1
|
Caetano Filho FF, Paulino LRF, Bezerra VS, Azevedo VAN, Barroso PAA, Costa FC, Amorim GG, Silva JRV. Thymol increases primordial follicle activation, protects stromal cells, collagen fibers and down-regulates expression of mRNA for superoxide dismutase 1, catalase and periredoxin 6 in cultured bovine ovarian tissues. Anim Reprod Sci 2024; 266:107514. [PMID: 38824841 DOI: 10.1016/j.anireprosci.2024.107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
This study aims to investigate the influence of thymol on primordial follicle growth and survival, as well as on collagen fibers and stromal cells density in bovine ovarian tissues cultured in vitro. The activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), the thiol levels and the expression of mRNAs for SOD1, CAT, periredoxin 6 (PRDX6) and GPX1 were also investigated. Ovarian cortical tissues were cultured in α-MEM+ alone or with thymol (400, 800, 1600 or 3200 μg/mL) for six days. Before and after culture, the tissues were processed for histological analysis to evaluate follicular activation, growth, morphology, ovarian stromal cell density and collagen fibers. The levels of mRNA for SOD1, CAT, GPX1 and PRDX6 were evaluated by real-time PCR. The results show that tissues cultured with thymol (400 and 800 µg/mL) had increased percentages of normal follicles, when compared to tissues cultured in other treatments. At concentrations of 400 and 800 µg/mL, thymol maintained the rate of normal follicles similar to the uncultured control. In addition, 400 µg/mL thymol increased follicle activation, collagen fibers and stromal cell density of when compared to tissues cultured in control medium. The presence of 800 µg/mL thymol in culture medium increased CAT activity, while 400 or 800 µg/mL thymol reduced mRNA levels for SOD1, CAT and PRDX6, but did not alter GPX1 expression. In conclusion, 400 µg/mL thymol increases primordial follicle activation, preserves stromal cells, collagen fibers, and down-regulates expression of mRNA for SOD1, CAT and PRDX6 in cultured bovine ovarian tissues.
Collapse
Affiliation(s)
- Francisco F Caetano Filho
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil
| | - Lais R F Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil
| | - Vitória S Bezerra
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil
| | - Venância A N Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil
| | - Pedro A A Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil
| | - Francisco C Costa
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil
| | - Geovany G Amorim
- Nucleus of Studies in Bioactive Phytochemicals (NEFB), Vale do Acaraú State University, Sobral, Ceará, Brazil
| | - José R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil.
| |
Collapse
|
2
|
Gattan HS, Fouad SS, Ellisy RA, Elshazly H, El-kady AM. Eugenol: effective complementary treatment for cryptosporidiosis in experimentally infected mice. J Parasit Dis 2024; 48:370-380. [PMID: 38840881 PMCID: PMC11147982 DOI: 10.1007/s12639-024-01676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/21/2024] [Indexed: 06/07/2024] Open
Abstract
Cryptosporidiosis is an opportunistic, globally distributed parasitic disease. Whereas Cryptosporidium causes asymptomatic infection and diarrhea in healthy people, it may lead to severe illness in immunocompromised individuals. Limited, effective therapeutic alternatives are available against cryptosporidiosis in those categories of patients. So, we are in urgent need of better drugs for the treatment of cryptosporidiosis. Fifty male Swiss albino mice were used. Mice were grouped into five groups of ten mice each. Group I was left uninfected, and four groups were infected with 1000 oocysts of cryptosporidium. The first infected group was left untreated. The remaining three-infected groups received nitazoxanide (NTZ), eugenol, and eugenol + NTZ, respectively, on the 6th day post infection (dpi) for five days. Mice were sacrificed on the 30th dpi. The efficacy of treatment was evaluated using parasitological, biochemical, and histopathological parameters. Combination therapy of eugenol with NTZ caused a significant reduction of the number of oocysts secreted in stool and improved cryptosporidiosis-induced liver injury manifested by the restoration of normal levels of liver enzymes (ALT and AST). Treatment with eugenol-NTZ combination maintained a well-balanced antioxidant status, as evidenced by a reduced level of nitric oxide (NO) and increased antioxidant Superoxide dismutase (SOD) enzyme activity. Moreover, the combination of eugenol with NTZ resulted in the restoration of the normal morphology of intestinal villi, crypts, and muscularis mucosa. Based on the findings extracted from the present work, we can conclude that eugenol is a complementary therapeutic when used with NTZ in the treatment of cryptosporidiosis. The addition of eugenol to NTZ in the treatment of cryptosporidiosis synergized the effect of NTZ, causing a greater reduction of the number of shedded oocysts, improving liver enzyme levels, and restoring normal intestinal pathology. Therefore, we presume that eugenol's antioxidant capacity accounts for the protective effect seen in the current study. We suggest eugenol as a supplemental chemotherapeutic agent with good therapeutic potential and high levels of safety in the treatment of cryptosporidiosis based on the findings of the current study.
Collapse
Affiliation(s)
- Hattan S. Gattan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, 21589 Jeddah, Saudi Arabia
| | - Samer S. Fouad
- Department of Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523 Egypt
| | - Reham A. Ellisy
- Department of Medical Pharmacology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Hayam Elshazly
- Department of Biology, Faculty of Sciences-Scientific Departments, Qassim University, 52571 Buraidah, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef, 62521 Egypt
| | - Asmaa M. El-kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena, 83523 Egypt
| |
Collapse
|
3
|
Gattan HS, Wakid MH, Qahwaji RM, Altwaim S, Mahjoub HA, Alfaifi MS, Elshazly H, Al-Megrin WAI, Alshehri EA, Elshabrawy HA, El-kady AM. In silico and in vivo evaluation of the anti-cryptosporidial activity of eugenol. Front Vet Sci 2024; 11:1374116. [PMID: 38515537 PMCID: PMC10954888 DOI: 10.3389/fvets.2024.1374116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Background Cryptosporidiosis is an opportunistic parasitic disease widely distributed worldwide. Although Cryptosporidium sp. causes asymptomatic infection in healthy people, it may lead to severe illness in immunocompromised individuals. Limited effective therapeutic alternatives are available against cryptosporidiosis in this category of patients. So, there is an urgent need for therapeutic alternatives for cryptosporidiosis. Recently, the potential uses of Eugenol (EUG) have been considered a promising novel treatment for bacterial and parasitic infections. Consequently, it is suggested to investigate the effect of EUG as an option for the treatment of cryptosporidiosis. Materials and methods The in silico bioinformatics analysis was used to predict and determine the binding affinities and intermolecular interactions of EUG and Nitazoxanide (NTZ) toward several Cryptosporidium parvum (C. parvum) lowa II target proteins. For animal study, five groups of immunosuppressed Swiss albino mice (10 mice each) were used. Group I was left uninfected (control), and four groups were infected with 1,000 oocysts of Cryptosporidium sp. The first infected group was left untreated. The remaining three infected groups received NTZ, EUG, and EUG + NTZ, respectively, on the 6th day post-infection (dpi). All mice were sacrificed 30 dpi. The efficacy of the used formulas was assessed by counting the number of C. parvum oocysts excreted in stool of infected mice, histopathological examination of the ileum and liver tissues and determination of the expression of iNOS in the ileum of mice in different animal groups. Results treatment with EUG resulted in a significant reduction in the number of oocysts secreted in stool when compared to infected untreated mice. In addition, oocyst excretion was significantly reduced in mice received a combination therapy of EUG and NTZ when compared with those received NTZ alone. EUG succeeded in reverting the histopathological alterations induced by Cryptosporidium infection either alone or in combination with NTZ. Moreover, mice received EUG showed marked reduction of the expression of iNOS in ileal tissues. Conclusion Based on the results, the present study signified a basis for utilizing EUG as an affordable, safe, and alternative therapy combined with NTZ in the management of cryptosporidiosis.
Collapse
Affiliation(s)
- Hattan S. Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
| | - Majed H. Wakid
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
| | - Rowaid M. Qahwaji
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah Altwaim
- Special Infectious Agents Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haifaa A. Mahjoub
- Biological Sciences Department, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Mashael S. Alfaifi
- Department of Epidemiology, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Hayam Elshazly
- Department of Biology, Faculty of Sciences-Scientific Departments, Qassim University, Buraidah, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Wafa Abdullah I. Al-Megrin
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, United States
| | - Asmaa M. El-kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
4
|
Api AM, Belsito D, Botelho D, Bruze M, Burton GA, Cancellieri MA, Chon H, Dagli ML, Dekant W, Deodhar C, Fryer AD, Jones L, Joshi K, Kumar M, Lapczynski A, Lavelle M, Lee I, Liebler DC, Moustakas H, Muldoon J, Penning TM, Ritacco G, Romine J, Sadekar N, Schultz TW, Selechnik D, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. RIFM fragrance ingredient safety assessment, carvacrol, CAS Registry Number 499-75-2. Food Chem Toxicol 2024; 183 Suppl 1:114298. [PMID: 38049053 DOI: 10.1016/j.fct.2023.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/07/2023] [Accepted: 11/26/2023] [Indexed: 12/06/2023]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel for Fragrance Safety, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel for Fragrance Safety, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - G A Burton
- Member Expert Panel for Fragrance Safety, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - H Chon
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel for Fragrance Safety, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - W Dekant
- Member Expert Panel for Fragrance Safety, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel for Fragrance Safety, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Kumar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member Expert Panel for Fragrance Safety, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - H Moustakas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Muldoon
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel for Fragrance Safety, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel for Fragrance Safety, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - D Selechnik
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel for Fragrance Safety, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
5
|
Khatib S, Mahdi I, Drissi B, Fahsi N, Bouissane L, Sobeh M. Tetraclinis articulata (Vahl) Mast.: Volatile constituents, antioxidant, antidiabetic and wound healing activities of its essential oil. Heliyon 2024; 10:e24563. [PMID: 38317922 PMCID: PMC10839871 DOI: 10.1016/j.heliyon.2024.e24563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/16/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic syndrome known to contribute to impaired wound healing. This condition can be further worsened by excessive melanin production, elastin degradation, and chronic infections at the wound site, potentially leading to melasma and diabetic dermopathy. The purpose of this study was to investigate the phytochemical profile and inhibitory effects of Tetraclinis articulata essential oil (TAEO) on target enzymes involved in diabetes pathogenesis and chronic wound remodeling, namely α-amylase, α-glucosidase, tyrosinase, and elastase, as well as its in vitro antibacterial activity. Gas chromatography and mass spectrometry (GC-MS) analysis of TAEO led to the identification of 46 volatile compounds, representing 96.61 % of TAEO. The major metabolites were bornyl acetate (29.48 %), α-pinene (8.96 %), germacrene D (7.70 %), and d-limonene (5.90 %). TAEO exhibited limited scavenging activity against DPPH free radicals, whereas the FRAP and ABTS assays indicated a relatively higher antioxidant activity. Remarkably, TAEO disclosed a promising in vitro antidiabetic activity against α-glucosidase with an IC50 value of 178 ± 1.6 μg/mL, which is comparable to the standard inhibitor acarbose (IC50 = 143 ± 1.1 μg/mL). In silico, molecular docking analysis against α-glucosidase identified 15 compounds that interacted with the enzyme's active site, whereas skin permeability and sensitization assessments indicated that 26 out of the 44 identified volatile compounds were predicted to be free from any skin sensitivity risk. On the other hand, moderate inhibitory activity was recorded against α-amylase, tyrosinase, and elastase. Notably, TAEO at 5 % significantly suppressed biofilm formation by P. aeruginosa, S. aureus, and E. faecalis, common skin pathogens associated with wound infections, and reduced their swarming motility. Our findings suggest that TAEO may hold the potential as a natural remedy for type 2 diabetes and its associated co-morbidities, especially chronic wounds.
