1
|
Leclercq L. Law and Order of Colloidal Tectonics: From Molecules to Self-Assembled Colloids. Molecules 2024; 29:5657. [PMID: 39683815 DOI: 10.3390/molecules29235657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Since biochemists and biologists have progressed in understanding the mechanisms involved in living organisms, biological systems have become a source of inspiration for chemists. In this context, the concept of colloidal tectonics, describing the spontaneous formation of colloidal particles or supracolloidal structures in which the building blocks are called "tectons", has emerged. Therefore, a bottom-up edification of tectons towards (supra) colloidal structures is allowed. Each (supra) colloidal system has at least one of the following properties: amphiphilicity, predictability, versatility, commutability, and reversibility. However, for these systems to perform even more interesting functions, it is necessary for tectons to have very precise chemical and physical properties so that new properties emerge in (supra) colloidal systems. In this way, colloidal tectonics enables engineering at the nano- and micrometric level and contributes to the development of smart bioinspired systems with applications in catalysis, drug delivery, etc. In this review, an overview of the concept of colloidal tectonics is illustrated by some biotic systems. The design of abiotic (supra) colloidal systems and their applications in various fields are also addressed (notably Pickering emulsions for catalysis or drug delivery). Finally, theoretical directions for the design of novel self-assembled (supra) colloidal systems are discussed.
Collapse
Affiliation(s)
- Loïc Leclercq
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS, Unité de Catalyse et Chimie du Solide, Lille 59000, France
| |
Collapse
|
2
|
Baudoin M, Paboeuf G, Liengprayoon S, Musigamart N, Bottier C, Vié V. Hevea brasiliensis rubber particles' fluid interfaces reveal size impact on early coagulation steps. Colloids Surf B Biointerfaces 2024; 245:114281. [PMID: 39362072 DOI: 10.1016/j.colsurfb.2024.114281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Natural rubber originates from the coagulation of rubber particles (RP) from Hevea brasiliensis latex. The size distribution of Hevea RP is bimodal with the presence of small rubber particles (SRP) and large rubber particles (LRP). This study aims at getting a better understanding of the early coagulation steps of Hevea RP taking into account the particle size. SRP and LRP were obtained by centrifugation of freshly tapped ammonia-free latex from RRIM600 clone. Size and zeta potential measurements showed that both RP fractions were efficiently separated and stable in basic buffer. SRP and LRP dispersions were placed in a Langmuir trough and RP were let to adsorb at the air-liquid interface to form interfacial films. Surface tension and ellipsometry indicate that the formation kinetics and the stabilization of the film at the air-liquid interface are faster for SRP than LRP. Moreover, the arrangement of RP at the interface differs between SRP and LRP, as shown by Brewster angle microscopy, atomic force microscopy and confocal laser scanning microscopy. First, the RP membrane and cis-1,4-polyisoprene core spread at the air-liquid interface before clustering. Then, while the SRP fuse, the LRP keep their structure in individual particles in floating aggregate. The role of the non-isoprene molecules on the different organization of SRP and LRP films is discussed, the one of the two major RP proteins, SRPP1 (Small Rubber Particle Protein) and Rubber Elongation Factor (REF1) in the early coagulation steps.
Collapse
Affiliation(s)
- Marion Baudoin
- IPR - UMR UR1 CNRS 6251, Rennes University, Rennes F-35000, France; CIRAD, UPR BioWooEB, Montpellier F-34398, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Gilles Paboeuf
- IPR - UMR UR1 CNRS 6251, Rennes University, Rennes F-35000, France; ScanMAT - UAR 2025, Rennes University, Rennes F-35042, France
| | | | | | - Céline Bottier
- CIRAD, UPR BioWooEB, Montpellier F-34398, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Véronique Vié
- IPR - UMR UR1 CNRS 6251, Rennes University, Rennes F-35000, France; ScanMAT - UAR 2025, Rennes University, Rennes F-35042, France.
| |
Collapse
|
3
|
Liu S, Chen Y, Han D, Tian X, Ma D, Jie X, Zhang J. Extraction process and characterization of Taraxacum kok-saghyz (TKS) latex. Heliyon 2024; 10:e25351. [PMID: 38379982 PMCID: PMC10877186 DOI: 10.1016/j.heliyon.2024.e25351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
Taraxacum kok-saghyz (TKS) latex is a natural latex produced from its root, and its extraction optimization process is mainly studied in the present paper. The composition of fresh roots of TKS was quantitatively analyzed, and the results showed that the moisture content of the fresh root was approximately 70 %, and the rubber content averaged to 6 % (dry weight ratio). An optimal process route for extracting the TKS latex was finally determined, making the extraction efficiency reach about 80 %, and a new latex extraction process was established and optimized and named "the process of Buffer Extraction TKS Latex (BETL)". Hevea latex, extracted TKS latex and TKS latex collected directly from the broken roots were compared for study. The results showed that, like Hevea latex, the appearance of TKS latex was milky white; and after centrifugation, both showed four layers from top to bottom: rubber particles, Frey-Wyssling particles, C-serum and lutoids. The results of the composition analysis showed that the concentration of TKS latex ranged from 54.54 % to 68.25 %, which is close to that of concentrated Hevea latex; the moisture content of TKS latex was between 31.75 % and 45.46 %. The protein content of TKS latex was 13.51 mg/mL, which was lower than that of Hevea latex at the same rubber hydrocarbon concentration. The molecular structures and properties of Hevea latex, the extracted TKS latex, and the collected TKS latex were characterized by FTIR, 13C NMR, GPC, TG, SEM and LPSA, and the results showed that the main components and structure of the three latexes were similar, which are all cis-1,4-polyisoprene, and include the proteins and lipids. The distributions molecular weights of the three latexes all showed a bimodal distribution, but the molecular weight of the latex collected from TKS was lower, which indicates the larger molecules were difficult to flow outside the root automatically. The Hevea latex and TKS latex rubber particles were both core-shell structure and the size distribution were bimodal, which was consistent with the GPC analysis results.
Collapse
Affiliation(s)
- Shiqi Liu
- Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing University of Chemical and Technology, Beijing 100029, China
- Center of Advanced Elastomer Materials, College of Material Science & Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yunhan Chen
- Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing University of Chemical and Technology, Beijing 100029, China
- Center of Advanced Elastomer Materials, College of Material Science & Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongren Han
- Hangzhou Guoren Electrical Engineering Co., Ltd, Hangzhou 311222, China
| | - Xuefa Tian
- Beijing Huateng Rubber and Plastic Latex Products Co., Ltd, Beijing 101116, China
| | - Dongli Ma
- Beijing Huateng Rubber and Plastic Latex Products Co., Ltd, Beijing 101116, China
| | - Xiang Jie
- Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing University of Chemical and Technology, Beijing 100029, China
- Center of Advanced Elastomer Materials, College of Material Science & Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jichuan Zhang
- Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing University of Chemical and Technology, Beijing 100029, China
- Center of Advanced Elastomer Materials, College of Material Science & Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Herculano RD, Dos Reis CE, de Souza SMB, Pegorin Brasil GS, Scontri M, Kawakita S, Carvalho BG, Bebber CC, Su Y, de Sousa Abreu AP, Mecwan MM, Mandal K, Fusco Almeida AM, Mendes Giannini MJS, Guerra NB, Mussagy CU, Bosculo MRM, Gemeinder JLP, de Almeida BFM, Floriano JF, Farhadi N, Monirizad M, Khorsandi D, Nguyen HT, Gomez A, Tirpáková Z, Peirsman A, da Silva Sasaki JC, He S, Forster S, Burd BS, Dokmeci MR, Terra-Garcia M, Junqueira JC, de Mendonça RJ, Cardoso MR, Dos Santos LS, Silva GR, Barros NR, Jucaud V, Li B. Amphotericin B-loaded natural latex dressing for treating Candida albicans wound infections using Galleria mellonella model. J Control Release 2024; 365:744-758. [PMID: 38072085 DOI: 10.1016/j.jconrel.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/19/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Amphotericin B (AmB) is the gold standard for antifungal drugs. However, AmB systemic administration is restricted because of its side effects. Here, we report AmB loaded in natural rubber latex (NRL), a sustained delivery system with low toxicity, which stimulates angiogenesis, cell adhesion and accelerates wound healing. Physicochemical characterizations showed that AmB did not bind chemically to the polymeric matrix. Electronic and topographical images showed small crystalline aggregates from AmB crystals on the polymer surface. About 56.6% of AmB was released by the NRL in 120 h. However, 33.6% of this antifungal was delivered in the first 24 h due to the presence of AmB on the polymer surface. The biomaterial's excellent hemo- and cytocompatibility with erythrocytes and human dermal fibroblasts (HDF) confirmed its safety for dermal wound application. Antifungal assay against Candida albicans showed that AmB-NRL presented a dose-dependent behavior with an inhibition halo of 30.0 ± 1.0 mm. Galleria mellonella was employed as an in vivo model for C. albicans infection. Survival rates of 60% were observed following the injection of AmB (0.5 mg.mL-1) in G. mellonella larvae infected by C. albicans. Likewise, AmB-NRL (0.5 mg.mL-1) presented survival rates of 40%, inferring antifungal activity against fungus. Thus, NRL adequately acts as an AmB-sustained release matrix, which is an exciting approach, since this antifungal is toxic at high concentrations. Our findings suggest that AmB-NRL is an efficient, safe, and reasonably priced ($0.15) dressing for the treatment of cutaneous fungal infections.
