1
|
O'Connell LC, Johnson V, Otis JP, Hutton AK, Murthy AC, Liang MC, Wang SH, Fawzi NL, Mowry KL. Intrinsically disordered regions and RNA binding domains contribute to protein enrichment in biomolecular condensates in Xenopus oocytes. Sci Rep 2024; 14:27890. [PMID: 39537752 PMCID: PMC11560939 DOI: 10.1038/s41598-024-79409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Proteins containing both intrinsically disordered regions (IDRs) and RNA binding domains (RBDs) can phase separate in vitro, forming bodies similar to cellular biomolecular condensates. However, how IDR and RBD domains contribute to in vivo recruitment of proteins to biomolecular condensates remains poorly understood. Here, we analyzed the roles of IDRs and RBDs in L-bodies, biomolecular condensates present in Xenopus oocytes. We show that a cytoplasmic isoform of hnRNPAB, which contains two RBDs and an IDR, is highly enriched in L-bodies. While both of these domains contribute to hnRNPAB self-association and phase separation in vitro and mediate enrichment into L-bodies in oocytes, neither the RBDs nor the IDR replicate the localization of full-length hnRNPAB. Our results suggest a model where the combined effects of the IDR and RBDs regulate hnRNPAB partitioning into L-bodies. This model likely has widespread applications as proteins containing RBD and IDR domains are common biomolecular condensate residents.
Collapse
Affiliation(s)
- Liam C O'Connell
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912, USA
- Intellia Therapeutics, Cambridge, MA, 02139, USA
| | - Victoria Johnson
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Jessica P Otis
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Anika K Hutton
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Anastasia C Murthy
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912, USA
- Monte Rosa Therapeutics, Boston, MA, 02118, USA
| | - Mark C Liang
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912, USA
- UCI School of Medicine, University of California, Irvine, Irvine, CA, 92617, USA
| | - Szu-Huan Wang
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Nicolas L Fawzi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Kimberly L Mowry
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
2
|
Bayer LV, Milano SN, Bratu DP. The mRNA dynamics underpinning translational control mechanisms of Drosophila melanogaster oogenesis. Biochem Soc Trans 2024; 52:2087-2099. [PMID: 39263986 PMCID: PMC11555706 DOI: 10.1042/bst20231293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Advances in the study of mRNAs have yielded major new insights into post-transcriptional control of gene expression. Focus on the spatial regulation of mRNAs in highly polarized cells has demonstrated that mRNAs translocate through cells as mRNA:protein granules (mRNPs). These complex self-assemblies containing nuclear and cytoplasmic proteins are fundamental to the coordinated translation throughout cellular development. Initial studies on translational control necessitated fixed tissue, but the last 30 years have sparked innovative live-cell studies in several cell types to deliver a far more nuanced picture of how mRNA-protein dynamics exert translational control. In this review, we weave together the events that underpin mRNA processes and showcase the pivotal studies that revealed how a multitude of protein factors engage with a transcript. We highlight a mRNA's ability to act as a 'super scaffold' to facilitate molecular condensate formation and further moderate translational control. We focus on the Drosophila melanogaster germline due to the extensive post-transcriptional regulation occurring during early oogenesis. The complexity of the spatio-temporal expression of maternal transcripts in egg chambers allows for the exploration of a wide range of mechanisms that are crucial to the life cycle of mRNAs.
Collapse
Affiliation(s)
- Livia V. Bayer
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Samantha N. Milano
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Program in Molecular, Cellular and Developmental Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Diana P. Bratu
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Program in Molecular, Cellular and Developmental Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
| |
Collapse
|
3
|
Pek JW. The idiosyncrasies of oocytes. Trends Cell Biol 2024:S0962-8924(24)00144-2. [PMID: 39142921 DOI: 10.1016/j.tcb.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
Animal oocytes face extreme challenges. They remain dormant in the body for long periods of time. To support offspring development and health, they need to store genetic material and maternal factors stably and at the same time manage cellular damage in a reliable manner. Recent studies have provided new insights on how oocytes cope with such challenges. This review discusses the many unusual or idiosyncratic nature of oocytes and how understanding oocyte biology can help us address issues of reproduction and intergenerational inheritance.
Collapse
Affiliation(s)
- Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive, 117543, Singapore.
| |
Collapse
|
4
|
Chekulaeva M. Mechanistic insights into the basis of widespread RNA localization. Nat Cell Biol 2024; 26:1037-1046. [PMID: 38956277 DOI: 10.1038/s41556-024-01444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
The importance of subcellular mRNA localization is well established, but the underlying mechanisms mostly remain an enigma. Early studies suggested that specific mRNA sequences recruit RNA-binding proteins (RBPs) to regulate mRNA localization. However, despite the observation of thousands of localized mRNAs, only a handful of these sequences and RBPs have been identified. This suggests the existence of alternative, and possibly predominant, mechanisms for mRNA localization. Here I re-examine currently described mRNA localization mechanisms and explore alternative models that could account for its widespread occurrence.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
5
|
Heber S, McClintock MA, Simon B, Mehtab E, Lapouge K, Hennig J, Bullock SL, Ephrussi A. Tropomyosin 1-I/C coordinates kinesin-1 and dynein motors during oskar mRNA transport. Nat Struct Mol Biol 2024; 31:476-488. [PMID: 38297086 PMCID: PMC10948360 DOI: 10.1038/s41594-024-01212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Dynein and kinesin motors mediate long-range intracellular transport, translocating towards microtubule minus and plus ends, respectively. Cargoes often undergo bidirectional transport by binding to both motors simultaneously. However, it is not known how motor activities are coordinated in such circumstances. In the Drosophila female germline, sequential activities of the dynein-dynactin-BicD-Egalitarian (DDBE) complex and of kinesin-1 deliver oskar messenger RNA from nurse cells to the oocyte, and within the oocyte to the posterior pole. We show through in vitro reconstitution that Tm1-I/C, a tropomyosin-1 isoform, links kinesin-1 in a strongly inhibited state to DDBE-associated oskar mRNA. Nuclear magnetic resonance spectroscopy, small-angle X-ray scattering and structural modeling indicate that Tm1-I/C suppresses kinesin-1 activity by stabilizing its autoinhibited conformation, thus preventing competition with dynein until kinesin-1 is activated in the oocyte. Our work reveals a new strategy for ensuring sequential activity of microtubule motors.
Collapse
Affiliation(s)
- Simone Heber
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mark A McClintock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Eve Mehtab
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
| | - Simon L Bullock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
6
|
Mallart C, Netter S, Chalvet F, Claret S, Guichet A, Montagne J, Pret AM, Malartre M. JAK-STAT-dependent contact between follicle cells and the oocyte controls Drosophila anterior-posterior polarity and germline development. Nat Commun 2024; 15:1627. [PMID: 38388656 PMCID: PMC10883949 DOI: 10.1038/s41467-024-45963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The number of embryonic primordial germ cells in Drosophila is determined by the quantity of germ plasm, whose assembly starts in the posterior region of the oocyte during oogenesis. Here, we report that extending JAK-STAT activity in the posterior somatic follicular epithelium leads to an excess of primordial germ cells in the future embryo. We show that JAK-STAT signaling is necessary for the differentiation of approximately 20 specialized follicle cells maintaining tight contact with the oocyte. These cells define, in the underlying posterior oocyte cortex, the anchoring of the germ cell determinant oskar mRNA. We reveal that the apical surface of these posterior anchoring cells extends long filopodia penetrating the oocyte. We identify two JAK-STAT targets in these cells that are each sufficient to extend the zone of contact with the oocyte, thereby leading to production of extra primordial germ cells. JAK-STAT signaling thus determines a fixed number of posterior anchoring cells required for anterior-posterior oocyte polarity and for the development of the future germline.
Collapse
Affiliation(s)
- Charlotte Mallart
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sophie Netter
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université de Versailles-Saint-Quentin en Yvelines, Université Paris-Saclay, Gif- sur-Yvette, France
| | - Fabienne Chalvet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sandra Claret
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Antoine Guichet
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Anne-Marie Pret
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université de Versailles-Saint-Quentin en Yvelines, Université Paris-Saclay, Gif- sur-Yvette, France
| | - Marianne Malartre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Li L, Zhang N, Beati SAH, De Las Heras Chanes J, di Pietro F, Bellaiche Y, Müller HAJ, Großhans J. Kinesin-1 patterns Par-1 and Rho signaling at the cortex of syncytial embryos of Drosophila. J Cell Biol 2024; 223:e202206013. [PMID: 37955925 PMCID: PMC10641515 DOI: 10.1083/jcb.202206013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 03/23/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
The cell cortex of syncytial Drosophila embryos is patterned into cap and intercap regions by centrosomes, specific sets of proteins that are restricted to their respective regions by unknown mechanisms. Here, we found that Kinesin-1 is required for the restriction of plus- and minus-ends of centrosomal and non-centrosomal microtubules to the cap region, marked by EB1 and Patronin/Shot, respectively. Kinesin-1 also directly or indirectly restricts proteins and Rho signaling to the intercap, including the RhoGEF Pebble, Dia, Myosin II, Capping protein-α, and the polarity protein Par-1. Furthermore, we found that Par-1 is required for cap restriction of Patronin/Shot, and vice versa Patronin, for Par-1 enrichment at the intercap. In summary, our data support a model that Kinesin-1 would mediate the restriction of centrosomal and non-centrosomal microtubules to a region close to the centrosomes and exclude Rho signaling and Par-1. In addition, mutual antagonistic interactions would refine and maintain the boundary between cap and intercap and thus generate a distinct cortical pattern.
