoted the development of neuroendocrine cellular characteristics, delineating an aggressive and unfavorable tumor behavior. Overall, these data indicated that TMODs are favorable prognostic biomarkers in neuroblastoma and we believe that they could contribute to unravel a new pathophysiological mechanism of neuroblastoma resistance contributing to the design of personalized therapeutics opportunities.
Collapse
Affiliation(s)
- Paola Bettinsoli
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Giulia Ferrari-Toninelli
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Michela Guarienti
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Davide Cangelosi
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genova, Italy
| | - Luigi Varesio
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genova, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| |
Collapse
|
11
|
Gray KT, Kostyukova AS, Fath T. Actin regulation by tropomodulin and tropomyosin in neuronal morphogenesis and function. Mol Cell Neurosci 2017; 84:48-57. [PMID: 28433463 DOI: 10.1016/j.mcn.2017.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 12/26/2022] Open
Abstract
Actin is a profoundly influential protein; it impacts, among other processes, membrane morphology, cellular motility, and vesicle transport. Actin can polymerize into long filaments that push on membranes and provide support for intracellular transport. Actin filaments have polar ends: the fast-growing (barbed) end and the slow-growing (pointed) end. Depolymerization from the pointed end supplies monomers for further polymerization at the barbed end. Tropomodulins (Tmods) cap pointed ends by binding onto actin and tropomyosins (Tpms). Tmods and Tpms have been shown to regulate many cellular processes; however, very few studies have investigated their joint role in the nervous system. Recent data directly indicate that they can modulate neuronal morphology. Additional studies suggest that Tmod and Tpm impact molecular processes influential in synaptic signaling. To facilitate future research regarding their joint role in actin regulation in the nervous system, we will comprehensively discuss Tpm and Tmod and their known functions within molecular systems that influence neuronal development.
Collapse
Affiliation(s)
- Kevin T Gray
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States; School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States.
| | - Thomas Fath
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
12
|
Abstract
INTRODUCTION Parkinson's disease (PD) is an insidious disorder affecting more than 1-2% of the population over the age of 65. Understanding the etiology of PD may create opportunities for developing new treatments. Genomic and transcriptomic studies are useful, but do not provide evidence for the actual status of the disease. Conversely, proteomic studies deal with proteins, which are real time players, and can hence provide information on the dynamic nature of the affected cells. The number of publications relating to the proteomics of PD is vast. Therefore, there is a need to evaluate the current proteomics literature and establish the connections between the past and the present to foresee the future. Areas covered: PubMed and Web of Science were used to retrieve the literature associated with PD proteomics. Studies using human samples, model organisms and cell lines were selected and reviewed to highlight their contributions to PD. Expert commentary: The proteomic studies associated with PD achieved only limited success in facilitating disease diagnosis, monitoring and progression. A global system biology approach using new models is needed. Future research should integrate the findings of proteomics with other omics data to facilitate both early diagnosis and the treatment of PD.
Collapse
Affiliation(s)
- Murat Kasap
- a Department of Medical Biology/DEKART Proteomics Laboratory , Kocaeli University Medical School , Kocaeli , Turkey
| | - Gurler Akpinar
- a Department of Medical Biology/DEKART Proteomics Laboratory , Kocaeli University Medical School , Kocaeli , Turkey
| | - Aylin Kanli
- a Department of Medical Biology/DEKART Proteomics Laboratory , Kocaeli University Medical School , Kocaeli , Turkey
| |
Collapse
|
13
|
Gray KT, Suchowerska AK, Bland T, Colpan M, Wayman G, Fath T, Kostyukova AS. Tropomodulin isoforms utilize specific binding functions to modulate dendrite development. Cytoskeleton (Hoboken) 2016; 73:316-28. [PMID: 27126680 DOI: 10.1002/cm.21304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022]
Abstract
Tropomodulins (Tmods) cap F-actin pointed ends and have altered expression in the brain in neurological diseases. The function of Tmods in neurons has been poorly studied and their role in neurological diseases is entirely unknown. In this article, we show that Tmod1 and Tmod2, but not Tmod3, are positive regulators of dendritic complexity and dendritic spine morphology. Tmod1 increases dendritic branching distal from the cell body and the number of filopodia/thin spines. Tmod2 increases dendritic branching proximal to the cell body and the number of mature dendritic spines. Tmods utilize two actin-binding sites and two tropomyosin (Tpm)-binding sites to cap F-actin. Overexpression of Tmods with disrupted Tpm-binding sites indicates that Tmod1 and Tmod2 differentially utilize their Tpm- and actin-binding sites to affect morphology. Disruption of Tmod1's Tpm-binding sites abolished the overexpression phenotype. In contrast, overexpression of the mutated Tmod2 caused the same phenotype as wild type overexpression. Proximity ligation assays indicate that the mutated Tmods are shuttled similarly to wild type Tmods. Our data begins to uncover the roles of Tmods in neural development and the mechanism by which Tmods alter neural morphology. These observations in combination with altered Tmod expression found in several neurological diseases also suggest that dysregulation of Tmod expression may be involved in the pathology of these diseases. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kevin T Gray
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Alexandra K Suchowerska
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Tyler Bland
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Mert Colpan
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Gary Wayman
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Thomas Fath
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| |
Collapse
|
14
|
Colpan M, Moroz NA, Gray KT, Cooper DA, Diaz CA, Kostyukova AS. Tropomyosin-binding properties modulate competition between tropomodulin isoforms. Arch Biochem Biophys 2016; 600:23-32. [PMID: 27091317 DOI: 10.1016/j.abb.2016.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 01/09/2023]
Abstract
The formation and fine-tuning of cytoskeleton in cells are governed by proteins that influence actin filament dynamics. Tropomodulin (Tmod) regulates the length of actin filaments by capping the pointed ends in a tropomyosin (TM)-dependent manner. Tmod1, Tmod2 and Tmod3 are associated with the cytoskeleton of non-muscle cells and their expression has distinct consequences on cell morphology. To understand the molecular basis of differences in the function and localization of Tmod isoforms in a cell, we compared the actin filament-binding abilities of Tmod1, Tmod2 and Tmod3 in the presence of Tpm3.1, a non-muscle TM isoform. Tmod3 displayed preferential binding to actin filaments when competing with other isoforms. Mutating the second or both TM-binding sites of Tmod3 destroyed its preferential binding. Our findings clarify how Tmod1, Tmod2 and Tmod3 compete for binding actin filaments. Different binding mechanisms and strengths of Tmod isoforms for Tpm3.1 contribute to their divergent functional capabilities.