Collapse
Affiliation(s)
- Rondinelli Donizetti Herculano
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA.
| | - Camila Eugênia Dos Reis
- Fundação Educacional do Município de Assis (FEMA), 1200 Getulio Vargas Avenue, 19807-130 Assis, SP, Brazil
| | | | - Giovana Sant'Ana Pegorin Brasil
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Mateus Scontri
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Bruna Gregatti Carvalho
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; University of Campinas (UNICAMP), Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, 13083-852 Campinas, SP, Brazil
| | - Camila Calderan Bebber
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Yanjin Su
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Ana Paula de Sousa Abreu
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Marvin M Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Ana Marisa Fusco Almeida
- São Paulo State University (UNESP), Department of Clinical Analysis, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Maria José Soares Mendes Giannini
- São Paulo State University (UNESP), Department of Clinical Analysis, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | | | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | - Maria Rachel Melo Bosculo
- University Center of the Integrated Faculties of Ourinhos (UNIFIO), Km 338, BR-153, 19909-100 Ourinhos, SP, Brazil
| | - José Lúcio Pádua Gemeinder
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil; University Center of the Integrated Faculties of Ourinhos (UNIFIO), Km 338, BR-153, 19909-100 Ourinhos, SP, Brazil
| | | | - Juliana Ferreira Floriano
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil; São Paulo State University (UNESP), School of Sciences, 17033-360 Bauru, SP, Brazil
| | - Neda Farhadi
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Mahsa Monirizad
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Huu Tuan Nguyen
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Alejandro Gomez
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Zuzana Tirpáková
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovak Republic
| | - Arne Peirsman
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Plastic, Reconstructive and Aesthetic Surgery, University Hospital Ghent, Ghent, Belgium
| | - Josana Carla da Silva Sasaki
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Siqi He
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Samuel Forster
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Betina Sayeg Burd
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Maíra Terra-Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), 12244-514 São José dos Campos, SP, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), 12244-514 São José dos Campos, SP, Brazil
| | - Ricardo José de Mendonça
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Marcos Roberto Cardoso
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13561-970 São Carlos, SP, Brazil
| | - Lindomar Soares Dos Santos
- Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, Universidade de São Paulo University (USP), 3900 Bandeirantes Avenue, 14, 040-901 Ribeirão Preto, SP, Brazil
| | - Gláucio Ribeiro Silva
- Federal Institute of Education, Science, and Technology of Minas Gerais, s/n São Luiz Gonzaga Street, 35577-010, Formiga, MG, Brazil
| | - Natan Roberto Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA.
| |
Collapse
|
5
|
Wadeesirisak K, Castano S, Vaysse L, Bonfils F, Peruch F, Rattanaporn K, Liengprayoon S, Lecomte S, Bottier C. Interactions of REF1 and SRPP1 rubber particle proteins from Hevea brasiliensis with synthetic phospholipids: Effect of charge and size of lipid headgroup. Biochem Biophys Res Commun 2023; 679:205-214. [PMID: 37708579 DOI: 10.1016/j.bbrc.2023.08.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
According to the fatty acid and headgroup compositions of the phospholipids (PL) from Hevea brasiliensis latex, three synthetic PL were selected (i.e. POPA: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate POPC: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and POPG: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) to investigate the effect of PL headgroup on the interactions with two major proteins of Hevea latex, i.e. Rubber Elongation Factor (REF1) and Small Rubber Particle Protein (SRPP1). Protein/lipid interactions were screened using two models (lipid vesicles in solution or lipid monolayers at air/liquid interface). Calcein leakage, surface pressure, ellipsometry, microscopy and spectroscopy revealed that both REF1 and SRPP1 displayed stronger interactions with anionic POPA and POPG, as compared to zwitterionic POPC. A particular behavior of REF1 was observed when interacting with POPA monolayers (i.e. aggregation + modification of secondary structure from α-helices to β-sheets, characteristic of its amyloid aggregated form), which might be involved in the irreversible coagulation mechanism of Hevea rubber particles.
Collapse
Affiliation(s)
- Kanthida Wadeesirisak
- Institute of Food Research and Product Development, Kasetsart University, 10900, Bangkok, Thailand
| | - Sabine Castano
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, F-33600, Pessac, France
| | - Laurent Vaysse
- CIRAD, UPR BioWooEB, F-34398, Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Frédéric Bonfils
- CIRAD, UPR BioWooEB, F-34398, Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Frédéric Peruch
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Kittipong Rattanaporn
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 10900, Bangkok, Thailand
| | - Siriluck Liengprayoon
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, 10900, Bangkok, Thailand
| | - Sophie Lecomte
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, F-33600, Pessac, France.
| | - Céline Bottier
- CIRAD, UPR BioWooEB, F-34398, Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France.
| |
Collapse
|
6
|
Nijpanich S, Nimpaiboon A, Rojruthai P, Park JH, Hagio T, Ichino R, Sakdapipanich J. Preparation and Characterization of TiO 2-Coated Hollow Glass Beads for Functionalization of Deproteinized Natural Rubber Latex via UVA-Activated Photocatalytic Degradation. Polymers (Basel) 2023; 15:3885. [PMID: 37835934 PMCID: PMC10575425 DOI: 10.3390/polym15193885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 10/15/2023] Open
Abstract
The photochemical degradation of natural rubber (NR) is a prevalent method used to modify its inherent properties. Natural rubber, predominantly derived from the Hevea Brasiliensis tree, exhibits an exceptionally high molecular weight (MW), often reaching a million daltons (Da). This high MW restricts its solubility in various solvents and its reactivity with polar compounds, thereby constraining its versatile applications. In our previous work, we employed TiO2 in its powdered form as a photocatalyst for the functionalization of NR latex. However, the post-process separation and reuse of this powder present substantial challenges. In this present study, we aimed to functionalize deproteinized NR (DPNR) latex. We systematically reduced its MW via photochemical degradation under UVA irradiation facilitated by H2O2. To enhance the efficiency of the degradation process, we introduced TiO2-coated hollow glass beads (TiO2-HGBs) as photocatalysts. This approach offers the advantage of easy collection and repeated reuse. The modified DPNR showed a reduction in its number-average MW from 9.48 × 105 to 0.28 × 105 Da and incorporated functional groups, including hydroxyl, carbonyl, and epoxide. Remarkably, the TiO2-HGBs maintained their performance over seven cycles of reuse. Due to their superior efficacy, TiO2-HGBs stand out as promising photocatalysts for the advanced functionalization of NR across various practical applications.
Collapse
Affiliation(s)
- Supinya Nijpanich
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Adun Nimpaiboon
- Rubber Technology Research Centre, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Porntip Rojruthai
- Division of Chemical Industrial Process and Environment, Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North Bangkok, Rayong 21120, Thailand;
| | - Jae-Hyeok Park
- Institute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan; (J.-H.P.); (T.H.); (R.I.)
| | - Takeshi Hagio
- Institute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan; (J.-H.P.); (T.H.); (R.I.)
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Ryoichi Ichino
- Institute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan; (J.-H.P.); (T.H.); (R.I.)
