1
|
Kuenzel NA, Dobner J, Reichert D, Rossi A, Boukamp P, Esser C. Vδ1 T Cells Integrated in Full-Thickness Skin Equivalents: A Model for the Role of Human Skin-Resident γδT Cells. J Invest Dermatol 2024:S0022-202X(24)02173-0. [PMID: 39384018 DOI: 10.1016/j.jid.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 10/11/2024]
Abstract
Vδ1 T cells are a subpopulation of γδT cells found in human dermis. Much less is known regarding their role and function in skin health and disease than regarding the roles of murine skin-resident γδT cells. In this study, we report the successful integration of Vδ1 T cells into long-term fibroblast-derived matrix skin equivalents. We isolated Vδ1 T cells from human blood, where they are rare, and established conditions for the integration and maintenance of the freshly isolated Vδ1 T cells in the skin equivalents. Plated on top of the dermal equivalents, almost all Vδ1 T cells migrated into the dermal matrix where they exerted their influence on both the dermal equivalents and the epithelium. Vδ1 T cells contributed to epidermal differentiation of HaCaT cells as indicated by histology, expression of epidermal differentiation markers, and RNA-sequencing expression profile. When complemented with the carcinoma-derived SCC13 cells instead of HaCaT, our data suggest a role for Vδ1 T cells in slowing growth of the tumor cells, as indicated by reduced stratification and changes in gene expression profiles. Together, we demonstrate the successful establishment of human Vδ1 T cell-competent skin equivalents and skin carcinoma equivalents and provide evidence for molecular and functional consequences of the Vδ1 T cells on their respective environment.
Collapse
Affiliation(s)
| | - Jochen Dobner
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Doreen Reichert
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Andrea Rossi
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Petra Boukamp
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; German Cancer Research Centre, Heidelberg, Germany
| | - Charlotte Esser
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
2
|
Petrova IM, Chebanova SI, Khatsko SL, Kalinina TA, Zaitsev DV, Glukhareva TV. Spiroconjugated 1,2,3-triazolo[5,1- b]1,3,4-thiadiazine stimulates functional activity of fibroblasts under skin injury regeneration. Res Pharm Sci 2024; 19:267-275. [PMID: 39035820 PMCID: PMC11257193 DOI: 10.4103/rps.rps_74_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/13/2023] [Accepted: 11/25/2023] [Indexed: 07/23/2024] Open
Abstract
Background and purpose One of the most important mechanisms of tissue regeneration is the high functional activity of cells, including proliferation. Currently, there are practically no effective skin cell activators on the pharmaceutical market. The purpose of this work was to demonstrate the stimulating effect of spiroconjugated 1,2,3-triazolo[5,1-b]1,3,4-thiadiazine (STT) on the functional activity of fibroblasts. Experimental approach STT containing ointment for dermal application was made. To assess in vivo effect of the STT a linear wound model in rats was tested. A combination of histological techniques and mechanical testing was employed to estimate the stimulating effect of STT on the functional activity of fibroblasts. Findings/Results The STT significantly increased the number of fibroblasts as well as the density and order of produced collagen fibers in the dermis during the wound healing process. As a result, a tissue was formed at the site of damage with the structure corresponding to normal skin. In addition, skin functions were restored, in particular mechanically. Conclusion and implications The results suggested the stimulating effect of the STT on fibroblast activity and demonstrated its potential for skin regeneration.
Collapse
Affiliation(s)
- Irina M Petrova
- Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, 620026, Russia
| | - Sofya Iu Chebanova
- Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, 620026, Russia
| | - Sergey L Khatsko
- Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, 620026, Russia
- Federal State Budgetary Scientific Institution “Ural Federal Agrarian Scientific Research Centre, Ural Branch of Russian Academy of Sciences”, Yekaterinburg, 620142, Russia
| | - Tatyana A Kalinina
- Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, 620026, Russia
| | - Dmitry V Zaitsev
- Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, 620026, Russia
- Ural State Mining University, Yekaterinburg, 620144, Russia
| | - Tatyana V Glukhareva
- Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, 620026, Russia
| |
Collapse
|
3
|
Falckenhayn C, Bienkowska A, Söhle J, Wegner K, Raddatz G, Kristof B, Kuck D, Siegner R, Kaufmann R, Korn J, Baumann S, Lange D, Schepky A, Völzke H, Kaderali L, Winnefeld M, Lyko F, Grönniger E. Identification of dihydromyricetin as a natural DNA methylation inhibitor with rejuvenating activity in human skin. FRONTIERS IN AGING 2024; 4:1258184. [PMID: 38500495 PMCID: PMC10944877 DOI: 10.3389/fragi.2023.1258184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/12/2023] [Indexed: 03/20/2024]
Abstract
Changes in DNA methylation patterning have been reported to be a key hallmark of aged human skin. The altered DNA methylation patterns are correlated with deregulated gene expression and impaired tissue functionality, leading to the well-known skin aging phenotype. Searching for small molecules, which correct the aged methylation pattern therefore represents a novel and attractive strategy for the identification of anti-aging compounds. DNMT1 maintains epigenetic information by copying methylation patterns from the parental (methylated) strand to the newly synthesized strand after DNA replication. We hypothesized that a modest inhibition of this process promotes the restoration of the ground-state epigenetic pattern, thereby inducing rejuvenating effects. In this study, we screened a library of 1800 natural substances and 640 FDA-approved drugs and identified the well-known antioxidant and anti-inflammatory molecule dihydromyricetin (DHM) as an inhibitor of the DNA methyltransferase DNMT1. DHM is the active ingredient of several plants with medicinal use and showed robust inhibition of DNMT1 in biochemical assays. We also analyzed the effect of DHM in cultivated keratinocytes by array-based methylation profiling and observed a moderate, but significant global hypomethylation effect upon treatment. To further characterize DHM-induced methylation changes, we used published DNA methylation clocks and newly established age predictors to demonstrate that the DHM-induced methylation change is associated with a reduction in the biological age of the cells. Further studies also revealed re-activation of age-dependently hypermethylated and silenced genes in vivo and a reduction in age-dependent epidermal thinning in a 3-dimensional skin model. Our findings thus establish DHM as an epigenetic inhibitor with rejuvenating effects for aged human skin.
Collapse
Affiliation(s)
| | - Agata Bienkowska
- Beiersdorf AG, Research and Development, Hamburg, Germany
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Jörn Söhle
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Katrin Wegner
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Guenter Raddatz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Boris Kristof
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Dirk Kuck
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Ralf Siegner
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Ronny Kaufmann
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Julia Korn
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Sascha Baumann
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Daniela Lange
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | | | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Lars Kaderali
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Marc Winnefeld
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Elke Grönniger
- Beiersdorf AG, Research and Development, Hamburg, Germany
| |
Collapse
|
4
|
Czyz CM, Kunth PW, Gruber F, Kremslehner C, Hammers CM, Hundt JE. Requisite instruments for the establishment of three-dimensional epidermal human skin equivalents-A methods review. Exp Dermatol 2023; 32:1870-1883. [PMID: 37605856 DOI: 10.1111/exd.14911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023]
Abstract
Human skin equivalents (HSEs) are three-dimensional skin organ culture models raised in vitro. This review gives an overview of common techniques for setting up HSEs. The HSE consists of an artificial dermis and epidermis. 3T3-J2 murine fibroblasts, purchased human fibroblasts or freshly isolated and cultured fibroblasts, together with other components, for example, collagen type I, are used to build the scaffold. Freshly isolated and cultured keratinocytes are seeded on top. It is possible to add other cell types, for example, melanocytes, to the HSE-depending on the research question. After several days and further steps, the 3D skin can be harvested. Additionally, we show possible markers and techniques for evaluation of artificial skin. Furthermore, we provide a comparison of HSEs to human skin organ culture, a model which employs human donor skin. We outline advantages and limitations of both models and discuss future perspectives in using HSEs.
Collapse
Affiliation(s)
- Christianna Marie Czyz
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Paul Werner Kunth
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Florian Gruber
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence - SKINMAGINE, Medical University of Vienna, Vienna, Austria
| | - Christopher Kremslehner
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence - SKINMAGINE, Medical University of Vienna, Vienna, Austria
| | - Christoph Matthias Hammers
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Venereology and Allergology, University of Kiel, Kiel, Germany
| | | |
Collapse
|
5
|
Motter Catarino C, Cigaran Schuck D, Dechiario L, Karande P. Incorporation of hair follicles in 3D bioprinted models of human skin. SCIENCE ADVANCES 2023; 9:eadg0297. [PMID: 37831765 PMCID: PMC10575578 DOI: 10.1126/sciadv.adg0297] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Current approaches fail to adequately introduce complex adnexal structures such as hair follicles within tissue engineered models of skin. Here, we report on the use of 3D bioprinting to incorporate these structures in engineered skin tissues. Spheroids, induced by printing dermal papilla cells (DPCs) and human umbilical vein cells (HUVECs), were precisely printed within a pregelled dermal layer containing fibroblasts. The resulting tissue developed hair follicle-like structures upon maturation, supported by migration of keratinocytes and melanocytes, and their morphology and composition grossly mimicked that of the native skin tissue. Reconstructed skin models with increased complexity that better mimic native adnexal structures can have a substantial impact on regenerative medicine as grafts and efficacy models to test the safety of chemical compounds.
Collapse
Affiliation(s)
- Carolina Motter Catarino
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Grupo Boticário, Curitiba, Paraná, Brazil
| | | | - Lexi Dechiario
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Pankaj Karande
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
6
|
Hofmann E, Schwarz A, Fink J, Kamolz LP, Kotzbeck P. Modelling the Complexity of Human Skin In Vitro. Biomedicines 2023; 11:biomedicines11030794. [PMID: 36979772 PMCID: PMC10045055 DOI: 10.3390/biomedicines11030794] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 03/08/2023] Open
Abstract
The skin serves as an important barrier protecting the body from physical, chemical and pathogenic hazards as well as regulating the bi-directional transport of water, ions and nutrients. In order to improve the knowledge on skin structure and function as well as on skin diseases, animal experiments are often employed, but anatomical as well as physiological interspecies differences may result in poor translatability of animal-based data to the clinical situation. In vitro models, such as human reconstructed epidermis or full skin equivalents, are valuable alternatives to animal experiments. Enormous advances have been achieved in establishing skin models of increasing complexity in the past. In this review, human skin structures are described as well as the fast evolving technologies developed to reconstruct the complexity of human skin structures in vitro.
Collapse
Affiliation(s)
- Elisabeth Hofmann
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Anna Schwarz
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Julia Fink
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Lars-Peter Kamolz
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Petra Kotzbeck
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Correspondence:
| |
Collapse
|
7
|
Mulder PPG, Raktoe RS, Vlig M, Elgersma A, Middelkoop E, Boekema BKHL. Full Skin Equivalent Models for Simulation of Burn Wound Healing, Exploring Skin Regeneration and Cytokine Response. J Funct Biomater 2023; 14:29. [PMID: 36662076 PMCID: PMC9864292 DOI: 10.3390/jfb14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Healing of burn injury is a complex process that often leads to the development of functional and aesthetic complications. To study skin regeneration in more detail, organotypic skin models, such as full skin equivalents (FSEs) generated from dermal matrices, can be used. Here, FSEs were generated using de-epidermalized dermis (DED) and collagen matrices MatriDerm® and Mucomaix®. Our aim was to validate the MatriDerm- and Mucomaix-based FSEs for the use as in vitro models of wound healing. Therefore, we first characterized the FSEs in terms of skin development and cell proliferation. Proper dermal and epidermal morphogenesis was established in all FSEs and was comparable to ex vivo human skin models. Extension of culture time improved the organization of the epidermal layers and the basement membrane in MatriDerm-based FSE but resulted in rapid degradation of the Mucomaix-based FSE. After applying a standardized burn injury to the models, re-epithelization occurred in the DED- and MatriDerm-based FSEs at 2 weeks after injury, similar to ex vivo human skin. High levels of pro-inflammatory cytokines were present in the culture media of all models, but no significant differences were observed between models. We anticipate that these animal-free in vitro models can facilitate research on skin regeneration and can be used to test therapeutic interventions in a preclinical setting to improve wound healing.
