1
|
Marques ES, Severance EG, Arsenault P, Zahn SM, Timme-Laragy AR. Activation of Nrf2 at Critical Windows of Development Alters Tissue-Specific Protein S-Glutathionylation in the Zebrafish ( Danio rerio) Embryo. Antioxidants (Basel) 2024; 13:1006. [PMID: 39199250 PMCID: PMC11352166 DOI: 10.3390/antiox13081006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Activation of Nrf2-the master regulator of antioxidative response-at different stages of embryonic development has been shown to result in changes in gene expression, but the tissue-specific and downstream effects of Nrf2 activation during development remain unclear. This work seeks to elucidate the tissue-specific Nrf2 cellular localization and the downstream changes in protein S-glutathionylation during critical windows of zebrafish (Danio rerio) development. Wild-type and mutant zebrafish embryos with a loss-of-function mutation in Nrf2a were treated with two canonical activators, sulforaphane (SFN; 40 µM) or tert-butylhydroquinone (tBHQ; 1 µM), for 6 h at either pharyngula, hatching, or the protruding-mouth stage. Nrf2a protein and S-glutathionylation were visualized in situ using immunohistochemistry. At the hatching stage, Nrf2a protein levels were decreased with SFN, but not tBHQ, exposure. Exposure to both activators, however, decreased downstream S-glutathionylation. Stage- and tissue-specific differences in Nrf2a protein and S-glutathionylation were identified in the pancreatic islet and liver. Protein S-glutathionylation in Nrf2a mutant fish was increased in the liver by both activators, but not the islets, indicating a tissue-specific and Nrf2a-dependent dysregulation. This work demonstrates that critical windows of exposure and Nrf2a activity may influence redox homeostasis and highlights the importance of considering tissue-specific outcomes and sensitivity in developmental redox biology.
Collapse
Affiliation(s)
| | | | | | | | - Alicia R. Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA (E.G.S.)
| |
Collapse
|
2
|
James BD, Medvedev AV, Makarov SS, Nelson RK, Reddy CM, Hahn ME. Moldable Plastics (Polycaprolactone) can be Acutely Toxic to Developing Zebrafish and Activate Nuclear Receptors in Mammalian Cells. ACS Biomater Sci Eng 2024; 10:5237-5251. [PMID: 38981095 PMCID: PMC11323200 DOI: 10.1021/acsbiomaterials.4c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Popularized on social media, hand-moldable plastics are formed by consumers into tools, trinkets, and dental prosthetics. Despite the anticipated dermal and oral contact, manufacturers share little information with consumers about these materials, which are typically sold as microplastic-sized resin pellets. Inherent to their function, moldable plastics pose a risk of dermal and oral exposure to unknown leachable substances. We analyzed 12 moldable plastics advertised for modeling and dental applications and determined them to be polycaprolactone (PCL) or thermoplastic polyurethane (TPU). The bioactivities of the most popular brands advertised for modeling applications of each type of polymer were evaluated using a zebrafish embryo bioassay. While water-borne exposure to the TPU pellets did not affect the targeted developmental end points at any concentration tested, the PCL pellets were acutely toxic above 1 pellet/mL. The aqueous leachates of the PCL pellets demonstrated similar toxicity. Methanolic extracts from the PCL pellets were assayed for their bioactivity using the Attagene FACTORIAL platform. Of the 69 measured end points, the extracts activated nuclear receptors and transcription factors for xenobiotic metabolism (pregnane X receptor, PXR), lipid metabolism (peroxisome proliferator-activated receptor γ, PPARγ), and oxidative stress (nuclear factor erythroid 2-related factor 2, NRF2). By nontargeted high-resolution comprehensive two-dimensional gas chromatography (GC × GC-HRT), we tentatively identified several compounds in the methanolic extracts, including PCL oligomers, a phenolic antioxidant, and residues of suspected antihydrolysis and cross-linking additives. In a follow-up zebrafish embryo bioassay, because of its stated high purity, biomedical grade PCL was tested to mitigate any confounding effects due to chemical additives in the PCL pellets; it elicited comparable acute toxicity. From these orthogonal and complementary experiments, we suggest that the toxicity was due to oligomers and nanoplastics released from the PCL rather than chemical additives. These results challenge the perceived and assumed inertness of plastics and highlight their multiple sources of toxicity.
Collapse
Affiliation(s)
- Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA 02543
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA 02543
| | | | | | | | - Christopher M. Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA 02543
| | - Mark E. Hahn
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA 02543
| |
Collapse
|
3
|
Marin M, Annunziato KM, Tompach MC, Liang W, Zahn SM, Li S, Doherty J, Lee J, Clark JM, Park Y, Timme-Laragy AR. Maternal PFOS exposure affects offspring development in Nrf2-dependent and independent ways in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106923. [PMID: 38669778 PMCID: PMC11177596 DOI: 10.1016/j.aquatox.2024.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a ubiquitous legacy environmental contaminant detected broadly in human samples and water supplies. PFOS can cross the placenta and has been detected in cord blood and breastmilk samples, underscoring the importance of understanding the impacts of maternal PFOS exposure during early development. This study aimed to investigate the effects of a preconception exposure to PFOS on developmental endpoints in offspring, as well as examine the role of the transcription factor Nuclear factor erythroid-2-related factor (Nrf2a) in mediating these effects. This transcription factor regulates the expression of several genes that protect cells against oxidative stress including during embryonic development. Adult female zebrafish were exposed to 0.02, 0.08 or 0.14 mg/L PFOS for 1 week (duration of one cycle of oocyte maturation) and then paired with unexposed males from Nrf2a mutant or wildtype strains. Embryos were collected for two weeks or until completion of 5 breeding events. PFOS was maternally transferred to offspring independent of genotype throughout all breeding events in a dose-dependent manner, ranging from 2.77 to 23.72 ng/embryo in Nrf2a wildtype and 2.40 to 15.80 ng/embryo in Nrf2a mutants. Although embryo viability at collection was not impacted by maternal PFOS exposure, developmental effects related to nutrient uptake, growth and pancreatic β-cell morphology were observed and differed based on genotype. Triglyceride levels were increased in Nrf2a wildtype eggs from the highest PFOS group. In Nrf2a wildtype larvae there was a decrease in yolk sac uptake while in Nrf2a mutants there was an increase. Additionally, there was a significant decrease in pancreatic β-cell (islet) area in wildtype larvae from the 0.14 mg/L PFOS accompanied by an increase in the prevalence of abnormal islet morphologies compared to controls. Abnormal morphology was also observed in the 0.02 and 0.08 mg/L PFOS groups. Interestingly, in Nrf2a mutants there was a significant increase in the pancreatic β-cell area in the 0.02 and 0.08 mg/L PFOS groups and no changes in the prevalence of abnormal islet morphologies. These results suggest that the regulation of processes like nutrient consumption, growth and pancreatic β-cell development are at least partially modulated by the presence of a functional Nrf2a transcriptomic response. Overall, preconception exposure to environmental pollutants, such as PFOS, may impact the maturing oocyte and cause subtle changes that can ultimately impact offspring health and development.
Collapse
Affiliation(s)
- Marjorie Marin
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA, USA
| | - Kate M Annunziato
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Madeline C Tompach
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Wenle Liang
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sarah M Zahn
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jeffery Doherty
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Jonghwa Lee
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - John M Clark
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
4
|
Schmandt B, Diduff M, Smart G, Williams LM. Environmentally Relevant Concentrations of Triphenyl Phosphate (TPhP) Impact Development in Zebrafish. TOXICS 2024; 12:368. [PMID: 38787147 PMCID: PMC11125690 DOI: 10.3390/toxics12050368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
A common flame-retardant and plasticizer, triphenyl phosphate (TPhP) is an aryl phosphate ester found in many aquatic environments at nM concentrations. Yet, most studies interrogating its toxicity have used µM concentrations. In this study, we used the model organism zebrafish (Danio rerio) to uncover the developmental impact of nM exposures to TPhP at the phenotypic and molecular levels. At concentrations of 1.5-15 nM (0.5 µg/L-5 µg/L), chronically dosed 5dpf larvae were shorter in length and had pericardial edema phenotypes that had been previously reported for exposures in the µM range. Cardiotoxicity was observed but did not present as cardiac looping defects as previously reported for µM concentrations. The RXR pathway does not seem to be involved at nM concentrations, but the tbx5a transcription factor cascade including natriuretic peptides (nppa and nppb) and bone morphogenetic protein 4 (bmp4) were dysregulated and could be contributing to the cardiac phenotypes. We also demonstrate that TPhP is a weak pro-oxidant, as it increases the oxidative stress response within hours of exposure. Overall, our data indicate that TPhP can affect animal development at environmentally relevant concentrations and its mode of action involves multiple pathways.
Collapse
|
5
|
Bardhan A, Brown W, Albright S, Tsang M, Davidson LA, Deiters A. Direct Activation of Nucleobases with Small Molecules for the Conditional Control of Antisense Function. Angew Chem Int Ed Engl 2024; 63:e202318773. [PMID: 38411401 DOI: 10.1002/anie.202318773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Conditionally controlled antisense oligonucleotides provide precise interrogation of gene function at different developmental stages in animal models. Only one example of small molecule-induced activation of antisense function exist. This has been restricted to cyclic caged morpholinos that, based on sequence, can have significant background activity in the absence of the trigger. Here, we provide a new approach using azido-caged nucleobases that are site-specifically introduced into antisense morpholinos. The caging group design is a simple azidomethylene (Azm) group that, despite its very small size, efficiently blocks Watson-Crick base pairing in a programmable fashion. Furthermore, it undergoes facile decaging via Staudinger reduction when exposed to a small molecule phosphine, generating the native antisense oligonucleotide under conditions compatible with biological environments. We demonstrated small molecule-induced gene knockdown in mammalian cells, zebrafish embryos, and frog embryos. We validated the general applicability of this approach by targeting three different genes.
Collapse
Affiliation(s)
- Anirban Bardhan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Wes Brown
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Savannah Albright
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Michael Tsang
- Department of Cell Biology, Center for Integrative Organ Systems., University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Lance A Davidson
- Department of Bioengineering, Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| |
Collapse
|
6
|
Yu S, Tong L, Shen J, Li C, Hu Y, Feng K, Shao J. Recent research progress based on ferroptosis-related signaling pathways and the tumor microenvironment on it effects. Eur J Med Chem 2024; 269:116290. [PMID: 38518522 DOI: 10.1016/j.ejmech.2024.116290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/24/2024]
Abstract
The existing therapies for cancer are not remote satisfactory due to drug-resistance in tumors that are malignant. There is a pressing necessity to take a step forward to develop innovative therapies that can complement current ones. Multiple investigations have demonstrated that ferroptosis therapy, a non-apoptotic modality of programmed cell death, has tremendous potential in face of multiple crucial events, such as drug resistance and toxicity in aggressive malignancies. Recently, ferroptosis at the crosswalk of chemotherapy, materials science, immunotherapy, tumor microenvironment, and bionanotechnology has been presented to elucidate its therapeutic feasibility. Given the burgeoning progression of ferroptosis-based nanomedicine, the newest advancements in this field at the confluence of ferroptosis-inducers, nanotherapeutics, along with tumor microenvironment are given an overview. Here, the signaling pathways of ferroptosis-related were first talked about briefly. The emphasis discussion was placed on the pharmacological mechanisms and the nanodrugs design of ferroptosis inducing agents based on multiple distinct metabolism pathways. Additionally, a comprehensive overview of the action mechanisms by which the tumor microenvironment influences ferroptosis was elaborately descripted. Finally, some limitations of current researches and future research directions were also deliberately discussed to provide details about therapeutic avenues for ferroptosis-related diseases along with the design of anti-drugs.
Collapse
Affiliation(s)
- Shijing Yu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lingwu Tong
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiangwen Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chenglei Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yongshan Hu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Keke Feng
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
7
|
Ruprecht NA, Singhal S, Sens D, Singhal SK. Translating genetic findings to epigenetics: identifying the mechanisms associated with aging after high-radiation exposure on earth and in space. Front Public Health 2024; 12:1333222. [PMID: 38584916 PMCID: PMC10995328 DOI: 10.3389/fpubh.2024.1333222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose Exposure to radiation is a health concern within and beyond the Earth's atmosphere for aircrew and astronauts in their respective austere environments. The biological effects of radiation exposure from a multiomics standpoint are relatively unexplored and stand to shed light on tailored monitoring and treatment for those in these career fields. To establish a reference variable for genetic damage, biological age seems to be closely associated with the effect of radiation. Following a genetic-based study, this study explores the epigenetic landscape of radiation exposure along with its associative effects on aging processes. Methods We imported the results of the genetics-based study that was a secondary analysis of five publicly available datasets (noted as Data1). The overlap of these genes with new data involving methylation data from two datasets (noted as Data2) following similar secondary analysis procedures is the basis of this study. We performed the standard statistical analysis on these datasets along with supervised and unsupervised learning to create preranked gene lists used for functional analysis in Ingenuity Pathway Analysis (IPA). Results There were 664 genes of interest from Data1 and 577 genes from Data2. There were 40 statistically significant methylation probes within 500 base pairs of the gene's transcription start site and 10 probes within 100 base pairs, which are discussed in depth. IPA yielded 21 significant pathways involving metabolism, cellular development, cell death, and diseases. Compared to gold standards for gestational age, we observed relatively low error and standard deviation using newly identified biomarkers. Conclusion We have identified 17 methylated genes that exhibited particular interest and potential in future studies. This study suggests that there are common trends in oxidative stress, cell development, and metabolism that indicate an association between aging processes and the effects of ionizing radiation exposure.
