1
|
Zambrzycki SC, Saberi S, Biggs R, Eskandari N, Delisi D, Taylor H, Mehta AS, Drake RR, Gentile S, Bradshaw AD, Ostrowski M, Angel PM. Profiling of collagen and extracellular matrix deposition from cell culture using in vitro ExtraCellular matrix mass spectrometry imaging (ivECM-MSI). Matrix Biol Plus 2024; 24:100161. [PMID: 39435160 PMCID: PMC11492733 DOI: 10.1016/j.mbplus.2024.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
While numerous approaches have been reported towards understanding single cell regulation, there is limited understanding of single cell production of extracellular matrix phenotypes. Collagens are major proteins of the extracellular microenvironment extensively used in basic cell culture, tissue engineering, and biomedical applications. However, identifying compositional regulation of collagen remains challenging. Here, we report the development of In vitro ExtraCellular Matrix Mass Spectrometry Imaging (ivECM-MSI) as a tool to rapidly and simultaneously define collagen subtypes from coatings and basic cell culture applications. The tool uses the mass spectrometry imaging platform with reference libraries to produce visual and numerical data types. The method is highly integrated with basic in vitro strategies as it may be used with conventional cell chambers on minimal numbers of cells and with minimal changes to biological experiments. Applications tested include semi-quantitation of collagen composition in culture coatings, time course collagen deposition, deposition altered by gene knockout, and changes induced by drug treatment. This approach provides new access to proteomic information on how cell types respond to and change the extracellular microenvironment and provides a holistic understanding of both the cell and extracellular response.
Collapse
Affiliation(s)
| | | | - Rachel Biggs
- Department of Medicine, MUSC, Charleston, SC, USA
- The Ralph H. Johnson Department of Veteran’s Affairs Medical Center, Charleston, SC, USA
| | - Najmeh Eskandari
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
| | - Davide Delisi
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
| | - Harrison Taylor
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| | - Saverio Gentile
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| | - Amy D. Bradshaw
- Department of Medicine, MUSC, Charleston, SC, USA
- The Ralph H. Johnson Department of Veteran’s Affairs Medical Center, Charleston, SC, USA
| | - Michael Ostrowski
- Hollings Cancer Center, Charleston, SC, USA
- Department of Biochemistry and Molecular Biology, MUSC, Charleston, SC, USA
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| |
Collapse
|
2
|
Alipour B, Veisi Malekshahi Z, Pourjafar F, Faridi-Majidi R, Negahdari B. Anticancer effects of simvastatin-loaded albumin nanoparticles on monolayer and spheroid models of breast cancer. Biochem Biophys Res Commun 2024; 734:150591. [PMID: 39255745 DOI: 10.1016/j.bbrc.2024.150591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024]
Abstract
Breast cancer is a prominent cause of death among women and is distinguished by a high occurrence of metastasis. From this perspective, apart from conventional therapies, several alternative approaches have been researched and explored in recent years, including the utilization of nano-albumin and statin medications like simvastatin. The objective of this study was to prepare albumin nanoparticles incorporating simvastatin by the self-assembly method and evaluate their impact on breast cancer metastasis and apoptosis. The data showed the prepared nanoparticles have a diameter of 185 ± 24nm and a drug loading capacity of 8.85 %. The findings exhibit improved release in a lysosomal-like environment and under acidic pH conditions. MTT data showed that nanoparticles do not exhibit a dose-dependent effect on cells. Additionally, the results from MTT, flow cytometry, and qPCR analyses demonstrated that nanoparticles have a greater inhibitory and lethal effect on MDA-MB-231 cells compared to normal simvastatin. And cause cells to accumulate in the G0/G1 phase, initiating apoptotic pathways by inhibiting cell cycle progression. Nanoparticles containing simvastatin can prevent cell invasion and migration in both monolayer and spheroid models, as compared to simvastatin alone, at microscopic levels and in gene expression. The obtained data clearly showed that, compared to simvastatin, nanoparticles containing simvastatin demonstrated significant efficacy in suppressing the growth, proliferation, invasion, and migration of cancer cells in monolayer (2D) and spheroid (3D) models.
Collapse
Affiliation(s)
- Behruz Alipour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Pourjafar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Jackson Cullison SR, Flemming JP, Karagoz K, Wermuth PJ, Mahoney MG. Mechanisms of extracellular vesicle uptake and implications for the design of cancer therapeutics. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70017. [PMID: 39483807 PMCID: PMC11522837 DOI: 10.1002/jex2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
The translation of pre-clinical anti-cancer therapies to regulatory approval has been promising, but slower than hoped. While innovative and effective treatments continue to achieve or seek approval, setbacks are often attributed to a lack of efficacy, failure to achieve clinical endpoints, and dose-limiting toxicities. Successful efforts have been characterized by the development of therapeutics designed to specifically deliver optimal and effective dosing to tumour cells while minimizing off-target toxicity. Much effort has been devoted to the rational design and application of synthetic nanoparticles to serve as targeted therapeutic delivery vehicles. Several challenges to the successful application of this modality as delivery vehicles include the induction of a protracted immune response that results in their rapid systemic clearance, manufacturing cost, lack of stability, and their biocompatibility. Extracellular vesicles (EVs) are a heterogeneous class of endogenous biologically produced lipid bilayer nanoparticles that mediate intercellular communication by carrying bioactive macromolecules capable of modifying cellular phenotypes to local and distant cells. By genetic, chemical, or metabolic methods, extracellular vesicles (EVs) can be engineered to display targeting moieties on their surface while transporting specific cargo to modulate pathological processes following uptake by target cell populations. This review will survey the types of EVs, their composition and cargoes, strategies employed to increase their targeting, uptake, and cargo release, and their potential as targeted anti-cancer therapeutic delivery vehicles.
Collapse
Affiliation(s)
| | - Joseph P. Flemming
- Rowan‐Virtua School of Osteopathic MedicineRowan UniversityStratfordNew JerseyUSA
| | - Kubra Karagoz
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Mỹ G. Mahoney
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
4
|
Cheng YW, Hsieh YC, Sun YS, Wang YH, Yang YW, Lo KY. Using microfluidic and conventional platforms to evaluate the effects of lanthanides on spheroid formation. Toxicology 2024; 508:153931. [PMID: 39222830 DOI: 10.1016/j.tox.2024.153931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Metastasis contributes to the increased mortality rate of cancer, but the intricate mechanisms remain unclear. Cancer cells from a primary tumor invade nearby tissues and access the lymphatic or circulatory system. If these cells manage to survive and extravasate from the vasculature into distant tissues and ultimately adapt to survive, they will proliferate and facilitate malignant tumor formation. Traditional two-dimensional (2D) cell cultures offer a rapid and convenient method for validating the efficacy of anticancer drugs within a reasonable cost range, but their utility is limited because of tumors' high heterogeneity in vivo and spatial complexities. Three-dimensional (3D) cell cultures that mimic the physiological conditions of cancer cells in vivo have gained considerable interest. In these cultures, cells assemble into spheroids through gravity, magnetic forces, or their low-adhesion to the plates. Although these approaches address some of the limitations of 2D cultures, they often require a considerable amount of time and cost. Therefore, this study aims to enhance the effectiveness of 3D culture techniques by using microfluidic systems to provide a high-throughput and sensitive pipeline for drug screening. Using these systems, we studied the effects of lanthanide elements, which have garnered interest in cancer treatment, on spheroid formation and cell spreading. Our findings suggest that these elements alter the compactness of cell spheroids and decrease cell mobility.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- Department of Agricultural Chemistry, National Taiwan University Taipei City 10617, Taiwan
| | - Yu-Chen Hsieh
- Department of Agricultural Chemistry, National Taiwan University Taipei City 10617, Taiwan
| | - Yung-Shin Sun
- Department of Physics, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Yu-Hsun Wang
- Department of Physics, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Ya-Wen Yang
- Department of Surgery, National Taiwan University Hospital, Taipei City 100225, Taiwan.
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University Taipei City 10617, Taiwan.
| |
Collapse
|
5
|
Yadav P, Singh S, Jaiswal S, Kumar R. Synthetic and natural polymer hydrogels: A review of 3D spheroids and drug delivery. Int J Biol Macromol 2024; 280:136126. [PMID: 39349080 DOI: 10.1016/j.ijbiomac.2024.136126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
This review centers on the synthesis and characterization of both natural and synthetic hydrogels, highlighting their diverse applications across various fields. We will delve into the evolution of hydrogels, focusing on the importance of polysaccharide-based and synthetic variants, which have been particularly chosen for 3D spheroid development in cancer research and drug delivery. A detailed background on the research and specific methodologies, including the in-situ free radical polymerization used for synthesizing these hydrogels, will be extensively discussed. Additionally, the review will explore various applications of these hydrogels, such as their self-healing properties, swelling ratios, pH responsiveness, and cell viability. A comprehensive literature review will support this investigation. Ultimately, this review aims to clearly outline the objectives and significance of hydrogel synthesis and their applications.
Collapse
Affiliation(s)
- Paramjeet Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shiwani Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Sheetal Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Rajesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
6
|
Albrecht FB, Schick AK, Klatt A, Schmidt FF, Nellinger S, Kluger PJ. Exploring Morphological and Molecular Properties of Different Adipose Cell Models: Monolayer, Spheroids, Gellan Gum-Based Hydrogels, and Explants. Macromol Biosci 2024:e2400320. [PMID: 39450850 DOI: 10.1002/mabi.202400320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/04/2024] [Indexed: 10/26/2024]
Abstract
White adipose tissue (WAT) plays a crucial role in energy homeostasis and secretes numerous adipokines with far-reaching effects. WAT is linked to diseases such as diabetes, cardiovascular disease, and cancer. There is a high demand for suitable in vitro models to study diseases and tissue metabolism. Most of these models are covered by 2D-monolayer cultures. This study aims to evaluate the performance of different WAT models to better derive potential applications. The stability of adipocyte characteristics in spheroids and two 3D gellan gum hydrogels with ex situ lobules and 2D-monolayer culture is analyzed. First, the differentiation to achieve adipocyte-like characteristics is determined. Second, to evaluate the maintenance of differentiated ASC-based models, an adipocyte-based model, and explants over 3 weeks, viability, intracellular lipid content, perilipin A expression, adipokine, and gene expression are analyzed. Several advantages are supported using each of the models. Including, but not limited to, the strong differentiation in 2D-monolayers, the self-assembling within spheroids, the long-term stability of the stem cell-containing hydrogels, and the mature phenotype within adipocyte-containing hydrogels and the lobules. This study highlights the advantages of 3D models due to their more in vivo-like behavior and provides an overview of the different adipose cell models.
Collapse
Affiliation(s)
- Franziska B Albrecht
- Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
- Faculty of Natural Science, University of Hohenheim, Schloss Hohenheim 1, 70599, Stuttgart, Germany
| | - Ann-Kathrin Schick
- Faculty of Science, Energy and Building Services, Esslingen University, Kanalstraße 33, 73728, Esslingen, Germany
| | - Annemarie Klatt
- Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
| | - Freia F Schmidt
- Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
| | - Svenja Nellinger
- Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
| | - Petra J Kluger
- School of Life Sciences, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
| |
Collapse
|
7
|
Jiang Y, Hao M, Chen S, Xie Y, Liu K. Exploring the impact of microfluidic chip structure on the efficacy of three-dimensional tumor microspheres cultivation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7005-7014. [PMID: 39282915 DOI: 10.1039/d4ay01343c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Three-dimensional (3D) tumor microspheres can simulate the interaction and growth dynamics of tumor cells, and have been used as a new in vitro model for drug screening and tumor biology related research. The scaffold-free culture of 3D tumor microspheres on microfluidic chips has many advantages, including low cost, high throughput, convenience and flexibility. However, it is still unclear how various factors, such as chip structure, influence the culture effect of tumor microspheres. The lack of standardized evaluation and characterization of the culture effect hinders the further optimization and development of chip function. This study presents numerical simulations of multiple parts or processes of the proposed 3D culture chips with two different structural parameters based on computational fluid dynamics (CFD) methods. An evaluation system for tumor microspheres was established. The prediction of the CFD simulation was consistent with the culture results of the chips, reflecting the important role of the structural parameters of the microtrap in the formation of uniform tumor microspheres. Furthermore, the velocity of cell suspension also had a significant impact on the retention of tumor cells. Additionally, the drug screening results of tumor microspheres indicated that tumor microspheres exhibit greater drug resistance, which may be attributed to their size. These results offer valuable insights into the factors that influence the characteristics of tumor microspheres. This research provides a reference and direction for the optimal design and functional evaluation of scaffold-free 3D culture chips, and holds promise for promoting the development of novel drug research platforms.