Collapse
Affiliation(s)
- Long Li
- Department of Biology, Philipps University, Marburg, Germany
| | - Na Zhang
- Department of Biology, Philipps University, Marburg, Germany
| | - Seyed Amir Hamze Beati
- Division of Developmental Genetics, Institute for Biology, University of Kassel, Kassel, Germany
| | - Jose De Las Heras Chanes
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology , Paris, France
| | - Florencia di Pietro
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology , Paris, France
| | - Yohanns Bellaiche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology , Paris, France
| | - Hans-Arno J Müller
- Division of Developmental Genetics, Institute for Biology, University of Kassel, Kassel, Germany
| | - Jörg Großhans
- Department of Biology, Philipps University, Marburg, Germany
| |
Collapse
|
8
|
O’Connell LC, Johnson V, Hutton AK, Otis JP, Murthy AC, Liang MC, Wang SH, Fawzi NL, Mowry KL. Intrinsically disordered regions and RNA binding domains contribute to protein enrichment in biomolecular condensates in Xenopus oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566489. [PMID: 37986933 PMCID: PMC10659413 DOI: 10.1101/2023.11.10.566489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Proteins containing both intrinsically disordered regions (IDRs) and RNA binding domains (RBDs) can phase separate in vitro, forming bodies similar to cellular biomolecular condensates. However, how IDR and RBD domains contribute to in vivo recruitment of proteins to biomolecular condensates remains poorly understood. Here, we analyzed the roles of IDRs and RBDs in L-bodies, biomolecular condensates present in Xenopus oocytes. We show that a cytoplasmic isoform of hnRNPAB, which contains two RBDs and an IDR, is highly enriched in L-bodies. While both of these domains contribute to hnRNPAB self-association and phase separation in vitro and mediate enrichment into L-bodies in oocytes, neither the RBDs nor the IDR replicate the localization of full-length hnRNPAB. Our results suggest a model where the additive effects of the IDR and RBDs regulate hnRNPAB partitioning into L-bodies. This model likely has widespread applications as proteins containing RBD and IDR domains are common biomolecular condensate residents.
Collapse
Affiliation(s)
- Liam C. O’Connell
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Victoria Johnson
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Anika K. Hutton
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Jessica P. Otis
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Anastasia C. Murthy
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Mark C. Liang
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Szu-Huan Wang
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Nicolas L. Fawzi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Kimberly L. Mowry
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| |
Collapse
|
9
|
Otis JP, Mowry KL. Hitting the mark: Localization of mRNA and biomolecular condensates in health and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1807. [PMID: 37393916 PMCID: PMC10758526 DOI: 10.1002/wrna.1807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
Subcellular mRNA localization is critical to a multitude of biological processes such as development of cellular polarity, embryogenesis, tissue differentiation, protein complex formation, cell migration, and rapid responses to environmental stimuli and synaptic depolarization. Our understanding of the mechanisms of mRNA localization must now be revised to include formation and trafficking of biomolecular condensates, as several biomolecular condensates that transport and localize mRNA have recently been discovered. Disruptions in mRNA localization can have catastrophic effects on developmental processes and biomolecular condensate biology and have been shown to contribute to diverse diseases. A fundamental understanding of mRNA localization is essential to understanding how aberrations in this biology contribute the etiology of numerous cancers though support of cancer cell migration and biomolecular condensate dysregulation, as well as many neurodegenerative diseases, through misregulation of mRNA localization and biomolecular condensate biology. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jessica P. Otis
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| | - Kimberly L. Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| |
Collapse
|
10
|
Eichenberger BT, Griesbach E, Mitchell J, Chao JA. Following the Birth, Life, and Death of mRNAs in Single Cells. Annu Rev Cell Dev Biol 2023; 39:253-275. [PMID: 37843928 DOI: 10.1146/annurev-cellbio-022723-024045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Recent advances in single-molecule imaging of mRNAs in fixed and living cells have enabled the lives of mRNAs to be studied with unprecedented spatial and temporal detail. These approaches have moved beyond simply being able to observe specific events and have begun to allow an understanding of how regulation is coupled between steps in the mRNA life cycle. Additionally, these methodologies are now being applied in multicellular systems and animals to provide more nuanced insights into the physiological regulation of RNA metabolism.
Collapse
Affiliation(s)
- Bastian T Eichenberger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
- University of Basel, Basel, Switzerland
| | - Esther Griesbach
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
| | - Jessica Mitchell
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
| |
Collapse
|
11
|
Cochard A, Safieddine A, Combe P, Benassy M, Weil D, Gueroui Z. Condensate functionalization with microtubule motors directs their nucleation in space and allows manipulating RNA localization. EMBO J 2023; 42:e114106. [PMID: 37724036 PMCID: PMC10577640 DOI: 10.15252/embj.2023114106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023] Open
Abstract
The localization of RNAs in cells is critical for many cellular processes. Whereas motor-driven transport of ribonucleoprotein (RNP) condensates plays a prominent role in RNA localization in cells, their study remains limited by the scarcity of available tools allowing to manipulate condensates in a spatial manner. To fill this gap, we reconstitute in cellula a minimal RNP transport system based on bioengineered condensates, which were functionalized with kinesins and dynein-like motors, allowing for their positioning at either the cell periphery or centrosomes. This targeting mostly occurs through the active transport of the condensate scaffolds, which leads to localized nucleation of phase-separated condensates. Then, programming the condensates to recruit specific mRNAs is able to shift the localization of these mRNAs toward the cell periphery or the centrosomes. Our method opens novel perspectives for examining the role of RNA localization as a driver of cellular functions.
Collapse
Affiliation(s)
- Audrey Cochard
- Department of Chemistry, École Normale SupérieurePSL University, Sorbonne Université, CNRSParisFrance
- Sorbonne Université, CNRS, Institut de Biologie Paris‐Seine (IBPS), Laboratoire de Biologie du DéveloppementParisFrance
| | - Adham Safieddine
- Sorbonne Université, CNRS, Institut de Biologie Paris‐Seine (IBPS), Laboratoire de Biologie du DéveloppementParisFrance
| | - Pauline Combe
- Department of Chemistry, École Normale SupérieurePSL University, Sorbonne Université, CNRSParisFrance
| | - Marie‐Noëlle Benassy
- Sorbonne Université, CNRS, Institut de Biologie Paris‐Seine (IBPS), Laboratoire de Biologie du DéveloppementParisFrance
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris‐Seine (IBPS), Laboratoire de Biologie du DéveloppementParisFrance
| | - Zoher Gueroui
- Department of Chemistry, École Normale SupérieurePSL University, Sorbonne Université, CNRSParisFrance
| |
Collapse
|
12
|
Yang H, Zhu Y, Li X, Jiang Z, Dai W. RNF216 affects the stability of STAU2 in the hypothalamus. Dev Growth Differ 2023; 65:408-417. [PMID: 37439148 DOI: 10.1111/dgd.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/16/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Idiopathic hypogonadotropic hypogonadism (IHH) is a rare disease characterized by gonadal failure due to deficiency in gonadotropin-releasing hormone (GnRH) synthesis, secretion, or action. RNF216 variants have been recently identified in patients with IHH. Ring finger protein 216 (RNF216), as a ubiquitin E3 ligase, catalyzes the ubiquitination of target proteins with high specificity, which consequently modulates the stability, localization, and interaction of the target protein. In this study, we found that RNF216 interacted with Staufen2 (STAU2) and affected the stability of STAU2 through the ubiquitin-proteasome pathway. STAU2, as a double-stranded RNA-binding protein enriched in the nervous system, plays a role in RNA transport, RNA stability, translation, anchoring, and synaptic plasticity. Further, we revealed that STAU2 levels in the hypothalamus of RNF216-/- mice were increased compared with wild-type (WT) mice. The change in STAU2 protein homeostasis may affect a series of RNA cargoes. Therefore, we analyzed the changes in RNA levels in the hypothalamus of RNF216-/- mice and WT mice by RNA sequencing. We found that deletion of RNF216 led to decreased activities of the prolactin signaling pathway, neuroactive ligand-receptor interaction, GnRH signaling pathway, and ovarian steroidogenesis. The weakening of these signal pathways is likely to affect the secretion of GnRH, thereby affecting the development of gonads. Therefore, our study suggests that STAU2 may be a potential therapeutic target for IHH. Further experiments are needed to demonstrate the association between the weakening of these signaling pathways and the RNA-binding protein STAU2.
Collapse
Affiliation(s)
- Han Yang
- Department of Clinical Laboratory, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
- School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Yong Zhu
- Blood Transfusion Department, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Xin Li
- School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Zuiming Jiang
- Department of Clinical Laboratory, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Wenting Dai
- Department of Clinical Laboratory, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| |
Collapse
|
13
|
Eichler CE, Li H, Grunberg ME, Gavis ER. Localization of oskar mRNA by agglomeration in ribonucleoprotein granules. PLoS Genet 2023; 19:e1010877. [PMID: 37624861 PMCID: PMC10484445 DOI: 10.1371/journal.pgen.1010877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/07/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
Localization of oskar mRNA to the posterior of the Drosophila oocyte is essential for abdominal patterning and germline development. oskar localization is a multi-step process involving temporally and mechanistically distinct transport modes. Numerous cis-acting elements and trans-acting factors have been identified that mediate earlier motor-dependent transport steps leading to an initial accumulation of oskar at the posterior. Little is known, however, about the requirements for the later localization phase, which depends on cytoplasmic flows and results in the accumulation of large oskar ribonucleoprotein granules, called founder granules, by the end of oogenesis. Using super-resolution microscopy, we show that founder granules are agglomerates of smaller oskar transport particles. In contrast to the earlier kinesin-dependent oskar transport, late-phase localization depends on the sequence as well as on the structure of the spliced oskar localization element (SOLE), but not on the adjacent exon junction complex deposition. Late-phase localization also requires the oskar 3' untranslated region (3' UTR), which targets oskar to founder granules. Together, our results show that 3' UTR-mediated targeting together with SOLE-dependent agglomeration leads to accumulation of oskar in large founder granules at the posterior of the oocyte during late stages of oogenesis. In light of previous work showing that oskar transport particles are solid-like condensates, our findings indicate that founder granules form by a process distinct from that of well-characterized ribonucleoprotein granules like germ granules, P bodies, and stress granules. Additionally, they illustrate how an individual mRNA can be adapted to exploit different localization mechanisms depending on the cellular context.