Collapse
Affiliation(s)
- Nathan A. Ruprecht
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, United States
| | - Sonalika Singhal
- Department of Pathology, University of North Dakota, Grand Forks, ND, United States
| | - Donald Sens
- Department of Pathology, University of North Dakota, Grand Forks, ND, United States
| | - Sandeep K. Singhal
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, United States
- Department of Pathology, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
8
|
Hamre K, Zhang W, Austgulen MH, Mykkeltvedt E, Yin P, Berntssen M, Espe M, Berndt C. Systemic and strict regulation of the glutathione redox state in mitochondria and cytosol is needed for zebrafish ontogeny. Biochim Biophys Acta Gen Subj 2024:130603. [PMID: 38521470 DOI: 10.1016/j.bbagen.2024.130603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Redox control seems to be indispensable for proper embryonic development. The ratio between glutathione (GSH) and its oxidized disulfide (GSSG) is the most abundant cellular redox circuit. METHODS We used zebrafish harboring the glutaredoxin 1-redox sensitive green fluorescent protein (Grx1-roGFP) probe either in mitochondria or cytosol to test the hypothesis that the GSH:GSSG ratio is strictly regulated through zebrafish embryogenesis to sustain the different developmental processes of the embryo. RESULTS Following the GSSG:GSH ratio as a proxy for the GSH-dependent reduction potential (EhGSH) revealed increasing mitochondrial and cytosolic EhGSH during cleavage and gastrulation. During organogenesis, cytosolic EhGSH decreased, while that of mitochondria remained high. The similarity between EhGSH in brain and muscle suggests a central regulation. Modulation of GSH metabolism had only modest effects on the GSSG:GSH ratios of newly hatched larvae. However, inhibition of GSH reductase directly after fertilization led to dead embryos already 10 h later. Exposure to the emerging environmental pollutant Perfluorooctane Sulfonate (PFOS) disturbed the apparent regulated EhGSH as well. CONCLUSIONS Mitochondrial and cytosolic GSSG:GSH ratios are almost identical in different organs during zebrafish development indicating that the EhGSH might follow H2O2 levels and rather indirectly affect specific enzymatic activities needed for proper embryogenesis. GENERAL SIGNIFICANCE Our data confirm that vertebrate embryogenesis depends on strictly regulated redox homeostasis. Disturbance of the GSSG:GSH circuit, e.g. induced by environmental pollution, leads to malformation and death.
Collapse
Affiliation(s)
- Kristin Hamre
- Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway.
| | - Wuxiao Zhang
- Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway; College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Maren Hoff Austgulen
- Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway
| | - Eva Mykkeltvedt
- Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway
| | - Peng Yin
- Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway
| | - Marc Berntssen
- Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway
| | - Marit Espe
- Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine-Universitaet, Duesseldorf, Germany.
| |
Collapse
|
9
|
Trevisan R, Mello DF. Redox control of antioxidants, metabolism, immunity, and development at the core of stress adaptation of the oyster Crassostrea gigas to the dynamic intertidal environment. Free Radic Biol Med 2024; 210:85-106. [PMID: 37952585 DOI: 10.1016/j.freeradbiomed.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
This review uses the marine bivalve Crassostrea gigas to highlight redox reactions and control systems in species living in dynamic intertidal environments. Intertidal species face daily and seasonal environmental variability, including temperature, oxygen, salinity, and nutritional changes. Increasing anthropogenic pressure can bring pollutants and pathogens as additional stressors. Surprisingly, C. gigas demonstrates impressive adaptability to most of these challenges. We explore how ROS production, antioxidant protection, redox signaling, and metabolic adjustments can shed light on how redox biology supports oyster survival in harsh conditions. The review provides (i) a brief summary of shared redox sensing processes in metazoan; (ii) an overview of unique characteristics of the C. gigas intertidal habitat and the suitability of this species as a model organism; (iii) insights into the redox biology of C. gigas, including ROS sources, signaling pathways, ROS-scavenging systems, and thiol-containing proteins; and examples of (iv) hot topics that are underdeveloped in bivalve research linking redox biology with immunometabolism, physioxia, and development. Given its plasticity to environmental changes, C. gigas is a valuable model for studying the role of redox biology in the adaptation to harsh habitats, potentially providing novel insights for basic and applied studies in marine and comparative biochemistry and physiology.
Collapse
Affiliation(s)
- Rafael Trevisan
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France
| | - Danielle F Mello
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France.
| |
Collapse
|
10
|
Buczyńska A, Sidorkiewicz I, Krętowski AJ, Zbucka-Krętowska M. The Role of Oxidative Stress in Trisomy 21 Phenotype. Cell Mol Neurobiol 2023; 43:3943-3963. [PMID: 37819608 PMCID: PMC10661812 DOI: 10.1007/s10571-023-01417-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/17/2023] [Indexed: 10/13/2023]
Abstract
Extensive research has been conducted to gain a deeper understanding of the deregulated metabolic pathways in the development of trisomy 21 (T21) or Down syndrome. This research has shed light on the hypothesis that oxidative stress plays a significant role in the manifestation of the T21 phenotype. Although in vivo studies have shown promising results in mitigating the detrimental effects of oxidative stress, there is currently a lack of introduced antioxidant treatment options targeting cognitive impairments associated with T21. To address this gap, a comprehensive literature review was conducted to provide an updated overview of the involvement of oxidative stress in T21. The review aimed to summarize the insights into the pathogenesis of the Down syndrome phenotype and present the findings of recent innovative research that focuses on improving cognitive function in T21 through various antioxidant interventions. By examining the existing literature, this research seeks to provide a holistic understanding of the role oxidative stress plays in the development of T21 and to explore novel approaches that target multiple aspects of antioxidant intervention to improve cognitive function in individuals with Down syndrome. The guides -base systematic review process (Hutton et al. 2015).
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland.
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, ul. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland.
| |
Collapse
|
11
|
Sri Hari A, Banerji R, Liang LP, Fulton RE, Huynh CQ, Fabisiak T, McElroy PB, Roede JR, Patel M. Increasing glutathione levels by a novel posttranslational mechanism inhibits neuronal hyperexcitability. Redox Biol 2023; 67:102895. [PMID: 37769522 PMCID: PMC10539966 DOI: 10.1016/j.redox.2023.102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Glutathione (GSH) depletion, and impaired redox homeostasis have been observed in experimental animal models and patients with epilepsy. Pleiotropic strategies that elevate GSH levels via transcriptional regulation have been shown to significantly decrease oxidative stress and seizure frequency, increase seizure threshold, and rescue certain cognitive deficits. Whether elevation of GSH per se alters neuronal hyperexcitability remains unanswered. We previously showed that thiols such as dimercaprol (DMP) elevate GSH via post-translational activation of glutamate cysteine ligase (GCL), the rate limiting GSH biosynthetic enzyme. Here, we asked if elevation of cellular GSH by DMP altered neuronal hyperexcitability in-vitro and in-vivo. Treatment of primary neuronal-glial cerebrocortical cultures with DMP elevated GSH and inhibited a voltage-gated potassium channel blocker (4-aminopyridine, 4AP) induced neuronal hyperexcitability. DMP increased GSH in wildtype (WT) zebrafish larvae and significantly attenuated convulsant pentylenetetrazol (PTZ)-induced acute 'seizure-like' swim behavior. DMP treatment increased GSH and inhibited convulsive, spontaneous 'seizure-like' swim behavior in the Dravet Syndrome (DS) zebrafish larvae (scn1Lab). Furthermore, DMP treatment significantly decreased spontaneous electrographic seizures and associated seizure parameters in scn1Lab zebrafish larvae. We investigated the role of the redox-sensitive mammalian target of rapamycin (mTOR) pathway due to the presence of several cysteine-rich proteins and their involvement in regulating neuronal excitability. Treatment of primary neuronal-glial cerebrocortical cultures with 4AP or l-buthionine-(S,R)-sulfoximine (BSO), an irreversible inhibitor of GSH biosynthesis, significantly increased mTOR complex I (mTORC1) activity which was rescued by pre-treatment with DMP. Furthermore, BSO-mediated GSH depletion oxidatively modified the tuberous sclerosis protein complex (TSC) consisting of hamartin (TSC1), tuberin (TSC2), and TBC1 domain family member 7 (TBC1D7) which are critical negative regulators of mTORC1. In summary, our results suggest that DMP-mediated GSH elevation by a novel post-translational mechanism can inhibit neuronal hyperexcitability both in-vitro and in-vivo and a plausible link is the redox sensitive mTORC1 pathway.
Collapse
Affiliation(s)
- Ashwini Sri Hari
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rajeswari Banerji
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ruth E Fulton
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Christopher Quoc Huynh
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Timothy Fabisiak
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Pallavi Bhuyan McElroy
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Greater Philadelphia Area, Horsham, PA, 19044, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
12
|
Hossen S, Hanif MA, Kho KH. Glutathione reductase, a biomarker of pollutant and stress in Pacific abalone. MARINE POLLUTION BULLETIN 2023; 192:115139. [PMID: 37301005 DOI: 10.1016/j.marpolbul.2023.115139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Abalone are frequently exposed to several environmental factors including heavy metal toxicity, thermal stress, H2O2-stress, starvation, viral and bacterial infection that can induce oxidative stress. Glutathione reductase is a vital enzyme in the antioxidant defense system that catalyzes the reduction of oxidized glutathione to reduced glutathione. The present study aimed to identify and localize glutathione reductase in Pacific abalone (Hdh-GR) and assess its potential role in stress physiology, heavy metal toxicity, immune response, gonadal development, and metamorphosis. The mRNA expression of Hdh-GR was upregulated in response to thermal stress, starvation, H2O2-stress, and cadmium-exposed toxicity. The induced mRNA expression was also quantified in immune-challenged abalone. Moreover, the Hdh-GR expression was significantly higher during metamorphosis. The Hdh-GR mRNA expression showed an inverse relationship with ROS production in heat stressed Pacific abalone. These results suggest that Hdh-GR has central role in the stress physiology, immune response, gonadal development, and metamorphosis of Pacific abalone.
Collapse
Affiliation(s)
- Shaharior Hossen
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Md Abu Hanif
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea.
| |
Collapse
|
13
|
Marques ES, Severance EG, Min B, Arsenault P, Conlin SM, Timme-Laragy AR. Developmental impacts of Nrf2 activation by dimethyl fumarate (DMF) in the developing zebrafish (Danio rerio) embryo. Free Radic Biol Med 2023; 194:284-297. [PMID: 36528121 PMCID: PMC9906634 DOI: 10.1016/j.freeradbiomed.2022.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Dimethyl fumarate (DMF) is pharmaceutical activator of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates of many cellular antioxidant response pathways, and has been used to treat inflammatory diseases such as multiple sclerosis. However, DMF has been shown to produce adverse effects on offspring in animal studies and as such is not recommended for use during pregnancy. The goal of this work is to better understand how these adverse effects are initiated and the role of DMF-induced Nrf2 activation during three critical windows of development in embryonic zebrafish (Danio rerio): pharyngula, hatching, and protruding-mouth stages. To evaluate Nrf2 activation, wildtype zebrafish, and mutant zebrafish (nrf2afh318/fh318) embryos with a loss of function mutation in Nrf2a, the co-ortholog to human Nrf2, were treated for 6 h with DMF (0-20 μM) beginning at the pharyngula, hatching, or protruding-mouth stage and assessed for survival and morphology. Nrf2a mutant fish had an increase in survival, however, morphology studies demonstrated Nrf2a mutant fish had more severe deformities occurring with exposures during the hatching stage. To verify Nrf2 cellular localization and downstream impacts on protein-S-glutathionylation in situ, a concentration below the LOAEL was chosen (7 μM) for immunohistochemistry and S-glutathionylation. Embryos were imaged via epifluorescence microscopy studies, the Nrf2a protein in the body tissue was decreased with DMF only when exposed at the hatching stage, while total protein S-glutathionylation was modulated by Nrf2a activity and DMF during the pharyngula and protruding-mouth stage. The pancreatic islet and liver were further analyzed via confocal microscopy. Pancreatic islets and liver also had tissue specific differences with Nrf2a protein expression and protein S-glutathionylation. This work demonstrates how critical windows of exposure and Nrf2a activity may influence toxicity of DMF and highlights tissue-specific changes in Nrf2a protein levels and S-glutathionylation in pancreatic islet and liver during embryonic development.