Collapse
Affiliation(s)
- Patrick P. G. Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Rajiv S. Raktoe
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
| | - Anouk Elgersma
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
| | - Esther Middelkoop
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
- Tissue Function and Regeneration, Amsterdam Movement Sciences, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Bouke K. H. L. Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
8
|
Hiebert P, Martyts A, Schwestermann J, Janke K, Hafner J, Boukamp P, Mazza E, Werner S. Activation of Nrf2 in fibroblasts promotes a skin aging phenotype via an Nrf2-miRNA-collagen axis. Matrix Biol 2022; 113:39-60. [PMID: 36367485 DOI: 10.1016/j.matbio.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/30/2022]
Abstract
Aging is associated with progressive skin fragility and a tendency to tear, which can lead to severe clinical complications. The transcription factor NRF2 is a key regulator of the cellular antioxidant response, and pharmacological NRF2 activation is a promising strategy for the prevention of age-related diseases. Using a combination of molecular and cellular biology, histology, imaging and biomechanical studies we show, however, that constitutive genetic activation of Nrf2 in fibroblasts of mice suppresses collagen and elastin expression, resulting in reduced skin strength as seen in aged mice. Mechanistically, the "aging matrisome" results in part from direct Nrf2-mediated overexpression of a network of microRNAs that target mRNAs of major skin collagens and other matrix components. Bioinformatics and functional studies revealed high NRF2 activity in aged human fibroblasts in 3D skin equivalents and human skin biopsies, highlighting the translational relevance of the functional mouse data. Together, these results identify activated NRF2 as a promoter of age-related molecular and biomechanical skin features.
Collapse
Affiliation(s)
- Paul Hiebert
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich 8093, Switzerland.
| | - Anastasiya Martyts
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, Zurich 8092, Switzerland
| | - Jonas Schwestermann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich 8093, Switzerland
| | - Katharina Janke
- Department of Environmentally-Induced Skin and Lung Aging, IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Jürg Hafner
- Department of Dermatology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Petra Boukamp
- Department of Environmentally-Induced Skin and Lung Aging, IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Edoardo Mazza
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, Zurich 8092, Switzerland
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
9
|
Motter Catarino C, Kaiser K, Baltazar T, Motter Catarino L, Brewer JR, Karande P. Evaluation of native and non-native biomaterials for engineering human skin tissue. Bioeng Transl Med 2022; 7:e10297. [PMID: 36176598 PMCID: PMC9472026 DOI: 10.1002/btm2.10297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 11/09/2022] Open
Abstract
A variety of human skin models have been developed for applications in regenerative medicine and efficacy studies. Typically, these employ matrix molecules that are derived from non-human sources along with human cells. Key limitations of such models include a lack of cellular and tissue microenvironment that is representative of human physiology for efficacy studies, as well as the potential for adverse immune responses to animal products for regenerative medicine applications. The use of recombinant extracellular matrix proteins to fabricate tissues can overcome these limitations. We evaluated animal- and non-animal-derived scaffold proteins and glycosaminoglycans for the design of biomaterials for skin reconstruction in vitro. Screening of proteins from the dermal-epidermal junction (collagen IV, laminin 5, and fibronectin) demonstrated that certain protein combinations when used as substrates increase the proliferation and migration of keratinocytes compared to the control (no protein). In the investigation of the effect of components from the dermal layer (collagen types I and III, elastin, hyaluronic acid, and dermatan sulfate), the primary influence on the viability of fibroblasts was attributed to the source of type I collagen (rat tail, human, or bovine) used as scaffold. Furthermore, incorporation of dermatan sulfate in the dermal layer led to a reduction in the contraction of tissues compared to the control where the dermal scaffold was composed primarily of collagen type I. This work highlights the influence of the composition of biomaterials on the development of complex reconstructed skin models that are suitable for clinical translation and in vitro safety assessment.
Collapse
Affiliation(s)
- Carolina Motter Catarino
- Howard P. Isermann Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteTroyNew YorkUSA
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyNew YorkUSA
| | - Katharina Kaiser
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Tânia Baltazar
- Howard P. Isermann Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteTroyNew YorkUSA
- Present address:
Department of ImmunobiologyYale School of MedicineNew HavenConnecticutUSA
| | - Luiza Motter Catarino
- Howard P. Isermann Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteTroyNew YorkUSA
- Department of BiomedicinePositivo UniversityCuritibaBrazil
| | - Jonathan R. Brewer
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Pankaj Karande
- Howard P. Isermann Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteTroyNew YorkUSA
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyNew YorkUSA
| |
Collapse
|
10
|
Tan SH, Chua DAC, Tang JRJ, Bonnard C, Leavesley D, Liang K. Design of Hydrogel-based Scaffolds for in vitro Three-dimensional Human Skin Model Reconstruction. Acta Biomater 2022; 153:13-37. [DOI: 10.1016/j.actbio.2022.09.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 11/01/2022]
|
11
|
Clinical Grade Human Pluripotent Stem Cell-Derived Engineered Skin Substitutes Promote Keratinocytes Wound Closure In Vitro. Cells 2022; 11:cells11071151. [PMID: 35406716 PMCID: PMC8998132 DOI: 10.3390/cells11071151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic wounds, such as leg ulcers associated with sickle cell disease, occur as a consequence of a prolonged inflammatory phase during the healing process. They are extremely hard to heal and persist as a significant health care problem due to the absence of effective treatment and the uprising number of patients. Indeed, there is a critical need to develop novel cell- and tissue-based therapies to treat these chronic wounds. Development in skin engineering leads to a small catalogue of available substitutes manufactured in Good Manufacturing Practices compliant (GMPc) conditions. Those substitutes are produced using primary cells that could limit their use due to restricted sourcing. Here, we propose GMPc protocols to produce functional populations of keratinocytes and fibroblasts derived from pluripotent stem cells to reconstruct the associated dermo-epidermal substitute with plasma-based fibrin matrix. In addition, this manufactured composite skin is biologically active and enhances in vitro wounding of keratinocytes. The proposed composite skin opens new perspectives for skin replacement using allogeneic substitute.
Collapse
|
12
|
Padonou F, Gonzalez V, Provin N, Yayilkan S, Jmari N, Maslovskaja J, Kisand K, Peterson P, Irla M, Giraud M. Aire-dependent transcripts escape Raver2-induced splice-event inclusion in the thymic epithelium. EMBO Rep 2022; 23:e53576. [PMID: 35037357 PMCID: PMC8892270 DOI: 10.15252/embr.202153576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Aire allows medullary thymic epithelial cells (mTECs) to express and present a large number of self-antigens for central tolerance. Although mTECs express a high diversity of self-antigen splice isoforms, the extent and regulation of alternative splicing events (ASEs) in their transcripts, notably in those induced by Aire, is unknown. In contrast to Aire-neutral genes, we find that transcripts of Aire-sensitive genes show only a low number of ASEs in mTECs, with about a quarter present in peripheral tissues excluded from the thymus. We identify Raver2, as a splicing-related factor overexpressed in mTECs and dependent on H3K36me3 marks, that promotes ASEs in transcripts of Aire-neutral genes, leaving Aire-sensitive ones unaffected. H3K36me3 profiling reveals its depletion at Aire-sensitive genes and supports a mechanism that is preceding Aire expression leading to transcripts of Aire-sensitive genes with low ASEs that escape Raver2-induced alternative splicing. The lack of ASEs in Aire-induced transcripts would result in an incomplete Aire-dependent negative selection of autoreactive T cells, thus highlighting the need of complementary tolerance mechanisms to prevent activation of these cells in the periphery.
Collapse
Affiliation(s)
- Francine Padonou
- Nantes UniversitéINSERMCenter for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance,Institut CochinINSERMCNRSParis UniversitéParisFrance
| | | | - Nathan Provin
- Nantes UniversitéINSERMCenter for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance
| | - Sümeyye Yayilkan
- Nantes UniversitéINSERMCenter for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance
| | - Nada Jmari
- Institut CochinINSERMCNRSParis UniversitéParisFrance
| | | | - Kai Kisand
- Molecular Pathology Research GroupUniversity of TartuTartuEstonia
| | - Pärt Peterson
- Molecular Pathology Research GroupUniversity of TartuTartuEstonia
| | - Magali Irla
- Aix‐Marseille UniversitéCNRSINSERMCIML, Centre d'Immunologie de Marseille‐LuminyMarseilleFrance
| | - Matthieu Giraud
- Nantes UniversitéINSERMCenter for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance,Institut CochinINSERMCNRSParis UniversitéParisFrance
| |
Collapse
|
13
|
Ahlers JMD, Falckenhayn C, Holzscheck N, Solé-Boldo L, Schütz S, Wenck H, Winnefeld M, Lyko F, Grönniger E, Siracusa A. Single-Cell RNA Profiling of Human Skin Reveals Age-Related Loss of Dermal Sheath Cells and Their Contribution to a Juvenile Phenotype. Front Genet 2022; 12:797747. [PMID: 35069694 PMCID: PMC8776708 DOI: 10.3389/fgene.2021.797747] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/16/2021] [Indexed: 12/01/2022] Open
Abstract
The dermal sheath (DS) is a population of mesenchyme-derived skin cells with emerging importance for skin homeostasis. The DS includes hair follicle dermal stem cells, which exhibit self-renewal and serve as bipotent progenitors of dermal papilla (DP) cells and DS cells. Upon aging, stem cells exhibit deficiencies in self-renewal and their number is reduced. While the DS of mice has been examined in considerable detail, our knowledge of the human DS, the pathways contributing to its self-renewal and differentiation capacity and potential paracrine effects important for tissue regeneration and aging is very limited. Using single-cell RNA sequencing of human skin biopsies from donors of different ages we have now analyzed the transcriptome of 72,048 cells, including 50,149 fibroblasts. Our results show that DS cells that exhibit stem cell characteristics were lost upon aging. We further show that HES1, COL11A1, MYL4 and CTNNB1 regulate DS stem cell characteristics. Finally, the DS secreted protein Activin A showed paracrine effects on keratinocytes and dermal fibroblasts, promoting proliferation, epidermal thickness and pro-collagen production. Our work provides a detailed description of human DS identity on the single-cell level, its loss upon aging, its stem cell characteristics and its contribution to a juvenile skin phenotype.