Collapse
Affiliation(s)
- Catherine E. Eichler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Hui Li
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Michelle E. Grunberg
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Elizabeth R. Gavis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
14
|
Wippich F, Vaishali, Hennrich ML, Ephrussi A. Nutritional stress-induced regulation of microtubule organization and mRNP transport by HDAC1 controlled α-tubulin acetylation. Commun Biol 2023; 6:776. [PMID: 37491525 PMCID: PMC10368696 DOI: 10.1038/s42003-023-05138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
In response to nutritional stress, microtubules in cells of the Drosophila female germline are depleted from the cytoplasm and accumulate cortically. This triggers aggregation of mRNPs into large processing bodies (P-bodies) and oogenesis arrest. Here, we show that hyperacetylation of α-tubulin at lysine 40 (K40) alters microtubule dynamics and P-body formation. We found that depletion of histone deacetylase 1 (HDAC1) by RNAi phenocopies the nutritional stress response, causing α-tubulin hyperacetylation and accumulation of maternally deposited mRNPs in P-bodies. Through in vitro and in vivo studies, we identify HDAC1 as a direct regulator of α-tubulin K40 acetylation status. In well-fed flies, HDAC1 maintains low levels of α-tubulin acetylation, enabling the microtubule dynamics required for mRNP transport. Using quantitative phosphoproteomics we identify nutritional stress-induced changes in protein phosphorylation that act upstream of α-tubulin acetylation, including phosphorylation of HDAC1 at S391, which reduces its ability to deacetylate α-tubulin. These results reveal that Drosophila HDAC1 senses and relays the nutritional status, which regulates germline development through modulation of cytoskeleton dynamics.
Collapse
Affiliation(s)
- Frank Wippich
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, Meyerhofstrasse 1, Heidelberg, 69117, Germany
- Cellzome GmbH, GlaxoSmithKline, Heidelberg, Germany
| | - Vaishali
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, Meyerhofstrasse 1, Heidelberg, 69117, Germany
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Marco L Hennrich
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, Meyerhofstrasse 1, Heidelberg, 69117, Germany
- Cellzome GmbH, GlaxoSmithKline, Heidelberg, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, Meyerhofstrasse 1, Heidelberg, 69117, Germany.
| |
Collapse
|
15
|
Yoshida MW, Hakozaki M, Goshima G. Armadillo repeat-containing kinesin represents the versatile plus-end-directed transporter in Physcomitrella. NATURE PLANTS 2023; 9:733-748. [PMID: 37142749 DOI: 10.1038/s41477-023-01397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/21/2023] [Indexed: 05/06/2023]
Abstract
Kinesin-1, also known as conventional kinesin, is widely used for microtubule plus-end-directed (anterograde) transport of various cargos in animal cells. However, a motor functionally equivalent to the conventional kinesin has not been identified in plants, which lack the kinesin-1 genes. Here we show that plant-specific armadillo repeat-containing kinesin (ARK) is the long sought-after versatile anterograde transporter in plants. In ARK mutants of the moss Physcomitrium patens, the anterograde motility of nuclei, chloroplasts, mitochondria and secretory vesicles was suppressed. Ectopic expression of non-motile or tail-deleted ARK did not restore organelle distribution. Another prominent macroscopic phenotype of ARK mutants was the suppression of cell tip growth. We showed that this defect was attributed to the mislocalization of actin regulators, including RopGEFs; expression and forced apical localization of RopGEF3 partially rescued the growth phenotype of the ARK mutant. The mutant phenotypes were partially rescued by ARK homologues in Arabidopsis thaliana, suggesting the conservation of ARK functions in plants.
Collapse
Affiliation(s)
- Mari W Yoshida
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Maya Hakozaki
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Gohta Goshima
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, Japan.
| |
Collapse
|
16
|
Verma D, Hegde V, Kirkpatrick J, Carlomagno T. The EJC disassembly factor PYM is an intrinsically disordered protein and forms a fuzzy complex with RNA. Front Mol Biosci 2023; 10:1148653. [PMID: 37065448 PMCID: PMC10098021 DOI: 10.3389/fmolb.2023.1148653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
The discovery of several functional interactions where one or even both partners remain disordered has demonstrated that specific interactions do not necessarily require well-defined intermolecular interfaces. Here we describe a fuzzy protein–RNA complex formed by the intrinsically unfolded protein PYM and RNA. PYM is a cytosolic protein, which has been reported to bind the exon junction complex (EJC). In the process of oskar mRNA localization in Drosophila melanogaster, removal of the first intron and deposition of the EJC are essential, while PYM is required to recycle the EJC components after localization has been accomplished. Here we demonstrate that the first 160 amino acids of PYM (PYM1–160) are intrinsically disordered. PYM1–160 binds RNA independently of its nucleotide sequence, forming a fuzzy protein–RNA complex that is incompatible with PYM’s function as an EJC recycling factor. We propose that the role of RNA binding consists in down-regulating PYM activity by blocking the EJC interaction surface of PYM until localization has been accomplished. We suggest that the largely unstructured character of PYM may act to enable binding to a variety of diverse interaction partners, such as multiple RNA sequences and the EJC proteins Y14 and Mago.
Collapse
Affiliation(s)
- Deepshikha Verma
- Laboratory of NMR-based Integrative Structural Biology, Centre for Biomolecular Drug Research (BMWZ) and Institute of Organic Chemistry, Leibniz University Hannover, Hanover, Germany
| | - Veena Hegde
- Laboratory of NMR-based Integrative Structural Biology, Centre for Biomolecular Drug Research (BMWZ) and Institute of Organic Chemistry, Leibniz University Hannover, Hanover, Germany
| | - John Kirkpatrick
- Laboratory of Integrative Structural Biology, School of Biosciences, College of LES, University of Birmingham, Birmingham, United Kingdom
| | - Teresa Carlomagno
- Laboratory of Integrative Structural Biology, School of Biosciences, College of LES, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Teresa Carlomagno,
| |
Collapse
|
17
|
Hu Y, Xu J, Gao E, Fan X, Wei J, Ye B, Xu S, Ma W. Enhanced single RNA imaging reveals dynamic gene expression in live animals. eLife 2023; 12:82178. [PMID: 36867026 PMCID: PMC10032653 DOI: 10.7554/elife.82178] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/01/2023] [Indexed: 03/04/2023] Open
Abstract
Imaging endogenous mRNAs in live animals is technically challenging. Here, we describe an MS2-based signal amplification with the Suntag system that enables live-cell RNA imaging of high temporal resolution and with 8xMS2 stem-loops, which overcomes the obstacle of inserting a 1300 nt 24xMS2 into the genome for the imaging of endogenous mRNAs. Using this tool, we were able to image the activation of gene expression and the dynamics of endogenous mRNAs in the epidermis of live C. elegans.
Collapse
Affiliation(s)
- Yucen Hu
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jingxiu Xu
- International Biomedicine-X research center of the Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Erqing Gao
- International Biomedicine-X research center of the Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xueyuan Fan
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jieli Wei
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Bingcheng Ye
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Suhong Xu
- International Biomedicine-X research center of the Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Center for Stem Cell and Regenerative Medicine and Department of Burn and wound repair of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weirui Ma
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Hou D, Xu Y, Yan J, Zeng Q, Wang Z, Chen Y. Intracellularly Self-Assembled 2D Materials Induce Apoptotic Cell Death by Impeding Cytosolic Transport. ACS NANO 2023; 17:3055-3063. [PMID: 36688625 DOI: 10.1021/acsnano.2c11876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Using a photochemically isomerizable cucurbit[6]uril derivative as a building block, we succeeded in generating a large number of oversized 2D materials within the cytosol of a living cell via controlled self-assembly. Fluorescence recovery after a photobleaching assay indicated that the resulting 2D material pieces posed discernible hindrance to not only diffusive spreading but also motor-driven motion of intracellular components in the cytosol, which eventually induced apoptotic cell death. Such behavior was seldom observed in previous 2D material-bearing cells prepared by endocytosis, as the total lateral size constituted by the endocytosed 2D materials per cell failed to exceed a threshold level, leading to a tortuosity of transport path inadequate to impede cytosolic transport in an appreciable manner. By varying the initial concentration of the building block, the existence of such a threshold was experimentally demonstrated from the relationship between the flow cytometry side scatter of the treated cells and corresponding cell viability. With the otherwise well-regulated cytosolic transport dynamics of living cells being physically altered, therapeutics with a new mechanism of action that counteracts drug resistance or intracellular platforms that advance our understanding of subcellular pathology of certain intractable diseases are in sight.