Collapse
Affiliation(s)
- Mert Colpan
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States.
| | - Natalia A Moroz
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Kevin T Gray
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Dillon A Cooper
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Christian A Diaz
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States.
| |
Collapse
|
15
|
Shen S, Jiang X, Li J, Straubinger RM, Suarez M, Tu C, Duan X, Thompson AC, Qu J. Large-Scale, Ion-Current-Based Proteomic Investigation of the Rat Striatal Proteome in a Model of Short- and Long-Term Cocaine Withdrawal. J Proteome Res 2016; 15:1702-16. [PMID: 27018876 DOI: 10.1021/acs.jproteome.6b00137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Given the tremendous detriments of cocaine dependence, effective diagnosis and patient stratification are critical for successful intervention yet difficult to achieve due to the largely unknown molecular mechanisms involved. To obtain new insights into cocaine dependence and withdrawal, we employed a reproducible, reliable, and large-scale proteomics approach to investigate the striatal proteomes of rats (n = 40, 10 per group) subjected to chronic cocaine exposure, followed by either short- (WD1) or long- (WD22) term withdrawal. By implementing a surfactant-aided precipitation/on-pellet digestion procedure, a reproducible and sensitive nanoLC-Orbitrap MS analysis, and an optimized ion-current-based MS1 quantification pipeline, >2000 nonredundant proteins were quantified confidently without missing data in any replicate. Although cocaine was cleared from the body, 129/37 altered proteins were observed in WD1/WD22 that are implicated in several biological processes related closely to drug-induced neuroplasticity. Although many of these changes recapitulate the findings from independent studies reported over the last two decades, some novel insights were obtained and further validated by immunoassays. For example, significantly elevated striatal protein kinase C activity persisted over the 22 day cocaine withdrawal. Cofilin-1 activity was up-regulated in WD1 and down-regulated in WD22. These discoveries suggest potentially distinct structural plasticity after short- and long-term cocaine withdrawal. In addition, this study provides compelling evidence that blood vessel narrowing, a long-known effect of cocaine use, occurred after long-term but not short-term withdrawal. In summary, this work developed a well-optimized paradigm for ion-current-based quantitative proteomics in brain tissues and obtained novel insights into molecular alterations in the striatum following cocaine exposure and withdrawal.
Collapse
Affiliation(s)
- Shichen Shen
- New York State Center of Excellence in Bioinformatics & Life Sciences , Buffalo, New York 14203, United States.,Department of Biochemistry, School of Medicine and Biomedical Sciences, SUNY at Buffalo , Buffalo, New York 14214, United States
| | - Xiaosheng Jiang
- Department of Pharmaceutical Sciences, SUNY at Buffalo , Buffalo, New York 14214, United States.,New York State Center of Excellence in Bioinformatics & Life Sciences , Buffalo, New York 14203, United States
| | - Jun Li
- Department of Pharmaceutical Sciences, SUNY at Buffalo , Buffalo, New York 14214, United States.,New York State Center of Excellence in Bioinformatics & Life Sciences , Buffalo, New York 14203, United States
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, SUNY at Buffalo , Buffalo, New York 14214, United States
| | - Mauricio Suarez
- Department of Psychology, SUNY at Buffalo , Buffalo, New York 14260, United States.,Research Institute on Addictions, SUNY at Buffalo , Buffalo, New York 14203, United States
| | - Chengjian Tu
- New York State Center of Excellence in Bioinformatics & Life Sciences , Buffalo, New York 14203, United States.,Department of Biochemistry, School of Medicine and Biomedical Sciences, SUNY at Buffalo , Buffalo, New York 14214, United States
| | - Xiaotao Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| | - Alexis C Thompson
- Department of Psychology, SUNY at Buffalo , Buffalo, New York 14260, United States.,Research Institute on Addictions, SUNY at Buffalo , Buffalo, New York 14203, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, SUNY at Buffalo , Buffalo, New York 14214, United States.,New York State Center of Excellence in Bioinformatics & Life Sciences , Buffalo, New York 14203, United States
| |
Collapse
|
16
|
Bosch PJ, Peng L, Kivell BM. Proteomics Analysis of Dorsal Striatum Reveals Changes in Synaptosomal Proteins following Methamphetamine Self-Administration in Rats. PLoS One 2015; 10:e0139829. [PMID: 26484527 PMCID: PMC4618287 DOI: 10.1371/journal.pone.0139829] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/16/2015] [Indexed: 02/04/2023] Open
Abstract
Methamphetamine is a widely abused, highly addictive drug. Regulation of synaptic proteins within the brain’s reward pathway modulates addiction behaviours, the progression of drug addiction and long-term changes in brain structure and function that result from drug use. Therefore, using large scale proteomics studies we aim to identify global protein expression changes within the dorsal striatum, a key brain region involved in the modulation of addiction. We performed LC-MS/MS analyses on rat striatal synaptosomes following 30 days of methamphetamine self-administration (2 hours/day) and 14 days abstinence. We identified a total of 84 differentially-expressed proteins with known roles in neuroprotection, neuroplasticity, cell cytoskeleton, energy regulation and synaptic vesicles. We identify significant expression changes in stress-induced phosphoprotein and tubulin polymerisation-promoting protein, which have not previously been associated with addiction. In addition, we confirm the role of amphiphysin and phosphatidylethanolamine binding protein in addiction. This approach has provided new insight into the effects of methamphetamine self-administration on synaptic protein expression in a key brain region associated with addiction, showing a large set of differentially-expressed proteins that persist into abstinence. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD001443.
Collapse
Affiliation(s)
- Peter J. Bosch
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Lifeng Peng
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- * E-mail: (BMK); (LP)
| | - Bronwyn M. Kivell
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- * E-mail: (BMK); (LP)
| |
Collapse
|
17
|
Smith RW, Cash P, Hogg DW, Buck LT. Proteomic changes in the brain of the western painted turtle (Chrysemys picta bellii) during exposure to anoxia. Proteomics 2015; 15:1587-97. [PMID: 25583675 DOI: 10.1002/pmic.201300229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/03/2014] [Accepted: 01/09/2015] [Indexed: 01/10/2023]
Abstract
During anoxia, overall protein synthesis is almost undetectable in the brain of the western painted turtle. The aim of this investigation was to address the question of whether there are alterations to specific proteins by comparing the normoxic and anoxic brain proteomes. Reductions in creatine kinase, hexokinase, glyceraldehyde-3-phosphate dehydrogenase, and pyruvate kinase reflected the reduced production of adenosine triphosphate (ATP) during anoxia while the reduction in transitional endoplasmic reticulum ATPase reflected the conservation of ATP or possibly a decrease in intracellular Ca(2+). In terms of neural protection programed cell death 6 interacting protein (PDCD6IP; a protein associated with apoptosis), dihydropyrimidinase-like protein, t-complex protein, and guanine nucleotide protein G(o) subunit alpha (Go alpha; proteins associated with neural degradation and impaired cognitive function) also declined. A decline in actin, gelsolin, and PDCD6IP, together with an increase in tubulin, also provided evidence for the induction of a neurological repair response. Although these proteomic alterations show some similarities with the crucian carp (another anoxia-tolerant species), there are species-specific responses, which supports the theory of no single strategy for anoxia tolerance. These findings also suggest the anoxic turtle brain could be an etiological model for investigating mammalian hypoxic damage and clinical neurological disorders.