Collapse
Affiliation(s)
- Sohaib Khatib
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Ismail Mahdi
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Badreddine Drissi
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Nidal Fahsi
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Mansour Sobeh
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| |
Collapse
|
6
|
Alajlani M, Rasool S. Evaluation of Aitchisonia rosea for oxidative stress and its protective effect on H2O2 induced oxidative damage on DNA and RBCs.. [DOI: 10.21203/rs.3.rs-2978036/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Abstract
Background
Aitchisonia rosea Hemsl. ex Aitch (Family Rubiaceae) has been used traditionally for the treatment of different diseases involving oxidation reactions. The current work was carried out to evaluate anti-oxidant potential of various organic fractions and essential oils from Aitchisonia rosea and to study their protective effect on H2O2 induced oxidative damage on pBR322 DNA and RBC cellular membrane.
Methodology
The in-vitro assays were performed with different concentrations of plant extract, its various fractions and essential oil. The essential oil was isolated, its GCMS analysis was performed and chemical constituents were identified in essential oil. Moreover, DPPH scavenging assay and ferric reducing anti-oxidant power assay was performed. Additionally, the DNA protection assay and RBC cellular membrane protection assay were performed.
Results
The main components identified by GCMS in essential oil of plant were germacrene (18.43%), carvacrol (12.80%) and linalool (2.67%). The results clearly indicated that methanol extract, ethyl acetate, n-butanol fractions and essential oil exhibited very promising radical scavenging effect and reducing power anti-oxidant activity. They also contained higher contents of phenolic compounds. The protective effect of plant on pBR322 DNA with H2O2 treatment showed that at concentration 1000 μg/ml, it converted the open circular damaged form of pBR322 DNA to super coiled safe form. The plant also protected RBC cellular membrane and thus safe for human use.
Conclusion
The results proved Aitchisonia rosea to be a valuable anti-oxidant that protects pBR322 DNA and RBC cellular membrane from free radical induced oxidative damage. Furthermore, it could be further develop as powerful and new anti-oxidant.
Collapse
|
7
|
Glavinić U, Rajković M, Ristanić M, Stevanović J, Vejnović B, Djelić N, Stanimirović Z. Genotoxic Potential of Thymol on Honey Bee DNA in the Comet Assay. INSECTS 2023; 14:insects14050451. [PMID: 37233079 DOI: 10.3390/insects14050451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Thymol is a natural essential oil derived from the plant Thymus vulgaris L. It is known to be beneficial for human and animal health and has been used in beekeeping practice against Varroa mite for years. In this study, the genotoxic and antigenotoxic potential of thymol were evaluated on the honey bee (Apis mellifera L.) continuous cell line AmE-711 for the first time. Using the Comet assay, three increasing concentrations (10, 100, and 1000 µg/mL) of thymol were tested. Negative control (non-treated cells) and positive control (cells treated with 100 µM H2O2) were also included. The absence of thymol cytotoxicity was confirmed with the Trypan blue exclusion test. Thymol in the concentration of 10 µg/mL did not increase DNA damage in AmE-711 honey bee cells, while 100 and 1000 µg/mL concentrations showed genotoxic effects. For testing the antigenotoxic effect, all concentrations of thymol were mixed and incubated with H2O2. The antigenotoxic effect against was absent at all concentrations (10, 100, 1000 μg/mL) tested. Moreover, thymol enhanced the H2O2-induced DNA migration in the Comet assay. The obtained results indicate genotoxic effects of thymol on cultured honey bee cells suggesting its careful application in beekeeping practice to avoid possible negative effects on honey bees.
Collapse
Affiliation(s)
- Uroš Glavinić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Rajković
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marko Ristanić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Jevrosima Stevanović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Branislav Vejnović
- Department of Economics and Statistics, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ninoslav Djelić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Zoran Stanimirović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
8
|
Tagnaout I, Zerkani H, Bencheikh N, Amalich S, Bouhrim M, Mothana RA, Alhuzani MR, Bouharroud R, Hano C, Zair T. Chemical Composition, Antioxidants, Antibacterial, and Insecticidal Activities of Origanum elongatum (Bonnet) Emberger & Maire Aerial Part Essential Oil from Morocco. Antibiotics (Basel) 2023; 12:antibiotics12010174. [PMID: 36671374 PMCID: PMC9855143 DOI: 10.3390/antibiotics12010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The aim of this research is to profile the chemical composition of the essential oil (EO) extracted from the aerial parts of Origanum elongatum (O. elongatum) and to evaluate its antioxidant, antibacterial and insecticidal activities on Ceratitis capitata adults. Gas chromatography coupled with mass spectrometry (GC/MS) revealed a total of 27 constituents in EO of O. elongatum, which accounted for 99.08% of its constituents. Carvacrol (57.32%) was a main component, followed by p-cymene (14.70%) and γ-terpinene (9.84%). The antioxidant activity of O. elongatum EO was investigated using DPPH (1,1-diphenyl-2-picrylhydrazyl), FRAP (Ferric reducing antioxidant power), and TCA (the total antioxidant capacity) methods. This EO exhibited a remarkable antiradical and reducing power against DPPH (IC50 = 2.855 ± 0.018μL/mL), FRAP (EC0.5 = 0.124 ± 0.013µL/mL) and TCA (IC50 = 14.099 ± 0.389 mg AAE/g of the EO). The antibacterial tests in vitro, using the disc and dilution methods, were carried out on nine pathogenic bacteria isolated from the hospital patients, such as Enterococcus faecalis, Serratia fonticola, Staphylococcus aureus, Acinétobacter baumannii, Klebsiella oxytoca, Klebsiella pneumoniae sensible, E.coli sensible, E.coli resistante, and Enterobacter aerogenes. The EO demonstrated a considerable antibacterial activity with minimum inhibitory concentrations (MIC) from 2 to 8 µL/mL against all strains except Staphylococcus aureus (MIC = 32 µL/mL). Regarding the insecticidal activity, the fumigation test indicated a high efficacy (100% mortality), and a lethal dose of LD50 = 17 ± 0.53 μL/L air was found after 24 h of exposureTherefore, O. elongatum EO could be utilized as a natural antioxidant, antibiotic and biopesticides.
Collapse
Affiliation(s)
- Imane Tagnaout
- Chemistry of Bioactive Molecules and the Environment, Faculty of Science, University Moulay Ismail, Zitoune Meknes B.P. 11201, Meknes 50050, Morocco
| | - Hannou Zerkani
- Chemistry of Bioactive Molecules and the Environment, Faculty of Science, University Moulay Ismail, Zitoune Meknes B.P. 11201, Meknes 50050, Morocco
| | - Noureddine Bencheikh
- Faculty of Sciences, University Mohammed First, Boulevard Mohamed VI BP 717, Oujda 60000, Morocco
- Correspondence: (N.B.); (T.Z.)
| | - Smail Amalich
- Laboratory of Phytochemistry, National Agency of Medicinal and Aromatic Plants of Taounate, Taounate 34012, Morocco
| | - Mohamed Bouhrim
- Laboratory of Biological Engineering, Team of Functional and Pathological Biology, Faculty of Sciences and Technology Beni Mellal, University Sultan Moulay Slimane, Beni-Mellal 23000, Morocco
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed R. Alhuzani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Rachid Bouharroud
- Integrated Crop Production Unit, Regional Center for Agronomic Research of Agadir, Agadir 80350, Morocco
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 28000 Chartres, France
| | - Touriya Zair
- Chemistry of Bioactive Molecules and the Environment, Faculty of Science, University Moulay Ismail, Zitoune Meknes B.P. 11201, Meknes 50050, Morocco
- Correspondence: (N.B.); (T.Z.)
| |
Collapse
|
9
|
Garzoli S, Alarcón-Zapata P, Seitimova G, Alarcón-Zapata B, Martorell M, Sharopov F, Fokou PVT, Dize D, Yamthe LRT, Les F, Cásedas G, López V, Iriti M, Rad JS, Gürer ES, Calina D, Pezzani R, Vitalini S. Natural essential oils as a new therapeutic tool in colorectal cancer. Cancer Cell Int 2022; 22:407. [PMID: 36514100 PMCID: PMC9749237 DOI: 10.1186/s12935-022-02806-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is the third most revalent type of cancer in the world and the second most common cause of cancer death (about 1 million per year). Historically, natural compounds and their structural analogues have contributed to the development of new drugs useful in the treatment of various diseases, including cancer. Essential oils are natural odorous products made up of a complex mixture of low molecular weight compounds with recognized biological and pharmacological properties investigated also for the prevention and treatment of cancer. The aim of this paper is to highlight the possible role of essential oils in CRC, their composition and the preclinical studies involving them. It has been reviewed the preclinical pharmacological studies to determine the experimental models used and the anticancer potential mechanisms of action of natural essential oils in CRC. Searches were performed in the following databases PubMed/Medline, Web of science, TRIP database, Scopus, Google Scholar using appropriate MeSH terms. The results of analyzed studies showed that EOs exhibited a wide range of bioactive effects like cytotoxicity, antiproliferative, and antimetastatic effects on cancer cells through various mechanisms of action. This updated review provides a better quality of scientific evidence for the efficacy of EOs as chemotherapeutic/chemopreventive agents in CRC. Future translational clinical studies are needed to establish the effective dose in humans as well as the most suitable route of administration for maximum bioavailability and efficacy. Given the positive anticancer results obtained from preclinical pharmacological studies, EOs can be considered efficient complementary therapies in chemotherapy in CRC.