Collapse
Affiliation(s)
| | | | | | - Llorenç Solé-Boldo
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Sabrina Schütz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Horst Wenck
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Marc Winnefeld
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Elke Grönniger
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | | |
Collapse
|
14
|
Liu LP, Zheng DX, Xu ZF, Zhou HC, Wang YC, Zhou H, Ge JY, Sako D, Li M, Akimoto K, Li YM, Zheng YW. Transcriptomic and Functional Evidence Show Similarities between Human Amniotic Epithelial Stem Cells and Keratinocytes. Cells 2021; 11:70. [PMID: 35011631 PMCID: PMC8750621 DOI: 10.3390/cells11010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 01/06/2023] Open
Abstract
Amniotic epithelial stem cells (AESCs) are considered as potential alternatives to keratinocytes (KCs) in tissue-engineered skin substitutes used for treating skin damage. However, their clinical application is limited since similarities and distinctions between AESCs and KCs remain unclear. Herein, a transcriptomics analysis and functional evaluation were used to understand the commonalities and differences between AESCs and KCs. RNA-sequencing revealed that AESCs are involved in multiple epidermis-associated biological processes shared by KCs and show more similarity to early stage immature KCs than to adult KCs. However, AESCs were observed to be heterogeneous, and some possessed hybrid mesenchymal and epithelial features distinct from KCs. A functional evaluation revealed that AESCs can phagocytose melanosomes transported by melanocytes in both 2D and 3D co-culture systems similar to KCs, which may help reconstitute pigmented skin. The overexpression of TP63 and activation of NOTCH signaling could promote AESC stemness and improve their differentiation features, respectively, bridging the gap between AESCs and KCs. These changes induced the convergence of AESC cell fate with KCs. In future, modified reprogramming strategies, such as the use of small molecules, may facilitate the further modulation human AESCs for use in skin regeneration.
Collapse
Affiliation(s)
- Li-Ping Liu
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (D.-X.Z.); (J.-Y.G.); (D.S.)
| | - Dong-Xu Zheng
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (D.-X.Z.); (J.-Y.G.); (D.S.)
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Zheng-Fang Xu
- Department of Obstetrics and Gynaecology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Hu-Cheng Zhou
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yun-Cong Wang
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Hang Zhou
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Jian-Yun Ge
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (D.-X.Z.); (J.-Y.G.); (D.S.)
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Daisuke Sako
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (D.-X.Z.); (J.-Y.G.); (D.S.)
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan;
| | - Mi Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Kazunori Akimoto
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan;
| | - Yu-Mei Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (D.-X.Z.); (J.-Y.G.); (D.S.)
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- School of Medicine, Yokohama City University, Yokohama 236-0004, Kanagawa, Japan
| |
Collapse
|
15
|
DNA Dyes-Highly Sensitive Reporters of Cell Quantification: Comparison with Other Cell Quantification Methods. Molecules 2021; 26:molecules26185515. [PMID: 34576986 PMCID: PMC8465179 DOI: 10.3390/molecules26185515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Cell quantification is widely used both in basic and applied research. A typical example of its use is drug discovery research. Presently, plenty of methods for cell quantification are available. In this review, the basic techniques used for cell quantification, with a special emphasis on techniques based on fluorescent DNA dyes, are described. The main aim of this review is to guide readers through the possibilities of cell quantification with various methods and to show the strengths and weaknesses of these methods, especially with respect to their sensitivity, accuracy, and length. As these methods are frequently accompanied by an analysis of cell proliferation and cell viability, some of these approaches are also described.
Collapse
|
16
|
Murakami M, Akagi T, Sasano Y, Akashi M. Effect of 3D-Fibroblast Dermis Constructed by Layer-by-Layer Cell Coating Technique on Tight Junction Formation and Function in Full-Thickness Skin Equivalent. ACS Biomater Sci Eng 2021; 7:3835-3844. [PMID: 34286576 DOI: 10.1021/acsbiomaterials.1c00375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human skin equivalents (HSEs) consisting of an epidermis and dermis have been used as promising tools for drug evaluation and for clinical applications in regenerative medicine. Normal human dermal fibroblasts (NHDFs) are essential for the fabrication of HSEs because they play an important role in the maturation of the epidermis. Recently, epidermal tight junctions (TJs), which are complex cell-cell junctions, have attracted much attention as a second barrier and regulator for other barrier functions. In a previous study, we revealed the expression of TJ-related proteins and the time course of formation of TJ structure in the HSE (layer-by-layer (LbL)-three-dimensional (3D) Skin) constructed by layer-by-layer (LbL) cell coating technique that have a unique dermis consisting of NHDFs only (3D-fibroblast dermis). However, the effect of the 3D-fibroblast dermis on the formation of functional epidermal TJs is unknown. In this study, we investigated the effect of the 3D-fibroblast dermis on the expression of TJ-related proteins and TJ function in LbL-3D Skin. We demonstrated that the 3D-fibroblast dermis affects the long-term expression of TJ-related proteins and the formation of TJ with barrier function in the epidermis. These results show that the 3D-fibroblast dermis in LbL-3D Skin contributes to the formation and maintenance of functional TJs as in native human skin by direct contact with KCs.
Collapse
Affiliation(s)
- Masato Murakami
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takami Akagi
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yumi Sasano
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.,Pharma-Medicals Division, Life & Healthcare Products Department, Nagase & Co., Ltd., 2-2-3 Murotani, Nishi-ku, Kobe, Hyogo 651-2241, Japan
| | - Mitsuru Akashi
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
17
|
Moncal KK, Gudapati H, Godzik KP, Heo DN, Kang Y, Rizk E, Ravnic DJ, Wee H, Pepley DF, Ozbolat V, Lewis GS, Moore JZ, Driskell RR, Samson TD, Ozbolat IT. Intra-Operative Bioprinting of Hard, Soft, and Hard/Soft Composite Tissues for Craniomaxillofacial Reconstruction. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2010858. [PMID: 34421475 PMCID: PMC8376234 DOI: 10.1002/adfm.202010858] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Indexed: 05/20/2023]
Abstract
Reconstruction of complex craniomaxillofacial (CMF) defects is challenging due to the highly organized layering of multiple tissue types. Such compartmentalization necessitates the precise and effective use of cells and other biologics to recapitulate the native tissue anatomy. In this study, intra-operative bioprinting (IOB) of different CMF tissues, including bone, skin, and composite (hard/soft) tissues, is demonstrated directly on rats in a surgical setting. A novel extrudable osteogenic hard tissue ink is introduced, which induced substantial bone regeneration, with ≈80% bone coverage area of calvarial defects in 6 weeks. Using droplet-based bioprinting, the soft tissue ink accelerated the reconstruction of full-thickness skin defects and facilitated up to 60% wound closure in 6 days. Most importantly, the use of a hybrid IOB approach is unveiled to reconstitute hard/soft composite tissues in a stratified arrangement with controlled spatial bioink deposition conforming the shape of a new composite defect model, which resulted in ≈80% skin wound closure in 10 days and 50% bone coverage area at Week 6. The presented approach will be absolutely unique in the clinical realm of CMF defects and will have a significant impact on translating bioprinting technologies into the clinic in the future.
Collapse
Affiliation(s)
- Kazim K Moncal
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hemanth Gudapati
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin P Godzik
- Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Dong N Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Youngnam Kang
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Elias Rizk
- Department of Neurosurgery, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Dino J Ravnic
- Department of Surgery, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Hwabok Wee
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - David F Pepley
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Veli Ozbolat
- Mechanical Engineering Department, Ceyhan Engineering Faculty, Cukurova University, Adana 01950, Turkey
| | - Gregory S Lewis
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jason Z Moore
- Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ryan R Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Thomas D Samson
- Department of Neurosurgery, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
18
|
Griffoni C, Neidhart B, Yang K, Groeber-Becker F, Maniura-Weber K, Dandekar T, Walles H, Rottmar M. In vitro skin culture media influence the viability and inflammatory response of primary macrophages. Sci Rep 2021; 11:7070. [PMID: 33782484 PMCID: PMC8007571 DOI: 10.1038/s41598-021-86486-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/16/2021] [Indexed: 11/09/2022] Open
Abstract
The replacement of animal models for investigation of inflammation and wound healing has been advancing by means of in vitro skin equivalents with increasing levels of complexity. However, the current in vitro skin models still have a limited pre-clinical relevance due to their lack of immune cells. So far, few steps have been made towards the incorporation of immune cells into in vitro skin and the requirements for immunocompetent co-cultures remain unexplored. To establish suitable conditions for incorporating macrophages into skin models, we evaluated the effects of different media on primary keratinocytes, fibroblasts and macrophages. Skin maturation was affected by culture in macrophage medium, while macrophages showed reduced viability, altered cell morphology and decreased response to pro- and anti-inflammatory stimuli in skin differentiation media, both in 2D and 3D. The results indicate that immunocompetent skin models have specific, complex requirements for supporting an accurate detection of immune responses, which point at the identification of a suitable culture medium as a crucial pre-requisite for the development of physiologically relevant models.
Collapse
Affiliation(s)
- Chiara Griffoni
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland.,Department Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Berna Neidhart
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Ke Yang
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Florian Groeber-Becker
- Department Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany.,Translational Center for Regenerative Therapies, Fraunhofer-Institute for Silicate Research ISC, Würzburg, Germany
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Thomas Dandekar
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Heike Walles
- Translational Center for Regenerative Therapies, Fraunhofer-Institute for Silicate Research ISC, Würzburg, Germany.,Core Facility Tissue Engineering, Otto-Von-Guericke-University, Magdeburg, Germany
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland.
| |
Collapse
|
19
|
Besnard M, Padonou F, Provin N, Giraud M, Guillonneau C. AIRE deficiency, from preclinical models to human APECED disease. Dis Model Mech 2021; 14:dmm046359. [PMID: 33729987 PMCID: PMC7875492 DOI: 10.1242/dmm.046359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) is a rare life-threatening autoimmune disease that attacks multiple organs and has its onset in childhood. It is an inherited condition caused by a variety of mutations in the autoimmune regulator (AIRE) gene that encodes a protein whose function has been uncovered by the generation and study of Aire-KO mice. These provided invaluable insights into the link between AIRE expression in medullary thymic epithelial cells (mTECs), and the broad spectrum of self-antigens that these cells express and present to the developing thymocytes. However, these murine models poorly recapitulate all phenotypic aspects of human APECED. Unlike Aire-KO mice, the recently generated Aire-KO rat model presents visual features, organ lymphocytic infiltrations and production of autoantibodies that resemble those observed in APECED patients, making the rat model a main research asset. In addition, ex vivo models of AIRE-dependent self-antigen expression in primary mTECs have been successfully set up. Thymus organoids based on pluripotent stem cell-derived TECs from APECED patients are also emerging, and constitute a promising tool to engineer AIRE-corrected mTECs and restore the generation of regulatory T cells. Eventually, these new models will undoubtedly lead to main advances in the identification and assessment of specific and efficient new therapeutic strategies aiming to restore immunological tolerance in APECED patients.
Collapse
Affiliation(s)
- Marine Besnard
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Francine Padonou
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Nathan Provin
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Matthieu Giraud
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Carole Guillonneau
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| |
Collapse
|
20
|
Sanabria-de la Torre R, Fernández-González A, Quiñones-Vico MI, Montero-Vilchez T, Arias-Santiago S. Bioengineered Skin Intended as In Vitro Model for Pharmacosmetics, Skin Disease Study and Environmental Skin Impact Analysis. Biomedicines 2020; 8:E464. [PMID: 33142704 PMCID: PMC7694072 DOI: 10.3390/biomedicines8110464] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023] Open
Abstract
This review aims to be an update of Bioengineered Artificial Skin Substitutes (BASS) applications. At the first moment, they were created as an attempt to replace native skin grafts transplantation. Nowadays, these in vitro models have been increasing and widening their application areas, becoming important tools for research. This study is focus on the ability to design in vitro BASS which have been demonstrated to be appropriate to develop new products in the cosmetic and pharmacology industry. Allowing to go deeper into the skin disease research, and to analyze the effects provoked by environmental stressful agents. The importance of BASS to replace animal experimentation is also highlighted. Furthermore, the BASS validation parameters approved by the OECD (Organisation for Economic Co-operation and Development) are also analyzed. This report presents an overview of the skin models applicable to skin research along with their design methods. Finally, the potential and limitations of the currently available BASS to supply the demands for disease modeling and pharmaceutical screening are discussed.
