1
|
Backman S, Botling J, Nord H, Ghosal S, Stålberg P, Juhlin CC, Almlöf J, Sundin A, Zhang L, Moens L, Eriksson B, Welin S, Hellman P, Skogseid B, Pacak K, Mollazadegan K, Åkerström T, Crona J. The evolutionary history of metastatic pancreatic neuroendocrine tumours reveals a therapy driven route to high-grade transformation. J Pathol 2024; 264:357-370. [PMID: 39360347 DOI: 10.1002/path.6348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024]
Abstract
Tumour evolution with acquisition of more aggressive disease characteristics is a hallmark of disseminated cancer. Metastatic pancreatic neuroendocrine tumours (PanNETs) in particular may progress from a low/intermediate to a high-grade disease. The aim of this work was to understand the molecular mechanisms underlying metastatic progression as well as PanNET transformation from a low/intermediate to a high-grade disease. We performed multi-omics analysis (genome/exome sequencing, total RNA-sequencing and methylation array) of 32 longitudinal samples from six patients with metastatic low/intermediate grade PanNET. The clonal composition of tumour lesions and underlying phylogeny of each patient were determined with bioinformatics analyses. Findings were validated in post-alkylating chemotherapy samples from 24 patients with PanNET using targeted next generation sequencing. We validate the current PanNET evolutionary model with MEN1 inactivation that occurs very early in tumourigenesis. This was followed by pronounced genetic diversity on both spatial and temporal levels, with parallel and convergent tumour evolution involving the ATRX/DAXX and mechanistic target of the rapamycin (mTOR) pathways. Following alkylating chemotherapy treatment, some PanNETs developed mismatch repair deficiency and acquired a hypermutational phenotype. This was validated among 16 patients with PanNET who had high-grade progression after alkylating chemotherapy, of whom eight had a tumour mutational burden >50 (50%). In comparison, among the eight patients who did not show high-grade progression, 0 had a tumour mutational burden >50 (0%; odds ratio 'infinite', 95% confidence interval 1.8 to 'infinite', p = 0.02). Our findings contribute to broaden the understanding of metastatic/high-grade PanNETs and suggests that therapy driven disease evolution is an important hallmark of this disease. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Samuel Backman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Helena Nord
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Suman Ghosal
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Peter Stålberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - C Christofer Juhlin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Almlöf
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Sundin
- Section of Radiology, Molecular Imaging, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Liang Zhang
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lotte Moens
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Barbro Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Staffan Welin
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Per Hellman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Britt Skogseid
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | | | - Tobias Åkerström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Joakim Crona
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Shelton SD, House S, Martins Nascentes Melo L, Ramesh V, Chen Z, Wei T, Wang X, Llamas CB, Venigalla SSK, Menezes CJ, Allies G, Krystkiewicz J, Rösler J, Meckelmann SW, Zhao P, Rambow F, Schadendorf D, Zhao Z, Gill JG, DeBerardinis RJ, Morrison SJ, Tasdogan A, Mishra P. Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis. SCIENCE ADVANCES 2024; 10:eadk8801. [PMID: 39485847 PMCID: PMC11529715 DOI: 10.1126/sciadv.adk8801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
Mitochondrial DNA (mtDNA) mutations are frequent in cancer, yet their precise role in cancer progression remains debated. To functionally evaluate the impact of mtDNA variants on tumor growth and metastasis, we developed an enhanced cytoplasmic hybrid (cybrid) generation protocol and established isogenic human melanoma cybrid lines with wild-type mtDNA or pathogenic mtDNA mutations with partial or complete loss of mitochondrial oxidative function. Cybrids with homoplasmic levels of pathogenic mtDNA reliably established tumors despite dysfunctional oxidative phosphorylation. However, these mtDNA variants disrupted spontaneous metastasis from primary tumors and reduced the abundance of circulating tumor cells. Migration and invasion of tumor cells were reduced, indicating that entry into circulation is a bottleneck for metastasis amid mtDNA dysfunction. Pathogenic mtDNA did not inhibit organ colonization following intravenous injection. In heteroplasmic cybrid tumors, single-cell analyses revealed selection against pathogenic mtDNA during melanoma growth. Collectively, these findings experimentally demonstrate that functional mtDNA is favored during melanoma growth and supports metastatic entry into the blood.
Collapse
Affiliation(s)
- Spencer D. Shelton
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara House
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luiza Martins Nascentes Melo
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Partner Site, Essen, Germany
| | - Vijayashree Ramesh
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhenkang Chen
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tao Wei
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xun Wang
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Claire B. Llamas
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Siva Sai Krishna Venigalla
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cameron J. Menezes
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gabriele Allies
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Partner Site, Essen, Germany
| | - Jonathan Krystkiewicz
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Partner Site, Essen, Germany
| | - Jonas Rösler
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Partner Site, Essen, Germany
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Sven W. Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Peihua Zhao
- Department of Applied Computational Cancer Research, Institute for AI in Medicine (IKIM), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Florian Rambow
- Department of Applied Computational Cancer Research, Institute for AI in Medicine (IKIM), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Partner Site, Essen, Germany
- National Center for Tumor Diseases (NCT)-West, Campus Essen, and Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| | - Zhiyu Zhao
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer G. Gill
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J. DeBerardinis
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J. Morrison
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Partner Site, Essen, Germany
| | - Prashant Mishra
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Zhang C, Gou X, Lai G, Li K, Zhu X, Liu N, Kuang Y, Ren K, Xie Y, Xu Y, Zhong X, Xie B. Single-nucleus sequencing unveils heterogeneity in renal cell carcinomas microenvironment: Insights into pathogenic origins and treatment-responsive cellular subgroups. Cancer Lett 2024; 604:217259. [PMID: 39278398 DOI: 10.1016/j.canlet.2024.217259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Different individuals with renal cell carcinoma (RCC) exhibit substantial heterogeneity in histomorphology, genetic alterations in the proteome, immune cell infiltration patterns, and clinical behavior. OBJECTIVES This study aims to use single-nucleus sequencing on ten samples (four normal, three clear cell renal cell carcinoma (ccRCC), and three chromophobe renal cell carcinoma (chRCC)) to uncover pathogenic origins and prognostic characteristics in patients with RCC. METHODS By using two algorithms, inferCNV and k-means, the study explores malignant cells and compares them with the normal group to reveal their origins. Furthermore, we explore the pathogenic factors at the gene level through Summary-data-based Mendelian Randomization and co-localization methods. Based on the relevant malignant markers, a total of 212 machine-learning combinations were compared to develop a prognostic signature with high precision and stability. Finally, the study correlates with clinical data to investigate which cell subtypes may impact patients' prognosis. RESULTS & CONCLUSION Two main origin tumor cells were identified: Proximal tubule cell B and Intercalated cell type A, which were highly differentiated in epithelial cells, and three gene loci were determined as potential pathogenic genes. The best malignant signature among the 212 prognostic models demonstrated high predictive power in ccRCC: (AUC: 0.920 (1-year), 0.920 (3-year) and 0.930 (5-year) in the training dataset; 0.756 (1-year), 0.828 (3-year), and 0.832 (5-year) in the testing dataset. In addition, we confirmed that LYVE1+ tissue-resident macrophage and TOX+ CD8 significantly impact the prognosis of ccRCC patients, while monocytes play a crucial role in the prognosis of chRCC patients.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Guichuan Lai
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Kangjie Li
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Xin Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Nian Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Youlin Kuang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Ke Ren
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yongpeng Xie
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yungang Xu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiaoni Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China.
| | - Biao Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China.
| |
Collapse
|
4
|
Li B, Sadagopan A, Li J, Wu Y, Cui Y, Konda P, Weiss CN, Choueiri TK, Doench JG, Viswanathan SR. A framework for target discovery in rare cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620074. [PMID: 39484513 PMCID: PMC11527139 DOI: 10.1101/2024.10.24.620074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
While large-scale functional genetic screens have uncovered numerous cancer dependencies, rare cancers are poorly represented in such efforts and the landscape of dependencies in many rare cancers remains obscure. We performed genome-scale CRISPR knockout screens in an exemplar rare cancer, TFE3-translocation renal cell carcinoma (tRCC), revealing previously unknown tRCC-selective dependencies in pathways related to mitochondrial biogenesis, oxidative metabolism, and kidney lineage specification. To generalize to other rare cancers in which experimental models may not be readily available, we employed machine learning to infer gene dependencies in a tumor or cell line based on its transcriptional profile. By applying dependency prediction to alveolar soft part sarcoma (ASPS), a distinct rare cancer also driven by TFE3 translocations, we discovered and validated that MCL1 represents a dependency in ASPS but not tRCC. Finally, we applied our model to predict gene dependencies in tumors from the TCGA (11,373 tumors; 28 lineages) and multiple additional rare cancers (958 tumors across 16 types, including 13 distinct subtypes of kidney cancer), nominating potentially actionable vulnerabilities in several poorly-characterized cancer types. Our results couple unbiased functional genetic screening with a predictive model to establish a landscape of candidate vulnerabilities across cancers, including several rare cancers currently lacking in potential targets.
Collapse
Affiliation(s)
- Bingchen Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Yuqianxun Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Yantong Cui
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Prathyusha Konda
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Cary N. Weiss
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Toni K. Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School; Boston, MA 02215, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA 02215, USA
| | - John G. Doench
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Srinivas R. Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School; Boston, MA 02215, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA 02215, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| |
Collapse
|
5
|
Fox NS, Tian M, Markowitz AL, Haider S, Li CH, Boutros PC. iSubGen generates integrative disease subtypes by pairwise similarity assessment. CELL REPORTS METHODS 2024:100884. [PMID: 39447572 DOI: 10.1016/j.crmeth.2024.100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/06/2023] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
There are myriad types of biomedical data-molecular, clinical images, and others. When a group of patients with the same underlying disease exhibits similarities across multiple types of data, this is called a subtype. Existing subtyping approaches struggle to handle diverse data types with missing information. To improve subtype discovery, we exploited changes in the correlation-structure between different data types to create iSubGen, an algorithm for integrative subtype generation. iSubGen can accommodate any feature that can be compared with a similarity metric to create subtypes versatilely. It can combine arbitrary data types for subtype discovery, such as merging genetic, transcriptomic, proteomic, and pathway data. iSubGen recapitulates known subtypes across multiple cancers even with substantial missing data and identifies subtypes with distinct clinical behaviors. It performs equally with or superior to other subtyping methods, offering greater stability and robustness to missing data and flexibility to new data types. It is available at https://cran.r-project.org/web/packages/iSubGen.
Collapse
Affiliation(s)
- Natalie S Fox
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Mao Tian
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Alexander L Markowitz
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Constance H Li
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA; Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Achom M, Sadagopan A, Bao C, McBride F, Li J, Konda P, Tourdot RW, Xu Q, Nakhoul M, Gallant DS, Ahmed UA, O'Toole J, Freeman D, Lee GSM, Hecht JL, Kauffman EC, Einstein DJ, Choueiri TK, Zhang CZ, Viswanathan SR. A genetic basis for sex differences in Xp11 translocation renal cell carcinoma. Cell 2024; 187:5735-5752.e25. [PMID: 39168126 PMCID: PMC11455617 DOI: 10.1016/j.cell.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Xp11 translocation renal cell carcinoma (tRCC) is a rare, female-predominant cancer driven by a fusion between the transcription factor binding to IGHM enhancer 3 (TFE3) gene on chromosome Xp11.2 and a partner gene on either chromosome X (chrX) or an autosome. It remains unknown what types of rearrangements underlie TFE3 fusions, whether fusions can arise from both the active (chrXa) and inactive X (chrXi) chromosomes, and whether TFE3 fusions from chrXi translocations account for the female predominance of tRCC. To address these questions, we performed haplotype-specific analyses of chrX rearrangements in tRCC whole genomes. We show that TFE3 fusions universally arise as reciprocal translocations and that oncogenic TFE3 fusions can arise from chrXi:autosomal translocations. Female-specific chrXi:autosomal translocations result in a 2:1 female-to-male ratio of TFE3 fusions involving autosomal partner genes and account for the female predominance of tRCC. Our results highlight how X chromosome genetics constrains somatic chrX alterations and underlies cancer sex differences.