Collapse
Affiliation(s)
- Yue Jiang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
| | - Ming Hao
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
| | - Shulei Chen
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
| | - Yuanhua Xie
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
| | - Kun Liu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, China
| |
Collapse
|
8
|
Barros da Silva P, Oliveira RJA, Araújo M, Caires HR, Bidarra SJ, Barrias CC. An integrative alginate-based 3D in vitro model to explore epithelial-stromal cell dynamics in the breast tumor microenvironment. Carbohydr Polym 2024; 342:122363. [PMID: 39048221 DOI: 10.1016/j.carbpol.2024.122363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024]
Abstract
The tumor microenvironment (TME) orchestrates cellular and extracellular matrix (ECM) interactions, playing a key role in tumorigenesis, tumor growth, and metastization. Investigating the interplay between stromal-epithelial cells within the TME is paramount for understanding cancer mechanisms but demands reliable biological models. 3D-models have emerged as powerful in vitro tools, but many fall short in replicating cell-cell/cell-matrix interactions. This study introduces a novel hybrid 3D-model of the breast TME, combining epithelial cells, cancer-associated fibroblasts (CAFs), and their ECM. To build the stromal compartment, porous 3D-printed alginate scaffolds were seeded with CAFs, which proliferated and produced ECM. The pores were infused with oxidized peptide-modified alginate hydrogel laden with MCF10A cells, forming the parenchymal compartment. The hybrid system supported epithelial morphogenesis into acini surrounded by fibroblasts and ECM, and could be readily solubilized to recover cells, their matrix, and sequestered soluble factors. Proteome profiling of the retrieved ECM showed upregulation of proteins associated with matrix assembly/remodeling, epithelial-to-mesenchymal transition (EMT), and cancer. The TME-like microenvironment induced a partial EMT in MCF10A cells, generating a hybrid population with epithelial and mesenchymal features, characteristic of aggressive phenotypes. Our model provided new insights into epithelial-stromal interactions within the TME, offering a valuable tool for cancer research in a physiologically-relevant 3D setting.
Collapse
Affiliation(s)
- P Barros da Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 5 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - R J A Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 5 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - M Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 5 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - H R Caires
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 5 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - S J Bidarra
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 5 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - C C Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 5 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
9
|
Sreedasyam R, Wilson BG, Ferrandez PR, Botvinick EL, Venugopalan V. An optical system for cellular mechanostimulation in 3D hydrogels. Acta Biomater 2024:S1742-7061(24)00578-6. [PMID: 39368720 DOI: 10.1016/j.actbio.2024.09.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
We introduce a method utilizing single laser-generated cavitation bubbles to stimulate cellular mechanotransduction in dermal fibroblasts embedded within 3D hydrogels. We demonstrate that fibroblasts embedded in either amorphous or fibrillar hydrogels engage in Ca2+ signaling following exposure to an impulsive mechanical stimulus provided by a single 250 µm diameter laser-generated cavitation bubble. We find that the spatial extent of the cellular signaling is larger for cells embedded within a fibrous collagen hydrogel as compared to those embedded within an amorphous polyvinyl alcohol polymer (SLO-PVA) hydrogel. Additionally, for fibroblasts embedded in collagen, we find an increased range of cellular mechanosensitivity for cells that are polarized relative to the radial axis as compared to the circumferential axis. By contrast, fibroblasts embedded within SLO-PVA did not display orientation-dependent mechanosensitivity. Fibroblasts embedded in hydrogels and cultured in calcium-free media did not show cavitation-induced mechanotransduction; implicating calcium signaling based on transmembrane Ca2+ transport. This study demonstrates the utility of single laser-generated cavitation bubbles to provide local non-invasive impulsive mechanical stimuli within 3D hydrogel tissue models with concurrent imaging using optical microscopy. STATEMENT OF SIGNIFICANCE: Currently, there are limited methods for the non-invasive real-time assessment of cellular sensitivity to mechanical stimuli within 3D tissue scaffolds. We describe an original approach that utilizes a pulsed laser microbeam within a standard laser scanning microscope system to generate single cavitation bubbles to provide impulsive mechanostimulation to cells within 3D fibrillar and amorphous hydrogels. Using this technique, we measure the cellular mechanosensitivity of primary human dermal fibroblasts embedded in amorphous and fibrillar hydrogels, thereby providing a useful method to examine cellular mechanotransduction in 3D biomaterials. Moreover, the implementation of our method within a standard optical microscope makes it suitable for broad adoption by cellular mechanotransduction researchers and opens the possibility of high-throughput evaluation of biomaterials with respect to cellular mechanosignaling.
Collapse
Affiliation(s)
- Rahul Sreedasyam
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697-2715, United States
| | - Bryce G Wilson
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697-2580, United States
| | - Patricia R Ferrandez
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697-2715, United States
| | - Elliot L Botvinick
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697-2715, United States; Beckman Laser Institute, University of California Irvine, Irvine, CA 92697-3010, United States.
| | - Vasan Venugopalan
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697-2715, United States; Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697-2580, United States; Beckman Laser Institute, University of California Irvine, Irvine, CA 92697-3010, United States.
| |
Collapse
|
10
|
Alsharabasy AM, Pandit A. Hyaluronan-Based Hydrogels for 3D Modeling of Tumor Tissues. Tissue Eng Part C Methods 2024; 30:452-499. [PMID: 39345138 DOI: 10.1089/ten.tec.2024.0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Although routine two-dimensional (2D) cell culture techniques have advanced basic cancer research owing to their simplicity, cost-effectiveness, and reproducibility, they have limitations that necessitate the development of advanced three-dimensional (3D) tumor models that better recapitulate the tumor microenvironment. Various biomaterials have been used to establish these 3D models, enabling the study of cancer cell behavior within different matrices. Hyaluronic acid (HA), a key component of the extracellular matrix (ECM) in tumor tissues, has been widely studied and employed in the development of multiple cancer models. This review first examines the role of HA in tumors, including its function as an ECM component and regulator of signaling pathways that affect tumor progression. It then explores HA-based models for various cancers, focusing on HA as a central component of the 3D matrix and its mobilization within the matrix for targeted studies of cell behavior and drug testing. The tumor models discussed included those for breast cancer, glioblastoma, fibrosarcoma, gastric cancer, hepatocellular carcinoma, and melanoma. The review concludes with a discussion of future prospects for developing more robust and high-throughput HA-based models to more accurately mimic the tumor microenvironment and improve drug testing. Impact Statement This review underscores the transformative potential of hyaluronic acid (HA)-based hydrogels in developing advanced tumor models. By exploring HA's dual role as a critical extracellular matrix component and a regulator of cancer cell dynamics, we highlight its unique contributions to replicating the tumor microenvironment. The recent advancements in HA-based models provide new opportunities for more accurate studies of cancer cell behavior and drug responses. Looking ahead, these innovations pave the way for high-throughput, biomimetic platforms that could revolutionize drug testing and accelerate the discovery of effective cancer therapies.
Collapse
Affiliation(s)
- Amir M Alsharabasy
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
11
|
Shiraishi A, Oh-Hara T, Takahashi Y, Uchibori K, Nishio M, Katayama R. 3D layered co-culture model enhances Trastuzumab Deruxtecan sensitivity and reveals the combined effect with G007-LK in HER2-positive non-small cell lung cancer. Biochem Biophys Res Commun 2024; 725:150255. [PMID: 38897043 DOI: 10.1016/j.bbrc.2024.150255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Human epidermal growth factor receptor 2 (HER2) aberrations are observed in various cancers. In non-small cell lung cancer, genetic alterations activating HER2, mostly exon 20 insertion mutations, occur in approximately 2-4% of cases. Trastuzumab deruxtecan (T-DXd), a HER2-targeted antibody-drug conjugate has been approved as the first HER2-targeted drug for HER2-mutant lung cancer. However, some cases are not responsive to T-DXd and the primary resistant mechanism remains unclear. In this study, we assessed sensitivity to T-DXd in JFCR-007, a patient-derived HER2-mutant lung cancer cell line. Although JFCR-007 was sensitive to HER2 tyrosine kinase inhibitors, it showed resistance to T-DXd in attachment or spheroid conditions. Accordingly, we established a three-dimensional (3D) layered co-culture model of JFCR-007, where it exhibited a lumen-like structure and became sensitive to T-DXd. In addition, an in-house inhibitor library screening revealed that G007-LK, a tankyrase inhibitor, was effective when combined with T-DXd. G007-LK increased the cytotoxicity of topoisomerase-I inhibitor, DXd, a payload of T-DXd and SN-38. This combined effect was also observed in H2170, an HER2-amplified lung cancer cell line. These results suggest that the proposed 3D co-culture system may help in evaluating the efficacy of T-DXd and may recapitulate the tumor microenvironment.
Collapse
MESH Headings
- Humans
- Trastuzumab/pharmacology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/genetics
- Cell Line, Tumor
- Immunoconjugates/pharmacology
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/genetics
- Coculture Techniques
- Drug Resistance, Neoplasm/drug effects
- Crown Ethers/pharmacology
- Antineoplastic Agents, Immunological/pharmacology
- Camptothecin/analogs & derivatives
Collapse
Affiliation(s)
- Akari Shiraishi
- Div of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba, 277-8561, Japan
| | - Tomoko Oh-Hara
- Div of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Yuki Takahashi
- Technical Research Institute, TOPPAN Holdings Inc., Japan; Division of Clinical Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Ken Uchibori
- Div of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan; Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryohei Katayama
- Div of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba, 277-8561, Japan.
| |
Collapse
|
12
|
Ohguro H, Watanabe M, Sato T, Nishikiori N, Umetsu A, Higashide M, Yano T, Suzuki H, Miyazaki A, Takada K, Uhara H, Furuhashi M, Hikage F. Application of Single Cell Type-Derived Spheroids Generated by Using a Hanging Drop Culture Technique in Various In Vitro Disease Models: A Narrow Review. Cells 2024; 13:1549. [PMID: 39329734 PMCID: PMC11430518 DOI: 10.3390/cells13181549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Cell culture methods are indispensable strategies for studies in biological sciences and for drug discovery and testing. Most cell cultures have been developed using two-dimensional (2D) culture methods, but three-dimensional (3D) culture techniques enable the establishment of in vitro models that replicate various pathogenic conditions and they provide valuable insights into the pathophysiology of various diseases as well as more precise results in tests for drug efficacy. However, one difficulty in the use of 3D cultures is selection of the appropriate 3D cell culture technique for the study purpose among the various techniques ranging from the simplest single cell type-derived spheroid culture to the more sophisticated organoid cultures. In the simplest single cell type-derived spheroid cultures, there are also various scaffold-assisted methods such as hydrogel-assisted cultures, biofilm-assisted cultures, particle-assisted cultures, and magnet particle-assisted cultures, as well as non-assisted methods, such as static suspension cultures, floating cultures, and hanging drop cultures. Since each method can be differently influenced by various factors such as gravity force, buoyant force, centrifugal force, and magnetic force, in addition to non-physiological scaffolds, each method has its own advantages and disadvantages, and the methods have different suitable applications. We have been focusing on the use of a hanging drop culture method for modeling various non-cancerous and cancerous diseases because this technique is affected only by gravity force and buoyant force and is thus the simplest method among the various single cell type-derived spheroid culture methods. We have found that the biological natures of spheroids generated even by the simplest method of hanging drop cultures are completely different from those of 2D cultured cells. In this review, we focus on the biological aspects of single cell type-derived spheroid culture and its applications in in vitro models for various diseases.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Toshiyuki Yano
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
| | - Hiromu Suzuki
- Departments of Molecular Biology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Akihiro Miyazaki
- Departments of Oral Surgery, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Kohichi Takada
- Departments of Medical Oncology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Hisashi Uhara
- Departments of Dermatology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
| | - Fumihito Hikage
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| |
Collapse
|
13
|
Sitte ZR, Karlsson EE, Larson TS, Li H, Zhou H, Lockett MR. Supported gel slab scaffolds as a three-dimensional cell-based assay platform. Analyst 2024; 149:4653-4662. [PMID: 39072359 PMCID: PMC11421879 DOI: 10.1039/d4an00691g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cell-based assays are heavily relied on in the drug discovery pipeline, quickly pairing down large compound libraries to a manageable number of drug candidates for further characterization and evaluation. Monolayer cultures in which cells are deposited onto the bottom of well plates are the workhorse of many of these screens despite continued evidence of their inability to predict in vivo responses. Three-dimensional (3D) culture platforms can generate tissue-like environments with more representative cellular phenotypes than monolayers but have proven challenging to incorporate into already-developed workflows. Scaffold-based approaches are a tractable means of generating tissue-like environments, supporting cell-laden gels whose preparation is analogous to depositing cells in a well plate. Here, we describe supported gel slab (SGS) scaffolds prepared from commercially available materials, an adhesive spray, and a laser cutter. These cell-containing scaffolds can readily fit into well plates, providing a format compatible with current liquid handlers and analytical instrumentation. The scaffolds enable the evaluation of cellular responses in individual or stacked structures, which contain extracellular matrix-rich microenvironments. With a series of demonstrations, we highlight the utility of the readily assembled SGS scaffolds to quantify cellular responses. These readouts include confocal microscopy, quantifying cellular invasion in Transwell-like and stacked formats, generating multilayered spheroid-on-demand structures capable of providing spatially resolved maps of drug responses, and identifying potential chemotherapies in a screening application.
