1
|
Botcazon C, Ramos-Martín F, Rodríguez-Moraga N, Bergia T, Acket S, Sarazin C, Rippa S. Rhamnolipids and fengycins interact differently with biomimetic lipid membrane models of Botrytis cinerea and Sclerotinia sclerotiorum: Lipidomics profiles and biophysical studies. Biophys Chem 2024; 314:107305. [PMID: 39154582 DOI: 10.1016/j.bpc.2024.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024]
Abstract
Rhamnolipids (RLs) and Fengycins (FGs) are biosurfactants with very promising antifungal properties proposed to reduce the use of synthetic pesticides in crops. They are amphiphilic molecules, both known to target the plasma membrane. They act differently on Botrytis cinerea and Sclerotinia sclerotiorum, two close Sclerotiniaceae phytopathogenic fungi. RLs are more efficient at permeabilizing S. sclerotiorum, and FGs are more efficient at permeabilizing B. cinerea mycelial cells. To study the link between the lipid membrane composition and the activity of RLs and FGs, we analyzed the lipid profiles of B. cinerea and S. sclerotiorum. We determined that unsaturated or saturated C18 and saturated C16 fatty acids are predominant in both fungi. We also showed that phosphatidylethanolamine (PE), phosphatidic acid (PA), and phosphatidylcholine (PC) are the main phospholipids (in this order) in both fungi, with more PA and less PC in S. sclerotiorum. The results were used to build biomimetic lipid membrane models of B. cinerea and S. sclerotiorum for all-atom molecular dynamic simulations and solid-state NMR experiments to more deeply study the interactions between RLs or FGs with different compositions of lipid bilayers. Distinctive effects are exerted by both compounds. RLs completely insert in all the studied model membranes with a fluidification effect. FGs tend to form aggregates out of the bilayer and insert individually more easily into the models representative of B. cinerea than those of S. sclerotiorum, with a higher fluidification effect. These results provide new insights into the lipid composition of closely related fungi and its impact on the mode of action of very promising membranotropic antifungal molecules for agricultural applications.
Collapse
Affiliation(s)
- Camille Botcazon
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Alliance Sorbonne Université, Université de technologie de Compiègne, Compiègne, France
| | - Francisco Ramos-Martín
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Université de Picardie Jules Verne, Amiens, France
| | - Nely Rodríguez-Moraga
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Université de Picardie Jules Verne, Amiens, France
| | - Thomas Bergia
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Alliance Sorbonne Université, Université de technologie de Compiègne, Compiègne, France
| | - Sébastien Acket
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Alliance Sorbonne Université, Université de technologie de Compiègne, Compiègne, France
| | - Catherine Sarazin
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Université de Picardie Jules Verne, Amiens, France.
| | - Sonia Rippa
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Alliance Sorbonne Université, Université de technologie de Compiègne, Compiègne, France.
| |
Collapse
|
2
|
Passos TF, Nitschke M. The pH and Sucrose Influence Rhamnolipid Action Toward Planktonic and Biofilms of Listeria monocytogenes. Microorganisms 2024; 12:2078. [PMID: 39458387 PMCID: PMC11509803 DOI: 10.3390/microorganisms12102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Bacterial resistance and persistence in food environments are major concerns for the industry, which constantly seeks new strategies to reduce microbial contamination. Rhamnolipids (RL) biosurfactants are considered sustainable and green alternatives to synthetics; furthermore, they have demonstrated potential for controlling various foodborne pathogens. Food environments are typically exposed to diverse pH, solutes, temperatures, and water activity (aw) levels that may favor the survival of pathogens. Therefore, it is crucial to consider these factors in evaluating the performance of novel antimicrobials. Our study examined the influence of pH and sucrose on the antimicrobial activity of RL against both planktonic and biofilm of Listeria monocytogenes. We found that the presence of sucrose can enhance the antimicrobial effectiveness of RL against both planktonic and sessile bacteria. The addition of sugar particularly improved RL action at pH 6 and 7. Moreover, we observed that the type and size of RL self-assembly structures depend on the pH and sucrose concentration. These findings suggest potential for developing RL-based innovative methods to control L. monocytogenes in sugar-rich or -low aw foods and environments.
Collapse
Affiliation(s)
| | - Marcia Nitschke
- São Carlos Institute of Chemistry (IQSC), University of São Paulo, Trabalhador São-Carlense Av., 400, P.O. Box 780, São Carlos 13566-590, SP, Brazil;
| |
Collapse
|
3
|
Motta AM, Mariani P, Itri R, Spinozzi F. Self-assembling properties of mono and di-rhamnolipids characterized using small-angle X-ray scattering. Colloids Surf B Biointerfaces 2024; 241:114038. [PMID: 38905813 DOI: 10.1016/j.colsurfb.2024.114038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Rhamnolipids are glycolipid surfactants composed by a hydrophilic head of either one (mono-RL) or two (di-RL) rhamnose moieties coupled to hydroxyaliphatic chains that can be of different lengths. In spite of their importance in different fields of applications, as bioremediation processes for instance, self-aggregation physico-chemical properties of RLs are not unique. This because a variety of aggregates morphologies (shape and size) can either exist or coexist in aqueous dispersion due to mono-RL:di-RL molar ratio, hydrophobic tails length, pH and the presence of co-surfactants and additives. Recently, a theorethical approach reported the self-assembling morphologies of either pure mono or di-RL in aqueous environment, predicting the formation of spherical to ellipsoidal micelles to worm-like and disk-like aggregates depending on RL concentration and fatty acid chain length. In order to add new information to those previously available, the present work investigated the self-assembling properties of mono-RL-C10-C10 and di-RL-C10-C10 separately in aqueous dispersion by small angle X-Ray scattering (SAXS). A novel approach was applied to the data analysis coupling the scattering length density profiles of the RLs chemical groups and Monte Carlo simulations. Such an approach allowed us to infer about the preferred mono-RL and di-RL conformations that fit better in the self-assembling morphologies. In this way, we show that mono-RL-C10-C10 self-assembles into lamella-like aggregates coexisting with 30 % of multi-lamella aggregates (circa of 5 closed stacked lamella) from a concentration ranging from 10 to 50 mM, with hydrophobic thickness of about 12 Å, a hydrated polar head thickness of 10 Å, and an area per glycolipid of 76 Å2. On the other hand, di-RL prefers to self-associate into flexible cylinder-like aggregates, from 70 mM to 110 mM concentration, with hydrophobic radius on the order of 7.5 Å, a hydrated polar shell of 21.5 Å, with hydropobic/polar interface of 110 Å2 per glycolipid. Interestingly, the parameters obtained from the best fitting to the experimental data associated to the volume fraction distribution of the chemical groups within the aggregates revealed that the hydrophobic chains are more disordered in mono-RL planar aggregates than in di-RL worm-like aggregates, as well as the hydration properties. Further, the addition of 100 mM NaCl in di-RL aqueous dispersion leads to the formation of longer worm-like aggregates. Taking together, this work opens a new avenue regarding characterization of biosurfactants self-assembling properties by using SAXS, also contributing to prepare more efficient biosurfactant dispersions depending on the desired applications in industrial sectors and bioremediation.
Collapse
Affiliation(s)
| | - Paolo Mariani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Italy
| | - Rosangela Itri
- Applied Physics Department, Institute of Physics, University of São Paulo, São Paulo, Brazil.
| | - Francesco Spinozzi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Italy.
| |
Collapse
|
4
|
Ortiz J, Aranda FJ, Teruel JA, Ortiz A. Cryptotanshinone-Induced Permeabilization of Model Phospholipid Membranes: A Biophysical Study. MEMBRANES 2024; 14:118. [PMID: 38921485 PMCID: PMC11205401 DOI: 10.3390/membranes14060118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
The Danshen terpenoid cryptotanshinone (CPT) is gaining enormous interest in light of its various outstanding biological activities. Among those, CPT has been shown to interact with cell membranes and, for instance, to have antibacterial activity. Several works have shown that CPT alone, or in combination with other drugs, can effectively act as an antibiotic against various infectious bacteria. Some authors have related the mechanism underlying this action to CPT-membrane interaction. This work shows that CPT readily partitions into phosphatidylcholine membranes, but there is a limiting capacity of accommodation of ca. 1 mol CPT to 3 mol phospholipid. The addition of CPT to unilamellar liposomes composed of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) causes membrane permeabilization, as shown by fluorescent probe leakage. This process has been kinetically studied, as well as its modulation by incorporation of phosphatidylethanolamine or phosphatidylglycerol, as a model for pathogenic cell membranes. The thermotropic behavior of 1,2-dimyristoylphosphatidylcholine (DMPC) model membranes is weakly affected by CPT, but the terpenoid causes significant dehydration of the polar region of the bilayer and weak disordering of the acyl chain palisade, as observed in Fourier-transform infrared spectroscopy (FTIR) results. Small-angle X-ray scattering (SAXS) shows that CPT increases DMPC bilayer thickness, which could be due to localization near the phospholipid/water interface. Molecular dynamics (MD) simulations show that the lateral diffusion coefficient of the phospholipid increases with the presence of CPT. CPT extends from the polar head region to the center of the bilayer, being centered between the carbonyl groups and the unsaturated region of the POPC, where there is greater overlap. Interestingly, the free energy profiles of a water molecule crossing the lipid membrane show that the POPC membrane becomes more permeable in the presence of CPT. In summary, our results show that CPT perturbs the physicochemical properties of the phospholipid membrane and compromises its barrier function, which could be of relevance to explain part of its antimicrobial or anticancer activities.