Collapse
Affiliation(s)
- Raquel Sanabria-de la Torre
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - María I. Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - Trinidad Montero-Vilchez
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Dermatology Department, School of Medicine, Granada University, 18016 Granada, Spain
| |
Collapse
|
21
|
Pavez Lorie E, Stricker N, Plitta-Michalak B, Chen IP, Volkmer B, Greinert R, Jauch A, Boukamp P, Rapp A. Characterisation of the novel spontaneously immortalized and invasively growing human skin keratinocyte line HaSKpw. Sci Rep 2020; 10:15196. [PMID: 32938951 PMCID: PMC7494900 DOI: 10.1038/s41598-020-71315-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022] Open
Abstract
We here present the spontaneously immortalised cell line, HaSKpw, as a novel model for the multistep process of skin carcinogenesis. HaSKpw cells were established from the epidermis of normal human adult skin that, without crisis, are now growing unrestricted and feeder-independent. At passage 22, clonal populations were established and clone7 (HaSKpwC7) was further compared to the also spontaneously immortalized HaCaT cells. As important differences, the HaSKpw cells express wild-type p53, remain pseudodiploid, and show a unique chromosomal profile with numerous complex aberrations involving chromosome 20. In addition, HaSKpw cells overexpress a pattern of genes and miRNAs such as KRT34, LOX, S100A9, miR21, and miR155; all pointing to a tumorigenic status. In concordance, HaSKpw cells exhibit reduced desmosomal contacts that provide them with increased motility and a highly migratory/invasive phenotype as demonstrated in scratch- and Boyden chamber assays. In 3D organotypic cultures, both HaCaT and HaSKpw cells form disorganized epithelia but only the HaSKpw cells show tumorcell-like invasive growth. Together, HaSKpwC7 and HaCaT cells represent two spontaneous (non-genetically engineered) “premalignant” keratinocyte lines from adult human skin that display different stages of the multistep process of skin carcinogenesis and thus represent unique models for analysing skin cancer development and progression.
Collapse
Affiliation(s)
- Elizabeth Pavez Lorie
- Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Nicola Stricker
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany
| | - Beata Plitta-Michalak
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany
| | - I-Peng Chen
- Centre of Dermatology, Elbe Clinics, Am Krankenhaus 1, Buxtehude, 21614, Germany
| | - Beate Volkmer
- Centre of Dermatology, Elbe Clinics, Am Krankenhaus 1, Buxtehude, 21614, Germany
| | - Rüdiger Greinert
- Centre of Dermatology, Elbe Clinics, Am Krankenhaus 1, Buxtehude, 21614, Germany
| | - Anna Jauch
- Institute of Human Genetics, University Heidelberg, 69120, Heidelberg, Germany
| | - Petra Boukamp
- Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| | - Alexander Rapp
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany.
| |
Collapse
|
22
|
Organotypic Co-Cultures as a Novel 3D Model for Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12082330. [PMID: 32824777 PMCID: PMC7463661 DOI: 10.3390/cancers12082330] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/09/2020] [Accepted: 08/14/2020] [Indexed: 01/09/2023] Open
Abstract
Background: Head and neck squamous cell carcinomas (HNSCC) are phenotypically and molecularly heterogeneous and frequently develop therapy resistance. Reliable patient-derived 3D tumor models are urgently needed to further study the complex pathogenesis of these tumors and to overcome treatment failure. Methods: We developed a three-dimensional organotypic co-culture (3D-OTC) model for HNSCC that maintains the architecture and cell composition of the individual tumor. A dermal equivalent (DE), composed of healthy human-derived fibroblasts and viscose fibers, served as a scaffold for the patient sample. DEs were co-cultivated with 13 vital HNSCC explants (non-human papillomavirus (HPV) driven, n = 7; HPV-driven, n = 6). Fractionated irradiation was applied to 5 samples (non-HPV-driven, n = 2; HPV-driven n = 3). To evaluate expression of ki-67, cleaved caspase-3, pan-cytokeratin, p16INK4a, CD45, ∝smooth muscle actin and vimentin over time, immunohistochemistry and immunofluorescence staining were performed Patient checkup data were collected for up to 32 months after first diagnosis. Results: All non-HPV-driven 3D-OTCs encompassed proliferative cancer cells during cultivation for up to 21 days. Proliferation indices of primaries and 3D-OTCs were comparable and consistent over time. Overall, tumor explants displayed heterogeneous growth patterns (i.e., invasive, expansive, silent). Cancer-associated fibroblasts and leukocytes could be detected for up to 21 days. HPV DNA was detectable in both primary and 3D-OTCs (day 14) of HPV-driven tumors. However, p16INK4a expression levels were varying. Morphological alterations and radioresistant tumor cells were detected in 3D-OTC after fractionated irradiation in HPV-driven and non-driven samples. Conclusions: Our 3D-OTC model for HNSCC supports cancer cell survival and proliferation in their original microenvironment. The model enables investigation of invasive cancer growth and might, in the future, serve as a platform to perform sensitivity testing upon treatment to predict therapy response.
Collapse
|
23
|
Gálvez V, Chacón-Solano E, Bonafont J, Mencía Á, Di WL, Murillas R, Llames S, Vicente A, Del Rio M, Carretero M, Larcher F. Efficient CRISPR-Cas9-Mediated Gene Ablation in Human Keratinocytes to Recapitulate Genodermatoses: Modeling of Netherton Syndrome. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:280-290. [PMID: 32637457 PMCID: PMC7329935 DOI: 10.1016/j.omtm.2020.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
Current efforts to find specific genodermatoses treatments and define precise pathogenesis mechanisms require appropriate surrogate models with human cells. Although transgenic and gene knockout mouse models for several of these disorders exist, they often fail to faithfully replicate the clinical and histopathological features of the human skin condition. We have established a highly efficient method for precise deletion of critical gene sequences in primary human keratinocytes, based on CRISPR-Cas9-mediated gene editing. Using this methodology, in the present study we generated a model of Netherton syndrome by disruption of SPINK5. Gene-edited cells showed absence of LEKTI expression and were able to recapitulate a hyperkeratotic phenotype with most of the molecular hallmarks of Netherton syndrome, after grafting to immunodeficient mice and in organotypic cultures. To validate the model as a platform for therapeutic intervention, we tested an ex vivo gene therapy approach using a lentiviral vector expressing SPINK5. Re-expression of SPINK5 in an immortalized clone of SPINK5-knockout keratinocytes was capable of reverting from Netherton syndrome to a normal skin phenotype in vivo and in vitro. Our results demonstrate the feasibility of modeling genodermatoses, such as Netherton syndrome, by efficiently disrupting the causative gene to better understand its pathogenesis and to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Victoria Gálvez
- Epithelial Biomedicine Division, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.,Regenerative Medicine and Tissue Engineering Group, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) U714, Madrid, Spain
| | - Esteban Chacón-Solano
- Regenerative Medicine and Tissue Engineering Group, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain.,Department of Biomedical Engineering, Carlos III University (UC3M), 28903 Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) U714, Madrid, Spain
| | - Jose Bonafont
- Regenerative Medicine and Tissue Engineering Group, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain.,Department of Biomedical Engineering, Carlos III University (UC3M), 28903 Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) U714, Madrid, Spain
| | - Ángeles Mencía
- Epithelial Biomedicine Division, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.,Regenerative Medicine and Tissue Engineering Group, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) U714, Madrid, Spain
| | - Wei-Li Di
- UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Rodolfo Murillas
- Epithelial Biomedicine Division, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.,Regenerative Medicine and Tissue Engineering Group, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) U714, Madrid, Spain
| | - Sara Llames
- Regenerative Medicine and Tissue Engineering Group, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) U714, Madrid, Spain.,Tissue Engineering Unit, Centro Comunitario Sangre y Tejidos (CCST), 33006 Oviedo, Spain
| | - Asunción Vicente
- Hospital Sant Joan de Deu, 08950 Barcelona, Spain.,Unidad de Dermatología, Hospital Materno-Infantil Sant Joan de Déu, 08950 Barcelona, Spain
| | - Marcela Del Rio
- Regenerative Medicine and Tissue Engineering Group, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain.,Department of Biomedical Engineering, Carlos III University (UC3M), 28903 Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) U714, Madrid, Spain
| | - Marta Carretero
- Epithelial Biomedicine Division, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.,Regenerative Medicine and Tissue Engineering Group, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) U714, Madrid, Spain
| | - Fernando Larcher
- Epithelial Biomedicine Division, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.,Regenerative Medicine and Tissue Engineering Group, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain.,Department of Biomedical Engineering, Carlos III University (UC3M), 28903 Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) U714, Madrid, Spain
| |
Collapse
|
24
|
Schmidt FF, Nowakowski S, Kluger PJ. Improvement of a Three-Layered in vitro Skin Model for Topical Application of Irritating Substances. Front Bioeng Biotechnol 2020; 8:388. [PMID: 32457884 PMCID: PMC7225271 DOI: 10.3389/fbioe.2020.00388] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/07/2020] [Indexed: 12/23/2022] Open
Abstract
In the field of skin tissue engineering, the development of physiologically relevant in vitro skin models comprising all skin layers, namely epidermis, dermis, and subcutis, is a great challenge. Increasing regulatory requirements and the ban on animal experiments for substance testing demand the development of reliable and in vivo-like test systems, which enable high-throughput screening of substances. However, the reproducibility and applicability of in vitro testing has so far been insufficient due to fibroblast-mediated contraction. To overcome this pitfall, an advanced 3-layered skin model was developed. While the epidermis of standard skin models showed an 80% contraction, the initial epidermal area of our advanced skin models was maintained. The improved barrier function of the advanced models was quantified by an indirect barrier function test and a permeability assay. Histochemical and immunofluorescence staining of the advanced model showed well-defined epidermal layers, a dermal part with distributed human dermal fibroblasts and a subcutis with round-shaped adipocytes. The successful response of these advanced 3-layered models for skin irritation testing demonstrated the suitability as an in vitro model for these clinical tests: only the advanced model classified irritative and non-irritative substances correctly. These results indicate that the advanced set up of the 3-layered in vitro skin model maintains skin barrier function and therefore makes them more suitable for irritation testing.