Collapse
Affiliation(s)
- Delong Hou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yong Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Jun Yan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Qi Zeng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zhonghui Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yi Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
19
|
Abstract
By the time a Drosophila egg is laid, both major body axes have already been defined and it contains all the nutrients needed to develop into a free-living larva in 24 h. By contrast, it takes almost a week to make an egg from a female germline stem cell, during the complex process of oogenesis. This review will discuss key symmetry-breaking steps in Drosophila oogenesis that lead to the polarisation of both body axes: the asymmetric divisions of the germline stem cells; the selection of the oocyte from the 16-cell germline cyst; the positioning of the oocyte at the posterior of the cyst; Gurken signalling from the oocyte to polarise the anterior-posterior axis of the somatic follicle cell epithelium around the developing germline cyst; the signalling back from the posterior follicle cells to polarise the anterior-posterior axis of the oocyte; and the migration of the oocyte nucleus that specifies the dorsal-ventral axis. Since each event creates the preconditions for the next, I will focus on the mechanisms that drive these symmetry-breaking steps, how they are linked and the outstanding questions that remain to be answered.
Collapse
|
20
|
Milas A, de-Carvalho J, Telley IA. Follicle cell contact maintains main body axis polarity in the Drosophila melanogaster oocyte. J Cell Biol 2022; 222:213703. [PMID: 36409222 PMCID: PMC9682419 DOI: 10.1083/jcb.202209052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
In Drosophila melanogaster, the anterior-posterior body axis is maternally established and governed by differential localization of partitioning defective (Par) proteins within the oocyte. At mid-oogenesis, Par-1 accumulates at the oocyte posterior end, while Par-3/Bazooka is excluded there but maintains its localization along the remaining oocyte cortex. Past studies have proposed the need for somatic cells at the posterior end to initiate oocyte polarization by providing a trigger signal. To date, neither the molecular identity nor the nature of the signal is known. Here, we provide evidence that mechanical contact of posterior follicle cells (PFCs) with the oocyte cortex causes the posterior exclusion of Bazooka and maintains oocyte polarity. We show that Bazooka prematurely accumulates exclusively where posterior follicle cells have been mechanically detached or ablated. Furthermore, we provide evidence that PFC contact maintains Par-1 and oskar mRNA localization and microtubule cytoskeleton polarity in the oocyte. Our observations suggest that cell-cell contact mechanics modulates Par protein binding sites at the oocyte cortex.
Collapse
Affiliation(s)
- Ana Milas
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Rua da Quinta Grande, Portugal
| | - Jorge de-Carvalho
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Rua da Quinta Grande, Portugal
| | - Ivo A. Telley
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Rua da Quinta Grande, Portugal,Correspondence to Ivo A. Telley:
| |
Collapse
|
21
|
Subcellular spatial transcriptomics identifies three mechanistically different classes of localizing RNAs. Nat Commun 2022; 13:6355. [PMID: 36289223 PMCID: PMC9606379 DOI: 10.1038/s41467-022-34004-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/03/2022] [Indexed: 12/25/2022] Open
Abstract
Intracellular RNA localization is a widespread and dynamic phenomenon that compartmentalizes gene expression and contributes to the functional polarization of cells. Thus far, mechanisms of RNA localization identified in Drosophila have been based on a few RNAs in different tissues, and a comprehensive mechanistic analysis of RNA localization in a single tissue is lacking. Here, by subcellular spatial transcriptomics we identify RNAs localized in the apical and basal domains of the columnar follicular epithelium (FE) and we analyze the mechanisms mediating their localization. Whereas the dynein/BicD/Egl machinery controls apical RNA localization, basally-targeted RNAs require kinesin-1 to overcome a default dynein-mediated transport. Moreover, a non-canonical, translation- and dynein-dependent mechanism mediates apical localization of a subgroup of dynein-activating adaptor-encoding RNAs (BicD, Bsg25D, hook). Altogether, our study identifies at least three mechanisms underlying RNA localization in the FE, and suggests a possible link between RNA localization and dynein/dynactin/adaptor complex formation in vivo.
Collapse
|
22
|
Tingey M, Schnell SJ, Yu W, Saredy J, Junod S, Patel D, Alkurdi AA, Yang W. Technologies Enabling Single-Molecule Super-Resolution Imaging of mRNA. Cells 2022; 11:3079. [PMID: 36231040 PMCID: PMC9564294 DOI: 10.3390/cells11193079] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The transient nature of RNA has rendered it one of the more difficult biological targets for imaging. This difficulty stems both from the physical properties of RNA as well as the temporal constraints associated therewith. These concerns are further complicated by the difficulty in imaging endogenous RNA within a cell that has been transfected with a target sequence. These concerns, combined with traditional concerns associated with super-resolution light microscopy has made the imaging of this critical target difficult. Recent advances have provided researchers the tools to image endogenous RNA in live cells at both the cellular and single-molecule level. Here, we review techniques used for labeling and imaging RNA with special emphases on various labeling methods and a virtual 3D super-resolution imaging technique.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
23
|
Triantopoulou N, Vidaki M. Local mRNA translation and cytoskeletal reorganization: Mechanisms that tune neuronal responses. Front Mol Neurosci 2022; 15:949096. [PMID: 35979146 PMCID: PMC9376447 DOI: 10.3389/fnmol.2022.949096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2022] [Indexed: 12/31/2022] Open
Abstract
Neurons are highly polarized cells with significantly long axonal and dendritic extensions that can reach distances up to hundreds of centimeters away from the cell bodies in higher vertebrates. Their successful formation, maintenance, and proper function highly depend on the coordination of intricate molecular networks that allow axons and dendrites to quickly process information, and respond to a continuous and diverse cascade of environmental stimuli, often without enough time for communication with the soma. Two seemingly unrelated processes, essential for these rapid responses, and thus neuronal homeostasis and plasticity, are local mRNA translation and cytoskeletal reorganization. The axonal cytoskeleton is characterized by high stability and great plasticity; two contradictory attributes that emerge from the powerful cytoskeletal rearrangement dynamics. Cytoskeletal reorganization is crucial during nervous system development and in adulthood, ensuring the establishment of proper neuronal shape and polarity, as well as regulating intracellular transport and synaptic functions. Local mRNA translation is another mechanism with a well-established role in the developing and adult nervous system. It is pivotal for axonal guidance and arborization, synaptic formation, and function and seems to be a key player in processes activated after neuronal damage. Perturbations in the regulatory pathways of local translation and cytoskeletal reorganization contribute to various pathologies with diverse clinical manifestations, ranging from intellectual disabilities (ID) to autism spectrum disorders (ASD) and schizophrenia (SCZ). Despite the fact that both processes are essential for the orchestration of pathways critical for proper axonal and dendritic function, the interplay between them remains elusive. Here we review our current knowledge on the molecular mechanisms and specific interaction networks that regulate and potentially coordinate these interconnected processes.
Collapse
Affiliation(s)
- Nikoletta Triantopoulou
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Marina Vidaki
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
- *Correspondence: Marina Vidaki,
| |
Collapse
|
24
|
Tao B, Hu H, Chen J, Chen L, Luo D, Sun Y, Ge F, Zhu Z, Trudeau VL, Hu W. Sinhcaf‐dependent histone deacetylation is essential for primordial germ cell specification. EMBO Rep 2022; 23:e54387. [PMID: 35532311 PMCID: PMC9171691 DOI: 10.15252/embr.202154387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
Primordial germ cells (PGCs) are the progenitor cells that give rise to sperm and eggs. Sinhcaf is a recently identified subunit of the Sin3 histone deacetylase complex (SIN3A-HDAC). Here, we provide evidence that Sinhcaf-dependent histone deacetylation is essential for germ plasm aggregation and primordial germ cell specification. Specifically, maternal-zygotic sinhcaf zebrafish mutants exhibit germ plasm aggregation defects, decreased PGC abundance and male-biased sex ratio, which can be rescued by re-expressing sinhcaf. Overexpression of sinhcaf results in excess PGCs and a female-biased sex ratio. Sinhcaf binds to the promoter region of kif26ab. Loss of sinhcaf epigenetically switches off kif26ab expression by increasing histone 3 acetylation in the promoter region. Injection of kif26ab mRNA could partially rescue the germ plasm aggregation defects in sinhcaf mutant embryos. Taken together, we demonstrate a role of Sinhcaf in germ plasm aggregation and PGC specialization that is mediated by regulating the histone acetylation status of the kif26ab promoter to activate its transcription. Our findings provide novel insights into the function and regulatory mechanisms of Sinhcaf-mediated histone deacetylation in PGC specification.
Collapse
Affiliation(s)
- Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Hongling Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Lu Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
- University of Chinese Academy of Sciences Beijing China
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | | | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
- University of Chinese Academy of Sciences Beijing China
- Qingdao National Laboratory for Marine Science and Technology Qingdao China
| |
Collapse
|
25
|
Milas A, Telley IA. Polarity Events in the Drosophila melanogaster Oocyte. Front Cell Dev Biol 2022; 10:895876. [PMID: 35602591 PMCID: PMC9117655 DOI: 10.3389/fcell.2022.895876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Cell polarity is a pre-requirement for many fundamental processes in animal cells, such as asymmetric cell division, axon specification, morphogenesis and epithelial tissue formation. For all these different processes, polarization is established by the same set of proteins, called partitioning defective (Par) proteins. During development in Drosophila melanogaster, decision making on the cellular and organism level is achieved with temporally controlled cell polarization events. The initial polarization of Par proteins occurs as early as in the germline cyst, when one of the 16 cells becomes the oocyte. Another marked event occurs when the anterior–posterior axis of the future organism is defined by Par redistribution in the oocyte, requiring external signaling from somatic cells. Here, we review the current literature on cell polarity events that constitute the oogenesis from the stem cell to the mature egg.