Collapse
Affiliation(s)
| | | | | | - Antonio Ortiz
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Campus de Espinardo, Universidad de Murcia, E-30100 Murcia, Spain; (J.O.); (F.J.A.); (J.A.T.)
| |
Collapse
|
5
|
Liu F, Greenwood AI, Xiong Y, Miceli RT, Fu R, Anderson KW, McCallum SA, Mihailescu M, Gross R, Cotten ML. Host Defense Peptide Piscidin and Yeast-Derived Glycolipid Exhibit Synergistic Antimicrobial Action through Concerted Interactions with Membranes. JACS AU 2023; 3:3345-3365. [PMID: 38155643 PMCID: PMC10751773 DOI: 10.1021/jacsau.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 12/30/2023]
Abstract
Developing new antimicrobials as alternatives to conventional antibiotics has become an urgent race to eradicate drug-resistant bacteria and to save human lives. Conventionally, antimicrobial molecules are studied independently even though they can be cosecreted in vivo. In this research, we investigate two classes of naturally derived antimicrobials: sophorolipid (SL) esters as modified yeast-derived glycolipid biosurfactants that feature high biocompatibility and low production cost; piscidins, which are host defense peptides (HDPs) from fish. While HDPs such as piscidins target the membrane of pathogens, and thus result in low incidence of resistance, SLs are not well understood on a mechanistic level. Here, we demonstrate that combining SL-hexyl ester (SL-HE) with subinhibitory concentration of piscidins 1 (P1) and 3 (P3) stimulates strong antimicrobial synergy, potentiating a promising therapeutic window. Permeabilization assays and biophysical studies employing circular dichroism, NMR, mass spectrometry, and X-ray diffraction are performed to investigate the mechanism underlying this powerful synergy. We reveal four key mechanistic features underlying the synergistic action: (1) P1/3 binds to SL-HE aggregates, becoming α-helical; (2) piscidin-glycolipid assemblies synergistically accumulate on membranes; (3) SL-HE used alone or bound to P1/3 associates with phospholipid bilayers where it induces defects; (4) piscidin-glycolipid complexes disrupt the bilayer structure more dramatically and differently than either compound alone, with phase separation occurring when both agents are present. Overall, dramatic enhancement in antimicrobial activity is associated with the use of two membrane-active agents, with the glycolipid playing the roles of prefolding the peptide, coordinating the delivery of both agents to bacterial surfaces, recruiting the peptide to the pathogenic membranes, and supporting membrane disruption by the peptide. Given that SLs are ubiquitously and safely used in consumer products, the SL/peptide formulation engineered and mechanistically characterized in this study could represent fertile ground to develop novel synergistic agents against drug-resistant bacteria.
Collapse
Affiliation(s)
- Fei Liu
- Department
of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Alexander I. Greenwood
- Department
of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| | - Yawei Xiong
- Department
of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| | - Rebecca T. Miceli
- Department
of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Riqiang Fu
- Center
of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Kyle W. Anderson
- National
Institute of Standards and Technology, Rockville, Maryland 20850, United States
| | - Scott A. McCallum
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Mihaela Mihailescu
- Institute
for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Richard Gross
- Department
of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Myriam L. Cotten
- Department
of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| |
Collapse
|
6
|
Gabryel-Skrodzka M, Nowak M, Grajewski J, Jastrząb R. Biocoordination reactions in copper(II) ions and phosphocholine systems including pyrimidine nucleosides and nucleotides. Sci Rep 2023; 13:10787. [PMID: 37402775 DOI: 10.1038/s41598-023-37986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023] Open
Abstract
The complexation reactions of phosphocholine and pyrimidine nucleosides as well as nucleotides with copper(II) ions were studied in the water system. Using potentiometric methods and computer calculations, the stability constants of the species were determined. Using spectroscopic methods such as UV-vis, EPR, 13C NMR, 31P NMR, FT-IR and CD, the coordination mode was established for complexes created in pH range 2.5-11.0. These studies will lead to a better understanding the role of copper(II) ions in living organisms and explain the interactions between them and the studied bioligands. The differences and similarities between nucleosides and nucleotides in the studied systems were also described, which testify to the significant influence of phosphate groups on the processes of metal ion complexation and interactions between ligands.
Collapse
Affiliation(s)
| | - Martyna Nowak
- Faculty of Chemistry, Adam Mickiewicz University, 61-614, Poznan, Poland
| | - Jakub Grajewski
- Faculty of Chemistry, Adam Mickiewicz University, 61-614, Poznan, Poland
| | - Renata Jastrząb
- Faculty of Chemistry, Adam Mickiewicz University, 61-614, Poznan, Poland.
| |
Collapse
|
7
|
Kossmann DF, Huang M, Weihmann R, Xiao X, Gätgens F, Weber TM, Brass HUC, Bitzenhofer NL, Ibrahim S, Bangert K, Rehling L, Mueller C, Tiso T, Blank LM, Drepper T, Jaeger KE, Grundler FMW, Pietruszka J, Schleker ASS, Loeschcke A. Production of tailored hydroxylated prodiginine showing combinatorial activity with rhamnolipids against plant-parasitic nematodes. Front Microbiol 2023; 14:1151882. [PMID: 37200918 PMCID: PMC10187637 DOI: 10.3389/fmicb.2023.1151882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/03/2023] [Indexed: 05/20/2023] Open
Abstract
Bacterial secondary metabolites exhibit diverse remarkable bioactivities and are thus the subject of study for different applications. Recently, the individual effectiveness of tripyrrolic prodiginines and rhamnolipids against the plant-parasitic nematode Heterodera schachtii, which causes tremendous losses in crop plants, was described. Notably, rhamnolipid production in engineered Pseudomonas putida strains has already reached industrial implementation. However, the non-natural hydroxyl-decorated prodiginines, which are of particular interest in this study due to a previously described particularly good plant compatibility and low toxicity, are not as readily accessible. In the present study, a new effective hybrid synthetic route was established. This included the engineering of a novel P. putida strain to provide enhanced levels of a bipyrrole precursor and an optimization of mutasynthesis, i.e., the conversion of chemically synthesized and supplemented monopyrroles to tripyrrolic compounds. Subsequent semisynthesis provided the hydroxylated prodiginine. The prodiginines caused reduced infectiousness of H. schachtii for Arabidopsis thaliana plants resulting from impaired motility and stylet thrusting, providing the first insights on the mode of action in this context. Furthermore, the combined application with rhamnolipids was assessed for the first time and found to be more effective against nematode parasitism than the individual compounds. To obtain, for instance, 50% nematode control, it was sufficient to apply 7.8 μM hydroxylated prodiginine together with 0.7 μg/ml (~ 1.1 μM) di-rhamnolipids, which corresponded to ca. ¼ of the individual EC50 values. In summary, a hybrid synthetic route toward a hydroxylated prodiginine was established and its effects and combinatorial activity with rhamnolipids on plant-parasitic nematode H. schachtii are presented, demonstrating potential application as antinematodal agents. Graphical Abstract.
Collapse
Affiliation(s)
- D. F. Kossmann
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bioorganic Chemistry, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - M. Huang
- INRES, Molecular Phytomedicine, University of Bonn, Bonn, Germany
| | - R. Weihmann
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - X. Xiao
- INRES, Molecular Phytomedicine, University of Bonn, Bonn, Germany
| | - F. Gätgens
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - T. M. Weber
- Institute of Bioorganic Chemistry, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - H. U. C. Brass
- Institute of Bioorganic Chemistry, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - N. L. Bitzenhofer
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - S. Ibrahim
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - K. Bangert
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - L. Rehling
- INRES, Molecular Phytomedicine, University of Bonn, Bonn, Germany
| | - C. Mueller
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - T. Tiso
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - L. M. Blank
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - T. Drepper
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - K.-E. Jaeger
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | | | - J. Pietruszka
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bioorganic Chemistry, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | | | - A. Loeschcke
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| |
Collapse
|
8
|
Pan X, Liang H, Zhao X, Zhang Q, Chen L, Yue Z, Yin L, Jin Y, Bai F, Cheng Z, Bartlam M, Wu W. Regulatory and structural mechanisms of PvrA-mediated regulation of the PQS quorum-sensing system and PHA biosynthesis in Pseudomonas aeruginosa. Nucleic Acids Res 2023; 51:2691-2708. [PMID: 36744476 PMCID: PMC10085694 DOI: 10.1093/nar/gkad059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is capable of causing acute and chronic infections in various host tissues, which depends on its abilities to effectively utilize host-derived nutrients and produce protein virulence factors and toxic compounds. However, the regulatory mechanisms that direct metabolic intermediates towards production of toxic compounds are poorly understood. We previously identified a regulatory protein PvrA that controls genes involved in fatty acid catabolism by binding to palmitoyl-coenzyme A (CoA). In this study, transcriptomic analyses revealed that PvrA activates the Pseudomonas quinolone signal (PQS) synthesis genes, while suppressing genes for production of polyhydroxyalkanoates (PHAs). When palmitic acid was the sole carbon source, mutation of pvrA reduced production of pyocyanin and rhamnolipids due to defective PQS synthesis, but increased PHA production. We further solved the co-crystal structure of PvrA with palmitoyl-CoA and identified palmitoyl-CoA-binding residues. By using pvrA mutants, we verified the roles of the key palmitoyl-CoA-binding residues in gene regulation in response to palmitic acid. Since the PQS signal molecules, rhamnolipids and PHA synthesis pathways are interconnected by common metabolic intermediates, our results revealed a regulatory mechanism that directs carbon flux from carbon/energy storage to virulence factor production, which might be crucial for the pathogenesis.