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Jitladda Sakdapipanich
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
7
|
Herculano RD, Dos Santos TO, Barros NR, Sant'Ana Pegorin Brasil G, Scontri M, Carvalho BG, Mecwan M, Farhadi N, Kawakita S, Perego CH, Carvalho FA, Dos Santos AG, Guerra NB, Floriano JF, Mussagy CU, Tirpáková Z, Khorsandi D, Peirsman A, Nguyen HT, Gomez A, Mandal K, de Mendonça RJ, Li B, Dokmeci MR, Jucaud V. Aloe vera-loaded natural rubber latex dressing as a potential complementary treatment for psoriasis. Int J Biol Macromol 2023; 242:124779. [PMID: 37172697 DOI: 10.1016/j.ijbiomac.2023.124779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Psoriasis is a disease that causes keratinocytes to proliferate ten times faster than normal, resulting in chronic inflammation and immune cell infiltration in the skin. Aloe vera (A. vera) creams have been used topically for treating psoriasis because they contain several antioxidant species; however, they have several limitations. Natural rubber latex (NRL) has been used as occlusive dressings to promote wound healing by stimulating cell proliferation, neoangiogenesis, and extracellular matrix formation. In this work, we developed a new A. vera-releasing NRL dressing by a solvent casting method to load A. vera into NRL. FTIR and rheological analyzes revealed no covalent interactions between A. vera and NRL in the dressing. We observed that 58.8 % of the loaded A. vera, present on the surface and inside the dressing, was released after 4 days. Biocompatibility and hemocompatibility were validated in vitro using human dermal fibroblasts and sheep blood, respectively. We observed that ~70 % of the free antioxidant properties of A. vera were preserved, and the total phenolic content was 2.31-fold higher than NRL alone. In summary, we combined the antipsoriatic properties of A. vera with the healing activity of NRL to generate a novel occlusive dressing that may be indicated for the management and/or treatment of psoriasis symptoms simply and economically.
Collapse
Affiliation(s)
- Rondinelli Donizetti Herculano
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA.
| | - Thainá Oliveira Dos Santos
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Natan Roberto Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, USA
| | - Giovana Sant'Ana Pegorin Brasil
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, 14800-903 Araraquara, SP, Brazil
| | - Mateus Scontri
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Bruna Gregatti Carvalho
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, USA; University of Campinas (UNICAMP), Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, 13083-852 Campinas, SP, Brazil
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, USA
| | - Neda Farhadi
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, USA
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, USA
| | - Caio Humberto Perego
- São Paulo State University (UNESP), Pharmacognosy Laboratory, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Flávio Alexandre Carvalho
- São Paulo State University (UNESP), Pharmacognosy Laboratory, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - André Gonzaga Dos Santos
- São Paulo State University (UNESP), Pharmacognosy Laboratory, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Nayrim Brizuela Guerra
- Area of Exact Sciences and Engineering, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | - Juliana Ferreira Floriano
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | - Zuzana Tirpáková
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, USA; The University of Veterinary Medicine and Pharmacy in Košice, Komenského, 73041 81 Košice, Slovak Republic
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, USA
| | - Arne Peirsman
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, USA; Plastic, Reconstructive and Aesthetic Surgery University Hospital Ghent, Ghent, Belgium
| | - Huu Tuan Nguyen
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, USA
| | - Alejandro Gomez
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, USA
| | - Ricardo José de Mendonça
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, USA.
| |
Collapse
|
8
|
Rybiński P, Mirkhodjaev UZ, Żukowski W, Bradło D, Gawlik A, Zamachowski J, Żelezik M, Masłowski M, Miedzianowska J. Effect of Hybrid Filler, Carbon Black-Lignocellulose, on Fire Hazard Reduction, including PAHs and PCDDs/Fs of Natural Rubber Composites. Polymers (Basel) 2023; 15:polym15081975. [PMID: 37112122 PMCID: PMC10146314 DOI: 10.3390/polym15081975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The smoke emitted during thermal decomposition of elastomeric composites contains a significant number of carcinogenic and mutagenic compounds from the group of polycyclic aromatic hydrocarbons, PAHs, as well as polychlorinated dibenzo-p-dioxins and furans, PCDDs/Fs. By replacing carbon black with a specific amount of lignocellulose filler, we noticeably reduced the fire hazard caused by elastomeric composites. The lignocellulose filler reduced the parameters associated with the flammability of the tested composites, decreased the smoke emission, and limited the toxicity of gaseous decomposition products expressed as a toximetric indicator and the sum of PAHs and PCDDs/Fs. The natural filler also reduced emission of gases that constitute the basis for determination of the value of the toximetric indicator WLC50SM. The flammability and optical density of the smoke were determined in accordance with the applicable European standards, with the use of a cone calorimeter and a chamber for smoke optical density tests. PCDD/F and PAH were determined using the GCMS-MS technique. The toximetric indicator was determined using the FB-FTIR method (fluidised bed reactor and the infrared spectrum analysis).
Collapse
Affiliation(s)
- Przemysław Rybiński
- Institute of Chemistry, The Jan Kochanowski University, 25-406 Kielce, Poland
| | | | - Witold Żukowski
- Department of General and Inorganic Chemistry, Cracow University of Technology, 31-155 Cracow, Poland
| | - Dariusz Bradło
- Department of General and Inorganic Chemistry, Cracow University of Technology, 31-155 Cracow, Poland
| | - Adam Gawlik
- Institute of Geography and Environmental Sciences, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Jakub Zamachowski
- Institute of Geography and Environmental Sciences, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Monika Żelezik
- Institute of Geography and Environmental Sciences, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Marcin Masłowski
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - Justyna Miedzianowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| |
Collapse
|
9
|
Supanakorn G, Taokaew S, Phisalaphong M. Multifunctional Cellulosic Natural Rubber and Silver Nanoparticle Films with Superior Chemical Resistance and Antibacterial Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:521. [PMID: 36770481 PMCID: PMC9921950 DOI: 10.3390/nano13030521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Composite films of natural rubber/cellulose fiber/silver nanoparticle were synthesized in a green route via the latex solution process. Hybrid cellulose filler containing carboxymethyl cellulose and cellulose microfibers was used to facilitate facile and fast preparation and to improve mechanical strength to the composites, respectively. All the composites possessed a high tensile strength of ~120 MPa, a high heat resistance of nearly 300 °C, and more than 20% biodegradability in soil in two weeks. Chemical resistance and antibacterial activity of the composite was enhanced depending on sizes and concentrations of silver nanoparticles (AgNPs). The composites containing 0.033-0.1% w/w AgNPs retarded toluene uptake to less than 12% throughout 8 h, whereas the composite containing 0.067-0.1% w/w AgNPs exhibited excellent antibacterial activities against Escherichia coli and Staphylococcus aureus. In comparison, 50 nm-AgNPs presented higher antibacterial activities than 100 nm-AgNPs. In vitro cytotoxicity test assessed after incubation for 24 h and 48 h revealed that almost all AgNPs-composite films exhibited non/weak and moderate cytotoxicity, respectively, to HaCaT keratinocyte cells.
Collapse
Affiliation(s)
- Goragot Supanakorn
- Bio-Circular-Green-Economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriporn Taokaew
- Department of Materials Science and Biotechnology, School of Engineering, Nagaoka University of Technology, Nagaoka 940-2188, Japan
| | - Muenduen Phisalaphong
- Bio-Circular-Green-Economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Sethulekshmi AS, Saritha A, Joseph K, Aprem AS, Sisupal SB, Nair VS, G S. Multifunctional role of tannic acid in improving the mechanical, thermal and antimicrobial properties of natural rubber-molybdenum disulfide nanocomposites. Int J Biol Macromol 2023; 225:351-360. [PMID: 36427617 DOI: 10.1016/j.ijbiomac.2022.11.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022]
Abstract
Natural rubber is the only biosynthesized rubber and the most prominent of all the elastomers. Insertion of nanofillers into natural rubber matrix has received much research interest because of the enhanced mechanical, thermal, electrical, antibacterial, etc. properties of the final natural rubber nanocomposite. Molybdenum disulfide (MoS2), an important member in transition metal dichalcogenides (TMD) is having excellent optical, thermal, mechanical, electronic and antibacterial properties. The inherent properties of this novel filler was exploited through the preparation of natural rubber-MoS2 nanocomposites via latex dipping method in which tannic acid (TA), naturally occurring macromolecule was used as an exfoliating agent for MoS2. MoS2:TA dispersions were prepared in 1:2, 1:4 and 1:6 ratios by mechanical stirring followed by sonication method for analyzing the optimum amount of exfoliating agent for the preparation of NR-MoS2 nanocomposite. MoS2:TA in 1:4 ratio was found to be the optimum loading for the NR nanocomposite preparation with improved mechanical, thermal and antibacterial properties. The enhanced properties of the NR composites could be attributed to the synergistic effect of both MoS2 and TA. The current study shows the role of TA in tuning the properties of NR/MoS2 nanocomposites that enable their potential utilization in various biomedical applications.