Collapse
Affiliation(s)
- Emily S Marques
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Emily G Severance
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Bellis Min
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Paige Arsenault
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Sarah M Conlin
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
14
|
Yin P, Björnsson BT, Fjelldal PG, Saito T, Remø SC, Edvardsen RB, Hansen T, Sharma S, Olsen RE, Hamre K. Impact of Antioxidant Feed and Growth Manipulation on the Redox Regulation of Atlantic Salmon Smolts. Antioxidants (Basel) 2022; 11:antiox11091708. [PMID: 36139780 PMCID: PMC9495322 DOI: 10.3390/antiox11091708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence indicates a close relationship between oxidative stress and growth rate in fish. However, the underlying mechanisms of this relationship remain unclear. This study evaluated the combined effect of dietary antioxidants and growth hormone (GH) on the liver and the muscle redox status of Atlantic salmon. There were two sequential experimental phases (EP) termed EP1 and EP2, each lasting for 6 weeks. In EP1, Atlantic salmon were fed either low-(L, 230 mg/kg ascorbic acid (Asc), 120 mg/kg α-tocopherol (α-TOH)), or high-(H, 380 mg/kg Asc, 210 mg/kg α-TOH)vitamin diets. The vitamins were supplemented as stable forms and the feeding was continued in EP2. In EP2, half of the fish were implanted with 3 μL per g body weight of recombinant bovine GH (Posilac®, 1 mg rbGH g BW−1) suspended in sesame oil, while the other half were held in different tanks and sham-implanted with similar volumes of the sesame oil vehicle. Here, we show that increasing high levels of vitamin C and E (diet H) increased their content in muscle and liver during EP1. GH implantation decreased vitamin C and E levels in both liver and muscle but increased malondialdehyde (MDA) levels only in the liver. GH also affected many genes and pathways of antioxidant enzymes and the redox balance. Among the most consistent were the upregulation of genes coding for the NADPH oxidase family (NOXs) and downregulation of the oxidative stress response transcription factor, nuclear factor-erythroid 2-related factor 2 (nrf2), and its downstream target genes in the liver. We verified that GH increases the growth rate until the end of the trail and induces an oxidative effect in the liver and muscle of Atlantic salmon. Dietary antioxidants do lower oxidative stress but have no effect on the growth rate. The present study is intended as a starting point to understand the potential interactions between growth and redox signaling in fish.
Collapse
Affiliation(s)
- Peng Yin
- Institute of Marine Research, 5817 Bergen, Norway
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| | - Björn Thrandur Björnsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 411 24 Gothenburg, Sweden
| | - Per Gunnar Fjelldal
- Institute of Marine Research, Matre Aquaculture Research Station, 5984 Matredal, Norway
| | - Takaya Saito
- Institute of Marine Research, 5817 Bergen, Norway
| | | | | | - Tom Hansen
- Institute of Marine Research, Matre Aquaculture Research Station, 5984 Matredal, Norway
| | | | - Rolf Erik Olsen
- Institutt for Biologi Fakultet for Naturvitenskap, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Kristin Hamre
- Institute of Marine Research, 5817 Bergen, Norway
- Correspondence:
| |
Collapse
|
15
|
Chen Y, Song W, Ge W, Yan R. Metabolic competency of larval zebrafish in drug-induced liver injury: a case study of acetaminophen poisoning. Toxicol Sci 2022; 189:175-185. [PMID: 35944217 DOI: 10.1093/toxsci/kfac082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Larval zebrafish is emerging as a new model organism for studying drug-induced liver injury (DILI) with superiorities in visual assessment, genetic engineering as well as high throughput. Metabolic bioactivation to form reactive intermediates is a common event that triggers DILI. This study first addressed the correlation between acetaminophen metabolism and hepatotoxicity in zebrafish larvae (3 days post-fertilization) and demonstrated the occurrence of cytochrome P450 enzymes-mediated APAP bioactivation at early developmental stage through characterizing the dose-effect (0-1.6 mg/mL) and the time-course (0-72 h) of liver injury and metabolism in the AB strain and LiPan transgenic line Tg(lfabp10a: DsRed; elaA: egfp) expressing liver-specific fluorescent protein. APAP caused multi-organ developmental retardation and elicited dose- and time-dependent hepatotoxicity. Liver imaging revealed significant changes earlier than histological and biochemical measurements. APAP bioactivation in larval zebrafish was first confirmed by the detection of the glutathione conjugate of the reactive intermediate NAPQI (NAPQI-GSH) and subsequent mercapturate derivatives NAPQI-cysteine and NAPQI-N-acetylcysteine after even short (0.5-hour post exposure) or low (0.2 mg/mL) APAP exposure. APAP overdose impaired metabolic function, in particular sulfation, while facilitated GSH depletion and APAP sulfate excretion. Meanwhile, APAP displayed triphasic accumulation in the larvae, agreeing with fluctuating metabolic capabilities with sulfation dominating the early larval developmental stage. Most importantly, the dose-response effects and time-course of APAP accumulation and metabolism agree well with those of the liver injury development. Overall, larval zebrafish has developed mammalian-like metabolic function, enabling it an ideal model organism for high throughput screening hepatotoxicity and mechanistic study of bioactivation-based DILI.
Collapse
Affiliation(s)
- Yijia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Weiyi Song
- Center of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Ge
- Center of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.,Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| |
Collapse
|
16
|
Ribeiro O, Félix L, Ribeiro C, Castro B, Tiritan ME, Monteiro SM, Carrola JS. Enantioselective Ecotoxicity of Venlafaxine in Aquatic Organisms: Daphnia and Zebrafish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1851-1864. [PMID: 35452529 DOI: 10.1002/etc.5338] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/16/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Venlafaxine is a chiral antidepressant detected in aquatic compartments. It was recently included in the 3rd Watch List from the European Union. The present study aimed to investigate venlafaxine toxicity effects, targeting possible enantioselective effects, using two aquatic organisms, daphnia (Daphnia magna) and zebrafish (Danio rerio). Specimens were exposed to both racemate, (R,S)-venlafaxine (VEN), and to pure enantiomers. Acute assays with daphnia showed that up to 50 000 μg/L of the (R,S)-VEN induced no toxicity. Organisms were also exposed to sublethal concentrations (25-400 μg/L) of (R,S)-, (R)- and (S)-VEN, for 21 days. No significant effects on mortality, age at first reproduction, and size of the first clutch were observed. However, a decrease in fecundity was observed for both enantiomers at the highest concentration. Regarding zebrafish, the effects of venlafaxine on mortality, embryo development, behavior, biochemistry, and melanin pigmentation were investigated after 96 h of exposure to the range of 0.3-3000 μg/L. (R)-VEN significantly increased the percentage of malformations in comparison with (S)-VEN. Behavior was also enantiomer dependent, with a decrease in the total distance moved and an increase in avoidance behavior observed in organisms exposed to (R)-VEN. Despite the biochemical variations, no changes in redox homeostasis were observed. (R)-VEN also led to an increase in zebrafish pigmentation. The different susceptibility to venlafaxine and enantioselective effects were observed in zebrafish. Our results suggest that at environmental levels (R,S)-VEN and pure enantiomers are not expected to induce harmful effects in both organisms, but (R)-VEN increased malformations in zebrafish larvae, even at reported environmental levels. These results highlight the importance of including enantioselective studies for an accurate risk assessment of chiral pollutants. Environ Toxicol Chem 2022;41:1851-1864. © 2022 SETAC.
Collapse
Affiliation(s)
- Ondina Ribeiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real, Portugal
| | - Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, Vila Real, Portugal
- Institute for Research and Innovation in Health, Laboratory Animal Science, Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
| | - Cláudia Ribeiro
- Interdisciplinary Center of Marine and Environmental Research, University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, Matosinhos, Portugal
- Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Bruno Castro
- Department of Biology, Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability, University of Minho, Braga, Portugal
| | - Maria Elizabeth Tiritan
- Interdisciplinary Center of Marine and Environmental Research, University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, Matosinhos, Portugal
- Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- Organic and Pharmaceutical Chemistry Laboratory, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, Porto, Portugal
| | - Sandra Mariza Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, Vila Real, Portugal
| | - João Soares Carrola
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, Vila Real, Portugal
| |
Collapse
|
17
|
Roy MA, Gridley CK, Li S, Park Y, Timme-Laragy AR. Nrf2a dependent and independent effects of early life exposure to 3,3'-dichlorobiphenyl (PCB-11) in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106219. [PMID: 35700651 PMCID: PMC9701526 DOI: 10.1016/j.aquatox.2022.106219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/28/2022] [Accepted: 06/08/2022] [Indexed: 06/03/2023]
Abstract
The environmental pollutant 3,3'-dichlorobiphenyl (PCB-11) is a lower-chlorinated polychlorinated biphenyl (PCB) congener present in air and water samples. Both PCB-11 and its metabolite, 4-PCB-11-Sulfate, are detected in humans, including in pregnant women. Previous research in zebrafish (Danio rerio) has shown that 0.2 μM exposures to 4-PCB-11-Sulfate starting at 1 day post fertilization (dpf) increase hepatic neutral lipid accumulation in larvae at 15 dpf. Here, we explored whether nuclear factor erythroid 2-related factor 2 (Nrf2), known as the master-regulator of the adaptive response to oxidative stress, contributes to metabolic impacts of 4-PCB-11-Sulfate. For this work, embryos were collected from homozygous wildtype or Nrf2a mutant adult zebrafish that also express GFP in pancreatic β-cells, rendering Tg(ins:GFP;nrf2afh318+/+) and Tg(ins:GFP;nrf2afh318-/-) lines. Exposures were conducted from 1-15 dpf to either 0.05% DMSO or DMSO-matched 0.2 µM 4-PCB-11-Sulfate, and at 15 dpf subsets of larvae were imaged for overall morphology, primary pancreatic islet area, and collected for fatty acid profiling and RNAseq. At 15 dpf, independent of genotype, fish exposed to 4-PCB-11-Sulfate survived significantly more at 80-85% compared to 65-73% survival for unexposed fish, and had primary pancreatic islets 8% larger compared to unexposed fish. Fish growth at 15 dpf was dependent on genotype, with Nrf2a mutant fish a significant 3-5% shorter than wildtype fish, and an interaction effect was observed where Nrf2a mutant fish exposed to 4-PCB-11-Sulfate experienced a significant 29% decrease in the omega-3 fatty acid DHA compared to unexposed mutant fish. RNAseq revealed 308 differentially expressed genes, most of which were dependent on genotype. These findings suggest that Nrf2a plays an important role in growth as well as for DHA production in the presence of 4-PCB-11-Sulfate. Further research would be beneficial to understand the importance of Nrf2a throughout the lifecourse, especially in the context of toxicant exposures.
Collapse
Affiliation(s)
- Monika A Roy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 171B Goessmann Building, 686 N Pleasant St, Amherst, MA 01003, USA; Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Charlotte K Gridley
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 171B Goessmann Building, 686 N Pleasant St, Amherst, MA 01003, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 171B Goessmann Building, 686 N Pleasant St, Amherst, MA 01003, USA.
| |
Collapse
|
18
|
Yu J, Loh K, Yang HQ, Du MR, Wu YX, Liao ZY, Guo A, Yang YF, Chen B, Zhao YX, Chen JL, Zhou J, Sun Y, Xiao Q. The Whole-transcriptome Landscape of Diabetes-related Sarcopenia Reveals the Specific Function of Novel lncRNA Gm20743. Commun Biol 2022; 5:774. [PMID: 35915136 PMCID: PMC9343400 DOI: 10.1038/s42003-022-03728-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/15/2022] [Indexed: 11/11/2022] Open
Abstract
While the exact mechanism remains unclear, type 2 diabetes mellitus increases the risk of sarcopenia which is characterized by decreased muscle mass, strength, and function. Whole-transcriptome RNA sequencing and informatics were performed on the diabetes-induced sarcopenia model of db/db mice. To determine the specific function of lncRNA Gm20743, the detection of Mito-Sox, reactive oxygen species, Ethynyl-2′-deoxyuridine, and myosin heavy chain was performed in overexpressed and knockdown-Gm20743 C2C12 cells. RNA-seq data and informatics revealed the key lncRNA-mRNA interactions and indicated a potential regulatory role of lncRNAs. We characterized three core candidate lncRNAs Gm20743, Gm35438, 1700047G03Rik, and their potential function. Furthermore, the results suggested lncRNA Gm20743 may be involved in regulating mitochondrial function, oxidative stress, cell proliferation, and myotube differentiation in skeletal muscle cells. These findings significantly improve our understanding of lncRNAs that may mediate muscle mass, strength, and function in diabetes and represent potential therapeutic targets for diabetes-induced sarcopenia. The role of lncRNA Gm20743 in the development of diabetic sarcopenia is explored using a mouse model.
Collapse
Affiliation(s)
- Jing Yu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kim Loh
- Diabetes & Metabolic Disease Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, VIC, Australia
| | - He-Qin Yang
- Health Outcome Research and Policy, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Meng-Ran Du
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong-Xin Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Yin Liao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ai Guo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun-Fei Yang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Chen
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yu-Xing Zhao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin-Liang Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhou
- Department of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yue Sun
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
19
|
Prutton KM, Marentette JO, Leifheit BA, Esquer H, LaBarbera DV, Anderson CC, Maclean KN, Roede JR. Oxidative stress as a candidate mechanism for accelerated neuroectodermal differentiation due to trisomy 21. Free Radic Biol Med 2022; 186:32-42. [PMID: 35537597 DOI: 10.1016/j.freeradbiomed.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
The ubiquity of cognitive deficits and early onset Alzheimer's disease in Down syndrome (DS) has focused much DS iPSC-based research on neuron degeneration and regeneration. Despite reports of elevated oxidative stress in DS brains, few studies assess the impact of this oxidative burden on iPSC differentiation. Here, we evaluate cellular specific redox differences in DS and euploid iPSCs and neural progenitor cells (NPCs) during critical intermediate stages of differentiation. Despite successful generation of NPCs, our results indicate accelerated neuroectodermal differentiation of DS iPSCs compared to isogenic, euploid controls. Specifically, DS embryoid bodies (EBs) and neural rosettes prematurely develop with distinct morphological differences from controls. Additionally, we observed developmental stage-specific alterations in mitochondrial superoxide production and SOD1/2 abundance, coupled with modulations in thioredoxin, thioredoxin reductase, and peroxiredoxin isoforms. Disruption of intracellular redox state and its associated signaling has the potential to disrupt cellular differentiation and development in DS lending to DS-specific phenotypes.