Collapse
Affiliation(s)
- Zachary R Sitte
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27599-3290, USA.
| | - Elizabeth E Karlsson
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27599-3290, USA.
| | - Tyler S Larson
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27599-3290, USA.
| | - Haolin Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599-7400, USA
| | - Haibo Zhou
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599-7400, USA
- UNC Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599-7400, USA
| | - Matthew R Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27599-3290, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC 27599-7295, USA
| |
Collapse
|
14
|
Liu Z, Fan Y, Cui M, Wang X, Zhao P. Investigation of tumour environments through advancements in microtechnology and nanotechnology. Biomed Pharmacother 2024; 178:117230. [PMID: 39116787 DOI: 10.1016/j.biopha.2024.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Cancer has a significant negative social and economic impact on both developed and developing countries. As a result, understanding the onset and progression of cancer is critical for developing therapies that can improve the well-being and health of individuals with cancer. With time, study has revealed, the tumor microenvironment has great influence on this process. Micro and nanoscale engineering techniques can be used to study the tumor microenvironment. Nanoscale and Microscale engineering use Novel technologies and designs with small dimensions to recreate the TME. Knowing how cancer cells interact with one another can help researchers develop therapeutic approaches that anticipate and counteract cancer cells' techniques for evading detection and fighting anti-cancer treatments, such as microfabrication techniques, microfluidic devices, nanosensors, and nanodevices used to study or recreate the tumor microenvironment. Nevertheless, a complicated action just like the growth and in cancer advancement, and their intensive association along the environment around it that has to be studied in more detail.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Radiology, Shengjing Hospital of China Medical University, China
| | - Yan Fan
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengyao Cui
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xu Wang
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Pengfei Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
15
|
Shen Z, Liu Z, Li M, Han L, Wang J, Wu X, Sang S. Effects of TET2-mediated methylation reconstruction on A2058 melanoma cell sensitivity to matrix stiffness in a 3D culture system. Exp Cell Res 2024; 442:114224. [PMID: 39187151 DOI: 10.1016/j.yexcr.2024.114224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Matrix stiffness is a crucial factor in the tumor microenvironment, impacting tumor progression and development. TET2 is vital for epigenetic regulation in melanoma and is significantly reduced in advanced melanomas compared with nevi and thin melanomas. However, it is unclear how TET2 mediates the effect of matrix stiffness on melanoma cells. This study utilized A2058 cell lines and prepared different stiffness collagen hydrogels to evaluate TET2 overexpression (TET2OE) and mutant (TET2M) melanoma cells' activity, proliferation, and invasion. A2058 melanoma cells' viability and invasion decreased with increased matrix stiffness, with TET2OE cells experiencing a more significant impact than TET2M cells. Methylation analysis revealed that TET2 determines gene methylation levels, influencing cell-ECM interactions. Transcriptome analysis confirmed that TET2 promotes matrix stiffness's effect on melanoma cell fate. This research provides promising directions and opportunities for melanoma treatment.
Collapse
Affiliation(s)
- Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
| | - Lu Han
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
| | - Jianming Wang
- General Hospital of TISCO, North Street, Xinghualing District, Taiyuan, 030809, China
| | - Xunwei Wu
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China; Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China; Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
16
|
Riching AS, Malloy A, Anderson EM, Sheard J, Mikkonen P, van Brabant Smith A, Strezoska Z, Levenga J. A Facile, Transfection-Free Approach to siRNA Delivery in In Vitro 3D Spheroid Models. Curr Protoc 2024; 4:e1121. [PMID: 39225471 DOI: 10.1002/cpz1.1121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cell culture has long been essential for preclinical modeling of human development and disease. However, conventional two-dimensional (2D) cell culture fails to faithfully model the complexity found in vivo, and novel drug candidates that show promising results in 2D models often do not translate to the clinic. More recently, three-dimensional (3D) cell culture models have gained popularity owing to their greater physiological relevance to in vivo biology. In particular, 3D spheroid models are becoming widely used due to their ability to mimic solid tumors, both in architecture and gradation of nutrients distributed from the outer, proliferative layers into the inner, quiescent layers of cells. Similar to in vivo tumors, cell lines grown in 3D spheroid models tend to be more resistant to antitumor drug treatments than their 2D cultured counterparts, though distinct signaling pathways and gene targets conferring this resistance have yet to be fully explored. RNA interference (RNAi) is an effective tool to elucidate gene function and discover novel druggable targets in 2D models; however, only a few studies have successfully performed RNAi in complex 3D models to date. Here, we demonstrate efficient RNAi-mediated knockdown using "transfection-free" Dharmacon Accell siRNAs in three spheroid culture models, in the presence or absence of the extracellular matrix. This methodology has the potential to be scaled up for complex arrayed screening experiments, which may aid in the identification of novel druggable targets with greater clinical relevance than those identified in 2D experiments. © 2024 Dharmacon, Inc. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of 3D spheroids in matrix-free ULA plates Alternate Protocol 1: Generation of Matrigel matrix-embedded 3D spheroids Alternate Protocol 2: Generation of GrowDex hydrogel-embedded 3D spheroids Basic Protocol 2: Delivery of siRNA and collection of matrix-free 3D spheroids Alternate Protocol 3: Delivery of siRNA and collection of matrix-embedded spheroids Basic Protocol 3: RNA and protein extraction from spheroids for characterization of gene knockdown.
Collapse
|
17
|
Ren K, Wang Q, Jiang D, Liu E, Alsmaan J, Jiang R, Rutkove SB, Tian F. A comprehensive review of electrophysiological techniques in amyotrophic lateral sclerosis research. Front Cell Neurosci 2024; 18:1435619. [PMID: 39280794 PMCID: PMC11393746 DOI: 10.3389/fncel.2024.1435619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease, is characterized by progressive motor neuron degeneration, leading to widespread weakness and respiratory failure. While a variety of mechanisms have been proposed as causes of this disease, a full understanding remains elusive. Electrophysiological alterations, including increased motor axon excitability, likely play an important role in disease progression. There remains a critical need for non-animal disease models that can integrate electrophysiological tools to better understand underlying mechanisms, track disease progression, and evaluate potential therapeutic interventions. This review explores the integration of electrophysiological technologies with ALS disease models. It covers cellular and clinical electrophysiological tools and their applications in ALS research. Additionally, we examine conventional animal models and highlight advancements in humanized models and 3D organoid technologies. By bridging the gap between these models, we aim to enhance our understanding of ALS pathogenesis and facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Keyuan Ren
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Qinglong Wang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Douglas Jiang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Scripps Institution of Oceanography, San Diego, CA, United States
| | - Ethan Liu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Julie Alsmaan
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Arts and Science, Harvard College, Cambridge, MA, United States
| | - Rui Jiang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Arts and Science, Harvard College, Cambridge, MA, United States
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Feng Tian
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Sitte ZR, Karlsson EE, Li H, Zhou H, Lockett MR. Continuous flow delivery system for the perfusion of scaffold-based 3D cultures. LAB ON A CHIP 2024; 24:4105-4114. [PMID: 39099241 PMCID: PMC11391725 DOI: 10.1039/d4lc00480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The paper-based culture platform developed by Whitesides readily incorporates tissue-like structures into laboratories with established workflows that rely on monolayer cultures. Cell-laden hydrogels are deposited in these porous scaffolds with micropipettes; these scaffolds support the thin gel slabs, allowing them to be evaluated individually or stacked into thick constructs. The paper-based culture platform has inspired many basic and translational studies, each exploring how readily accessible materials can generate complex structures that mimic aspects of tissues in vivo. Many of these examples have relied on static culture conditions, which result in diffusion-limited environments and cells experiencing pericellular hypoxia. Perfusion-based systems can alleviate pericellular hypoxia and other cell stresses by continually exposing the cells to fresh medium. These perfusion systems are common in microfluidic and organ-on-chip devices supporting cells as monolayer cultures or as 3D constructs. Here, we introduce a continuous flow delivery system, which uses parts readily produced with 3D printing to provide a self-contained culture platform in which cells in paper or other scaffolds are exposed to fresh (flowing) medium. We demonstrate the utility of this device with examples of cells maintained in single cell-laden scaffolds, stacks of cell-laden scaffolds, and scaffolds that contain monolayers of endothelial cells. These demonstrations highlight some possible experimental questions that can be enabled with readily accessible culture materials and a perfusion-based device that can be readily fabricated.
Collapse
Affiliation(s)
- Zachary R Sitte
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27599-3290, USA.
| | - Elizabeth E Karlsson
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27599-3290, USA.
| | - Haolin Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599-7400, USA
| | - Haibo Zhou
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599-7400, USA
- UNC Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599-7400, USA
| | - Matthew R Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27599-3290, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC 27599-7295, USA
| |
Collapse
|
19
|
Ndongo Sonfack DJ, Tanguay Boivin C, Touzel Deschênes L, Maurand T, Maguemoun C, Berthod F, Gros-Louis F, Champagne PO. Bioengineering Human Upper Respiratory Mucosa: A Systematic Review of the State of the Art of Cell Culture Techniques. Bioengineering (Basel) 2024; 11:826. [PMID: 39199784 PMCID: PMC11352167 DOI: 10.3390/bioengineering11080826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND The upper respiratory mucosa plays a crucial role in both the physical integrity and immunological function of the respiratory tract. However, in certain situations such as infections, trauma, or surgery, it might sustain damage. Tissue engineering, a field of regenerative medicine, has found applications in various medical fields including but not limited to plastic surgery, ophthalmology, and urology. However, its application to the respiratory system remains somewhat difficult due to the complex morphology and histology of the upper respiratory tract. To date, a culture protocol for producing a handleable, well-differentiated nasal mucosa has yet to be developed. The objective of this review is to describe the current state of research pertaining to cell culture techniques used for producing autologous healthy human upper respiratory cells and mucosal tissues, as well as describe its clinical applications. METHODS A search of the relevant literature was carried out with no time restriction across Embase, Cochrane, PubMed, and Medline Ovid databases. Keywords related to "respiratory mucosa" and "culture techniques of the human airway" were the focus of the search strategy for this review. The risk of bias in retained studies was assessed using the Joanna Briggs Institute's (JBI) critical appraisal tools for qualitative research. A narrative synthesis of our results was then conducted. RESULTS A total of 33 studies were included in this review, and thirteen of these focused solely on developing a cell culture protocol without further use. The rest of the studies used their own developed protocol for various applications such as cystic fibrosis, pharmacological, and viral research. One study was able to develop a promising model for nasal mucosa that could be employed as a replacement in nasotracheal reconstructive surgery. CONCLUSIONS This systematic review extensively explored the current state of research regarding cell culture techniques for producing tissue-engineered nasal mucosa. Bioengineering the nasal mucosa holds great potential for clinical use. However, further research on mechanical properties is essential, as the comparison of engineered tissues is currently focused on morphology rather than comprehensive mechanical assessments.