Collapse
Affiliation(s)
- A S Sethulekshmi
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Appukuttan Saritha
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India.
| | - Kuruvilla Joseph
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiyamala PO, Kerala, India.
| | - Abi Santhosh Aprem
- Corporate R&D Centre, HLL Lifecare Ltd. Akkulam, Trivandrum, Kerala, India.
| | | | - Vidhu S Nair
- Corporate R&D Centre, HLL Lifecare Ltd. Akkulam, Trivandrum, Kerala, India
| | - Sidharth G
- Corporate R&D Centre, HLL Lifecare Ltd. Akkulam, Trivandrum, Kerala, India
| |
Collapse
|
11
|
Longkaew K, Tessanan W, Daniel P, Phinyocheep P, Gibaud A. Using sucrose to prepare submicrometric CaCO3 vaterite particles stable in natural rubber. ADV POWDER TECHNOL 2023. [DOI: 10.1016/j.apt.2022.103924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Effect of calcium nitrate and a hydrophobically modified polymeric surfactant on the stability of natural rubber latex. J RUBBER RES 2022. [DOI: 10.1007/s42464-022-00188-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Mussagy CU, Oshiro A, Lima CA, Amantino CF, Primo FL, Santos-Ebinuma VC, Herculano RD. Natural fluorescent red colorants produced by Talaromyces amestolkiae as promising coloring agents for custom-made latex gloves. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Hernandez-Tenorio F, Arroyave-Miranda H, Miranda AM, González SM, Rodríguez CA, Sáez AA. Improving Deproteinization in Colombian Latex from Hevea brasiliensis: A Bibliometric Approximation. Polymers (Basel) 2022; 14:polym14194248. [PMID: 36236196 PMCID: PMC9573318 DOI: 10.3390/polym14194248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/30/2023] Open
Abstract
Natural Rubber Field Latex (NRFL) allergens restrict its use in some markets due to health-threatening allergic reactions. These molecules are proteins that are related to asymptomatic sensitization and hypersensitivity mediated by immunoglobulin E (IgE). Although NRFL allergens have been investigated since the 1980s, there are still gaps in knowledge regarding the development of deproteinized natural rubber (DPNR). Therefore, in this study, the deproteinization of NRFL from the lower basin of the Cauca River, Antioquia-Colombia was evaluated using eight systems. The highest removal value was 84.4% and was obtained from the treatment containing SDS (Sodium dodecyl sulfate), Urea, and Ethanol. It was also possible to determine that at high concentrations of SDS, removal percentages higher than 70% are reached. On the other hand, all deproteinizing systems decreased NRFL Zeta potentials without self-coagulation, suggesting enhanced colloidal stability in DPNR latex. On the other hand, the bibliometric analysis presented technological advances in DPRN through different parameters and bibliometric networks. The analysis presented makes an important contribution from the bibliometric approach that could be positive for the development of research on DPNR.
Collapse
Affiliation(s)
| | | | - Alejandra M. Miranda
- Biological Sciences and Bioprocesses Group, School of Applied Sciences and Engineering, Universidad de EAFIT, Medellín 050022, Colombia
| | - Sandra M. González
- School of Applied Sciences and Engineering, Universidad EAFIT, Medellín 050022, Colombia
| | - Carlos A. Rodríguez
- Engineering, Energy, Exergy and Sustainability Group (IEXS), School of Applied Sciences and Engineering, Universidad EAFIT, Medellín 050022, Colombia
| | - Alex A. Sáez
- Biological Sciences and Bioprocesses Group, School of Applied Sciences and Engineering, Universidad de EAFIT, Medellín 050022, Colombia
- Correspondence:
| |
Collapse
|
15
|
Non-Covalent Interaction on the Self-Healing of Mechanical Properties in Supramolecular Polymers. Int J Mol Sci 2022; 23:ijms23136902. [PMID: 35805906 PMCID: PMC9266855 DOI: 10.3390/ijms23136902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 01/27/2023] Open
Abstract
Supramolecular polymers are widely utilized and applied in self-assembly or self-healing materials, which can be repaired when damaged. Normally, the healing process is classified into two types, including extrinsic and intrinsic self-healable materials. Therefore, the aim of this work is to review the intrinsic self-healing strategy based on supramolecular interaction or non-covalent interaction and molecular recognition to obtain the improvement of mechanical properties. In this review, we introduce the main background of non-covalent interaction, which consists of the metal–ligand coordination, hydrogen bonding, π–π interaction, electrostatic interaction, dipole–dipole interaction, and host–guest interactions, respectively. From the perspective of mechanical properties, these interactions act as transient crosslinking points to both prevent and repair the broken polymer chains. For material utilization in terms of self-healing products, this knowledge can be applied and developed to increase the lifetime of the products, causing rapid healing and reducing accidents and maintenance costs. Therefore, the self-healing materials using supramolecular polymers or non-covalent interaction provides a novel strategy to enhance the mechanical properties of materials causing the extended cycling lifetime of products before replacement with a new one.
Collapse
|
16
|
Ramos‐Martínez O, González‐Cruz EM, Calderón‐Santoyo M, Ragazzo‐Sánchez JA. Polyisoprenes obtained from jackfruit latex (
Artocarpus heterophyllus
L.): Extraction and characterization. J Appl Polym Sci 2022. [DOI: 10.1002/app.52392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Osvaldo Ramos‐Martínez
- Laboratorio Integral de Investigación en Alimentos Tecnológico Nacional de México/Instituto Tecnológico de Tepic Tepic Mexico
| | - Elda Margarita González‐Cruz
- Departamento de Estudios de Posgrado e Investigación Tecnológico Nacional de México/Instituto Tecnológico de Tlajomulco Tlajomulco de Zúñiga Mexico
| | - Montserrat Calderón‐Santoyo
- Laboratorio Integral de Investigación en Alimentos Tecnológico Nacional de México/Instituto Tecnológico de Tepic Tepic Mexico
| | - Juan Arturo Ragazzo‐Sánchez
- Laboratorio Integral de Investigación en Alimentos Tecnológico Nacional de México/Instituto Tecnológico de Tepic Tepic Mexico
| |
Collapse
|
17
|
Marcatto VA, Sant'Ana Pegorin G, Barbosa GF, Herculano RD, Guerra NB. 3D
printed‐polylactic acid scaffolds coated with natural rubber latex for biomedical application. J Appl Polym Sci 2022. [DOI: 10.1002/app.51728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vinicius Assis Marcatto
- Biomaterials and Bioprocess Engineering Postgraduate Program São Paulo State University (UNESP), School of Pharmaceutical Sciences Araraquara Brazil
| | - Giovana Sant'Ana Pegorin
- Biomaterials and Bioprocess Engineering Postgraduate Program São Paulo State University (UNESP), School of Pharmaceutical Sciences Araraquara Brazil
- São Paulo State University (UNESP) Institute of Chemistry Araraquara Brazil
| | - Gustavo Franco Barbosa
- Biomaterials and Bioprocess Engineering Postgraduate Program São Paulo State University (UNESP), School of Pharmaceutical Sciences Araraquara Brazil
- Mechanical Engineering Department Federal University of São Carlos (UFSCar) São Carlos Brazil
| | - Rondinelli Donizetti Herculano
- Biomaterials and Bioprocess Engineering Postgraduate Program São Paulo State University (UNESP), School of Pharmaceutical Sciences Araraquara Brazil
- Biotechnology and Bioprocess Engineering Department São Paulo State University (UNESP), School of Pharmaceutical Sciences Araraquara Brazil
| | - Nayrim Brizuela Guerra
- Area of Exact Sciences and Engineering University of Caxias do Sul (UCS) Caxias do Sul Brazil
| |
Collapse
|
18
|
Wang M, Wang R, Chen X, Kong Y, Huang Y, Lv Y, Li G. Effect of non-rubber components on the crosslinking structure and thermo-oxidative degradation of natural rubber. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Wiroonpochit P, Keawmaungkom S, Chisti Y, Hansupalak N. Compositing prevulcanized natural rubber with multiwalled carbon nanotubes to make antistatic films. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Sutthinee Keawmaungkom
- Department of Chemical Engineering, Faculty of Engineering Kasetsart University Bangkok Thailand
- Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering Kasetsart University Bangkok Thailand
| | - Yusuf Chisti
- School of Engineering Massey University Palmerston North New Zealand
| | - Nanthiya Hansupalak
- Department of Chemical Engineering, Faculty of Engineering Kasetsart University Bangkok Thailand
- Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering Kasetsart University Bangkok Thailand
- Specialized Center of Rubber and Polymer Materials for Agriculture and Industry, Faculty of Science Kasetsart University Bangkok Thailand
| |
Collapse
|
20
|
Li T, Su Y, Wang D, Mao Y, Wang W, Liu L, Wen S. High antibacterial and barrier properties of natural rubber comprising of silver-loaded graphene oxide. Int J Biol Macromol 2022; 195:449-455. [PMID: 34920060 DOI: 10.1016/j.ijbiomac.2021.12.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 11/29/2022]
Abstract
The antibacterial and barrier properties of natural rubber used as gloves are very important for the safety of medical staffs. In this research, the silver (Ag) particles were loaded on the surface of graphene oxide (GO) first modified by polydopamine (PDA). Then, the complex particles (Ag-PDA-GO) were introduced into the natural rubber (NR) latex, and the Ag-PDA-GO/NR film composites were obtained by the dipping method. Results showed that a fine dispersion of Ag-PDA-GO in NR film was obtained due to the isolation effect of Ag and PDA between GO sheets. Compared with those of pristine NR composite, when the GO content was only 0.2 phr, the tensile strength, tear strength and modulus at 100% and 300% strains of the composites increase by 66.7%, 128%, 37.7% and 30.7%, respectively, compared with the pure NR. The gas diffusion coefficient was reduced by 15.6% due to the strong interface interaction between GO and NR macromolecules. When the GO content was only 0.1 phr, the minimum inhibitory concentrations (MIC) of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were 16 and 32 μg/mL, respectively. These results are of great significance for improving the barrier and antibacterial properties of medical rubber products.