Collapse
Affiliation(s)
- Kendra M Prutton
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA; Linda Crnic Institute for Down Syndrome, Aurora, CO, 80045, USA
| | - John O Marentette
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA; Linda Crnic Institute for Down Syndrome, Aurora, CO, 80045, USA
| | - Brice A Leifheit
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA
| | - Hector Esquer
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA; Center for Drug Discovery, University of Colorado, Aurora, CO, 80045, USA
| | - Daniel V LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA; Center for Drug Discovery, University of Colorado, Aurora, CO, 80045, USA
| | - Colin C Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA; Linda Crnic Institute for Down Syndrome, Aurora, CO, 80045, USA
| | - Kenneth N Maclean
- Linda Crnic Institute for Down Syndrome, Aurora, CO, 80045, USA; Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, 80045, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA; Linda Crnic Institute for Down Syndrome, Aurora, CO, 80045, USA.
| |
Collapse
|
20
|
Genome-wide mining of gpx gene family provides new insights into cadmium stress responses in common carp (Cyprinus carpio). Gene 2022; 821:146291. [PMID: 35176426 DOI: 10.1016/j.gene.2022.146291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 01/11/2023]
Abstract
Glutathione peroxidase (Gpx) is an important member of antioxidant enzymes, which can play a vital role in metabolizing reactive oxygen species (ROS) and in maintaining cell homeostasis. In order to study the evolutionary dynamics of gpx gene family in allotetraploid fish species, we identified a total of 14 gpx genes in common carp Cyprinus carpio, while 9 gpx genes were discovered in the diploid progenitor-like species Poropuntius huangchuchieni. Comparative genomic analysis and phylogenetic analysis revealed that the common carp gpx genes had significant expansion and were divided into five distinct subclades. Exon-intron distribution patterns and conserved motif analysis revealed highly conserved evolutionary patterns. Transcript profiles suggested that different gpx genes had specific patterns of regulation during early embryonic development. In adult tissues, gpx genes had a relatively broad expression distribution, most of which were highly expressed in the gills, intestines, and gonads. RT-qPCR studies showed that most gpx genes were downregulated during the initial cd2+ treatment stage. Dietary supplementation of Bacillus coagulans at different concentrations (Group 2 of 1.0 × 107 cfu/g, Group 3 of 1.0 × 108 cfu/g, and Group 4 of 1.0 × 109 cfu/g) induced different regulatory responses of gpx subclades. This result suggested that the appropriate concentration of B. coagulans can improve gpx gene expression when exposed to heavy metal cadmium treatment, which may play a vital role in the resistance to oxidative stress and immune responses. This study has expanded our understanding of the functional evolution of the gpx gene family in common carp.
Collapse
|
21
|
Zhou Y, Yao L, Pan L, Wang H. Bioaccumulation and function analysis of glutathione S-transferase isoforms in Manila clam Ruditapes philippinarum exposed to different kinds of PAHs. J Environ Sci (China) 2022; 112:129-139. [PMID: 34955196 DOI: 10.1016/j.jes.2021.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 06/14/2023]
Abstract
This study analyzed the function of different glutathione S-transferase (GST) isoforms and detoxification metabolism responses in Manila clam, Ruditapes philippinarum, exposed to 4 kinds of polycyclic aromatic hydrocarbons (PAHs) single, and their mixtures for 15 days under laboratory conditions. 13 kinds of GSTs in R. philippinarum were classified, and the results of tissue distribution indicated that 12 kinds of GSTs (except GST sigma 3) expressed most in digestive glands. We detected the mRNA expression levels of aryl hydrocarbon receptor signaling pathway, and detoxification system in digestive glands of clams exposed to benzo[a]pyrene (BaP), chrysene (CHR), benzo[a]anthracene (BaA), benzo[b]fluoranthene (BbF), and BaP + CHR + BaA + BbF, respectively. Among these genes, we selected GST-sigma, GST-omega and GST-pi as potential indicators to BaP; GST-sigma, GST-A and GST-rho to CHR; GST-pi, GST-sigma, GST-A, GST-rho and GST-microsomal to BaA; GST-theta and GST-mu to BbF; while GST-pi and GST-mu to the mixture of BaP, CHR, BaA and BbF. Additionally, the bioaccumulation of PAHs in tissues increased remarkably over time, and showed an obvious dose-effect. Under the same concentration, the bioaccumulation in single exposure group was higher than that in mixture group, and the bioaccumulation of PAHs in tissues with different concentrations of stress was irregular. The results revealed the metabolic differences and bioaccumulation rules in clams exposed to four kinds of PAHs, and provided more valuable information for the PAHs risk assessment.
Collapse
Affiliation(s)
- Yueyao Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Linlin Yao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Hongdan Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
22
|
Annunziato KM, Marin M, Liang W, Conlin SM, Qi W, Doherty J, Lee J, Clark JM, Park Y, Timme-Laragy AR. The Nrf2a pathway impacts zebrafish offspring development with maternal preconception exposure to perfluorobutanesulfonic acid. CHEMOSPHERE 2022; 287:132121. [PMID: 34509758 PMCID: PMC8765597 DOI: 10.1016/j.chemosphere.2021.132121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/10/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Since the voluntary phaseout of perfluorooctanesulfonic acid (PFOS), smaller congeners, such as perfluorobutanesulfonic acid (PFBS) have served as industrial replacements and been detected in contaminated aquifers. This study sought to examine the effects of a maternal preconception PFBS exposure on the development of eggs and healthy offspring. Adult female zebrafish received a one-week waterborne exposure of 0.08, 0.14, and 0.25 mg/L PFBS. After which, females were bred with non-exposed males and embryos collected over 5 successful breeding events. PFBS concentrations were detected in levels ranging from 99 to 253 pg/embryo in the first collection but were below the limit of quantitation by fourth and fifth clutches. Therefore, data were subsequently binned into early collection embryos in which PFBS was detected and late collections, in which PFBS was below quantitation. In the early collection, embryo 24 h survival was significantly reduced. In the late collection, embryo development was impacted with unique patterns emerging between Nrf2a wildtype and mutant larvae. Additionally, the impact of nutrient loading into the embryos was assessed through measurement of fatty acid profiles, total cholesterol, and triglyceride content. There were no clear dose-dependent effects, but again unique patterns were observed between the genotypes. Preconception PFBS exposures were found to alter egg and embryo development, which is mediated by direct toxicant loading in the eggs, nutrient loading into eggs, and the function of Nrf2a. These findings provide insight into the reproductive and developmental effects of PFBS and identify maternal preconception as a novel critical window of exposure.
Collapse
Affiliation(s)
- Kate M Annunziato
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Marjorie Marin
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA, USA
| | - Wenle Liang
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sarah M Conlin
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Weipeng Qi
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jeffery Doherty
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Jonghwa Lee
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - John M Clark
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
23
|
Migdał M, Tralle E, Nahia KA, Bugajski Ł, Kędzierska KZ, Garbicz F, Piwocka K, Winata CL, Pawlak M. Multi-omics analyses of early liver injury reveals cell-type-specific transcriptional and epigenomic shift. BMC Genomics 2021; 22:904. [PMID: 34920711 PMCID: PMC8684102 DOI: 10.1186/s12864-021-08173-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Background Liver fibrosis is a wound-healing response to tissue injury and inflammation hallmarked by the extracellular matrix (ECM) protein deposition in the liver parenchyma and tissue remodelling. Different cell types of the liver are known to play distinct roles in liver injury response. Hepatocytes and liver endothelial cells receive molecular signals indicating tissue injury and activate hepatic stellate cells which produce ECM proteins upon their activation. Despite the growing knowledge on the molecular mechanism underlying hepatic fibrosis in general, the cell-type-specific gene regulatory network associated with the initial response to hepatotoxic injury is still poorly characterized. Results In this study, we used thioacetamide (TAA) to induce hepatic injury in adult zebrafish. We isolated three major liver cell types - hepatocytes, endothelial cells and hepatic stellate cells - and identified cell-type-specific chromatin accessibility and transcriptional changes in an early stage of liver injury. We found that TAA induced transcriptional shifts in all three cell types hallmarked by significant alterations in the expression of genes related to fatty acid and carbohydrate metabolism, as well as immune response-associated and vascular-specific genes. Interestingly, liver endothelial cells exhibit the most pronounced response to liver injury at the transcriptome and chromatin level, hallmarked by the loss of their angiogenic phenotype. Conclusion Our results uncovered cell-type-specific transcriptome and epigenome responses to early stage liver injury, which provide valuable insights into understanding the molecular mechanism implicated in the early response of the liver to pro-fibrotic signals. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08173-1.
Collapse
|
24
|
Sulukan E, Ghosigharehagaji A, Baran A, Yildirim S, Bolat İ, Ceyhun SB. A versatile toxicity evaluation of ethyl carbamate (urethane) on zebrafish embryos: Morphological, physiological, histopathological, immunohistochemical, transcriptional and behavioral approaches. Toxicol Lett 2021; 353:71-78. [PMID: 34606945 DOI: 10.1016/j.toxlet.2021.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/10/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Ethyl carbamate (EC, urethane), which is used as an anesthetic especially by veterinarians due to its very long duration of action, is also a naturally occurring compound in all fermented foods and beverages. Although the health problem of EC is related to its carcinogenic potential, the scarcity of current studies that can be used in the evaluation of usage limits encouraged us to do this study. In this context, zebrafish embryos were exposed to serial doses of EC. According to the results, it was observed that EC exposure caused a significant decrease in survival and hatching rates as well as significant body malformations. Whole-mount staining results showed that EC caused dose-dependent increased apoptosis. Oxidative stress caused by EC exposure was demonstrated by whole-mount staining, transcriptional and immunohistochemically. Furthermore, it has been shown histochemically that EC exposure causes necrosis and degeneration in the brain. In behavioral tests, it was observed that EC caused hyperactivity associated with these neuronal degenerations. In addition, a dramatic decrease in blood flow was detected in association with pericardial edema. In the light of the current results, it should be carefully considered that EC can be found naturally in many human diets, especially fermented foods.
Collapse
Affiliation(s)
- Ekrem Sulukan
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, Erzurum, Turkey
| | - Atena Ghosigharehagaji
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey
| | - Alper Baran
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Food Quality Control and Analysis, Technical Vocational School, Atatürk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Saltuk Buğrahan Ceyhun
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
25
|
Tierbach A, Groh KJ, Schönenberger R, Schirmer K, Suter MJF. Biotransformation Capacity of Zebrafish (Danio rerio) Early Life Stages: Functionality of the Mercapturic Acid Pathway. Toxicol Sci 2021; 176:355-365. [PMID: 32428239 DOI: 10.1093/toxsci/kfaa073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Zebrafish (Danio rerio) early life stages offer a versatile model system to study the efficacy and safety of drugs or other chemicals with regard to human and environmental health. This is because, aside from the well-characterized genome of zebrafish and the availability of a broad range of experimental and computational research tools, they are exceptionally well suited for high-throughput approaches. Yet, one important pharmacokinetic aspect is thus far only poorly understood in zebrafish embryo and early larvae: their biotransformation capacity. Especially, biotransformation of electrophilic compounds is a critical pathway because they easily react with nucleophile molecules, such as DNA or proteins, potentially inducing adverse health effects. To combat such adverse effects, conjugation reactions with glutathione and further processing within the mercapturic acid pathway have evolved. We here explore the functionality of this pathway in zebrafish early life stages using a reference substrate (1-chloro-2,4-dinitrobenzene, CDNB). With this work, we show that zebrafish embryos can biotransform CDNB to the respective glutathione conjugate as early as 4 h postfertilization. At all examined life stages, the glutathione conjugate is further biotransformed to the last metabolite of the mercapturic acid pathway, the mercapturate, which is slowly excreted. Being able to biotransform electrophiles within the mercapturic acid pathway shows that zebrafish early life stages possess the potential to process xenobiotic compounds through glutathione conjugation and the formation of mercapturates. The presence of this chemical biotransformation and clearance route in zebrafish early life stages supports the application of this model in toxicology and chemical hazard assessment.
Collapse
Affiliation(s)
- Alena Tierbach
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Dübendorf, Switzerland.,EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Ksenia J Groh
- Food Packaging Forum Foundation, 8045 Zürich, Switzerland
| | - René Schönenberger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Dübendorf, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Dübendorf, Switzerland.,EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland.,ETH Zürich, Swiss Federal Institute of Technology, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| | - Marc J-F Suter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Dübendorf, Switzerland.,ETH Zürich, Swiss Federal Institute of Technology, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| |
Collapse
|
26
|
Sollecito N, Alves R, Beletti M, Pereira E, Miranda M, Silva J, Borges A. Morphometry of bovine blastocysts produced in vitro in culture media with antioxidants cysteamine or oily extract of Lippia origanoides. ARQ BRAS MED VET ZOO 2021. [DOI: 10.1590/1678-4162-12217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT This study aimed to evaluate the ultrastructural morphometry of bovine embryos produced in vitro grown at different concentrations of antioxidants. After in vitro maturation and fertilization, the presumptive zygotes were assigned into five treatments. T1) without the addition of any antioxidants (negative control); T2) addition of 50μM/mL cysteamine; and T3, T4 and T5) adding 2.5μg/mL, 5.0μg/mL or 10.0μg/mL of the antioxidants derived from the oily extract from Lippia origanoides, respectively. On D7 of culture, the embryos in the blastocyst stage were fixed and prepared for electron transmission microscopy. These were evaluated for the proportion of cytoplasm-to-nucleus, cytoplasm-to-mitochondria, cytoplasm-to-vacuoles, cytoplasm-to-autophagic vacuoles and cytoplasm-to-lipid droplets. Blastocysts cultured in media containing oily extract of Lippia origanoides presented morphological characteristics such as high cell:mitochondria ratio and low cell:vacuoles and cell:autophagic vacuole ratio, possibly been morphological indicators of embryonic quality. Inner cell mass (ICM) from blastocysts cultured in media without any antioxidants had the highest cell:vacuole ratio. Similar results were found in the trophectoderm (TE) cells of blastocysts from treatment 2. Embryo culture media supplemented with antioxidants derived from Lippia origanoides oil produced embryos with a higher cytoplasmic proportion of organelles, such as mitochondria. Also, treatments without any antioxidants or with the addition of cysteamine presented cytoplasmic vacuolization, a characteristic related to production of poor-quality embryos.