Collapse
Affiliation(s)
- Ana Milas
- *Correspondence: Ana Milas, ; Ivo A. Telley,
| | | |
Collapse
|
26
|
Bose M, Lampe M, Mahamid J, Ephrussi A. Liquid-to-solid phase transition of oskar ribonucleoprotein granules is essential for their function in Drosophila embryonic development. Cell 2022; 185:1308-1324.e23. [PMID: 35325593 PMCID: PMC9042795 DOI: 10.1016/j.cell.2022.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/24/2021] [Accepted: 02/18/2022] [Indexed: 01/05/2023]
Abstract
Asymmetric localization of oskar ribonucleoprotein (RNP) granules to the oocyte posterior is crucial for abdominal patterning and germline formation in the Drosophila embryo. We show that oskar RNP granules in the oocyte are condensates with solid-like physical properties. Using purified oskar RNA and scaffold proteins Bruno and Hrp48, we confirm in vitro that oskar granules undergo a liquid-to-solid phase transition. Whereas the liquid phase allows RNA incorporation, the solid phase precludes incorporation of additional RNA while allowing RNA-dependent partitioning of client proteins. Genetic modification of scaffold granule proteins or tethering the intrinsically disordered region of human fused in sarcoma (FUS) to oskar mRNA allowed modulation of granule material properties in vivo. The resulting liquid-like properties impaired oskar localization and translation with severe consequences on embryonic development. Our study reflects how physiological phase transitions shape RNA-protein condensates to regulate the localization and expression of a maternal RNA that instructs germline formation.
Collapse
Affiliation(s)
- Mainak Bose
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Marko Lampe
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| |
Collapse
|
27
|
Cao H, Wang Y, Zhang N, Xia S, Tian P, Lu L, Du J, Du Y. Progress of CRISPR-Cas13 Mediated Live-Cell RNA Imaging and Detection of RNA-Protein Interactions. Front Cell Dev Biol 2022; 10:866820. [PMID: 35356276 PMCID: PMC8959342 DOI: 10.3389/fcell.2022.866820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Ribonucleic acid (RNA) and proteins play critical roles in gene expression and regulation. The relevant study increases the understanding of various life processes and contributes to the diagnosis and treatment of different diseases. RNA imaging and mapping RNA-protein interactions expand the understanding of RNA biology. However, the existing methods have some limitations. Recently, precise RNA targeting of CRISPR-Cas13 in cells has been reported, which is considered a new promising platform for RNA imaging in living cells and recognition of RNA-protein interactions. In this review, we first described the current findings on Cas13. Furthermore, we introduced current tools of RNA real-time imaging and mapping RNA-protein interactions and highlighted the latest advances in Cas13-mediated tools. Finally, we discussed the advantages and disadvantages of Cas13-based methods, providing a set of new ideas for the optimization of Cas13-mediated methods.
Collapse
Affiliation(s)
- Huake Cao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yuechen Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyuan Xia
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Pengfei Tian
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Lu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Du
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
- Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
- *Correspondence: Yinan Du, ; Juan Du,
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Juan Du,
| |
Collapse
|
28
|
Doerflinger H, Zimyanin V, St Johnston D. The Drosophila anterior-posterior axis is polarized by asymmetric myosin activation. Curr Biol 2022; 32:374-385.e4. [PMID: 34856125 PMCID: PMC8791603 DOI: 10.1016/j.cub.2021.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/11/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022]
Abstract
The Drosophila anterior-posterior axis is specified at mid-oogenesis when the Par-1 kinase is recruited to the posterior cortex of the oocyte, where it polarizes the microtubule cytoskeleton to define where the axis determinants, bicoid and oskar mRNAs, localize. This polarity is established in response to an unknown signal from the follicle cells, but how this occurs is unclear. Here we show that the myosin chaperone Unc-45 and non-muscle myosin II (MyoII) are required upstream of Par-1 in polarity establishment. Furthermore, the myosin regulatory light chain (MRLC) is di-phosphorylated at the oocyte posterior in response to the follicle cell signal, inducing longer pulses of myosin contractility at the posterior that may increase cortical tension. Overexpression of MRLC-T21A that cannot be di-phosphorylated or treatment with the myosin light-chain kinase inhibitor ML-7 abolishes Par-1 localization, indicating that the posterior of MRLC di-phosphorylation is essential for both polarity establishment and maintenance. Thus, asymmetric myosin activation polarizes the anterior-posterior axis by recruiting and maintaining Par-1 at the posterior cortex. This raises an intriguing parallel with anterior-posterior axis formation in C. elegans, where MyoII also acts upstream of the PAR proteins to establish polarity, but to localize the anterior PAR proteins rather than Par-1.
Collapse
Affiliation(s)
- Hélène Doerflinger
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Vitaly Zimyanin
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
29
|
Arora A, Goering R, Lo HYG, Lo J, Moffatt C, Taliaferro JM. The Role of Alternative Polyadenylation in the Regulation of Subcellular RNA Localization. Front Genet 2022; 12:818668. [PMID: 35096024 PMCID: PMC8795681 DOI: 10.3389/fgene.2021.818668] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Alternative polyadenylation (APA) is a widespread and conserved regulatory mechanism that generates diverse 3' ends on mRNA. APA patterns are often tissue specific and play an important role in cellular processes such as cell proliferation, differentiation, and response to stress. Many APA sites are found in 3' UTRs, generating mRNA isoforms with different 3' UTR contents. These alternate 3' UTR isoforms can change how the transcript is regulated, affecting its stability and translation. Since the subcellular localization of a transcript is often regulated by 3' UTR sequences, this implies that APA can also change transcript location. However, this connection between APA and RNA localization has only recently been explored. In this review, we discuss the role of APA in mRNA localization across distinct subcellular compartments. We also discuss current challenges and future advancements that will aid our understanding of how APA affects RNA localization and molecular mechanisms that drive these processes.
Collapse
Affiliation(s)
- Ankita Arora
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Raeann Goering
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Hei Yong G. Lo
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Joelle Lo
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Charlie Moffatt
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - J. Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
30
|
Arora A, Goering R, Velez PT, Taliaferro JM. Visualization and Quantification of Subcellular RNA Localization Using Single-Molecule RNA Fluorescence In Situ Hybridization. Methods Mol Biol 2022; 2404:247-266. [PMID: 34694613 PMCID: PMC9038117 DOI: 10.1007/978-1-0716-1851-6_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Advancements in imaging technologies, especially approaches that allow the imaging of single RNA molecules, have opened new avenues to understand RNA regulation, from synthesis to decay with high spatial and temporal resolution. Here, we describe a protocol for single-molecule fluorescent in situ hybridization (smFISH) using three different approaches for synthesizing the fluorescent probes. The three approaches described are commercially available probes, single-molecule inexpensive FISH (smiFISH), and in-house enzymatically labeled probes. These approaches offer technical and economic flexibility to meet the specific needs of an experiment. In addition, we provide a protocol to perform automated smFISH spot detection using the software FISH-quant.
Collapse
Affiliation(s)
- Ankita Arora
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Raeann Goering
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA,RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Pedro Tirado Velez
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - J. Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA,RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA,Address correspondence to:
| |
Collapse
|
31
|
Regulation of spatially restricted gene expression: linking RNA localization and phase separation. Biochem Soc Trans 2021; 49:2591-2600. [PMID: 34821361 DOI: 10.1042/bst20210320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022]
Abstract
Subcellular restriction of gene expression is crucial to the functioning of a wide variety of cell types. The cellular machinery driving spatially restricted gene expression has been studied for many years, but recent advances have highlighted novel mechanisms by which cells can generate subcellular microenvironments with specialized gene expression profiles. Particularly intriguing are recent findings that phase separation plays a role in certain RNA localization pathways. The burgeoning field of phase separation has revolutionized how we view cellular compartmentalization, revealing that, in addition to membrane-bound organelles, phase-separated cytoplasmic microenvironments - termed biomolecular condensates - are compositionally and functionally distinct from the surrounding cytoplasm, without the need for a lipid membrane. The coupling of phase separation and RNA localization allows for precise subcellular targeting, robust translational repression and dynamic recruitment of accessory proteins. Despite the growing interest in the intersection between RNA localization and phase separation, it remains to be seen how exactly components of the localization machinery, particularly motor proteins, are able to associate with these biomolecular condensates. Further studies of the formation, function, and transport of biomolecular condensates promise to provide a new mechanistic understanding of how cells restrict gene expression at a subcellular level.
Collapse
|
32
|
RGS4 RNA Secondary Structure Mediates Staufen2 RNP Assembly in Neurons. Int J Mol Sci 2021; 22:ijms222313021. [PMID: 34884825 PMCID: PMC8657808 DOI: 10.3390/ijms222313021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/26/2022] Open
Abstract
RNA-binding proteins (RBPs) act as posttranscriptional regulators controlling the fate of target mRNAs. Unraveling how RNAs are recognized by RBPs and in turn are assembled into neuronal RNA granules is therefore key to understanding the underlying mechanism. While RNA sequence elements have been extensively characterized, the functional impact of RNA secondary structures is only recently being explored. Here, we show that Staufen2 binds complex, long-ranged RNA hairpins in the 3′-untranslated region (UTR) of its targets. These structures are involved in the assembly of Staufen2 into RNA granules. Furthermore, we provide direct evidence that a defined Rgs4 RNA duplex regulates Staufen2-dependent RNA localization to distal dendrites. Importantly, disrupting the RNA hairpin impairs the observed effects. Finally, we show that these secondary structures differently affect protein expression in neurons. In conclusion, our data reveal the importance of RNA secondary structure in regulating RNA granule assembly, localization and eventually translation. It is therefore tempting to speculate that secondary structures represent an important code for cells to control the intracellular fate of their mRNAs.