Collapse
Affiliation(s)
- Davaine Joel Ndongo Sonfack
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
- Laval University Neurosurgery Innovation Laboratory (LINUL), Quebec, QC G1J 5B3, Canada
- Department of Neurosurgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Clémence Tanguay Boivin
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
| | - Lydia Touzel Deschênes
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
- Laval University Neurosurgery Innovation Laboratory (LINUL), Quebec, QC G1J 5B3, Canada
| | - Thibault Maurand
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
| | - Célina Maguemoun
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
| | - François Berthod
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
| | - François Gros-Louis
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
| | - Pierre-Olivier Champagne
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
- Laval University Neurosurgery Innovation Laboratory (LINUL), Quebec, QC G1J 5B3, Canada
- Department of Neurosurgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
20
|
Apodaca S, Di Salvatore M, Muñoz-Calderón A, Curto MDLÁ, Longhi SA, Schijman AG. Novel 3D human trophoblast culture to explore T. cruzi infection in the placenta. Front Cell Infect Microbiol 2024; 14:1433424. [PMID: 39165920 PMCID: PMC11333438 DOI: 10.3389/fcimb.2024.1433424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/08/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Human trophoblastic cell lines, such as BeWo, are commonly used in 2D models to study placental Trypanosoma cruzi infections. However, these models do not accurately represent natural infections. Three-dimensional (3D) microtissue cultures offer a more physiologically relevant in vitro model, mimicking tissue microarchitecture and providing an environment closer to natural infections. These 3D cultures exhibit functions such as cell proliferation, differentiation, morphogenesis, and gene expression that resemble in vivo conditions. Methods We developed a 3D culture model using the human trophoblastic cell line BeWo and nonadherent agarose molds from the MicroTissues® 3D Petri Dish® system. Both small (12-256) and large (12-81) models were tested with varying initial cell numbers. We measured the diameter of the 3D cultures and evaluated cell viability using Trypan Blue dye. Trophoblast functionality was assessed by measuring β-hCG production via ELISA. Cell fusion was evaluated using confocal microscopy, with Phalloidin or ZO-1 marking cell edges and DAPI staining nuclei. T. cruzi infection was assessed by microscopy and quantitative PCR, targeting the EF1-α gene for T. cruzi and GAPDH for BeWo cells, using three parasite strains: VD (isolated from a congenital Chagas disease infant and classified as Tc VI), and K98 and Pan4 (unrelated to congenital infection and classified as Tc I). Results Seeding 1000 BeWo cells per microwell in the large model resulted in comparable cellular viability to 2D cultures, with a theoretical diameter of 408.68 ± 12.65 μm observed at 5 days. Functionality, assessed through β-hCG production, exceeded levels in 2D cultures at both 3 and 5 days. T. cruzi infection was confirmed by qPCR and microscopy, showing parasite presence inside the cells for all three tested strains. The distribution and progression of the infection varied with each strain. Discussion This innovative 3D model offers a simple yet effective approach for generating viable and functional cultures susceptible to T. cruzi infection, presenting significant potential for studying the placental microenvironment.
Collapse
Affiliation(s)
| | | | | | | | | | - Alejandro G. Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
21
|
Hong CE, Lyu SY. Modulation of Breast Cancer Cell Apoptosis and Macrophage Polarization by Mistletoe Lectin in 2D and 3D Models. Int J Mol Sci 2024; 25:8459. [PMID: 39126027 PMCID: PMC11313472 DOI: 10.3390/ijms25158459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Korean mistletoe (Viscum album L. var. coloratum) is renowned for its medicinal properties, including anti-cancer and immunoadjuvant effects. This study aimed to elucidate the mechanisms by which Korean mistletoe lectin (V. album L. var. coloratum agglutinin; VCA) modulates breast cancer cell apoptosis and macrophage polarization. The specific objectives were to (1) investigate the direct effects of VCA on MCF-7 breast cancer cells and THP-1-derived M1/M2 macrophages; (2) analyze the impact of VCA on the paracrine interactions between these cell types; and (3) compare the efficacy of VCA in 2D vs. 3D co-culture models to bridge the gap between in vitro and in vivo studies. We employed both 2D and 3D models, co-culturing human M1/M2 macrophages with human MCF-7 breast cancer cells in a Transwell system. Our research demonstrated that M1 and M2 macrophages significantly influenced the immune and apoptotic responses of breast cancer cells when exposed to VCA. M1 macrophages exhibited cytotoxic characteristics and enhanced VCA-induced apoptosis in both 2D and 3D co-culture models. Conversely, M2 macrophages initially displayed a protective effect by reducing apoptosis in breast cancer cells, but this protective effect was reversed upon exposure to VCA. Furthermore, our findings illustrate VCA's ability to modulate M1 and M2 polarization in breast cancer cells. Finally, the use of magnetic 3D cell cultures suggests their potential to yield results comparable to conventional 2D cultures, bridging the gap between in vitro and in vivo studies.
Collapse
Affiliation(s)
- Chang-Eui Hong
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea;
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Su-Yun Lyu
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea;
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
22
|
Gonçalves PP, da Silva CL, Bernardes N. Advancing cancer therapeutics: Integrating scalable 3D cancer models, extracellular vesicles, and omics for enhanced therapy efficacy. Adv Cancer Res 2024; 163:137-185. [PMID: 39271262 DOI: 10.1016/bs.acr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Cancer remains as one of the highest challenges to human health. However, anticancer drugs exhibit one of the highest attrition rates compared to other therapeutic interventions. In part, this can be attributed to a prevalent use of in vitro models with limited recapitulative potential of the in vivo settings. Three dimensional (3D) models, such as tumor spheroids and organoids, offer many research opportunities to address the urgent need in developing models capable to more accurately mimic cancer biology and drug resistance profiles. However, their wide adoption in high-throughput pre-clinical studies is dependent on scalable manufacturing to support large-scale therapeutic drug screenings and multi-omic approaches for their comprehensive cellular and molecular characterization. Extracellular vesicles (EVs), which have been emerging as promising drug delivery systems (DDS), stand to significantly benefit from such screenings conducted in realistic cancer models. Furthermore, the integration of these nanomedicines with 3D cancer models and omics profiling holds the potential to deepen our understanding of EV-mediated anticancer effects. In this chapter, we provide an overview of the existing 3D models used in cancer research, namely spheroids and organoids, the innovations in their scalable production and discuss how omics can facilitate the implementation of these models at different stages of drug testing. We also explore how EVs can advance drug delivery in cancer therapies and how the synergy between 3D cancer models and omics approaches can benefit in this process.
Collapse
Affiliation(s)
- Pedro P Gonçalves
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Nuno Bernardes
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
23
|
Camero S, Milazzo L, Vulcano F, Ceccarelli F, Pontecorvi P, Pedini F, Rossetti A, Scialis ES, Gerini G, Cece F, Pomella S, Cassandri M, Porrazzo A, Romano E, Festuccia C, Gravina GL, Ceccarelli S, Rota R, Lotti LV, Midulla F, Angeloni A, Marchese C, Marampon F, Megiorni F. Antitumour effects of SFX-01 molecule in combination with ionizing radiation in preclinical and in vivo models of rhabdomyosarcoma. BMC Cancer 2024; 24:814. [PMID: 38977944 PMCID: PMC11229215 DOI: 10.1186/s12885-024-12536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Despite a multimodal approach including surgery, chemo- and radiotherapy, the 5-year event-free survival rate for rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in childhood, remains very poor for metastatic patients, mainly due to the selection and proliferation of tumour cells driving resistance mechanisms. Personalised medicine-based protocols using new drugs or targeted therapies in combination with conventional treatments have the potential to enhance the therapeutic effects, while minimizing damage to healthy tissues in a wide range of human malignancies, with several clinical trials being started. In this study, we analysed, for the first time, the antitumour activity of SFX-01, a complex of synthetic d, l-sulforaphane stabilised in alpha-cyclodextrin (Evgen Pharma plc, UK), used as single agent and in combination with irradiation, in four preclinical models of alveolar and embryonal RMS. Indeed, SFX-01 has shown promise in preclinical studies for its ability to modulate cellular pathways involved in inflammation and oxidative stress that are essential to be controlled in cancer treatment. METHODS RH30, RH4 (alveolar RMS), RD and JR1 (embryonal RMS) cell lines as well as mouse xenograft models of RMS were used to evaluate the biological and molecular effects induced by SFX-01 treatment. Flow cytometry and the modulation of key markers analysed by q-PCR and Western blot were used to assess cell proliferation, apoptosis, autophagy and production of intracellular reactive oxygen species (ROS) in RMS cells exposed to SFX-01. The ability to migrate and invade was also investigated with specific assays. The possible synergistic effects between SFX-01 and ionising radiation (IR) was studied in both the in vitro and in vivo studies. Student's t-test or two-way ANOVA were used to test the statistical significance of two or more comparisons, respectively. RESULTS SFX-01 treatment exhibited cytostatic and cytotoxic effects, mediated by G2 cell cycle arrest, apoptosis induction and suppression of autophagy. Moreover, SFX-01 was able to inhibit the formation and the proliferation of 3D tumorspheres as monotherapy and in combination with IR. Finally, SFX-01, when orally administered as single agent, displayed a pattern of efficacy at reducing the growth of tumour masses in RMS xenograft mouse models; when combined with a radiotherapy regime, it was observed to act synergistically, resulting in a more positive outcome than would be expected by adding each exposure alone. CONCLUSIONS In summary, our results provide evidence for the antitumour properties of SFX-01 in preclinical models of RMS tumours, both as a standalone treatment and in combination with irradiation. These forthcoming findings are crucial for deeper investigations of SFX-01 molecular mechanisms against RMS and for setting up clinical trials in RMS patients in order to use the SFX-01/IR co-treatment as a promising therapeutic approach, particularly in the clinical management of aggressive RMS disease.
Collapse
Affiliation(s)
- Simona Camero
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Luisa Milazzo
- Department of Oncology and Molecular Medicine, Italian National Institute of Health (ISS), Rome, Italy
| | - Francesca Vulcano
- Department of Oncology and Molecular Medicine, Italian National Institute of Health (ISS), Rome, Italy
| | - Federica Ceccarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Paola Pontecorvi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Francesca Pedini
- Department of Oncology and Molecular Medicine, Italian National Institute of Health (ISS), Rome, Italy
| | - Alessandra Rossetti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elena Sofia Scialis
- Department of Innovative Technologies in Medicine and Dentistry, University "G. D'Annunzio" Chieti - Pescara, Chieti, Italy
| | - Giulia Gerini
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Fabrizio Cece
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Silvia Pomella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Antonella Porrazzo
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Enrico Romano
- Department of Sense Organs, "Sapienza" University of Rome, Rome, Italy
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Fabio Midulla
- Department of Maternal Infantile and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - Francesca Megiorni
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
24
|
Hilai K, Grubich D, Akrawi M, Zhu H, Zaghloul R, Shi C, Do M, Zhu D, Zhang J. Mechanical evolution of metastatic cancer cells in three-dimensional microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601015. [PMID: 39005477 PMCID: PMC11244934 DOI: 10.1101/2024.06.27.601015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cellular biomechanics plays critical roles in cancer metastasis and tumor progression. Existing studies on cancer cell biomechanics are mostly conducted in flat 2D conditions, where cells' behavior can differ considerably from those in 3D physiological environments. Despite great advances in developing 3D in vitro models, probing cellular elasticity in 3D conditions remains a major challenge for existing technologies. In this work, we utilize optical Brillouin microscopy to longitudinally acquire mechanical images of growing cancerous spheroids over the period of eight days. The dense mechanical mapping from Brillouin microscopy enables us to extract spatially resolved and temporally evolving mechanical features that were previously inaccessible. Using an established machine learning algorithm, we demonstrate that incorporating these extracted mechanical features significantly improves the classification accuracy of cancer cells, from 74% to 95%. Building on this finding, we have developed a deep learning pipeline capable of accurately differentiating cancerous spheroids from normal ones solely using Brillouin images, suggesting the mechanical features of cancer cells could potentially serve as a new biomarker in cancer classification and detection.
Collapse
Affiliation(s)
- Karlin Hilai
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Daniil Grubich
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Marcus Akrawi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Hui Zhu
- Department of Computer Science, Wayne State University, Detroit, MI, 48202, USA
| | - Razanne Zaghloul
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Chenjun Shi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Man Do
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Dongxiao Zhu
- Department of Computer Science, Wayne State University, Detroit, MI, 48202, USA
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
25
|
Bae SJ, Choi SH, Im DJ. 3D Cell Culture Method in Channel-Free Water-in-Oil Droplets. SMALL METHODS 2024; 8:e2301145. [PMID: 38239079 DOI: 10.1002/smtd.202301145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/02/2024] [Indexed: 07/21/2024]
Abstract
A new channel-free water-in-oil (WO) droplet 3D cell culture method is proposed to address the challenges while maintaining the advantages of the conventional 3D cell culture methods. The proposed WO method can fundamentally solve the constraint of spheroids size, a common challenge in conventional 3D culture, by using droplet size controllability. The 3D cell culture performance of the WO method is verified by comparing it with the conventional 3D cell culture methods. A systematic investigation of the culture conditions of the WO method confirms the working range of cell concentration and droplet size, as well as the scalability of spheroid size. Adjusting droplet size and cell concentration enables rapid spheroid formation with large and high cell concentration droplets or fast spheroid growth with small and low cell concentration droplets, providing control over the spheroid size and growth rate according to the purpose. Furthermore, long-term culture is demonstrated for 1 month with the proposed method, showing the largest spheroid culture and demonstrating the possibility that this method can be used not only for spheroid formation but also for organoid studies. Finally, if a WO-based automated 3D cell culture system is developed, it will be a useful tool for organoid research.