Collapse
Affiliation(s)
- Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Han Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.,Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Xinrui Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qionglin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.,Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Lei Chen
- Department of Plant Biology and Ecology, College of Life Science Nankai University, Tianjin 300071 China
| | - Zhuo Yue
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Liwen Yin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.,Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China.,Nankai International Advanced Research Institute (Shenzhen Futian), Shenzhen, Guangdong 518045, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Lenaerts L, Passos TF, Gayán E, Michiels CW, Nitschke M. Hurdle Technology Approach to Control Listeria monocytogenes Using Rhamnolipid Biosurfactant. Foods 2023; 12:foods12030570. [PMID: 36766099 PMCID: PMC9914285 DOI: 10.3390/foods12030570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
This study evaluates the combination of mild heat with a natural surfactant for the inactivation of L. monocytogenes Scott A in low-water-activity (aw) model systems. Glycerol or NaCl was used to reduce the aw to 0.92, and different concentrations of rhamnolipid (RL) biosurfactant were added before heat treatment (60 °C, 5 min). Using glycerol, RL treatment (50-250 µg/mL) reduced bacterial population by less than 0.2 log and heat treatment up to 1.5 log, while the combination of both hurdles reached around 5.0 log reduction. In the NaCl medium, RL treatment displayed higher inactivation than in the glycerol medium at the same aw level and a larger synergistic lethal effect when combined with heat, achieving ≥ 6.0 log reduction at 10-250 µg/mL RL concentrations. The growth inhibition activity of RL was enhanced by the presence of the monovalent salts NaCl and KCl, reducing MIC values from >2500 µg/mL (without salt) to 39 µg/mL (with 7.5% salt). The enhanced antimicrobial activity of RL promoted by the presence of salts was shown to be pH-dependent and more effective under neutral conditions. Overall, results demonstrate that RL can be exploited to design novel strategies based on hurdle approaches aiming to control L. monocytogenes.
Collapse
Affiliation(s)
- Lowieze Lenaerts
- Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - Tathiane Ferroni Passos
- São Carlos Institute of Chemistry (IQSC), University of São Paulo, Trabalhador São-Carlense Av., 400, P.O. Box 780, São Carlos 13560-970, São Paulo, Brazil
| | - Elisa Gayán
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), Faculty of Veterinary, University of Zaragoza-CITA, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Chris W. Michiels
- Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
- Correspondence: (C.W.M.); (M.N.)
| | - Marcia Nitschke
- São Carlos Institute of Chemistry (IQSC), University of São Paulo, Trabalhador São-Carlense Av., 400, P.O. Box 780, São Carlos 13560-970, São Paulo, Brazil
- Correspondence: (C.W.M.); (M.N.)
| |
Collapse
|
10
|
Potapov K, Gordeev A, Biktasheva L, Rudakova M, Alexandrov A. Effects of Natural Rhamnolipid Mixture on Dioleoylphosphatidylcholine Model Membrane Depending on Method of Preparation and Sterol Content. MEMBRANES 2023; 13:112. [PMID: 36676919 PMCID: PMC9865241 DOI: 10.3390/membranes13010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Rhamnolipids as biosurfactants have a potentially wide range of applications, for example, as "green" surfactants or components of drug delivery systems, which is associated with the features of their interaction with cell membranes. However, as noted in the literature, those kind of features have not been sufficiently studied now. This paper presents a study of the interaction of a natural mixture of rhamnolipids produced by bacteria of the rhizosphere zone of plants Pseudomonas aeruginosa with model membranes-liposomes based on dioleoylphosphatidylcholine (DOPC), depending on the method of their preparation and the content of sterols-ergosterol, cholesterol, lanosterol. Liposomes with rhamnolipids were prepared by two protocols: with film method from a mixture of DOPC and rhamnolipids; with film method from DOPC and injection of water solution of rhamnolipids. Joint analysis of the data of 31P NMR spectroscopy and ATR-FTIR spectroscopy showed that in the presence of rhamnolipids, the mobility of the head group of the DOPC phospholipid increases, the conformational disorder of the hydrophobic tail increases, and the degree of hydration of the C=O and P=O groups of the phospholipid decreases. It can be assumed that, when prepared from a mixture, rhamnolipids are incorporated into the membrane in the form of clusters and are located closer to the middle of the bilayer; while when prepared by injection, rhamnolipid molecules migrate into the membrane in the form of individual molecules and are located closer to the head part of phospholipids. The sterol composition of the model membrane also affects the interaction of rhamnolipids with the membrane. Here it is worth noting the possible presence of type of interaction between rhamnolipids and ergosterol differ from other investigated sterols, due to which rhamnolipid molecules are embedded in the area where ergosterol is located.
Collapse
Affiliation(s)
- Konstantin Potapov
- Department of Molecular Physics, Institute of Physics, Kazan Federal University, 420011 Kazan, Russia
| | - Alexander Gordeev
- Institute of Environmental Sciences, Kazan Federal University, 420011 Kazan, Russia
| | - Liliya Biktasheva
- Institute of Environmental Sciences, Kazan Federal University, 420011 Kazan, Russia
| | - Maya Rudakova
- Institute of Information Technology and Intelligent Systems, Kazan Federal University, 420011 Kazan, Russia
| | - Artem Alexandrov
- Department of Molecular Physics, Institute of Physics, Kazan Federal University, 420011 Kazan, Russia
| |
Collapse
|
11
|
Rodríguez-Moraga N, Ramos-Martín F, Buchoux S, Rippa S, D'Amelio N, Sarazin C. The effect of rhamnolipids on fungal membrane models as described by their interactions with phospholipids and sterols: An in silico study. Front Chem 2023; 11:1124129. [PMID: 36895318 PMCID: PMC9989204 DOI: 10.3389/fchem.2023.1124129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Introduction: Rhamnolipids (RLs) are secondary metabolites naturally produced by bacteria of the genera Pseudomonas and Burkholderia with biosurfactant properties. A specific interest raised from their potential as biocontrol agents for crop culture protection in regard to direct antifungal and elicitor activities. As for other amphiphilic compounds, a direct interaction with membrane lipids has been suggested as the key feature for the perception and subsequent activity of RLs. Methods: Molecular Dynamics (MD) simulations are used in this work to provide an atomistic description of their interactions with different membranous lipids and focusing on their antifungal properties. Results and discussion: Our results suggest the insertion of RLs into the modelled bilayers just below the plane drawn by lipid phosphate groups, a placement that is effective in promoting significant membrane fluidification of the hydrophobic core. This localization is promoted by the formation of ionic bonds between the carboxylate group of RLs and the amino group of the phosphatidylethanolamine (PE) or phosphatidylserine (PS) headgroups. Moreover, RL acyl chains adhere to the ergosterol structure, forming a significantly higher number of van der Waals contact with respect to what is observed for phospholipid acyl chains. All these interactions might be essential for the membranotropic-driven biological actions of RLs.
Collapse
Affiliation(s)
- Nely Rodríguez-Moraga
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Sébastien Buchoux
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Sonia Rippa
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, Sorbonne Universités, Université de Technologie de Compiègne, Compiègne, France
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
12
|
Bertuso PDC, Marangon CA, Nitschke M. Susceptibility of Vegetative Cells and Endospores of Bacillus cereus to Rhamnolipid Biosurfactants and Their Potential Application in Dairy. Microorganisms 2022; 10:microorganisms10091860. [PMID: 36144462 PMCID: PMC9505079 DOI: 10.3390/microorganisms10091860] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Bacillus cereus is a Gram-positive, endospore-forming bacterium well-known as a food pathogen that causes great losses in the food industry, especially in dairy. In this study, rhamnolipid (RL) biosurfactants were evaluated as a bio-based alternative for controlling the growth of vegetative cells and endospores of B. cereus. RLs were tested against 14 B. cereus strains isolated from different types of foodstuffs. The antimicrobial activity against vegetative cells and endospores revealed minimal inhibitory concentration (MIC) values of 0.098 mg/mL for almost all strains tested and minimal bactericidal concentration (MBC) varying between 0.098 and >25 mg/mL. The presence of RLs inhibited endospore germination by more than 99%, reducing by 5.5 log the outgrowth of strain 0426. Scanning and transmission electron microscopy confirmed that exposure to RL causes damage to the structure of endospores. When skim milk was utilized as a food model, RL inhibited the growth of vegetative cells and endospores of B. cereus, showing MBC of 3.13 mg/mL for the vegetative cells of strain 0426. The surfactant also reduced bacterial growth in milk at refrigerator temperature. The results suggest that RLs are promising candidates for the development of novel strategies to control B. cereus in the food industry.
Collapse
Affiliation(s)
- Paula de Camargo Bertuso
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo, Trabalhador São-Carlense Av., 400, São Carlos 13566-590, SP, Brazil
| | - Crisiane Aparecida Marangon
- Embrapa Instrumentation, Nanotechnology National Laboratory for Agriculture (LNNA), Rua XV de Novembro, 1452, São Carlos 13560-979, SP, Brazil
| | - Marcia Nitschke
- São Carlos Institute of Chemistry (IQSC), University of São Paulo, Trabalhador São-Carlense Av., 400, P.O. Box 780, São Carlos 13560-970, SP, Brazil
- Correspondence:
| |
Collapse
|
13
|
A comprehensive review on natural occurrence, synthesis and biological activities of glycolipids. Carbohydr Res 2022; 516:108556. [DOI: 10.1016/j.carres.2022.108556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 01/10/2023]
|
14
|
Carbohydrate-carbohydrate interaction drives the preferential insertion of dirhamnolipid into glycosphingolipid enriched membranes. J Colloid Interface Sci 2022; 616:739-748. [PMID: 35247812 DOI: 10.1016/j.jcis.2022.02.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/04/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Rhamnolipids (RLs) are among the most important biosurfactants produced by microorganisms, and have been widely investigated because of their multiple biological activities. Their action appears to depend on their structural interference with lipid membranes, therefore several studies have been performed to investigate this aspect. We studied by X-ray scattering, neutron reflectometry and molecular dynamic simulations the insertion of dirhamnolipid (diRL), the most abundant RL, in model cellular membranes made of phospholipids and glycosphingolipids. In our model systems the affinity of diRL to the membrane is highly promoted by the presence of the glycosphingolipids and molecular dynamics simulations unveil that this evidence is related to sugar-sugar attractive interactions at the membrane surface. Our results improve the understanding of the plethora of activities associated with RLs, also opening new perspectives in their selective use for pharmaceutical and cosmetics formulations. Additionally, they shed light on the still debated role of carbohydrate-carbohydrate interactions as driving force for molecular contacts at membrane surface.