Collapse
Affiliation(s)
- Richard W Smith
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada
| | | | | | | |
Collapse
|
18
|
Massaly N, Francès B, Moulédous L. Roles of the ubiquitin proteasome system in the effects of drugs of abuse. Front Mol Neurosci 2015; 7:99. [PMID: 25610367 PMCID: PMC4285073 DOI: 10.3389/fnmol.2014.00099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/08/2014] [Indexed: 12/21/2022] Open
Abstract
Because of its ability to regulate the abundance of selected proteins the ubiquitin proteasome system (UPS) plays an important role in neuronal and synaptic plasticity. As a result various stages of learning and memory depend on UPS activity. Drug addiction, another phenomenon that relies on neuroplasticity, shares molecular substrates with memory processes. However, the necessity of proteasome-dependent protein degradation for the development of addiction has been poorly studied. Here we first review evidences from the literature that drugs of abuse regulate the expression and activity of the UPS system in the brain. We then provide a list of proteins which have been shown to be targeted to the proteasome following drug treatment and could thus be involved in neuronal adaptations underlying behaviors associated with drug use and abuse. Finally we describe the few studies that addressed the need for UPS-dependent protein degradation in animal models of addiction-related behaviors.
Collapse
Affiliation(s)
- Nicolas Massaly
- Centre de Recherches sur la Cognition Animale, Centre National de la Recherche Scientifique UMR 5169 Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique UMR 5089 Toulouse, France ; Université Paul Sabatier Toulouse III Toulouse, France
| | - Bernard Francès
- Centre de Recherches sur la Cognition Animale, Centre National de la Recherche Scientifique UMR 5169 Toulouse, France ; Université Paul Sabatier Toulouse III Toulouse, France
| | - Lionel Moulédous
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique UMR 5089 Toulouse, France ; Université Paul Sabatier Toulouse III Toulouse, France
| |
Collapse
|
19
|
Recent updates on drug abuse analyzed by neuroproteomics studies: Cocaine, Methamphetamine and MDMA. TRANSLATIONAL PROTEOMICS 2014. [DOI: 10.1016/j.trprot.2014.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
20
|
Guillaud L, Gray KT, Moroz N, Pantazis C, Pate E, Kostyukova AS. Role of tropomodulin's leucine rich repeat domain in the formation of neurite-like processes. Biochemistry 2014; 53:2689-700. [PMID: 24746171 PMCID: PMC4018078 DOI: 10.1021/bi401431k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Actin dynamics is fundamental for neurite development; monomer depolymerization from pointed ends is rate-limiting in actin treadmilling. Tropomodulins (Tmod) make up a family of actin pointed end-capping proteins. Of the four known isoforms, Tmod1-Tmod3 are expressed in brain cells. We investigated the role of Tmod's C-terminal (LRR) domain in the formation of neurite-like processes by overexpressing Tmod1 and Tmod2 with deleted or mutated LRR domains in PC12 cells, a model system used to study neuritogenesis. Tmod1 overexpression results in a normal quantity and a normal length of processes, while Tmod2 overexpression reduces both measures. The Tmod2 overexpression phenotype is mimicked by overexpression of Tmod1 with the LRR domain removed or with three point mutations in the LRR domain that disrupt exposed clusters of conserved residues. Removal of Tmod2's LRR domain does not significantly alter the outgrowth of neurite-like processes compared to that of Tmod2. Overexpression of chimeras with the N-terminal and C-terminal domains switched between Tmod1 and Tmod2 reinforces the idea that Tmod1's LRR domain counteracts the reductive effect of the Tmod N-terminal domain upon formation of processes while Tmod2's LRR domain does not. We suggest that the TM-dependent actin capping ability of both Tmods inhibits the formation of processes, but in Tmod1, this inhibition can be controlled via its LRR domain. Circular dichroism, limited proteolysis, and molecular dynamics demonstrate structural differences in the C-terminal region of the LRR domains of Tmod1, Tmod2, and the Tmod1 mutant.
Collapse
Affiliation(s)
- Laurent Guillaud
- Cellular and Molecular Synaptic Function Unit, OIST Graduate University , 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Matsumoto I, Alexander-Kaufman K, Iwazaki T, Kashem MA, Matsuda-Matsumoto H. CNS proteomes in alcohol and drug abuse and dependence. Expert Rev Proteomics 2014; 4:539-52. [PMID: 17705711 DOI: 10.1586/14789450.4.4.539] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Drugs of abuse, including alcohol, can induce dependency formation and/or brain damage in brain regions important for cognition. 'High-throughput' approaches, such as cDNA microarray and proteomics, allow the analysis of global expression profiles of genes and proteins. These technologies have recently been applied to human brain tissue from patients with psychiatric illnesses, including substance abuse/dependence and appropriate animal models to help understand the causes and secondary effects of these complex disorders. Although these types of studies have been limited in number and by proteomics techniques that are still in their infancy, several interesting hypotheses have been proposed. Focusing on CNS proteomics, we aim to review and update current knowledge in this rapidly advancing area.
Collapse
Affiliation(s)
- Izuru Matsumoto
- University of Sydney, Discipline of Pathology, NSW, Australia.
| | | | | | | | | |
Collapse
|
22
|
Matsumoto H, Matsumoto I. Alcoholism: protein expression profiles in a human hippocampal model. Expert Rev Proteomics 2014; 5:321-31. [DOI: 10.1586/14789450.5.2.321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Yang X, Liu Y, Liu C, Xie W, Huang E, Huang W, Wang J, Chen L, Wang H, Qiu P, Xu J, Zhang F, Wang H. Inhibition of ROCK2 expression protects against methamphetamine-induced neurotoxicity in PC12 cells. Brain Res 2013; 1533:16-25. [DOI: 10.1016/j.brainres.2013.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 07/17/2013] [Accepted: 08/03/2013] [Indexed: 10/26/2022]
|
24
|
Colpan M, Moroz NA, Kostyukova AS. Tropomodulins and tropomyosins: working as a team. J Muscle Res Cell Motil 2013; 34:247-60. [PMID: 23828180 DOI: 10.1007/s10974-013-9349-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/24/2013] [Indexed: 11/25/2022]
Abstract
Actin filaments are major components of the cytoskeleton in eukaryotic cells and are involved in vital cellular functions such as cell motility and muscle contraction. Tmod and TM are crucial constituents of the actin filament network, making their presence indispensable in living cells. Tropomyosin (TM) is an alpha-helical, coiled coil protein that covers the grooves of actin filaments and stabilizes them. Actin filament length is optimized by tropomodulin (Tmod), which caps the slow growing (pointed end) of thin filaments to inhibit polymerization or depolymerization. Tmod consists of two structurally distinct regions: the N-terminal and the C-terminal domains. The N-terminal domain contains two TM-binding sites and one TM-dependent actin-binding site, whereas the C-terminal domain contains a TM-independent actin-binding site. Tmod binds to two TM molecules and at least one actin molecule during capping. The interaction of Tmod with TM is a key regulatory factor for actin filament organization. The binding efficacy of Tmod to TM is isoform-dependent. The affinities of Tmod/TM binding influence the proper localization and capping efficiency of Tmod at the pointed end of actin filaments in cells. Here we describe how a small difference in the sequence of the TM-binding sites of Tmod may result in dramatic change in localization of Tmod in muscle cells or morphology of non-muscle cells. We also suggest most promising directions to study and elucidate the role of Tmod-TM interaction in formation and maintenance of sarcomeric and cytoskeletal structure.