Collapse
Affiliation(s)
- Mingkee Achom
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Chunyang Bao
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fiona McBride
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Prathyusha Konda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Richard W Tourdot
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Qingru Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Maria Nakhoul
- Department of Informatics & Analytics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Daniel S Gallant
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Usman Ali Ahmed
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jillian O'Toole
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dory Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gwo-Shu Mary Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Eric C Kauffman
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - David J Einstein
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Srinivas R Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA.
| |
Collapse
|
7
|
Rowe SP, Murtazaliev S, Oldan JD, Kaufmann B, Khan A, Allaf ME, Singla N, Pavlovich CP, De Marzo AM, Baraban E, Gorin MA, Solnes LB. Imaging of Chromophobe Renal Cell Carcinoma with 99mTc-Sestamibi SPECT/CT: Considerations Regarding Risk Stratification and Histologic Reclassification. Mol Imaging Biol 2024; 26:768-773. [PMID: 39078524 DOI: 10.1007/s11307-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/26/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
PURPOSE Indeterminate renal masses are increasingly incidentally found on cross-sectional imaging. 99mTc-sestamibi single-photon emission computed tomography/computed tomography (SPECT/CT) scans can be used to identify oncocytomas and oncocytic renal neoplasms, including a subset of chromophobe renal cell carcinomas (chRCCs), which are viewed as false-positive. PROCEDURE Patients imaged with renal sestamibi scans between 2014 and 2023 were reviewed. Those patients with solitary tumors that were originally classified as chRCC were included in the analysis. Imaging with SPECT/CT from the liver dome down had been carried out 75 min after the administration of 925 MBq of 99mTc-sestamibi. All available H&E and immunostained slides were re-reviewed and classified according to WHO 2022 criteria. Confirmatory immunohistochemical stains were performed in tumors considered morphologically suspicious for non-chRCC entities. RESULT A total of 18 patients with solitary tumors were included in the final analysis. 13/18 (72.2%) tumors in this cohort remained classified as chRCC, with 4/18 (22.2%) being eosinophilic-variant chRCC. The reclassified tumors (5/18 [27.8%]) included 2/18 (11.1%) low-grade oncocytic tumor (LOT), 1/18 (5.5%) eosinophilic vacuolated tumor (EVT), and 2/18 (11.1%) unclassified low-grade oncocytic neoplasms. As such, only 2/9 (22.2%) qualitatively "hot" tumors were chRCC other than eosinophilic-variant and only 1/9 (11.1%) "cold" tumors was a histology other than chRCC. CONCLUSION Based on current histopathologic classification methods, it is likely that the "false-positive" rate of uptake on renal sestamibi scans with chRCC has been over-stated. Further study is warranted to better refine the optimal utility of renal sestamibi scans for non-invasive risk stratification of indeterminate renal masses.
Collapse
Affiliation(s)
- Steven P Rowe
- Molecular Imaging and Therapeutics, Department of Radiology, University of North Carolina, 101 Manning Dr, Chapel Hill, NC, 27514, USA.
| | - Salikh Murtazaliev
- Department of Medical Imaging, The University of Arizona College of Medicine, Tuscon, AZ, USA
| | - Jorge D Oldan
- Molecular Imaging and Therapeutics, Department of Radiology, University of North Carolina, 101 Manning Dr, Chapel Hill, NC, 27514, USA
| | - Basil Kaufmann
- Milton and Carroll Petrie Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amna Khan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohammad E Allaf
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nirmish Singla
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christian P Pavlovich
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ezra Baraban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael A Gorin
- Milton and Carroll Petrie Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lilja B Solnes
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Pacyna CN, Anandapadamanaban M, Loudon KW, Hay IM, Perisic O, Li R, Byrne M, Allen L, Roberts K, Hooks Y, Warren AY, Stewart GD, Clatworthy MR, Teichmann SA, Behjati S, Campbell PJ, Williams RL, Mitchell TJ. Multifocal, multiphenotypic tumours arising from an MTOR mutation acquired in early embryogenesis. Oncogene 2024; 43:3268-3276. [PMID: 39271965 PMCID: PMC11518995 DOI: 10.1038/s41388-024-03137-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/05/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024]
Abstract
Embryogenesis is a vulnerable time. Mutations in developmental cells can result in the wide dissemination of cells predisposed to disease within mature organs. We characterised the evolutionary history of four synchronous renal tumours from a 14-year-old girl using whole genome sequencing alongside single cell and bulk transcriptomic sequencing. Phylogenetic reconstruction timed the origin of all tumours to a multipotent embryonic cell committed to the right kidney, around 4 weeks post-conception. Biochemical and structural analysis of their shared MTOR mutation, absent from normal tissues, demonstrates enhanced protein flexibility, enabling a FAT domain hinge to dramatically increase activity of mTORC1 and mTORC2. Developmental mutations, not usually detected in traditional genetic screening, have vital clinical importance in guiding prognosis, targeted treatment, and family screening decisions for paediatric tumours.
Collapse
Affiliation(s)
- Clarissa N Pacyna
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Kevin W Loudon
- Cambridge University Hospitals NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Iain M Hay
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Olga Perisic
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Ruoyan Li
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Matthew Byrne
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Laura Allen
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Kirsty Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Yvette Hooks
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Anne Y Warren
- Cambridge University Hospitals NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Grant D Stewart
- Cambridge University Hospitals NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Cambridge University Hospitals NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Cambridge University Hospitals NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Peter J Campbell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Thomas J Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
- Cambridge University Hospitals NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK.
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
9
|
Chen Z, Yang J, Zhang W, Qian Y, Zhang N, Chen Z, Lu M, Ge L, Liu C, Tian X, Jia G, Ma L, Li B. Understanding m6A changes in chromophobe renal cell carcinoma and predicting patient outcomes survival. BMC Cancer 2024; 24:1187. [PMID: 39334021 PMCID: PMC11438101 DOI: 10.1186/s12885-024-12956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
N6-methyladenosine (m6A) is a prevalent mRNA modification known for its implications in various cancer types, yet its role in chromophobe renal cell carcinoma (chRCC) remains largely unexplored. In this study, we performed m6A-SEAL-seq and RNA-seq analyses on tissues from three chRCC subjects, aiming to uncover m6A alterations in chRCC. Our findings revealed reduced expression levels of four m6A regulators in chRCC tissues and highlighted differences in m6A levels compared to normal tissues. Furthermore, we identified specific genes and cancer-related pathways affected by these differences, including notable candidates like NOTCH1 and FGFR1, implicated in chRCC development. Additionally, we developed a predictive model based on the expression level of m6A associated genes, demonstrating promising prognostic capabilities for patient survival prediction. Overall, our study provides valuable insights into the role of m6A in chRCC and its potential as a prognostic indicator.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Urology, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, 100080, China
| | - Junbo Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wei Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yang Qian
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Nan Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zixin Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Min Lu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, China
- Department of Pathology, Peking University Third Hospital, Beijing, 100191, China
| | - Liyuan Ge
- Department of Urology, Peking University Third Hospital, Beijing, 100191, China
| | - Cheng Liu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaojun Tian
- Department of Urology, Peking University Third Hospital, Beijing, 100191, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, Beijing, 100191, China.
| | - Baoguo Li
- Department of Urology, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, 100080, China.
| |
Collapse
|
10
|
Yu A, Yesilkanal A, Thakur A, Wang F, Yang Y, Phillips W, Wu X, Muir A, He X, Spitz F, Yang L. HYENA detects oncogenes activated by distal enhancers in cancer. Nucleic Acids Res 2024; 52:e77. [PMID: 39051548 PMCID: PMC11381332 DOI: 10.1093/nar/gkae646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Somatic structural variations (SVs) in cancer can shuffle DNA content in the genome, relocate regulatory elements, and alter genome organization. Enhancer hijacking occurs when SVs relocate distal enhancers to activate proto-oncogenes. However, most enhancer hijacking studies have only focused on protein-coding genes. Here, we develop a computational algorithm 'HYENA' to identify candidate oncogenes (both protein-coding and non-coding) activated by enhancer hijacking based on tumor whole-genome and transcriptome sequencing data. HYENA detects genes whose elevated expression is associated with somatic SVs by using a rank-based regression model. We systematically analyze 1146 tumors across 25 types of adult tumors and identify a total of 108 candidate oncogenes including many non-coding genes. A long non-coding RNA TOB1-AS1 is activated by various types of SVs in 10% of pancreatic cancers through altered 3-dimensional genome structure. We find that high expression of TOB1-AS1 can promote cell invasion and metastasis. Our study highlights the contribution of genetic alterations in non-coding regions to tumorigenesis and tumor progression.
Collapse
Affiliation(s)
- Anqi Yu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Ali E Yesilkanal
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Ashish Thakur
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Fan Wang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Yang Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - William Phillips
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Francois Spitz
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Lixing Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
11
|
Boehm E, Gill AJ, Clifton-Bligh R, Tothill RW. Recent progress in molecular classification of phaeochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab 2024:101939. [PMID: 39271378 DOI: 10.1016/j.beem.2024.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Phaeochromocytomas (PC) and paragangliomas (PG) are neural crest cancers with high heritability. Recent advances in molecular profiling, including multi-omics and single cell genomics has identified up to seven distinct molecular subtypes. These subtypes are defined by mutations involving hypoxia-inducible factors (HIFs), Krebs cycle, kinase and WNT signalling, but are also defined by chromaffin differentiation states. PCPG have a dominant proangiogenic microenvironment linked to HIF pathway activity and are generally considered "immune cold" tumours with a high number of macrophages. PCPG subtypes can indicate increased metastatic risk but secondary mutations in telomere maintenance genes TERT or ATRX are required to drive the metastatic phenotype. Molecular profiling can identify molecular therapeutic (e.g. RET and EPAS1) and radiopharmaceutical targets while also helping to support variant pathogenicity and familial risk. Molecular profiling and subtyping of PCPG therefore confers the possibility of nuanced prognostication and individual treatment stratification but this still requires large-scale prospective validation.
Collapse
Affiliation(s)
- Emma Boehm
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia; Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Anthony J Gill
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Roderick Clifton-Bligh
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, University of Sydney, Sydney NSW, Australia.
| | - Richard W Tothill
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Australia.
| |
Collapse
|
12
|
Bezwada D, Perelli L, Lesner NP, Cai L, Brooks B, Wu Z, Vu HS, Sondhi V, Cassidy DL, Kasitinon S, Kelekar S, Cai F, Aurora AB, Patrick M, Leach A, Ghandour R, Zhang Y, Do D, McDaniel P, Sudderth J, Dumesnil D, House S, Rosales T, Poole AM, Lotan Y, Woldu S, Bagrodia A, Meng X, Cadeddu JA, Mishra P, Garcia-Bermudez J, Pedrosa I, Kapur P, Courtney KD, Malloy CR, Genovese G, Margulis V, DeBerardinis RJ. Mitochondrial complex I promotes kidney cancer metastasis. Nature 2024; 633:923-931. [PMID: 39143213 PMCID: PMC11424252 DOI: 10.1038/s41586-024-07812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Most kidney cancers are metabolically dysfunctional1-4, but how this dysfunction affects cancer progression in humans is unknown. We infused 13C-labelled nutrients in over 80 patients with kidney cancer during surgical tumour resection. Labelling from [U-13C]glucose varies across subtypes, indicating that the kidney environment alone cannot account for all tumour metabolic reprogramming. Compared with the adjacent kidney, clear cell renal cell carcinomas (ccRCCs) display suppressed labelling of tricarboxylic acid (TCA) cycle intermediates in vivo and in ex vivo organotypic cultures, indicating that suppressed labelling is tissue intrinsic. [1,2-13C]acetate and [U-13C]glutamine infusions in patients, coupled with measurements of respiration in isolated human kidney and tumour mitochondria, reveal lower electron transport chain activity in ccRCCs that contributes to decreased oxidative and enhanced reductive TCA cycle labelling. However, ccRCC metastases unexpectedly have enhanced TCA cycle labelling compared with that of primary ccRCCs, indicating a divergent metabolic program during metastasis in patients. In mice, stimulating respiration or NADH recycling in kidney cancer cells is sufficient to promote metastasis, whereas inhibiting electron transport chain complex I decreases metastasis. These findings in humans and mice indicate that metabolic properties and liabilities evolve during kidney cancer progression, and that mitochondrial function is limiting for metastasis but not growth at the original site.
Collapse
Affiliation(s)
- Divya Bezwada
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Luigi Perelli
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas P Lesner
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ling Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bailey Brooks
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zheng Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hieu S Vu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Varun Sondhi
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel L Cassidy
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stacy Kasitinon
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sherwin Kelekar
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Feng Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arin B Aurora
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - McKenzie Patrick
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashley Leach
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rashed Ghandour
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuanyuan Zhang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Duyen Do
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Phyllis McDaniel
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jessica Sudderth
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dennis Dumesnil
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara House
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tracy Rosales
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alan M Poole
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Solomon Woldu
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aditya Bagrodia
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaosong Meng
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey A Cadeddu
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Prashant Mishra
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Javier Garcia-Bermudez
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Pedrosa
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Payal Kapur
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kevin D Courtney
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Craig R Malloy
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vitaly Margulis
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
13
|
Guo X, Xiao Z, Xu H, Ren K, Li X, Wu YK, Liu Y, Zhou L, Wang L, Liu H, Dong L, Dong H, Yang X. Clinicopathological, Immunohistochemical, and Molecular Characteristics of Pigmented Microcystic Chromophobe Renal Cell Carcinoma with Favorable Prognosis. Int J Surg Pathol 2024; 32:1065-1073. [PMID: 38173283 DOI: 10.1177/10668969231217632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background. Pigmented microcystic chromophobe renal cell carcinoma (RCC) is a subtype of chromophobe RCC. Its distinct histopathologic features are microcystic and microtubular pattern, pigmentation, and microcalcifications. Pigmented microcystic chromophobe RCC has ultrastructure, immunophenotypic structure, and molecular results similar to chromophobe RCC. Methods. We report five tumors of pigmented microcystic chromophobe RCC. Morphological observation and immunohistochemical examination were performed, and clinical and molecular features were analyzed. Results. Microscopically, all five tumors showed brown pigmentation, microcystic, and tubular cystic structures, one tumor presented microscopic calcifications. All tumors were positive for EMA, AE1/AE3, PAX8, KRT7, KIT (CD117), claudin 7, KRT8, and E-cadherin, and three tumors expressed P504S. All tumors were negative for vimentin, CA9, KRT20, TFE3, TFEB, Melan-A, HMB45, FH, SDHB, and GATA3. Ki-67 index varied from less than 1% to 2%. In three tumors, next-generation sequencing of the 688 gene was performed, the results found gene variants with potential clinical significance such as JMJD1C, MYCL, TP53, PI3KCA, KRAS, APC, GLI1, LRRK2, and gene variants with unclear clinical significance such as NTRK1 and RAD50; All patients remained alive over a follow-up period of 8-46 months without tumor recurrence and sarcomatoid transformation. Conclusions. Pigmented microcystic chromophobe RCC has a relatively benign biological behavior, and distant metastases and sarcomatoid transformation are rare. This overview of five additional tumors of pigmented microcystic chromophobe RCC offers further insight into this special subtype of chromophobe RCC.