Collapse
Affiliation(s)
- Seo Jun Bae
- Department of Chemical Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, 48513, South Korea
| | - Seung Hui Choi
- Department of Chemical Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, 48513, South Korea
| | - Do Jin Im
- Department of Chemical Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, 48513, South Korea
| |
Collapse
|
26
|
Ashworth JC, Cox TR. The importance of 3D fibre architecture in cancer and implications for biomaterial model design. Nat Rev Cancer 2024; 24:461-479. [PMID: 38886573 DOI: 10.1038/s41568-024-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/20/2024]
Abstract
The need for improved prediction of clinical response is driving the development of cancer models with enhanced physiological relevance. A new concept of 'precision biomaterials' is emerging, encompassing patient-mimetic biomaterial models that seek to accurately detect, treat and model cancer by faithfully recapitulating key microenvironmental characteristics. Despite recent advances allowing tissue-mimetic stiffness and molecular composition to be replicated in vitro, approaches for reproducing the 3D fibre architectures found in tumour extracellular matrix (ECM) remain relatively unexplored. Although the precise influences of patient-specific fibre architecture are unclear, we summarize the known roles of tumour fibre architecture, underlining their implications in cell-matrix interactions and ultimately clinical outcome. We then explore the challenges in reproducing tissue-specific 3D fibre architecture(s) in vitro, highlighting relevant biomaterial fabrication techniques and their benefits and limitations. Finally, we discuss imaging and image analysis techniques (focussing on collagen I-optimized approaches) that could hold the key to mapping tumour-specific ECM into high-fidelity biomaterial models. We anticipate that an interdisciplinary approach, combining materials science, cancer research and image analysis, will elucidate the role of 3D fibre architecture in tumour development, leading to the next generation of patient-mimetic models for mechanistic studies and drug discovery.
Collapse
Affiliation(s)
- Jennifer C Ashworth
- School of Veterinary Medicine & Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK.
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK.
- Cancer Ecosystems Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
| | - Thomas R Cox
- Cancer Ecosystems Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
27
|
Ti F, Yu C, Li M, Liu S, Lu TJ, Chen X. Cross-scale mechanobiological regulation of cylindrical compressible liquid inclusion via coating. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:395101. [PMID: 38906135 DOI: 10.1088/1361-648x/ad5ace] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/21/2024] [Indexed: 06/23/2024]
Abstract
The double-bag theory in modern anatomy suggests that structures with coatings are commonly found in human body at various length scales, such as osteocyte processes covered by pericellular matrix and bones covered by muscle tissue. To understand the mechanical behaviors and physiological responses of such biological structures, we develop an analytical model to quantify surface effects on the deformation of a coated cylindrical compressible liquid inclusion in an elastic matrix subjected to remote loading. Our analytical solution reveals that coating can either amplify or attenuate the volumetric strain of the inclusion, depending on the relative elastic moduli of inclusion, coating, and matrix. For illustration, we utilize this solution to explore amplification/attenuation of volumetric strain in musculoskeletal systems, nerve cells, and vascular tissues. We demonstrate that coating often plays a crucial role in mechanical regulation of the development and repair of human tissues and cells. Our model provides qualitative analysis of cross-scale mechanical response of coated liquid inclusions, helpful for constructing mechanical microenvironment of cells.
Collapse
Affiliation(s)
- Fei Ti
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
- MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Chenlei Yu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Moxiao Li
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
- MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Shaobao Liu
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
- MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
- MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Xin Chen
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, People's Republic of China
| |
Collapse
|
28
|
Yu J, Zhang Y, Ran R, Kong Z, Zhao D, Zhao W, Yang Y, Gao L, Zhang Z. Research Progress in the Field of Tumor Model Construction Using Bioprinting: A Review. Int J Nanomedicine 2024; 19:6547-6575. [PMID: 38957180 PMCID: PMC11217009 DOI: 10.2147/ijn.s460387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
The development of therapeutic drugs and methods has been greatly facilitated by the emergence of tumor models. However, due to their inherent complexity, establishing a model that can fully replicate the tumor tissue situation remains extremely challenging. With the development of tissue engineering, the advancement of bioprinting technology has facilitated the upgrading of tumor models. This article focuses on the latest advancements in bioprinting, specifically highlighting the construction of 3D tumor models, and underscores the integration of these two technologies. Furthermore, it discusses the challenges and future directions of related techniques, while also emphasizing the effective recreation of the tumor microenvironment through the emergence of 3D tumor models that resemble in vitro organs, thereby accelerating the development of new anticancer therapies.
Collapse
Affiliation(s)
- Jiachen Yu
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Yingchun Zhang
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Rong Ran
- Department of Anesthesia, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Zixiao Kong
- China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Duoyi Zhao
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Wei Zhao
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Yingxin Yang
- General Hospital of Northern Theater Command, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Lianbo Gao
- Department of Neurology, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Zhiyu Zhang
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| |
Collapse
|
29
|
Amato CM, Yao HHC. New uses for an old technique: live imaging on the slice organ culture to study reproductive processes†. Biol Reprod 2024; 110:1055-1064. [PMID: 38315794 PMCID: PMC11180704 DOI: 10.1093/biolre/ioae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/07/2024] Open
Abstract
Reproductive processes are dynamic and involve extensive morphological remodeling and cell-cell interactions. Live imaging of organs enhances our understanding of how biological processes occur in real time. Slice culture is a type of organ culture where thick slices are collected from an organ and cultured for several days. Slice culture is a useful and easy-to-implement technique for live imaging of reproductive events at cellular resolution. Here we describe a pipeline of live imaging on slice culture to visualize the process of urethra closure in mouse embryonic penis as a proof of principle. In combination with genetic reporter mice, nuclear stains, and exposure experiments, we demonstrate the feasibility of slice culture on a reproductive organ. We also provide a step-by-step protocol and troubleshooting guide to facilitate the adoption of slice culture with live imaging in other reproductive organs. Lastly, we discuss potential utilities and experiments that could be implemented with slice culture in reproductive sciences.
Collapse
Affiliation(s)
- Ciro Maurizio Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
30
|
Ferraro R, Guido S, Caserta S, Tassieri M. i -Rheo-optical assay: Measuring the viscoelastic properties of multicellular spheroids. Mater Today Bio 2024; 26:101066. [PMID: 38693994 PMCID: PMC11061759 DOI: 10.1016/j.mtbio.2024.101066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
This study introduces a novel mechanobiology assay, named "i-Rheo-optical assay", that integrates rheology with optical microscopy for analysing the viscoelastic properties of multicellular spheroids. These spheroids serve as three-dimensional models resembling tissue structures. The innovative technique enables real-time observation and quantification of morphological responses to applied stress using a cost-effective microscope coverslip for constant compression force application. By bridging a knowledge gap in biophysical research, which has predominantly focused on the elastic properties while only minimally exploring the viscoelastic nature in multicellular systems, the i-Rheo-optical assay emerges as an effective tool. It facilitates the measurement of broadband viscoelastic compressional moduli in spheroids, here derived from cancer (PANC-1) and non-tumoral (NIH/3T3) cell lines during compression tests. This approach plays a crucial role in elucidating the mechanical properties of spheroids and holds potential for identifying biomarkers to discriminate between healthy tissues and their pathological counterparts. Offering comprehensive insights into the biomechanical behaviour of biological systems, i-Rheo-optical assay marks a significant advancement in tissue engineering, cancer research, and therapeutic development.
Collapse
Affiliation(s)
- Rosalia Ferraro
- DICMaPI, Università di Napoli Federico II, P.le V. Tecchio 80, 80125, Napoli, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80131, Napoli, Italy
| | - Stefano Guido
- DICMaPI, Università di Napoli Federico II, P.le V. Tecchio 80, 80125, Napoli, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80131, Napoli, Italy
| | - Sergio Caserta
- DICMaPI, Università di Napoli Federico II, P.le V. Tecchio 80, 80125, Napoli, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80131, Napoli, Italy
| | - Manlio Tassieri
- Division of Biomedical Engineering, James Watt School of Engineering, Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| |
Collapse
|
31
|
Lingard E, Dong S, Hoyle A, Appleton E, Hales A, Skaria E, Lawless C, Taylor-Hearn I, Saadati S, Chu Q, Miller AF, Domingos M, Saiani A, Swift J, Gilmore AP. Optimising a self-assembling peptide hydrogel as a Matrigel alternative for 3-dimensional mammary epithelial cell culture. BIOMATERIALS ADVANCES 2024; 160:213847. [PMID: 38657288 DOI: 10.1016/j.bioadv.2024.213847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
Three-dimensional (3D) organoid models have been instrumental in understanding molecular mechanisms responsible for many cellular processes and diseases. However, established organic biomaterial scaffolds used for 3D hydrogel cultures, such as Matrigel, are biochemically complex and display significant batch variability, limiting reproducibility in experiments. Recently, there has been significant progress in the development of synthetic hydrogels for in vitro cell culture that are reproducible, mechanically tuneable, and biocompatible. Self-assembling peptide hydrogels (SAPHs) are synthetic biomaterials that can be engineered to be compatible with 3D cell culture. Here we investigate the ability of PeptiGel® SAPHs to model the mammary epithelial cell (MEC) microenvironment in vitro. The positively charged PeptiGel®Alpha4 supported MEC viability, but did not promote formation of polarised acini. Modifying the stiffness of PeptiGel® Alpha4 stimulated changes in MEC viability and changes in protein expression associated with altered MEC function, but did not fully recapitulate the morphologies of MECs grown in Matrigel. To supply the appropriate biochemical signals for MEC organoids, we supplemented PeptiGels® with laminin. Laminin was found to require negatively charged PeptiGel® Alpha7 for functionality, but was then able to provide appropriate signals for correct MEC polarisation and expression of characteristic proteins. Thus, optimisation of SAPH composition and mechanics allows tuning to support tissue-specific organoids.
Collapse
Affiliation(s)
- Eliana Lingard
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester M13 9PT, UK; Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Siyuan Dong
- School of Materials, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester, UK
| | - Anna Hoyle
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester M13 9PT, UK; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Ellen Appleton
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester M13 9PT, UK; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Alis Hales
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester M13 9PT, UK; Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Eldhose Skaria
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester M13 9PT, UK
| | - Craig Lawless
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester M13 9PT, UK
| | - Isobel Taylor-Hearn
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester M13 9PT, UK; Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Simon Saadati
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester M13 9PT, UK; Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Qixun Chu
- School of Materials, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester, UK; Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Aline F Miller
- School of Materials, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester, UK
| | - Marco Domingos
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, United Kingdom, M13 9PL, UK
| | - Alberto Saiani
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK; Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Joe Swift
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester M13 9PT, UK; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Andrew P Gilmore
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester M13 9PT, UK; Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
32
|
Merces L, Ferro LMM, Thomas A, Karnaushenko DD, Luo Y, Egunov AI, Zhang W, Bandari VK, Lee Y, McCaskill JS, Zhu M, Schmidt OG, Karnaushenko D. Bio-Inspired Dynamically Morphing Microelectronics toward High-Density Energy Applications and Intelligent Biomedical Implants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313327. [PMID: 38402420 DOI: 10.1002/adma.202313327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/09/2024] [Indexed: 02/26/2024]
Abstract
Choreographing the adaptive shapes of patterned surfaces to exhibit designable mechanical interactions with their environment remains an intricate challenge. Here, a novel category of strain-engineered dynamic-shape materials, empowering diverse multi-dimensional shape modulations that are combined to form fine-grained adaptive microarchitectures is introduced. Using micro-origami tessellation technology, heterogeneous materials are provided with strategic creases featuring stimuli-responsive micro-hinges that morph precisely upon chemical and electrical cues. Freestanding multifaceted foldable packages, auxetic mesosurfaces, and morphable cages are three of the forms demonstrated herein of these complex 4-dimensional (4D) metamaterials. These systems are integrated in dual proof-of-concept bioelectronic demonstrations: a soft foldable supercapacitor enhancing its power density (≈108 mW cm-2), and a bio-adaptive device with a dynamic shape that may enable novel smart-implant technologies. This work demonstrates that intelligent material systems are now ready to support ultra-flexible 4D microelectronics, which can impart autonomy to devices culminating in the tangible realization of microelectronic morphogenesis.