Collapse
Affiliation(s)
- Mert Colpan
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, 118 Dana Hall, Spokane St., Pullman, WA, 99164, USA
| | | | | |
Collapse
|
25
|
Zhou T, Huang C, Chen Y, Xu J, Shanbhag PD, Chen G. Methamphetamine regulation of sulfotransferase 1A1 and 2A1 expression in rat brain sections. Neurotoxicology 2012; 34:212-8. [PMID: 23026138 DOI: 10.1016/j.neuro.2012.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/25/2012] [Accepted: 09/21/2012] [Indexed: 11/15/2022]
Abstract
Sulfotransferase catalyzed sulfation regulates the biological activities of various neurotransmitters/hormones and detoxifies xenobiotics. Rat sulfotransferase rSULT1A1 catalyzes the sulfation of neurotransmitters and xenobiotic phenolic compounds. rSULT2A1 catalyzes the sulfation of hydroxysteroids and xenobiotic alcoholic compounds. In this work, Western blot and real-time RT-PCR were used to investigate the effect of methamphetamine on rSULT1A1 and rSULT2A1 protein and mRNA expression in rat cerebellum, frontal cortex, hippocampus, and striatum. After 1-day treatment, significant induction of rSULT1A1 was observed only in the cerebellum; rSULT2A1 was induced significantly in the cerebellum, frontal cortex, and hippocampus. After 7 days of exposure, rSULT1A1 was induced in the cerebellum, frontal cortex, and hippocampus, while rSULT2A1 was induced significantly in all four regions. Western blot results agreed with the real-time RT-PCR results, suggesting that the induction occurred at the gene transcriptional level. Results indicate that rSULT1A1 and rSULT2A1 are expressed in rat frontal cortex, cerebellum, striatum, and hippocampus. rSULT1A1 and rSULT2A1are inducible by methamphetamine in rat brain sections in a time dependable manner. rSULT2A1 is more inducible than rSULT1A1 by methamphetamine in rat brain sections. Induction activity of methamphetamine is in the order of cerebellum>frontal cortex, hippocampus>striatum. These results suggest that the physiological functions of rSULT1A1 and rSULT2A1 in different brain regions can be affected by methamphetamine.
Collapse
Affiliation(s)
- Tianyan Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | | | | | | | | | | |
Collapse
|
26
|
Dimatelis JJ, Russell VA, Stein DJ, Daniels WM. Effects of maternal separation and methamphetamine exposure on protein expression in the nucleus accumbens shell and core. Metab Brain Dis 2012; 27:363-75. [PMID: 22451087 DOI: 10.1007/s11011-012-9295-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/15/2012] [Indexed: 12/14/2022]
Abstract
Early life adversity has been suggested to predispose an individual to later drug abuse. The core and shell sub-regions of the nucleus accumbens are differentially affected by both stressors and methamphetamine. This study aimed to characterize and quantify methamphetamine-induced protein expression in the shell and core of the nucleus accumbens in animals exposed to maternal separation during early development. Isobaric tagging (iTRAQ) which enables simultaneous identification and quantification of peptides with tandem mass spectrometry (MS/MS) was used. We found that maternal separation altered more proteins involved in structure and redox regulation in the shell than in the core of the nucleus accumbens, and that maternal separation and methamphetamine had differential effects on signaling proteins in the shell and core. Compared to maternal separation or methamphetamine alone, the maternal separation/methamphetamine combination altered more proteins involved in energy metabolism, redox regulatory processes and neurotrophic proteins. Methamphetamine treatment of rats subjected to maternal separation caused a reduction of cytoskeletal proteins in the shell and altered cytoskeletal, signaling, energy metabolism and redox proteins in the core. Comparison of maternal separation/methamphetamine to methamphetamine alone resulted in decreased cytoskeletal proteins in both the shell and core and increased neurotrophic proteins in the core. This study confirms that both early life stress and methamphetamine differentially affect the shell and core of the nucleus accumbens and demonstrates that the combination of early life adversity and later methamphetamine use results in more proteins being affected in the nucleus accumbens than either treatment alone.
Collapse
Affiliation(s)
- J J Dimatelis
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa.
| | | | | | | |
Collapse
|
27
|
Effects of chronic tramadol exposure on the zebrafish brain: A proteomic study. J Proteomics 2012; 75:3351-64. [DOI: 10.1016/j.jprot.2012.03.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 03/12/2012] [Accepted: 03/26/2012] [Indexed: 11/18/2022]
|
28
|
Zhang X, Tobwala S, Ercal N. N-Acetylcysteine amide protects against methamphetamine-induced tissue damage in CD-1 mice. Hum Exp Toxicol 2012; 31:931-44. [DOI: 10.1177/0960327112438287] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Methamphetamine (METH), a highly addictive drug used worldwide, induces oxidative stress in various animal organs, especially the brain. This study evaluated oxidative damage caused by METH to tissues in CD-1 mice and identified a therapeutic drug that could protect against METH-induced toxicity. Male CD-1 mice were pretreated with a novel thiol antioxidant, N-acetylcysteine amide (NACA, 250 mg/kg body weight) or saline. Following this, METH (10 mg/kg body weight) or saline intraperitoneal injections were administered every 2 h over an 8-h period. Animals were killed 24 h after the last exposure. NACA-treated animals exposed to METH experienced significantly lower oxidative stress in their kidneys, livers, and brains than the untreated group, as indicated by their levels of glutathione, malondialdehyde, and protein carbonyl and their catalase and glutathione peroxidase activity. This suggests that METH induces oxidative stress in various organs and that a combination of NACA as a neuro- or tissue-protective agent, in conjunction with current treatment, might effectively treat METH abusers.
Collapse
Affiliation(s)
- X Zhang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| | - S Tobwala
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| | - N Ercal
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| |
Collapse
|
29
|
Wang J, Yuan W, Li MD. Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: a review of proteomics analyses. Mol Neurobiol 2011; 44:269-86. [PMID: 21922273 DOI: 10.1007/s12035-011-8202-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022]
Abstract
Drug addiction is a chronic neuronal disease. In recent years, proteomics technology has been widely used to assess the protein expression in the brain tissues of both animals and humans exposed to addictive drugs. Through this approach, a large number of proteins potentially involved in the etiology of drug addictions have been identified, which provide a valuable resource to study protein function, biochemical pathways, and networks related to the molecular mechanisms underlying drug dependence. In this article, we summarize the recent application of proteomics to profiling protein expression patterns in animal or human brain tissues after the administration of alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine/heroin/butorphanol, or nicotine. From available reports, we compiled a list of 497 proteins associated with exposure to one or more addictive drugs, with 160 being related to exposure to at least two abused drugs. A number of biochemical pathways and biological processes appear to be enriched among these proteins, including synaptic transmission and signaling pathways related to neuronal functions. The data included in this work provide a summary and extension of the proteomics studies on drug addiction. Furthermore, the proteins and biological processes highlighted here may provide valuable insight into the cellular activities and biological processes in neurons in the development of drug addiction.