Collapse
|
33
|
Single-molecule mRNA and translation imaging in neurons. Biochem Soc Trans 2021; 49:2221-2227. [PMID: 34495323 DOI: 10.1042/bst20210313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022]
Abstract
Memory-relevant neuronal plasticity is believed to require local translation of new proteins at synapses. Understanding this process has necessitated the development of tools to visualize mRNA within relevant neuronal compartments. In this review, we summarize the technical developments that now enable mRNA transcripts and their translation to be visualized at single-molecule resolution in both fixed and live cells. These tools include single-molecule fluorescence in situ hybridization (smFISH) to visualize mRNA in fixed cells, MS2/PP7 labelling for live mRNA imaging and SunTag labelling to observe the emergence of nascent polypeptides from a single translating mRNA. The application of these tools in cultured neurons and more recently in whole brains promises to revolutionize our understanding of local translation in the neuronal plasticity that underlies behavioural change.
Collapse
|
34
|
Müntjes K, Devan SK, Reichert AS, Feldbrügge M. Linking transport and translation of mRNAs with endosomes and mitochondria. EMBO Rep 2021; 22:e52445. [PMID: 34402186 PMCID: PMC8490996 DOI: 10.15252/embr.202152445] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/06/2021] [Accepted: 07/27/2021] [Indexed: 01/01/2023] Open
Abstract
In eukaryotic cells, proteins are targeted to their final subcellular locations with precise timing. A key underlying mechanism is the active transport of cognate mRNAs, which in many systems can be linked intimately to membrane trafficking. A prominent example is the long-distance endosomal transport of mRNAs and their local translation. Here, we describe current highlights of fundamental mechanisms of the underlying transport process as well as of biological functions ranging from endosperm development in plants to fungal pathogenicity and neuronal processes. Translation of endosome-associated mRNAs often occurs at the cytoplasmic surface of endosomes, a process that is needed for membrane-assisted formation of heteromeric protein complexes and for accurate subcellular targeting of proteins. Importantly, endosome-coupled translation of mRNAs encoding mitochondrial proteins, for example, seems to be particularly important for efficient organelle import and for regulating subcellular mitochondrial activity. In essence, these findings reveal a new mechanism of loading newly synthesised proteins onto endocytic membranes enabling intimate crosstalk between organelles. The novel link between endosomes and mitochondria adds an inspiring new level of complexity to trafficking and organelle biology.
Collapse
Affiliation(s)
- Kira Müntjes
- Institute of MicrobiologyCluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Senthil Kumar Devan
- Institute of MicrobiologyCluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology IMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Michael Feldbrügge
- Institute of MicrobiologyCluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
35
|
Basyuk E, Rage F, Bertrand E. RNA transport from transcription to localized translation: a single molecule perspective. RNA Biol 2021; 18:1221-1237. [PMID: 33111627 PMCID: PMC8354613 DOI: 10.1080/15476286.2020.1842631] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022] Open
Abstract
Transport of mRNAs is an important step of gene expression, which brings the genetic message from the DNA in the nucleus to a precise cytoplasmic location in a regulated fashion. Perturbation of this process can lead to pathologies such as developmental and neurological disorders. In this review, we discuss recent advances in the field of mRNA transport made using single molecule fluorescent imaging approaches. We present an overview of these approaches in fixed and live cells and their input in understanding the key steps of mRNA journey: transport across the nucleoplasm, export through the nuclear pores and delivery to its final cytoplasmic location. This review puts a particular emphasis on the coupling of mRNA transport with translation, such as localization-dependent translational regulation and translation-dependent mRNA localization. We also highlight the recently discovered translation factories, and how cellular and viral RNAs can hijack membrane transport systems to travel in the cytoplasm.
Collapse
Affiliation(s)
- Eugenia Basyuk
- Institut de Génétique Humaine, CNRS-UMR9002, Univ Montpellier, Montpellier, France
- Present address: Laboratoire de Microbiologie Fondamentale et Pathogénicité, CNRS-UMR 5234, Université de Bordeaux, Bordeaux, France
| | - Florence Rage
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535, Univ Montpellier, Montpellier, France
| | - Edouard Bertrand
- Institut de Génétique Humaine, CNRS-UMR9002, Univ Montpellier, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535, Univ Montpellier, Montpellier, France
- Equipe Labélisée Ligue Nationale Contre Le Cancer, Montpellier, France
| |
Collapse
|
36
|
Chae K, Valentin C, Jakes E, Myles KM, Adelman ZN. Novel synthetic 3'-untranslated regions for controlling transgene expression in transgenic Aedes aegypti mosquitoes. RNA Biol 2021; 18:223-231. [PMID: 34464234 DOI: 10.1080/15476286.2021.1971440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Transgenic technology for mosquitoes is now more than two decades old, and a wide array of control sequences have been described for regulating gene expression in various life stages or specific tissues. Despite this, comparatively little attention has been paid to the development and validation of other transgene-regulating elements, especially 3'-untranslated regions (3'UTRs). As a consequence, the same regulatory sequences are often used multiple times in a single transgene array, potentially leading to instability of transgenic effector genes. To increase the repertoire of characterized 3'UTRs available for genetics-based mosquito control, we generated fifteen synthetic sequences based on the base composition of the widely used SV40 3'UTR sequence, and tested their ability to contribute to the expression of reporter genes EGFP or luciferase. Transient transfection in mosquito cells identified nine candidate 3'UTRs that conferred moderate to strong gene expression. Two of these were engineered into the mosquito genome through CRISPR/Cas9-mediated site-specific insertion and compared to the original SV40 3'UTR. Both synthetic 3'UTRs were shown to successfully promote transgene expression in all mosquito life stages (larva, pupa and adults), similar to the SV40 3'UTR, albeit with differences in intensity. Thus, the synthetic 3'UTR elements described here are suitable for regulating transgene expression in Ae. aegypti, and provide valuable alternatives in the design of multi-gene cassettes. Additionally, the synthetic-scramble approach we validate here could be used to generate additional functional 3'UTR elements in this or other organisms.
Collapse
Affiliation(s)
- Keun Chae
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Collin Valentin
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Emma Jakes
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Kevin M Myles
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Zach N Adelman
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
37
|
Dimitrova-Paternoga L, Jagtap PKA, Cyrklaff A, Vaishali, Lapouge K, Sehr P, Perez K, Heber S, Löw C, Hennig J, Ephrussi A. Molecular basis of mRNA transport by a kinesin-1-atypical tropomyosin complex. Genes Dev 2021; 35:976-991. [PMID: 34140355 PMCID: PMC8247599 DOI: 10.1101/gad.348443.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/14/2021] [Indexed: 11/24/2022]
Abstract
Here, Dimitrova-Paternoga et al. present the high-resolution crystal structure of Khc–aTm1 (Drosophila kinesin-1, also called kinesin heavy chain [Khc], in complex with a putative cargo adaptor, the atypical tropomyosin [aTm1]), which mediates transport of oskar mRNA to the posterior pole of the Drosophila oocyte. They show that aTm1 binds to an evolutionarily conserved cargo binding site on Khc, demonstrate that Khc binds RNA directly, and show that aTm1 plays a stabilizing role in the interaction of Khc with RNA, which distinguishes aTm1 from classical motor adaptors. Kinesin-1 carries cargos including proteins, RNAs, vesicles, and pathogens over long distances within cells. The mechanochemical cycle of kinesins is well described, but how they establish cargo specificity is not fully understood. Transport of oskar mRNA to the posterior pole of the Drosophila oocyte is mediated by Drosophila kinesin-1, also called kinesin heavy chain (Khc), and a putative cargo adaptor, the atypical tropomyosin, aTm1. How the proteins cooperate in mRNA transport is unknown. Here, we present the high-resolution crystal structure of a Khc–aTm1 complex. The proteins form a tripartite coiled coil comprising two in-register Khc chains and one aTm1 chain, in antiparallel orientation. We show that aTm1 binds to an evolutionarily conserved cargo binding site on Khc, and mutational analysis confirms the importance of this interaction for mRNA transport in vivo. Furthermore, we demonstrate that Khc binds RNA directly and that it does so via its alternative cargo binding domain, which forms a positively charged joint surface with aTm1, as well as through its adjacent auxiliary microtubule binding domain. Finally, we show that aTm1 plays a stabilizing role in the interaction of Khc with RNA, which distinguishes aTm1 from classical motor adaptors.