Collapse
Affiliation(s)
- Teng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuxian Su
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
| | - Deyin Wang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Sciences PLA China, Beijing 100191, China
| | - Yingyan Mao
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing Tongren Hospital, Beijing, China.
| | - Wencai Wang
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shipeng Wen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
21
|
Dielectric and Mechanical Properties of CTAB-Modified Natural Rubber Latex-Cement Composites. Polymers (Basel) 2022; 14:polym14020320. [PMID: 35054726 PMCID: PMC8777851 DOI: 10.3390/polym14020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Cetyl trimethyl ammonium bromide (CTAB)-modified natural rubber latex/Portland cement paste (CTAB + NL/PC) composites were fabricated by varying the NL/cement and CTAB/cement ratios to improve the elastic property of PC. The stability and workability of the CTAB-modified NL particles in the PC matrix were significantly improved. The microstructure and dielectric property analyses of PC, CTAB/PC, NL/PC, and (CTAB + NL)/PC composites were performed to describe the interaction mechanism between the CTAB-modified NL and PC. The portlandite phase in PC was reduced by incorporating CTAB + NL. Although the tensile strength of NL/PC was significantly increased, its compressive strength also greatly decreased by ~40.3%. The tensile and compressive strengths of CTAB/PC were not significantly improved. Notably, the tensile strength of (CTAB + NL)/PC was significantly increased compared to those of PC, CTAB/PC, and NL/PC, while the depreciated compressive strength was only 18.7%. The optimized compressive–tensile performance of (CTAB + NL)/PC was equal to that of PC. The dielectric constants of NL/PC, CTAB/PC, and (CTAB + NL)/PC were reduced due to the low dielectric constant of NL and the ability of CTAB to capture negative charges in the PC matrix, leading to a reduction in the negative surface charges and hence the interfacial polarization. This result was confirmed by the decreased loss tangent in a low-frequency range, which is usually reduced by decreasing the free charges. This work provides a comprehensive guideline for significantly improving the elastic property of PC while retaining a high compressive strength.
Collapse
|
22
|
Properties of Emulsion Paint with Modified Natural Rubber Latex/Polyvinyl Acetate Blend Binder. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The direct use of natural rubber latex (NRL) as a binder for emulsion paints did not produce emulsion paints with good opacity, washability resistance, and regulated touch drying time, even when mixed with polyvinyl acetate (PVAc). This study aimed to study the properties of opacity (hiding power), washability resistance, and set drying touch time of emulsion paint with a binder added from a mixture of modified natural rubber latex (NRL) and PVAc. NRL modifications included UV photodepolymerization with TiO2 catalyst and grafting copolymerization of methyl methacrylate and styrene (NRL-g-(MMA-co-St)). NRL was mixed with PVAC at ratios of 0/100; 15/85; 25/75; 35/65; 50/50; 100/0% w/w before being used as a binder for emulsion paint. Emulsion paint samples had different binder contents, namely 2, 4, 6, and 8% w/w. Tests on paint samples included opacity using a UV-Vis spectrophotometer (EASYSPEC safas Monaco), washability using the Digital BGD 526 Wet Abrasion Scrub Tester, and drying time set using the ASTM STP500 procedure. The results showed that the opacity (hiding power), washability resistance, and set drying touch time met the emulsion paint standards for all binder levels, except the 100% w/w modified NRL composition. The higher level of NRL in the binder causes these properties to decrease and become unstable. The best opacity (hidden power), washing resistance, and drying touch time were obtained on modified NRL with a concentration of 15% w/w. The binder content in the paint was around 4% w/w, with an opacity of about 1.78% abs, washing resistance of 12 times, and the set drying touch time to 80 min.
Collapse
|
23
|
Novel Solvent-Latex Mixing: Thermal Insulation Performance of Silica Aerogel/Natural Rubber Composite. Gels 2021; 8:gels8010007. [PMID: 35049542 PMCID: PMC8775299 DOI: 10.3390/gels8010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
In this work, the novel natural rubber latex (NRL) mixing was approached. The mixing process was carried out by using n-hexane as the dispersed phase of silica aerogel which acted as thermal insulation filler prior to NRL mixing. The silica aerogel/NR composites were prepared with different silica aerogel contents of 20, 40, 60, 80, and 100 parts per hundred rubber (phr). The morphology of the 40 phr composite showed the NR macropore formation with silica aerogel intercalated layers. The optimal content of silica aerogels and n-hexane were the key to obtaining the NR macropore. The thermal insulation performance of silica aerogel/NR composites was investigated because of their porous structures. The thermal conductivity of the composites were lower than that of the neat NR sheet and decreased from 0.081 to 0.055 W m−1·K−1 with increasing silica aerogel content. The lower densities of the composites than that of the NR sheet were revealed noticeably. In addition, the silica aerogel/NR composites exhibited a higher heat retardant ability than that of the NR sheet, and the comparable glass transition temperatures (Tg) of the composites and the neat NR indicated the maintained flexibility at ambient temperature or higher, which can benefit various temperature applications. The overall results demonstrated that the silica aerogel/NR composites from the novel NRL mixing preparation could be a promising technique to develop the porous materials and be utilised as thermal insulation products and building constructions.
Collapse
|
24
|
Colloidal and rheological properties of natural rubber latex concentrated with hydroxyethyl cellulose and sodium dodecyl sulphate. J Appl Polym Sci 2021. [DOI: 10.1002/app.52034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Hong W, Jiang C, Qin M, Song Z, Ji P, Wang L, Tu K, Lu L, Guo Z, Yang B, Wang X, Liu J. Self-adaptive cardiac optogenetics device based on negative stretching-resistive strain sensor. SCIENCE ADVANCES 2021; 7:eabj4273. [PMID: 34818034 PMCID: PMC8612680 DOI: 10.1126/sciadv.abj4273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Precision medicine calls for high demand of continuous, closed-loop physiological monitoring and accurate control, especially for cardiovascular diseases. Cardiac optogenetics is promising for its superiority of cell selectivity and high time-space accuracy, but the efficacy of optogenetics relative to the input of light stimulus is detected and controlled separately by discrete instruments in vitro, which suffers from time retardation, energy consumption, and poor portability. Thus, a highly integrated system based on implantable sensors combining closed-loop self-monitoring with simultaneous treatment is highly desired. Here, we report a self-adaptive cardiac optogenetics system based on an original negative stretching-resistive strain sensor array for closed-loop heart rate recording and self-adaptive light intensity control. The strain sensor exhibits a dual and synchronous capability of precise monitor and physiological-electrical-optical regulation. In an in vivo ventricular tachycardia model, our system demonstrates the potential of a negative stretching-resistive device in controlling-in-sensor electronics for wearable/implantable autodiagnosis and telehealth applications.