Collapse
Affiliation(s)
- Ju Wang
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22911, USA
| | | | | |
Collapse
|
30
|
Lin X, Wang Q, Cheng Y, Ji J, Yu LC. Changes of protein expression profiles in the amygdala during the process of morphine-induced conditioned place preference in rats. Behav Brain Res 2011; 221:197-206. [DOI: 10.1016/j.bbr.2011.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/23/2011] [Accepted: 03/01/2011] [Indexed: 11/17/2022]
|
31
|
Methamphetamine toxicity and its implications during HIV-1 infection. J Neurovirol 2011; 17:401-15. [PMID: 21786077 DOI: 10.1007/s13365-011-0043-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 06/22/2011] [Indexed: 10/18/2022]
Abstract
Over the past two decades methamphetamine (MA) abuse has seen a dramatic increase. The abuse of MA is particularly high in groups that are at higher risk for HIV-1 infection, especially men who have sex with men (MSM). This review is focused on MA toxicity in the CNS as well as in the periphery. In the CNS, MA toxicity is comprised of numerous effects, including, but not limited to, oxidative stress produced by dysregulation of the dopaminergic system, hyperthermia, apoptosis, and neuroinflammation. Multiple lines of evidence demonstrate that these effects exacerbate the neurodegenerative damage caused by CNS infection of HIV perhaps because both MA and HIV target the frontostriatal regions of the brain. MA has also been demonstrated to increase viral load in the CNS of SIV-infected macaques. Using transgenic animal models, as well as cultured cells, the HIV proteins Tat and gp120 have been demonstrated to have neurotoxic properties that are aggravated by MA. In addition, MA has been shown to exhibit detrimental effects on the blood-brain barrier (BBB) that have the potential to increase the probability of CNS infection by HIV. Although the effects of MA in the periphery have not been as extensively studied as have the effects on the CNS, recent reports demonstrate the potential effects of MA on HIV infection in the periphery including increased expression of HIV co-receptors and increased expression of inflammatory cytokines.
Collapse
|
32
|
Deng MY, Lam S, Meyer U, Feldon J, Li Q, Wei R, Luk L, Chua SE, Sham P, Wang Y, McAlonan GM. Frontal-subcortical protein expression following prenatal exposure to maternal inflammation. PLoS One 2011; 6:e16638. [PMID: 21347362 PMCID: PMC3037372 DOI: 10.1371/journal.pone.0016638] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 12/30/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Maternal immune activation (MIA) during prenatal life is a risk factor for neurodevelopmental disorders including schizophrenia and autism. Such conditions are associated with alterations in fronto-subcortical circuits, but their molecular basis is far from clear. METHODOLOGY/PRINCIPAL FINDINGS Using two-dimensional differential in-gel electrophoresis (2D-DIGE) and mass spectrometry, with targeted western blot analyses for confirmation, we investigated the impact of MIA on the prefrontal and striatal proteome from an established MIA mouse model generated in C57B6 mice, by administering the viral analogue PolyI:C or saline vehicle (control) intravenously on gestation day (GD) 9. In striatum, 11 proteins were up-regulated and 4 proteins were down-regulated in the PolyI:C mice, while 10 proteins were up-regulated and 7 proteins down-regulated in prefrontal cortex (PFC). These were proteins involved in the mitogen-activated protein kinase (MAPK) signaling pathway, oxidation and auto-immune targets, including dual specificity mitogen-activated protein kinase kinase 1 (MEK), eukaryotic initiation factor (eIF) 4A-II, creatine kinase (CK)-B, L-lactate dehydrogenase (LDH)-B, WD repeat-containing protein and NADH dehydrogenase in the striatum; and guanine nucleotide-binding protein (G-protein), 14-3-3 protein, alpha-enolase, olfactory maker protein and heat shock proteins (HSP) 60, and 90-beta in the PFC. CONCLUSIONS/SIGNIFICANCE This data fits with emerging evidence for disruption of critical converging intracellular pathways involving MAPK pathways in neurodevelopmental conditions and it shows considerable overlap with protein pathways identified by genetic modeling and clinical post-mortem studies. This has implications for understanding causality and may offer potential biomarkers and novel treatment targets for neurodevelopmental conditions.
Collapse
Affiliation(s)
- Michelle Y. Deng
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Sylvia Lam
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Urs Meyer
- Laboratory and Behavioral Neurobiology, Swiss Federal Institute of Technology Zurich (ETH), Schwerzenbach, Switzerland
| | - Joram Feldon
- Laboratory and Behavioral Neurobiology, Swiss Federal Institute of Technology Zurich (ETH), Schwerzenbach, Switzerland
| | - Qi Li
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Ran Wei
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Lawrence Luk
- Genome Research Centre, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Siew Eng Chua
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
- State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Pak Sham
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
- State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Yu Wang
- Department of Pharmacology, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Grainne Mary McAlonan
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
- State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
- * E-mail:
| |
Collapse
|
33
|
Taurines R, Dudley E, Grassl J, Warnke A, Gerlach M, Coogan AN, Thome J. Proteomic research in psychiatry. J Psychopharmacol 2011; 25:151-96. [PMID: 20142298 DOI: 10.1177/0269881109106931] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Psychiatric disorders such as Alzheimer's disease, schizophrenia and mood disorders are severe and disabling conditions of largely unknown origin and poorly understood pathophysiology. An accurate diagnosis and treatment of these disorders is often complicated by their aetiological and clinical heterogeneity. In recent years proteomic technologies based on mass spectrometry have been increasingly used, especially in the search for diagnostic and prognostic biomarkers in neuropsychiatric disorders. Proteomics enable an automated high-throughput protein determination revealing expression levels, post-translational modifications and complex protein-interaction networks. In contrast to other methods such as molecular genetics, proteomics provide the opportunity to determine modifications at the protein level thereby possibly being more closely related to pathophysiological processes underlying the clinical phenomenology of specific psychiatric conditions. In this article we review the theoretical background of proteomics and its most commonly utilized techniques. Furthermore the current impact of proteomic research on diverse psychiatric diseases, such as Alzheimer's disease, schizophrenia, mood and anxiety disorders, drug abuse and autism, is discussed. Proteomic methods are expected to gain crucial significance in psychiatric research and neuropharmacology over the coming decade.