Collapse
Affiliation(s)
- Xingmei Guo
- Department of Pathology, Wuxi No.2 People's Hospital, Wuxi, China
| | - Zhini Xiao
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haimin Xu
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kai Ren
- Central Pharmacy, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Xiangyun Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan Kai Wu
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yang Liu
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Luting Zhou
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Pathology, Wuxi No.2 People's Hospital, Wuxi, China
| | - Hengan Liu
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Xiaoqun Yang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Hase N, Misiak D, Taubert H, Hüttelmaier S, Gekle M, Köhn M. APOBEC3C-mediated NF-κB activation enhances clear cell renal cell carcinoma progression. Mol Oncol 2024. [PMID: 39183666 DOI: 10.1002/1878-0261.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Renowned as the predominant form of kidney cancer, clear cell renal cell carcinoma (ccRCC) exhibits susceptibility to immunotherapies due to its specific expression profile as well as notable immune cell infiltration. Despite this, effectively treating metastatic ccRCC remains a significant challenge, necessitating a more profound comprehension of the underlying molecular mechanisms governing its progression. Here, we unveil that the enhanced expression of the RNA-binding protein DNA dC → dU-editing enzyme APOBEC-3C (APOBEC3C; also known as A3C) in ccRCC tissue and ccRCC-derived cell lines serves as a catalyst for tumor growth by amplifying nuclear factor-kappa B (NF-κB) activity. By employing RNA-sequencing and cell-based assays in ccRCC-derived cell lines, we determined that A3C is a stress-responsive factor and crucial for cell survival. Furthermore, we identified that A3C binds and potentially stabilizes messenger RNAs (mRNAs) encoding positive regulators of the NF-κB pathway. Upon A3C depletion, essential subunits of the NF-κB family are abnormally restrained in the cytoplasm, leading to deregulation of NF-κB target genes. Our study illuminates the pivotal role of A3C in promoting ccRCC tumor development, positioning it as a prospective target for future therapeutic strategies.
Collapse
Affiliation(s)
- Nora Hase
- Junior Group 'Non-Coding RNAs and RBPs in Human Diseases', Medical Faculty, Martin Luther University Halle/Wittenberg, Germany
| | - Danny Misiak
- Section for Molecular Cell Biology, Institute of Molecular Medicine, Martin Luther University Halle/Wittenberg, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich Alexander University Erlangen/Nürnberg, Germany
| | - Stefan Hüttelmaier
- Section for Molecular Cell Biology, Institute of Molecular Medicine, Martin Luther University Halle/Wittenberg, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle/Wittenberg, Germany
| | - Marcel Köhn
- Junior Group 'Non-Coding RNAs and RBPs in Human Diseases', Medical Faculty, Martin Luther University Halle/Wittenberg, Germany
| |
Collapse
|
15
|
Gulati S, Tangen C, Ryan CW, Vaishampayan UN, Shuch BM, Barata PC, Pruthi DK, Bergerot CD, Tripathi A, Lerner SP, Thompson IM, Lara PN, Pal SK. Adjuvant Everolimus in Non-Clear Cell Renal Cell Carcinoma: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2425288. [PMID: 39106067 PMCID: PMC11304111 DOI: 10.1001/jamanetworkopen.2024.25288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/31/2024] [Indexed: 08/07/2024] Open
Abstract
Importance Clinical trial data on adjuvant therapy in patients with non-clear cell renal cell carcinoma (RCC) are scant. Objective To evaluate the effect of adjuvant everolimus after nephrectomy on recurrence-free survival (RFS) and overall survival (OS) in patients with localized papillary and chromophobe RCC. Design, Setting, and Participants This prespecified subgroup analysis of a phase 3 randomized clinical trial, EVEREST, included patients enrolled between April 1, 2011, and September 15, 2016. Eligible patients had fully resected RCC at intermediate-high risk (pT1 grade 3-4, N0 to pT3a grade 1-2, N0) or very-high risk (pT3a grade 3-4 to pT4 any grade or N+) for recurrence who had received radical or partial nephrectomy. Final analyses was completed in March 2022. Intervention The intervention group received 54 weeks of everolimus (10 mg orally daily); the control group received a matching placebo. Main Outcomes and Measures The main outcomes were RFS, OS, and rates of adverse events. For testing the hazard ratio (HR) for treatment effect, a Cox regression model was used for both OS and RFS. Results Of 1545 adult patients with treatment-naive, nonmetastatic, fully resected RCC in EVEREST, 109 had papillary RCC (median [range] age, 60 [19-81] years; 82 [75%] male; 50 patients [46%] with very high-risk disease) and 99 had chromophobe RCC (median [range] age 51 [18-71] years; 53 [54%] male; 34 patients [34%] with very high-risk disease). Among 57 patients with papillary RCC in the intervention group, 26 (46%) completed 54 weeks of treatment, and among 53 patients with chromophobe RCC in the intervention group, 26 (49%) completed 54 weeks of treatment. With a median (IQR) follow-up of 76 (61-96) months, adjuvant everolimus did not improve RFS compared with placebo in either papillary RCC (5-year RFS: 62% vs 70%; HR, 1.19; 95% CI, 0.61-2.33; P = .61) or chromophobe RCC (5-year RFS: 79% vs 77%; HR, 0.89; 95% CI, 0.37-2.13; P = .79). In the combined non-clear RCC cohort, grade 3 or higher adverse events occurred in 48% of patients who received everolimus and 9% of patients who received placebo. Conclusions and Relevance In this clinical trial assessing the use of adjuvant everolimus, postoperative everolimus did not show evidence of improved RFS among patients with papillary or chromophobe RCC, and results from the study do not support adjuvant everolimus for this cohort. However, since the lower bounds of the 95% CIs were 0.61 and 0.89, respectively, potential treatment benefit in these subgroups cannot be ruled out. Trial Registration ClinicalTrials.gov Identifier: NCT01120249.
Collapse
Affiliation(s)
- Shuchi Gulati
- University of California Davis Comprehensive Cancer Center, Sacramento
| | | | | | | | | | | | | | | | | | | | | | - Primo N. Lara
- University of California Davis Comprehensive Cancer Center, Sacramento
| | - Sumanta K. Pal
- City of Hope Comprehensive Cancer Center, Duarte, California
| |
Collapse
|
16
|
Powles T, Albiges L, Bex A, Comperat E, Grünwald V, Kanesvaran R, Kitamura H, McKay R, Porta C, Procopio G, Schmidinger M, Suarez C, Teoh J, de Velasco G, Young M, Gillessen S. Renal cell carcinoma: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2024; 35:692-706. [PMID: 38788900 DOI: 10.1016/j.annonc.2024.05.537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Affiliation(s)
- T Powles
- Barts Cancer Institute, Department of Medical Oncology, Queen Mary University of London and Royal Free London NHS Foundation Trust, London, UK
| | - L Albiges
- Université Paris Saclay, Institut Gustave Roussy, Villejuif, France
| | - A Bex
- Specialist Centre for Kidney Cancer, Royal Free London NHS Foundation Trust, London; Division of Surgery and Interventional Science, University College London, London, UK; Department of Urology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - E Comperat
- Department of Pathology, Medical University of Vienna, General Hospital of Vienna, Vienna, Austria
| | - V Grünwald
- Interdisciplinary Genitourinary Oncology, West German Cancer Center Clinic for Internal Medicine and Clinic for Urology, University Hospital Essen, Essen, Germany
| | - R Kanesvaran
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - H Kitamura
- Department of Urology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - R McKay
- Department of Medicine and Urology, University of California San Diego, La Jolla, USA
| | - C Porta
- Interdisciplinary Department of Medicine, University of Bari 'A. Moro', Bari; Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari
| | - G Procopio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - M Schmidinger
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - C Suarez
- Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - J Teoh
- S. H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - G de Velasco
- Instituto de Investigación i+12 and Departamento de Oncología Médica, Hospital University 12 de Octubre, Madrid, Spain
| | - M Young
- Barts Cancer Institute, Department of Medical Oncology, Queen Mary University of London and Royal Free London NHS Foundation Trust, London, UK; Barts Cancer Institute, Department of Experimental Cancer Medicine, Queen Mary University of London, London, UK
| | - S Gillessen
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona; Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
17
|
Jayab NA, Abed A, Talaat IM, Hamoudi R. The molecular mechanism of NF-κB dysregulation across different subtypes of renal cell carcinoma. J Adv Res 2024:S2090-1232(24)00314-X. [PMID: 39094893 DOI: 10.1016/j.jare.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The nuclear factor kappa B (NF-κB) is a critical pathway that regulates various cellular functions, including immune response, proliferation, growth, and apoptosis. Furthermore, this pathway is tightly regulated to ensure stability in the presence of immunogenic triggers or genotoxic stimuli. The lack of control of the NF-κB pathway can lead to the initiation of different diseases, mainly autoimmune diseases and cancer, including Renal cell carcinoma (RCC). RCC is the most common type of kidney cancer and is characterized by complex genetic composition and elusive molecular mechanisms. AIM OF REVIEW The current review summarizes the mechanism of NF-κB dysregulation in different subtypes of RCC and its impact on pathogenesis. KEY SCIENTIFIC CONCEPT OF REVIEW This review highlights the prominent role of NF-κB in RCC development and progression by driving the expression of multiple genes and interplaying with different pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. In silico analysis of RCC cohorts and molecular studies have revealed that multiple NF-κB members and target genes are dysregulated. The dysregulation includes receptors such as TLR2, signal-transmitting members including RelA, and target genes, for instance, HIF-1α. The lack of effective regulatory mechanisms results in a constitutively active NF-κB pathway, which promotes cancer growth, migration, and survival. In this review, we comprehensively summarize the role of dysregulated NF-κB-related genes in the most common subtypes of RCC, including clear cell RCC (ccRCC), chromophobe RCC (chRCC), and papillary RCC (PRCC).
Collapse
Affiliation(s)
- Nour Abu Jayab
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Alaa Abed
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Iman M Talaat
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates; Pathology Department, Faculty of Medicine, Alexandria University, 21131 Alexandria, Egypt.
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Center of Excellence for Precision Medicine, Research Institute of Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates; BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, 27272 Sharjah, United Arab Emirates; Division of Surgery and Interventional Science, University College London, London, United Kingdom; ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, 27272 Sharjah, United Arab Emirates.
| |
Collapse
|
18
|
Ma X, Chen J, Chen S, Lan X, Wei Z, Gao H, Hou E. Immunotherapy for renal cell carcinoma: New therapeutic combinations and adverse event management strategies: A review. Medicine (Baltimore) 2024; 103:e38991. [PMID: 39058879 PMCID: PMC11272340 DOI: 10.1097/md.0000000000038991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Immune checkpoint inhibitor (ICI) combinations, as well as ICIs combined with tyrosine kinase inhibitors, have considerable potential for renal cell carcinoma (RCC) treatment. Newer targeted medications, gut microbiome, nanomedicines, and cyclin-dependent kinase (CDK) inhibitors demonstrate significant potential in preventing side effects and resistance associated with RCC treatment. Most patients, including those demonstrating long-term treatment effects, eventually demonstrate cancer progression. Nevertheless, recent studies have further revealed RCC pathogenesis and many acquired drug resistance mechanisms, which together have led to the identification of promising therapeutic targets. In addition to having roles in metabolism, immunogenicity, and the immune response to tumors, CDK4 and CDK6 regulate the cell cycle. Targeting CDK4 and CDK6, either separately or in combination with already approved treatments, may improve therapeutic outcomes in patients with kidney cancer. Other novel drugs, including pegylated interleukin 10, colony-stimulating factor 1 receptor inhibitors, CD40 agonists, and C-X-C receptor 4 inhibitors affect the tumor microenvironment and cancer cell metabolism. Moreover, a triple ICI combination has been noted to be efficacious. In general, compared with sunitinib as a single-drug treatment, newer ICI combinations improve overall survival in patients with RCC. Future research on the prevention of adverse events and medication resistance related to newer therapies may aid in ensuring effective treatment outcomes among patients with RCC. This article aims to summarize innovative immunotherapy drug combinations for RCC treatment and the mechanisms of action, drug resistance, and treatment of adverse events associated with these combinations.