Collapse
Affiliation(s)
- Leandro Merces
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Letícia Mariê Minatogau Ferro
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Aleena Thomas
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Institute of Chemistry, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Dmitriy D Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Yumin Luo
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Aleksandr I Egunov
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Wenlan Zhang
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Vineeth K Bandari
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Yeji Lee
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - John S McCaskill
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- European Centre for Living Technology (ECLT), Venice, 30123, Italy
| | - Minshen Zhu
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
- Nanophysics, Faculty of Physics, Dresden University of Technology, 01062, Dresden, Germany
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
| |
Collapse
|
33
|
Zhou L, Li G, Yao J, Wang J, Yao X, Ye Z, Zheng D, Song K, Zhang H, Zhang X, Shuai J, Ye F, Li M, Li Y, Chen G, Cheng Y, Liu H, Shaw P, Liu L. Emulation and evaluation of tumor cell combined chemotherapy in isotropic/anisotropic collagen fiber microenvironments. LAB ON A CHIP 2024; 24:2999-3014. [PMID: 38742451 DOI: 10.1039/d4lc00051j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The rapid emergence of anisotropic collagen fibers in the tissue microenvironment is a critical transition point in late-stage breast cancer. Specifically, the fiber orientation facilitates the likelihood of high-speed tumor cell invasion and metastasis, which pose lethal threats to patients. Thus, based on this transition point, one key issue is how to determine and evaluate efficient combination chemotherapy treatments in late-stage cancer. In this study, we designed a collagen microarray chip containing 241 high-throughput microchambers with embedded metastatic breast cancer cell MDA-MB-231-RFP. By utilizing collagen's unique structure and hydromechanical properties, the chip constructed three-dimensional isotropic and anisotropic collagen fiber structures to emulate the tumor cell microenvironment at early and late stages. We injected different chemotherapeutic drugs into its four channels and obtained composite biochemical concentration profiles. Our results demonstrate that anisotropic collagen fibers promote cell proliferation and migration more than isotropic collagen fibers, suggesting that the geometric arrangement of fibers plays an important role in regulating cell behavior. Moreover, the presence of anisotropic collagen fibers may be a potential factor leading to the poor efficacy of combined chemotherapy in late-stage breast cancer. We investigated the efficacy of various chemotherapy drugs using cell proliferation inhibitors paclitaxel and gemcitabine and tumor cell migration inhibitors 7rh and PP2. To ensure the validity of our findings, we followed a systematic approach that involved testing the inhibitory effects of these drugs. According to our results, the drug combinations' effectiveness could be ordered as follows: paclitaxel + gemcitabine > gemcitabine + 7rh > PP2 + paclitaxel > 7rh + PP2. This study shows that the biomimetic chip system not only facilitates the creation of a realistic in vitro model for examining the cell migration mechanism in late-stage breast cancer but also has the potential to function as an effective tool for future chemotherapy assessment and personalized medicine.
Collapse
Affiliation(s)
- Lianjie Zhou
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Guoqiang Li
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Chongqing University of Arts and Sciences, Yongchuan 402160, PR China
| | - Jingru Yao
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Jing Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Xiyao Yao
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Zhikai Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Dongtian Zheng
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Kena Song
- College of Medical Technology and Engineering, Henan University of Science and Technology, Henan 471023, China
| | - Hongfei Zhang
- Hygeia International Cancer Hospital, Chongqing 401331, China
| | - Xianquan Zhang
- Hygeia International Cancer Hospital, Chongqing 401331, China
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen 361005, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yufeng Li
- Shaanxi Provincial Key Laboratory of Photonics & Information Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guo Chen
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Yuyan Cheng
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Chongqing University of Arts and Sciences, Yongchuan 402160, PR China
| | - He Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, China.
| | - Peter Shaw
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, China.
| | - Liyu Liu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
34
|
Li J, Wang Y, Raina MA, Xu C, Su L, Guo Q, Ma Q, Wang J, Xu D. scBSP: A fast and accurate tool for identifying spatially variable genes from spatial transcriptomic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592851. [PMID: 38765956 PMCID: PMC11100755 DOI: 10.1101/2024.05.06.592851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Spatially resolved transcriptomics have enabled the inference of gene expression patterns within two and three-dimensional space, while introducing computational challenges due to growing spatial resolutions and sparse expressions. Here, we introduce scBSP, an open-source, versatile, and user-friendly package designed for identifying spatially variable genes in large-scale spatial transcriptomics. scBSP implements sparse matrix operation to significantly increase the computational efficiency in both computational time and memory usage, processing the high-definition spatial transcriptomics data for 19,950 genes on 181,367 spots within 10 seconds. Applied to diverse sequencing data and simulations, scBSP efficiently identifies spatially variable genes, demonstrating fast computational speed and consistency across various sequencing techniques and spatial resolutions for both two and three-dimensional data with up to millions of cells. On a sample with hundreds of thousands of sports, scBSP identifies SVGs accurately in seconds to on a typical desktop computer.
Collapse
|
35
|
Nakamura H, Watanabe M, Takada K, Sato T, Hikage F, Umetsu A, Muramatsu J, Furuhashi M, Ohguro H. Modulation of Epithelial-Mesenchymal Transition Is a Possible Underlying Mechanism for Inducing Chemoresistance in MIA PaCa-2 Cells against Gemcitabine and Paclitaxel. Biomedicines 2024; 12:1011. [PMID: 38790973 PMCID: PMC11118094 DOI: 10.3390/biomedicines12051011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
To elucidate the currently unknown molecular mechanisms responsible for the similarity and difference during the acquirement of resistance against gemcitabine (GEM) and paclitaxel (PTX) in patients with pancreatic carcinoma, we examined two-dimensional (2D) and three-dimensional (3D) cultures of parent MIA PaCa-2 cells (MIA PaCa-2-PA) and their GEM resistance cell line (MIA PaCa-2-GR) and PTX resistance (MIA PaCa-2-PR). Using these cells, we examined 3D spheroid configurations and cellular metabolism, including mitochondrial and glycolytic functions, with a Seahorse bio-analyzer and RNA sequencing analysis. Compared to the MIA PaCa-2-PA, (1) the formation of the 3D spheroids of MIA PaCa-2-GR or -PR was much slower, and (2) their mitochondrial and glycolytic functions were greatly modulated in MIA PaCa-2-GR or -PR, and such metabolic changes were also different between their 2D and 3D culture conditions. RNA sequencing and bioinformatic analyses of the differentially expressed genes (DEGs) using an ingenuity pathway analysis (IPA) suggested that various modulatory factors related to epithelial -mesenchymal transition (EMT) including STAT3, GLI1, ZNF367, NKX3-2, ZIC2, IFIT2, HEY1 and FBLX, may be the possible upstream regulators and/or causal network master regulators responsible for the acquirement of drug resistance in MIA PaCa-2-GR and -PR. In addition, among the prominently altered DEGs (Log2 fold changes more than 6 or less than -6), FABP5, IQSEC3, and GASK1B were identified as unique genes associated with their antisense RNA or pseudogenes, and among these, FABP5 and GASK1B are known to function as modulators of cancerous EMT. Therefore, the observations reported herein suggest that modulations of cancerous EMT may be key molecular mechanisms that are responsible for inducing chemoresistance against GEM or PTX in MIA PaCa-2 cells.
Collapse
Affiliation(s)
- Hajime Nakamura
- Departments of Medical Oncology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (H.N.); (K.T.); (J.M.)
| | - Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (A.U.)
| | - Kohichi Takada
- Departments of Medical Oncology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (H.N.); (K.T.); (J.M.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Fumihito Hikage
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (A.U.)
| | - Araya Umetsu
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (A.U.)
| | - Joji Muramatsu
- Departments of Medical Oncology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (H.N.); (K.T.); (J.M.)
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (M.F.)
| | - Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (A.U.)
| |
Collapse
|
36
|
Khine YY, Nguyen H, Afolabi F, Lin CC. Fast-relaxing hydrogels with reversibly tunable mechanics for dynamic cancer cell culture. BIOMATERIALS ADVANCES 2024; 159:213829. [PMID: 38531258 PMCID: PMC11075809 DOI: 10.1016/j.bioadv.2024.213829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024]
Abstract
The mechanics of the tumor microenvironment (TME) significantly impact disease progression and the efficacy of anti-cancer therapeutics. While it is recognized that advanced in vitro cancer models will benefit cancer research, none of the current engineered extracellular matrices (ECM) adequately recapitulate the highly dynamic TME. Through integrating reversible boronate-ester bonding and dithiolane ring-opening polymerization, we fabricated synthetic polymer hydrogels with tumor-mimetic fast relaxation and reversibly tunable elastic moduli. Importantly, the crosslinking and dynamic stiffening of matrix mechanics were achieved in the absence of a photoinitiator, often the source of cytotoxicity. Central to this strategy was Poly(PEGA-co-LAA-co-AAPBA) (PELA), a highly defined polymer synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. PELA contains dithiolane for initiator-free gel crosslinking, stiffening, and softening, as well as boronic acid for complexation with diol-containing polymers to give rise to tunable viscoelasticity. PELA hydrogels were highly cytocompatible for dynamic culture of patient-derived pancreatic cancer cells. It was found that the fast-relaxing matrix induced mesenchymal phenotype of cancer cells, and dynamic matrix stiffening restricted tumor spheroid growth. Moreover, this new dynamic viscoelastic hydrogel system permitted sequential stiffening and softening to mimic the physical changes of TME.
Collapse
Affiliation(s)
- Yee Yee Khine
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Han Nguyen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Favour Afolabi
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA.
| |
Collapse
|
37
|
García-Astrain C, Henriksen-Lacey M, Lenzi E, Renero-Lecuna C, Langer J, Piñeiro P, Molina-Martínez B, Plou J, Jimenez de Aberasturi D, Liz-Marzán LM. A Scaffold-Assisted 3D Cancer Cell Model for Surface-Enhanced Raman Scattering-Based Real-Time Sensing and Imaging. ACS NANO 2024; 18:11257-11269. [PMID: 38632933 PMCID: PMC11064228 DOI: 10.1021/acsnano.4c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Despite recent advances in the development of scaffold-based three-dimensional (3D) cell models, challenges persist in imaging and monitoring cell behavior within these complex structures due to their heterogeneous cell distribution and geometries. Incorporating sensors into 3D scaffolds provides a potential solution for real-time, in situ sensing and imaging of biological processes such as cell growth and disease development. We introduce a 3D printed hydrogel-based scaffold capable of supporting both surface-enhanced Raman scattering (SERS) biosensing and imaging of 3D breast cancer cell models. The scaffold incorporates plasmonic nanoparticles and SERS tags, for sensing and imaging, respectively. We demonstrate the scaffold's adaptability and modularity in supporting breast cancer spheroids, thereby enabling spatial and temporal monitoring of tumor evolution.
Collapse
Affiliation(s)
- Clara García-Astrain
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| | - Malou Henriksen-Lacey
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| | - Elisa Lenzi
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| | - Carlos Renero-Lecuna
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Cinbio,
University of Vigo, 36310 Vigo, Spain
| | - Judith Langer
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| | - Paula Piñeiro
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Department
of Applied Chemistry, University of the
Basque Country (UPV-EHU), 20018 Donostia-San Sebastián, Spain
| | - Beatriz Molina-Martínez
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| | - Javier Plou
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| | - Dorleta Jimenez de Aberasturi
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Cinbio,
University of Vigo, 36310 Vigo, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
38
|
Contreras-Martínez OI, Angulo-Ortíz A, Santafé Patiño G, Rocha FV, Zanotti K, Fortaleza DB, Teixeira T, Sierra Martinez J. Cytotoxic Potential of the Monoterpene Isoespintanol against Human Tumor Cell Lines. Int J Mol Sci 2024; 25:4614. [PMID: 38731832 PMCID: PMC11083712 DOI: 10.3390/ijms25094614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 05/13/2024] Open
Abstract
Cancer is a disease that encompasses multiple and different malignant conditions and is among the leading causes of death in the world. Therefore, the search for new pharmacotherapeutic options and potential candidates that can be used as treatments or adjuvants to control this disease is urgent. Natural products, especially those obtained from plants, have played an important role as a source of specialized metabolites with recognized pharmacological properties against cancer, therefore, they are an excellent alternative to be used. The objective of this research was to evaluate the action of the monoterpene isoespintanol (ISO) against the human tumor cell lines MDA-MB-231, A549, DU145, A2780, A2780-cis and the non-tumor line MRC-5. Experiments with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and fluorescence with propidium iodide (PI), 4',6-diamidino-2-phenylindole dilactate (DAPI) and green plasma revealed the cytotoxicity of ISO against these cells; furthermore, morphological and chromogenic studies revealed the action of ISO on cell morphology and the inhibitory capacity on reproductive viability to form colonies in MDA-MB-231 cells. Likewise, 3D experiments validated the damage in these cells caused by this monoterpene. These results serve as a basis for progress in studies of the mechanisms of action of these compounds and the development of derivatives or synthetic analogues with a better antitumor profile.