Collapse
|
15
|
Gdaniec BG, Bonini F, Prodon F, Braschler T, Köhler T, van Delden C. Pseudomonas aeruginosa rhamnolipid micelles deliver toxic metabolites and antibiotics into Staphylococcus aureus. iScience 2022; 25:103669. [PMID: 35028539 PMCID: PMC8741607 DOI: 10.1016/j.isci.2021.103669] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/05/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Efficient delivery of toxic compounds to bacterial competitors is essential during interspecies microbial warfare. Rhamnolipids (RLPs) are glycolipids produced by Pseudomonas and Burkholderia species involved in solubilization and uptake of environmental aliphatic hydrocarbons and perform as biosurfactants for swarming motility. Here, we show that RLPs produced by Pseudomonas aeruginosa associate to form micelles. Using high-resolution microscopy, we found that RLP micelles serve as carriers for self-produced toxic compounds, which they deliver to Staphylococcus aureus cells, thereby enhancing and accelerating S. aureus killing. RLPs also potentiated the activity of lincosamide antibiotics, suggesting that RLP micelles may transport not only self-produced but also heterologous compounds to target competing bacterial species Pseudomonas aeruginosa rhamnolipids form micelles Rhamnolipid micelles delivery pyochelin into S. aureus cells Rhamnolipid micelles potentiate activity of lincosamide antibiotics against S. aureus
Collapse
Affiliation(s)
- Bartosz Gerard Gdaniec
- Transplant Infectious Diseases Unit, University Hospitals Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, 1, Rue Michel Servet, 1211 Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1, Rue Michel Servet, 1211 Geneva, Switzerland
| | - Fabien Bonini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1, Rue Michel Servet, 1211 Geneva, Switzerland
| | - François Prodon
- Bioimaging Core Facility, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Thomas Braschler
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1, Rue Michel Servet, 1211 Geneva, Switzerland
| | - Thilo Köhler
- Transplant Infectious Diseases Unit, University Hospitals Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, 1, Rue Michel Servet, 1211 Geneva, Switzerland
| | - Christian van Delden
- Transplant Infectious Diseases Unit, University Hospitals Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, 1, Rue Michel Servet, 1211 Geneva, Switzerland
| |
Collapse
|
16
|
Antimicrobial Weapons of Pseudomonas aeruginosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:223-256. [DOI: 10.1007/978-3-031-08491-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Rhamnolipids and essential oils in the control of mosquito-borne tropical diseases. Appl Microbiol Biotechnol 2021; 105:7505-7515. [PMID: 34524470 DOI: 10.1007/s00253-021-11541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
The diseases transmitted by mosquito vectors are a great public health issue. Thus, effective vector control becomes the main strategy to reduce their prevalence. However, insecticide resistance has become a huge concern for the mitigation of mosquitoes; here, we propose the use of rhamnolipids in emulsion with clove oil against Aedes aegypti and Culex quinquefasciatus. The toxicity of rhamnolipids and clove oil to two species of mosquitoes transmitting tropical diseases was investigated. After 24 h, the LC50 was 140 mg/L when rhamnolipids were used and 154 mg/L when clove oil was used against Aedes aegypti larvae. In the case of Culex quinquefasciatus, the LC50 was 130 mg/L for rhamnolipids and 19 mg/L for clove oil. When the concentrations of the upper limits of one of the solutions (rhamnolipid or clove oil) were mixed, 100% mortality was obtained after 24 h. The bioassay of insecticidal action for solutions of rhamnolipids and clove oil in the lower limit, upper limit, and lethal concentration 50 to determine the effect on 50% of the population (KD50) achieved low results from KD50 to the upper limit compared to the other concentrations for both Aedes aegypti and Culex quinquefasciatus. The rhamnolipids and clove oil at the upper limit concentration had the greatest repellent activity against the two mosquito species. Bioassays using different concentrations of rhamnolipids revealed variations in the morphology of the intestinal epithelium (800 mg/L). A concentration of 900 mg/L led to the most severe morphological changes in the organization of the epithelium and the cells lining the intestines of these larvae. When larvae were exposed to a concentration of 1000 mg/L, the marginalization of chromatin in the nucleus of epithelial cells was very severe, indicating the onset of cell death.Key points• The toxicity of rhamnolipids and clove oil has a larvicidal, insecticidal, and repellent effect.• The combination of concentrations of these compounds enhances their action.• Different concentrations of rhamnolipids led to severe morphological changes in the organization of the epithelium and the cells and the intestines of larvae.
Collapse
|
18
|
Franco Marcelino PR, Ortiz J, da Silva SS, Ortiz A. Interaction of an acidic sophorolipid biosurfactant with phosphatidylcholine model membranes. Colloids Surf B Biointerfaces 2021; 207:112029. [PMID: 34399158 DOI: 10.1016/j.colsurfb.2021.112029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022]
Abstract
Sophorolipids (SLs) constitute a group of unique biosurfactants (BS) in the light of their outstanding properties, among which their antimicrobial activities stand out. SLs can exist mainly in an acidic and a lactonic form, both of which display inhibitory activity. Given the amphipathic nature of SLs it is feasible that these antimicrobial actions are the result of the perturbation of the physicochemical properties of targeted membranes. Thus, in this work we have carried out a biophysical study to unveil the molecular details of the interaction of an acidic SL with a model phospholipid membrane made of 1,2-dipalmitoy-sn-glycero-3-phosphocholine (DPPC). Using differential scanning calorimetry it was found that SL altered the phase behaviour of DPPC at low molar fractions, producing fluid phase immiscibility with the result of formation of biosurfactant-enriched domains within the phospholipid bilayer. Fourier-transform infrared spectroscopy showed that SL interacted with DPPC increasing ordering of the phospholipid acyl chain palisade and hydration of the lipid/water interface. Small angle X-ray scattering showed that SL did not modify bilayer thickness in the biologically relevant Lα fluid phase. SL was found to induce contents leakage in 1-palmitoy-2-oleoy-sn-glycero-3-phosphocholine (POPC) unilamellar liposomes, at sublytic concentrations below the cmc. This SL-induced membrane permeabilization at concentrations below the onset for membrane solubilization can be the result of the formation of laterally segregated domains, which might contribute to provide a molecular basis for the reported antimicrobial actions of SLs.
Collapse
Affiliation(s)
- Paulo Ricardo Franco Marcelino
- Laboratório de Bioprocessos e Produtos Sustentáveis (LBios), Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Brazil
| | - Julia Ortiz
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Spain
| | - Silvio Silvério da Silva
- Laboratório de Bioprocessos e Produtos Sustentáveis (LBios), Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Brazil
| | - Antonio Ortiz
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Spain.
| |
Collapse
|
19
|
Morin CD, Déziel E, Gauthier J, Levesque RC, Lau GW. An Organ System-Based Synopsis of Pseudomonas aeruginosa Virulence. Virulence 2021; 12:1469-1507. [PMID: 34180343 PMCID: PMC8237970 DOI: 10.1080/21505594.2021.1926408] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Driven in part by its metabolic versatility, high intrinsic antibiotic resistance, and a large repertoire of virulence factors, Pseudomonas aeruginosa is expertly adapted to thrive in a wide variety of environments, and in the process, making it a notorious opportunistic pathogen. Apart from the extensively studied chronic infection in the lungs of people with cystic fibrosis (CF), P. aeruginosa also causes multiple serious infections encompassing essentially all organs of the human body, among others, lung infection in patients with chronic obstructive pulmonary disease, primary ciliary dyskinesia and ventilator-associated pneumonia; bacteremia and sepsis; soft tissue infection in burns, open wounds and postsurgery patients; urinary tract infection; diabetic foot ulcers; chronic suppurative otitis media and otitis externa; and keratitis associated with extended contact lens use. Although well characterized in the context of CF, pathogenic processes mediated by various P. aeruginosa virulence factors in other organ systems remain poorly understood. In this review, we use an organ system-based approach to provide a synopsis of disease mechanisms exerted by P. aeruginosa virulence determinants that contribute to its success as a versatile pathogen.
Collapse
Affiliation(s)
- Charles D Morin
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Jeff Gauthier
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Roger C Levesque
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, US
| |
Collapse
|
20
|
Nitschke M, Marangon CA. Microbial surfactants in nanotechnology: recent trends and applications. Crit Rev Biotechnol 2021; 42:294-310. [PMID: 34167395 DOI: 10.1080/07388551.2021.1933890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The interest in nano-sized materials to develop novel products has increased exponentially in the last decade, together with the search for green methods for their synthesis. An alternative to contribute to a more sustainable approach is the use of microbial-derived molecules to assist nanomaterial synthesis. In this sense, biosurfactants (BSs) have emerged as eco-friendly substitutes in nano-sized materials preparation. The inherent amphiphilic and self-assembly character of BSs associated with their low eco-toxicity, biodegradability, biocompatibility, structural diversity, biological activity, and production from renewable resources are potential advantages over chemically-derived surfactants. In nanotechnology, these versatile molecules play multiple roles. In nanoparticle (NP) synthesis, they act as capping and reducing agents and they also provide self-assembly structures to encapsulation, functionalization, or templates and act as emulsifiers in nanoemulsions. Moreover, BSs can also play as active compounds owing to their intrinsic biological properties. This review presents the recent trends in the development of BS-based nanostructures and their biomedical and environmental applications. Fundamental aspects regarding their antimicrobial and anticancer activities are also discussed.