Collapse
Affiliation(s)
| | - R.N. Alves
- Universidade Federal de Uberlândia, Brazil
| | | | | | | | | | - A.M. Borges
- Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
27
|
Silva GAL, Araújo LB, Silva LCR, Gouveia BB, Barberino RS, Lins TLBG, Monte APO, Macedo TJS, Santos JMS, Menezes VG, Silva RLS, Matos MHT. Gallic acid promotes the in vitro development of sheep secondary isolated follicles involving the phosphatidylinositol 3-kinase pathway. Anim Reprod Sci 2021; 230:106767. [PMID: 34030069 DOI: 10.1016/j.anireprosci.2021.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
This study was conducted to evaluate the effect of addition of gallic acid as the single antioxidant to the base medium for in vitro culture of sheep secondary follicles and if the phosphatidylinositol 3-kinase (PI3K) pathway is involved in the action of gallic acid. Secondary follicles were isolated and cultured for 12 days in α-MEM supplemented with bovine serum albumin (BSA), insulin, glutamine, hypoxanthine, transferrin, selenium, and ascorbic acid (control medium: α-MEM+) or in α-MEM supplemented with BSA, insulin, glutamine, hypoxanthine and different concentrations of gallic acid (25, 50 or 100 μM), thus replacing transferrin, selenium and ascorbic acid in the medium. Follicle morphology, glutathione (GSH), and mitochondrial activity, and meiotic resumption were evaluated. Furthermore, inhibition of PI3K pathway was performed by pretreatment with LY294002. After 12 days of culture, the follicle survival in a medium containing 100 μM gallic acid was similar (P > 0.05) to α-MEM+ and greater (P < 0.05) compared with other gallic acid concentrations. Antrum formation, follicle diameter, GSH, and mitochondrial activity, and meiotic resumption, however, were greater (P < 0.05) when 100 μM gallic acid was included in the α-MEM+ culture medium compared with the control medium. Furthermore, LY294002 inhibited (P < 0.05) follicle survival, development, and meiotic resumption stimulated by 100 μM gallic acid. In conclusion, concentration of 100 μM of gallic acid can be a substitute for transferrin, selenium, and ascorbic acid in the base medium during in vitro culture of sheep secondary follicles, inducing follicle development likely through the PI3K pathway.
Collapse
Affiliation(s)
- Gizele A L Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Luana B Araújo
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Larissa C R Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Bruna B Gouveia
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Ricássio S Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Thae Lanne B G Lins
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Alane P O Monte
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Taís J S Macedo
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Jamile M S Santos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Vanúzia G Menezes
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Regina L S Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Maria Helena T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil.
| |
Collapse
|
28
|
Bijnens K, Jaenen V, Wouters A, Leynen N, Pirotte N, Artois T, Smeets K. A Spatiotemporal Characterisation of Redox Molecules in Planarians, with a Focus on the Role of Glutathione during Regeneration. Biomolecules 2021; 11:biom11050714. [PMID: 34064618 PMCID: PMC8150688 DOI: 10.3390/biom11050714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/23/2022] Open
Abstract
A strict coordination between pro- and antioxidative molecules is needed for normal animal physiology, although their exact function and dynamics during regeneration and development remains largely unknown. Via in vivo imaging, we were able to locate and discriminate between reactive oxygen species (ROS) in real-time during different physiological stages of the highly regenerative planarian Schmidtea mediterranea. All ROS signals were strong enough to overcome the detected autofluorescence. Combined with an in situ characterisation and quantification of the transcription of several antioxidant genes, our data showed that the planarian gut and epidermis have a well-equipped redox system. Pharmacological inhibition or RNA interference of either side of the redox balance resulted in alterations in the regeneration process, characterised by decreased blastema sizes and delayed neurodevelopment, thereby affecting tails more than heads. Focusing on glutathione, a central component in the redox balance, we found that it is highly present in planarians and that a significant reduction in glutathione content led to regenerative failure with tissue lesions, characterised by underlying stem cell alterations. This exploratory study indicates that ROS and antioxidants are tightly intertwined and should be studied as a whole to fully comprehend the function of the redox balance in animal physiology.
Collapse
|
29
|
Lapehn S, Piorczynski TB, Hansen JM, Harris C. Spatiotemporal evaluation of the mouse embryonic redox environment and histiotrophic nutrition following treatment with valproic acid and 1,2-dithiole-3-thione during early organogenesis. Reprod Toxicol 2021; 101:81-92. [PMID: 33713778 PMCID: PMC8110175 DOI: 10.1016/j.reprotox.2021.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/27/2022]
Abstract
Redox regulation during metazoan development ensures that coordinated metabolic reprogramming and developmental signaling are orchestrated with high fidelity in the hypoxic embryonic environment. Valproic acid (VPA), an anti-seizure medication, is known to increase markers of oxidation and also increase the risk of neural tube defects (NTDs) when taken during pregnancy. It is unknown, however, whether oxidation plays a direct role in failed neural tube closure (NTC). Spatial and temporal fluctuations in total glutathione (GSH) and total cysteine (Cys) redox steady states were seen during a 24 h period of CD-1 mouse organogenesis in untreated conceptuses and following exposure to VPA and the Nrf2 antioxidant pathway inducer, 1,2-dithiole-3-thione (D3T). Glutathione, glutathione disulfide (GSSG), and Cys, cystine (CySS) concentrations, measured in conceptal tissues (embryo/visceral yolk sac) and fluids (yolk sac fluid/amniotic fluid) showed that VPA did not cause extensive and prolonged oxidation during the period of NTC, but instead produced transient periods of oxidation, as assessed by GSH:GSSG redox potentials, which revealed oxidation in all four conceptal compartments at 4, 10, and 14 h, corresponding to the period of heartbeat activation and NTC. Other changes were tissue and time specific. VPA treatment also reduced total FITC-Ab clearance from the medium over 3 h, indicating potential disruption of nutritive amino acid supply. Overall, these results indicated that VPA's ability to affect cellular redox status may be limited to tissue-specific windows of sensitivity during the period of NTC. The safety evaluation of drugs used during pregnancy should consider time and tissue specific redox factors.
Collapse
Affiliation(s)
- Samantha Lapehn
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, United States.
| | - Ted B Piorczynski
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, United States
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, United States
| | - Craig Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, United States
| |
Collapse
|
30
|
Yuan T, Sun J, Tian J, Hu J, Yin H, Yin J. Involvement of ABC transporters in the detoxification of non-substrate nanoparticles in lung and cervical cancer cells. Toxicology 2021; 455:152762. [PMID: 33766574 DOI: 10.1016/j.tox.2021.152762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
This paper aimed to systemically investigate the role of adenosine triphosphate-binding cassette (ABC transporters) in the detoxification of non-substrate nanoparticles including titanium dioxide (n-TiO2, 5-10 nm) and gold (AuNPs, 3 nm, 15 nm, and 80 nm, named as Au-3, Au-15 and Au-80) in human lung cancer (A549) and human cervical cancer (HeLa) cells. All these nanoparticles were of larger hydrophilic diameters than the channel sizes of ABC transporters, thus should not be the substrates of membrane proteins. After 24-h treatment, they induced significant cytotoxicity as reflected by the reduction in cell viability and glutathione (GSH) contents, as well as the increase in reactive oxygen species (ROS) level. At median-lethal concentrations (10 mg/L n-TiO2, 2 mg/L Au-3, 5 mg/L Au-15, and 10 mg/L Au-80 for A549 cells; 20 mg/L n-TiO2, 2 mg/L Au-3, 5 mg/L Au-15, and 10 mg/L Au-80 for Hela cells), all the nanoparticles significantly induced the gene expressions and activities of ABC transporters including P-glycoprotein (PGP) and multidrug resistance associated protein 1 (MRP1). Addition of transporter inhibitors enhanced the ROS levels produced by nanoparticles, but didn't alter their death-inducing effects and intracellular accumulations. With specific suppressors, transcription factors like nuclear factor-erythroid 2-related factor-2 (NRF2) and pregnane X receptor (PXR) were proved to be important in the induction of ABC transporters by nanoparticles. After all, this paper revealed a damage-dependent modulation of ABC transporters by non-substrate nanoparticles. The up-regulated ABC transporters could help in reducing the oxidative stress produced by nanoparticles. Such information should be useful in assessing the environmental risk of nanoparticles, as well as their interactions with other chemical toxicants or drugs.
Collapse
Affiliation(s)
- Tongkuo Yuan
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Jinan Guo Ke Medical Technology Development Co., Ltd, PR China
| | - Jiaojiao Sun
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Jingjing Tian
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Academy for Engineering & Technology, Fudan University, Shanghai 200433, PR China
| | - Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Huancai Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Jinan Guo Ke Medical Technology Development Co., Ltd, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| | - Jian Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Jinan Guo Ke Medical Technology Development Co., Ltd, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| |
Collapse
|
31
|
Vieira RSF, Venâncio CAS, Félix LM. Embryonic zebrafish response to a commercial formulation of azoxystrobin at environmental concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111920. [PMID: 33497861 DOI: 10.1016/j.ecoenv.2021.111920] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Azoxystrobin is a broad-spectrum strobilurin fungicide for use on a wide range of crops available to end-users as formulated products. Due to its extensive application, it has been detected in aquatic ecosystems, raising concerns about its environmental impact, which is still poorly explored. The objective of this work was to study the effects of a commercial formulation of azoxystrobin in the zebrafish embryo model. Sublethal and lethal effects were monitored during the exposure period from 2 h post fertilisation (hpf) to 96 hpf after exposure to azoxystrobin concentrations (1, 10 and 100 μg L-1). The responses of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR)) as well as detoxifying enzymes (glutathione-s-transferase (GST) and carboxylesterase (CarE)) were evaluated at 96 hpf. Similarly, glutathione levels (reduced (GSH) and oxidised (GSSG) glutathione), neurotransmission (acetylcholinesterase (AChE)) and anaerobic respiration (lactate dehydrogenase (LDH)) -related enzymes were assayed. At 120 hpf, larvae from each group were used for behaviour analysis. Results from this study showed concentration-dependent teratogenic effects, particularly by increasing the number of malformations (yolk and eye), with a higher prevalence at the highest concentration. However, it was found that the lowest concentration induced a high generation of reactive oxygen species (ROS) and increased activity of SOD, GST, and CarE. In addition, GR and GSSG levels were decreased by the lowest concentration, suggesting an adaptive response to oxidative stress, which is also supported by the increased AChE activity and absence of behavioural changes. These findings advance the knowledge of the azoxystrobin developmental and environmental impacts, which may impose ecotoxicological risks to non-target species.
Collapse
Affiliation(s)
- Raquel S F Vieira
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Carlos A S Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís M Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Institute for Research and Innovation in Health, Laboratory Animal Science, Institute of Molecular and Cell Biology, University of Porto, Rua Alfredo Allen, nº 208, 4200-135 Porto, Portugal.
| |
Collapse
|
32
|
Teratogenic, Oxidative Stress and Behavioural Outcomes of Three Fungicides of Natural Origin ( Equisetum arvense, Mimosa tenuiflora, Thymol) on Zebrafish ( Danio rerio). TOXICS 2021; 9:toxics9010008. [PMID: 33435474 PMCID: PMC7827758 DOI: 10.3390/toxics9010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
The improper use of synthetic fungicides has raised public concerns related to environmental pollution and animal health. Over the years, plant-derived antifungals have been investigated as safer alternatives, although little scientific evidence of its neurodevelopmental effects exist. The main objective of this study was to explore the effects of three alternative natural extracts (Equisetum arvense, Mimosa tenuiflora, Thymol) with antifungal properties during the early development of zebrafish by evaluating different teratogenic, oxidative stress and behavioural outcomes. Following the determination of the 96 h-LC50, exposure to sublethal concentrations showed the safety profile of both E. arvense and M. tenuiflora. However, following 96-h exposure to Thymol, increased lethality, pericardial oedema, yolk and eye deformations, and decreased body length were observed. The reduced and oxidized glutathione (GSH:GSSG) ratio was increased, and the glutathione-s-transferase activity in the group exposed to the highest Thymol concentration. Overall, these results support a more reducing environment associated with possible effects at the cellular proliferation level. In addition, the disruption of behavioural states (fear- and anxiety-like disorders) were noted, pointing to alterations in the c-Jun N-terminal kinase developmental signalling pathway, although further studies are required to explore this rationale. Notwithstanding, the results provide direct evidence of the teratogenic effects of Thymol, which might have consequences for non-target species.