Collapse
Affiliation(s)
- Freia F Schmidt
- Reutlingen Research Institute, Reutlingen University, Reutlingen, Germany
| | - Sophia Nowakowski
- Reutlingen Research Institute, Reutlingen University, Reutlingen, Germany
| | - Petra J Kluger
- Reutlingen Research Institute, Reutlingen University, Reutlingen, Germany
| |
Collapse
|
25
|
Wei Z, Liu X, Ooka M, Zhang L, Song MJ, Huang R, Kleinstreuer NC, Simeonov A, Xia M, Ferrer M. Two-Dimensional Cellular and Three-Dimensional Bio-Printed Skin Models to Screen Topical-Use Compounds for Irritation Potential. Front Bioeng Biotechnol 2020; 8:109. [PMID: 32154236 PMCID: PMC7046801 DOI: 10.3389/fbioe.2020.00109] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/03/2020] [Indexed: 11/22/2022] Open
Abstract
Assessing skin irritation potential is critical for the safety evaluation of topical drugs and other consumer products such as cosmetics. The use of advanced cellular models, as an alternative to replace animal testing in the safety evaluation for both consumer products and ingredients, is already mandated by law in the European Union (EU) and other countries. However, there has not yet been a large-scale comparison of the effects of topical-use compounds in different cellular skin models. This study assesses the irritation potential of topical-use compounds in different cellular models of the skin that are compatible with high throughput screening (HTS) platforms. A set of 451 topical-use compounds were first tested for cytotoxic effects using two-dimensional (2D) monolayer models of primary neonatal keratinocytes and immortalized human keratinocytes. Forty-six toxic compounds identified from the initial screen with the monolayer culture systems were further tested for skin irritation potential on reconstructed human epidermis (RhE) and full thickness skin (FTS) three-dimensional (3D) tissue model constructs. Skin irritation potential of the compounds was assessed by measuring tissue viability, trans-epithelial electrical resistance (TEER), and secretion of cytokines interleukin 1 alpha (IL-1α) and interleukin 18 (IL-18). Among known irritants, high concentrations of methyl violet and methylrosaniline decreased viability, lowered TEER, and increased IL-1α secretion in both RhE and FTS models, consistent with irritant properties. However, at low concentrations, these two compounds increased IL-18 secretion without affecting levels of secreted IL-1α, and did not reduce tissue viability and TEER, in either RhE or FTS models. This result suggests that at low concentrations, methyl violet and methylrosaniline have an allergic potential without causing irritation. Using both HTS-compatible 2D cellular and 3D tissue skin models, together with irritation relevant activity endpoints, we obtained data to help assess the irritation effects of topical-use compounds and identify potential dermal hazards.
Collapse
Affiliation(s)
- Zhengxi Wei
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Xue Liu
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Masato Ooka
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Li Zhang
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Min Jae Song
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
- 3D Bioprinting Core, National Eye Institute, Bethesda, MD, United States
| | - Ruili Huang
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Nicole C. Kleinstreuer
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Anton Simeonov
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Menghang Xia
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Marc Ferrer
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
26
|
|
27
|
Izadyari Aghmiuni A, Heidari Keshel S, Sefat F, Akbarzadeh Khiyavi A. Quince seed mucilage-based scaffold as a smart biological substrate to mimic mechanobiological behavior of skin and promote fibroblasts proliferation and h-ASCs differentiation into keratinocytes. Int J Biol Macromol 2019; 142:668-679. [PMID: 31622718 DOI: 10.1016/j.ijbiomac.2019.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
Abstract
The use of biological macromolecules like quince seed mucilage (QSM), as the common curative practice has a long history in traditional folk medicine to cure wounds and burns. However, this gel cannot be applied on exudative wounds because of the high water content and non-absorption of infection of open wounds. It also limits cell-to-cell interactions and leads to the slow wound healing process. In this study to overcome these problems, a novel QSM-based hybrid scaffold modified by PCL/PEG copolymer was designed and characterized. The properties of this scaffold (PCL/QSM/PEG) were also compared with four scaffolds of PCL/PEG, PCL/Chitosan/PEG, chitosan, and QSM, to assess the role of QSM and the combined effect of polymers in improving the function of skin tissue-engineered scaffolds. It was found, the physicochemical properties play a crucial role in regulating cell behaviors so that, PCL/QSM/PEG as a smart/stimuli-responsive bio-matrix promotes not only human-adipose stem cells (h-ASCs) adhesion but also supports fibroblasts growth, via providing a porous-network. PCL/QSM/PEG could also induce keratinocytes at a desirable level for wound healing, by increasing the mechanobiological signals. Immunocytochemistry analysis confirmed keratinocytes differentiation pattern and their normal phenotype on PCL/QSM/PEG. Our study demonstrates, QSM as a differentiation/growth-promoting biological factor can be a proper candidate for design of wound dressings and skin tissue-engineered substrates containing cell.
Collapse
Affiliation(s)
- Azadeh Izadyari Aghmiuni
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran; Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran.
| | - Saeed Heidari Keshel
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK; Interdisciplinary Research Centre in Polymer Science & Technology (IRC Polymer), University of Bradford, Bradford, UK
| | | |
Collapse
|
28
|
Yang W, Xu H, Lan Y, Zhu Q, Liu Y, Huang S, Shi S, Hancharou A, Tang B, Guo R. Preparation and characterisation of a novel silk fibroin/hyaluronic acid/sodium alginate scaffold for skin repair. Int J Biol Macromol 2019; 130:58-67. [PMID: 30797808 DOI: 10.1016/j.ijbiomac.2019.02.120] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/22/2022]
Abstract
To mimic the natural structure of tissue extracellular matrix, a novel silk fibroin (SF)/hyaluronic acid (HA)/sodium alginate (SA) composite scaffold (92% in porosity) was prepared by freeze-drying. Fourier-transform infrared spectroscopy and Raman spectra indicated interactions among SF, HA, and SA molecules. Scanning electron microscopy showed that the prepared SF/HA/SA scaffold had soft, elastic characteristics, with an average pore diameter of 93 μm. Mechanical property, thermogravimetric analyses and degradation results indicated that the SF/HA/SA scaffold had good physical stability in body fluid and mechanical movement-related environments. Cell proliferation, morphological, and live-dead analyses showed that NIH-3T3 fibroblast cells were better able to attach, grow, and proliferate on the SF/HA/SA scaffold compared with SF, SF/HA, and SF/SA scaffolds. We evaluated the wound healing effects in a rat full-thickness burn model. The hematoxylin-eosin (H&E) and Masson's trichrome staining results from SF/HA/SA scaffold showed that improved re-epithelialization, enhanced extracellular matrix remodeling. Our findings showed that the prepared SF/HA/SA scaffold can provide a potential way as a wound dressing for skin repair.
Collapse
Affiliation(s)
- Wei Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Hongjie Xu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; Beogene Biotech (Guangzhou) Co., Ltd, Guangzhou 510663, China
| | - Yong Lan
- Beogene Biotech (Guangzhou) Co., Ltd, Guangzhou 510663, China
| | - Qiyu Zhu
- Beogene Biotech (Guangzhou) Co., Ltd, Guangzhou 510663, China
| | - Yu Liu
- Guangzhou Chuangseed Biomedical Materials Co., Ltd, Guangzhou 510663, China
| | - Shaoshan Huang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Shengjun Shi
- The Burns Department of Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Andrei Hancharou
- The Institute of Biophysics and Cell Engineering of The National Academy of Sciences of Belarus, Minsk 220072, Belarus
| | - Bing Tang
- Department of Burn and plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
29
|
Mainzer C, Packard T, Bordes S, Closs B, Greene WC, Elias PM, Uchida Y. Tissue microenvironment initiates an immune response to structural components of Staphylococcus aureus. Exp Dermatol 2019; 28:161-168. [PMID: 30566255 PMCID: PMC6706075 DOI: 10.1111/exd.13864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/13/2018] [Accepted: 12/13/2018] [Indexed: 01/10/2023]
Abstract
Cell-to-cell communication in skin participates to the maintenance of homeostatic responses to foreign substances. Certain strains of Staphylococcus (S) aureus are vicious pathogens that cause deleterious effects in host cells and tissues. Both secreted toxins and structural components of S. aureus trigger an immune response, though how S. aureus stimulates host immune responses is poorly understood. We explored here how keratinocytes and fibroblasts initiate the first steps of an immune response by activating dendritic cells (DCs) through recognition of structural components of S. aureus. We treated monocyte-derived Langerhans cells (moLCs) and monocyte-derived DCs (moDCs) with conditioned media from keratinocytes (K-CM) and fibroblasts (F-CM) treated with heat-killed S. aureus (HKSA) respectively, or directly with HKSA. Immune and inflammatory responses from keratinocytes, fibroblasts, moLCs and moDCs were assessed by analysis of cell surface markers and cytokine production using flow cytometry, real-time PCR and ELISA assays. K-CM and F-CM increased the expression of CD86 and HLA-DR on moLCs and moDCs, in association with a specific cytokine profile. K-CM upregulated TNFA, IL-1B and GM-CSF mRNA expression in moLCs, while F-CM upregulated IL-12 and downregulated TNFA and TGFB mRNA expression in moDCs. Additionally, F-CM attenuated the induction of an inflammatory profile in monocytes. The recognition of structural components from S. aureus by cutaneous microenvironment induces the activation and the expression of specific cytokines from LCs and DCs.
Collapse
Affiliation(s)
- Carine Mainzer
- Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, California
- SILAB Inc., Hazlet, New Jersey
| | - Thomas Packard
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California
| | | | | | - Warner C. Greene
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California
| | - Peter M. Elias
- Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, California
| | - Yoshikazu Uchida
- Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
30
|
The renaissance of human skin organ culture: A critical reappraisal. Differentiation 2018; 104:22-35. [DOI: 10.1016/j.diff.2018.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/03/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023]
|
31
|
Savoji H, Godau B, Hassani MS, Akbari M. Skin Tissue Substitutes and Biomaterial Risk Assessment and Testing. Front Bioeng Biotechnol 2018; 6:86. [PMID: 30094235 PMCID: PMC6070628 DOI: 10.3389/fbioe.2018.00086] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
Tremendous progress has been made over the past few decades to develop skin substitutes for the management of acute and chronic wounds. With the advent of tissue engineering and the ability to combine advanced manufacturing technologies with biomaterials and cell culture systems, more biomimetic tissue constructs have been emerged. Synthetic and natural biomaterials are the main constituents of these skin-like constructs, which play a significant role in tissue grafting, the body's immune response, and the healing process. The act of implanting biomaterials into the human body is subject to the body's immune response, and the complex nature of the immune system involves many different cell types and biological processes that will ultimately determine the success of a skin graft. As such, a large body of recent studies has been focused on the evaluation of the performance and risk assessment of these substitutes. This review summarizes the past and present advances in in vitro, in vivo and clinical applications of tissue-engineered skins. We discuss the role of immunomodulatory biomaterials and biomaterials risk assessment in skin tissue engineering. We will finally offer a roadmap for regulating tissue engineered skin substitutes.
Collapse
Affiliation(s)
- Houman Savoji
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Brent Godau
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, University of Victoria, Victoria, BC, Canada
| | - Mohsen Sheikh Hassani
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
32
|
Zhuang L, Lawlor KT, Schlueter H, Pieterse Z, Yu Y, Kaur P. Pericytes promote skin regeneration by inducing epidermal cell polarity and planar cell divisions. Life Sci Alliance 2018; 1:e201700009. [PMID: 30456360 PMCID: PMC6238533 DOI: 10.26508/lsa.201700009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 12/29/2022] Open
Abstract
The cellular and molecular microenvironment of epithelial stem/progenitor cells is critical for their long-term self-renewal. We demonstrate that mesenchymal stem cell-like dermal microvascular pericytes are a critical element of the skin's microenvironment influencing human skin regeneration using organotypic models. Specifically, pericytes were capable of promoting homeostatic skin tissue renewal by conferring more planar cell divisions generating two basal cells within the proliferative compartment of the human epidermis, while ensuring complete maturation of the tissue both spatially and temporally. Moreover, we provide evidence supporting the notion that BMP-2, a secreted protein preferentially expressed by pericytes in human skin, confers cell polarity and planar divisions on epidermal cells in organotypic cultures. Our data suggest that human skin regeneration is regulated by highly conserved mechanisms at play in other rapidly renewing tissues such as the bone marrow and in lower organisms such as Drosophila. Our work also provides the means to significantly improve ex vivo skin tissue regeneration for autologous transplantation.