Collapse
Affiliation(s)
- Lyudmila Dimitrova-Paternoga
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany.,Structural and Computational Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany.,Centre for Structural Systems Biology (CSSB), Deutsches Elektronen-Synchrotron (DESY), EMBL Hamburg, 22607 Hamburg, Germany
| | | | - Anna Cyrklaff
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Vaishali
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Peter Sehr
- Chemical Biology Core Facility, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Kathryn Perez
- Protein Expression and Purification Core Facility, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Simone Heber
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), Deutsches Elektronen-Synchrotron (DESY), EMBL Hamburg, 22607 Hamburg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| |
Collapse
|
38
|
Cui H, Ali MY, Goyal P, Zhang K, Loh JY, Trybus KM, Solmaz SR. Coiled-coil registry shifts in the F684I mutant of Bicaudal D result in cargo-independent activation of dynein motility. Traffic 2021; 21:463-478. [PMID: 32378283 DOI: 10.1111/tra.12734] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 11/28/2022]
Abstract
The dynein adaptor Drosophila Bicaudal D (BicD) is auto-inhibited and activates dynein motility only after cargo is bound, but the underlying mechanism is elusive. In contrast, we show that the full-length BicD/F684I mutant activates dynein processivity even in the absence of cargo. Our X-ray structure of the C-terminal domain of the BicD/F684I mutant reveals a coiled-coil registry shift; in the N-terminal region, the two helices of the homodimer are aligned, whereas they are vertically shifted in the wild-type. One chain is partially disordered and this structural flexibility is confirmed by computations, which reveal that the mutant transitions back and forth between the two registries. We propose that a coiled-coil registry shift upon cargo-binding activates BicD for dynein recruitment. Moreover, the human homolog BicD2/F743I exhibits diminished binding of cargo adaptor Nup358, implying that a coiled-coil registry shift may be a mechanism to modulate cargo selection for BicD2-dependent transport pathways.
Collapse
Affiliation(s)
- Heying Cui
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - M Yusuf Ali
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Puja Goyal
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - Kaiqi Zhang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - Jia Ying Loh
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Sozanne R Solmaz
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| |
Collapse
|
39
|
Abouward R, Schiavo G. Walking the line: mechanisms underlying directional mRNA transport and localisation in neurons and beyond. Cell Mol Life Sci 2021; 78:2665-2681. [PMID: 33341920 PMCID: PMC8004493 DOI: 10.1007/s00018-020-03724-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/02/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022]
Abstract
Messenger RNA (mRNA) localisation enables a high degree of spatiotemporal control on protein synthesis, which contributes to establishing the asymmetric protein distribution required to set up and maintain cellular polarity. As such, a tight control of mRNA localisation is essential for many biological processes during development and in adulthood, such as body axes determination in Drosophila melanogaster and synaptic plasticity in neurons. The mechanisms controlling how mRNAs are localised, including diffusion and entrapment, local degradation and directed active transport, are largely conserved across evolution and have been under investigation for decades in different biological models. In this review, we will discuss the standing of the field regarding directional mRNA transport in light of the recent discovery that RNA can hitchhike on cytoplasmic organelles, such as endolysosomes, and the impact of these transport modalities on our understanding of neuronal function during development, adulthood and in neurodegeneration.
Collapse
Affiliation(s)
- Reem Abouward
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
40
|
Konjikusic MJ, Gray RS, Wallingford JB. The developmental biology of kinesins. Dev Biol 2021; 469:26-36. [PMID: 32961118 PMCID: PMC10916746 DOI: 10.1016/j.ydbio.2020.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Kinesins are microtubule-based motor proteins that are well known for their key roles in cell biological processes ranging from cell division, to intracellular transport of mRNAs, proteins, vesicles, and organelles, and microtubule disassembly. Interestingly, many of the ~45 distinct kinesin genes in vertebrate genomes have also been associated with specific phenotypes in embryonic development. In this review, we highlight the specific developmental roles of kinesins, link these to cellular roles reported in vitro, and highlight remaining gaps in our understanding of how this large and important family of proteins contributes to the development and morphogenesis of animals.
Collapse
Affiliation(s)
- Mia J Konjikusic
- Department of Molecular Biosciences, USA; Department of Nutritional Sciences, University of Texas at Austin, USA
| | - Ryan S Gray
- Department of Nutritional Sciences, University of Texas at Austin, USA.
| | | |
Collapse
|
41
|
Mao S, Ying Y, Wu R, Chen AK. Recent Advances in the Molecular Beacon Technology for Live-Cell Single-Molecule Imaging. iScience 2020; 23:101801. [PMID: 33299972 PMCID: PMC7702005 DOI: 10.1016/j.isci.2020.101801] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nucleic acids, aside from being best known as the carrier of genetic information, are versatile biomaterials for constructing nanoscopic devices for biointerfacing, owing to their unique properties such as specific base pairing and predictable structure. For live-cell analysis of native RNA transcripts, the most widely used nucleic acid-based nanodevice has been the molecular beacon (MB), a class of stem-loop-forming probes that is activated to fluoresce upon hybridization with target RNA. Here, we overview efforts that have been made in developing MB-based bioassays for sensitive intracellular analysis, particularly at the single-molecule level. We also describe challenges that are currently limiting the widespread use of MBs and provide possible solutions. With continued refinement of MBs in terms of labeling specificity and detection accuracy, accompanied by new development in imaging platforms with unprecedented sensitivity, the application of MBs is envisioned to expand in various biological research fields.
Collapse
Affiliation(s)
- Shiqi Mao
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Ruonan Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Antony K. Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
- Corresponding author
| |
Collapse
|
42
|
S Mogre S, Brown AI, Koslover EF. Getting around the cell: physical transport in the intracellular world. Phys Biol 2020; 17:061003. [PMID: 32663814 DOI: 10.1088/1478-3975/aba5e5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells face the challenging task of transporting a variety of particles through the complex intracellular milieu in order to deliver, distribute, and mix the many components that support cell function. In this review, we explore the biological objectives and physical mechanisms of intracellular transport. Our focus is on cytoplasmic and intra-organelle transport at the whole-cell scale. We outline several key biological functions that depend on physically transporting components across the cell, including the delivery of secreted proteins, support of cell growth and repair, propagation of intracellular signals, establishment of organelle contacts, and spatial organization of metabolic gradients. We then review the three primary physical modes of transport in eukaryotic cells: diffusive motion, motor-driven transport, and advection by cytoplasmic flow. For each mechanism, we identify the main factors that determine speed and directionality. We also highlight the efficiency of each transport mode in fulfilling various key objectives of transport, such as particle mixing, directed delivery, and rapid target search. Taken together, the interplay of diffusion, molecular motors, and flows supports the intracellular transport needs that underlie a broad variety of biological phenomena.
Collapse
Affiliation(s)
- Saurabh S Mogre
- Department of Physics, University of California, San Diego, San Diego, California 92093, United States of America
| | | | | |
Collapse
|
43
|
Gubieda AG, Packer JR, Squires I, Martin J, Rodriguez J. Going with the flow: insights from Caenorhabditis elegans zygote polarization. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190555. [PMID: 32829680 PMCID: PMC7482210 DOI: 10.1098/rstb.2019.0555] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Cell polarity is the asymmetric distribution of cellular components along a defined axis. Polarity relies on complex signalling networks between conserved patterning proteins, including the PAR (partitioning defective) proteins, which become segregated in response to upstream symmetry breaking cues. Although the mechanisms that drive the asymmetric localization of these proteins are dependent upon cell type and context, in many cases the regulation of actomyosin cytoskeleton dynamics is central to the transport, recruitment and/or stabilization of these polarity effectors into defined subcellular domains. The transport or advection of PAR proteins by an actomyosin flow was first observed in the Caenorhabditis elegans zygote more than a decade ago. Since then a multifaceted approach, using molecular methods, high-throughput screens, and biophysical and computational models, has revealed further aspects of this flow and how polarity regulators respond to and modulate it. Here, we review recent findings on the interplay between actomyosin flow and the PAR patterning networks in the polarization of the C. elegans zygote. We also discuss how these discoveries and developed methods are shaping our understanding of other flow-dependent polarizing systems. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
| | | | | | | | - Josana Rodriguez
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
44
|
Geva P, Komoshvili K, Liberman-Aronov S. Two- and Three-Dimensional Tracking of MFA2 mRNA Molecules in Mating Yeast. Cells 2020; 9:E2151. [PMID: 32977598 PMCID: PMC7650813 DOI: 10.3390/cells9102151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Intracellular mRNA transport contributes to the spatio-temporal regulation of mRNA function and localized translation. In the budding yeast, Saccharomyces cerevisiae, asymmetric mRNA transport localizes ~30 specific mRNAs including those encoding polarity and secretion factors, to the bud tip. The underlying process involves RNA-binding proteins (RBPs), molecular motors, processing bodies (PBs), and the actin cytoskeleton. Recently, pheromone a-factor expression in mating yeast was discovered to depend on proper localization of its mRNA, MFA2 mRNAs in conjunction with PBs cluster at the shmoo tip to form "mating bodies", from which a-factor is locally expressed. The mechanism ensuring the correct targeting of mRNA to the shmoo tip is poorly understood. Here we analyzed the kinetics and trajectories of MFA2 mRNA transport in living, alpha-factor treated yeast. Two- (2D) and three-dimensional (3D) analyses allowed us to reconstruct the granule tracks and estimate granule velocities. Tracking analysis of single MFA2 mRNA granules, labeled using a fluorescent aptamer system, demonstrated three types movement: vibrational, oscillatory and translocational. The mRNA granule transport was complex; a granule could change its movement behavior and composition during its journey to the shmoo. Processing body assembly and the actin-based motor, Myo4p, were involved in movement of MFA2 mRNA to the shmoo, but neither was required, indicating that multiple mechanisms for translocation were at play. Our visualization studies present a dynamic view of the localization mechanism in shmoo-bearing cells.