Collapse
Affiliation(s)
- Wen Hong
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunpeng Jiang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ziliang Song
- Department of Cardiology, Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200030, China
| | - Pengfei Ji
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Longchun Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kejun Tu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lijun Lu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhejun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Yang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolin Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Corresponding author.
| |
Collapse
|
26
|
Distribution of the non-isoprene components in the four Hevea brasiliensis latex centrifugation fractions. J RUBBER RES 2021. [DOI: 10.1007/s42464-021-00133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Wichaita W, Promlok D, Sudjaipraparat N, Sripraphot S, Suteewong T, Tangboriboonrat P. A concise review on design and control of structured natural rubber latex particles as engineering nanocomposites. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Yu WW, Xu WZ, Wei YC, Liao S, Luo MC. Mechanically Robust Elastomers Enabled by a Facile Interfacial Interactions-Driven Sacrificial Network. Macromol Rapid Commun 2021; 42:e2100509. [PMID: 34562290 DOI: 10.1002/marc.202100509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/11/2021] [Indexed: 11/08/2022]
Abstract
Strength and toughness are usually mutually exclusive for materials. The sacrificial bond strategy is used to address the trade-off between strength and toughness. However, the complex construction process of sacrificial network limits the application of sacrificial network. This work develops a facile strategy to construct an interfacial interactions-driven sacrificial network. The authors' group finds that there are the interfacial interactions between arginines (A) aggregates and molecular chains. Such interfacial interactions result in the mechanical properties of samples having a strong dependence on extension rates, which shows that A aggregates construct a network structure by interfacial interactions. The interfacial interactions between A aggregates and chains improve the strength of samples; while the A aggregate network driven by interfacial interactions preferentially ruptures to dissipate large energy for the improvement of fracture toughness, which can be considered as a sacrificial network. Therefore, their designed elastomers have both high strength and high toughness. This work provides an easier strategy for the construction of sacrificial networks, which can promote the industrial application of sacrificial networks in elastomer materials.
Collapse
Affiliation(s)
- Wei-Wei Yu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Wen-Zhe Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yan-Chan Wei
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Shuangquan Liao
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China.,Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China
| | - Ming-Chao Luo
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China.,Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China
| |
Collapse
|
29
|
Gannoruwa A, Zhou Y, Kosugi K, Yamamoto Y, Kawahara S. ORIGIN OF ENERGETIC ELASTICITY AND ENTROPIC ELASTICITY OF NATURAL RUBBER WITH NANODIAMOND NANOMATRIX STRUCTURE. RUBBER CHEMISTRY AND TECHNOLOGY 2021. [DOI: 10.5254/rct.21.79923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ABSTRACT
The origin of energetic elasticity in conjunction with the entropic elasticity for natural rubber with a nanodiamond nanomatrix structure was investigated in terms of bound rubber formed between nanodiamonds, based on the interaction between natural rubber and nanodiamonds inside the nanomatrix. The natural rubber with a nanodiamond nanomatrix structure was prepared by reacting nanodiamonds with deproteinized natural rubber in the presence of tert-butylhydroperoxide/tetraethylenepentamine at 30 °C in the latex stage followed by drying. Morphology of the products was observed by two-dimensional and three-dimensional transmission electron microscopies. The effect of bound rubber on the mechanical properties of the products was investigated by measurements of the dynamic mechanical properties and differential scanning calorimetry. The contribution of bound rubber was estimated by combining the Takayanagi equation and modified Guth–Gold equation. A significant increase in complex modulus was attributed to the effect of the bound rubber.
Collapse
Affiliation(s)
- Asangi Gannoruwa
- Department of Materials Science and Technology, Faculty of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Yuanbing Zhou
- Department of Materials Science and Technology, Faculty of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Kenichiro Kosugi
- Department of Materials Science and Technology, Faculty of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Yoshimasa Yamamoto
- National Institute of Technology, Tokyo College, 1220-2, Kunugida, Hachioji, Tokyo 193-0997, Japan
| | - Seiichi Kawahara
- Department of Materials Science and Technology, Faculty of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
30
|
Guerra NB, Sant'Ana Pegorin G, Boratto MH, de Barros NR, de Oliveira Graeff CF, Herculano RD. Biomedical applications of natural rubber latex from the rubber tree Hevea brasiliensis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112126. [PMID: 34082943 DOI: 10.1016/j.msec.2021.112126] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022]
Abstract
The past decades have witnessed tremendous progress in biomaterials in terms of functionalities and applications. To realize various functions such as tissue engineering, tissue repair, and controlled release of therapeutics, a biocompatible and biologically active material is often needed. However, it is a difficult task to find either synthetic or natural materials suitable for in vivo applications. Nature has provided us with the natural rubber latex from the rubber tree Hevea brasiliensis, a natural polymer that is biocompatible and has been proved as inducing tissue repair by enhancing the vasculogenesis process, guiding and recruiting cells responsible for osteogenesis, and acting as a solid matrix for controlled drug release. It would be extremely useful if medical devices can be fabricated with materials that have these biological properties. Recently, various types of natural rubber latex-based biomedical devices have been developed to enhance tissue repair by taking advantage of its biological properties. Most of them were used to enhance tissue repair in chronic wounds and critical bone defects. Others were used to design drug release systems to locally release therapeutics in a sustained and controlled manner. Here, we summarize recent progress made in these areas. Specifically, we compare various applications and their performance metrics. We also discuss critical problems with the use of natural rubber latex in biomedical applications and highlight future opportunities for biomedical devices produced either with pre-treated natural rubber latex or with proteins purified from the natural rubber latex.
Collapse
Affiliation(s)
- Nayrim Brizuela Guerra
- Area of Exact Sciences and Engineering, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, BR
| | - Giovana Sant'Ana Pegorin
- Department of Biotechnology and Bioprocess Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil
| | - Miguel Henrique Boratto
- Department of Physics, São Paulo State University (UNESP), School of Sciences, Bauru, São Paulo, Brazil
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 11570 West Olympic Boulevard, Los Angeles, CA 90064, USA.
| | | | - Rondinelli Donizetti Herculano
- Department of Biotechnology and Bioprocess Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil
| |
Collapse
|
31
|
Nijpanich S, Nimpaiboon A, Rojruthai P, Sakdapipanich J. Hydroxyl-Terminated Saponified Natural Rubber Based on the H 2O 2/P25-TiO 2 Powder/UVC-Irradiation System. Polymers (Basel) 2021; 13:polym13081319. [PMID: 33920500 PMCID: PMC8073266 DOI: 10.3390/polym13081319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
Natural rubber (NR), a long-chain hydrocarbon polymer mostly consisting of cis-1,4-polyisoprene units, has a high molecular weight (MW) and viscosity, enabling it to show excellent physical properties. However, NR has no reactive functional group, making it difficult to react with other molecules, especially in manufacturing processes. The functionalized low-molecular-weight NR (FLNR) is a requirement to disperse ingredients into the rubber adequately. Here, the FLNR was prepared by a photochemical degradation process under UVC-irradiation in the presence of H2O2 using P25-titanium oxide (TiO2) powder as a photocatalyst. The optimum condition for the preparation of FLNR was the use of 2.0 g of TiO2 powder per 100 g of rubber and H2O2 at 20% w/w under UVC-irradiation for 5 h. The hydroxyl groups were found on the NR chains due to the chain-scission of polyisoprene chains and hydroxyl radicals in the system. The weight average MW of NR decreased from 12.6 × 105 to 0.6 × 105 gmol-1, while the number average MW decreased from 3.3 × 105 to 0.1 × 105 gmol-1.