Collapse
Affiliation(s)
- Regina Taurines
- Academic Unit of Psychiatry, The School of Medicine, Institute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Filiou MD, Turck CW, Martins-de-Souza D. Quantitative proteomics for investigating psychiatric disorders. Proteomics Clin Appl 2010; 5:38-49. [DOI: 10.1002/prca.201000060] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/09/2010] [Accepted: 09/20/2010] [Indexed: 12/21/2022]
|
35
|
Day IN, Thompson RJ. UCHL1 (PGP 9.5): Neuronal biomarker and ubiquitin system protein. Prog Neurobiol 2010; 90:327-62. [DOI: 10.1016/j.pneurobio.2009.10.020] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/18/2009] [Accepted: 10/21/2009] [Indexed: 12/16/2022]
|
36
|
Faure JJ, Hattingh SM, Stein DJ, Daniels WM. Proteomic analysis reveals differentially expressed proteins in the rat frontal cortex after methamphetamine treatment. Metab Brain Dis 2009; 24:685-700. [PMID: 19826936 DOI: 10.1007/s11011-009-9167-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 08/29/2009] [Indexed: 10/20/2022]
Abstract
Methamphetamine (MA) is an addictive psycho-stimulant and the illicit use of the drug is escalating. In the present study, we examined protein expression profiles in the rat frontal cortex exposed to a total of eight MA injections (1 mg/kg, intraperitoneal) using 2-DE based proteomics. We investigated protein changes occurring in both the cytosolic fraction and the membrane fraction. 2-DE analysis resulted in 62 cytosolic and 44 membrane protein spots that were differentially regulated in the frontal cortex of rats exposed to MA when compared to control animals. Of these spots, 47 cytosolic and 42 membrane proteins were identified respectively, using ESI-Quad-TOF, which included ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCH-L1), beta-synuclein, 78 kDa glucose-regulated protein (GRP 78), gamma-enolase, dihydropyrimidase-related protein 2 (DRP 2), complexin 2 and synapsin II. These proteins are associated with protein degradation, redox regulation, energy metabolism, cellular growth, cytoskeletal modifications and synaptic function. Proteomic research may be useful in exploring the complex underlying molecular mechanisms of MA dependence.
Collapse
Affiliation(s)
- J J Faure
- Division of Medical Physiology, University of Stellenbosch, Tygerberg, South Africa.
| | | | | | | |
Collapse
|
37
|
Gold MS, Kobeissy FH, Wang KKW, Merlo LJ, Bruijnzeel AW, Krasnova IN, Cadet JL. Methamphetamine- and trauma-induced brain injuries: comparative cellular and molecular neurobiological substrates. Biol Psychiatry 2009; 66:118-27. [PMID: 19345341 PMCID: PMC2810951 DOI: 10.1016/j.biopsych.2009.02.021] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 02/19/2009] [Accepted: 02/22/2009] [Indexed: 12/21/2022]
Abstract
The use of methamphetamine (METH) is a growing public health problem, because its abuse is associated with long-term biochemical and structural effects on the human brain. Neurodegeneration is often observed in humans, because of mechanical injuries (e.g., traumatic brain injury [TBI]) and ischemic damage (strokes). In this review, we discuss recent findings documenting the fact that the psychostimulant drug METH can cause neuronal damage in several brain regions. The accumulated evidence from our laboratories and those of other investigators indicates that acute administration of METH leads to activation of calpain and caspase proteolytic systems. These systems are also involved in causing neuronal damage secondary to traumatic and ischemic brain injuries. Protease activation is accompanied by proteolysis of endogenous neuronal structural proteins (alphaII-spectrin protein and microtubule-associated protein-tau), evidenced by the appearance of their breakdown products after these injuries. When taken together, these observations suggest that METH exposure, like TBI, can cause substantial damage to the brain by causing both apoptotic and necrotic cell death in the brains of METH addicts who use large doses of the drug during their lifetimes. Finally, because METH abuse is accompanied by functional and structural changes in the brain similar to those in TBI, METH addicts might experience greater benefit if their treatment involved greater emphasis on rehabilitation in conjunction with potential neuroprotective pharmacological agents such as calpain and caspase inhibitors similar to those used in TBI.
Collapse
Affiliation(s)
- Mark S Gold
- Center for Neuroproteomics and Biomarkers Research, McKnight Brain Institute of the University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Kostyukova AS. Capping complex formation at the slow-growing end of the actin filament. BIOCHEMISTRY (MOSCOW) 2009; 73:1467-72. [PMID: 19216712 DOI: 10.1134/s0006297908130075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Actin filaments are polar; their barbed (fast-growing) and pointed (slow-growing) ends differ in structure and dynamic properties. The slow-growing end is regulated by tropomodulins, a family of capping proteins that require tropomyosins for optimal function. There are four tropomodulin isoforms; their distributions vary depending on tissue type and change during development. The C-terminal half of tropomodulin contains one compact domain represented by alternating alpha-helices and beta-structures. The tropomyosin-independent actin-capping site is located at the C-terminus. The N-terminal half has no regular structure; however, it contains a tropomyosin-dependent actin-capping site and two tropomyosin-binding sites. One tropomodulin molecule can bind two tropomyosin molecules. Effectiveness of tropomodulin binding to tropomyosin depends on the tropomyosin isoform. Regulation of tropomodulin binding at the pointed end as well as capping effectiveness in the presence of specific tropomyosins may affect formation of local cytoskeleton and dynamics of actin filaments in cells.
Collapse
Affiliation(s)
- A S Kostyukova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
39
|
Krasnova IN, Cadet JL. Methamphetamine toxicity and messengers of death. ACTA ACUST UNITED AC 2009; 60:379-407. [PMID: 19328213 DOI: 10.1016/j.brainresrev.2009.03.002] [Citation(s) in RCA: 420] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 03/16/2009] [Indexed: 12/11/2022]
Abstract
Methamphetamine (METH) is an illicit psychostimulant that is widely abused in the world. Several lines of evidence suggest that chronic METH abuse leads to neurodegenerative changes in the human brain. These include damage to dopamine and serotonin axons, loss of gray matter accompanied by hypertrophy of the white matter and microgliosis in different brain areas. In the present review, we summarize data on the animal models of METH neurotoxicity which include degeneration of monoaminergic terminals and neuronal apoptosis. In addition, we discuss molecular and cellular bases of METH-induced neuropathologies. The accumulated evidence indicates that multiple events, including oxidative stress, excitotoxicity, hyperthermia, neuroinflammatory responses, mitochondrial dysfunction, and endoplasmic reticulum stress converge to mediate METH-induced terminal degeneration and neuronal apoptosis. When taken together, these findings suggest that pharmacological strategies geared towards the prevention and treatment of the deleterious effects of this drug will need to attack the various pathways that form the substrates of METH toxicity.