Collapse
Affiliation(s)
- Xiaohan Ma
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jibing Chen
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Sheng Chen
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xuan Lan
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zengzhao Wei
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hongjun Gao
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Encun Hou
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
19
|
Sicinska E, Kola VSR, Kerfoot JA, Taddei ML, Al-Ibraheemi A, Hsieh YH, Church AJ, Landesman-Bollag E, Landesman Y, Hemming ML. ASPSCR1::TFE3 Drives Alveolar Soft Part Sarcoma by Inducing Targetable Transcriptional Programs. Cancer Res 2024; 84:2247-2264. [PMID: 38657118 PMCID: PMC11250573 DOI: 10.1158/0008-5472.can-23-2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 02/09/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Alveolar soft part sarcoma (ASPS) is a rare mesenchymal malignancy driven by the ASPSCR1::TFE3 fusion. A better understanding of the mechanisms by which this oncogenic transcriptional regulator drives cancer growth is needed to help identify potential therapeutic targets. In this study, we characterized the transcriptional and chromatin landscapes of ASPS tumors and preclinical models, identifying the essential role of ASPSCR1::TFE3 in tumor cell viability by regulating core transcriptional programs involved in cell proliferation, angiogenesis, and mitochondrial biology. ASPSCR1::TFE3 directly interacted with key epigenetic regulators at enhancers and promoters to support ASPS-associated transcription. Among the effector programs driven by ASPSCR1::TFE3, cell proliferation was driven by high levels of cyclin D1 expression. Disruption of cyclin D1/CDK4 signaling led to a loss of ASPS proliferative capacity, and combined inhibition of CDK4/6 and angiogenesis halted tumor growth in xenografts. These results define the ASPS oncogenic program, reveal mechanisms by which ASPSCR1::TFE3 controls tumor biology, and identify a strategy for therapeutically targeting tumor cell-intrinsic vulnerabilities. Significance: The ASPSCR1::TFE3 fusion propels the growth of alveolar soft part sarcoma by activating transcriptional programs that regulate proliferation, angiogenesis, mitochondrial biogenesis, and differentiation and can be therapeutically targeted to improve treatment.
Collapse
MESH Headings
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics
- Sarcoma, Alveolar Soft Part/genetics
- Sarcoma, Alveolar Soft Part/pathology
- Sarcoma, Alveolar Soft Part/metabolism
- Humans
- Animals
- Mice
- Cell Proliferation/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Gene Expression Regulation, Neoplastic
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Cyclin-Dependent Kinase 4/genetics
- Cyclin-Dependent Kinase 4/metabolism
- Cyclin-Dependent Kinase 4/antagonists & inhibitors
- Female
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/metabolism
- Intracellular Signaling Peptides and Proteins
Collapse
Affiliation(s)
- Ewa Sicinska
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Vijaya S R Kola
- Division of Hematology and Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Joseph A Kerfoot
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Madeleine L Taddei
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Alyaa Al-Ibraheemi
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yi-Hsuan Hsieh
- Division of Hematology and Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Alanna J Church
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Esther Landesman-Bollag
- Department of Medicine, Section of Hematology and Oncology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Yosef Landesman
- Cure Alveolar Soft Part Sarcoma International, Brookline, Massachusetts
| | - Matthew L Hemming
- Division of Hematology and Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| |
Collapse
|
20
|
Webster BR, Ricketts CJ, Vocke CD, Gamble D, Crooks DR, Yang Y, Friedman L, Toubaji A, Msaouel P, Hernandez JM, Linehan WM, Ball MW. Molecular Characterization of Metastatic Oncocytoma With Exceptional Response to Treatment: A Case Report. JCO Precis Oncol 2024; 8:e2400188. [PMID: 39038244 PMCID: PMC11323308 DOI: 10.1200/po.24.00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024] Open
Abstract
Comprehensive molecular characterization and effective therapy in a rare case of metastatic renal oncocytoma.
Collapse
Affiliation(s)
- Bradley R. Webster
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Christopher J. Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Cathy D. Vocke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Dionna Gamble
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Daniel R. Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Ye Yang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Lindsay Friedman
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Antoun Toubaji
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
- Department of Translational Molecular Pathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Jonathan M. Hernandez
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Mark W. Ball
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892
| |
Collapse
|
21
|
Sirohi D. Histologic and molecular landscape of genitourinary tumors and clinical implications. Urol Oncol 2024; 42:191-192. [PMID: 38670817 DOI: 10.1016/j.urolonc.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
|
22
|
Li L, Hossain SM, Eccles MR. The Role of the PAX Genes in Renal Cell Carcinoma. Int J Mol Sci 2024; 25:6730. [PMID: 38928435 PMCID: PMC11203709 DOI: 10.3390/ijms25126730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Renal cell carcinoma (RCC) is a significant oncological challenge due to its heterogeneous nature and limited treatment options. The PAX developmental gene family encodes nine highly conserved transcription factors that play crucial roles in embryonic development and organogenesis, which have been implicated in the occurrence and development of RCC. This review explores the molecular landscape of RCC, with a specific focus on the role of the PAX gene family in RCC tumorigenesis and disease progression. Of the various RCC subtypes, clear cell renal cell carcinoma (ccRCC) is the most prevalent, characterized by the loss of the von Hippel-Lindau (VHL) tumor suppressor gene. Here, we review the published literature on the expression patterns and functional implications of PAX genes, particularly PAX2 and PAX8, in the three most common RCC subtypes, including ccRCC, papillary RCC (PRCC), and chromophobe RCC (ChRCC). Further, we review the interactions and potential biological mechanisms involving PAX genes and VHL loss in driving the pathogenesis of RCC, including the key signaling pathways mediated by VHL in ccRCC and associated mechanisms implicating PAX. Lastly, concurrent with our update regarding PAX gene research in RCC, we review and comment on the targeting of PAX towards the development of novel RCC therapies.
Collapse
Affiliation(s)
- Lei Li
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (L.L.); (S.M.H.)
| | - Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (L.L.); (S.M.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (L.L.); (S.M.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
23
|
Papanikolaou D, Sokolakis I, Moysidis K, Pyrgidis N, Bobos M, Meditskou S, Hatzimouratidis K. Grading Challenges and Prognostic Insights in Chromophobe Renal Cell Carcinoma: A Retrospective Study of 72 Patients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:996. [PMID: 38929613 PMCID: PMC11205766 DOI: 10.3390/medicina60060996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Chromophobe RCC (ChRCC) carries the best prognosis among all RCC subtypes, yet it lacks a proper grading system. Various systems have been suggested in the past, causing much controversy, and Avulova et al. recently proposed a promising four-tier grading system that takes into consideration tumor necrosis. Dysregulation of the mammalian target of the rapamycin (mTOR) pathway plays a key role in ChRCC pathogenesis, highlighting its molecular complexity. The present retrospective study aimed to evaluate the prognostic factors associated with a more aggressive ChRCC phenotype. Materials and Methods: Seventy-two patients diagnosed with ChRCC between 2004 and 2017 were included in our study. Pathology reports and tissue blocks were reviewed, and immunohistochemistry (IHC) was performed in order to assess the expressions of CYLD (tumor-suppressor gene) and mTOR, among other markers. Univariate analysis was performed, and OS was assessed using the Kaplan-Meier method. Results: In our study, 74% of patients were male, with a mean age of 60 years, and the mean tumor size was 63 mm (±44). The majority (54%) were followed for more than 10 years at intervals ranging between 44 and 222 months. The risk of death was significantly higher for patients that were classified as Grade 4 in the Avulova system (HR: 5.83; 95% CI, 1.37-24.7; p: = 0.017). As far as the IHC is concerned, mTOR expression was associated with an HR of 8.57 (95% CI, 1.91-38.5; p = 0.005), and CYLD expression was associated with an HR of 17.3 (95% CI, 1.57-192; p = 0.02). Conclusions: In our study, the Avulova grading system seems to be positively correlated with OS in patients diagnosed with ChRCC. Furthermore, an elevated mTOR expression also shows a negative correlation with OS, whereas an elevated CYLD expression does not seem to exert a protective role. However, because only a small proportion (4.2%) of our patients died due to ChRCC, despite the long follow-up period, the results must be interpreted with caution. Further research is needed to validate our findings.
Collapse
Affiliation(s)
- Dimitrios Papanikolaou
- Second Department of Urology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Ioannis Sokolakis
- Second Department of Urology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Kyriakos Moysidis
- Second Department of Urology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Nikolaos Pyrgidis
- Department of Urology, University Hospital, LMU Munich, 80539 Munich, Germany
| | - Mattheos Bobos
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 570 01 Thessaloniki, Greece
| | - Soultana Meditskou
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | |
Collapse
|
24
|
Xie AX, Tansey W, Reznik E. UnitedMet harnesses RNA-metabolite covariation to impute metabolite levels in clinical samples. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.24.24307903. [PMID: 38826234 PMCID: PMC11142294 DOI: 10.1101/2024.05.24.24307903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Comprehensively studying metabolism requires the measurement of metabolite levels. However, in contrast to the broad availability of gene expression data, metabolites are rarely measured in large molecularly-defined cohorts of tissue samples. To address this basic barrier to metabolic discovery, we propose a Bayesian framework ("UnitedMet") which leverages the empirical strength of RNA-metabolite covariation to impute otherwise unmeasured metabolite levels from widely available transcriptomic data. We demonstrate that UnitedMet is equally capable of imputing whole pool sizes as well as the outcomes of isotope tracing experiments. We apply UnitedMet to investigate the metabolic impact of driver mutations in kidney cancer, identifying a novel association between BAP1 and a highly oxidative tumor phenotype. We similarly apply UnitedMet to determine that advanced kidney cancers upregulate oxidative phosphorylation relative to early-stage disease, that oxidative metabolism in kidney cancer is associated with inferior outcomes to combination therapy, and that kidney cancer metastases themselves demonstrate elevated oxidative phosphorylation relative to primary tumors. UnitedMet therefore enables the assessment of metabolic phenotypes in contexts where metabolite measurements were not taken or are otherwise infeasible, opening new avenues for the generation and evaluation of metabolite-centered hypotheses. UnitedMet is open source and publicly available (https://github.com/reznik-lab/UnitedMet).
Collapse
Affiliation(s)
- Amy X. Xie
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, NY NY 10065
- Biochemistry, Structural Biology, Cell Biology, Developmental Biology and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY
| | - Wesley Tansey
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, NY NY 10065
| | - Ed Reznik
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, NY NY 10065
| |
Collapse
|
25
|
Baraban EG, Elias R, Lin MT, Ged Y, Zhu J, Pallavajjala A, Singla N, Lotan TL, Argani P, Eshleman JR, Epstein JI. High-Grade, Nonsarcomatoid Chromophobe Renal Cell Carcinoma: A Series of 22 Cases With Novel Molecular Features on a Subset. Mod Pathol 2024; 37:100472. [PMID: 38492778 DOI: 10.1016/j.modpat.2024.100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/15/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Chromophobe renal cell carcinoma (ChRCC) is the third most common subtype of renal cell carcinoma and typically exhibits indolent behavior, though a rare subset can exhibit high-grade morphologic features and is associated with a poor prognosis. Although there are limited data on the molecular characteristics of metastatic and sarcomatoid ChRCC, the molecular features of high-grade, nonsarcomatoid ChRCC remain unexplored. Herein, we characterize 22 cases of ChRCC with high-grade, nonsarcomatoid components. High-grade ChRCC frequently demonstrated advanced stage at diagnosis (64% ≥pT3a or N1), with regions of extrarenal extension, nodal metastases, and vascular invasion consisting solely of high-grade ChRCC morphologically. We performed spatially guided panel-based DNA sequencing on 11 cases comparing high-grade and low-grade regions (n = 22 samples). We identified recurring somatic alterations emblematic of ChRCC, including deletions of chromosomes 1, 2, 6, 10, 13, 17, and 21 in 91% (10/11) of cases and recurring mutations in TP53 (81.8%, n = 9/11) and PTEN (36.4%, n = 4/11). Notably, although PTEN and TP53 alterations were found in both high-grade and low-grade regions, private mutations were identified in 3 cases, indicating convergent evolution. Finally, we identified recurring RB1 mutations in 27% (n = 3) of high-grade regions leading to selective protein loss by immunohistochemistry not observed in adjacent low-grade regions. This finding was confirmed in The Cancer Genome Atlas cohort where 2 of 66 cases contained RB1 mutations and demonstrated unequivocal high-grade, nonsarcomatoid morphology. We also detected multiple chromosomal gains confined to the high-grade regions, consistent with imbalanced chromosome duplication. These findings broaden our understanding of the molecular pathogenesis of ChRCC and suggest that subclonal RB1 mutations can drive the evolution to high-grade, nonsarcomatoid ChRCC.