Collapse
Affiliation(s)
| | - Alberto Angulo-Ortíz
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia;
| | - Gilmar Santafé Patiño
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia;
| | - Fillipe Vieira Rocha
- Chemistry Department, Federal University of São Carlos, São Carlos 13565-905, Brazil; (F.V.R.); (K.Z.); (T.T.)
| | - Karine Zanotti
- Chemistry Department, Federal University of São Carlos, São Carlos 13565-905, Brazil; (F.V.R.); (K.Z.); (T.T.)
| | - Dario Batista Fortaleza
- Chemistry Department, Federal University of São Carlos, São Carlos 13565-905, Brazil; (F.V.R.); (K.Z.); (T.T.)
| | - Tamara Teixeira
- Chemistry Department, Federal University of São Carlos, São Carlos 13565-905, Brazil; (F.V.R.); (K.Z.); (T.T.)
| | - Jesus Sierra Martinez
- Genetics and Evolution Department, Federal University of São Carlos, São Carlos 13565-905, Brazil
| |
Collapse
|
39
|
Lu J, Chen XZ, Liu Y, Liu YJ, Liu B. Trends in confinement-induced cell migration and multi-omics analysis. Anal Bioanal Chem 2024; 416:2107-2115. [PMID: 38135761 DOI: 10.1007/s00216-023-05109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Cell migration is an essential manner of different cell lines that are involved in embryological development, immune responses, tumorigenesis, and metastasis in vivo. Physical confinement derived from crowded tissue microenvironments has pivotal effects on migratory behaviors. Distinct migration modes under a heterogeneous extracellular matrix (ECM) have been extensively studied, uncovering potential molecular mechanisms involving a series of biological processes. Significantly, multi-omics strategies have been launched to provide multi-angle views of complex biological phenomena, facilitating comprehensive insights into molecular regulatory networks during cell migration. In this review, we describe biomimetic devices developed to explore the migratory behaviors of cells induced by different types of confined microenvironments in vitro. We also discuss the results of multi-omics analysis of intrinsic molecular alterations and critical pathway dysregulations of cell migration under heterogeneous microenvironments, highlighting the significance of physical confinement-triggered intracellular signal transduction in order to regulate cellular behaviors. Finally, we discuss both the challenges and promise of mechanistic analysis in confinement-induced cell migration, promoting the development of early diagnosis and precision therapeutics.
Collapse
Affiliation(s)
- Jiayin Lu
- Department of ChemistryState Key Lab of Molecular Engineering of PolymersShanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological HospitalShanghai Xuhui Central Hospital, Zhongshan-Xuhui HospitalFudan University, Shanghai, China
| | - Xue-Zhu Chen
- Department of ChemistryState Key Lab of Molecular Engineering of PolymersShanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological HospitalShanghai Xuhui Central Hospital, Zhongshan-Xuhui HospitalFudan University, Shanghai, China
| | - Yixin Liu
- Department of ChemistryState Key Lab of Molecular Engineering of PolymersShanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological HospitalShanghai Xuhui Central Hospital, Zhongshan-Xuhui HospitalFudan University, Shanghai, China
| | - Yan-Jun Liu
- Department of ChemistryState Key Lab of Molecular Engineering of PolymersShanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological HospitalShanghai Xuhui Central Hospital, Zhongshan-Xuhui HospitalFudan University, Shanghai, China.
| | - Baohong Liu
- Department of ChemistryState Key Lab of Molecular Engineering of PolymersShanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological HospitalShanghai Xuhui Central Hospital, Zhongshan-Xuhui HospitalFudan University, Shanghai, China.
| |
Collapse
|
40
|
Yousafzai NA, El Khalki L, Wang W, Szpendyk J, Sossey-Alaoui K. Advances in 3D Culture Models to Study Exosomes in Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:883. [PMID: 38473244 PMCID: PMC10931050 DOI: 10.3390/cancers16050883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Breast cancer, a leading cause of cancer-related deaths globally, exhibits distinct subtypes with varying pathological, genetic, and clinical characteristics. Despite advancements in breast cancer treatments, its histological and molecular heterogeneity pose a significant clinical challenge. Triple-negative breast cancer (TNBC), a highly aggressive subtype lacking targeted therapeutics, adds to the complexity of breast cancer treatment. Recent years have witnessed the development of advanced 3D culture technologies, such as organoids and spheroids, providing more representative models of healthy human tissue and various malignancies. These structures, resembling organs in structure and function, are generated from stem cells or organ-specific progenitor cells via self-organizing processes. Notably, 3D culture systems bridge the gap between 2D cultures and in vivo studies, offering a more accurate representation of in vivo tumors' characteristics. Exosomes, small nano-sized molecules secreted by breast cancer and stromal/cancer-associated fibroblast cells, have garnered significant attention. They play a crucial role in cell-to-cell communication, influencing tumor progression, invasion, and metastasis. The 3D culture environment enhances exosome efficiency compared to traditional 2D cultures, impacting the transfer of specific cargoes and therapeutic effects. Furthermore, 3D exosomes have shown promise in improving therapeutic outcomes, acting as potential vehicles for cancer treatment administration. Studies have demonstrated their role in pro-angiogenesis and their innate therapeutic potential in mimicking cellular therapies without side effects. The 3D exosome model holds potential for addressing challenges associated with drug resistance, offering insights into the mechanisms underlying multidrug resistance and serving as a platform for drug screening. This review seeks to emphasize the crucial role of 3D culture systems in studying breast cancer, especially in understanding the involvement of exosomes in cancer pathology.
Collapse
Affiliation(s)
- Neelum Aziz Yousafzai
- MetroHealth System, Cleveland, OH 44109, USA; (N.A.Y.); (L.E.K.); (W.W.)
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106-4909, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106-7285, USA
| | - Lamyae El Khalki
- MetroHealth System, Cleveland, OH 44109, USA; (N.A.Y.); (L.E.K.); (W.W.)
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106-4909, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106-7285, USA
| | - Wei Wang
- MetroHealth System, Cleveland, OH 44109, USA; (N.A.Y.); (L.E.K.); (W.W.)
- Case Comprehensive Cancer Center, Cleveland, OH 44106-7285, USA
| | - Justin Szpendyk
- MetroHealth System, Cleveland, OH 44109, USA; (N.A.Y.); (L.E.K.); (W.W.)
| | - Khalid Sossey-Alaoui
- MetroHealth System, Cleveland, OH 44109, USA; (N.A.Y.); (L.E.K.); (W.W.)
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106-4909, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106-7285, USA
| |
Collapse
|
41
|
Balachander GM, Nilawar S, Meka SRK, Ghosh LD, Chatterjee K. Unravelling microRNA regulation and miRNA-mRNA regulatory networks in osteogenesis driven by 3D nanotopographical cues. Biomater Sci 2024; 12:978-989. [PMID: 38189225 DOI: 10.1039/d3bm01597a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Three-dimensional (3D) culturing of cells is being adopted for developing tissues for various applications such as mechanistic studies, drug testing, tissue regeneration, and animal-free meat. These approaches often involve cost-effective differentiation of stem or progenitor cells. One approach is to exploit architectural cues on a 3D substrate to drive cellular differentiation, which has been shown to be effective in various studies. Although extensive gene expression data from such studies have shown that gene expression patterns might differ, the gene regulatory networks controlling the expression of genes are rarely studied. In this study, we profiled genes and microRNAs (miRNAs) via next-generation sequencing (NGS) in human mesenchymal stem cells (hMSCs) driven toward osteogenesis via architectural cues in 3D matrices (3D conditions) and compared with cells in two-dimensional (2D) culture driven toward osteogenesis via soluble osteoinductive factors (OF conditions). The total number of differentially expressed genes was smaller in 3D compared to OF conditions. A distinct set of genes was observed under these conditions that have been shown to control osteogenic differentiation via different pathways. Small RNA sequencing revealed a core set of miRNAs to be differentially expressed under these conditions, similar to those that have been previously implicated in osteogenesis. We also observed a distinct regulation of miRNAs in these samples that can modulate gene expression, suggesting supplementary gene regulatory networks operative under different stimuli. This study provides insights into studying gene regulatory networks for identifying critical nodes to target for enhanced cellular differentiation and reveal the differences in physical and biochemical cues to drive cell fates.
Collapse
Affiliation(s)
- Gowri Manohari Balachander
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Sagar Nilawar
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.
| | - Sai Rama Krishna Meka
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.
| | - Lopamudra Das Ghosh
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
42
|
De Lorenzi F, Hansen N, Theek B, Daware R, Motta A, Breuel S, Nasehi R, Baumeister J, Schöneberg J, Stojanović N, von Stillfried S, Vogt M, Müller-Newen G, Maurer J, Sofias AM, Lammers T, Fischer H, Kiessling F. Engineering Mesoscopic 3D Tumor Models with a Self-Organizing Vascularized Matrix. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303196. [PMID: 37865947 DOI: 10.1002/adma.202303196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/05/2023] [Indexed: 10/24/2023]
Abstract
Advanced in vitro systems such as multicellular spheroids and lab-on-a-chip devices have been developed, but often fall short in reproducing the tissue scale and self-organization of human diseases. A bioprinted artificial tumor model is introduced with endothelial and stromal cells self-organizing into perfusable and functional vascular structures. This model uses 3D hydrogel matrices to embed multicellular tumor spheroids, allowing them to grow to mesoscopic scales and to interact with endothelial cells. It is shown that angiogenic multicellular tumor spheroids promote the growth of a vascular network, which in turn further enhances the growth of cocultivated tumor spheroids. The self-developed vascular structure infiltrates the tumor spheroids, forms functional connections with the bioprinted endothelium, and can be perfused by erythrocytes and polystyrene microspheres. Moreover, cancer cells migrate spontaneously from the tumor spheroid through the self-assembled vascular network into the fluid flow. Additionally, tumor type specific characteristics of desmoplasia, angiogenesis, and metastatic propensity are preserved between patient-derived samples and tumors derived from this same material growing in the bioreactors. Overall, this modular approach opens up new avenues for studying tumor pathophysiology and cellular interactions in vitro, providing a platform for advanced drug testing while reducing the need for in vivo experimentation.
Collapse
Affiliation(s)
- Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIOABCD), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Nadja Hansen
- Department of Dental Materials and Biomaterials Research (ZWBF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Benjamin Theek
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Rasika Daware
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Alessandro Motta
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Saskia Breuel
- Department of Gynecology and Obstetrics, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Ramin Nasehi
- Department of Dental Materials and Biomaterials Research (ZWBF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Julian Baumeister
- Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIOABCD), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Jan Schöneberg
- Department of Dental Materials and Biomaterials Research (ZWBF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Natalija Stojanović
- Department of Dental Materials and Biomaterials Research (ZWBF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | | | - Michael Vogt
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Jochen Maurer
- Department of Gynecology and Obstetrics, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIOABCD), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Norwegian University of Science and Technology (NTNU), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Trondheim, 7491, Norway
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIOABCD), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research (ZWBF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, 28359, Bremen, Germany
| |
Collapse
|
43
|
Sharma K, Dey S, Karmakar R, Rengan AK. A comprehensive review of 3D cancer models for drug screening and translational research. CANCER INNOVATION 2024; 3:e102. [PMID: 38948533 PMCID: PMC11212324 DOI: 10.1002/cai2.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 07/02/2024]
Abstract
The 3D cancer models fill the discovery gap of 2D cancer models and play an important role in cancer research. In addition to cancer cells, a range of other factors include the stroma, density and composition of extracellular matrix, cancer-associated immune cells (e.g., cancer-associated fibroblasts cancer cell-stroma interactions and subsequent interactions, and a number of other factors (e.g., tumor vasculature and tumor-like microenvironment in vivo) has been widely ignored in the 2D concept of culture. Despite this knowledge, the continued use of monolayer cell culture methods has led to the failure of a series of clinical trials. This review discusses the immense importance of tumor microenvironment (TME) recapitulation in cancer research, prioritizing the individual roles of TME elements in cancer histopathology. The TME provided by the 3D model fulfills the requirements of in vivo spatiotemporal arrangement, components, and is helpful in analyzing various different aspects of drug sensitivity in preclinical and clinical trials, some of which are discussed here. Furthermore, it discusses models for the co-assembly of different TME elements in vitro and focuses on their synergistic function and responsiveness as tumors. Furthermore, this review broadly describes of a handful of recently developed 3D models whose main focus is limited to drug development and their screening and/or the impact of this approach in preclinical and translational research.