Collapse
Affiliation(s)
- Irina N Krasnova
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS, Baltimore, MD 21224, USA
| | | |
Collapse
|
40
|
Matsumoto I. Proteomics approach in the study of the pathophysiology of alcohol-related brain damage. Alcohol Alcohol 2009; 44:171-6. [PMID: 19136498 DOI: 10.1093/alcalc/agn104] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Chronic, excessive drinking of alcohol can induce brain damage in the regions important for neurocognitive function. Some of the damage are permanent while some are appearantly reversible. It is our aim to understand the molecular mechanisms underlying alcohol-induced and/or related brain damage, particularly of that observed in 'medically uncomplicated' (without heptatic cirrhosis or Wernicke-Korsakoff Syndrome [WKS]) alcoholics. METHODS A high-throughput proteomics technology has been applied to several 'alcohol-sensitive' brain regions from uncomplicated and hepatic cirrhosis-complicated alcoholics to understand the mechanisms of alcohol-related brain damage at the level of protein expression. RESULTS It was clearly demonstrated that each brain region reacts in significantly different manner to chronic alcohol ingestion. Appearant abnormalities in vitamin B1 (thiamine)-related biochemical pathways were observed in several brain regions, such as the dorsolateral prefrontal cortex, genu (a frontal part of the corpus callosum) and cerebellar vermis in uncomplicated alcoholics, suggesting that the reduction of this important nutritional component might be associated with brain damage even without the signs of WKS. In addition, in the two different subregions of the corpus callosum (genu and splenium [a posterior part of the corpus callosum]) and the cerebellar vermis, significant differences in protein expression profiles between uncomplicated and complicated alcoholics with hepatic cirrhosis were identified, suggesting that hepatic factors such as ammonia have significant additive influences on brain protein expression, which might lead to the structural changes and/or damage in these brain regions. Furthermore, in the hippocampus, significant change of the level of glutamine synthetase expression was observed, suggesting once again the importance of ammonia as a cause of brain damage in this region. CONCLUSIONS Although our data did not show any evidence of "direct" alcohol effects to induce the alteration of protein expression in association with brain damage, high-throughput neuroproteomics approaches are proven to have a potential to dissect the mechanisms of complex brain disorders.
Collapse
Affiliation(s)
- Izuru Matsumoto
- Discipline of Pathology, University of Sydney, NSW, Australia.
| |
Collapse
|
41
|
Yang MH, Kim S, Jung MS, Shim JH, Ryu NK, Yook YJ, Jang CG, Bahk YY, Kim KW, Park JH. Proteomic analysis of methamphetamine-induced reinforcement processes within the mesolimbic dopamine system. Addict Biol 2008; 13:287-94. [PMID: 18279499 DOI: 10.1111/j.1369-1600.2007.00090.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACT Methamphetamine (MAP) is a commonly used, addictive drug, and a powerful stimulant that dramatically affects the central nervous system. In this study, we used the conditioned place preference (CPP) paradigm in order to study the reinforcing properties of MAP and the herewith associated changes in proteins within the mesolimbic dopamine system. A CPP was induced by MAP after three intermittent intraperitoneal injections (1 mg/kg) in rats and protein profiles in the nucleus accumbens, striatum, prefrontal cortex, cingulate cortex and hippocampus were compared with a saline-treated control group. In addition, a group of animals was run through extinction and protein profiles were compared with a non-extinguished group. Protein screening was conducted using two-dimensional electrophoresis analysis which identified 27 proteins in the group that showed MAP-induced CPP. Some of the proteins were confirmed by Western lot analysis. Identified proteins had functions related to the cytoskeleton, transport/endocytosis or exocytosis (e.g. profilin-2 and syntaxin-binding protein), and signal transduction, among others.
Collapse
Affiliation(s)
- Moon Hee Yang
- Department of Biological Science, Sookmyung Women's University, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kobeissy FH, Sadasivan S, Liu J, Gold MS, Wang KKW. Psychiatric research: psychoproteomics, degradomics and systems biology. Expert Rev Proteomics 2008; 5:293-314. [PMID: 18466058 DOI: 10.1586/14789450.5.2.293] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
While proteomics has excelled in several disciplines in biology (cancer, injury and aging), neuroscience and psychiatryproteomic studies are still in their infancy. Several proteomic studies have been conducted in different areas of psychiatric disorders, including drug abuse (morphine, alcohol and methamphetamine) and other psychiatric disorders (depression, schizophrenia and psychosis). However, the exact cellular and molecular mechanisms underlying these conditions have not been fully investigated. Thus, one of the primary objectives of this review is to discuss psychoproteomic application in the area of psychiatric disorders, with special focus on substance- and drug-abuse research. In addition, we illustrate the potential role of degradomic utility in the area of psychiatric research and its application in establishing and identifying biomarkers relevant to neurotoxicity as a consequence of drug abuse. Finally, we will discuss the emerging role of systems biology and its current use in the field of neuroscience and its integral role in establishing a comprehensive understanding of specific brain disorders and brain function in general.
Collapse
Affiliation(s)
- Firas H Kobeissy
- McKnight Brain Institute, Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL 32611, USA.
| | | | | | | | | |
Collapse
|
43
|
Kashem MA, Harper C, Matsumoto I. Differential protein expression in the corpus callosum (genu) of human alcoholics. Neurochem Int 2008; 53:1-11. [DOI: 10.1016/j.neuint.2008.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/08/2008] [Accepted: 04/14/2008] [Indexed: 01/17/2023]
|
44
|
Kobeissy FH, Warren MW, Ottens AK, Sadasivan S, Zhang Z, Gold MS, Wang KKW. Psychoproteomic analysis of rat cortex following acute methamphetamine exposure. J Proteome Res 2008; 7:1971-83. [PMID: 18452277 DOI: 10.1021/pr800029h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methamphetamine (METH) is recognized as one of the most abused psychostimulants in the United States. METH is an illicit drug that is known to exert neurotoxic effects on both dopaminergic and serotonergic neural systems both in vivo and in vitro. Our laboratory and others have been studying the biochemical mechanisms underlying METH-induced neurotoxicity. Here, we applied a novel psychoproteomic approach to evaluate METH-induced neurotoxicity following acute METH administration (4x10 mg/kg, ip injections every 1 h). Samples of cortical tissue collected 24 h post METH treatment were pooled, processed and analyzed via a selective psychoproteomic platform. Protein separation was performed using our previously established offline tandem cation-anion exchange chromatography-SDS-1D-PAGE platform (CAX-PAGE). Gel bands exhibiting 2 or more fold changes were extracted, trypsinized and subjected to reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) analyses for protein identification. Differential changes of the selected proteins were further confirmed by quantitative immunoblotting. We identified 82 differentially expressed proteins, 40 of which were downregulated and 42 of which were upregulated following acute METH treatment. Proteins that decreased in abundance included collapsin response mediator protein-2 (CRMP-2), superoxide dismutase 1 (SOD 1), phosphatidylethanolamine-binding protein-1 (PEBP-1) and mitogen activated kinase kinase-1 (MKK-1). Proteins that increased in abundance included authophagy-linked microtubule-associated protein light chain 3 (LC3), synapsin-1, and Parkinsonism linked ubiquitin carboxy-terminal hydroxylase-L1 (UCH-L1). Lastly, we used these differentially expressed protein subsets to construct a "psychoproteomic" spectrum map in an effort to uncover potential protein interactions relevant to acute METH neurotoxicity.