Collapse
Affiliation(s)
- Stefania Garzoli
- Department of Drug Chemistry and Technologies, University “Sapienza” of Rome, P.Le Aldo Moro 5, 00185 Rome, Italy
| | - Pedro Alarcón-Zapata
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepción, Concepción, VIII – Bio Bio Region Chile
- Facultad de Ciencias de La Salud, Universidad San Sebastián, Lientur 1457, 4080871 Concepción, Chile
| | - Gulnaz Seitimova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Barbara Alarcón-Zapata
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepción, Concepción, VIII – Bio Bio Region Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Farukh Sharopov
- Research Institution “Chinese-Tajik Innovation Center for Natural Products”, National Academy of Sciences of the Republic of Tajikistan, Ayni 299/2, Dushanbe, 734063 Tajikistan
| | | | - Darline Dize
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, Yaounde, 812 Cameroon
| | | | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Saragossa, Spain
| | - Guillermo Cásedas
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Saragossa, Spain
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi di Milano, Via G. Pascal 36, 20133 Milan, Italy
| | | | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Raffaele Pezzani
- Phytotherapy Lab (PhT-Lab), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale 105, 35128 Padua, Italy
- AIROB, Associazione Italiana Per la Ricerca Oncologica Di Base, Padua, Italy
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, Università Degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| |
Collapse
|
10
|
Fraternale D, Dufat H, Albertini MC, Bouzidi C, D’Adderio R, Coppari S, Di Giacomo B, Melandri D, Ramakrishna S, Colomba M. Chemical composition, antioxidant and anti-inflammatory properties of Monarda didyma L. essential oil. PeerJ 2022; 10:e14433. [PMID: 36438580 PMCID: PMC9686412 DOI: 10.7717/peerj.14433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
In the present study, Monarda didyma L. essential oil (isolated from the flowering aerial parts of the plant) was examined to characterize its chemotype and to evaluate, in addition to the quali-quantitative chemical analysis, the associated antioxidant and anti-inflammatory activities. The plants were grown in central Italy, Urbino (PU), Marche region. Different analyses (TLC, GC-FID, GC-MS and 1H-NMR) allowed the identification of twenty compounds among which carvacrol, p-cymene and thymol were the most abundant. On this basis, the chemotype examined in the present study was indicated as Monarda didyma ct. carvacrol. The antioxidant effect was assessed by DPPH assay. Moreover, this chemotype was investigated for the anti-inflammatory effect in an in vitro setting (i.e., LPS-stimulated U937 cells). The decreased expression of pro-inflammatory cytokine IL-6 and the increased expression of miR-146a are suggestive of the involvement of the Toll-like receptor-4 signaling pathway. Although further studies are needed to better investigate the action mechanism/s underlying the results observed in the experimental setting, our findings show that M. didyma essential oil is rich in bioactive compounds (mainly aromatic monoterpenes and phenolic monoterpenes) which are most likely responsible for its beneficial effect.
Collapse
Affiliation(s)
- Daniele Fraternale
- Department of Biomolecular Sciences, University of Urbino, Urbino, PU, Italy
| | - Hanh Dufat
- Produits Naturels, Analyse et Synthèse, CITCOM-UMR CNRS 8038—Faculté de Santé, Pharmacie, Université Paris Cité, Université de Paris, Paris, France
| | | | - Chouaha Bouzidi
- Produits Naturels, Analyse et Synthèse, CITCOM-UMR CNRS 8038—Faculté de Santé, Pharmacie, Université Paris Cité, Université de Paris, Paris, France
| | - Rossella D’Adderio
- Department of Biomolecular Sciences, University of Urbino, Urbino, PU, Italy
| | - Sofia Coppari
- Department of Biomolecular Sciences, University of Urbino, Urbino, PU, Italy
| | - Barbara Di Giacomo
- Department of Biomolecular Sciences, University of Urbino, Urbino, PU, Italy
| | - Davide Melandri
- U. Burns Center, Dermatology and Emilia Romagna Regional Skin Bank, M. Bufalini Hospital, Cesena, FC, Italy
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore
| | - Mariastella Colomba
- Department of Biomolecular Sciences, University of Urbino, Urbino, PU, Italy
| |
Collapse
|
11
|
Polymer-Based Hydrogels Enriched with Essential Oils: A Promising Approach for the Treatment of Infected Wounds. Polymers (Basel) 2022; 14:polym14183772. [PMID: 36145917 PMCID: PMC9502037 DOI: 10.3390/polym14183772] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Among the factors that delay the wound healing process in chronic wounds, bacterial infections are a common cause of acute wounds becoming chronic. Various therapeutic agents, such as antibiotics, metallic nanoparticles, and essential oils have been employed to treat infected wounds and also prevent the wounds from bacterial invasion. Essential oils are promising therapeutic agents with excellent wound healing, anti-inflammatory and antimicrobial activities, and good soothing effects. Some essential oils become chemically unstable when exposed to light, heat, oxygen, and moisture. The stability and biological activity of essential oil can be preserved via loading into hydrogels. The polymer-based hydrogels loaded with bioactive agents are regarded as ideal wound dressings with unique features, such as controlled and sustained drug release mechanisms, good antibacterial activity, non-toxicity, excellent cytocompatibility, good porosity, moderate water vapour transmission rate, etc. This review addresses the pre-clinical outcomes of hydrogels loaded with essential oils in the treatment of infected wounds.
Collapse
|
12
|
Peng X, Zhou Q, Wu C, Zhao J, Tan Q, He Y, Hu L, Fang Z, Lin Y, Xu S, Feng B, Li J, Zhuo Y, Van Ginneken C, Jiang X, Wu D, Che L. Effects of dietary supplementation with essential oils and protease on growth performance, antioxidation, inflammation and intestinal function of weaned pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:39-48. [PMID: 35949988 PMCID: PMC9344314 DOI: 10.1016/j.aninu.2021.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022]
Abstract
This experiment evaluated the impacts of essential oils (EO) and protease (PRO), independently or in combination, on growth performance, antioxidation, inflammation and intestinal function of weaned pigs. One hundred and sixty weaned pigs (21 d of age, BW of 6.74 ± 0.20 kg) were randomly divided into 4 treatments with 8 replicate pens of 5 pigs per pen. Dietary treatments included the following: 1) control diet (CON), 2) CON with 300 mg/kg essential oils (EO), 3) CON with 500 mg/kg protease (PRO), 4) CON with 300 mg/kg essential oil and 500 mg/kg protease (EO + PRO). On d 8, one pig from each pen was selected for sampling. The remaining pigs were fed for an additional week and growth performance was monitored during this period. Dietary treatments had no marked effects (P > 0.05) on the growth performance of pigs. However, pigs receiving EO diet had higher (P < 0.05) serum glutathione peroxidase (GSH-Px) activity, and tended to decrease (P = 0.063) serum concentration of tumor necrosis factor-α (TNF-α). In addition, pigs receiving EO diet had higher (P < 0.05) abundances of phylum Actinobacteria, and genera Bifidobacterium, and lower (P < 0.05) phylum Bacteroidetes and genera Alloprevotella in colonic digesta. Pigs receiving PRO diet decreased (P < 0.05) the serum concentration of malondialdehyde (MDA) and diamine oxidase activity, increased (P < 0.05) the villus height and the ratio of villus height to crypt depth in duodenum, increased sucrase activity in jejunal mucosa, and also increased the abundance of phylum Actinobacteria in colonic digesta. Furthermore, the synergistic effects of EO and PRO was observed (P < 0.05) for pigs with decreasing serum TNF-α concentration and increasing serum GSH-Px activity. Collectively, the results indicated that dietary supplementation of EO and PRO had no significant effects on growth performance of weaned pigs. EO diet appeared to improve antioxidant activity and intestinal microbiota, while PRO diet improved intestinal morphology and digestive enzyme activity, and there was a synergistic effect of EO and PRO on reducing inflammatory parameters in weaned pigs.
Collapse
Affiliation(s)
- Xie Peng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Zhou
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Cheng Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Zhao
- Novus International Trading (Shanghai) Co., Ltd., Shanghai 200080, China
| | - Quan Tan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Novus International Trading (Shanghai) Co., Ltd., Shanghai 200080, China
| | - Ying He
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang Hu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chris Van Ginneken
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Xuemei Jiang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
13
|
The Role of Thyme (Zataria multiflora Boiss) Essential Oil as Natural Antioxidant on the Lipid Oxidation in Mayonnaise. J FOOD QUALITY 2022. [DOI: 10.1155/2022/1527289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nowadays, essential oils are considered substitutes for synthetic additives in food products. Since lipid oxidation is the main chemical process affecting mayonnaise deterioration, in this research, the antioxidant activity of essential oil of thyme (Zataria multiflora Boiss) was determined for oxidative stability of treated mayonnaise (homogenized) during 6 months of storage. The antioxidant activities of the essential oil of thyme (0–150 μg/g) were investigated by the DPPH method. Then, the efficiency of this essential oil (144.4 μg/g) as a natural antioxidant in mayonnaise was studied by following analysis: peroxide, anisidine, Totox, and thiobarbituric acid. GC analysis of the essential oil resulted in the identification of forty compounds. The essential oil is characterized by a high number of monoterpenes such as thymol and carvacrol. Regarding antioxidation, the investigated essential oil strongly reduced the DPPH radical (IC50 = 144.4 μg/ml). This study confirms that the essential oil of thyme possessed antioxidant properties in vitro. The results showed that the treatments containing essential oil and TBHQ significantly reduced the oxidation (
), while the control sample was oxidized faster. The essential oil had a significant effect on taste, odor, and overall acceptance, but no significant difference was observed in color and texture. The results of the present experiments suggest that essential oil of thyme (Z. multiflora) can be used as a source of natural antioxidant for the application in food industries to prevent lipid oxidation particularly lipid-containing foods such as mayonnaise. Therefore, it can used as a natural antioxidant and flavoring compound in foods such as mayonnaise.
Collapse
|
14
|
Gaba J, Sharma S, Kaur P. Preparation and Biological Evaluation of Thymol Functionalized 2-Pyrazoline and Dihydropyrimidinone Hybrids. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2040896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jyoti Gaba
- Department of Chemistry, Punjab Agricultural University, Ludhiana, India
| | - Sunita Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Pardeep Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
15
|
Ahmad A, Saeed M, Ansari IA. Molecular insights on chemopreventive and anticancer potential of carvacrol: Implications from solid carcinomas. J Food Biochem 2021; 45:e14010. [PMID: 34796513 DOI: 10.1111/jfbc.14010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022]
Abstract
Globally, cancer is one of the deadliest diseases, estimated to cause 9.9 million deaths in 2020. Conventional cancer treatments commonly involve mono-chemotherapy or a combination of radiotherapy and mono-chemotherapy. However, the negative side effects of these approaches have been extensively reported and have prompted the search for new therapeutic drugs. Over the past few years, numerous dietary agents, medicinal plants, and their phytochemicals gained considerable therapeutic importance because of their anticancer, antiviral, anti-inflammatory, and antioxidant activities. Recent years have shown that essential oils possess therapeutic effects against numerous cancers. They are primarily used due to their lesser side effects than standard chemotherapeutic drugs. Carvacrol (CRV) is a phenolic monoterpenoid found in essential oils of oregano, thyme, pepperwort, wild bergamot, and other plants. Numerous anticancer reports of CRV substantiated that the main mechanistic action of CRV involves reduction in the viability of cancer cells and induction of apoptosis via both intrinsic and extrinsic pathways. CRV also obstructs the migration and invasion of cells leading to the suppressed proliferation rate. Furthermore, CRV mediates augmented ROS generation resulting in DNA damage and also halts the progression of cell cycle. Treatment of CRV modulates the expression of apoptotic proteins (Bax, Bad) and molecular targets of various signaling pathways (PI3K/AKT/mTOR, MAPKs, and Notch) in multiple solid carcinomas. Hence, this review aimed to acquire and disseminate the knowledge of chemopreventive and anticancer effects of CRV and the mechanisms of action already described for the compound against numerous cancers, including solid carcinomas, to guide future research. PRACTICAL APPLICATIONS: Development and formulation of phytocompound based anticancer drug agents to counteract the aftereffects of chemotherapeutic drugs is a propitious approach. CRV is a monoterpenoid consisting of a phenolic group obtained from the essential oils of oregano and thyme. These plants are being used as food flavoring spice and as fragrance ingredient in various cosmetic formulations. For the use of CRV as an efficient chemopreventive agent, different therapeutic interactions of CRV along with its targeted pathways and molecules, involved in the regulation of onset and progression of various types of solid carcinomas, need to be studied and explored thoroughly.