Collapse
Affiliation(s)
- Marcia Nitschke
- Departamento Físico-Química, Instituto de Química de São Carlos (IQSC) - USP, São Carlos, Brazil
| | | |
Collapse
|
21
|
Ortiz J, Oliva A, Teruel JA, Aranda FJ, Ortiz A. Effect of pH and temperature on the aggregation behaviour of dirhamnolipid biosurfactant. An experimental and molecular dynamics study. J Colloid Interface Sci 2021; 597:160-170. [PMID: 33872875 DOI: 10.1016/j.jcis.2021.03.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022]
Abstract
HYPOTHESIS Pseudomonas aeruginosa dirhamnolipid (diRL) has been shown to form aggregates of different size and structure, under various conditions. Due to the presence of a carboxyl group in the molecule, it is expected that pH would strongly affect this aggregation behaviour. In addition, preliminary observations of temperature-induced changes in the states of aggregation of diRL supported the need of further investigation. EXPERIMENTS A systematic experimental study, using differential scanning calorimetry (DSC), small-angle Xray diffraction (SAXD), and Fourier-transform infrared spectroscopy (FTIR), has been carried out to characterize pH and temperature driven changes in the aggregation behavior of diRL biosurfactant. Molecular dynamics (MD) simulations, supported by the experimental results, allowed depicting molecular details on formation of diRL membranes and other aggregated structures under various physicochemical conditions. FINDINGS DiRL could adopt fairly organized multilayered structures (membranes) at low pH and temperature, which became highly disordered upon increasing either of these parameters. The effect of pH on the gauche/all-trans conformer ratio of the diRL acyl chains was not of significance, whereas temperature-induced effects were observed. For the first time it is described that diRL underwent an endothermic thermotropic transition with Tc = 34 °C as observed by DSC, at pH 4.5 (protonated diRL), but not at pH 7.4 (unprotonated diRL). FTIR confirmed these findings, showing a significant additional disordering of the all-trans acyl chains upon increasing temperature around that same value in the protonated form, an effect not observed for the dissociated form of the biosurfactant. In addition, at pH 7.4, changing temperature did not modify the hydration state of the polar moiety of diRL, whereas at pH 4.5 a significant decrease in the hydration state around 34 °C took place. SAXD data showed that protonated diRL formed multilayered structures at 20 °C, which converted into poorly correlated layers at 50 °C. MD simulations supported these findings, showing that the membrane-like structures formed by protonated diRL at 20 °C became unstable at higher temperatures, tending to form other structures, which could be micelles or other type of layered structures, whereas the negatively charged form of diRL organized in micelle-type aggregates in the whole range of temperature under study.
Collapse
Affiliation(s)
- Julia Ortiz
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - Alfonso Oliva
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - José A Teruel
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - Francisco J Aranda
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - Antonio Ortiz
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain.
| |
Collapse
|
22
|
Herzog M, Li L, Blesken CC, Welsing G, Tiso T, Blank LM, Winter R. Impact of the number of rhamnose moieties of rhamnolipids on the structure, lateral organization and morphology of model biomembranes. SOFT MATTER 2021; 17:3191-3206. [PMID: 33621291 DOI: 10.1039/d0sm01934h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Various studies have described remarkable biological activities and surface-active properties of rhamnolipids, leading to their proposed use in a wide range of industrial applications. Here, we report on a study of the effects of monorhamnolipid RhaC10C10 and dirhamnolipid RhaRhaC10C10 incorporation into model membranes of varying complexity, including bacterial and heterogeneous model biomembranes. For comparison, we studied the effect of HAA (C10C10, lacking a sugar headgroup) partitioning into these membrane systems. AFM, confocal fluorescence microscopy, DSC, and Laurdan fluorescence spectroscopy were employed to yield insights into the rhamnolipid-induced morphological changes of lipid vesicles as well as modifications of the lipid order and lateral membrane organization of the model biomembranes upon partitioning of the different rhamnolipids. The partitioning of the three rhamnolipids into phospholipid bilayers changes the phase behavior, fluidity, lateral lipid organization and morphology of the phospholipid membranes dramatically, to what extent, depends on the headgroup structure of the rhamnolipid, which affects its packing and hydrogen bonding capacity. The incorporation into giant unilamellar vesicles (GUVs) of a heterogeneous anionic raft membrane system revealed budding of domains and fission of daughter vesicles and small aggregates for all three rhamnolipids, with major destabilization of the lipid vesicles upon insertion of RhaC10C10, and also formation of huge GUVs upon the incorporation of RhaRhaC10C10. Finally, we discuss the results with regard to the role these biosurfactants play in biology and their possible impact on applications, ranging from agricultural to pharmaceutical industries.
Collapse
Affiliation(s)
- Marius Herzog
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Bertuso PDC, Mayer DMD, Nitschke M. Combining Celery Oleoresin, Limonene and Rhamnolipid as New Strategy to Control Endospore-Forming Bacillus cereus. Foods 2021; 10:455. [PMID: 33669618 PMCID: PMC7922389 DOI: 10.3390/foods10020455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 11/16/2022] Open
Abstract
Foodborne diseases (FBD) are a great problem worldwide, leading millions of people to seek medical help and to significant economic losses for industry. Among the agents implicated in FDB is Bacillus cereus, a Gram-positive, toxigenic and endospore-forming bacterium. In this study, rhamnolipid (RL) biosurfactant, celery oleoresin (OR) and limonene (LN) were evaluated as bio-based alternatives for controlling the growth of vegetative cells and endospores of B. cereus. To address their antimicrobial activity, the compounds were tested separately and in combination. Results demonstrate that, when combined with RL, both OR and LN have lower minimal inhibitory concentration (MIC) values and increased endospore inhibition potential. A percentage of endospore inhibition from 73% to 98%, corresponding to a 2.8-3.6 log reduction in spore outgrowth, was observed. RL inhibited B. cereus growth and endospore germination and potentially enhanced the antimicrobial efficacy of the natural hydrophobic compounds tested.
Collapse
Affiliation(s)
- Paula de Camargo Bertuso
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo, Trabalhador São-carlense Av., 400, São Carlos, SP 13566-590, Brazil; (P.d.C.B.); (D.M.D.M.)
| | - Débora M. Drappé Mayer
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo, Trabalhador São-carlense Av., 400, São Carlos, SP 13566-590, Brazil; (P.d.C.B.); (D.M.D.M.)
| | - Marcia Nitschke
- São Carlos Institute of Chemistry (IQSC), University of São Paulo, Trabalhador São-carlense Av., 400, P.O. Box 780, São Carlos, SP 13560-970, Brazil
| |
Collapse
|
24
|
Sanches BCP, Rocha CA, Martin Bedoya JG, da Silva VL, da Silva PB, Fusco-Almeida AM, Chorilli M, Contiero J, Crusca E, Marchetto R. Rhamnolipid-Based Liposomes as Promising Nano-Carriers for Enhancing the Antibacterial Activity of Peptides Derived from Bacterial Toxin-Antitoxin Systems. Int J Nanomedicine 2021; 16:925-939. [PMID: 33603360 PMCID: PMC7882795 DOI: 10.2147/ijn.s283400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/25/2020] [Indexed: 12/19/2022] Open
Abstract
Background Antimicrobial resistance poses substantial risks to human health. Thus, there is an urgent need for novel antimicrobial agents, including alternative compounds, such as peptides derived from bacterial toxin-antitoxin (TA) systems. ParELC3 is a synthetic peptide derived from the ParE toxin reported to be a good inhibitor of bacterial topoisomerases and is therefore a potential antibacterial agent. However, ParELC3 is inactive against bacteria due to its inability to cross the bacterial membranes. To circumvent this limitation we prepared and used rhamnolipid-based liposomes to carry and facilitate the passage of ParELC3 through the bacterial membrane to reach its intracellular target - the topoisomerases. Methods and Results Small unilamellar liposome vesicles were prepared by sonication from three formulations that included 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and cholesterol. ParELC3 was loaded with high efficiency into the liposomes. Characterization by DLS and TEM revealed the appropriate size, zeta potential, polydispersity index, and morphology. In vitro microbiological experiments showed that ParELC3 loaded-liposomes are more efficient (29 to 11 µmol·L−1) compared to the free peptide (>100 µmol·L−1) at inhibiting the growth of standard E. coli and S. aureus strains. RL liposomes showed high hemolytic activity but when prepared with POPC and Chol this activity had a significant reduction. Independently of the formulation, the vesicles had no detectable cytotoxicity to HepG2 cells, even at the highest concentrations tested (1.3 mmol·L−1 and 50 µmol·L−1 for rhamnolipid and ParELC3, respectively). Conclusion The present findings suggest the potential use of rhamnolipid-based liposomes as nanocarrier systems to enhance the bioactivity of peptides.