Collapse
|
33
|
Rastogi A, Severance EG, Jacobs HM, Conlin SM, Islam ST, Timme-Laragy AR. Modulating glutathione thiol status alters pancreatic β-cell morphogenesis in the developing zebrafish (Danio rerio) embryo. Redox Biol 2021; 38:101788. [PMID: 33321464 PMCID: PMC7744774 DOI: 10.1016/j.redox.2020.101788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 01/07/2023] Open
Abstract
Emerging evidence suggests that redox-active chemicals perturb pancreatic islet development. To better understand potential mechanisms for this, we used zebrafish (Danio rerio) embryos to investigate roles of glutathione (GSH; predominant cellular redox buffer) and the transcription factor Nrf2a (Nfe2l2a; zebrafish Nrf2 co-ortholog) in islet morphogenesis. We delineated critical windows of susceptibility to redox disruption of β-cell morphogenesis, interrogating embryos at 24, 48 and 72 h post fertilization (hpf) and visualized Nrf2a expression in the pancreas using whole-mount immunohistochemistry at 96 hpf. Chemical GSH modulation at 48 hpf induced significant islet morphology changes at 96 hpf. Pro-oxidant exposures to tert-butylhydroperoxide (77.6 μM; 10-min at 48 hpf) or tert-butylhydroquinone (1 μM; 48-56 hpf) decreased β-cell cluster area at 96 hpf. Conversely, exposures to antioxidant N-acetylcysteine (bolsters GSH pools; 100 μM; 48-72 hpf) or sulforaphane (activates Nrf2a; 20 μM; 48-72 hpf) significantly increased islet areas. Nrf2a was also stabilized in β-cells: 10-min exposures to 77.6 μM tert-butylhydroperoxide significantly increased Nrf2a protein compared to control islet cells that largely lack stabilized Nrf2a; 10-min exposures to higher (776 μM) tert-butylhydroperoxide concentration stabilized Nrf2a throughout the pancreas. Using biotinylated-GSH to visualize in situ protein glutathionylation, islet cells displayed high protein glutathionylation, indicating oxidized GSH pools. The 10-min high (776 μM) tert-butylhydroperoxide exposure (induced Nrf2a globally) decreased global protein glutathionylation at 96 hpf. Mutant fish expressing inactive Nrf2a were protected against tert-butylhydroperoxide-induced abnormal islet morphology. Our data indicate that disrupted redox homeostasis and Nrf2a stabilization during pancreatic β-cell development impact morphogenesis, with implications for disease states at later life stages. Our work identifies a potential molecular target (Nrf2) that mediates abnormal β-cell morphology in response to redox disruptions. Moreover, our findings imply that developmental exposure to exogenous stressors at distinct windows of susceptibility could diminish the reserve redox capacity of β-cells, rendering them vulnerable to later-life stresses and disease.
Collapse
Affiliation(s)
- Archit Rastogi
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
| | - Emily G Severance
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Haydee M Jacobs
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Sarah M Conlin
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Sadia T Islam
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA; Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
34
|
Zhang J, Head B, Leonard SW, Choi J, Tanguay RL, Traber MG. Vitamin E deficiency dysregulates thiols, amino acids and related molecules during zebrafish embryogenesis. Redox Biol 2020; 38:101784. [PMID: 33186843 PMCID: PMC7658488 DOI: 10.1016/j.redox.2020.101784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin E (α-tocopherol, VitE) was discovered as a nutrient essential to protect fetuses, but its molecular role in embryogenesis remains undefined. We hypothesize that the increased lipid peroxidation due to VitE deficiency drives a complex mechanism of overlapping biochemical pathways needed to maintain glutathione (GSH) homeostasis that is dependent on betaine and its methyl group donation. We assess amino acids and thiol changes that occur during embryogenesis [12, 24 and 48 h post fertilization (hpf)] in VitE-sufficient (E+) and deficient (E-) embryos using two separate, novel protocols to quantitate changes using UPLC-MS/MS. Using partial least squares discriminant analysis, we found that betaine is a critical feature separating embryos by VitE status and is higher in E- embryos at all time points. Other important features include: glutamic acid, increased in E- embryos at 12 hpf; choline, decreased in E- embryos at 24 hpf; GSH, decreased in E- embryos at 48 hpf. By 48 hpf, GSH was significantly lower in E- embryos (P < 0.01), as were both S-adenosylmethionine (SAM, P < 0.05) and S-adenosylhomocysteine (SAH, P < 0.05), while glutamic acid was increased (P < 0.01). Since GSH synthesis requires cysteine (which was unchanged), these data suggest that both the conversion of homocysteine and the uptake of cystine via the Xc- exchanger are dysregulated. Our data clearly demonstrates the highly inter-related dependence of methyl donors (choline, betaine, SAM) and the methionine cycle for maintenance of thiol homeostasis. Additional quantitative flux studies are needed to clarify the quantitative importance of these routes.
Collapse
Affiliation(s)
- Jie Zhang
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA; College of Science, China Agriculture University, Beijing, China
| | - Brian Head
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA; Molecular and Cell Biology Program, Oregon State University, Corvallis, OR, USA
| | - Scott W Leonard
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Robyn L Tanguay
- Department of Environmental Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA; School of Biological and Population Health Sciences, College of Public Health, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
35
|
Zhou Y, Zhao Y, Xu R, Pan L. Study on the AhR signaling pathway and phase II detoxification metabolic enzymes isoforms in scallop Chlamys farreri exposed to single and mixtures of PAHs. ENVIRONMENTAL RESEARCH 2020; 190:109980. [PMID: 32800894 DOI: 10.1016/j.envres.2020.109980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/11/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to investigate the detoxification metabolism responses in scallop Chlamys farreri exposed to phenanthrene (PHE), chrysene (CHR), benzo[a]pyrene (B[a]P) and PHE + CHR + B[a]P for 15 days under laboratory conditions. The mRNA expression levels of AhR signaling pathway (AhR, HSP90, XAP2 and ARNT), detoxification system (phase I: CYP1A1 and CYP1B1; phase II: SULTs, UGT and GSTs) and ATP-binding cassette transporters (phase 0: ABCB1 and phase III: ABCC1, ABCG2) in digestive glands of scallops exposed to PHE (0.7, 2.1 μg/L), CHR (0.7, 2.1 μg/L), B[a]P (0.7, 2.1 μg/L), and PHE + CHR + B[a]P (0.7 + 0.7 +0.7, 2.1 + 2.1 + 2.1 μg/L) were detected. In present study, key genes (AhR, HSP90, XAP2 and ARNT) of the AhR signaling pathway can be significantly induced by pollutants, suggesting that the AhR/ARNT signaling pathway plays a role directly or indirectly. AhR, HSP90 and ARNT reached the maximum value on day 6, which can be preliminarily understood as the synchronization of their functions. Besides, the results also indicated that different genes had specific response to different pollution exposure. CYP1B1, GST-2, GST-omega and GST-microsomal could be potional indexes to PHE, ARNT, GST-sigma 2 and GST-3 were sensitive to CHR exposure, HSP90, GST-theta and ABCG2 were considered as potional indexes to BaP while CYP1A1 and UGT were possible to be indexes for monitoring the mix exposure of these three PAHs. These findings in C. farreri suggested that phase II detoxification metabolic enzymes isoforms played an essential role in detoxification mechanisms and mRNA expression levels of specific SULTs, UGTs and GSTs were potentially to be ideal indexes in PAHs pollution research. In summary, this study provides more valuable information for the risk assessments of different rings of PAHs.
Collapse
Affiliation(s)
- Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yanan Zhao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
36
|
Félix LM, Luzio A, Santos A, Antunes LM, Coimbra AM, Valentim AM. MS-222 induces biochemical and transcriptional changes related to oxidative stress, cell proliferation and apoptosis in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2020; 237:108834. [PMID: 32585370 DOI: 10.1016/j.cbpc.2020.108834] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/23/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
MS-222, the most widely used anaesthetic in fish, has been shown to induce embryotoxic effects in zebrafish. However, the underlying molecular effects are still elusive. This study aimed to investigate the effects of MS-222 exposure during early developmental stages by evaluating biochemical and molecular changes. Embryos were exposed to 50, 100 or 150 mg L-1 MS-222 for 20 min at one of three developmental stages (256-cell, 50% epiboly, or 1-4 somite stage) and oxidative-stress, cell proliferation and apoptosis-related parameters were determined at two time-points (8 and 26 hpf). Following exposure during the 256-cell stage, the biochemical redox balance was not affected. The genes associated with glutathione homeostasis (gstpi and gclc) were affected at 8 hpf, while genes associated with apoptosis (casp3a and casp6) and cellular proliferation (pcna) were found affected at 26 hpf. An inverted U-shaped response was observed at 8 hpf for catalase activity. After exposure at the 50% epiboly stage, the gclc gene associated with oxidative stress was found upregulated at 8 hpf, while gstpi was downregulated and casp6 was upregulated later on, coinciding with a decrease in glutathione peroxidase (GPx) activity and a non-monotonic elevation of protein carbonyls and casp3a. Additionally, MS-222 treated embryos showed a decrease in DCF-staining at 26 hpf. When exposure was performed at the 1-4 somite stage, a similar DCF-staining pattern was observed. The activity of GPx was also affected whereas RT-qPCR showed that caspase transcripts were dose-dependently increased (casp3a, casp6 and casp9). The pcna mRNA levels were also found to be upregulated while gclc was changed by MS-222. These results highlight the impact of MS-222 on zebrafish embryo development and its interference with the antioxidant, cell proliferation and cellular death systems by mechanisms still to be explained; however, the outcomes point to the Erk/Nrf2 signalling pathway as a target candidate.
Collapse
Affiliation(s)
- Luís M Félix
- Instituto de Investigação e Inovação em Saúde (i3S), Laboratory Animal Science (LAS), Instituto de Biologia Molecular Celular (IBMC), Universidade of Porto (UP), Porto, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana Santos
- School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís M Antunes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Valentim
- Instituto de Investigação e Inovação em Saúde (i3S), Laboratory Animal Science (LAS), Instituto de Biologia Molecular Celular (IBMC), Universidade of Porto (UP), Porto, Portugal
| |
Collapse
|
37
|
Li W, Wu Y, Yuan M, Liu X. Fluxapyroxad induces developmental delay in zebrafish (Danio rerio). CHEMOSPHERE 2020; 256:127037. [PMID: 32434089 DOI: 10.1016/j.chemosphere.2020.127037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Succinate dehydrogenase inhibitor (SDHI) fungicides are extensively used in agriculture. Some SDHI fungicides show developmental toxicity, immune toxicity and hepatotoxicity to fish. Fluxapyroxad (FLU) is a broad spectrum pyrazole-carboxamide SDHI fungicide and its potential impacts on fish embryonic development are unknown. We exposed zebrafish embryos to 1, 2 and 4 μM FLU. Developmental malformations, including yolk sac absorption disorder, decreased pigmentation and hatch delay were induced after FLU exposure. FLU caused significantly increased transcription levels in the ectoderm marker foxb1a but no significant changes in endoderm and mesoderm development markers (foxa2, ntl and eve1). Transcription levels of genes in the early stage embryos (gh, crx, neuroD and nkx2.4b) decreased significantly after FLU treatments. The content of glutathione (GSH) increased after FLU exposure. This study shows that FLU is toxic to zebrafish through its developmental effects and oxidative stress. FLU may pose risks to other non-target aquatic organisms.
Collapse
Affiliation(s)
- Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China.
| | - Yaqin Wu
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China
| | - Mingrui Yuan
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China
| | - Xuan Liu
- Xiamen Meixuanming Biotech Company, Xiamen, 361021, PR China.
| |
Collapse
|
38
|
24-Epibrassinolide protects against ethanol-induced behavioural teratogenesis in zebrafish embryo. Chem Biol Interact 2020; 328:109193. [PMID: 32668205 DOI: 10.1016/j.cbi.2020.109193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/18/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Embryonic studies have demonstrated the neurotoxic, teratogenic, and neurobehavioral toxicity of ethanol (EtOH). Although multiple mechanisms may contribute to these effects, oxidative stress has been described as the major damage pathway. In this regard, natural antioxidants have the potential to counteract oxidative stress-induced cellular damage. Therefore, the present study aimed to investigate the potential protective role of 24-epibrassinolide (24-EPI), a natural brassinosteroid with proved antioxidant properties, in EtOH-induced teratogenic effects during early zebrafish development. Embryos (~2 h post-fertilization - hpf) were exposed to 1 % EtOH, co-exposed to 24-EPI (0.01, 0.1 and 1 μM) and to 24-EPI alone (1 μM) for 24 h. Following exposure, biochemical evaluations were made at 26 hpf, developmental analysis was made throughout the embryo-larval period, and behavioural responses were evaluated at 120 hpf. Exposure to 1 % EtOH caused an increase in the number of malformations, which were diminished by 24-EPI. In addition, EtOH induced an accumulation of GSSG and consequent reduction of GSH:GSSG ratio, indicating the involvement of oxidative mechanisms in the EtOH-induced effects. These were reverted by 24-EPI as proved by the GSSG levels and GSH:GSSG ratio that returned to control values. Furthermore, exposure to EtOH resulted in behavioural deficits at 120 hpf as observed by the disrupted response to an aversive stimulus, suggesting the involvement of neurotoxic mechanisms. 24-EPI restored the behavioural deficits observed in a dose-dependent manner. The absence of effects in the embryos exposed solely to 24-EPI showed its safety during the exposure period. In conclusion, EtOH caused developmental teratogenicity and behavioural toxicity by inducing glutathione changes, which were prevented by 24-EPI.