Collapse
Affiliation(s)
- Afza Ahmad
- Department of Biosciences, Integral University, Lucknow, India
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Irfan A Ansari
- Department of Biosciences, Integral University, Lucknow, India
| |
Collapse
|
16
|
Cicalău GIP, Babes PA, Calniceanu H, Popa A, Ciavoi G, Iova GM, Ganea M, Scrobotă I. Anti-Inflammatory and Antioxidant Properties of Carvacrol and Magnolol, in Periodontal Disease and Diabetes Mellitus. Molecules 2021; 26:6899. [PMID: 34833990 PMCID: PMC8623889 DOI: 10.3390/molecules26226899] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/03/2021] [Accepted: 11/13/2021] [Indexed: 12/15/2022] Open
Abstract
Periodontal disease and diabetes mellitus are two pathologies that are extremely widespread worldwide and share the feature of chronic inflammation. Carvacrol is a phenolic monoterpenoid, produced by a variety of herbs, the most well-known of which is Origanum vulgare. Magnolol is a traditional polyphenolic compound isolated from the stem bark of Magnolia officinalis, mainly used in Chinese medicine. The purpose of this paper is to review the therapeutic properties of these bioactive compounds, in the treatment of periodontitis and diabetes. Based on our search strategy we conducted a literature search in the PubMed and Google Scholar databases to identify studies. A total of one hundred eighty-four papers were included in the current review. The results show that carvacrol and magnolol have anti-inflammatory, antioxidant, antimicrobial, anti-osteoclastic, and anti-diabetic properties that benefit both pathologies. Knowledge of the multiple activities of carvacrol and magnolol can assist with the development of new treatment strategies, and the design of clinical animal and human trials will maximize the potential benefits of these extracts in subjects suffering from periodontitis or diabetes.
Collapse
Affiliation(s)
- Georgiana Ioana Potra Cicalău
- Doctoral School of Biomedical Science, University of Oradea, 1st University Street, 410087 Oradea, Romania;
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| | - Petru Aurel Babes
- Doctoral School of Biomedical Science, University of Oradea, 1st University Street, 410087 Oradea, Romania;
| | - Horia Calniceanu
- Department of Periodontology, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Periodontal and Periimplant Diseases Research Center “Prof. Dr. Anton Sculean”, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adelina Popa
- Department of Orthodontics, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Orthodontic Research Center (ORTHO-CENTER), Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Gabriela Ciavoi
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| | - Gilda Mihaela Iova
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| | - Mariana Ganea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania;
| | - Ioana Scrobotă
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| |
Collapse
|
17
|
Bishoyi AK, Mahapatra M, Paidesetty SK, Padhy RN. Design, molecular docking, and antimicrobial assessment of newly synthesized phytochemical thymol Mannich base derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Hassan ME, Hassan RR, Diab KA, El-Nekeety AA, Hassan NS, Abdel-Wahhab MA. Nanoencapsulation of thyme essential oil: a new avenue to enhance its protective role against oxidative stress and cytotoxicity of zinc oxide nanoparticles in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52046-52063. [PMID: 33999325 PMCID: PMC8126601 DOI: 10.1007/s11356-021-14427-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/10/2021] [Indexed: 05/09/2023]
Abstract
Although the green synthesis of nanometals is eco-friendly, the toxicity or safety of these biosynthesized nanoparticles in living organisms is not fully studied. This study aimed to evaluate the potential protective role of encapsulated thyme oil (ETO) against zinc oxide nanoparticles (ZnO-NPs). ETO was prepared using a mixture of whey protein isolate, maltodextrin, and gum Arabic, and ZnO-NPs were synthesized using parsley extract. Six groups of male Sprague-Dawley rats were treated orally for 21 days which included the control group, ZnO-NP-treated group (25 mg/kg body weight (b.w.)), ETO-treated groups at low or high dose (50, 100 mg/kg b.w.), and the groups that received ZnO-NPs plus ETO at the two tested doses. Blood and tissue samples were collected for different assays. The results showed that carvacrol and thymol were the major components in ETO among 13 compounds isolated by GC-MS. ZnO-NPs were nearly spherical and ETOs were round in shape with an average size of 38 and 311.8 nm, respectively. Administration of ZnO-NPs induced oxidative stress, DNA damage, biochemical, ctyogentical, and histological changes in rats. ETO at the tested doses alleviated these disturbances and showed protective effects against the hazards of ZnO-NPs. It could be concluded that encapsulation of thyme oil using whey protein isolate, maltodextrin, and gum Arabic improved the antioxidant properties of ETO, probably possess synergistic effects, and can be used as a promising tool in pharmaceutical and food applications.
Collapse
Affiliation(s)
- Marwa E Hassan
- Toxicology Department, Research Institute of Medical Entomology, Cairo, Egypt
| | - Rasha R Hassan
- Immunology Department, Research Institute of Medical Entomology, Cairo, Egypt
| | - Kawthar A Diab
- Genetics and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Nabila S Hassan
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
19
|
Cohen SM, Eisenbrand G, Fukushima S, Gooderham NJ, Guengerich FP, Hecht SS, Rietjens IMCM, Rosol TJ, Davidsen JM, Harman CL, Lu V, Taylor SV. FEMA GRAS assessment of natural flavor complexes: Origanum oil, thyme oil and related phenol derivative-containing flavoring ingredients. Food Chem Toxicol 2021; 155:112378. [PMID: 34217738 DOI: 10.1016/j.fct.2021.112378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 10/21/2022]
Abstract
In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients, mostly consisting of a variety of essential oils and botanical extracts. This publication, seventh in the series, re-evaluates NFCs with constituent profiles dominated by phenolic derivatives including carvacrol, thymol and related compounds using a constituent-based procedure first published in 2005 and updated in 2018. The procedure is based on the chemical characterization of each NFC as intended for commerce and the estimated intake of the constituent congeneric groups. The procedure applies the threshold of toxicological concern (TTC) concept and evaluates relevant data on absorption, metabolism, genotoxic potential and toxicology of the constituent congeneric groups and the NFC under evaluation. Herein, the FEMA Expert Panel affirmed the generally recognized as safe (GRAS) status of seven phenolic derivative-based NFCs, Origanum Oil (Extractive) (FEMA 2828), Savory Summer Oil (FEMA 3013), Savory Summer Oleoresin (FEMA 3014), Savory Winter Oil (FEMA 3016), Savory Winter Oleoresin (FEMA 3017), Thyme Oil (FEMA 3064) and Thyme White Oil (FEMA 3065) under their conditions of intended use as flavor ingredients.
Collapse
Affiliation(s)
- Samuel M Cohen
- Dept. of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198-3135, USA
| | - Gerhard Eisenbrand
- University of Kaiserslautern, Germany (Retired), Kühler Grund 48/1, 69126, Heidelberg, Germany
| | - Shoji Fukushima
- Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Nigel J Gooderham
- Dept. of Metabolism, Digestion, Reproduction, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom
| | - F Peter Guengerich
- Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Stephen S Hecht
- Masonic Cancer Center and Dept. of Laboratory Medicine and Pathology, Cancer and Cardiovascular Research Building, 2231 6th St. S.E., Minneapolis, MN, 55455, USA
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 1 Ohio University, Athens, OH, 45701, USA
| | - Jeanne M Davidsen
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA
| | - Christie L Harman
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA
| | - Vivian Lu
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA
| | - Sean V Taylor
- Scientific Secretary to the FEMA Expert Panel, 1101 17th Street, N.W., Suite 700, Washington, D.C., 20036, USA.
| |
Collapse
|
20
|
Garg A, Ahmad J, Hassan MZ. Inclusion complex of thymol and hydroxypropyl-β-cyclodextrin (HP-β-CD) in polymeric hydrogel for topical application: Physicochemical characterization, molecular docking, and stability evaluation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Fuentes C, Fuentes A, Barat JM, Ruiz MJ. Relevant essential oil components: a minireview on increasing applications and potential toxicity. Toxicol Mech Methods 2021; 31:559-565. [PMID: 34112059 DOI: 10.1080/15376516.2021.1940408] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phenolic compounds carvacrol, thymol, eugenol, and vanillin are four of the most thoroughly investigated essential oil components given their relevant biological properties. These compounds are generally considered safe for consumption and have been used in a wide range of food and non-food applications. Significant biological properties, including antimicrobial, antioxidant, analgesic, anti-inflammatory, anti-mutagenic, or anti-carcinogenic activity, have been described for these components. They are versatile molecules with wide-ranging potential applications whose use may substantially increase in forthcoming years. However, some in vitro and in vivo studies, and several case reports, have indicated that carvacrol, thymol, and eugenol may have potential toxicological effects. Oxidative stress has been described as the main mechanism underlying their cytotoxic behavior, and mutagenic and genotoxic effects have been occasionally observed. In vivo studies show adverse effects after acute and prolonged carvacrol and thymol exposure in mice, rats, and rabbits, and eugenol has caused pulmonary and renal damage in exposed frogs. In humans, exposure to these three compounds may cause different adverse reactions, including skin irritation, inflammation, ulcer formation, dermatitis, or slow healing. Toxicological vanillin effects have been less reported, although reduced cell viability after exposure to high concentrations has been described. In this context, the possible risks deriving from increased exposure to these components for human health and the environment should be thoroughly revised.
Collapse
Affiliation(s)
- Cristina Fuentes
- Department of Food Technology, Universitat Politècnica de València, Valencia, Spain
| | - Ana Fuentes
- Department of Food Technology, Universitat Politècnica de València, Valencia, Spain
| | - José Manuel Barat
- Department of Food Technology, Universitat Politècnica de València, Valencia, Spain
| | - María José Ruiz
- Faculty of Pharmacy, Laboratory of Toxicology, Universitat de València, Valencia, Spain
| |
Collapse
|
22
|
Zhang X, Peng Y, Wu C. Chicken embryonic toxicity and potential in vitro estrogenic and mutagenic activity of carvacrol and thymol in low dose/concentration. Food Chem Toxicol 2021; 150:112038. [PMID: 33571611 DOI: 10.1016/j.fct.2021.112038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 11/25/2022]
Abstract
Thymol and carvacrol are phenolic isomers with the potential developmental toxicity and endocrine disruptions (ED) at low concentrations. However, few reports estimated their toxicity and ED below 10-6 M (150 μg/L) (MW of thymol and carvacrol: 150 g/mol). In this study, both chemicals were determined for the developmental toxicity and potential ED at 500 μg/kg and 50 μg/kg using the chicken embryonic assay, potential estrogenic activity (EA) at 10-12 to 10-7 M (1.5 × 10-4 to 15 μg/L) by the MCF-7 cell proliferation assay, mutagenicity at 10-12 to 10-6 M (1.5 × 10-4 to 150 μg/L) by the Ames test, and an in silico method for ED. Carvacrol showed mutagenic risks at 10-7, 10-8, and 10-11 M (15, 1.5, and 0.0015 μg/L) while thymol at 10-6 and 10-8 M (150 and 1.5 μg/L). Carvacrol negatively impacted embryonic growth at 50 μg/kg, with weak EA at 10-8 M (1.5 μg/L). Carvacrol but not thymol had weak EA at 10-12 M (1.5 × 10-4 μg/L). Molecular docking to 14 types of hormone-related receptors revealed that carvacrol had higher binding affinities to two estrogen receptors and the mineralocorticoid receptor than those to thymol. Carvacrol and thymol varied in toxicities due to a different location of one phenolic hydroxyl group.