Collapse
Affiliation(s)
- Ezra G Baraban
- Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland.
| | - Roy Elias
- Department of Oncology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Ming-Tseh Lin
- Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Yasser Ged
- Department of Oncology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Jing Zhu
- Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland
| | | | - Nirmish Singla
- Department of Urology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Pedram Argani
- Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland
| | - James R Eshleman
- Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Jonathan I Epstein
- Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland; Department of Oncology, Johns Hopkins Hospital, Baltimore, Maryland; Department of Urology, Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
26
|
Alghamdi M, Chen JF, Jungbluth A, Koutzaki S, Palmer MB, Al-Ahmadie HA, Fine SW, Gopalan A, Sarungbam J, Sirintrapun SJ, Tickoo SK, Reuter VE, Chen YB. L1 Cell Adhesion Molecule (L1CAM) Expression and Molecular Alterations Distinguish Low-Grade Oncocytic Tumor From Eosinophilic Chromophobe Renal Cell Carcinoma. Mod Pathol 2024; 37:100467. [PMID: 38460672 PMCID: PMC11102321 DOI: 10.1016/j.modpat.2024.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Renal low-grade oncocytic tumor (LOT) is a recently recognized renal cell neoplasm designated within the "other oncocytic tumors" category in the 2022 World Health Organization classification system. Although the clinicopathologic, immunohistochemical, and molecular features reported for LOT have been largely consistent, the data are relatively limited. The morphologic overlap between LOT and other low-grade oncocytic neoplasms, particularly eosinophilic chromophobe renal cell carcinoma (E-chRCC), remains a controversial area in renal tumor classification. To address this uncertainty, we characterized and compared large cohorts of LOT (n = 67) and E-chRCC (n = 69) and revealed notable differences between the 2 entities. Clinically, LOT predominantly affected women, whereas E-chRCC showed a male predilection. Histologically, although almost all LOTs were dominated by a small-nested pattern, E-chRCC mainly showed solid and tubular architectures. Molecular analysis revealed that 87% of LOT cases harbored mutations in the tuberous sclerosis complex (TSC)-mTOR complex 1 (mTORC1) pathway, most frequently in MTOR and RHEB genes; a subset of LOT cases had chromosomal 7 and 19q gains. In contrast, E-chRCC lacked mTORC1 mutations, and 60% of cases displayed chromosomal losses characteristic of chRCC. We also explored the cell of origin for LOT and identified L1 cell adhesion molecule (L1CAM), a collecting duct and connecting tubule principal cell marker, as a highly sensitive and specific ancillary test for differentiating LOT from E-chRCC. This distinctive L1CAM immunohistochemical labeling suggests the principal cells as the cell of origin for LOT, unlike the intercalated cell origin of E-chRCC and oncocytoma. The ultrastructural analysis of LOT showed normal-appearing mitochondria and intracytoplasmic lumina with microvilli, different from what has been described for chRCC. Our study further supports LOT as a unique entity with a benign clinical course. Based on the likely cell of origin and its clinicopathologic characteristics, we propose that changing the nomenclature of LOT to "Oncocytic Principal Cell Adenoma of the Kidney" may be a better way to define and describe this entity.
Collapse
Affiliation(s)
- Mohammed Alghamdi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jie-Fu Chen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Achim Jungbluth
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sirma Koutzaki
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Matthew B Palmer
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Hikmat A Al-Ahmadie
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samson W Fine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anuradha Gopalan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Judy Sarungbam
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - S Joseph Sirintrapun
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Satish K Tickoo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Victor E Reuter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ying-Bei Chen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
27
|
Barata P, Gulati S, Elliott A, Hammers HJ, Burgess E, Gartrell BA, Darabi S, Bilen MA, Basu A, Geynisman DM, Dawson NA, Zibelman MR, Zhang T, Wei S, Ryan CJ, Heath EI, Poorman KA, Nabhan C, McKay RR. Renal cell carcinoma histologic subtypes exhibit distinct transcriptional profiles. J Clin Invest 2024; 134:e178915. [PMID: 38652565 PMCID: PMC11142736 DOI: 10.1172/jci178915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Molecular profiling of clear cell renal cell carcinoma (ccRCC) tumors of patients in a clinical trial has identified distinct transcriptomic signatures with predictive value, yet data in non-clear cell variants (nccRCC) are lacking. We examined the transcriptional profiles of RCC tumors representing key molecular pathways, from a multi-institutional, real-world patient cohort, including ccRCC and centrally reviewed nccRCC samples. ccRCC had increased angiogenesis signature scores compared with the heterogeneous group of nccRCC tumors, while cell cycle, fatty acid oxidation/AMPK signaling, and fatty acid synthesis/pentose phosphate signature scores were increased in one or more nccRCC subtypes. Among both ccRCC and nccRCC tumors, T effector scores statistically correlated with increased immune cell infiltration and were more commonly associated with immunotherapy-related markers (PD-L1+/TMBhi/MSIhi). In conclusion, this study provides evidence of differential gene transcriptional profiles among ccRCC versus nccRCC tumors, providing insights for optimizing personalized and histology-specific therapeutic strategies for patients with advanced RCC.
Collapse
Affiliation(s)
- Pedro Barata
- Tulane Medical School, New Orleans, Louisiana, USA
- University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | | | | | - Hans J. Hammers
- Kidney Cancer Program, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Earle Burgess
- Levine Cancer Institute Atrium Health, Charlotte, North Carolina, USA
| | - Benjamin A. Gartrell
- Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sourat Darabi
- Hoag Memorial Presbyterian Hospital, Newport Beach, California, USA
| | - Mehmet A. Bilen
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Arnab Basu
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Nancy A. Dawson
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | | | - Tian Zhang
- Kidney Cancer Program, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shuanzeng Wei
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | - Elisabeth I. Heath
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA
| | | | | | - Rana R. McKay
- Moores Cancer Center, UCSD, San Diego, California, USA
| |
Collapse
|
28
|
Kapur P, Zhong H, Le D, Mukhopadhyay R, Miyata J, Carrillo D, Rakheja D, Rajaram S, Durinck S, Modrusan Z, Brugarolas J. Molecular underpinnings of dedifferentiation and aggressiveness in chromophobe renal cell carcinoma. JCI Insight 2024; 9:e176743. [PMID: 38775158 PMCID: PMC11141915 DOI: 10.1172/jci.insight.176743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/10/2024] [Indexed: 06/02/2024] Open
Abstract
Sarcomatoid dedifferentiation is common to multiple renal cell carcinoma (RCC) subtypes, including chromophobe RCC (ChRCC), and is associated with increased aggressiveness, resistance to targeted therapies, and heightened sensitivity to immunotherapy. To study ChRCC dedifferentiation, we performed multiregion integrated paired pathological and genomic analyses. Interestingly, ChRCC dedifferentiates not only into sarcomatoid but also into anaplastic and glandular subtypes, which are similarly associated with increased aggressiveness and metastases. Dedifferentiated ChRCC shows loss of epithelial markers, convergent gene expression, and whole genome duplication from a hypodiploid state characteristic of classic ChRCC. We identified an intermediate state with atypia and increased mitosis but preserved epithelial markers. Our data suggest that dedifferentiation is initiated by hemizygous mutation of TP53, which can be observed in differentiated areas, as well as mutation of PTEN. Notably, these mutations become homozygous with duplication of preexisting monosomes (i.e., chromosomes 17 and 10), which characterizes the transition to dedifferentiated ChRCC. Serving as potential biomarkers, dedifferentiated areas become accentuated by mTORC1 activation (phospho-S6) and p53 stabilization. Notably, dedifferentiated ChRCC share gene enrichment and pathway activation features with other sarcomatoid RCC, suggesting convergent evolutionary trajectories. This study expands our understanding of aggressive ChRCC, provides insight into molecular mechanisms of tumor progression, and informs pathologic classification and diagnostics.
Collapse
Affiliation(s)
- Payal Kapur
- Department of Pathology and
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Kidney Cancer Program at Simmons Comprehensive Cancer Center, Dallas, Texas, USA
| | - Hua Zhong
- Department of Pathology and
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel Le
- Molecular Biology Department, Genentech Inc., South San Francisco, California, USA
| | | | - Jeffrey Miyata
- Kidney Cancer Program at Simmons Comprehensive Cancer Center, Dallas, Texas, USA
- Hematology-Oncology Division of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Deyssy Carrillo
- Kidney Cancer Program at Simmons Comprehensive Cancer Center, Dallas, Texas, USA
- Hematology-Oncology Division of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Satwik Rajaram
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Steffen Durinck
- Molecular Biology Department, Genentech Inc., South San Francisco, California, USA
| | - Zora Modrusan
- Molecular Biology Department, Genentech Inc., South San Francisco, California, USA
| | - James Brugarolas
- Kidney Cancer Program at Simmons Comprehensive Cancer Center, Dallas, Texas, USA
- Hematology-Oncology Division of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
29
|
Yu A, Yesilkanal AE, Thakur A, Wang F, Yang Y, Phillips W, Wu X, Muir A, He X, Spitz F, Yang L. HYENA detects oncogenes activated by distal enhancers in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.09.523321. [PMID: 38076958 PMCID: PMC10705271 DOI: 10.1101/2023.01.09.523321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Somatic structural variations (SVs) in cancer can shuffle DNA content in the genome, relocate regulatory elements, and alter genome organization. Enhancer hijacking occurs when SVs relocate distal enhancers to activate proto-oncogenes. However, most enhancer hijacking studies have only focused on protein-coding genes. Here, we develop a computational algorithm "HYENA" to identify candidate oncogenes (both protein-coding and non-coding) activated by enhancer hijacking based on tumor whole-genome and transcriptome sequencing data. HYENA detects genes whose elevated expression is associated with somatic SVs by using a rank-based regression model. We systematically analyze 1,146 tumors across 25 types of adult tumors and identify a total of 108 candidate oncogenes including many non-coding genes. A long non-coding RNA TOB1-AS1 is activated by various types of SVs in 10% of pancreatic cancers through altered 3-dimensional genome structure. We find that high expression of TOB1-AS1 can promote cell invasion and metastasis. Our study highlights the contribution of genetic alterations in non-coding regions to tumorigenesis and tumor progression.
Collapse
Affiliation(s)
- Anqi Yu
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
| | - Ali E. Yesilkanal
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
| | - Ashish Thakur
- Department of Human Genetics, University of Chicago, Chicago IL, USA
| | - Fan Wang
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
| | - Yang Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
| | - William Phillips
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago IL, USA
| | - Francois Spitz
- Department of Human Genetics, University of Chicago, Chicago IL, USA
| | - Lixing Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
- Department of Human Genetics, University of Chicago, Chicago IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
30
|
Zhang T, Sang J, Hoang PH, Zhao W, Rosenbaum J, Johnson KE, Klimczak LJ, McElderry J, Klein A, Wirth C, Bergstrom EN, Díaz-Gay M, Vangara R, Colon-Matos F, Hutchinson A, Lawrence SM, Cole N, Zhu B, Przytycka TM, Shi J, Caporaso NE, Homer R, Pesatori AC, Consonni D, Imielinski M, Chanock SJ, Wedge DC, Gordenin DA, Alexandrov LB, Harris RS, Landi MT. APOBEC shapes tumor evolution and age at onset of lung cancer in smokers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587805. [PMID: 38617360 PMCID: PMC11014539 DOI: 10.1101/2024.04.02.587805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
APOBEC enzymes are part of the innate immunity and are responsible for restricting viruses and retroelements by deaminating cytosine residues1,2. Most solid tumors harbor different levels of somatic mutations attributed to the off-target activities of APOBEC3A (A3A) and/or APOBEC3B (A3B)3-6. However, how APOBEC3A/B enzymes shape the tumor evolution in the presence of exogenous mutagenic processes is largely unknown. Here, by combining deep whole-genome sequencing with multi-omics profiling of 309 lung cancers from smokers with detailed tobacco smoking information, we identify two subtypes defined by low (LAS) and high (HAS) APOBEC mutagenesis. LAS are enriched for A3B-like mutagenesis and KRAS mutations, whereas HAS for A3A-like mutagenesis and TP53 mutations. Unlike APOBEC3A, APOBEC3B expression is strongly associated with an upregulation of the base excision repair pathway. Hypermutation by unrepaired A3A and tobacco smoking mutagenesis combined with TP53-induced genomic instability can trigger senescence7, apoptosis8, and cell regeneration9, as indicated by high expression of pulmonary healing signaling pathway, stemness markers and distal cell-of-origin in HAS. The expected association of tobacco smoking variables (e.g., time to first cigarette) with genomic/epigenomic changes are not observed in HAS, a plausible consequence of frequent cell senescence or apoptosis. HAS have more neoantigens, slower clonal expansion, and older age at onset compared to LAS, particularly in heavy smokers, consistent with high proportions of newly generated, unmutated cells and frequent immuno-editing. These findings show how heterogeneity in mutational burden across co-occurring mutational processes and cell types contributes to tumor development, with important clinical implications.