Collapse
Affiliation(s)
- Lizhe Zhuang
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | | - Zalitha Pieterse
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Yu Yu
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Pritinder Kaur
- Peter MacCallum Cancer Centre, Melbourne, Australia.,School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| |
Collapse
|
33
|
Yan WC, Davoodi P, Vijayavenkataraman S, Tian Y, Ng WC, Fuh JY, Robinson KS, Wang CH. 3D bioprinting of skin tissue: From pre-processing to final product evaluation. Adv Drug Deliv Rev 2018; 132:270-295. [PMID: 30055210 DOI: 10.1016/j.addr.2018.07.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023]
Abstract
Bioprinted skin tissue has the potential for aiding drug screening, formulation development, clinical transplantation, chemical and cosmetic testing, as well as basic research. Limitations of conventional skin tissue engineering approaches have driven the development of biomimetic skin equivalent via 3D bioprinting. A key hope for bioprinting skin is the improved tissue authenticity over conventional skin equivalent construction, enabling the precise localization of multiple cell types and appendages within a construct. The printing of skin faces challenges broadly associated with general 3D bioprinting, including the selection of cell types and biomaterials, and additionally requires in vitro culture formats that allow for growth at an air-liquid interface. This paper provides a thorough review of current 3D bioprinting technologies used to engineer human skin constructs and presents the overall pipelines of designing a biomimetic artificial skin via 3D bioprinting from the design phase (i.e. pre-processing phase) through the tissue maturation phase (i.e. post-processing) and into final product evaluation for drug screening, development, and drug delivery applications.
Collapse
|
34
|
Casale C, Imparato G, Urciuolo F, Rescigno F, Scamardella S, Escolino M, Netti PA. Engineering a human skin equivalent to study dermis remodelling and epidermis senescence in vitro after UVA exposure. J Tissue Eng Regen Med 2018; 12:1658-1669. [DOI: 10.1002/term.2693] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Costantino Casale
- Interdisciplinary Research Centre on Biomaterials (CRIB); University of Naples Federico II P.le Tecchio 80; Naples Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB; Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53; Naples Italy
| | - Francesco Urciuolo
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI); University of Naples Federico II; Naples Italy
| | - Francesca Rescigno
- Center for Advanced Biomaterials for HealthCare@CRIB; Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53; Naples Italy
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB); University of Naples Federico II; Naples Italy
| | - Sara Scamardella
- Center for Advanced Biomaterials for HealthCare@CRIB; Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53; Naples Italy
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB); University of Naples Federico II; Naples Italy
| | - Maria Escolino
- Department of Translational Medical Sciences, Pediatric Surgery Unit; University of Naples Federico II; Naples Italy
| | - Paolo A. Netti
- Center for Advanced Biomaterials for HealthCare@CRIB; Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53; Naples Italy
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB); University of Naples Federico II; Naples Italy
| |
Collapse
|
35
|
Idrees A, Chiono V, Ciardelli G, Shah S, Viebahn R, Zhang X, Salber J. Validation of in vitro assays in three-dimensional human dermal constructs. Int J Artif Organs 2018; 41:779-788. [PMID: 29843544 PMCID: PMC6210574 DOI: 10.1177/0391398818775519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three-dimensional cell culture systems are urgently needed for cytocompatibility testing of biomaterials. This work aimed at the development of three-dimensional in vitro dermal skin models and their optimization for cytocompatibility evaluation. Initially “murine in vitro dermal construct” based on L929 cells was generated, leading to the development of “human in vitro dermal construct” consisting of normal human dermal fibroblasts in rat tail tendon collagen type I. To assess the viability of the cells, different assays CellTiter-Blue®, RealTime-Glo™ MT, and CellTiter-Glo® (Promega) were evaluated to optimize the best-suited assay to the respective cell type and three-dimensional system. Z-stack imaging (Live/Dead and Phalloidin/DAPI-Promokine) was performed to visualize normal human dermal fibroblasts inside matrix revealing filopodia-like morphology and a uniform distribution of normal human dermal fibroblasts in matrix. CellTiter-Glo was found to be the optimal cell viability assay among those analyzed. CellTiter-Blue reagent affected the cell morphology of normal human dermal fibroblasts (unlike L929), suggesting an interference with cell biological activity, resulting in less reliable viability data. On the other hand, RealTime-Glo provided a linear signal only with a very low cell density, which made this assay unsuitable for this system. CellTiter-Glo adapted to three-dimensional dermal construct by optimizing the “shaking time” to enhance the reagent penetration and maximum adenosine triphosphate release, indicating 2.4 times higher viability value by shaking for 60 min than for 5 min. In addition, viability results showed that cells were viable inside the matrix. This model would be further advanced with more layers of skin to make a full thickness model.
Collapse
Affiliation(s)
- Ayesha Idrees
- 1 Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Turin, Italy.,2 Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr-Universität Bochum, Bochum, Germany.,3 Medical Biomaterials, Center for Clinical Research, Ruhr-University Bochum, Bochum, Germany
| | - Valeria Chiono
- 1 Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Turin, Italy
| | - Gianluca Ciardelli
- 1 Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Turin, Italy
| | - Siegfried Shah
- 2 Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr-Universität Bochum, Bochum, Germany
| | - Richard Viebahn
- 2 Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr-Universität Bochum, Bochum, Germany
| | | | - Jochen Salber
- 2 Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr-Universität Bochum, Bochum, Germany.,3 Medical Biomaterials, Center for Clinical Research, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
36
|
Hsu CY, Lecland N, Pendaries V, Viodé C, Redoulès D, Paul C, Merdes A, Simon M, Bierkamp C. Stabilization of microtubules restores barrier function after cytokine-induced defects in reconstructed human epidermis. J Dermatol Sci 2018; 91:87-96. [PMID: 29691121 DOI: 10.1016/j.jdermsci.2018.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/21/2018] [Accepted: 04/10/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND A variety of human skin disorders is characterized by defects in the epidermal barrier, leading to dehydration, itchiness, and rashes. Previously published literature suggests that microtubule stabilization at the cortex of differentiating keratinocytes is necessary for the formation of the epidermal barrier. OBJECTIVES We tested whether stabilization of microtubules with paclitaxel or epothilone B can repair barrier defects that were experimentally induced in three-dimensional culture models of epidermis. METHODS We established two models of defective epidermis in vitro, using three-dimensional cultures of primary human keratinocytes on filter supports: immature reconstructed human epidermis (RHE), and RHE that was compromised by treatment with inflammatory cytokines, the latter mimicking defects seen in atopic dermatitis. RESULTS Both paclitaxel and epothilone B promoted keratinocyte differentiation, accumulation of junctional proteins at the cell cortex, and the early appearance of lamellar bodies in immature RHE, whereas destabilization of microtubules by nocodazole had the reverse effect. Moreover, stabilization of microtubules rescued the barrier after cytokine treatment. The rescued barrier function correlated with the restoration of filaggrin and loricrin protein levels, the cortical accumulation of junctional proteins (E-cadherin, β-catenin, and claudin-1), and with the secretion of lamellar bodies. CONCLUSIONS Our data suggest that the microtubule network is important for the formation of the epidermis, and that stabilization of microtubules promotes barrier formation. Microtubule stabilization may support regeneration of damaged skin, by restoring or improving the barrier.
Collapse
Affiliation(s)
- Chiung-Yueh Hsu
- Centre de Biologie du Développement, Université Paul Sabatier/CNRS, 31062, Toulouse, France
| | - Nicolas Lecland
- Centre de Biologie du Développement, Université Paul Sabatier/CNRS, 31062, Toulouse, France
| | - Valérie Pendaries
- INSERM-Université Paul Sabatier U1056, UDEAR, CHU Purpan, 31059, Toulouse, France
| | - Cécile Viodé
- Pierre Fabre Dermo-Cosmétique, 3 Avenue Hubert Curien, 31100, Toulouse, France
| | - Daniel Redoulès
- Pierre Fabre Dermo-Cosmétique, 3 Avenue Hubert Curien, 31100, Toulouse, France
| | - Carle Paul
- INSERM-Université Paul Sabatier U1056, UDEAR, CHU Purpan, 31059, Toulouse, France; Dermatologie, Hôpital Larrey, Centre Hospitalier Universitaire de Toulouse, 31059, Toulouse, France
| | - Andreas Merdes
- Centre de Biologie du Développement, Université Paul Sabatier/CNRS, 31062, Toulouse, France.
| | - Michel Simon
- INSERM-Université Paul Sabatier U1056, UDEAR, CHU Purpan, 31059, Toulouse, France.
| | - Christiane Bierkamp
- Centre de Biologie du Développement, Université Paul Sabatier/CNRS, 31062, Toulouse, France.
| |
Collapse
|
37
|
Skin corrosion test: a comparison between reconstructed human epidermis and full thickness skin models. Eur J Pharm Biopharm 2018; 125:51-57. [DOI: 10.1016/j.ejpb.2018.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 11/23/2022]
|
38
|
Heher P, Mühleder S, Mittermayr R, Redl H, Slezak P. Fibrin-based delivery strategies for acute and chronic wound healing. Adv Drug Deliv Rev 2018; 129:134-147. [PMID: 29247766 DOI: 10.1016/j.addr.2017.12.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/24/2017] [Accepted: 12/09/2017] [Indexed: 12/17/2022]
Abstract
Fibrin, a natural hydrogel, is the end product of the physiological blood coagulation cascade and naturally involved in wound healing. Beyond its role in hemostasis, it acts as a local reservoir for growth factors and as a provisional matrix for invading cells that drive the regenerative process. Its unique intrinsic features do not only promote wound healing directly via modulation of cell behavior but it can also be fine-tuned to evolve into a delivery system for sustained release of therapeutic biomolecules, cells and gene vectors. To further augment tissue regeneration potential, current strategies exploit and modify the chemical and physical characteristics of fibrin to employ combined incorporation of several factors and their timed release. In this work we show advanced therapeutic approaches employing fibrin matrices in wound healing and cover the many possibilities fibrin offers to the field of regenerative medicine.