Collapse
Affiliation(s)
- Xinwen Zhang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Ying Peng
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
23
|
|
24
|
Effects of mint, thyme, and curcumin extract nanoformulations on the sperm quality, apoptosis, chromatin decondensation, enzyme activity, and oxidative status of cryopreserved goat semen. Cryobiology 2020; 97:144-152. [DOI: 10.1016/j.cryobiol.2020.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 01/02/2023]
|
25
|
Arkali G, Aksakal M, Kaya ŞÖ. Protective effects of carvacrol against diabetes-induced reproductive damage in male rats: Modulation of Nrf2/HO-1 signalling pathway and inhibition of Nf-kB-mediated testicular apoptosis and inflammation. Andrologia 2020; 53:e13899. [PMID: 33242925 DOI: 10.1111/and.13899] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus, which causes many complications, also adversely affects reproductive system in men. Studies reported that natural antioxidants are effective in reducing important complication risks caused by diabetes. Carvacrol is an antioxidant phenolic monoterpene compound with therapeutic effect in various diseases found in essential oils of aromatic plants such as pepper, wild bergamot and thyme. We aimed to investigate the effects of carvacrol on diabetes-induced reproductive damage in male rats by evaluating the Nrf2/HO-1 pathway and Nf-kB-mediated apoptosis/inflammation and spermatological parameters. For this purpose, 74 Wistar albino male rats were used. The diabetes model was performed using single-dose intraperitoneal injection of streptozotocin 55 mg/kg. Rats were fed with carvacrol 75 mg/kg/daily/gavage for 4 and 8 weeks. Rats were divided into four groups: control group, diabetic group, carvacrol group which fed with carvacrol and the diabetic group which fed with carvacrol. It was determined that carvacrol significantly decreased malondialdehyde levels, Bax,COX-2,Nf-kB protein expression levels, Bax/Bcl-2 ratio and significantly increased glutathione peroxidase, catalase activities, Bcl-2, Nrf2,HO-1 protein expression levels and it was determined that had a positive effect on spermatological parameters. In conclusion, the negative effects of diabetes in the male reproductive system can be prevented and/or reduced by giving carvacrol.
Collapse
Affiliation(s)
- Gözde Arkali
- Department of Physiology, Fırat University Faculty of Veterinary Medicine, Elazığ, Turkey
| | - Mesut Aksakal
- Department of Physiology, Fırat University Faculty of Veterinary Medicine, Elazığ, Turkey
| | - Şeyma Özer Kaya
- Department of Reproduction and Artificial Insemınation, Fırat University Faculty of Veterinary Medicine, Elazığ, Turkey
| |
Collapse
|
26
|
Tonelli AE, Shen J. Delivery of pharmaceuticals and other active ingredients with their crystalline cyclodextrin inclusion compounds. Int J Pharm 2020; 589:119856. [PMID: 32898635 DOI: 10.1016/j.ijpharm.2020.119856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 11/24/2022]
Abstract
In honor of Prof. Thorsteinn Loftsson's 70th birthday, we offer this personal review of our work using cyclodextrins (CDs) complexed with a variety of active ingredients, including pharmaceuticals, for the purpose of improving their delivery to polymer materials, e.g., fibers, films, hydrogels, etc. Using the affinity of CDs to host and form non-covalent inclusion complexes (ICs) with guest molecules, including a variety of high molecular weight polymers, it is possible to readily deliver these guest molecules into polymer materials via either melt or solution processing of their crystalline or soluble guest molecule-CD-ICs or -rotaxanes. This provides the following advantages: i. CDs are non-toxic, implantable, and biodegradable and have earned the GRAS rating from the FDA. ii. Guest molecules, even those that are neat liquids, can form solid crystalline CD-ICs that are thermally stable to ~ 200 °C and above. This approach permits facile melt-processing into polymer materials for delivery without migration, loss, or degradation of the active guest ingredient. iii. For guests harmful and toxic to their users and the environment, delivery in the form of crystalline CD-ICs can limit any contact with and release of the included toxic guests before they function and are used. iv. It has been demonstrated that, by simple precipitation methods, neat as-received CDs that adopt cage crystal structures can be readily transformed to their columnar crystal structures containing only water in their channels, which can be easily displaced by small molecule, as well as polymer guests. v. Guest-CD-rotaxanes are water soluble, they protect the threaded guest from sources of degradation, and the CD hydroxyl groups may be modified to direct the guest-CD-rotaxane to specific substrates. For these reasons, here we summarize our contributions to the study of CD inclusion and delivery of a variety of guest molecules, including antibacterials, spermicides, insecticides, flame retardants, and dyes, that can more usefully functionalize polymer materials.
Collapse
Affiliation(s)
- Alan E Tonelli
- Fiber & Polymer Science Program, Wilson College of Textiles, North Carolina State University, Campus Box 8301, Raleigh, NC 27695-8301, United States.
| | - Jialong Shen
- Fiber & Polymer Science Program, Wilson College of Textiles, North Carolina State University, Campus Box 8301, Raleigh, NC 27695-8301, United States
| |
Collapse
|
27
|
In Vitro Hormetic Effect Investigation of Thymol on Human Fibroblast and Gastric Adenocarcinoma Cells. Molecules 2020; 25:molecules25143270. [PMID: 32709059 PMCID: PMC7397309 DOI: 10.3390/molecules25143270] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
The concept of hormesis includes a biphasic cellular dose-response to a xenobiotic stimulus defined by low dose beneficial and high dose inhibitory or toxic effects. In the present study, an attempt has been made to help elucidate the beneficial and detrimental effects of thymol on different cell types by evaluating and comparing the impact of various thymol doses on cancerous (AGS) and healthy (WS-1) cells. Cytotoxic, genotoxic, and apoptotic effects, as well as levels of reactive oxygen species and glutathione were studied in both cell lines exposed to thymol (0–600 µM) for 24 h. The results showed significant differences in cell viability of AGS compared to WS-1 cells exposed to thymol. The differences observed were statistically significant at all doses applied (P ≤ 0.001) and revealed hormetic thymol effects on WS-1 cells, whereas toxic effects on AGS cells were detectable at all thymol concentrations. Thymol at low concentrations provides antioxidative protection to WS-1 cells in vitro while already inducing toxic effects in AGS cells. In that sense, the findings of the present study suggest that thymol exerts a dose-dependent hormetic impact on different cell types, thereby providing crucial information for future in vivo studies investigating the therapeutic potential of thymol.
Collapse
|
28
|
Jahani R, Mojab F, Mahboubi A, Nasiri A, Tahamtani A, Faizi M. An In-Vivo Study on Anticonvulsant, Anxiolytic, and Sedative-Hypnotic Effects of the Polyphenol-Rich Thymus Kotschyanus Extract; Evidence for the Involvement of GABA A Receptors. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:1456-1465. [PMID: 32641954 PMCID: PMC6934950 DOI: 10.22037/ijpr.2019.15579.13194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Antidepressant-like activity of T. kotschyanus has been recently reported by scientists but insufficient attention has been so far devoted to T. kotschyanus, and there is a lack of information on the other neurobehavioral effects and side effects of this species. In the current study, the anticonvulsant, anxiolytic, and sedative-hypnotic, effects of Thymus kotschyanus extract on male NMRI mice were evaluated using pentylenetetrazole, maximal electroshock, elevated plus maze, and pentobarbital-induced sleeping tests. Since phenolic compounds and flavonoids have main roles in pharmacological effects of most plant extracts, the phenolic and flavonoid contents of the extract were measured with Folin-Ciocalteu and AlCl3 reagents. Acute toxicity, passive avoidance, and open field tests were carried out to assess the toxicity of the extract. To find out the possible mechanism of action, flumazenil as the specific GABAA receptor antagonist was used. Anticonvulsant and hypnotic effects of the extract were observed at 400 and 600 mg/kg. The extract at the dose of 200 mg/kg revealed significant anxiolytic effects, but it did not show any adverse effects on learning and memory at all the tested doses. Results of this study indicate that Thymus kotschyanus extract has anticonvulsant, anxiolytic, and hypnotic effects, which are likely related to the ability of some phenolic compounds to activate α1-containing GABAA receptors but more experiments still need to be carried out in order to find the exact mechanism, active component, and the toxicity of the Thymus kotschyanus extract.
Collapse
Affiliation(s)
- Reza Jahani
- Student Research Committee, Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faraz Mojab
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Mahboubi
- Food Safty Research Center Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Nasiri
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Tahamtani
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Ju J, Chen X, Xie Y, Yu H, Guo Y, Cheng Y, Qian H, Yao W. Application of essential oil as a sustained release preparation in food packaging. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Tohidi B, Rahimmalek M, Arzani A, Sabzalian MR. Thymol, carvacrol, and antioxidant accumulation in Thymus species in response to different light spectra emitted by light-emitting diodes. Food Chem 2019; 307:125521. [PMID: 31655264 DOI: 10.1016/j.foodchem.2019.125521] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 08/31/2019] [Accepted: 09/10/2019] [Indexed: 11/29/2022]
Abstract
The essential oils and antioxidant activity of four Thymus species were evaluated under five light spectra (namely, red, blue, red-blue, white, and greenhouse condition). The highest essential oil yield (4.17%) was observed under red light in T. migricus, while the lowest (1.05%) was observed in T. carmanicus under greenhouse conditions. Light quality also led to difference in essential oil constituents. The highest thymol (66%) was found in T. migricus exposed to blue light, while the least (1.69%) was observed in T. kotschyanus grown under red-blue light. The LED treatments did not induce any significant effect on carvacrol of Thymus species in comparison to the greenhouse condition. Finally, the analysis of variance indicates that the effect of light varied with the studied species. T. migricus performed the highest antioxidant capacity (IC50 = 176.8 µg/mL) under blue light. Overall, essential oil components as well as antioxidants showed significant responses to light emitting diodes wavelengths.