Collapse
Affiliation(s)
- Karthikey Sharma
- Department of Biomedical EngineeringIndian Institute of Technology (IIT)HyderabadIndia
| | - Sreenath Dey
- Department of Biomedical EngineeringIndian Institute of Technology (IIT)HyderabadIndia
| | - Rounik Karmakar
- Department of Biomedical EngineeringIndian Institute of Technology (IIT)HyderabadIndia
| | - Aravind Kumar Rengan
- Department of Biomedical EngineeringIndian Institute of Technology (IIT)HyderabadIndia
| |
Collapse
|
44
|
Lin S, Ota U, Imazato H, Takahashi K, Ishizuka M, Osaki T. In vitro evaluation of the efficacy of photodynamic therapy using 5-ALA on homologous feline mammary tumors in 2D and 3D culture conditions and a mouse subcutaneous model with 3D cultured cells. Photodiagnosis Photodyn Ther 2024; 45:103993. [PMID: 38280675 DOI: 10.1016/j.pdpdt.2024.103993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Numerous studies have shown that photodynamic therapy (PDT) has a therapeutic effect on mammary tumor cells, with 5-aminolevulinic acid (5-ALA-HCL) being a commonly used photosensitizer for PDT. Feline mammary tumors (FMTs) are relatively common. However, the cytotoxic and antitumor effects of 5-ALA-PDT on FMTs have not been clarified. To this end, we evaluated the therapeutic effect of 5-ALA-PDT on FMTs through in vitro experiments using an FMT FKR cell line established for this study. METHODS We performed 5-ALA-PDT in 2D-cultured FKR-A (adherent cells) and 3D-cultured FKR-S (spheroid cells) cells and performed a series of studies to evaluate the cell viability and determine the protoporphyrin IX (PpIX) content in the cells as well as the expression levels of mRNAs associated with PpIX production and release. An in vivo study was performed to assess the effectiveness of 5-ALA-PDT. RESULTS There was a significant difference in the concentration of PpIX in FMT cells under different incubation culture modes (2D versus 3D culture). The concentration of PpIX in FMT cells was correlated with the differences in cell culture (2D and 3D) as well as the expression levels of genes such as PEPT1, PEPT2, FECH, and HO-1. CONCLUSIONS In the in vitro study, 5-ALA-PDT had a stronger inhibitory effect on 3D-cultured FKR-S cells, which resemble the internal environment of organisms more closely. We also observed a significant inhibitory effect of 5-ALA-PDT on FMT cells in vivo. To our knowledge, this is the first study on 5-ALA-PDT for FMTs under both 2D and 3D conditions.
Collapse
Affiliation(s)
- Siyao Lin
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Urara Ota
- SBI Pharmaceuticals Co., Ltd., Tokyo 106-6020, Japan
| | - Hideo Imazato
- SBI Pharmaceuticals Co., Ltd., Tokyo 106-6020, Japan
| | | | | | - Tomohiro Osaki
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan.
| |
Collapse
|
45
|
Wang H, Lu F, Tian Y, Zhang S, Han S, Fu Y, Li J, Feng P, Shi Z, Chen H, Hou H. Evaluation of toxicity of heated tobacco products aerosol and cigarette smoke to BEAS-2B cells based on 3D biomimetic chip model. Toxicol In Vitro 2024; 94:105708. [PMID: 37806364 DOI: 10.1016/j.tiv.2023.105708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
It is still a controversial topic about evaluating whether heated tobacco products (HTP) really reduce harm, which involves the choice of an experimental model. Here, a three-dimensional (3D) biomimetic chip model was used to evaluate the toxicity of aerosols came from HTP and smoke produced by cigarettes (Cig). Based on cell-related experiments, we found that the toxicity of Cig smoke extract diluted four times was also much higher than that of undiluted HTP, showing higher oxidative stress response and cause mitochondrial dysfunction. Meanwhile, both tobacco products all affect the tricarboxylic acid cycle (TCA), which is manifested by a significant decrease in the mRNA expression of TCA key rate-limiting enzymes. Summarily, 3D Biomimetic chip technology can be used as an ideal model to evaluate HTP. It can provide important data for tobacco risk assessment when 3D chip model was used. Our experimental results showed that HTP may be less harmful than tobacco cigarettes, but it does show significant cytotoxicity with the increase of dose. Therefore, the potential clinical effects of HTP on targeted organs such as lung should be further studied.
Collapse
Affiliation(s)
- Hongjuan Wang
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Fengjun Lu
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Yushan Tian
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Sen Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Shulei Han
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Yaning Fu
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Jun Li
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Pengxia Feng
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Zhihao Shi
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Huan Chen
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China.
| | - Hongwei Hou
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China.
| |
Collapse
|
46
|
Vera‐Tizatl AL, van der Hee R, Cornelissen J, Vera‐Tizatl CE, Abayazid M, Fütterer JJ. Liver-tumor mimics as a potential translational framework for planning and testing irreversible electroporation with multiple electrodes. Bioeng Transl Med 2024; 9:e10607. [PMID: 38193113 PMCID: PMC10771569 DOI: 10.1002/btm2.10607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/24/2023] [Accepted: 09/23/2023] [Indexed: 01/10/2024] Open
Abstract
Irreversible electroporation (IRE) has emerged as an appealing non-ionizing, non-thermal ablation therapy, independent of antineoplastic drugs. Limited but successful outcomes in IRE conducted in vivo, in small focal hepatocellular carcinomas (HCC), have been reported. Nonetheless, the electric parameters of IRE are usually delivered in an unplanned manner. This work investigates the integration of computational modeling to hydrogels mimicking the HCC microenvironment, as a powerful framework to: circumvent ethical concerns of in vivo experimentation; safely tune the electric parameters reaching the IRE electric field threshold; and propel the translation of IRE as a routine clinical alternative to the treatment of HCC. Therefore, a parametric study served to evaluate the effects of the pulse amplitude, the number of pulses and electrodes, the treatment time, the hydrogel-tumor size, and the cell type. The ablation extent was surveyed by confocal microscopy and magnetic resonance imaging (MRI) in cylindrical and realistic tumor-shaped hydrogels, respectively. A large ablation (70%-100%) was verified in all constructs.
Collapse
Affiliation(s)
- Adriana Leticia Vera‐Tizatl
- Department of Electrical Engineering, Mathematics and Computer SciencesUniversity of TwenteEnschedeThe Netherlands
| | - Regine van der Hee
- Department of Medical Imaging, Faculty of Sciences and Technology, Biomolecular NanoTechnology GroupUniversity of TwenteEnschedeThe Netherlands
| | - Jeroen Cornelissen
- Department of Medical Imaging, Faculty of Sciences and Technology, Biomolecular NanoTechnology GroupUniversity of TwenteEnschedeThe Netherlands
| | - Claudia Elizabeth Vera‐Tizatl
- Department of Infectomics and Molecular PathogenesisCenter for Research and Advanced Studies of the National Polytechnic InstituteMexico CityMexico
| | - Momen Abayazid
- Department of Electrical Engineering, Mathematics and Computer SciencesUniversity of TwenteEnschedeThe Netherlands
| | - Jurgen J. Fütterer
- Department of Electrical Engineering, Mathematics and Computer SciencesUniversity of TwenteEnschedeThe Netherlands
- Department of Medical ImagingRadboudumcNijmegenThe Netherlands
| |
Collapse
|
47
|
Majumder J, Torr EE, Aisenbrey EA, Lebakken CS, Favreau PF, Richards WD, Yin Y, Chang Q, Murphy WL. Human induced pluripotent stem cell-derived planar neural organoids assembled on synthetic hydrogels. J Tissue Eng 2024; 15:20417314241230633. [PMID: 38361535 PMCID: PMC10868488 DOI: 10.1177/20417314241230633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/20/2024] [Indexed: 02/17/2024] Open
Abstract
The tailorable properties of synthetic polyethylene glycol (PEG) hydrogels make them an attractive substrate for human organoid assembly. Here, we formed human neural organoids from iPSC-derived progenitor cells in two distinct formats: (i) cells seeded on a Matrigel surface; and (ii) cells seeded on a synthetic PEG hydrogel surface. Tissue assembly on synthetic PEG hydrogels resulted in three dimensional (3D) planar neural organoids with greater neuronal diversity, greater expression of neurovascular and neuroinflammatory genes, and reduced variability when compared with tissues assembled upon Matrigel. Further, our 3D human tissue assembly approach occurred in an open cell culture format and created a tissue that was sufficiently translucent to allow for continuous imaging. Planar neural organoids formed on PEG hydrogels also showed higher expression of neural, vascular, and neuroinflammatory genes when compared to traditional brain organoids grown in Matrigel suspensions. Further, planar neural organoids contained functional microglia that responded to pro-inflammatory stimuli, and were responsive to anti-inflammatory drugs. These results demonstrate that the PEG hydrogel neural organoids can be used as a physiologically relevant in vitro model of neuro-inflammation.
Collapse
Affiliation(s)
- Joydeb Majumder
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth E Torr
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth A Aisenbrey
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | - Yanhong Yin
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Qiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Departments of Medical Genetics and Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - William L Murphy
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
48
|
Sun J, Fang T, Wang H, Wang S. Photothermal optical coherence tomography for 3D live cell detection and mapping. OPTICS CONTINUUM 2023; 2:2468-2483. [PMID: 38665863 PMCID: PMC11044816 DOI: 10.1364/optcon.503577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/27/2023] [Indexed: 04/28/2024]
Abstract
Imaging cells in their 3D environment with molecular specificity is important to cell biology study. Widely used microscopy techniques, such as confocal microscopy, have limited imaging depth when probing cells in optically scattering media. Optical coherence tomography (OCT) can provide millimeter-level depth for imaging of highly scattering media but lacks the contrast to distinguish cells from extracellular matrix or to distinguish between different types of cells. Photothermal OCT (PT-OCT) is a promising technique to obtain molecular contrast at the imaging scale of OCT. Here, we report PT-OCT imaging of live, nanoparticle-labeled cells in 3D. In particular, we demonstrate detection and mapping of single cell in 3D without causing call death, and show the feasibility of 3D cell mapping through optical scattering media. This work presents live cell detection and mapping at an imaging scale that complements the major microscopy techniques, which is potentially useful to study cells in their 3D native or culture environment.
Collapse
Affiliation(s)
- Jingyu Sun
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Tianqi Fang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
49
|
Lim MH, Shin S, Park K, Park J, Kim SW, Basurrah MA, Lee S, Kim DH. Deep Learning Model for Predicting Airway Organoid Differentiation. Tissue Eng Regen Med 2023; 20:1109-1117. [PMID: 37594633 PMCID: PMC10645934 DOI: 10.1007/s13770-023-00563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Organoids are self-organized three-dimensional culture systems and have the advantages of both in vitro and in vivo experiments. However, each organoid has a different degree of self-organization, and methods such as immunofluorescence staining are required for confirmation. Therefore, we established a system to select organoids with high tissue-specific similarity using deep learning without relying on staining by acquiring bright-field images in a non-destructive manner. METHODS We identified four biomarkers in RNA extracted from airway organoids. We also predicted biomarker expression by image-based analysis of organoids by convolution neural network, a deep learning method. RESULTS We predicted airway organoid-specific marker expression from bright-field images of organoids. Organoid differentiation was verified by immunofluorescence staining of the same organoid after predicting biomarker expression in bright-field images. CONCLUSION Our study demonstrates the potential of imaging and deep learning to distinguish organoids with high human tissue similarity in disease research and drug screening.
Collapse
Affiliation(s)
- Mi Hyun Lim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seungmin Shin
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 223, 5th Engineering Building 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Keonhyeok Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 223, 5th Engineering Building 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jaejung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 223, 5th Engineering Building 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea
| | | | - Seungchul Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 223, 5th Engineering Building 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| | - Do Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
50
|
Lee SY, Hwang HJ, Song YJ, Lee D, Ku B, Sa JK, Lee DW. 3D cell subculturing pillar dish for pharmacogenetic analysis and high-throughput screening. Mater Today Bio 2023; 23:100793. [PMID: 37766900 PMCID: PMC10520358 DOI: 10.1016/j.mtbio.2023.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/21/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
A pillar dishe for subculture of 3D cultured cells on hydrogel spots (Matrigel and alginate) have been developed. Cells cultured in 3D in an extracellular matrix (ECM) can retain their intrinsic properties, but cells cultured in 2D lose their intrinsic properties as the cells stick to the bottom of the well. Previously, cells and ECM spots were dispensed on a conventional culture dish for 3D cultivation. However, as the spot shape and location depended on user handling, pillars were added to the dish to realize uniform spot shape and stable subculture, supporting 3D cell culture-based high-throughput screening (HTS). Matrigel and alginate were used as ECMs during 6-passage subculture. The growth rate of lung cancer cell (A549) was higher on Matrigel than on alginate. Cancer cell was subcultured in three dimensions in the proposed pillar dish and used for drug screening and differential gene expression analysis. Interestingly, stemness markers, which are unique characteristics of lung cancer cells inducing drug resistance, were upregulated in 3D-subcultured cells compared with those in 2D-subcultured cells. Additionally, the PI3K/Akt/mTOR, VEGFR1/2, and Wnt pathways, which are promising therapeutic targets for lung cancer, were activated, showing high drug sensitivity under 3D-HTS using the 3D-subcultured cells.
Collapse
Affiliation(s)
- Sang-Yun Lee
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Hyun Ju Hwang
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
| | - You Jin Song
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Dayoung Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Bosung Ku
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
| | - Jason K. Sa
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Dong Woo Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| |
Collapse
|