Collapse
|
39
|
Khan TK, Wender PA, Alkon DL. Bryostatin and its synthetic analog, picolog rescue dermal fibroblasts from prolonged stress and contribute to survival and rejuvenation of human skin equivalents. J Cell Physiol 2018; 233:1523-1534. [PMID: 28590053 PMCID: PMC5673504 DOI: 10.1002/jcp.26043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 11/09/2022]
Abstract
Skin health is associated with the day-to-day activity of fibroblasts. The primary function of fibroblasts is to synthesize structural proteins, such as collagen, extracellular matrix proteins, and other proteins that support the structural integrity of the skin and are associated with younger, firmer, and more elastic skin that is better able to resist and recover from injury. At sub-nanomolar concentrations (0.03-0.3 nM), bryostatin-1 and its synthetic analog, picolog (0.1-10 nM) sustained the survival and activation of human dermal fibroblasts cultured under the stressful condition of prolonged serum deprivation. Bryostatin-1 treatment stabilized human skin equivalents (HSEs), a bioengineered combination of primary human skin cells (keratinocytes and dermal fibroblasts) on an extracellular matrix composed of mainly collagen. Fibroblasts activated by bryostatin-1 protected the structural integrity of HSEs. Bryostatin-1 and picolog prolonged activation of Erk in fibroblasts to promote cell survival. Chronic stress promotes the progression of apoptosis. Dermal fibroblasts constitutively express all components of Fas associated apoptosis, including caspase-8, an initiator enzyme of apoptosis. Prolong bryostatin-1 treatment reduced apoptosis by decreasing caspase-8 and protected dermal fibroblasts. Our data suggest that bryostatin-1 and picolog could be useful in anti-aging skincare, and could have applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tapan K. Khan
- Center for Neurodegenerative diseases, Blanchette Rockefeller Neurosciences Institute at West Virginia University, Morgantown, WV 26506, USA
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Daniel L. Alkon
- Neurotrope BioScience, 205 East 42nd Street, 16th Floor, New York, NY 10017, USA
| |
Collapse
|
40
|
He P, Zhao J, Zhang J, Li B, Gou Z, Gou M, Li X. Bioprinting of skin constructs for wound healing. BURNS & TRAUMA 2018; 6:5. [PMID: 29404374 PMCID: PMC5778803 DOI: 10.1186/s41038-017-0104-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/12/2017] [Indexed: 02/05/2023]
Abstract
Extensive burns and full-thickness skin wounds are difficult to repair. Autologous split-thickness skin graft (ASSG) is still used as the gold standard in the clinic. However, the shortage of donor skin tissues is a serious problem. A potential solution to this problem is to fabricate skin constructs using biomaterial scaffolds with or without cells. Bioprinting is being applied to address the need for skin tissues suitable for transplantation, and can lead to the development of skin equivalents for wound healing therapy. Here, we summarize strategies of bioprinting and review current advances of bioprinting of skin constructs. There will be challenges on the way of 3D bioprinting for skin regeneration, but we still believe bioprinting will be potential skills for wounds healing in the foreseeable future.
Collapse
Affiliation(s)
- Peng He
- The Affiliated Hospital of Southwest Medical University, the department of Plastic & Burns Surgery, Tai Ping Street, Luzhou, 646000 People’s Republic of China
| | - Junning Zhao
- Sichuan Academy of Chinese Medical Sciences, Sichuan Translational Medicine Center of Chinese Medicine, Ren Min Nan Lu Road, Chengdu, 610041 People’s Republic of China
| | - Jiumeng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 People’s Republic of China
- Collaborative Innovation Center for Biotherapy, Chengdu, 610041 People’s Republic of China
| | - Bo Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 People’s Republic of China
- Collaborative Innovation Center for Biotherapy, Chengdu, 610041 People’s Republic of China
| | - Zhiyuan Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 People’s Republic of China
- Collaborative Innovation Center for Biotherapy, Chengdu, 610041 People’s Republic of China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 People’s Republic of China
- Collaborative Innovation Center for Biotherapy, Chengdu, 610041 People’s Republic of China
| | - Xiaolu Li
- The Affiliated Hospital of Southwest Medical University, the department of Plastic & Burns Surgery, Tai Ping Street, Luzhou, 646000 People’s Republic of China
- Sichuan Academy of Chinese Medical Sciences, Sichuan Translational Medicine Center of Chinese Medicine, Ren Min Nan Lu Road, Chengdu, 610041 People’s Republic of China
| |
Collapse
|
41
|
Watt SM, Pleat JM. Stem cells, niches and scaffolds: Applications to burns and wound care. Adv Drug Deliv Rev 2018; 123:82-106. [PMID: 29106911 DOI: 10.1016/j.addr.2017.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
The importance of skin to survival, and the devastating physical and psychological consequences of scarring following reparative healing of extensive or difficult to heal human wounds, cannot be disputed. We discuss the significant challenges faced by patients and healthcare providers alike in treating these wounds. New state of the art technologies have provided remarkable insights into the role of skin stem and progenitor cells and their niches in maintaining skin homeostasis and in reparative wound healing. Based on this knowledge, we examine different approaches to repair extensive burn injury and chronic wounds, including full and split thickness skin grafts, temporising matrices and scaffolds, and composite cultured skin products. Notable developments include next generation skin substitutes to replace split thickness skin autografts and next generation gene editing coupled with cell therapies to treat genodermatoses. Further refinements are predicted with the advent of bioprinting technologies, and newly defined biomaterials and autologous cell sources that can be engineered to more accurately replicate human skin architecture, function and cosmesis. These advances will undoubtedly improve quality of life for patients with extensive burns and difficult to heal wounds.
Collapse
Affiliation(s)
- Suzanne M Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9BQ, UK.
| | - Jonathan M Pleat
- Department of Plastic and Reconstructive Surgery, North Bristol NHS Trust and University of Bristol, Westbury on Trym, Bristol BS9 3TZ, UK.
| |
Collapse
|
42
|
Mieremet A, Rietveld M, van Dijk R, Bouwstra JA, El Ghalbzouri A. Recapitulation of Native Dermal Tissue in a Full-Thickness Human Skin Model Using Human Collagens. Tissue Eng Part A 2017; 24:873-881. [PMID: 29130419 DOI: 10.1089/ten.tea.2017.0326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Full-thickness skin models comprise a three-dimensional dermal equivalent based on an animal-derived collagen matrix that harbors fibroblasts and an epidermal equivalent formed by keratinocytes. The functionality of both equivalents is influenced by many factors, including extracellular matrix composition and resident cell type. Animal-derived collagens differ in amino acid composition and physicochemical properties from human collagens. This composition could alter the functionality of the dermal equivalent and epidermal morphogenesis with the barrier formation in full-thickness models (FTMs). By replacement of animal-derived collagen for human collagen, we generated and characterized the animal material-free human collagen full-thickness models (hC-FTMs) that better mimic native dermal tissue. MATERIALS AND METHODS An isolation procedure to obtain soluble collagen from human abdominal dermis was developed. Both FTMs and hC-FTMs were generated with primary human fibroblasts and keratinocytes. Immunohistochemical analyses with biomarkers for the dermal matrix composition, basement membrane (BM) formation, epidermal proliferation, differentiation, and activation were performed. The stratum corneum (SC) lipid composition was studied with liquid chromatography-mass spectrometry. Lipid lamellar organization was determined by small-angle X-ray diffraction. RESULTS The FTMs and hC-FTMs exhibit many similarities, including the dermal matrix structure, BM formation, epidermal basal layer proliferation, and execution of differentiation programs. The SC contains a similar number of corneocyte layers and the same level of lipids. The ceramide chain length distribution and ceramide subclass profile showed only minor differences. Subsequently, this led to an unaltered lamellar organization. CONCLUSION The animal material-free hC-FTM is generated successfully using collagens isolated from human abdominal dermis. Utilization of human collagens revealed that (epi-)dermal morphogenesis and lipid barrier formation resembled that of original FTMs. The hC-FTMs contain a dermal equivalent that mimics the native stromal tissue to a higher extent. Therefore these in vitro skin models can be used as promising tool for research purposes that contribute to animal-free experimentation.
Collapse
Affiliation(s)
- Arnout Mieremet
- 1 Department of Dermatology, Leiden University Medical Centre , Leiden, The Netherlands
| | - Marion Rietveld
- 1 Department of Dermatology, Leiden University Medical Centre , Leiden, The Netherlands
| | - Rianne van Dijk
- 2 Division of Drug Delivery Technology, LACDR, Leiden University , Leiden, The Netherlands
| | - Joke A Bouwstra
- 2 Division of Drug Delivery Technology, LACDR, Leiden University , Leiden, The Netherlands
| | | |
Collapse
|
43
|
Gaebler M, Silvestri A, Haybaeck J, Reichardt P, Lowery CD, Stancato LF, Zybarth G, Regenbrecht CRA. Three-Dimensional Patient-Derived In Vitro Sarcoma Models: Promising Tools for Improving Clinical Tumor Management. Front Oncol 2017; 7:203. [PMID: 28955656 PMCID: PMC5601986 DOI: 10.3389/fonc.2017.00203] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
Over the past decade, the development of new targeted therapeutics directed against specific molecular pathways involved in tumor cell proliferation and survival has allowed an essential improvement in carcinoma treatment. Unfortunately, the scenario is different for sarcomas, a group of malignant neoplasms originating from mesenchymal cells, for which the main therapeutic approach still consists in the combination of surgery, chemotherapy, and radiation therapy. The lack of innovative approaches in sarcoma treatment stems from the high degree of heterogeneity of this tumor type, with more that 70 different histopathological subtypes, and the limited knowledge of the molecular drivers of tumor development and progression. Currently, molecular therapies are available mainly for the treatment of gastrointestinal stromal tumor, a soft-tissue malignancy characterized by an activating mutation of the tyrosine kinase KIT. Since the first application of this approach, a strong effort has been made to understand sarcoma molecular alterations that can be potential targets for therapy. The low incidence combined with the high level of histopathological heterogeneity makes the development of clinical trials for sarcomas very challenging. For this reason, preclinical studies are needed to better understand tumor biology with the aim to develop new targeted therapeutics. Currently, these studies are mainly based on in vitro testing, since cell lines, and in particular patient-derived models, represent a reliable and easy to handle tool for investigation. In the present review, we summarize the most important models currently available in the field, focusing in particular on the three-dimensional spheroid/organoid model. This innovative approach for studying tumor biology better represents tissue architecture and cell–cell as well as cell–microenvironment crosstalk, which are fundamental steps for tumor cell proliferation and survival.
Collapse
Affiliation(s)
- Manuela Gaebler
- HELIOS Klinikum Berlin-Buch GmbH, Department of Interdisciplinary Oncology, Berlin, Germany
| | | | - Johannes Haybaeck
- Medical Faculty, Department of Pathology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Institute of Pathology, Medical University Graz, Graz, Austria
| | - Peter Reichardt
- HELIOS Klinikum Berlin-Buch GmbH, Department of Interdisciplinary Oncology, Berlin, Germany
| | - Caitlin D Lowery
- Eli Lilly and Company, Oncology Translational Research, Lilly Corporate Center, Indianapolis, IN, United States
| | - Louis F Stancato
- Eli Lilly and Company, Oncology Translational Research, Lilly Corporate Center, Indianapolis, IN, United States
| | - Gabriele Zybarth
- cpo - Cellular Phenomics & Oncology Berlin-Buch GmbH, Berlin, Germany
| | | |
Collapse
|
44
|
De Vuyst E, Salmon M, Evrard C, Lambert de Rouvroit C, Poumay Y. Atopic Dermatitis Studies through In Vitro Models. Front Med (Lausanne) 2017; 4:119. [PMID: 28791291 PMCID: PMC5523664 DOI: 10.3389/fmed.2017.00119] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/11/2017] [Indexed: 11/13/2022] Open
Abstract
Atopic dermatitis (AD) is a complex inflammatory skin condition that is not fully understood. Epidermal barrier defects and Th2 immune response dysregulations are thought to play crucial roles in the pathogenesis of the disease. A vicious circle takes place between these alterations, and it can further be complicated by additional genetic and environmental factors. Studies investigating in more depth the etiology of the disease are thus needed in order to develop functional treatments. In recent years, there have been significant advances regarding in vitro models reproducing important features of AD. However, since a lot of models have been developed, finding the appropriate experimental setting can be difficult. Therefore, herein, we review the different types of in vitro models mimicking features of AD. The simplest models are two-dimensional culture systems composed of immune cells or keratinocytes, whereas three-dimensional skin or epidermal equivalents reconstitute more complex stratified tissues exhibiting barrier properties. In those models, hallmarks of AD are obtained, either by challenging tissues with interleukin cocktails overexpressed in AD epidermis or by silencing expression of pivotal genes encoding epidermal barrier proteins. Tissue equivalents cocultured with lymphocytes or containing AD patient cells are also described. Furthermore, each model is placed in its study context with a brief summary of the main results obtained. In conclusion, the described in vitro models are useful tools to better understand AD pathogenesis, but also to screen new compounds in the field of AD, which probably will open the way to new preventive or therapeutic strategies.