Collapse
Affiliation(s)
- Firas H Kobeissy
- Center for Neuroproteomics and Biomarkers Research, Department of Psychiatry, College of Medicine, McKnight Brain Institute of the University of Florida, Gainesville, Florida 32610, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Iwazaki T, McGregor IS, Matsumoto I. Protein expression profile in the amygdala of rats with methamphetamine-induced behavioral sensitization. Neurosci Lett 2008; 435:113-9. [DOI: 10.1016/j.neulet.2008.02.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/05/2008] [Accepted: 02/08/2008] [Indexed: 11/27/2022]
|
46
|
Quinn HR, Matsumoto I, Callaghan PD, Long LE, Arnold JC, Gunasekaran N, Thompson MR, Dawson B, Mallet PE, Kashem MA, Matsuda-Matsumoto H, Iwazaki T, McGregor IS. Adolescent rats find repeated Delta(9)-THC less aversive than adult rats but display greater residual cognitive deficits and changes in hippocampal protein expression following exposure. Neuropsychopharmacology 2008; 33:1113-26. [PMID: 17581536 DOI: 10.1038/sj.npp.1301475] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The current study examined whether adolescent rats are more vulnerable than adult rats to the lasting adverse effects of cannabinoid exposure on brain and behavior. Male Wistar rats were repeatedly exposed to Delta-9-tetrahydrocannabinol (Delta(9)-THC, 5 mg/kg i.p.) in a place-conditioning paradigm during either the adolescent (post-natal day 28+) or adult (post-natal day 60+) developmental stages. Adult rats avoided a Delta(9)-THC-paired environment after either four or eight pairings and this avoidance persisted for at least 16 days following the final Delta(9)-THC injection. In contrast, adolescent rats showed no significant place aversion. Adult Delta(9)-THC-treated rats produced more vocalizations than adolescent rats when handled during the intoxicated state, also suggesting greater drug-induced aversion. After a 10-15 day washout, both adult and adolescent Delta(9)-THC pretreated rats showed decreased social interaction, while only Delta(9)-THC pretreated adolescent rats showed significantly impaired object recognition memory. Seventeen days following their last Delta(9)-THC injection, rats were euthanased and hippocampal tissue processed using two-dimensional gel electrophoresis proteomics. There was no evidence of residual Delta(9)-THC being present in blood at this time. Proteomic analysis uncovered 27 proteins, many involved in regulating oxidative stress/mitochondrial functioning and cytoarchitecture, which were differentially expressed in adolescent Delta(9)-THC pretreated rats relative to adolescent controls. In adults, only 10 hippocampal proteins were differentially expressed in Delta(9)-THC compared to vehicle-pretreated controls. Overall these findings suggest that adolescent rats find repeated Delta(9)-THC exposure less aversive than adults, but that cannabinoid exposure causes greater lasting memory deficits and hippocampal alterations in adolescent than adult rats.
Collapse
Affiliation(s)
- Heidi R Quinn
- School of Psychology, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tropomodulin/Tropomyosin Interactions Regulate Actin Pointed End Dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 644:283-92. [DOI: 10.1007/978-0-387-85766-4_21] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
48
|
Li X, Wang H, Qiu P, Luo H. Proteomic profiling of proteins associated with methamphetamine-induced neurotoxicity in different regions of rat brain. Neurochem Int 2008; 52:256-64. [PMID: 17904249 DOI: 10.1016/j.neuint.2007.06.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 05/30/2007] [Accepted: 06/04/2007] [Indexed: 11/24/2022]
Abstract
It is well documented that methamphetamine (MA) can cause obvious damage to the brain, but the exact mechanism is still unknown. In the present study, proteomic methods of two-dimensional gel electrophoresis in combination with mass spectrometry analysis were used to identify global protein profiles associated with MA-induced neurotoxicity. For the first time, 30 protein spots have been found differentially expressed in different regions of rat brain, including 14 in striatum, 12 in hippocampus and 4 in frontal cortex. The proteins identified by tandem mass spectrometry were Cu, Zn superoxide dismutase, dimethylarginine dimethylaminohydrolase 1, alpha synuclein, ubiquitin-conjugating enzyme E2N, stathmin 1, calcineurin B, cystatin B, subunit of mitochondrial H-ATP synthase, ATP synthase D chain, mitochondrial, NADH dehydrogenase(ubiquinone) Fe-S protein 8, glia maturation factor, beta, Ash-m, neurocalcin delta, myotrophin, profiling IIa, D-dopachrome tautomerase, and brain lipid binding protein. The known functions of these proteins were related to the pathogenesis of MA-induced neurotoxicity, including oxidative stress, degeneration/apoptosis, mitochontrial/energy metabolism and others. Of these proteins, alpha-synuclein was up-regulated, and ATP synthase D chain, mitochondrial was down-regulated in all brain regions. Two proteins, Cu, Zn superoxide dismutase, subunit of mitochondrial H-ATPsynthase were down-regulated and Ubiquitin-conjugating enzyme E2N, NADH dehydrogenase (ubiquinone) Fe-S protein 8 were up-regulated simultaneously in striatum and hippocaltum. The expression of dimethylarginine dimethylaminohydrolase 1 (DDAH 1) increased both in striatum and frontal cortex. The parallel expression patterns of these proteins suggest that the pathogenesis of MA neurotoxicity in different brain regions may share some same pathways.
Collapse
Affiliation(s)
- Xuefeng Li
- Department of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | | | | | | |
Collapse
|
49
|
Fasano M, Bergamasco B, Lopiano L. The proteomic approach in Parkinson's disease. Proteomics Clin Appl 2007; 1:1428-35. [DOI: 10.1002/prca.200700264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Indexed: 12/26/2022]
|
50
|
Iwazaki T, McGregor IS, Matsumoto I. Protein expression profile in the striatum of rats with methamphetamine-induced behavioral sensitization. Proteomics 2007; 7:1131-9. [PMID: 17351886 DOI: 10.1002/pmic.200600595] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Repeated administration of methamphetamine (MAP) results in an increased behavioral response to the drug during subsequent exposure. This phenomenon is called behavioral sensitization. Sensitization is an enduring phenomenon, and suggests chronic alterations in neuronal plasticity. MAP-induced sensitization has been proposed and widely investigated as an animal model of MAP psychosis and schizophrenia. However, little is known about the molecular mechanisms underlying MAP-induced sensitization. 2-DE-based proteomics allows us to examine global changes in protein expression in complex biological systems and to propose hypotheses concerning the mechanisms underlying various pathological conditions. In the present study, we examined protein expression profiles in the striatum of MAP-sensitized rats using 2-DE-based proteomics. Repeated administration of MAP (4.0 mg/kg, once a day, intraperitoneal (i.p.)) for 10 days significantly augmented the locomotor response to an MAP challenge injection (1.0 mg/kg, i.p.) on day 11. This enhanced activity was maintained even after a week of drug abstinence. 2-DE analysis revealed 42 protein spots were differentially regulated in the striatum of MAP-sensitized rats compared to control. Thirty-one protein spots were identified using MALDI-TOF, including synapsin II, synaptosomal-associated protein 25 (SNAP-25), adenylyl cyclase-associated protein 1 (CAP1), and dihydropyrimidinase-related protein 2 (DRP2). These proteins can be related to underlying mechanisms of MAP-induced behavioral sensitization, indicating cytoskeletal modification, and altered synaptic function.
Collapse
Affiliation(s)
- Takeshi Iwazaki
- Discipline of Pathology, University of Sydney, NSW, Australia
| | | | | |
Collapse
|