Collapse
Affiliation(s)
- Beatriz Cristina Pecoraro Sanches
- São Paulo State University (UNESP), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Araraquara, SP, Brazil
| | - Camila Aguiar Rocha
- São Paulo State University (UNESP), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Araraquara, SP, Brazil
| | - Jose Gregorio Martin Bedoya
- São Paulo State University (UNESP), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Araraquara, SP, Brazil
| | - Vinicius Luiz da Silva
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Rio Claro, SP, Brazil
| | - Patrícia Bento da Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, Brazil
| | - Ana Marisa Fusco-Almeida
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, Brazil
| | - Jonas Contiero
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Rio Claro, SP, Brazil
| | - Edson Crusca
- São Paulo State University (UNESP), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Araraquara, SP, Brazil
| | - Reinaldo Marchetto
- São Paulo State University (UNESP), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Araraquara, SP, Brazil
| |
Collapse
|
25
|
Come B, Donato M, Potenza LF, Mariani P, Itri R, Spinozzi F. The intriguing role of rhamnolipids on plasma membrane remodelling: From lipid rafts to membrane budding. J Colloid Interface Sci 2021; 582:669-677. [DOI: 10.1016/j.jcis.2020.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 01/26/2023]
|
26
|
Sun L, Forauer EC, Brown SRB, D'Amico DJ. Application of bioactive glycolipids to control Listeria monocytogenes biofilms and as post-lethality contaminants in milk and cheese. Food Microbiol 2020; 95:103683. [PMID: 33397615 DOI: 10.1016/j.fm.2020.103683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/18/2022]
Abstract
Listeria monocytogenes can form persistent biofilms on food processing surfaces, resulting in cross-contamination of food products, including milk and milk products. Natural glycolipids are a promising intervention to control undesirable microbes due to their antimicrobial activity and low toxicity. This study aimed to determine the antimicrobial activity of glycolipids to control L. monocytogenes biofilms as well as in milk and on Queso Fresco. Application of a natural glycolipid product significantly reduced biofilm-associated L. monocytogenes on both polystyrene and stainless steel at concentrations as low as 45 mg/L. When added to UHT skim milk, a concentration of 1000 mg/L inhibited L. monocytogenes growth through 7 days of storage at 7 °C, and application of 1300 and 1500 mg/L reduced counts to levels below the limit of enumeration at day 21. In contrast, 2000 mg/L were necessary to inhibit growth through 7 days in whole milk. Glycolipid solutions at concentrations ≥10% reduced L. monocytogenes counts on Queso Fresco through 7 days when applied as a dip. Overall, natural glycolipids have potential as a natural alternative for the removal of biofilms and as an antimicrobial to control L. monocytogenes in milk and milk products with short shelf lives.
Collapse
Affiliation(s)
- Lang Sun
- Department of Animal Science, University of Connecticut, Agricultural Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs, CT, 06269-4163, USA
| | - Emily C Forauer
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, U-3089, Storrs, CT, 06269-3089, USA
| | - Stephanie R B Brown
- Department of Animal Science, University of Connecticut, Agricultural Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs, CT, 06269-4163, USA
| | - Dennis J D'Amico
- Department of Animal Science, University of Connecticut, Agricultural Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs, CT, 06269-4163, USA.
| |
Collapse
|
27
|
Herzog M, Tiso T, Blank LM, Winter R. Interaction of rhamnolipids with model biomembranes of varying complexity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183431. [DOI: 10.1016/j.bbamem.2020.183431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/26/2020] [Indexed: 12/25/2022]
|
28
|
Crouzet J, Arguelles-Arias A, Dhondt-Cordelier S, Cordelier S, Pršić J, Hoff G, Mazeyrat-Gourbeyre F, Baillieul F, Clément C, Ongena M, Dorey S. Biosurfactants in Plant Protection Against Diseases: Rhamnolipids and Lipopeptides Case Study. Front Bioeng Biotechnol 2020; 8:1014. [PMID: 33015005 PMCID: PMC7505919 DOI: 10.3389/fbioe.2020.01014] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
Biosurfactants are amphiphilic surface-active molecules that are produced by a variety of microorganisms including fungi and bacteria. Pseudomonas, Burkholderia, and Bacillus species are known to secrete rhamnolipids and lipopeptides that are used in a wide range of industrial applications. Recently, these compounds have been studied in a context of plant-microbe interactions. This mini-review describes the direct antimicrobial activities of these compounds against plant pathogens. We also provide the current knowledge on how rhamnolipids and lipopeptides stimulate the plant immune system leading to plant resistance to phytopathogens. Given their low toxicity, high biodegradability and ecological acceptance, we discuss the possible role of these biosurfactants as alternative strategies to reduce or even replace pesticide use in agriculture.
Collapse
Affiliation(s)
- Jérôme Crouzet
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Anthony Arguelles-Arias
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | - Sandrine Dhondt-Cordelier
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Sylvain Cordelier
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Jelena Pršić
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | - Gregory Hoff
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | | | - Fabienne Baillieul
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Christophe Clément
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Marc Ongena
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | - Stéphan Dorey
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
29
|
Mould DL, Botelho NJ, Hogan DA. Intraspecies Signaling between Common Variants of Pseudomonas aeruginosa Increases Production of Quorum-Sensing-Controlled Virulence Factors. mBio 2020; 11:e01865-20. [PMID: 32843558 PMCID: PMC7448281 DOI: 10.1128/mbio.01865-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa damages hosts through the production of diverse secreted products, many of which are regulated by quorum sensing (QS). The lasR gene, which encodes a central QS regulator, is frequently mutated in clinical isolates from chronic infections, and loss of LasR function (LasR-) generally impairs the activity of downstream QS regulators RhlR and PqsR. We found that in cocultures containing LasR+ and LasR- strains, LasR- strains hyperproduce the RhlR/RhlI-regulated antagonistic factors pyocyanin and rhamnolipids in diverse models and media and in different strain backgrounds. Diffusible QS autoinducers produced by the wild type were not required for this effect. Using transcriptomics, genetics, and biochemical approaches, we uncovered a reciprocal interaction between wild-type and lasR mutant pairs wherein the iron-scavenging siderophore pyochelin produced by the lasR mutant induced citrate release and cross-feeding from the wild type. Citrate, a metabolite often secreted in low iron environments, stimulated RhlR signaling and RhlI levels in LasR-but not in LasR+ strains. These studies reveal the potential for complex interactions between recently diverged, genetically distinct isolates within populations from single chronic infections.IMPORTANCE Coculture interactions between lasR loss-of-function and LasR+ Pseudomonas aeruginosa strains may explain the worse outcomes associated with the presence of LasR- strains. More broadly, this report illustrates how interactions within a genotypically diverse population, similar to those that frequently develop in natural settings, can promote unpredictably high virulence factor production.
Collapse
Affiliation(s)
- Dallas L Mould
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Nico J Botelho
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A Hogan
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
30
|
Sajid M, Ahmad Khan MS, Singh Cameotra S, Safar Al-Thubiani A. Biosurfactants: Potential applications as immunomodulator drugs. Immunol Lett 2020; 223:71-77. [DOI: 10.1016/j.imlet.2020.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/24/2020] [Accepted: 04/04/2020] [Indexed: 10/24/2022]
|
31
|
Furlan AL, Laurin Y, Botcazon C, Rodríguez-Moraga N, Rippa S, Deleu M, Lins L, Sarazin C, Buchoux S. Contributions and Limitations of Biophysical Approaches to Study of the Interactions between Amphiphilic Molecules and the Plant Plasma Membrane. PLANTS 2020; 9:plants9050648. [PMID: 32443858 PMCID: PMC7285231 DOI: 10.3390/plants9050648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022]
Abstract
Some amphiphilic molecules are able to interact with the lipid matrix of plant plasma membranes and trigger the immune response in plants. This original mode of perception is not yet fully understood and biophysical approaches could help to obtain molecular insights. In this review, we focus on such membrane-interacting molecules, and present biophysically grounded methods that are used and are particularly interesting in the investigation of this mode of perception. Rather than going into overly technical details, the aim of this review was to provide to readers with a plant biochemistry background a good overview of how biophysics can help to study molecular interactions between bioactive amphiphilic molecules and plant lipid membranes. In particular, we present the biomimetic membrane models typically used, solid-state nuclear magnetic resonance, molecular modeling, and fluorescence approaches, because they are especially suitable for this field of research. For each technique, we provide a brief description, a few case studies, and the inherent limitations, so non-specialists can gain a good grasp on how they could extend their toolbox and/or could apply new techniques to study amphiphilic bioactive compound and lipid interactions.
Collapse
Affiliation(s)
- Aurélien L. Furlan
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, TERRA Research Center, Université de Liège, B5030 Gembloux, Belgium; (A.L.F.); (Y.L.); (M.D.); (L.L.)
| | - Yoann Laurin
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, TERRA Research Center, Université de Liège, B5030 Gembloux, Belgium; (A.L.F.); (Y.L.); (M.D.); (L.L.)
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Picardie Jules Verne, 80039 Amiens, France; (C.B.); (N.R.-M.); (C.S.)
| | - Camille Botcazon
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Picardie Jules Verne, 80039 Amiens, France; (C.B.); (N.R.-M.); (C.S.)
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Technologie de Compiègne, 60200 Compiègne, France;
| | - Nely Rodríguez-Moraga
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Picardie Jules Verne, 80039 Amiens, France; (C.B.); (N.R.-M.); (C.S.)
| | - Sonia Rippa
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Technologie de Compiègne, 60200 Compiègne, France;
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, TERRA Research Center, Université de Liège, B5030 Gembloux, Belgium; (A.L.F.); (Y.L.); (M.D.); (L.L.)
| | - Laurence Lins
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, TERRA Research Center, Université de Liège, B5030 Gembloux, Belgium; (A.L.F.); (Y.L.); (M.D.); (L.L.)