Collapse
|
39
|
Long Non-Coding RNA and mRNA Profiling in Early-Stage Bovine Embryos Treated with Glutathione. Antioxidants (Basel) 2020; 9:antiox9050402. [PMID: 32397280 PMCID: PMC7278749 DOI: 10.3390/antiox9050402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/20/2020] [Accepted: 05/03/2020] [Indexed: 01/13/2023] Open
Abstract
We measured differential expression profiles of genes and long non-coding RNA (lncRNA) using RNA sequencing in bovine embryos with or without glutathione (GSH) treatment. Bovine embryos fertilized in vitro were treated with GSH to blastocyst. Embryos at the 8-16-cell and morula stages were collected, with embryos without GSH treatment as the control. RNA was isolated, amplified, and sequenced. Differentially expressed genes (DEGs) and lncRNAs (DElncRNAs) were identified and bioinformatic analyses carried out. Transcript levels were confirmed using quantitative RT-PCR. A total of 4100 DEGs were identified, of which 3952 were in GSH-treated morulae and 884 in untreated morulae. More gene ontology (GO) terms were associated with GSH treatment than with control conditions. KEGG analysis showed that glutathione metabolism, citrate cycle, and metabolic pathways involving glycine, serine, and threonine were observed only in GSH-treated embryos. Among 4273 DElncRNAs identified, 59 were potentially important in GSH-treated embryo development, including 14 involved in glutathione metabolism. The 59 DElncRNAs co-expressed with protein-coding mRNAs involved similar GO terms and pathways as the DEGs. This appears to be the first comprehensive profiling of DEGs and DElncRNAs in bovine embryos fertilized in vitro with or without GSH, and the first systematic screen of potential lncRNAs in bovine embryos.
Collapse
|
40
|
Chou YT, Chen LY, Tsai SL, Tu HC, Lu JW, Ciou SC, Wang HD, Yuh CH. Ribose-5-phosphate isomerase A overexpression promotes liver cancer development in transgenic zebrafish via activation of ERK and β-catenin pathways. Carcinogenesis 2020; 40:461-473. [PMID: 30418535 PMCID: PMC6514454 DOI: 10.1093/carcin/bgy155] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/21/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of the enzymes involved in the pentose phosphate pathway (PPP) is known to promote tumorigenesis. Our recent study demonstrated that ribose-5-phosphate isomerase (RPIA), a key regulator of the PPP, regulates hepatoma cell proliferation and colony formation. Our studies in zebrafish reveal that RPIA-mediated hepatocarcinogenesis requires extracellular signal-regulated kinase (ERK) and β-catenin signaling. To further investigate RPIA-mediated hepatocarcinogenesis, two independent lines of transgenic zebrafish expressing human RPIA in the liver were generated. These studies reveal that RPIA overexpression triggers lipogenic factor/enzyme expression, steatosis, fibrosis and proliferation of the liver. In addition, the severity of fibrosis and the extent of proliferation are positively correlated with RPIA expression levels. Furthermore, RPIA-mediated induction of hepatocellular carcinoma (HCC) requires the ERK and β-catenin signaling pathway but is not dependent upon transaldolase levels. Our study presents a mechanism for RPIA-mediated hepatocarcinogenesis and suggests that RPIA represents a valuable therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Yu-Ting Chou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan.,Institute of Biotechnology, National Tsing-Hua University, Hsinchu, Taiwan
| | - Li-Yang Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan.,Institute of Biotechnology, National Tsing-Hua University, Hsinchu, Taiwan
| | - Shin-Lin Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Hsiao-Chen Tu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan.,Institute of Biotechnology, National Tsing-Hua University, Hsinchu, Taiwan
| | - Jeng-Wei Lu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Shih-Ci Ciou
- Institute of Biotechnology, National Tsing-Hua University, Hsinchu, Taiwan.,Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing-Hua University, Hsinchu, Taiwan
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
41
|
Hu J, Tian J, Zhang F, Wang H, Yin J. Pxr- and Nrf2- mediated induction of ABC transporters by heavy metal ions in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113329. [PMID: 31600704 DOI: 10.1016/j.envpol.2019.113329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/27/2019] [Accepted: 09/29/2019] [Indexed: 05/13/2023]
Abstract
Transcription factors including pregnane X receptor (Pxr) and nuclear factor-erythroid 2-related factor-2 (Nrf2) are important modulators of Adenosine triphosphate-binding cassette (ABC) transporters in mammalian cells. However, whether such modulation is conserved in zebrafish embryos remains largely unknown. In this manuscript, pxr- and nrf2-deficient models were constructed with CRISPR/Cas9 system, to evaluate the individual function of Pxr and Nrf2 in the regulation of ABC transporters and detoxification of heavy metal ions like Cd2+ and Ag+. As a result, both Cd2+ and Ag+ conferred extensive interactions with ABC transporters in wild type (WT) embryos: their accumulation and toxicity were affected by the activity of ABC transporters, and they significantly induced the mRNA expressions of ABC transporters. These induction effects were reduced by the mutation of pxr and nrf2, but elevations in the basal expression of ABC transporters compensated for the loss of their inducibility. This could be an explanation for remaining transporter function in both mutant models as well as the unaltered toxicity of metal ions in pxr-deficient embryos. However, mutation of nrf2 disrupted the production of glutathione (GSH), resulting in the enhanced toxicity of Cd2+/Ag+ in zebrafish embryos. In addition, elevated expressions of other transcription factors like aryl hydrocarbon receptor (ahr) 1b, peroxisome proliferator-activated receptor (ppar)-β, and nrf2 were found in pxr-deficient models without any treatment, while enhanced induction of ahr1b, ppar-β and pxr could only be seen in nrf2-deficient embryos after the treatment of metal ions, indicating different compensation phenomena for the absence of transcription factors. After all, pxr-deficient and nrf2-deficient zebrafish embryos are useful tools in the functional investigation of Pxr and Nrf2 in the early life stages of aquatic organisms. However, the compensatory mechanisms should be taken into consideration when interpreting the results and need in-depth investigations.
Collapse
Affiliation(s)
- Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jingjing Tian
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Academy for Engineering & Technology, Fudan University, Shanghai 200433, PR China
| | - Feng Zhang
- Suzhou GCL Photovoltaic Technology Co., Ltd, Suzhou, Jiangsu 215163, PR China
| | - Han Wang
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jian Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Shandong Guo Ke Medical Technology Development Co., Ltd, PR China.
| |
Collapse
|
42
|
Pontes LMDS, Gouveia BB, Menezes VG, de Barros VRP, Barberino RDS, do Monte APO, Donfack NJ, Celestino JJDH, Salgueiro CCDM, de Figueiredo JR, de Matos MHT. Supplemented powdered coconut water (ACP-406 ®) promotes growth of goat secondary follicles and oocyte meiotic resumption. Anim Reprod 2019; 16:819-828. [PMID: 32368259 PMCID: PMC7189492 DOI: 10.21451/1984-3143-ar2019-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to test the efficiency of powdered coconut water (ACP-406®) base-medium without or with the addition of supplements on in vitro culture of isolated goat secondary follicles. Follicles were cultured for 18 days in α-MEM or in ACP-406®, both without supplements (referred to as α-MEM and ACP, respectively), or both supplemented with BSA, insulin, transferrin, selenium, glutamine, hypoxanthine, and ascorbic acid (referred to as α-MEM+ and ACP+). Follicular morphology, antrum formation, follicular and oocyte diameter, levels of glutathione (GSH), and chromatin configuration after in vitro maturation were evaluated. At the end of culture, ACP-406® base-medium (without or with supplements) showed a higher (P < 0.05) percentage of normal follicles than α-MEM (without or with supplements). Antrum formation was similar among α-MEM+, ACP and ACP+, and significantly higher than α-MEM without supplements. The follicular diameter was greater in ACP+ than α-MEM, and similar to other treatments. Moreover, fully and daily grown rates were higher (P < 0.05) in ACP-406® base-medium (without or with supplements) than α-MEM (without or with supplements). Levels of GSH were similar between ACP+ and α-MEM+ treatments. Both ACP+ and α-MEM+ allowed meiotic resumption without a significant difference between the two groups. In conclusion, supplemented ACP-406® base-medium maintained follicular survival and promoted the development as well as meiotic resumption of isolated goat secondary follicles cultured in vitro for 18 days.
Collapse
Affiliation(s)
- Luana Mirela de Sales Pontes
- Universidade Federal do Vale do São Francisco, Núcleo de Biotecnologia Aplicada ao Desenvolvimento de Folículos Ovarianos, Petrolina, PE, Brasil
| | - Bruna Bortoloni Gouveia
- Universidade Federal do Vale do São Francisco, Núcleo de Biotecnologia Aplicada ao Desenvolvimento de Folículos Ovarianos, Petrolina, PE, Brasil
| | - Vanúzia Gonçalves Menezes
- Universidade Federal do Vale do São Francisco, Núcleo de Biotecnologia Aplicada ao Desenvolvimento de Folículos Ovarianos, Petrolina, PE, Brasil
| | - Vanessa Raquel Pinto de Barros
- Universidade Federal do Vale do São Francisco, Núcleo de Biotecnologia Aplicada ao Desenvolvimento de Folículos Ovarianos, Petrolina, PE, Brasil
| | - Ricássio de Sousa Barberino
- Universidade Federal do Vale do São Francisco, Núcleo de Biotecnologia Aplicada ao Desenvolvimento de Folículos Ovarianos, Petrolina, PE, Brasil
| | - Alane Pains Oliveira do Monte
- Universidade Federal do Vale do São Francisco, Núcleo de Biotecnologia Aplicada ao Desenvolvimento de Folículos Ovarianos, Petrolina, PE, Brasil
| | - Nathalie Jiatsa Donfack
- Universidade Federal do Vale do São Francisco, Núcleo de Biotecnologia Aplicada ao Desenvolvimento de Folículos Ovarianos, Petrolina, PE, Brasil
| | | | | | - José Ricardo de Figueiredo
- Universidade Estadual do Ceará, Faculdade de Medicina Veterinária, Laboratório de Manipulação de Oócitos e Folículos Pré-Antrais, Fortaleza, CE, Brasil
| | - Maria Helena Tavares de Matos
- Universidade Federal do Vale do São Francisco, Núcleo de Biotecnologia Aplicada ao Desenvolvimento de Folículos Ovarianos, Petrolina, PE, Brasil
| |
Collapse
|
43
|
Chia SB, Elko EA, Aboushousha R, Manuel AM, van de Wetering C, Druso JE, van der Velden J, Seward DJ, Anathy V, Irvin CG, Lam YW, van der Vliet A, Janssen-Heininger YMW. Dysregulation of the glutaredoxin/ S-glutathionylation redox axis in lung diseases. Am J Physiol Cell Physiol 2019; 318:C304-C327. [PMID: 31693398 DOI: 10.1152/ajpcell.00410.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutathione is a major redox buffer, reaching millimolar concentrations within cells and high micromolar concentrations in airways. While glutathione has been traditionally known as an antioxidant defense mechanism that protects the lung tissue from oxidative stress, glutathione more recently has become recognized for its ability to become covalently conjugated to reactive cysteines within proteins, a modification known as S-glutathionylation (or S-glutathiolation or protein mixed disulfide). S-glutathionylation has the potential to change the structure and function of the target protein, owing to its size (the addition of three amino acids) and charge (glutamic acid). S-glutathionylation also protects proteins from irreversible oxidation, allowing them to be enzymatically regenerated. Numerous enzymes have been identified to catalyze the glutathionylation/deglutathionylation reactions, including glutathione S-transferases and glutaredoxins. Although protein S-glutathionylation has been implicated in numerous biological processes, S-glutathionylated proteomes have largely remained unknown. In this paper, we focus on the pathways that regulate GSH homeostasis, S-glutathionylated proteins, and glutaredoxins, and we review methods required toward identification of glutathionylated proteomes. Finally, we present the latest findings on the role of glutathionylation/glutaredoxins in various lung diseases: idiopathic pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Shi B Chia
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Evan A Elko
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Reem Aboushousha
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Allison M Manuel
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Cheryl van de Wetering
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Joseph E Druso
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - David J Seward
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Charles G Irvin
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | | |
Collapse
|
44
|
Cobley JN, Noble A, Jimenez-Fernandez E, Valdivia Moya MT, Guille M, Husi H. Catalyst-free Click PEGylation reveals substantial mitochondrial ATP synthase sub-unit alpha oxidation before and after fertilisation. Redox Biol 2019; 26:101258. [PMID: 31234016 PMCID: PMC6597785 DOI: 10.1016/j.redox.2019.101258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 12/21/2022] Open
Abstract
Using non-reducing Western blotting to assess protein thiol redox state is challenging because most reduced and oxidised forms migrate at the same molecular weight and are, therefore, indistinguishable. While copper catalysed Click chemistry can be used to ligate a polyethylene glycol (PEG) moiety termed Click PEGylation to mass shift the reduced or oxidised form as desired, the potential for copper catalysed auto-oxidation is problematic. Here we define a catalyst-free trans-cyclooctene-methyltetrazine (TCO-Tz) inverse electron demand Diels Alder chemistry approach that affords rapid (k ~2000 M-1 s-1), selective and bio-orthogonal Click PEGylation. We used TCO-Tz Click PEGylation to investigate how fertilisation impacts reversible mitochondrial ATP synthase F1-Fo sub-unit alpha (ATP-α-F1) oxidation-an established molecular correlate of impaired enzyme activity-in Xenopus laevis. TCO-Tz Click PEGylation studies reveal substantial (~65%) reversible ATP-α-F1 oxidation at evolutionary conserved cysteine residues (i.e., C244 and C294) before and after fertilisation. A single thiol is, however, preferentially oxidised likely due to greater solvent exposure during the catalytic cycle. Selective reduction experiments show that: S-glutathionylation accounts for ~50-60% of the reversible oxidation observed, making it the dominant oxidative modification type. Intermolecular disulphide bonds may also contribute due to their relative stability. Substantial reversible ATP-α-F1 oxidation before and after fertilisation is biologically meaningful because it implies low mitochondrial F1-Fo ATP synthase activity. Catalyst-free TCO-Tz Click PEGylation is a valuable new tool to interrogate protein thiol redox state in health and disease.