Collapse
Affiliation(s)
- Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jian Sang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Phuc H. Hoang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Leszek J. Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - John McElderry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alyssa Klein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Christopher Wirth
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Erik N. Bergstrom
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Frank Colon-Matos
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Scott M. Lawrence
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nathan Cole
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Teresa M. Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Neil E. Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Angela C. Pesatori
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dario Consonni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - David C. Wedge
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
31
|
Hashemi Gheinani A, Kim J, You S, Adam RM. Bioinformatics in urology - molecular characterization of pathophysiology and response to treatment. Nat Rev Urol 2024; 21:214-242. [PMID: 37604982 DOI: 10.1038/s41585-023-00805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/23/2023]
Abstract
The application of bioinformatics has revolutionized the practice of medicine in the past 20 years. From early studies that uncovered subtypes of cancer to broad efforts spearheaded by the Cancer Genome Atlas initiative, the use of bioinformatics strategies to analyse high-dimensional data has provided unprecedented insights into the molecular basis of disease. In addition to the identification of disease subtypes - which enables risk stratification - informatics analysis has facilitated the identification of novel risk factors and drivers of disease, biomarkers of progression and treatment response, as well as possibilities for drug repurposing or repositioning; moreover, bioinformatics has guided research towards precision and personalized medicine. Implementation of specific computational approaches such as artificial intelligence, machine learning and molecular subtyping has yet to become widespread in urology clinical practice for reasons of cost, disruption of clinical workflow and need for prospective validation of informatics approaches in independent patient cohorts. Solving these challenges might accelerate routine integration of bioinformatics into clinical settings.
Collapse
Affiliation(s)
- Ali Hashemi Gheinani
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Urology, Inselspital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Jina Kim
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rosalyn M Adam
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
32
|
Coffey NJ, Simon MC. Metabolic alterations in hereditary and sporadic renal cell carcinoma. Nat Rev Nephrol 2024; 20:233-250. [PMID: 38253811 PMCID: PMC11165401 DOI: 10.1038/s41581-023-00800-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Kidney cancer is the seventh leading cause of cancer in the world, and its incidence is on the rise. Renal cell carcinoma (RCC) is the most common form and is a heterogeneous disease comprising three major subtypes that vary in their histology, clinical course and driver mutations. These subtypes include clear cell RCC, papillary RCC and chromophobe RCC. Molecular analyses of hereditary and sporadic forms of RCC have revealed that this complex and deadly disease is characterized by metabolic pathway alterations in cancer cells that lead to deregulated oxygen and nutrient sensing, as well as impaired tricarboxylic acid cycle activity. These metabolic changes facilitate tumour growth and survival. Specifically, studies of the metabolic features of RCC have led to the discovery of oncometabolites - fumarate and succinate - that can promote tumorigenesis, moonlighting functions of enzymes, and substrate auxotrophy owing to the disruption of pathways that enable the production of arginine and cholesterol. These metabolic alterations within RCC can be exploited to identify new therapeutic targets and interventions, in combination with novel approaches that minimize the systemic toxicity of metabolic inhibitors and reduce the risk of drug resistance owing to metabolic plasticity.
Collapse
Affiliation(s)
- Nathan J Coffey
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Bories C, Lejour T, Adolphe F, Kermasson L, Couvé S, Tanguy L, Luszczewska G, Watzky M, Poillerat V, Garnier P, Groisman R, Ferlicot S, Richard S, Saparbaev M, Revy P, Gad S, Renaud F. DCLRE1B/Apollo germline mutations associated with renal cell carcinoma impair telomere protection. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167107. [PMID: 38430974 DOI: 10.1016/j.bbadis.2024.167107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/14/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Hereditary renal cell carcinoma (RCC) is caused by germline mutations in a subset of genes, including VHL, MET, FLCN, and FH. However, many familial RCC cases do not harbor mutations in the known predisposition genes. Using Whole Exome Sequencing, we identified two germline missense variants in the DCLRE1B/Apollo gene (ApolloN246I and ApolloY273H) in two unrelated families with several RCC cases. Apollo encodes an exonuclease involved in DNA Damage Response and Repair (DDRR) and telomere integrity. We characterized these two functions in the human renal epithelial cell line HKC8. The decrease or inhibition of Apollo expression sensitizes these cells to DNA interstrand crosslink damage (ICLs). HKC8 Apollo-/- cells appear defective in the DDRR and present an accumulation of telomere damage. Wild-type and mutated Apollo forms could interact with TRF2, a shelterin protein involved in telomere protection. However, only ApolloWT can rescue the telomere damage in HKC8 Apollo-/- cells. Our results strongly suggest that ApolloN246I and ApolloY273H are loss-of-function mutants that cause impaired telomere integrity and could lead to genomic instability. Altogether, our results suggest that mutations in Apollo could induce renal oncogenesis.
Collapse
Affiliation(s)
- Charlie Bories
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Thomas Lejour
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Florine Adolphe
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Laëtitia Kermasson
- Laboratory of Genome Dynamics in the Immune System, Laboratoire labellisé Ligue Nationale contre le Cancer, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Sophie Couvé
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Laura Tanguy
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Gabriela Luszczewska
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Manon Watzky
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Victoria Poillerat
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Pauline Garnier
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Regina Groisman
- UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Sophie Ferlicot
- UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France; Département de Pathologie, AP-HP, Université Paris-Saclay, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Stéphane Richard
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France; Réseau National de Référence pour Cancers Rares de l'Adulte PREDIR labellisé par l'INCa, Hôpital de Bicêtre, AP-HP, et Service d'Urologie, Le Kremlin-Bicêtre, France
| | - Murat Saparbaev
- UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Patrick Revy
- Laboratory of Genome Dynamics in the Immune System, Laboratoire labellisé Ligue Nationale contre le Cancer, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Sophie Gad
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Flore Renaud
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France.
| |
Collapse
|
34
|
Siegmund SE, Al-Obaidy KI, Tsai HK, Idrees MT, Akgul M, Acosta AM, Hirsch MS. Concordance of MTOR Pathway Mutations and the Diagnosis of Renal Low-Grade Oncocytic Tumor (LOT). Int J Surg Pathol 2024; 32:316-330. [PMID: 37357748 DOI: 10.1177/10668969231178032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
The differential diagnosis for oncocytic renal tumors spans the spectrum from benign entities to more aggressive renal cell carcinomas (RCC). Recent work has characterized a provisional renal oncocytic neoplasm, namely the low-grade oncocytic tumor (LOT), which demonstrates overlapping morphologic features with oncocytoma and chromophobe RCC, but also has a unique immunoprofile (ie, diffusely positive for KRT7, negative for KIT) and a high rate (80% to 100%) of mTOR pathway gene alterations. Given the diagnostic overlap among oncocytic tumors, we looked for concordance between mTOR pathway mutations and LOT. Thirty low-grade renal oncocytic neoplasms underwent histologic review and immunohistochemistry for KRT7 and KIT. Tumors were classified as "determinate" (eg, LOT) for tumors with solid, nested or vaguely tubular growth and diffuse KRT7 staining and negative KIT, or "indeterminate" if the morphology and/or immunostains did not fully support a definitive LOT diagnosis. Next-generation sequencing was performed without any knowledge of the diagnoses, and identified mTOR pathway mutations in 80% (12/15) of the determinate tumors, compared with 7% (1/15) in the indeterminate group. One determinate tumor was reclassified as papillary RCC (MTOR mutation negative) and 6 indeterminate tumors were confirmed to be oncocytoma (N = 4), clear cell RCC or papillary RCC with reverse polarity, respectively. Overall, integration of morphology, immunohistochemistry, and molecular data enabled a final definitive diagnosis for 70% of tumors (21 of the total 30), with a high concordance (93%) for LOT specifically in the determinate group; the remaining 9 tumors (30%) were classified as renal oncocytic neoplasm, not otherwise specified.
Collapse
Affiliation(s)
- Stephanie E Siegmund
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Khaleel I Al-Obaidy
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Harrison K Tsai
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Advanced Molecular Diagnostics, Brigham and Women's Hospital, Boston, MA, USA
| | - Muhammad T Idrees
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mahmut Akgul
- Department of Pathology, Albany Medical Center, Albany, NY, USA
| | - Andres M Acosta
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Chen F, Zhang Y, Sedlazeck FJ, Creighton CJ. Germline structural variation globally impacts the cancer transcriptome including disease-relevant genes. Cell Rep Med 2024; 5:101446. [PMID: 38442712 PMCID: PMC10983041 DOI: 10.1016/j.xcrm.2024.101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/01/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
Germline variation and somatic alterations contribute to the molecular profile of cancers. We combine RNA with whole genome sequencing across 1,218 cancer patients to determine the extent germline structural variants (SVs) impact expression of nearby genes. For hundreds of genes, recurrent and common germline SV breakpoints within 100 kb associate with increased or decreased expression in tumors spanning various tissues of origin. A significant fraction of germline SV expression associations involves duplication of intergenic enhancers or 3' UTR disruption. Genes altered by both somatic and germline SVs include ATRX and CEBPA. Genes essential in cancer cell lines include BARD1 and IRS2. Genes with both expression and germline SV breakpoint patterns associated with patient survival include GCLM. Our results capture a class of phenotypic variation at work in the disease setting, including genes with cancer roles. Specific germline SVs represent potential cancer risk variants for genetic testing, including those involving genes with targeting implications.
Collapse
Affiliation(s)
- Fengju Chen
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Computer Science, Rice University, Houston, TX 77005, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Qiu J, Deng R, Zhao Z, Tian P, Zhou J. The long-term outcomes of local tumor destruction versus partial nephrectomy for cT1a non-clear cell renal cell carcinoma and development of prognostic nomograms. J Cancer Res Clin Oncol 2024; 150:122. [PMID: 38472549 PMCID: PMC10933168 DOI: 10.1007/s00432-023-05571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/25/2023] [Indexed: 03/14/2024]
Abstract
PURPOSE There is a lack of authoritative opinions on local tumor destruction (LTD) for clinical T1a (cT1a) non-clear cell renal cell carcinoma (nccRCC). We aim to compare the outcomes of cT1a nccRCC after partial nephrectomy (PN) or LTD and explore prognostic factors. METHODS Patients diagnosed with cT1a nccRCC receiving LTD or PN between 2000 and 2020 were identified from the Surveillance, Epidemiology, and End Results (SEER) database. A 1:1 propensity score matching (PSM) was performed for patients receiving LTD and PN. Kaplan-Meier survival analysis, Cox regression analysis, competing risk regression models, and subgroup analysis were used to compare outcomes and identify prognostic factors. Prognostic nomograms were established and evaluated based on the multivariate models. RESULTS A total of 3664 cT1a nccRCC patients were included. The LTD group had poorer overall survival (OS) and similar cancer-specific survival (CSS) compared with the PN group before and after PSM (p < 0.05), while the other-cause mortality rate of the LTD group was higher than that of the PN group. Age, marital status, household income, prior tumor history, interval between diagnosis and treatment, treatments, and tumor size were identified as independent predictive factors for OS. Age, tumor size, prior tumor history, and histological type were identified as independent predictive factors for CSS. Then the nomograms predicting OS and CSS were constructed based on these prognostic factors, which showed excellent performance in risk stratification and accuracy. CONCLUSION LTD could achieve comparable cancer-control effects as PN among cT1a nccRCC patients. The OS and CSS nomograms worked effectively for prognosis assessment.
Collapse
Affiliation(s)
- Jianhui Qiu
- Department of Urology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, People's Republic of China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Ruiyi Deng
- Department of Urology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, People's Republic of China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Zihou Zhao
- Department of Urology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, People's Republic of China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Peidong Tian
- Department of Urology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, People's Republic of China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Jingcheng Zhou
- Department of Urology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, People's Republic of China.
- Institute of Urology, Peking University, Beijing, China.
- National Urological Cancer Center, Beijing, China.
| |
Collapse
|
37
|
Chen RJ, Ding T, Lu MY, Williamson DFK, Jaume G, Song AH, Chen B, Zhang A, Shao D, Shaban M, Williams M, Oldenburg L, Weishaupt LL, Wang JJ, Vaidya A, Le LP, Gerber G, Sahai S, Williams W, Mahmood F. Towards a general-purpose foundation model for computational pathology. Nat Med 2024; 30:850-862. [PMID: 38504018 PMCID: PMC11403354 DOI: 10.1038/s41591-024-02857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024]
Abstract
Quantitative evaluation of tissue images is crucial for computational pathology (CPath) tasks, requiring the objective characterization of histopathological entities from whole-slide images (WSIs). The high resolution of WSIs and the variability of morphological features present significant challenges, complicating the large-scale annotation of data for high-performance applications. To address this challenge, current efforts have proposed the use of pretrained image encoders through transfer learning from natural image datasets or self-supervised learning on publicly available histopathology datasets, but have not been extensively developed and evaluated across diverse tissue types at scale. We introduce UNI, a general-purpose self-supervised model for pathology, pretrained using more than 100 million images from over 100,000 diagnostic H&E-stained WSIs (>77 TB of data) across 20 major tissue types. The model was evaluated on 34 representative CPath tasks of varying diagnostic difficulty. In addition to outperforming previous state-of-the-art models, we demonstrate new modeling capabilities in CPath such as resolution-agnostic tissue classification, slide classification using few-shot class prototypes, and disease subtyping generalization in classifying up to 108 cancer types in the OncoTree classification system. UNI advances unsupervised representation learning at scale in CPath in terms of both pretraining data and downstream evaluation, enabling data-efficient artificial intelligence models that can generalize and transfer to a wide range of diagnostically challenging tasks and clinical workflows in anatomic pathology.