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Picardie Jules Verne, 80039 Amiens, France; (C.B.); (N.R.-M.); (C.S.)
| | - Sébastien Buchoux
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Picardie Jules Verne, 80039 Amiens, France; (C.B.); (N.R.-M.); (C.S.)
- Correspondence: ; Tel.: +33-(0)3-2282-7473
| |
Collapse
|
32
|
Oliva A, Teruel JA, Aranda FJ, Ortiz A. Effect of a dirhamnolipid biosurfactant on the structure and phase behaviour of dimyristoylphosphatidylserine model membranes. Colloids Surf B Biointerfaces 2020; 185:110576. [DOI: 10.1016/j.colsurfb.2019.110576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/02/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022]
|
33
|
Radlinski LC, Rowe SE, Brzozowski R, Wilkinson AD, Huang R, Eswara P, Conlon BP. Chemical Induction of Aminoglycoside Uptake Overcomes Antibiotic Tolerance and Resistance in Staphylococcus aureus. Cell Chem Biol 2019; 26:1355-1364.e4. [PMID: 31402316 DOI: 10.1016/j.chembiol.2019.07.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/22/2019] [Indexed: 01/13/2023]
Abstract
Aminoglycoside antibiotics require proton motive force (PMF) for bacterial internalization. In non-respiring populations, PMF drops below the level required for drug influx, limiting the utility of aminoglycosides against strict and facultative anaerobes. We recently demonstrated that rhamnolipids (RLs), biosurfactant molecules produced by Pseudomonas aeruginosa, potentiate aminoglycoside activity against Staphylococcus aureus. Here, we demonstrate that RLs induce PMF-independent aminoglycoside uptake to restore sensitivity to otherwise tolerant persister, biofilm, small colony variant, and anaerobic populations of S. aureus. Furthermore, we show that this approach represses the rise of resistance, restores sensitivity to highly resistant clinical isolates, and is effective against other Gram-positive pathogens. Finally, while other membrane-acting agents can synergize with aminoglycosides, induction of PMF-independent uptake is uncommon, and distinct to RLs among several compounds tested. In all, small-molecule induction of PMF-independent aminoglycoside uptake circumvents phenotypic tolerance, overcomes genotypic resistance, and expands the utility of aminoglycosides against intrinsically recalcitrant bacterial populations.
Collapse
Affiliation(s)
- Lauren C Radlinski
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah E Rowe
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert Brzozowski
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Alec D Wilkinson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rennica Huang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Prahathees Eswara
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Brian P Conlon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
34
|
Naughton PJ, Marchant R, Naughton V, Banat IM. Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J Appl Microbiol 2019; 127:12-28. [PMID: 30828919 DOI: 10.1111/jam.14243] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/18/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022]
Abstract
Synthetic surfactants are becoming increasingly unpopular in many applications due to previously disregarded effects on biological systems and this has led to a new focus on replacing such products with biosurfactants that are biodegradable and produced from renewal resources. Microbially derived biosurfactants have been investigated in numerous studies in areas including: increasing feed digestibility in an agricultural context, improving seed protection and fertility, plant pathogen control, antimicrobial activity, antibiofilm activity, wound healing and dermatological care, improved oral cavity care, drug delivery systems and anticancer treatments. The development of the potential of biosurfactants has been hindered somewhat by the myriad of approaches taken in their investigations, the focus on pathogens as source species and the costs associated with large-scale production. Here, we focus on various microbial sources of biosurfactants and the current trends in terms of agricultural and biomedical applications.
Collapse
Affiliation(s)
- P J Naughton
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, County Londonderry, UK
| | - R Marchant
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, County Londonderry, UK
| | - V Naughton
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, County Londonderry, UK
| | - I M Banat
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, County Londonderry, UK
| |
Collapse
|
35
|
Monnier N, Furlan AL, Buchoux S, Deleu M, Dauchez M, Rippa S, Sarazin C. Exploring the Dual Interaction of Natural Rhamnolipids with Plant and Fungal Biomimetic Plasma Membranes through Biophysical Studies. Int J Mol Sci 2019; 20:E1009. [PMID: 30813553 PMCID: PMC6429473 DOI: 10.3390/ijms20051009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 12/12/2022] Open
Abstract
Rhamnolipids (RLs) are potential biocontrol agents for crop culture protection. Their mode of action has been proposed as dual, combining plant protection activation and antifungal activities. The present work focuses on the interaction of natural RLs with plant and fungi membrane models at the molecular scale. Representative models were constructed and the interaction with RLs was studied by Fourier transform infrared (FTIR) and deuterium nuclear magnetic resonance (²H NMR) spectroscopic measurements. Molecular dynamic (MD) simulations were performed to investigate RL insertion in lipid bilayers. Our results showed that the RLs fit into the membrane models and were located near the lipid phosphate group of the phospholipid bilayers, nearby phospholipid glycerol backbones. The results obtained with plant plasma membrane models suggest that the insertion of RLs inside the lipid bilayer did not significantly affect lipid dynamics. Oppositely, a clear fluidity increase of fungi membrane models was observed. This effect was related to the presence and the specific structure of ergosterol. The nature of the phytosterols could also influence the RL effect on plant plasma membrane destabilization. Subtle changes in lipid dynamics could then be linked with plant defense induction and the more drastic effects associated with fungal membrane destabilization.
Collapse
Affiliation(s)
- Noadya Monnier
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, Université de Picardie Jules Verne (UPJV), 80039 Amiens, France.
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, Sorbonne Universités, Université de Technologie de Compiègne, 60200 Compiègne, France.
| | - Aurélien L Furlan
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, Université de Picardie Jules Verne (UPJV), 80039 Amiens, France.
| | - Sébastien Buchoux
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, Université de Picardie Jules Verne (UPJV), 80039 Amiens, France.
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, B5030 Gembloux, Belgium.
| | - Manuel Dauchez
- Matrice Extracellulaire et Dynamique Cellulaire, UMR CNRS 7369, Chaire MAgICS, Université de Reims Champagne-Ardenne (URCA), 51687 Reims, France.
| | - Sonia Rippa
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, Sorbonne Universités, Université de Technologie de Compiègne, 60200 Compiègne, France.
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, Université de Picardie Jules Verne (UPJV), 80039 Amiens, France.
| |
Collapse
|
36
|
de Freitas Ferreira J, Vieira EA, Nitschke M. The antibacterial activity of rhamnolipid biosurfactant is pH dependent. Food Res Int 2019; 116:737-744. [DOI: 10.1016/j.foodres.2018.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/21/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
|
37
|
Sana S, Datta S, Biswas D, Sengupta D. Assessment of synergistic antibacterial activity of combined biosurfactants revealed by bacterial cell envelop damage. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:579-585. [PMID: 28988129 DOI: 10.1016/j.bbamem.2017.09.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/23/2017] [Accepted: 09/27/2017] [Indexed: 11/16/2022]
Abstract
Besides potential surface activity and some beneficial physical properties, biosurfactants express antibacterial activity. Bacterial cell membrane disrupting ability of rhamnolipid produced by Pseudomonas aeruginosa C2 and a lipopeptide type biosurfactant, BS15 produced by Bacillus stratosphericus A15 was examined against Staphylococcus aureus ATCC 25923 and Escherichia coli K8813. Broth dilution technique was followed to examine minimum inhibitory concentration (MIC) of both the biosurfactants. The combined effect of rhamnolipid and BS15 against S. aureus and E. coli showed synergistic activity by expressing fractional inhibitory concentration (FIC) index of 0.43 and 0.5. Survival curve of both the bacteria showed bactericidal activity after treating with biosurfactants at their MIC obtained from FIC index study as it killed >90% of initial population. The lesser value of MIC than minimum bactericidal concentration (MBC) of the biosurfactants also supported their bactericidal activity against both the bacteria. Membrane permeability against both the bacteria was supported by amplifying protein release, increasing of cell surface hydrophobicity, withholding capacity of crystal violet dye and leakage of intracellular materials. Finally cell membrane disruption was confirmed by scanning electron microscopy (SEM). All these experiments expressed synergism and effective bactericidal activity of the combination of rhamnolipid and BS15 by enhancing the bacterial cell membrane permeability. Such effect of the combination of rhamnolipid and BS15 could make them promising alternatives to traditional antibiotic in near future.
Collapse
Affiliation(s)
- Santanu Sana
- Department of Chemical Technology, University of Calcutta, Kolkata 700009, India
| | - Sriparna Datta
- Department of Chemical Technology, University of Calcutta, Kolkata 700009, India.
| | - Dipa Biswas
- Department of Chemical Technology, University of Calcutta, Kolkata 700009, India
| | - Dipanjan Sengupta
- Department of Chemical Technology, University of Calcutta, Kolkata 700009, India
| |
Collapse
|
38
|
Coronel JR, Marqués A, Manresa Á, Aranda FJ, Teruel JA, Ortiz A. Interaction of the Lipopeptide Biosurfactant Lichenysin with Phosphatidylcholine Model Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9997-10005. [PMID: 28885026 DOI: 10.1021/acs.langmuir.7b01827] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lichenysins produced by Bacillus licheniformis are anionic lipopeptide biosurfactants with cytotoxic, antimicrobial, and hemolytic activities that possess enormous potential for chemical and biological applications. Through the use of physical techniques such as differential scanning calorimetry, small- and wide-angle X-ray diffraction, and Fourier-transform infrared spectroscopy as well as molecular dynamics simulations, we report on the interaction of Lichenysin with synthetic phosphatidylcholines differing in hydrocarbon chain length. Lichenysin alters the thermotropic phase behavior of phosphatidylcholines, displaying fluid-phase immiscibility and showing a preferential partitioning into fluid domains. The interlamellar repeat distance of dipalmitoylphosphatidylcholine (DPPC) is modified, affecting both the phospholipid palisade and the lipid/water interface, which also experiences a strong dehydration. Molecular dynamics confirms that Lichenysin is capable of interacting both with the hydrophobic portion of DPPC and with the polar headgroup region, which is of particular relevance to explain much of its properties. The results presented here help to establish a molecular basis for the Lichenysin-induced perturbation of model and biological membranes previously described in the literature.