Collapse
Affiliation(s)
- Polina Geva
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel;
| | | | | |
Collapse
|
45
|
Ciocanel MV, Fricks J, Kramer PR, McKinley SA. Renewal Reward Perspective on Linear Switching Diffusion Systems in Models of Intracellular Transport. Bull Math Biol 2020; 82:126. [PMID: 32939637 PMCID: PMC7497710 DOI: 10.1007/s11538-020-00797-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 08/24/2020] [Indexed: 01/20/2023]
Abstract
In many biological systems, the movement of individual agents is characterized having multiple qualitatively distinct behaviors that arise from a variety of biophysical states. For example, in cells the movement of vesicles, organelles, and other intracellular cargo is affected by their binding to and unbinding from cytoskeletal filaments such as microtubules through molecular motor proteins. A typical goal of theoretical or numerical analysis of models of such systems is to investigate effective transport properties and their dependence on model parameters. While the effective velocity of particles undergoing switching diffusion dynamics is often easily characterized in terms of the long-time fraction of time that particles spend in each state, the calculation of the effective diffusivity is more complicated because it cannot be expressed simply in terms of a statistical average of the particle transport state at one moment of time. However, it is common that these systems are regenerative, in the sense that they can be decomposed into independent cycles marked by returns to a base state. Using decompositions of this kind, we calculate effective transport properties by computing the moments of the dynamics within each cycle and then applying renewal reward theory. This method provides a useful alternative large-time analysis to direct homogenization for linear advection-reaction-diffusion partial differential equation models. Moreover, it applies to a general class of semi-Markov processes and certain stochastic differential equations that arise in models of intracellular transport. Applications of the proposed renewal reward framework are illustrated for several case studies such as mRNA transport in developing oocytes and processive cargo movement by teams of molecular motor proteins.
Collapse
Affiliation(s)
| | - John Fricks
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, USA
| | - Peter R Kramer
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, USA
| | | |
Collapse
|
46
|
Wu YF, Zhang YM, Ge HH, Ren CY, Zhang ZZ, Cao L, Wang F, Chen GH. Effects of Embryonic Inflammation and Adolescent Psychosocial Environment on Cognition and Hippocampal Staufen in Middle-Aged Mice. Front Aging Neurosci 2020; 12:578719. [PMID: 33024434 PMCID: PMC7516039 DOI: 10.3389/fnagi.2020.578719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence has indicated that embryonic inflammation could accelerate age-associated cognitive impairment, which can be attributed to dysregulation of synaptic plasticity-associated proteins, such as RNA-binding proteins (RBPs). Staufen is a double-stranded RBP that plays a critical role in the modulation of synaptic plasticity and memory. However, relatively few studies have investigated how embryonic inflammation affects cognition and neurobiology during aging, or how the adolescent psychosocial environment affects inflammation-induced remote cognitive impairment. Consequently, the aim of this study was to investigate whether these adverse factors can induce changes in Staufen expression, and whether these changes are correlated with cognitive impairment. In our study, CD-1 mice were administered lipopolysaccharides (LPS, 50 μg/kg) or an equal amount of saline (control) intraperitoneally during days 15–17 of gestation. At 2 months of age, male offspring were randomly exposed to stress (S), an enriched environment (E), or not treated (CON) and then assigned to five groups: LPS, LPS+S, LPS+E, CON, and CON+S. Mice were evaluated at 3-month-old (young) and 15-month-old (middle-aged). Cognitive function was assessed using the Morris water maze test, while Staufen expression was examined at both the protein and mRNA level using immunohistochemistry/western blotting and RNAscope technology, respectively. The results showed that the middle-aged mice had worse cognitive performance and higher Staufen expression than young mice. Embryonic inflammation induced cognitive impairment and increased Staufen expression in the middle-aged mice, whereas adolescent stress/an enriched environment would accelerated/mitigated these effects. Meanwhile, Staufen expression was closely correlated with cognitive performance. Our findings suggested embryonic inflammation can accelerate age-associated learning and memory impairments, and these effects may be related to the Staufen expression.
Collapse
Affiliation(s)
- Yong-Fang Wu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - He-Hua Ge
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Chong-Yang Ren
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Zhe-Zhe Zhang
- Department of Neurology and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Cao
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fang Wang
- Department of Neurology and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
47
|
Braselmann E, Rathbun C, Richards EM, Palmer AE. Illuminating RNA Biology: Tools for Imaging RNA in Live Mammalian Cells. Cell Chem Biol 2020; 27:891-903. [PMID: 32640188 PMCID: PMC7595133 DOI: 10.1016/j.chembiol.2020.06.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/30/2020] [Accepted: 06/15/2020] [Indexed: 01/06/2023]
Abstract
The central dogma teaches us that DNA makes RNA, which in turn makes proteins, the main building blocks of the cell. But this over simplified linear transmission of information overlooks the vast majority of the genome produces RNAs that do not encode proteins and the myriad ways that RNA regulates cellular functions. Historically, one of the challenges in illuminating RNA biology has been the lack of tools for visualizing RNA in live cells. But clever approaches for exploiting RNA binding proteins, in vitro RNA evolution, and chemical biology have resulted in significant advances in RNA visualization tools in recent years. This review provides an overview of current tools for tagging RNA with fluorescent probes and tracking their dynamics, localization andfunction in live mammalian cells.
Collapse
Affiliation(s)
- Esther Braselmann
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, CO 80309, USA
| | - Colin Rathbun
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, CO 80309, USA
| | - Erin M Richards
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, CO 80309, USA
| | - Amy E Palmer
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, CO 80309, USA.
| |
Collapse
|
48
|
Obrdlik A, Lin G, Haberman N, Ule J, Ephrussi A. The Transcriptome-wide Landscape and Modalities of EJC Binding in Adult Drosophila. Cell Rep 2020; 28:1219-1236.e11. [PMID: 31365866 DOI: 10.1016/j.celrep.2019.06.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022] Open
Abstract
Exon junction complex (EJC) assembles after splicing at specific positions upstream of exon-exon junctions in mRNAs of all higher eukaryotes, affecting major regulatory events. In mammalian cell cytoplasm, EJC is essential for efficient RNA surveillance, while in Drosophila, EJC is essential for localization of oskar mRNA. Here we developed a method for isolation of protein complexes and associated RNA targets (ipaRt) to explore the EJC RNA-binding landscape in a transcriptome-wide manner in adult Drosophila. We find the EJC at canonical positions, preferably on mRNAs from genes comprising multiple splice sites and long introns. Moreover, EJC occupancy is highest at junctions adjacent to strong splice sites, CG-rich hexamers, and RNA structures. Highly occupied mRNAs tend to be maternally localized and derive from genes involved in differentiation or development. These modalities, which have not been reported in mammals, specify EJC assembly on a biologically coherent set of transcripts in Drosophila.
Collapse
Affiliation(s)
- Ales Obrdlik
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Gen Lin
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nejc Haberman
- Department for Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Jernej Ule
- Department for Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Anne Ephrussi
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| |
Collapse
|
49
|
Wnt/β-catenin Signaling in Tissue Self-Organization. Genes (Basel) 2020; 11:genes11080939. [PMID: 32823838 PMCID: PMC7464740 DOI: 10.3390/genes11080939] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Across metazoans, animal body structures and tissues exist in robust patterns that arise seemingly out of stochasticity of a few early cells in the embryo. These patterns ensure proper tissue form and function during early embryogenesis, development, homeostasis, and regeneration. Fundamental questions are how these patterns are generated and maintained during tissue homeostasis and regeneration. Though fascinating scientists for generations, these ideas remain poorly understood. Today, it is apparent that the Wnt/β-catenin pathway plays a central role in tissue patterning. Wnt proteins are small diffusible morphogens which are essential for cell type specification and patterning of tissues. In this review, we highlight several mechanisms described where the spatial properties of Wnt/β-catenin signaling are controlled, allowing them to work in combination with other diffusible molecules to control tissue patterning. We discuss examples of this self-patterning behavior during development and adult tissues' maintenance. The combination of new physiological culture systems, mathematical approaches, and synthetic biology will continue to fuel discoveries about how tissues are patterned. These insights are critical for understanding the intricate interplay of core patterning signals and how they become disrupted in disease.
Collapse
|
50
|
Mukherjee A, Brooks PS, Bernard F, Guichet A, Conduit PT. Microtubules originate asymmetrically at the somatic golgi and are guided via Kinesin2 to maintain polarity within neurons. eLife 2020; 9:e58943. [PMID: 32657758 PMCID: PMC7394546 DOI: 10.7554/elife.58943] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Neurons contain polarised microtubule arrays essential for neuronal function. How microtubule nucleation and polarity are regulated within neurons remains unclear. We show that γ-tubulin localises asymmetrically to the somatic Golgi within Drosophila neurons. Microtubules originate from the Golgi with an initial growth preference towards the axon. Their growing plus ends also turn towards and into the axon, adding to the plus-end-out microtubule pool. Any plus ends that reach a dendrite, however, do not readily enter, maintaining minus-end-out polarity. Both turning towards the axon and exclusion from dendrites depend on Kinesin-2, a plus-end-associated motor that guides growing plus ends along adjacent microtubules. We propose that Kinesin-2 engages with a polarised microtubule network within the soma to guide growing microtubules towards the axon; while at dendrite entry sites engagement with microtubules of opposite polarity generates a backward stalling force that prevents entry into dendrites and thus maintains minus-end-out polarity within proximal dendrites.
Collapse
Affiliation(s)
- Amrita Mukherjee
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Paul S Brooks
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Fred Bernard
- Université de Paris, CNRS, Institut Jacques MonodParisFrance
| | - Antoine Guichet
- Université de Paris, CNRS, Institut Jacques MonodParisFrance
| | - Paul T Conduit
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Université de Paris, CNRS, Institut Jacques MonodParisFrance
| |
Collapse
|