Collapse
Affiliation(s)
- Supinya Nijpanich
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand;
- Synchrotron Light Research Institute, Nakhon Ratchasima 30000, Thailand
| | - Adun Nimpaiboon
- Rubber Technology Research Centre (RTEC), Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Porntip Rojruthai
- Division of Chemical Industrial Process and Environment, Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North Bangkok, Rayong 21120, Thailand;
| | - Jitladda Sakdapipanich
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand;
- Correspondence:
| |
Collapse
|
32
|
Masłowski M, Miedzianowska J, Delekta M, Czylkowska A, Strzelec K. Natural Rubber Biocomposites Filled with Phyto-Ashes Rich in Biogenic Silica Obtained from Wheat Straw and Field Horsetail. Polymers (Basel) 2021; 13:1177. [PMID: 33917621 PMCID: PMC8038769 DOI: 10.3390/polym13071177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/31/2022] Open
Abstract
The rich structural hierarchy of plants permits the obtainment of porous structures which can be expected to show improved performances in fields such as pharmaceuticals and cosmetics, catalysis, drug delivery, adsorption, separation or sensors in various chemical reactions. On the other hand, porous materials can be an active additive to polymer composites. The aim of the study was to obtain natural rubber (NR) biocomposites with the addition of phyto-ashes reach in biogenic silica from plant biomass. For the production of bioadditives, a two-stage method of high-temperature heat treatment was used, preceded by acid hydrolysis of plant tissues in the form of horsetail and wheat straw. Hydrolysis was performed with hydrochloric and citric acid. The efficiency of the processes and their influence on the elemental composition, surface morphology, thermal stability and particle size of the fillers were determined. Modified bioadditives were introduced into the elastomer matrix and their processing properties, as well as the vulcanization characteristics, were examined. Static mechanical properties (tensile strength, elongation at break, stress at 100%, 200% and 300% elongation), dynamic-mechanical analysis and the influence of additives on the cross-link density of the composites were determined. Structural analysis was performed using scanning electron microscopy. It was found that the field horsetail and cereal straw are plants rich in many valuable chemical compounds, especially silica. The specific and appropriate treatment of these plants can lead to bioadditives that significantly affect the properties of rubber materials.
Collapse
Affiliation(s)
- Marcin Masłowski
- Institute of Polymer & Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; (J.M.); (M.D.); (K.S.)
| | - Justyna Miedzianowska
- Institute of Polymer & Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; (J.M.); (M.D.); (K.S.)
| | - Maciej Delekta
- Institute of Polymer & Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; (J.M.); (M.D.); (K.S.)
| | - Agnieszka Czylkowska
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Krzysztof Strzelec
- Institute of Polymer & Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; (J.M.); (M.D.); (K.S.)
| |
Collapse
|
33
|
Morise BT, Mutch AL, Garms BC, Herculano RD, Grøndahl L. Evaluation of acrylic acid grafting on the loading and release of scopolamine butylbromide from polymeric matrices for future sialorrhea treatment. J Appl Polym Sci 2021. [DOI: 10.1002/app.50117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Beatriz Tiemi Morise
- School of Pharmaceutical Sciences São Paulo State University Araraquara Brazil
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane Queensland Australia
| | - Alexandra Louise Mutch
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane Queensland Australia
| | - Bruna Cambraia Garms
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane Queensland Australia
| | | | - Lisbeth Grøndahl
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane Queensland Australia
- The Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
34
|
Miedzianowska J, Masłowski M, Rybiński P, Strzelec K. Modified Nanoclays/Straw Fillers as Functional Additives of Natural Rubber Biocomposites. Polymers (Basel) 2021; 13:polym13050799. [PMID: 33807768 PMCID: PMC7962032 DOI: 10.3390/polym13050799] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Increasingly, raw materials of natural origin are used as fillers in polymer composites. Such biocomposites have satisfactory properties. To ensure above-average functional properties, modifications of biofillers with other materials are also used. The presented research work aimed to produce and characterize elastomeric materials with a straw-based filler and four different types of montmorillonite. The main research goal was to obtain improved functional parameters of vulcanizates based on natural rubber. A series of composites filled with straw and certain types of modified and unmodified nano-clays in various ratios and amounts were prepared. Then, they were subjected to a series of tests to assess the impact of the hybrids used on the final product. It has been shown that the addition of optimal amounts of biofillers can, inter alia, increase the tensile strength of the composite, improve damping properties, extend the burning time of the material and affect the course of vulcanization or cross-linking density.
Collapse
Affiliation(s)
- Justyna Miedzianowska
- Institute of Polymer & Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; (M.M.); (K.S.)
- Correspondence:
| | - Marcin Masłowski
- Institute of Polymer & Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; (M.M.); (K.S.)
| | - Przemysław Rybiński
- Institute of Chemistry, Jan Kochanowski University, Żeromskiego 5, 25-369 Kielce, Poland;
| | - Krzysztof Strzelec
- Institute of Polymer & Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; (M.M.); (K.S.)
| |
Collapse
|
35
|
Yusof NH, Darji D, Mohd Rasdi FR, Baratha Nesan KV. Preparation and characterisation of liquid epoxidised natural rubber in latex stage by chemical degradation. J RUBBER RES 2021. [DOI: 10.1007/s42464-020-00076-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Effect of Fillers on the Recovery of Rubber Foam: From Theory to Applications. Polymers (Basel) 2020; 12:polym12112745. [PMID: 33228204 PMCID: PMC7699531 DOI: 10.3390/polym12112745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 02/02/2023] Open
Abstract
Natural rubber foam (NRF) can be prepared from concentrated natural latex, providing specific characteristics such as density, compression strength, compression set, and so on, suitable for making shape-memory products. However, many customers require NRF products with a low compression set. This study aims to develop and prepare NRF to investigate its recoverability and other related characteristics by the addition of charcoal and silica fillers. The results showed that increasing filler loading increases physical and mechanical properties. The recoverability of NRF improves as silica increases, contrary to charcoal loading, due to the higher specific surface area of silica. Thermodynamic aspects showed that increasing filler loading increases the compression force (F) as well as the proportion of internal energy to the compression force (Fu/F). The entropy (S) also increases with increasing filler loading, which is favorable for thermodynamic systems. The activation enthalpy (∆Ha) of the NRF with silica is higher than the control NRF, which is due to rubber–filler interactions created within the NRF. A thermodynamic concept of crosslinked rubber foam with filler is proposed. From theory to application, in this study, the NRF has better recoverability with silica loading.
Collapse
|
37
|
Cattinari G, Steenkeste K, Bris C, Canette A, Gallopin M, Couty M, Fontaine‐Aupart M. Natural rubber‐carbon black coagulation: Following the nanostructure evolution from a colloidal suspension to a composite. J Appl Polym Sci 2020. [DOI: 10.1002/app.50221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Gianluca Cattinari
- Institut des Sciences Moléculaires d'Orsay Université Paris‐Saclay, CNRS Orsay France
| | - Karine Steenkeste
- Institut des Sciences Moléculaires d'Orsay Université Paris‐Saclay, CNRS Orsay France
| | - Catherine Bris
- Institut des Sciences Moléculaires d'Orsay Université Paris‐Saclay, CNRS Orsay France
| | - Alexis Canette
- Service de microscopie électronique (IBPS‐SME) Sorbonne Université, CNRS, Institut de Biologie Paris‐Seine (IBPS) Paris France
| | - Matthieu Gallopin
- Manufacture Française des Pneumatiques MICHELIN, Site de Ladoux Clermont Ferrand France
| | - Marc Couty
- Manufacture Française des Pneumatiques MICHELIN, Site de Ladoux Clermont Ferrand France
| | | |
Collapse
|
38
|
Impact of non-rubber components on the branching structure and the accelerated storage hardening in Hevea rubber. J RUBBER RES 2020. [DOI: 10.1007/s42464-020-00063-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
39
|
Effect of Maillard reaction in ammonia preserved natural rubber latex using reducing sugars. J RUBBER RES 2020. [DOI: 10.1007/s42464-020-00064-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Zhan YH, Wei YC, Tian JJ, Gao YY, Luo MC, Liao S. Effect of protein on the thermogenesis performance of natural rubber matrix. Sci Rep 2020; 10:16417. [PMID: 33009499 PMCID: PMC7532221 DOI: 10.1038/s41598-020-73546-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/14/2020] [Indexed: 12/03/2022] Open
Abstract
Under high-speed strain, the thermogenesis performance of natural rubber products is unstable, leading to aging and early failure of the material. The quality of rubber latex and eventually that of the final products depends among others on the protein content. We found that when the protein is almost removed, the heat generated by the vulcanized rubber increases rapidly. After adding soy protein isolate to the secondary purification rubber, the heat generation of the vulcanized rubber is reduced, and the heat generation is the lowest when the added amount is 2.5–3.0 phr, which on account of protein promotes the construction of a vulcanization network and increases the rigidity of the rubber chain, resulting in a decrease in the potential frictional behavior of the rubber chain during the curl up-extension process.