Collapse
Affiliation(s)
- Evelyne De Vuyst
- Cell and Tissue Laboratory, URPhyM-NARILIS, University of Namur, Namur, Belgium
| | | | - Céline Evrard
- Cell and Tissue Laboratory, URPhyM-NARILIS, University of Namur, Namur, Belgium
| | | | - Yves Poumay
- Cell and Tissue Laboratory, URPhyM-NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
45
|
Desmet E, Ramadhas A, Lambert J, Van Gele M. In vitro psoriasis models with focus on reconstructed skin models as promising tools in psoriasis research. Exp Biol Med (Maywood) 2017; 242:1158-1169. [PMID: 28585891 DOI: 10.1177/1535370217710637] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Psoriasis is a complex chronic immune-mediated inflammatory cutaneous disease associated with the development of inflammatory plaques on the skin. Studies proved that the disease results from a deregulated interplay between skin keratinocytes, immune cells and the environment leading to a persisting inflammatory process modulated by pro-inflammatory cytokines and activation of T cells. However, a major hindrance to study the pathogenesis of psoriasis more in depth and subsequent development of novel therapies is the lack of suitable pre-clinical models mimicking the complex phenotype of this skin disorder. Recent advances in and optimization of three-dimensional skin equivalent models have made them attractive and promising alternatives to the simplistic monolayer cultures, immunological different in vivo models and scarce ex vivo skin explants. Moreover, human skin equivalents are increasing in complexity level to match human biology as closely as possible. Here, we critically review the different types of three-dimensional skin models of psoriasis with relevance to their application potential and advantages over other models. This will guide researchers in choosing the most suitable psoriasis skin model for therapeutic drug testing (including gene therapy via siRNA molecules), or to examine biological features contributing to the pathology of psoriasis. However, the addition of T cells (as recently applied to a de-epidermized dermis-based psoriatic skin model) or other immune cells would make them even more attractive models and broaden their application potential. Eventually, the ultimate goal would be to substitute animal models by three-dimensional psoriatic skin models in the pre-clinical phases of anti-psoriasis candidate drugs. Impact statement The continuous development of novel in vitro models mimicking the psoriasis phenotype is important in the field of psoriasis research, as currently no model exists that completely matches the in vivo psoriasis skin or the disease pathology. This work provides a complete overview of the different available in vitro psoriasis models and suggests improvements for future models. Moreover, a focus was given to psoriatic skin equivalent models, as they offer several advantages over the other models, including commercial availability and validity. The potential and reported applicability of these models in psoriasis pre-clinical research is extensively discussed. As such, this work offers a guide to researchers in their choice of pre-clinical psoriasis model depending on their type of research question.
Collapse
Affiliation(s)
- Eline Desmet
- Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| | - Anesh Ramadhas
- Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| | - Jo Lambert
- Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| | - Mireille Van Gele
- Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| |
Collapse
|
46
|
Pohin M, Veaute C, Garnier J, Barrault C, Cronier L, Huguier V, Favot L, Mcheik J, Bernard FX, Lecron JC, Morel F, Jégou JF. Development of a new model of reconstituted mouse epidermis and characterization of its response to proinflammatory cytokines. J Tissue Eng Regen Med 2017; 12:e1098-e1107. [PMID: 28477582 DOI: 10.1002/term.2442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 04/07/2017] [Accepted: 05/03/2017] [Indexed: 12/30/2022]
Abstract
The development of three-dimensional models of reconstituted mouse epidermis (RME) has been hampered by the difficulty to maintain murine primary keratinocyte cultures and to achieve a complete epidermal stratification. In this study, a new protocol is proposed for the rapid and convenient generation of RME, which reproduces accurately the architecture of a normal mouse epidermis. During RME morphogenesis, the expression of differentiation markers such as keratins, loricrin, filaggrin, E-cadherin and connexins was followed, showing that RME structure at day 5 was similar to those of a normal mouse epidermis, with the acquisition of the natural barrier function. It was also demonstrated that RME responded to skin-relevant proinflammatory cytokines by increasing the expression of antimicrobial peptides and chemokines, and inhibiting epidermal differentiation markers, as in the human system. This new model of RME is therefore suitable to investigate mouse epidermis physiology further and opens new perspectives to generate reconstituted epidermis from transgenic mice.
Collapse
Affiliation(s)
- Mathilde Pohin
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), EA 4331, Université de Poitiers, France
| | - Carolina Veaute
- Laboratorio de Inmunología Básica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | | | | | - Laurent Cronier
- STIM, CNRS ERL 7368, Université de Poitiers, Poitiers, France
| | - Vincent Huguier
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), EA 4331, Université de Poitiers, France.,CHU de Poitiers, France
| | - Laure Favot
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), EA 4331, Université de Poitiers, France
| | - Jiad Mcheik
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), EA 4331, Université de Poitiers, France.,CHU de Poitiers, France
| | - François-Xavier Bernard
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), EA 4331, Université de Poitiers, France.,Bioalternatives, Gençay, France
| | - Jean-Claude Lecron
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), EA 4331, Université de Poitiers, France.,CHU de Poitiers, France
| | - Franck Morel
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), EA 4331, Université de Poitiers, France
| | - Jean-François Jégou
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), EA 4331, Université de Poitiers, France
| |
Collapse
|
47
|
Lotz C, Schmid FF, Oechsle E, Monaghan MG, Walles H, Groeber-Becker F. Cross-linked Collagen Hydrogel Matrix Resisting Contraction To Facilitate Full-Thickness Skin Equivalents. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20417-20425. [PMID: 28557435 DOI: 10.1021/acsami.7b04017] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Full-thickness skin equivalents are gathering increased interest as skin grafts for the treatment of large skin defects or chronic wounds or as nonanimal test platforms. However, their fibroblast-mediated contraction and poor mechanical stability lead to disadvantages toward their reproducibility and applicability in vitro and in vivo. To overcome these pitfalls, we aimed to chemically cross-link the dermal layer of a full-thickness skin model composed of a collagen type I hydrogel. Using a noncytotoxic four-arm succinimidyl glutarate polyethylene glycol (PEG-SG), cross-linking could be achieved in cell seeded collagen hydrogels. A concentration of 0.5 mg of PEG-SG/mg of collagen led to a viability comparable to non-cross-linked collagen hydrogels and no increased release of intracellular lactate dehydrogenase. Cross-linked collagen hydrogels were more mechanically stable and less prone to enzymatic degradation via collagenase when compared with non-cross-linked collagen hydrogels. Remarkably, during 21 days, cross-linked collagen hydrogels maintain their initial surface area, whereas standard dermal models contracted up to 50%. Finally, full-thickness skin equivalents were generated by seeding human epidermal keratinocytes on the surface of the equivalents and culturing these equivalents at an air-liquid interface. Immunohistochemical stainings of the cross-linked model revealed well-defined epidermal layers including an intact stratum corneum and a dermal part with homogeneously distributed human dermal fibroblasts. These results indicate that cross-linking of collagen with PEG-SG reduces contraction of collagen hydrogels and thus increases the applicability of these models as an additional tool for efficacy and safety assessment or a new generation of skin grafts.
Collapse
Affiliation(s)
- Christian Lotz
- Department of Tissue Engineering & Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg 97070, Germany
| | - Freia F Schmid
- Translational Center Würzburg 'Regenerative Therapies in Oncology and Musculoskeletal Diseases', Würzburg Branch of the Fraunhofer Institute for Interfacial Engineering and Biotechnology , Würzburg 97070, Germany
| | - Eva Oechsle
- Translational Center Würzburg 'Regenerative Therapies in Oncology and Musculoskeletal Diseases', Würzburg Branch of the Fraunhofer Institute for Interfacial Engineering and Biotechnology , Würzburg 97070, Germany
| | - Michael G Monaghan
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology , Stuttgart 70569, Germany
| | - Heike Walles
- Department of Tissue Engineering & Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg 97070, Germany
- Translational Center Würzburg 'Regenerative Therapies in Oncology and Musculoskeletal Diseases', Würzburg Branch of the Fraunhofer Institute for Interfacial Engineering and Biotechnology , Würzburg 97070, Germany
| | - Florian Groeber-Becker
- Translational Center Würzburg 'Regenerative Therapies in Oncology and Musculoskeletal Diseases', Würzburg Branch of the Fraunhofer Institute for Interfacial Engineering and Biotechnology , Würzburg 97070, Germany
| |
Collapse
|
48
|
Akagi T, Nagura M, Hiura A, Kojima H, Akashi M. Construction of Three-Dimensional Dermo–Epidermal Skin Equivalents Using Cell Coating Technology and Their Utilization as Alternative Skin for Permeation Studies and Skin Irritation Tests. Tissue Eng Part A 2017; 23:481-490. [DOI: 10.1089/ten.tea.2016.0529] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Takami Akagi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Mayuka Nagura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- BioMedical Technology HYBRID Co., Ltd., Kagoshima, Japan
| | - Ayami Hiura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Hajime Kojima
- Biological Safety Research Center, National Institute of Health Sciences, Tokyo, Japan
| | - Mitsuru Akashi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
49
|
Kaur P. Hair-follicle dermal papilla and sheath fibroblasts provide a supportive microenvironment for human skin regeneration. Br J Dermatol 2017; 176:1123-1124. [DOI: 10.1111/bjd.15474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- P. Kaur
- School of Biomedical Sciences; Curtin University; Perth Australia
| |
Collapse
|
50
|
Vig K, Chaudhari A, Tripathi S, Dixit S, Sahu R, Pillai S, Dennis VA, Singh SR. Advances in Skin Regeneration Using Tissue Engineering. Int J Mol Sci 2017; 18:E789. [PMID: 28387714 PMCID: PMC5412373 DOI: 10.3390/ijms18040789] [Citation(s) in RCA: 371] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/04/2017] [Indexed: 12/11/2022] Open
Abstract
Tissue engineered skin substitutes for wound healing have evolved tremendously over the last couple of years. New advances have been made toward developing skin substitutes made up of artificial and natural materials. Engineered skin substitutes are developed from acellular materials or can be synthesized from autologous, allograft, xenogenic, or synthetic sources. Each of these engineered skin substitutes has their advantages and disadvantages. However, to this date, a complete functional skin substitute is not available, and research is continuing to develop a competent full thickness skin substitute product that can vascularize rapidly. There is also a need to redesign the currently available substitutes to make them user friendly, commercially affordable, and viable with longer shelf life. The present review focuses on providing an overview of advances in the field of tissue engineered skin substitute development, the availability of various types, and their application.
Collapse
Affiliation(s)
- Komal Vig
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| | - Atul Chaudhari
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| | - Shweta Tripathi
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| | - Saurabh Dixit
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| | - Rajnish Sahu
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| | - Shreekumar Pillai
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| | - Vida A Dennis
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| | - Shree R Singh
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| |
Collapse
|