Collapse
Affiliation(s)
- Behnaz Tohidi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Mehdi Rahimmalek
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran.
| | - Ahmad Arzani
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| |
Collapse
|
31
|
Preparation and Characterization of Chitosan–Alginate Polyelectrolyte Complexes Loaded with Antibacterial Thyme Oil Nanoemulsions. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183933] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biomedical industries are attempting to utilize natural materials, as they are bio-compatible, non-toxic, and show bioactive properties, like antimicrobial activity. In this study, natural polyelectrolyte complexed chitosan/alginate films (PECs) were prepared via a casting/solvent evaporation technique, and their characteristics and drug release properties were investigated. PEC films made with two different overall polymer contents, 0.4 and 1 w/v%, were loaded with thyme oil nanoemulsion as drug carrier. The structure of the films was studied by FTIR and optical and scanning electron microscopy. Prepared PEC films had good mechanical and water vapor permeability properties. Release of the thyme oil from the pH-sensitive PEC films (TM-PEC) was detected and followed by UV spectroscopy. The results indicated that the drug release rate of TM-PEC films was the fastest when the chitosan content was 1 %w/v, and various mathematical models were analyzed for investigating the drug release mechanism. Antibacterial tests were performed by counting the number of surviving gram-negative and gram-positive bacteria. The in vitro test indicated the limitation Escherichia coli (E. coli) and Staphylococcus aureus (S.aureus) growth in the presence of TM-PEC films. The MTT test showed more cell viability of the TM-PEC film in comparison with that of the PEC film without TM. Based on the measured physical and antibacterial properties, the chitosan–alginate PEC films loaded with antibacterial essential oils can be considered for biomedical applications, such as wound dressings or controlled release systems.
Collapse
|
32
|
Schlemmer KB, Jesus FPK, Tondolo JSM, Weiblen C, Azevedo MI, Machado VS, Botton SA, Alves SH, Santurio JM. In vitro activity of carvacrol, cinnamaldehyde and thymol combined with antifungals against Malassezia pachydermatis. J Mycol Med 2019; 29:375-377. [PMID: 31455580 DOI: 10.1016/j.mycmed.2019.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 10/26/2022]
Abstract
Malassezia pachydermatis is an important opportunistic agent of dermatitis and otitis in dogs. M. pachydermatis is generally treated with topical therapies using combinations of antifungal, antimicrobial and anti-inflammatory agents. We investigated the in vitro activities of carvacrol (CRV), cinnamaldehyde (CIN) and thymol (THY) alone and in combination with antifungal agents (fluconazole, itraconazole, ketoconazole, clotrimazole, miconazole, terbinafine and nystatin) against M. pachydermatis. The assays were performed according to the Clinical and Laboratory Standards Institute (CLSI), using Sabouraud dextrose broth and checkerboard microdilution. The mean fractional inhibitory concentration index (FICI) showed primary synergies for the combinations carvacrol+nystatin, thymol+nystatin, and carvacrol+miconazole (80%). In conclusion, the results obtained indicate that the phytochemicals tested showed relevant in vitro anti-M. pachydermatis activity. Future in vivo experiments are needed to elucidate the safety and therapeutic potential of these combinations.
Collapse
Affiliation(s)
- K B Schlemmer
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - F P K Jesus
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - J S M Tondolo
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - C Weiblen
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - M I Azevedo
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - V S Machado
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - S A Botton
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - S H Alves
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - J M Santurio
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
33
|
Rojas-Armas J, Arroyo-Acevedo J, Ortiz-Sánchez M, Palomino-Pacheco M, Castro-Luna A, Ramos-Cevallos N, Justil-Guerrero H, Hilario-Vargas J, Herrera-Calderón O. Acute and Repeated 28-Day Oral Dose Toxicity Studies of Thymus vulgaris L. Essential Oil in Rats. Toxicol Res 2019; 35:225-232. [PMID: 31341551 PMCID: PMC6629444 DOI: 10.5487/tr.2019.35.3.225] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/22/2018] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
Thymus vulgaris L. is widely used as an ingredient in cooking and in herbal medicine. However, there is little information about its toxicity. The present study was performed to evaluate the acute and repeated 28-day oral dose toxicity of thyme essential oil in rats. For the acute toxicity test, two groups of three rats were used. The rats received a single dose of essential oil: 300 or 2,000 mg/kg of body weight (bw). The rats were observed individually during the first four hours, and then daily until day 14. For the toxicity test with repeated doses, four groups of 10 rats were used. Doses of 100, 250, and 500 mg/kg/day were tested for 28 days. At the end of the experiment, blood was collected and the animals were sacrificed. Histopathological examination showed that in the lungs of rats given the 2,000 mg/kg bw dose, polymorph nuclear infiltrates, hemosiderin macrophages, and interstitial space thickening were present. In the repeated dose study, all rats survived the 28-day treatment period and apparently showed no signs of toxicity. The hematological and biochemical parameters were not altered. The histopathological study of the organs showed severe changes in the lung, with the dose of 500 mg/kg/day; in the other organs, no alterations were observed or the changes were slight. The body weight was only altered in male rats given the 500 mg/kg dose. The relative weight of the organs did not show any significant changes. Our studies revealed that the essential oil of Thymus vulgaris has moderate oral toxicity according to the results of the acute test, whereas the results of the 28-day oral toxicity test suggest that the no-observed-adverse effect level (NOAEL) is greater than 250 mg/kg/day.
Collapse
Affiliation(s)
- Juan Rojas-Armas
- Laboratory of Experimental Pharmacology, Institute of Clinical Research, Faculty of Medicine, National University of San Marcos, Lima, Peru
| | - Jorge Arroyo-Acevedo
- Laboratory of Experimental Pharmacology, Institute of Clinical Research, Faculty of Medicine, National University of San Marcos, Lima, Peru
| | - Manuel Ortiz-Sánchez
- Section of Physiology, Faculty of Medicine, National University of San Marcos, Lima, Peru
| | | | - Américo Castro-Luna
- Faculty of Pharmacy and Biochemistry, National University of San Marcos, Lima, Peru
| | - Norma Ramos-Cevallos
- Faculty of Pharmacy and Biochemistry, National University of San Marcos, Lima, Peru
| | - Hugo Justil-Guerrero
- Laboratory of Experimental Pharmacology, Institute of Clinical Research, Faculty of Medicine, National University of San Marcos, Lima, Peru
| | - Julio Hilario-Vargas
- Department of Physiology, School of Medicine, National University of Trujillo, Trujillo, Peru
| | | |
Collapse
|
34
|
Thapa D, Richardson AJ, Zweifel B, Wallace RJ, Gratz SW. Genoprotective Effects of Essential Oil Compounds Against Oxidative and Methylated DNA Damage in Human Colon Cancer Cells. J Food Sci 2019; 84:1979-1985. [PMID: 31206673 DOI: 10.1111/1750-3841.14665] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
Abstract
Essential oils (EO) are widely used in foods as flavoring and preservative agents. Many of the biological activities of EO have been attributed to major essential oil compounds (EOC) but their direct interaction with colonic epithelial cells and their genotoxic and genoprotective effects are not well established. In this study, the cytotoxicity and genotoxicity of EOC including nerolidol, thymol, geraniol, methylisoeugenol, eugenol, linalool, and a commercial blend (Agolin) were determined. Furthermore, the genoprotective effects of EOC against oxidative and methylating damage were assessed using the comet assay in HT-29 colorectal adenocarcinoma cells. The majority of EOC were cytotoxic to HT-29 cells at or above 250 ppm after 24 hr exposure. At noncytotoxic doses, none of the EOC was genotoxic in the comet assay. Genoprotection against oxidative DNA damage was observed for nerolidol (at 62.5 ppm), thymol (at 12.5 ppm), geraniol, and methylisoeugenol (both at 125 ppm), as well as linalool and Agolin (both at 250 ppm). Thymol was the most protective compound against oxidative DNA damage and geraniol (at 125 ppm) also protected cells against methylating DNA damage. This study highlights the potential of EOC such as thymol to protect the colonic epithelium against oxidative DNA damage and geraniol against methylating DNA damage. Further in vivo studies are needed to confirm these findings for safety and efficacy to exploit their potential pharmaceutical or nutraceutical uses for colonic health.
Collapse
Affiliation(s)
- Dinesh Thapa
- Rowett Inst., Univ. of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | | | | | - R John Wallace
- Rowett Inst., Univ. of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Silvia W Gratz
- Rowett Inst., Univ. of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
35
|
Silva MDCC, Souza ILLD, Vasconcelos LHC, Ferreira PB, Araujo LCDC, Sampaio RDS, Tavares JF, da Silva BA, Cavalcante FDA. Essential oil from Lippia microphylla Cham. modulates nitric oxide pathway and calcium influx to exert a tocolytic effect in rat uterus. Nat Prod Res 2019; 35:1046-1051. [PMID: 31163990 DOI: 10.1080/14786419.2019.1614578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The essential oil of Lippia microphylla (LM-OE) presents several pharmacological activities. This work evaluates the tocolytic effect of LM-OE on rats. LM-OE inhibited phasic contractions and relaxed tonic contractions on rat uterus. Considering that nitric oxide (NO) pathway regulates uterine contraction, LM-OE potency was attenuated in the presence of NO synthase (NOS) inhibitor and this reduction was reversed in the presence of a NOS substrate. Similarly, the relaxant potency of LM-OE was reduced in the presence of soluble guanylyl cyclase (sGC) and protein kinase G (PKG) inhibitors. LM-OE also demonstrates a positive modulation of large and small conductance calcium-activated, voltage-gated and adenosine triphosphate-sensitive potassium channels and inhibited curves to CaCl2 as well as relaxed the uterus pre-contracted by S-(-)-Bay K8644, suggesting voltage-gated calcium channels type-1 (CaV1) blockade. Thus, the tocolytic effect of LM-OE on rat involves positive modulation of NO/NOS/sGC/PKG/K+-channels pathway and Ca2+ influx blockade through CaV1.[Formula: see text].