Collapse
Affiliation(s)
- Yue-Hua Zhan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou, China
| | - Yan-Chan Wei
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou, China
| | - Jing-Jing Tian
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou, China
| | - Yuan-Yuan Gao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou, China
| | - Ming-Chao Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou, China
| | - Shuangquan Liao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou, China.
| |
Collapse
|
41
|
|
42
|
|
43
|
Film formation process of natural rubber latex particles: roles of the particle size and distribution of non-rubber species on film microstructure. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Exploring the unique characteristics of natural rubber induced by coordination interaction between proteins and Zn2+. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122357] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Hu J, Tian X, Sun J, Yuan J, Yuan Y. Chitin nanocrystals reticulated self‐assembled architecture reinforces deproteinized natural rubber latex film. J Appl Polym Sci 2020. [DOI: 10.1002/app.49173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jiarui Hu
- Shanghai Key Laboratory of Advanced Polymeric MaterialsSchool of Materials Science and Engineering, East China University of Science and Technology Shanghai P R China
| | - Xiaohui Tian
- Shanghai Key Laboratory of Advanced Polymeric MaterialsSchool of Materials Science and Engineering, East China University of Science and Technology Shanghai P R China
| | - Jinyu Sun
- Shanghai Key Laboratory of Advanced Polymeric MaterialsSchool of Materials Science and Engineering, East China University of Science and Technology Shanghai P R China
| | - Jianyong Yuan
- Shanghai Key Laboratory of Advanced Polymeric MaterialsSchool of Materials Science and Engineering, East China University of Science and Technology Shanghai P R China
| | - Yizhong Yuan
- Shanghai Key Laboratory of Advanced Polymeric MaterialsSchool of Materials Science and Engineering, East China University of Science and Technology Shanghai P R China
| |
Collapse
|
46
|
Zhang N, Cao H. Enhancement of the Antibacterial Activity of Natural Rubber Latex Foam by Blending It with Chitin. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1039. [PMID: 32110858 PMCID: PMC7084390 DOI: 10.3390/ma13051039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/08/2023]
Abstract
To enhance the antibacterial activity of natural rubber latex foam (NRLF), chitin was added during the foaming process in amounts of 1-5 phr (per hundred rubber) to prepare an environmentally friendly antibacterial NRLF composite. In this research, NRLF was synthesized by the Dunlop method. The swelling, density, hardness, tensile strength, elongation at break, compressive strength and antibacterial activity of the NRLFs were characterized. FTIR and microscopy were used to evaluate the chemical composition and microstructure of the NRLFs. The mechanical properties and antibacterial activity of the NRLF composites were tested and compared with those of pure NRLF. The antibacterial activity was observed by the inhibition zone against E. coli. NRLF composite samples were embedded in a medium before solidification. The experimental results of the inhibition zone indicated that with increasing chitin content, the antibacterial activity of the NRLF composites increased. When the chitin content reached 5 phr, the NRLF composite formed a large and clear inhibition zone in the culture dish. Moreover, the NRLF-5 phr chitin composite improved the antibacterial activity to 281.3% of that of pure NRLF against E. coli.
Collapse
Affiliation(s)
| | - Hui Cao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China;
| |
Collapse
|
47
|
Ibrahim S, Othman N, Yusof NH. Preparation, characterization and properties of liquid natural rubber with low non-rubber content via photodegradation. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-03030-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Cherian S, Ryu SB, Cornish K. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2041-2061. [PMID: 31150158 PMCID: PMC6790360 DOI: 10.1111/pbi.13181] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 05/26/2023]
Abstract
Natural rubber (NR) is a nonfungible and valuable biopolymer, used to manufacture ~50 000 rubber products, including tires and medical gloves. Current production of NR is derived entirely from the para rubber tree (Hevea brasiliensis). The increasing demand for NR, coupled with limitations and vulnerability of H. brasiliensis production systems, has induced increasing interest among scientists and companies in potential alternative NR crops. Genetic/metabolic pathway engineering approaches, to generate NR-enriched genotypes of alternative NR plants, are of great importance. However, although our knowledge of rubber biochemistry has significantly advanced, our current understanding of NR biosynthesis, the biosynthetic machinery and the molecular mechanisms involved remains incomplete. Two spatially separated metabolic pathways provide precursors for NR biosynthesis in plants and their genes and enzymes/complexes are quite well understood. In contrast, understanding of the proteins and genes involved in the final step(s)-the synthesis of the high molecular weight rubber polymer itself-is only now beginning to emerge. In this review, we provide a critical evaluation of recent research developments in NR biosynthesis, in vitro reconstitution, and the genetic and metabolic pathway engineering advances intended to improve NR content in plants, including H. brasiliensis, two other prospective alternative rubber crops, namely the rubber dandelion and guayule, and model species, such as lettuce. We describe a new model of the rubber transferase complex, which integrates these developments. In addition, we highlight the current challenges in NR biosynthesis research and future perspectives on metabolic pathway engineering of NR to speed alternative rubber crop commercial development.
Collapse
Affiliation(s)
- Sam Cherian
- Plant Systems Engineering Research CentreKorea Research Institute of Bioscience and Biotechnology (KRIBB)Yuseong‐guDaejeonKorea
- Research & Development CenterDRB Holding Co. LTDBusanKorea
| | - Stephen Beungtae Ryu
- Plant Systems Engineering Research CentreKorea Research Institute of Bioscience and Biotechnology (KRIBB)Yuseong‐guDaejeonKorea
- Department of Biosystems and BioengineeringKRIBB School of BiotechnologyKorea University of Science and Technology (UST)DaejeonKorea
| | - Katrina Cornish
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOHUSA
- Department of Food, Agricultural and Biological EngineeringThe Ohio State UniversityWoosterOHUSA
| |
Collapse
|
49
|
Nurulhuda A, Aziana AH, Norazreen AR, Aziah AN, Qamarina MSN. Urea as a single denaturing agent in deproteinisation of natural rubber latex. J RUBBER RES 2019. [DOI: 10.1007/s42464-019-00016-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Surfactants with aromatic headgroups for optimizing properties of graphene/natural rubber latex composites (NRL): Surfactants with aromatic amine polar heads. J Colloid Interface Sci 2019; 545:184-194. [PMID: 30878784 DOI: 10.1016/j.jcis.2019.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 11/20/2022]
Abstract
HYPOTHESIS The compatibility of surfactants and graphene surfaces can be improved by increasing the number of aromatic groups in the surfactants. Including aniline in the structure may improve the compatibility between surfactant and graphene further still. Surfactants can be modified by incorporating aromatic groups in the hydrophobic chains or hydrophilic headgroups. Therefore, it is of interest to investigate the effects of employing anilinium based surfactants to disperse graphene nanoplatelets (GNPs) in natural rubber latex (NRL) for the fabrication of electrically conductive nanocomposites. EXPERIMENTS New graphene-philic surfactants carrying aromatic moieties in the hydrophilic headgroups and hydrophobic tails were synthesized by swapping the traditional sodium counterion with anilinium. 1H NMR spectroscopy was used to characterize the surfactants. These custom-made surfactants were used to assist the dispersion of GNPs in natural rubber latex matrices for the preparation of conductive nanocomposites. The properties of nanocomposites with the new anilinium surfactants were compared with commercial sodium surfactant sodium dodecylsulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), and the previously synthesized aromatic tri-chain sodium surfactant TC3Ph3 (sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate). Structural properties of the nanocomposites were studied using Raman spectroscopy, field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). Electrical conductivity measurements and Zeta potential measurements were used to assess the relationships between total number of aromatic groups in the surfactant molecular structure and nanocomposite properties. The self-assembly structure of surfactants in aqueous systems and GNP dispersions was assessed using small-angle neutron scattering (SANS). FINDINGS Among these different surfactants, the anilinium version of TC3Ph3 namely TC3Ph3-AN (anilinium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate) was shown to be highly efficient for dispersing GNPs in the NRL matrices, increasing electrical conductivity eleven orders of magnitude higher than the neat rubber latex. Comparisons between the sodium and anilinium surfactants show significant differences in the final properties of the nanocomposites. In general, the strategy of increasing the number of surfactant-borne aromatic groups by incorporating anilinium ions in surfactant headgroups appears to be effective.
Collapse
|