Collapse
Affiliation(s)
- James N Cobley
- Free Radical Research Group, University of the Highlands and Islands, Centre for Health Sciences, Inverness, IV2 3JH, UK.
| | - Anna Noble
- European Xenopus Resource Centre, University of Portsmouth, School of Biological Sciences, King Henry Building, Portsmouth, PO1 2DY, UK
| | - Eduardo Jimenez-Fernandez
- Free Radical Research Group, University of the Highlands and Islands, Centre for Health Sciences, Inverness, IV2 3JH, UK
| | - Manuel-Thomas Valdivia Moya
- Free Radical Research Group, University of the Highlands and Islands, Centre for Health Sciences, Inverness, IV2 3JH, UK
| | - Matthew Guille
- European Xenopus Resource Centre, University of Portsmouth, School of Biological Sciences, King Henry Building, Portsmouth, PO1 2DY, UK
| | - Holger Husi
- Free Radical Research Group, University of the Highlands and Islands, Centre for Health Sciences, Inverness, IV2 3JH, UK
| |
Collapse
|
45
|
The glutathione degrading enzyme, Chac1, is required for calcium signaling in developing zebrafish: redox as an upstream activator of calcium. Biochem J 2019; 476:1857-1873. [PMID: 31189567 DOI: 10.1042/bcj20190077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 12/24/2022]
Abstract
Calcium signaling is essential for embryonic development but the signals upstream of calcium are only partially understood. Here, we investigate the role of the intracellular glutathione redox potential in calcium signaling using the Chac1 protein of zebrafish. A member of the γ-glutamylcyclotransferase family of enzymes, the zebrafish Chac1 is a glutathione-degrading enzyme that acts only on reduced glutathione. The zebrafish chac1 expression was seen early in development, and in the latter stages, in the developing muscles, brain and heart. The chac1 knockdown was embryonic lethal, and the developmental defects were seen primarily in the myotome, brain and heart where chac1 was maximally expressed. The phenotypes could be rescued by the WT Chac1 but not by the catalytically inactive Chac1 that was incapable of degrading glutathione. The ability of chac1 to alter the intracellular glutathione redox potential in the live animals was examined using Grx1-roGFP2. The chac1 morphants lacked the increased degree of cellular oxidation seen in the WT zebrafish. As calcium is also known to be critical for the developing myotomes, brain and heart, we further investigated if the chac1 knockdown phenotypes were a consequence of the lack of calcium signals. We observed using GCaMP6s, that calcium transients normally seen in the developing embryos were strongly attenuated in these knockdowns. The study thus identifies Chac1 and the consequent change in intracellular glutathione redox potential as important upstream activators of calcium signaling during development.
Collapse
|
46
|
Rastogi A, Clark CW, Conlin SM, Brown SE, Timme-Laragy AR. Mapping glutathione utilization in the developing zebrafish (Danio rerio) embryo. Redox Biol 2019; 26:101235. [PMID: 31202080 PMCID: PMC6581987 DOI: 10.1016/j.redox.2019.101235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
Glutathione (GSH), the most abundant vertebrate endogenous redox buffer, plays key roles in organogenesis and embryonic development, however, organ-specific GSH utilization during development remains understudied. Monochlorobimane (MCB), a dye conjugated with GSH by glutathione-s-transferase (GST) to form a fluorescent adduct, was used to visualize organ-specific GSH utilization in live developing zebrafish (Danio rerio) embryos. Embryos were incubated in 20 μM MCB for 1 h and imaged on an epifluorescence microscope. GSH conjugation with MCB was high during early organogenesis, decreasing as embryos aged. The heart had fluorescence 21-fold above autofluorescence at 24 hpf, dropping to 8.5-fold by 48 hpf; this increased again by 72 hpf to 23.5-fold, and stayed high till 96 hpf (18-fold). The brain had lower fluorescence (10-fold) at 24 and 48 hpf, steadily increasing to 30-fold by 96 hpf. The sensitivity and specificity of MCB staining was then tested with known GSH modulators. A 10-min treatment at 48 hpf with 750 μM tert-butylhydroperoxide, caused organ-specific reductions in staining, with the heart losing 30% fluorescence, and, the brain ventricle losing 47% fluorescence. A 24 h treatment from 24-48 hpf with 100 μM of N-Acetylcysteine (NAC) resulted in significantly increased fluorescence, with the brain ventricle and heart showing 312% and 240% increases respectively, these were abolished upon co-treatment with 5 μM BSO, an inhibitor of the enzyme that utilizes NAC to synthesize GSH. A 60 min 100 μM treatment with ethacrynic acid, a specific GST inhibitor, caused 30% reduction in fluorescence across all measured structures. MCB staining was then applied to test for GSH disruptions caused by the toxicants perfluorooctanesulfonic acid and mono-(2-ethyl-hexyl)phthalate; MCB fluorescence responded in a dose, structure and age-dependent manner. MCB staining is a robust, sensitive method to detect spatiotemporal changes in GSH utilization, and, can be applied to identify sensitive target tissues of toxicants.
Collapse
Affiliation(s)
- Archit Rastogi
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
| | - Christopher W Clark
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Sarah M Conlin
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Sarah E Brown
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA; Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
47
|
Carter TY, Gadwala S, Chougule AB, Bui APN, Sanders AC, Chaerkady R, Cormier N, Cole RN, Thomas JH. Actomyosin contraction during cellularization is regulated in part by Src64 control of Actin 5C protein levels. Genesis 2019; 57:e23297. [PMID: 30974046 DOI: 10.1002/dvg.23297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/27/2019] [Indexed: 11/09/2022]
Abstract
Src64 is required for actomyosin contraction during cellularization of the Drosophila embryonic blastoderm. The mechanism of actomyosin ring constriction is poorly understood even though a number of cytoskeletal regulators have been implicated in the assembly, organization, and contraction of these microfilament rings. How these cytoskeletal processes are regulated during development is even less well understood. To investigate the role of Src64 as an upstream regulator of actomyosin contraction, we conducted a proteomics screen to identify proteins whose expression levels are controlled by src64. Global levels of actin are reduced in src64 mutant embryos. Furthermore, we show that reduction of the actin isoform Actin 5C causes defects in actomyosin contraction during cellularization similar to those caused by src64 mutation, indicating that a relatively high level of Actin 5C is required for normal actomyosin contraction and furrow canal structure. However, reduction of Actin 5C levels only slows down actomyosin ring constriction rather than preventing it, suggesting that src64 acts not only to modulate actin levels, but also to regulate the actomyosin cytoskeleton by other means.
Collapse
Affiliation(s)
- Tammy Y Carter
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Swetha Gadwala
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Ashish B Chougule
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Anh P N Bui
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Alex C Sanders
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Raghothama Chaerkady
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nathaly Cormier
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Robert N Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeffrey H Thomas
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
48
|
Tierbach A, Groh KJ, Schönenberger R, Schirmer K, Suter MJF. Glutathione S-Transferase Protein Expression in Different Life Stages of Zebrafish (Danio rerio). Toxicol Sci 2019; 162:702-712. [PMID: 29361160 PMCID: PMC5888913 DOI: 10.1093/toxsci/kfx293] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Zebrafish is a widely used animal model in biomedical sciences and toxicology. Although evidence for the presence of phases I and II xenobiotic defense mechanisms in zebrafish exists on the transcriptional and enzyme activity level, little is known about the protein expression of xenobiotic metabolizing enzymes. Given the important role of glutathione S-transferases (GSTs) in phase II biotransformation, we analyzed cytosolic GST proteins in zebrafish early life stages and different organs of adult male and female fish, using a targeted proteomics approach. The established multiple reaction monitoring-based assays enable the measurement of the relative abundance of specific GST isoenzymes and GST classes in zebrafish through a combination of proteotypic peptides and peptides shared within the same class. GSTs of the classes alpha, mu, pi and rho are expressed in zebrafish embryo as early as 4 h postfertilization (hpf). The majority of GST enzymes are present at 72 hpf followed by a continuous increase in expression thereafter. In adult zebrafish, GST expression is organ dependent, with most of the GST classes showing the highest expression in the liver. The expression of a wide range of cytosolic GST isoenzymes and classes in zebrafish early life stages and adulthood supports the use of zebrafish as a model organism in chemical-related investigations.
Collapse
Affiliation(s)
- Alena Tierbach
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland.,School of Architecture, Civil and Environmental Engineering, EPF Lausanne, 1015 Lausanne, Switzerland
| | - Ksenia J Groh
- Food Packaging Forum Foundation, 8045 Zürich, Switzerland
| | - René Schönenberger
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland
| | - Kristin Schirmer
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland.,School of Architecture, Civil and Environmental Engineering, EPF Lausanne, 1015 Lausanne, Switzerland.,Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Marc J-F Suter
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland.,Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
49
|
Ulin A, Henderson J, Pham MT, Meyo J, Chen Y, Karchner SI, Goldstone JV, Hahn ME, Williams LM. Developmental Regulation of Nuclear Factor Erythroid-2 Related Factors (nrfs) by AHR1b in Zebrafish (Danio rerio). Toxicol Sci 2019; 167:536-545. [PMID: 30321412 PMCID: PMC6358246 DOI: 10.1093/toxsci/kfy257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Interactions between regulatory pathways allow organisms to adapt to their environment and respond to stress. One interaction that has been recently identified occurs between the aryl hydrocarbon receptor (AHR) and the nuclear factor erythroid-2 related factor (NRF) family. Each transcription factor regulates numerous downstream genes involved in the cellular response to toxicants and oxidative stress; they are also implicated in normal developmental pathways. The zebrafish model was used to explore the role of AHR regulation of nrf genes during development and in response to toxicant exposure. To determine if AHR1b is responsible for transcriptional regulation of 6 nrf genes during development, a loss-of-function experiment using morpholino-modified oligonucleotides was conducted followed by a chromatin immunoprecipitation study at the beginning of the pharyngula period (24 h postfertilization). The expression of nrf1a was AHR1b dependent and its expression was directly regulated through specific XREs in its cis-promoter. However, nrf1a expression was not altered by exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), a toxicant and prototypic AHR agonist. The expression of nrf1b, nrf2a, and nfe2 was induced by TCDD, and AHR1b directly regulated their expression by binding to cis-XRE promoter elements. Last, nrf2b and nrf3 were neither induced by TCDD nor regulated by AHR1b. These results show that AHR1b transcriptionally regulates nrf genes under toxicant modulation via binding to specific XREs. These data provide a better understanding of how combinatorial molecular signaling potentially protects embryos from embryotoxic events following toxicant exposure.
Collapse
Affiliation(s)
- Alexandra Ulin
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Jake Henderson
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Minh-Tam Pham
- Department of biology, Bates College, Lewiston, Maine 04240
| | - James Meyo
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Yuying Chen
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Sibel I Karchner
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Jared V Goldstone
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Mark E Hahn
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Larissa M Williams
- Department of biology, Bates College, Lewiston, Maine 04240
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| |
Collapse
|
50
|
Mendieta-Serrano MA, Mendez-Cruz FJ, Antúnez-Mojica M, Schnabel D, Alvarez L, Cárdenas L, Lomelí H, Ruiz-Santiesteban JA, Salas-Vidal E. NADPH-Oxidase-derived reactive oxygen species are required for cytoskeletal organization, proper localization of E-cadherin and cell motility during zebrafish epiboly. Free Radic Biol Med 2019; 130:82-98. [PMID: 30342187 DOI: 10.1016/j.freeradbiomed.2018.10.416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Abstract
Cell movements are essential for morphogenesis during animal development. Epiboly is the first morphogenetic process in zebrafish in which cells move en masse to thin and spread the deep and enveloping cell layers of the blastoderm over the yolk cell. While epiboly has been shown to be controlled by complex molecular networks, the contribution of reactive oxygen species (ROS) to this process has not previously been studied. Here, we show that ROS are required for epiboly in zebrafish. Visualization of ROS in whole embryos revealed dynamic patterns during epiboly progression. Significantly, inhibition of NADPH oxidase activity leads to a decrease in ROS formation, delays epiboly, alters E-cadherin and cytoskeleton patterns and, by 24 h post-fertilization, decreases embryo survival, effects that are rescued by hydrogen peroxide treatment. Our findings suggest that a delicate ROS balance is required during early development and that disruption of that balance interferes with cell adhesion, leading to defective cell motility and epiboly progression.
Collapse
Affiliation(s)
| | | | - Mayra Antúnez-Mojica
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad #2001, Colonia Chamilpa, Cuernavaca, Morelos C.P. 62209, Mexico
| | - Denhi Schnabel
- Departamento de Genética del Desarrollo y Fisiología Molecular, Mexico
| | - Laura Alvarez
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad #2001, Colonia Chamilpa, Cuernavaca, Morelos C.P. 62209, Mexico
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad #2001, Colonia Chamilpa, Cuernavaca, Morelos C.P. 62210, Mexico
| | - Hilda Lomelí
- Departamento de Genética del Desarrollo y Fisiología Molecular, Mexico
| | | | | |
Collapse
|