Collapse
Affiliation(s)
- Maria da Conceição Correia Silva
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde (CCS), Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil
| | - Iara Leão Luna de Souza
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde (CCS), Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil.,Departamento de Fisiologia e Patologia, CCS, UFPB, João Pessoa, PB, Brazil
| | - Luiz Henrique César Vasconcelos
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde (CCS), Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil.,Departamento de Fisiologia e Patologia, CCS, UFPB, João Pessoa, PB, Brazil
| | - Paula Benvindo Ferreira
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde (CCS), Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil
| | - Layanne Cabral da Cunha Araujo
- Programa de Pós-graduação em Ciências (Fisiologia Humana), Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Renata de Souza Sampaio
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde (CCS), Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil
| | - Josean Fechine Tavares
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde (CCS), Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil.,Departamento de Ciências Farmacêuticas, CCS, UFPB, João Pessoa, PB, Brazil
| | - Bagnólia Araújo da Silva
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde (CCS), Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil.,Departamento de Ciências Farmacêuticas, CCS, UFPB, João Pessoa, PB, Brazil
| | - Fabiana de Andrade Cavalcante
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde (CCS), Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil.,Departamento de Fisiologia e Patologia, CCS, UFPB, João Pessoa, PB, Brazil
| |
Collapse
|
36
|
El-Kady AM, Ahmad AA, Hassan TM, El-Deek HEM, Fouad SS, Althagfan SS. Eugenol, a potential schistosomicidal agent with anti-inflammatory and antifibrotic effects against Schistosoma mansoni, induced liver pathology. Infect Drug Resist 2019; 12:709-719. [PMID: 30992676 PMCID: PMC6445185 DOI: 10.2147/idr.s196544] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Schistosomiasis is one of the most prevalent parasitic infections in developing countries. Although chemotherapy is one of the main strategies in controlling the disease, it is less effective in reversal of schistosome-induced pathology especially in the chronic and advanced stages of schistosomiasis. New strategies and prospective therapeutic agents with antifibrotic effects are needed. Eugenol has a wide anti-inflammatory effect. In the present study, we investigated the possible antischistosomal effect of eugenol on Schistosoma mansoni. Materials and methods The murine model of S. mansoni was established in three groups of adult male Balb-c mice; group I (infected non-treated group) and groups II and III (infected groups) treated orally with eugenol and praziquantel (PZQ), respectively. The expression of the sensitive immunohistochemical marker α-smooth muscle actin (α-SMA) in schistosome-infected tissues was determined. In addition, parasitological, biochemical, and histological parameters that reflect disease severity and morbidity were examined. Results Eugenol treatment showed significant reduction in total worm burden by 19.2%; however, the oogram pattern showed no marked difference compared to that of the PZQ group. Yet, eugenol significantly reduced the serum levels of hepatic enzymes: aspartate aminotransferase and alanine aminotransferase. Histopathological examination revealed a significant reduction in both numbers and diameters of hepatic granulomata, which was consistent with reduction in collagen fiber deposition. Additionally, the antifibrotic effect of eugenol was validated by its considerable reduction in the expression of the sensitive marker α-SMA in both eugenol- and PZQ-treated groups. Conclusion Although eugenol could not totally eradicate adults of S. mansoni, the significant amelioration of liver enzymes and hepatic fibrosis potentiate eugenol’s role as a promising antifibrotic and a complementary antischistosomal agent.
Collapse
Affiliation(s)
- Asmaa M El-Kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena 83523, Egypt,
| | | | - Tasneem M Hassan
- Department of Medical Parasitology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Heba E M El-Deek
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Samer S Fouad
- Department of Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Sultan S Althagfan
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| |
Collapse
|
37
|
El-Miligy MM, Hazzaa AA, El-Zemity SR, Al-Kubeisi AK. Synthesis of Thymol Derivatives as Potential Non-Irritant Antimicrobial and Insecticidal Agents. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1573407213666171115161626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Thymol has been reported to have a variety of antimicrobial and insecticidal activities but it has irritation side effect due to its phenolic nature.Methods:A new series of potential non-irritant non-phenolic thymol derivatives were designed to hybridize the well-known biologically active thymol scaffold with various five membered heterocyclic antimicrobial and insecticidal pharmacophores like 1,3,4-oxadiazole, 1,3,4-thiadiazole, 1,2,4-triazole, thiazole and 4-thiazolidinone through different spacers. The target compounds were biologically evaluated for their in vitro antibacterial, antifungal and insecticidal activities.Results:Compounds 4b and 9c showed weak antibacterial activity against S. aureus and B.subtilis with the inhibition zone diameters ranging from 2 to 7 mm and 4 mm respectively compared with ciprofloxacin with the inhibition zone diameter of 21 mm. Compounds 9a, 7d and 13b showed weak antibacterial compounds against B. subtilis with inhibition zone diameters 4, 4 and 6 mm respectively. Compounds 12b, 9c and 7a showed 20% insecticidal activity at a concentration of 0.157 mg/cm2 for each compound against Tribolium castaneum (Herbst) and Sitophilus oryzae (L.). Compound 6 showed moderate larvicidal activity against Culex pipiens with 40% mortality at a concentration of 1000 ppm.Conclusion:Compound 9c showed weak dual antimicrobial and insecticidal activities.
Collapse
Affiliation(s)
- Mostafa M.M. El-Miligy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Aly A. Hazzaa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Saad R. El-Zemity
- Department of Chemistry and Technology of Pesticides, Faculty of Agriculture, Alexandria University, Alexandria 21521, Egypt
| | | |
Collapse
|
38
|
Aprotosoaie AC, Miron A, Ciocârlan N, Brebu M, Roşu CM, Trifan A, Vochiţa G, Gherghel D, Luca SV, Niţă A, Costache I, Mihai CT. Essential oils of MoldavianThymusspecies: Chemical composition, antioxidant, anti‐Aspergillusand antigenotoxic activities. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3490] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ana Clara Aprotosoaie
- Faculty of PharmacyGrigore T. Popa University of Medicine and Pharmacy Iasi Universitatii Str. 16 700115 Iasi Romania
| | - Anca Miron
- Faculty of PharmacyGrigore T. Popa University of Medicine and Pharmacy Iasi Universitatii Str. 16 700115 Iasi Romania
| | - Nina Ciocârlan
- Botanical GardenAcademy of Sciences of Moldova Padurii Str. 18 2002 Chisinau Republic of Moldova
| | - Mihai Brebu
- Physical Chemistry of Polymers LaboratoryPetru Poni Institute of Macromolecular Chemistry Grigore Ghica Voda Alley 41A 70048 Iasi Romania
| | - Crăiţa Maria Roşu
- National Institute of Research and Development for Biological Sciences/Biological Research Institute Lascar Catargi Str. 47 700107 Iasi Romania
| | - Adriana Trifan
- Faculty of PharmacyGrigore T. Popa University of Medicine and Pharmacy Iasi Universitatii Str. 16 700115 Iasi Romania
| | - Gabriela Vochiţa
- National Institute of Research and Development for Biological Sciences/Biological Research Institute Lascar Catargi Str. 47 700107 Iasi Romania
| | - Daniela Gherghel
- National Institute of Research and Development for Biological Sciences/Biological Research Institute Lascar Catargi Str. 47 700107 Iasi Romania
| | - Simon Vlad Luca
- Faculty of PharmacyGrigore T. Popa University of Medicine and Pharmacy Iasi Universitatii Str. 16 700115 Iasi Romania
| | - Alexandru Niţă
- Faculty of BiologyAlexandru Ioan Cuza University of Iasi Carol I Avenue 22 700505 Iasi Romania
| | - Irina‐Iuliana Costache
- Faculty of MedicineGrigore T. Popa University of Medicine and Pharmacy Universitatii Str. 16 700115 Iasi Romania
| | - Cosmin Teodor Mihai
- National Institute of Research and Development for Biological Sciences/Biological Research Institute Lascar Catargi Str. 47 700107 Iasi Romania
- CEMEXGrigore T. Popa University of Medicine and Pharmacy Universitatii Str. 16 700115 Iasi Romania
| |
Collapse
|
39
|
Rchid H, Oualili H, Nmila R, Chibi F, Lasky M, Mricha A. Chemical composition and antioxidant activity of Origanum elongatum essential oil. Pharmacognosy Res 2019. [DOI: 10.4103/pr.pr_157_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
40
|
Guldiken B, Ozkan G, Catalkaya G, Ceylan FD, Ekin Yalcinkaya I, Capanoglu E. Phytochemicals of herbs and spices: Health versus toxicological effects. Food Chem Toxicol 2018; 119:37-49. [DOI: 10.1016/j.fct.2018.05.050] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/16/2018] [Accepted: 05/19/2018] [Indexed: 02/08/2023]
|
41
|
Günes-Bayir A, Kocyigit A, Güler EM. In vitro effects of two major phenolic compounds from the family Lamiaceae plants on the human gastric carcinoma cells. Toxicol Ind Health 2018; 34:525-539. [PMID: 29848188 DOI: 10.1177/0748233718761698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phenolic compounds of essential oils from the family Lamiaceae are commonly used substances in the food industry because of their flavouring, antimicrobial and antioxidant properties. In this context, it has become important to have healthy and safe products for consumers who are exposed to these phenolic compounds. The present study was aimed to investigate the toxic effects of carvacrol, thymol and their mixture on human gastric carcinoma (AGS) cells. Cells were analyzed after 24 h of exposure to different concentrations of carvacrol, thymol and their mixture by the ATP cell viability, 2',7' dichlorodihydrofluorescein diacetate (H2DCF-DA), reducte glutatione/oxide glutathione ((GSH)/GSSG-Glo) and comet assays. Apoptosis induction was studied by acridine orange/ethidium bromide staining and western blotting. Carvacrol, thymol and their mixture induced cytotoxicity, genotoxicity, apoptosis, increased reactive oxygen species (ROS) and decreased GSH levels after 24 h of their exposure in a dose-dependent manner. A close negative relationship was found between cell viability and ROS generation. We examined dose-dependent cytotoxic effects of carvacrol, thymol and their mixture in human AGS cells. Increased intracellular ROS causes oxidative stress in cells. The results indicated that these compounds should be used carefully in the food industry.