Collapse
Affiliation(s)
- Richard J Chen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Tong Ding
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Ming Y Lu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Drew F K Williamson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Guillaume Jaume
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew H Song
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bowen Chen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Zhang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Daniel Shao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Muhammad Shaban
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mane Williams
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Lukas Oldenburg
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luca L Weishaupt
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Judy J Wang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anurag Vaidya
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Long Phi Le
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Georg Gerber
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sharifa Sahai
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Systems Biology, Harvard University, Cambridge, MA, USA
| | - Walt Williams
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Faisal Mahmood
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Data Science Initiative, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
38
|
Barman P, Ferdoush J, Kaja A, Chakraborty P, Uprety B, Bhaumik R, Bhaumik R, Bhaumik SR. Ubiquitin-proteasome system regulation of a key gene regulatory factor, Paf1C. Gene 2024; 894:148004. [PMID: 37977317 DOI: 10.1016/j.gene.2023.148004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Paf1 (Polymerase-associated factor 1) complex (Paf1C) is evolutionarily conserved from yeast to humans, and facilitates transcription elongation as well as co-transcriptional histone covalent modifications and mRNA 3'-end processing. Thus, Paf1C is a key player in regulation of eukaryotic gene expression. Paf1C consists of Paf1, Cdc73, Ctr9, Leo1 and Rtf1 in both yeast and humans, but it has an additional component, Ski8, in humans. The abundances of these components regulate the assembly of Paf1C and/or its functions, thus implying the mechanisms involved in regulating the abundances of the Paf1C components in altered gene expression and hence cellular pathologies. Towards finding the mechanisms associated with the abundances of the Paf1C components, we analyzed here whether the Paf1C components are regulated via targeted ubiquitylation and 26S proteasomal degradation. We find that the Paf1C components except Paf1 do not undergo the 26S proteasomal degradation in both yeast and humans. Paf1 is found to be regulated by the ubiquitin-proteasome system (UPS) in yeast and humans. Alteration of such regulation changes Paf1's abundance, leading to aberrant gene expression. Intriguingly, while the Rtf1 component of Paf1C does not undergo the 26S proteasomal degradation, it is found to be ubiquitylated, suggesting that Rtf1 ubiquitylation could be engaged in Paf1C assembly and/or functions. Collectively, our results reveal distinct UPS regulation of the Paf1C components, Paf1 and Rtf1, in a proteolysis-dependent and -independent manners, respectively, with functional implications.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Jannatul Ferdoush
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Amala Kaja
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Pritam Chakraborty
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Bhawana Uprety
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Rhea Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Risa Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
39
|
Zhang H, Cong X, Chen C, Liu Z. Sintilimab combined with axitinib in the treatment of advanced chromophobe renal cell carcinoma: a case report. Front Oncol 2024; 14:1325999. [PMID: 38371628 PMCID: PMC10869506 DOI: 10.3389/fonc.2024.1325999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024] Open
Abstract
Chromophobe renal cell carcinoma (ChRCC) is a rare pathological type of renal cell carcinoma (RCC). Related systematic studies involving large numbers of patients are lacking, and more importantly, there is currently no international consensus on post-line treatment guidelines for ChRCC. The rapid development of systemic treatment with molecular targeted therapies and immune checkpoint inhibitors has brought effective approaches for patients with clear cell renal cell carcinoma (ccRCC), while progress in the treatment of ChRCC is still limited. In this case report, the patient was initially diagnosed at the early stage; 4 years post-surgery, she developed lung metastases and the disease progressed once again after being treated with sunitinib monotherapy for 3 years. However, after combining the immunotherapy sintilimab with the targeted therapy axitinib as second-line treatment, imageological examination showed lesions in the lungs that gradually decreased, and the bone metastases remained stable. To date, the patient has been continuously treated for over 2 years and is still undergoing regular treatment and follow-up. This case is the first to report the long-term survival of metastatic disease by using this treatment regimen and to propose a potential therapeutic option for patients with metastatic ChRCC. Since only one case was observed in this report, further study is needed.
Collapse
Affiliation(s)
| | | | | | - Ziling Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
40
|
Zhang X, Bolck HA, Rupp NJ, Moch H. Genomic alterations and diagnosis of renal cancer. Virchows Arch 2024; 484:323-337. [PMID: 37999735 PMCID: PMC10948545 DOI: 10.1007/s00428-023-03700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/24/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
The application of molecular profiling has made substantial impact on the classification of urogenital tumors. Therefore, the 2022 World Health Organization incorporated the concept of molecularly defined renal tumor entities into its classification, including succinate dehydrogenase-deficient renal cell carcinoma (RCC), FH-deficient RCC, TFE3-rearranged RCC, TFEB-altered RCC, ALK-rearranged RCC, ELOC-mutated RCC, and renal medullary RCC, which are characterized by SMARCB1-deficiency. This review aims to provide an overview of the most important molecular alterations in renal cancer, with a specific focus on the diagnostic value of characteristic genomic aberrations, their chromosomal localization, and associations with renal tumor subtypes. It may not yet be the time to completely shift to a molecular RCC classification, but undoubtedly, the application of molecular profiling will enhance the accuracy of renal cancer diagnosis, and ultimately guide personalized treatment strategies for patients.
Collapse
Affiliation(s)
- Xingming Zhang
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstr. 12, 8091, Zurich, Switzerland
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hella A Bolck
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstr. 12, 8091, Zurich, Switzerland
| | - Niels J Rupp
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstr. 12, 8091, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstr. 12, 8091, Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
41
|
Collins K, Acosta AM, Siegmund SE, Cheng L, Hirsch MS, Idrees MT. Genetic Profiling Uncovers Genome-Wide Loss of Heterozygosity and Provides Insight into Mechanisms of Sarcomatoid Transformation in Chromophobe Renal Cell Carcinoma. Mod Pathol 2024; 37:100396. [PMID: 38043790 DOI: 10.1016/j.modpat.2023.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Sarcomatoid transformation occurs in ∼8% of chromophobe renal cell carcinoma (chRCC) and is associated with aggressive clinical behavior. In recent years, several studies have identified genomic, transcriptomic, and epigenomic correlates of aggressive behavior in chRCC; however, the molecular mechanisms associated with sarcomatoid transformation remain incompletely understood. In this study, we analyzed paired conventional and sarcomatoid histologic components of individual chRCC to elucidate the genomic alterations that underlie sarcomatoid transformation in this tumor type. Massively parallel sequencing was performed on paired (conventional and sarcomatoid) components from 8 chRCCs. All cases harbored TP53 variants (87.5% showing TP53 variants in both components and 12.5% only in the sarcomatoid component). Intratumor comparisons revealed that TP53 variants were concordant in 71% and discordant in 29% of cases. Additional recurrent single-nucleotide variants were found in RB1 (37.5% of cases) and PTEN (25% of cases), with the remaining single-nucleotide variants detected in these tumors (PBRM1, NF1, and ASXL1) being nonrecurrent. Copy number variant analysis showed the characteristic pattern of chromosomal losses associated with chRCC (1, 2, 6, 10, 13, 17, and 21) in the conventional histologic components only. Interestingly, the sarcomatoid components of these tumors demonstrated widespread loss of heterozygosity but lacked the above chromosomal losses, likely as a consequence of whole-genome duplication/imbalanced chromosomal duplication events. Overall, the findings suggest that TP53 variants followed by whole-genome duplication/imbalanced chromosomal duplication events underlie sarcomatoid transformation in chRCC.
Collapse
Affiliation(s)
- Katrina Collins
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Andres M Acosta
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Stephanie E Siegmund
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Liang Cheng
- Department of Pathology, Warren Alpert Medical School of Brown University, Lifespan Academic Medical Center, Providence, Rhode Island
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Muhammad T Idrees
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
42
|
Tian S, Wang R, Wang Y, Chen R, Lin T, Xiao X, Liu X, Ideozu JE, Geng H, Wang Y, Yue D. p32 regulates glycometabolism and TCA cycle to inhibit ccRCC progression via copper-induced DLAT lipoylation oligomerization. Int J Biol Sci 2024; 20:516-536. [PMID: 38169635 PMCID: PMC10758103 DOI: 10.7150/ijbs.84399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024] Open
Abstract
A key player in mitochondrial respiration, p32, often referred to as C1QBP, is mostly found in the mitochondrial matrix. Previously, we showed that p32 interacts with DLAT in the mitochondria. Here, we found that p32 expression was reduced in ccRCC and suppressed progression and metastasis in ccRCC animal models. We observed that increasing p32 expression led to an increase in oxidative phosphorylation by interacting with DLAT, thus, regulating the activation of the pyruvate dehydrogenase complex (PDHc). Mechanistically, reduced p32 expression, in concert with DLAT, suppresses PDHc activity and the TCA cycle. Furthermore, our research discovered that p32 has a direct binding affinity for copper, facilitating the copper-induced oligomerization of lipo-DLAT specifically in ccRCC cells. This finding reveals an innovative function of the p32/DLAT/copper complex in regulating glycometabolism and the TCA cycle in ccRCC. Importantly, our research provides important new understandings of the underlying molecular processes causing the abnormal mitochondrial metabolism linked to this cancer.
Collapse
Affiliation(s)
- Shaoping Tian
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Rui Wang
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Yiting Wang
- Department of Clinical Laboratory, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin 300134, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Tianyu Lin
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Xuesong Xiao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xinyu Liu
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Justin Eze Ideozu
- Genomic Medicine, Genomic Research Center, AbbVie, North Chicago, IL 60064, USA
| | - Hua Geng
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Yong Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Dan Yue
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| |
Collapse
|
43
|
Pei X, Yan X, Ding C. Proteogenomic Workflow for Characterization of Microphthalmia Transcription Factor (MiT) Family Translocation Renal Cell Carcinoma. Methods Mol Biol 2024; 2823:109-127. [PMID: 39052217 DOI: 10.1007/978-1-0716-3922-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Microphthalmia transcription factor (MiT) family translocation renal cell carcinoma (tRCC) is a rare, aggressive, and heterogeneous subtype of kidney cancer, which is not well characterized. Since genetic alterations are always associated with carcinogenesis, and proteins are the major executors of biological features, multi-omics studies can reveal the systematic tRCC biological process comprehensively. Here, we describe the proteogenomic workflow for characterization of tRCC in detail to provide the knowledge foundation for integrated proteogenomic analysis of tRCC and other malignant tumors in the future.
Collapse
Affiliation(s)
- Xiaoru Pei
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute , Fudan University, Shanghai, China
| | - Xin Yan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Chen Ding
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute , Fudan University, Shanghai, China.
| |
Collapse
|
44
|
Alchoueiry M, Cornejo K, Henske EP. Kidney cancer: Links between hereditary syndromes and sporadic tumorigenesis. Semin Diagn Pathol 2024; 41:1-7. [PMID: 38008653 DOI: 10.1053/j.semdp.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
Multiple hereditary syndromes predispose to kidney cancer, including Von Hippel-Lindau syndrome, BAP1-Tumor Predisposition Syndrome, Hereditary Papillary Renal Cell Carcinoma, Tuberous Sclerosis Complex, Birt-Hogg-Dubé syndrome, Hereditary Paraganglioma-Pheochromocytoma Syndrome, Fumarate Hydratase Tumor Predisposition Syndrome, and Cowden syndrome. In some cases, mutations in the genes that cause hereditary kidney cancer are tightly linked to similar histologic features in sporadic RCC. For example, clear cell RCC occurs in the hereditary syndrome VHL, and sporadic ccRCC usually has inactivation of the VHL gene. In contrast, mutations in FLCN, the causative gene for Birt-Hogg-Dube syndrome, are rarely found in sporadic RCC. Here, we focus on the genes and pathways that link hereditary and sporadic RCC.