Collapse
Affiliation(s)
- Ayse Günes-Bayir
- 1 Faculty of Health Sciences, Department of Nutrition and Dietetics, Bezmialem Vakif University, Istanbul, Turkey
| | - Abdurrahim Kocyigit
- 2 Faculty of Medicine, Department of Medical Biochemistry, Bezmialem Vakif University, Istanbul, Turkey
| | - Eray Metin Güler
- 2 Faculty of Medicine, Department of Medical Biochemistry, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
42
|
Sharifi-Rad M, Varoni EM, Iriti M, Martorell M, Setzer WN, Del Mar Contreras M, Salehi B, Soltani-Nejad A, Rajabi S, Tajbakhsh M, Sharifi-Rad J. Carvacrol and human health: A comprehensive review. Phytother Res 2018; 32:1675-1687. [PMID: 29744941 DOI: 10.1002/ptr.6103] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022]
Abstract
Carvacrol (CV) is a phenolic monoterpenoid found in essential oils of oregano (Origanum vulgare), thyme (Thymus vulgaris), pepperwort (Lepidium flavum), wild bergamot (Citrus aurantium bergamia), and other plants. Carvacrol possesses a wide range of bioactivities putatively useful for clinical applications such antimicrobial, antioxidant, and anticancer activities. Carvacrol antimicrobial activity is higher than that of other volatile compounds present in essential oils due to the presence of the free hydroxyl group, hydrophobicity, and the phenol moiety. The present review illustrates the state-of-the-art studies on the antimicrobial, antioxidant, and anticancer properties of CV. It is particularly effective against food-borne pathogens, including Escherichia coli, Salmonella, and Bacillus cereus. Carvacrol has high antioxidant activity and has been successfully used, mainly associated with thymol, as dietary phytoadditive to improve animal antioxidant status. The anticancer properties of CV have been reported in preclinical models of breast, liver, and lung carcinomas, acting on proapoptotic processes. Besides the interesting properties of CV and the toxicological profile becoming definite, to date, human trials on CV are still lacking, and this largely impedes any conclusions of clinical relevance.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol, 61663-335, Iran
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Miquel Martorell
- Department of Nutrition and Dietetics, School of Pharmacy, University of Concepcion, Concepcion, Chile
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - María Del Mar Contreras
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain.,Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Bioregión Building, Avenida del Conocimiento s/n, Granada, Spain
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Soltani-Nejad
- Department of Genetics and Biotechnology, Osmania University, Hyderabad, India
| | - Sadegh Rajabi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mercedeh Tajbakhsh
- Pediatric Infections Research Center (PIRC), Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB, Canada
| |
Collapse
|
43
|
Electrochemical and associated techniques for the study of the inclusion complexes of thymol and β-cyclodextrin and its interaction with DNA. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-017-3805-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Günes-Bayir A, Kocyigit A, Güler EM, Bilgin MG, Ergün İS, Dadak A. Effects of carvacrol on human fibroblast (WS-1) and gastric adenocarcinoma (AGS) cells in vitro and on Wistar rats in vivo. Mol Cell Biochem 2018; 448:237-249. [PMID: 29442269 DOI: 10.1007/s11010-018-3329-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/07/2018] [Indexed: 02/06/2023]
Abstract
Carvacrol is a natural phenolic compound found in essential oils of Lamiaceae species. In the present study, an attempt has been made to elucidate the mechanism behind the anti-cancer potential of carvacrol on human gastric adenocarcinomas (AGS) by comparing its effects on cancer cells AGS to those on normal human fibroblast (WS-1) cells, in vitro. Cytotoxicity, reactive oxygen species (ROS) generation, glutathione (GSH) levels, genotoxicity, and apoptotic effects of carvacrol (0-600 µM) were studied in both cell lines. Additionally, the effect of high dose carvacrol (100 mg/kg BW) on the oxidative status was investigated in vivo. For this purpose, carvacrol was administered orally to male Wistar rats over a period of 60 days. Rats were weighed regularly. At the end of the experiment, rats were euthanized. Blood and stomach tissues were collected for biochemical and pathological examinations. The in vitro results showed significant differences in cell viability of AGS compared to WS-1 cells exposed to carvacrol. Also the extent of ROS generation, GSH reduction and DNA damage differed significantly between the cell lines studied (P ≤ 0.001). The differences observed were statistically significant at all concentrations applied (P ≤ 0.001). The results found in AGS cells were mirrored in the pathohistological findings obtained from animals of the in vivo experimental group. Changes in body weight, and oxidative stress index for plasma and stomach tissues of animals in this group were found to differ statistically significant from those found in the control group of Wistar rats (P ≤ 0.001). The data obtained from our present study uncovered that carvacrol has the potential to cause toxic effects in both, AGS and WS-1 cells but more effectively in cancer cells than in normal cells. The carvacrol-mediated responses observed in the in vitro and in vivo experiments presented suggest a double-edged pro-oxidative effect. Via this mechanism carvacrol induced cytotoxicity, apoptosis, and DNA damage in a dose-dependent manner in both cancer and normal cells and these activities were higher in cancer cells than those of normal cells.
Collapse
Affiliation(s)
- Ayse Günes-Bayir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bezmialem Vakif University, Silahtarağa Caddesi No: 189, Eyüp, 34065, Istanbul, Turkey.
| | - Abdurrahim Kocyigit
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Eray Metin Güler
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Mehmet Gültekin Bilgin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bezmialem Vakif University, Silahtarağa Caddesi No: 189, Eyüp, 34065, Istanbul, Turkey
| | - İlyas Samet Ergün
- Department of Pathology Laboratory, Vocational School for Health Services, Bezmialem Vakif University, Istanbul, Turkey
| | - Agnes Dadak
- Institute of Pharmacology, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
45
|
Cytotoxicity and genotoxicity of thymol verified in murine macrophages (RAW 264.7) after antimicrobial analysis in Candida albicans, Staphylococcus aureus, and Streptococcus mutans. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
46
|
|
47
|
Bacanlı M, Aydın S, Başaran AA, Başaran N. Are all phytochemicals useful in the preventing of DNA damage? Food Chem Toxicol 2017; 109:210-217. [DOI: 10.1016/j.fct.2017.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/21/2017] [Accepted: 09/05/2017] [Indexed: 01/11/2023]
|
48
|
DEMİR N, AYDIN S, ÜNDEĞER BUCURGAT Ü. Assessment of Genotoxic Effects of Pendimethalin in Chinese Hamster Over Cells by the Single Cell Gel Electrophoresis (Comet) Assay. Turk J Pharm Sci 2017; 14:185-190. [PMID: 32454612 PMCID: PMC7227855 DOI: 10.4274/tjps.79663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/06/2016] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Pendimethalin (N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzeneamine) is a dinitroaniline herbicide compound which selectively controls weeds. It is a cell division and growth inhibitor. It descends plants in a short time after seedling. It is a soil and water pollutant due to the widespread use of formulations in Turkey and around the world. Pendimethalin is manufactured in and imported by Turkey. Pendimethalin is a slightly toxic compound that is classified in toxicity class 3 by the United States Environmental Protection Agency (USEPA). Even though it is classified as group C (human possible carcinogen) compound by the USEPA, there are limited number of studies about its genotoxic effects. The aim of this study was to evaluate in vitro genotoxic effects of different concentrations of pendimethalin in Chinese hamster over (CHO) cells by the single cell gel electrophoresis (comet) assay. MATERIALS AND METHODS The cells are incubated with 1, 10, 100, 1000 and 10000 µM concentrations of pendimethalin for 30 min at 37°C and DNA damage was compared with CHO cells untreated with pendimethalin. 50 µM hydrogen peroxide was used as positive control. RESULTS No significant cytotoxic effects were observed within the concentration ranges studied. The DNA damage in CHO cells was significantly increased in the pendimethalin concentrations of 1, 100, 1000 and 10000 µM, however, a significant decrease was observed in 10 µM pendimethalin concentration. CONCLUSION Our results show that 1-10000 µM concentrations of pendimethalin induce DNA damage in CHO cells, which was assessed by comet assay.
Collapse
Affiliation(s)
- Nazlı DEMİR
- Hacettepe University, Faculty Of Pharmacy, Department Of Pharmaceutical Toxicology, Ankara, Turkey
| | - Sevtap AYDIN
- Hacettepe University, Faculty Of Pharmacy, Department Of Pharmaceutical Toxicology, Ankara, Turkey
| | - Ülkü ÜNDEĞER BUCURGAT
- Hacettepe University, Faculty Of Pharmacy, Department Of Pharmaceutical Toxicology, Ankara, Turkey
| |
Collapse
|
49
|
Oliveira JRD, de Jesus Viegas D, Martins APR, Carvalho CAT, Soares CP, Camargo SEA, Jorge AOC, de Oliveira LD. Thymus vulgaris L. extract has antimicrobial and anti-inflammatory effects in the absence of cytotoxicity and genotoxicity. Arch Oral Biol 2017; 82:271-279. [PMID: 28683409 DOI: 10.1016/j.archoralbio.2017.06.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/23/2017] [Accepted: 06/25/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES This study evaluated the biological effects of the T. vulgaris L. extract., such as antimicrobial activity on planktonic cultures and mono- and polymicrobial biofilms, cytotoxicity, anti-inflammatory activity and genotoxicity. METHODS Monomicrobial biofilms of Candida albicans, Staphylococcus aureus, Enterococcus faecalis, Streptococcus mutans and Pseudomonas aeruginosa and polymicrobial biofilms composed by C. albicans with each bacterium were formed for 48h and exposed for 5min to the plant extract. Murine macrophages (RAW 264.7), human gingival fibroblasts (FMM-1), human breast carcinoma cells (MCF-7) and cervical carcinoma cells (HeLa) were also exposed to the plant extract for 5min and the cell viability were analyzed by MTT, neutral red (NR) and crystal violet (CV) assays. Interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) produced by RAW 264.7 was quantified by ELISA, after 24h exposure to the plant extract, both in the absence and presence of lipopolysaccharide (LPS) from Escherichia coli. Genotoxicity of the plant extract was evaluated by micronucleus formation (MN) in 1000 cells. The results were analyzed by T-Test or ANOVA and Tukey's Test (P≤0.05). RESULTS All biofilms showed significant reductions in CFU/mL (colony-forming units per milliliter). Cell viability was above 50% for all cell lines. Anti-inflammatory effect on the synthesis of IL-1β and TNF-α was observed. The MN was similar or lower than the control group in all cells. CONCLUSIONS T. vulgaris L. extract was effective against all biofilms, promoted high cell viability, anti-inflammatory effect and presented no genotoxicity.
Collapse
Affiliation(s)
- Jonatas Rafael de Oliveira
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil.
| | - Daiane de Jesus Viegas
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil
| | - Ana Paula Réquia Martins
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil
| | - Cláudio Antonio Talge Carvalho
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Restorative Dentistry. São José dos Campos, SP, Brazil
| | - Cristina Pacheco Soares
- Universidade do Vale do Paraíba (UNIVAP). Institute of Research and Development. São José dos Campos, SP, Brazil
| | - Samira Esteves Afonso Camargo
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil
| | - Antonio Olavo Cardoso Jorge
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil
| | - Luciane Dias de Oliveira
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil
| |
Collapse
|
50
|
Nagoor Meeran MF, Javed H, Al Taee H, Azimullah S, Ojha SK. Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for Its Therapeutic Potential and Pharmaceutical Development. Front Pharmacol 2017; 8:380. [PMID: 28694777 PMCID: PMC5483461 DOI: 10.3389/fphar.2017.00380] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022] Open
Abstract
Thymol, chemically known as 2-isopropyl-5-methylphenol is a colorless crystalline monoterpene phenol. It is one of the most important dietary constituents in thyme species. For centuries, it has been used in traditional medicine and has been shown to possess various pharmacological properties including antioxidant, free radical scavenging, anti-inflammatory, analgesic, antispasmodic, antibacterial, antifungal, antiseptic and antitumor activities. The present article presents a detailed review of the scientific literature which reveals the pharmacological properties of thymol and its multiple therapeutic actions against various cardiovascular, neurological, rheumatological, gastrointestinal, metabolic and malignant diseases at both biochemical and molecular levels. The noteworthy effects of thymol are largely attributed to its anti-inflammatory (via inhibiting recruitment of cytokines and chemokines), antioxidant (via scavenging of free radicals, enhancing the endogenous enzymatic and non-enzymatic antioxidants and chelation of metal ions), antihyperlipidemic (via increasing the levels of high density lipoprotein cholesterol and decreasing the levels of low density lipoprotein cholesterol and low density lipoprotein cholesterol in the circulation and membrane stabilization) (via maintaining ionic homeostasis) effects. This review presents an overview of the current in vitro and in vivo data supporting thymol's therapeutic activity and the challenges concerning its use for prevention and its therapeutic value as a dietary supplement or as a pharmacological agent or as an adjuvant along with current therapeutic agents for the treatment of various diseases. It is one of the potential candidates of natural origin that has shown promising therapeutic potential, pharmacological properties and molecular mechanisms as well as pharmacokinetic properties for the pharmaceutical development of thymol.
Collapse
Affiliation(s)
- Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Hayate Javed
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Hasan Al Taee
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| |
Collapse
|