Collapse
Affiliation(s)
- Michel Alchoueiry
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristine Cornejo
- Pathology Department, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Fukagawa A, Hama N, Totoki Y, Nakamura H, Arai Y, Saito-Adachi M, Maeshima A, Matsui Y, Yachida S, Ushiku T, Shibata T. Genomic and epigenomic integrative subtypes of renal cell carcinoma in a Japanese cohort. Nat Commun 2023; 14:8383. [PMID: 38104198 PMCID: PMC10725467 DOI: 10.1038/s41467-023-44159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
Renal cell carcinoma (RCC) comprises several histological types characterised by different genomic and epigenomic aberrations; however, the molecular pathogenesis of each type still requires further exploration. We perform whole-genome sequencing of 128 Japanese RCC cases of different histology to elucidate the significant somatic alterations and mutagenesis processes. We also perform transcriptomic and epigenomic sequencing to identify distinguishing features, including assay for transposase-accessible chromatin sequencing (ATAC-seq) and methyl sequencing. Genomic analysis reveals that the mutational signature differs among the histological types, suggesting that different carcinogenic factors drive each histology. From the ATAC-seq results, master transcription factors are identified for each histology. Furthermore, clear cell RCC is classified into three epi-subtypes, one of which expresses highly immune checkpoint molecules with frequent loss of chromosome 14q. These genomic and epigenomic features may lead to the development of effective therapeutic strategies for RCC.
Collapse
Affiliation(s)
- Akihiko Fukagawa
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Natsuko Hama
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiromi Nakamura
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Mihoko Saito-Adachi
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Akiko Maeshima
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiyuki Matsui
- Department of Urology, National Cancer Center Hospital, Tokyo, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan.
- Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
46
|
Kanazashi Y, Maejima K, Johnson TA, Sasagawa S, Jikuya R, Hasumi H, Matsumoto N, Maekawa S, Obara W, Nakagawa H. Mitochondrial DNA Variants at Low-Level Heteroplasmy and Decreased Copy Numbers in Chronic Kidney Disease (CKD) Tissues with Kidney Cancer. Int J Mol Sci 2023; 24:17212. [PMID: 38139039 PMCID: PMC10743237 DOI: 10.3390/ijms242417212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The human mitochondrial genome (mtDNA) is a circular DNA molecule with a length of 16.6 kb, which contains a total of 37 genes. Somatic mtDNA mutations accumulate with age and environmental exposure, and some types of mtDNA variants may play a role in carcinogenesis. Recent studies observed mtDNA variants not only in kidney tumors but also in adjacent kidney tissues, and mtDNA dysfunction results in kidney injury, including chronic kidney disease (CKD). To investigate whether a relationship exists between heteroplasmic mtDNA variants and kidney function, we performed ultra-deep sequencing (30,000×) based on long-range PCR of DNA from 77 non-tumor kidney tissues of kidney cancer patients with CKD (stages G1 to G5). In total, this analysis detected 697 single-nucleotide variants (SNVs) and 504 indels as heteroplasmic (0.5% ≤ variant allele frequency (VAF) < 95%), and the total number of detected SNVs/indels did not differ between CKD stages. However, the number of deleterious low-level heteroplasmic variants (pathogenic missense, nonsense, frameshift and tRNA) significantly increased with CKD progression (p < 0.01). In addition, mtDNA copy numbers (mtDNA-CNs) decreased with CKD progression (p < 0.001). This study demonstrates that mtDNA damage, which affects mitochondrial genes, may be involved in reductions in mitochondrial mass and associated with CKD progression and kidney dysfunction.
Collapse
Affiliation(s)
- Yuki Kanazashi
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; (Y.K.); (K.M.); (T.A.J.); (S.S.)
- Department of Human Genetics, Yokohama City University, Yokohama 236-0004, Japan;
| | - Kazuhiro Maejima
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; (Y.K.); (K.M.); (T.A.J.); (S.S.)
| | - Todd A. Johnson
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; (Y.K.); (K.M.); (T.A.J.); (S.S.)
| | - Shota Sasagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; (Y.K.); (K.M.); (T.A.J.); (S.S.)
| | - Ryosuke Jikuya
- Department of Urology, Yokohama City University, Yokohama 236-0004, Japan; (R.J.); (H.H.)
| | - Hisashi Hasumi
- Department of Urology, Yokohama City University, Yokohama 236-0004, Japan; (R.J.); (H.H.)
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University, Yokohama 236-0004, Japan;
| | - Shigekatsu Maekawa
- Department of Urology, Iwate Medical University, Iwate 028-3694, Japan; (S.M.); (W.O.)
| | - Wataru Obara
- Department of Urology, Iwate Medical University, Iwate 028-3694, Japan; (S.M.); (W.O.)
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; (Y.K.); (K.M.); (T.A.J.); (S.S.)
| |
Collapse
|
47
|
Su X, Lu X, Bazai SK, Dainese L, Verschuur A, Dumont B, Mouawad R, Xu L, Cheng W, Yan F, Irtan S, Lindner V, Paillard C, Le Bouc Y, Coulomb A, Malouf GG. Delineating the interplay between oncogenic pathways and immunity in anaplastic Wilms tumors. Nat Commun 2023; 14:7884. [PMID: 38036539 PMCID: PMC10689851 DOI: 10.1038/s41467-023-43290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Wilms tumors are highly curable in up to 90% of cases with a combination of surgery and radio-chemotherapy, but treatment-resistant types such as diffuse anaplastic Wilms tumors pose significant therapeutic challenges. Our multi-omics profiling unveils a distinct desert-like diffuse anaplastic Wilms tumor subtype marked by immune/stromal cell depletion, TP53 alterations, and cGAS-STING pathway downregulation, accounting for one-third of all diffuse anaplastic cases. This subtype, also characterized by reduced CD8 and CD3 infiltration and active oncogenic pathways involving histone deacetylase and DNA repair, correlates with poor clinical outcomes. These oncogenic pathways are found to be conserved in anaplastic Wilms tumor cell models. We identify histone deacetylase and/or WEE1 inhibitors as potential therapeutic vulnerabilities in these tumors, which might also restore tumor immunogenicity and potentially enhance the effects of immunotherapy. These insights offer a foundation for predicting outcomes and personalizing treatment strategies for aggressive pediatric Wilms tumors, tailored to individual immunological landscapes.
Collapse
Affiliation(s)
- Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofan Lu
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, Illkirch, France
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Sehrish Khan Bazai
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, Illkirch, France
| | - Linda Dainese
- Department of Pathology, Hôpital Armand Trousseau, Assistance-Publique Hôpitaux de Paris, Sorbonne Université, Paris, France
- UF Tumorothèque HUEP, Hôpital Armand Trousseau, Assistance-Publique Hôpitaux de Paris, Sorbonne Université, Paris, France
- Centre de Recherche Saint-Antoine (CRSA), INSERM, Sorbonne Université, UMR_S .938, Paris, France
| | - Arnauld Verschuur
- Department of Pediatric Oncology, Hôpital d'Enfants de La Timone, F-13005, Marseille, France
| | - Benoit Dumont
- Centre Léon Bérard, Institut d'Hématologie et d'Oncologie Pédiatrique (IHOPe), Lyon, France
| | - Roger Mouawad
- Department of Medical Oncology, Groupe Hospitalier Pitié-Salpêtrière, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Li Xu
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenxuan Cheng
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Sabine Irtan
- Department of Pediaric Surgery, AP-HP, Hôpital Armand Trousseau, Sorbonne Université, Paris, France
| | | | - Catherine Paillard
- Department of Pediatric Onco-hematology, CHRU Strasbourg, Strasbourg Université, Strasbourg, France
| | - Yves Le Bouc
- Centre de Recherche Saint-Antoine (CRSA), INSERM, Sorbonne Université, UMR_S .938, Paris, France
| | - Aurore Coulomb
- Department of Pathology, Hôpital Armand Trousseau, Assistance-Publique Hôpitaux de Paris, Sorbonne Université, Paris, France.
- UF Tumorothèque HUEP, Hôpital Armand Trousseau, Assistance-Publique Hôpitaux de Paris, Sorbonne Université, Paris, France.
- Centre de Recherche Saint-Antoine (CRSA), INSERM, Sorbonne Université, UMR_S .938, Paris, France.
| | - Gabriel G Malouf
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, Illkirch, France.
- Department of Medical Oncology, Institut de Cancérologie de Strasbourg, Strasbourg University, Strasbourg, France.
| |
Collapse
|
48
|
Liu Y, Wu G. The utilization of single-cell sequencing technology in investigating the immune microenvironment of ccRCC. Front Immunol 2023; 14:1276658. [PMID: 38090562 PMCID: PMC10715415 DOI: 10.3389/fimmu.2023.1276658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
The growth and advancement of ccRCC are strongly associated with the presence of immune infiltration and the tumor microenvironment, comprising tumor cells, immune cells, stromal cells, vascular cells, myeloid-derived cells, and extracellular matrix (ECM). Nevertheless, as a result of the diverse and constantly evolving characteristics of the tumor microenvironment, prior advanced sequencing methods have frequently disregarded specific less prevalent cellular traits at varying intervals, thereby concealing their significance. The advancement and widespread use of single-cell sequencing technology enable us to comprehend the source of individual tumor cells and the characteristics of a greater number of individual cells. This, in turn, minimizes the impact of intercellular heterogeneity and temporal heterogeneity of the same cell on experimental outcomes. This review examines the attributes of the tumor microenvironment in ccRCC and provides an overview of the progress made in single-cell sequencing technology and its particular uses in the current focus of immune infiltration in ccRCC.
Collapse
Affiliation(s)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
49
|
Wu HF, Liu H, Zhang ZW, Chen JM. CENPE and LDHA were potential prognostic biomarkers of chromophobe renal cell carcinoma. Eur J Med Res 2023; 28:481. [PMID: 37925501 PMCID: PMC10625266 DOI: 10.1186/s40001-023-01449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/15/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Most sarcomatoid differentiated renal cell carcinoma was differentiated from Chromophobe renal cell carcinoma (KICH) and related to a bad prognosis. Thus, finding biomarkers is important for the therapy of KICH. METHODS The UCSC was used for determining the expression of mRNA and miRNA and clinical data in KICH and normal samples. KEGG and GO were used for predicting potential function of differently expressed genes (DEGs). Optimal prognostic markers were determined by Lasso regression. Kaplan-Meier survival, ROC, and cox regression were used for assessing prognosis value. GSEA was used for predicting potential function of markers. The relations between markers and immune cell infiltration were determined by Pearson method. The upstream miRNA of markers was predicted in TargetScan and DIANA. RESULTS The 6162 upregulated and 13,903 downregulated DEGs were identified in KICH. Further CENPE and LDHA were screened out as optimal prognostic risk signatures. CENPE was highly expressed while LDHA was lowly expressed in KICH samples, and the high expressions of 2 genes contributed to bad prognosis. The functions of CENPE and LDHA were mainly enriched in proliferation related pathways such as cell cycle and DNA replication. In addition, the correlation of 2 genes with immune infiltrates in KICH was also observed. Finally, we found that has-miR-577 was the common upstream of 2 genes and the binding sites can be predicted. CONCLUSION CENPE and LDHA were identified as the important prognostic biomarkers in KICH, and they might be involved in the proliferation of cancer cell.
Collapse
Affiliation(s)
- Hui-Feng Wu
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China
| | - Hao Liu
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China.
| | - Zhe-Wei Zhang
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China
| | - Ji-Min Chen
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China
| |
Collapse
|
50
|
Pavithran M S, Lukose J, Barik BK, Periasami A, Kartha VB, Chawla A, Chidangil S. Laser induced fluorescence spectroscopy analysis of kidney tissues: A pilot study for the identification of renal cell carcinoma. JOURNAL OF BIOPHOTONICS 2023; 16:e202300021. [PMID: 37589180 DOI: 10.1002/jbio.202300021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023]
Abstract
The 325 nm-excited autofluorescence spectra from cancerous and normal renal tissues were collected ex vivo biopsy tissue samples, through an optical fiber probe-based system. Noticeable changes in intensity/wavelength were observed in the fluorescence emissions from endogenous fluorophores such as collagen, Nicotinamide adenine dinucleotide (NADH), Vitamin A (retinol), and flavin adenine dinucleotide, in pathological conditions with respect to the normal state. The energy metabolism involved in clear cell renal cell carcinoma (ccRCC) and chromophobe renal cell carcinoma (chRCC) are reflected in the fluorescence emission band at 445 nm due to bound NADH attributed to enhanced oxidative phosphorylation in chRCC and emission at 465 nm contributed by free NADH showing higher glycolytic action in ccRCC. The principal component analysis and one-way ANOVA effectively discriminate ccRCC from chRCC. It is shown that laser induced fluorescence technique with 325 nm excitation can be a suitable technique for optical pathology and in vivo surgical boundary demarcation in renal cell carcinoma.
Collapse
Affiliation(s)
- Sanoop Pavithran M
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, India
| | - Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, India
| | - Bijay Kumar Barik
- Department of Biochemistry, Cell Biology and Genetics, College Medicine, American University of Antigua, Cell Biology and Genetics, American University of Antigua, College of Medicine, St. John's, Antigua and Barbuda
| | - Ammasi Periasami
- W.M. Keck Center for Cellular Imaging (KCCI), Biology, University of Virginia, Charlottesville, Virginia, USA
| | - V B Kartha
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, India
| | - Arun Chawla
- Department of Urology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|