Collapse
Affiliation(s)
- Jonathan R Coronel
- Escuela Superior Politécnica del Litoral, ESPOL , Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Ana Marqués
- Laboratorio de Microbiología, Facultad de Farmacia, Universidad de Barcelona , Joan XXIII s/n, E-08028 Barcelona, Spain
| | - Ángeles Manresa
- Laboratorio de Microbiología, Facultad de Farmacia, Universidad de Barcelona , Joan XXIII s/n, E-08028 Barcelona, Spain
| | - Francisco J Aranda
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia , Campus de Espinardo, E-30100 Murcia, Spain
| | - José A Teruel
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia , Campus de Espinardo, E-30100 Murcia, Spain
| | - Antonio Ortiz
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia , Campus de Espinardo, E-30100 Murcia, Spain
| |
Collapse
|
39
|
González-Jaramillo LM, Aranda FJ, Teruel JA, Villegas-Escobar V, Ortiz A. Antimycotic activity of fengycin C biosurfactant and its interaction with phosphatidylcholine model membranes. Colloids Surf B Biointerfaces 2017; 156:114-122. [DOI: 10.1016/j.colsurfb.2017.05.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
|
40
|
Perinelli DR, Vllasaliu D, Bonacucina G, Come B, Pucciarelli S, Ricciutelli M, Cespi M, Itri R, Spinozzi F, Palmieri GF, Casettari L. Rhamnolipids as epithelial permeability enhancers for macromolecular therapeutics. Eur J Pharm Biopharm 2017; 119:419-425. [PMID: 28743594 DOI: 10.1016/j.ejpb.2017.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 02/04/2023]
Abstract
The use of surfactants as drug permeability enhancers across epithelial barriers remains a challenge. Although many studies have been performed in this field using synthetic surfactants, the possibility of employing surfactants produced by bacteria (the so called biosurfactants") has not been completely explored. Among them, one of the most well characterized class of biosurfactants are rhamnolipids. The aim of the study was to investigate the effect of rhamnolipids on the epithelial permeability of fluorescein isothiocyanate-labelled dextrans 4kDa and 10kDa (named FD4 and FD10, respectively) as model for macromolecular drugs, across Caco-2 and Calu-3monolayers. These cell lines were selected as an in vitro model for the oral and respiratory administration of drugs. Before performing permeability studies, rhamnolipids mixture was analysed in terms of chemical composition and quantification through mass analysis and HPLC. Cytotoxicity and transepithelial electrical resistance (TEER) studies were also conducted using Caco-2 and Calu-3 cell lines. A dose-dependent effect of rhamnolipids on TEER and FD4 or FD10 permeability across both cell lines was observed at relatively safe concentrations. Overall, results suggest the possibility of using rhamnolipids as absorption enhancers for macromolecular drugs through a reversible tight junction opening (paracellular route), despite more investigations are required to confirm their mechanism of action in term of permeability.
Collapse
Affiliation(s)
- Diego Romano Perinelli
- School of Pharmacy, University of Camerino, via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Driton Vllasaliu
- School of Pharmacy, University of Lincoln, Green Lane, Lincoln LN6 7DL, UK
| | - Giulia Bonacucina
- School of Pharmacy, University of Camerino, via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Benedetta Come
- Department of Life and Environmental Science, Polytechnic University of Marche, Ancona, Italy
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary medicine, University of Camerino, via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Massimo Ricciutelli
- School of Pharmacy, University of Camerino, via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Marco Cespi
- School of Pharmacy, University of Camerino, via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Rosangela Itri
- Instituto de Física da Universidade de São Paulo, IFUSP, Rua do Matão, Travessa R, 187, 05508-090 São Paulo, Brazil
| | - Francesco Spinozzi
- Department of Life and Environmental Science, Polytechnic University of Marche, Ancona, Italy
| | | | - Luca Casettari
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy.
| |
Collapse
|
41
|
Shalini D, Benson A, Gomathi R, John Henry A, Jerritta S, Melvin Joe M. Isolation, characterization of glycolipid type biosurfactant from endophytic Acinetobacter sp. ACMS25 and evaluation of its biocontrol efficiency against Xanthomonas oryzae. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Das M, Patowary K, Vidya R, Malipeddi H. Microemulsion synthesis of silver nanoparticles using biosurfactant extracted from Pseudomonas aeruginosa MKVIT3 strain and comparison of their antimicrobial and cytotoxic activities. IET Nanobiotechnol 2016; 10:411-418. [PMID: 27906143 PMCID: PMC8676529 DOI: 10.1049/iet-nbt.2015.0119] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/27/2016] [Accepted: 03/24/2016] [Indexed: 07/30/2023] Open
Abstract
In the present study, an efficient biosurfactant producing bacterial strain Pseudomonas aeruginosa MKVIT3 was isolated from an oil logging area in Vellore district of Tamil Nadu, India. Liquid chromatography-mass spectrometry (LC-MS/MS) analysis was performed for the identification of different congeners present in the extracted biosurfactant. The column purified biosurfactant was used to stabilise the formation of silver nanoparticles (NP) using borohydrate reduction in reverse micelles. The silver NP were characterised using UV-vis absorption spectroscopy, Powder-XRD TEM analysis and zeta potential. A comparative study of the antimicrobial activity and cytotoxic efficacy was done for the extracted purified biosurfactant and the silver NP. The LC-MS/MS analysis of the biosurfactant revealed the presence of five rhamnolipid congeners. The synthesised silver NP showed the characteristic absorption peak in UV-vis at 440 nm. Powder-XRD and TEM analysis revealed the average particle size of the NP as 17.89 ± 8.74 nm as well as their cubic structure. Zeta potential value of -30.9 mV suggested that the silver NPs are stable in the suspension. Comparative study of the antimicrobial activity revealed that the silver NP are more potent than the biosurfactant in inhibiting the growth of microbes. Cytotoxic activity revealed that the biosurfactant are more effective than the synthesised silver NP.
Collapse
Affiliation(s)
- Moonjit Das
- Pharmaceutical Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu, India
| | - Kaustuvmani Patowary
- Environmental Biotechnology Laboratory, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India
| | - Radhakrishnan Vidya
- Environmental Biotechnology Division, School of Bio-Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Himaja Malipeddi
- Pharmaceutical Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
43
|
Shen C, Jiang L, Shao H, You C, Zhang G, Ding S, Bian T, Han C, Meng Q. Targeted killing of myofibroblasts by biosurfactant di-rhamnolipid suggests a therapy against scar formation. Sci Rep 2016; 6:37553. [PMID: 27901027 PMCID: PMC5128858 DOI: 10.1038/srep37553] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/01/2016] [Indexed: 01/06/2023] Open
Abstract
Pathological myofibroblasts are often involved in skin scarring via generating contractile force and over-expressing collagen fibers, but no compound has been found to inhibit the myofibroblasts without showing severe toxicity to surrounding physiological cells. Here we report that di-rhamnolipid, a biosurfactant secreted by Pseudomonas aeruginosa, showed potent effects on scar therapy via a unique mechanism of targeted killing the myofibroblasts. In cell culture, the fibroblasts-derived myofibroblasts were more sensitive to di-rhamnolipid toxicity than fibroblasts at a concentration-dependent manner, and could be completely inhibited of their specific functions including α-SMA expression and collagen secretion/contraction. The anti-fibrotic function of di-rhamnolipid was further verified in rabbit ear hypertrophic scar models by presenting the significant reduction of scar elevation index, type I collagen fibers and α-SMA expression. In this regard, di-rhamnolipid treatment could be suggested as a therapy against skin scarring.
Collapse
Affiliation(s)
- Chong Shen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, PR China
| | - Lifang Jiang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, PR China
| | - Huawei Shao
- Department of Burns &Wound Care Centre, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, PR China
| | - Chuangang You
- Department of Burns &Wound Care Centre, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, PR China
| | - Guoliang Zhang
- Ocean College, Zhejiang University of Technology, Hangzhou, PR China
| | - Sitong Ding
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, PR China
| | - Tingwei Bian
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, PR China
| | - Chunmao Han
- Department of Burns &Wound Care Centre, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, PR China
| | - Qin Meng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
44
|
Systematic comparison of the functional physico-chemical characteristics and biocidal activity of microbial derived biosurfactants on blood-derived and breast cancer cells. J Colloid Interface Sci 2016; 479:221-233. [PMID: 27390853 DOI: 10.1016/j.jcis.2016.06.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/12/2016] [Accepted: 06/21/2016] [Indexed: 01/03/2023]
Abstract
HYPOTHESIS The cytotoxicity of biosurfactants on cell membranes may be influenced by composition of their hydrophilic head and hydrophobic tails. It is hypothesised that they form mixed micelles which exert a detergent-like effect that disrupts the plasma membrane. The functional physico-chemical and biocidal characteristics of four biosurfactants were concurrently investigated to determine which of their structural characteristics may be tuned for greater efficacy. EXPERIMENTS Rhamnolipid-95, rhamnolipid-90, surfactin and sophorolipid were characterised using FTIR, LC-MS, HPLC, surface tension and critical micelle concentration. Their biocidal activity against HEK 293, MCF-7 and THP-1 cell lines were investigated by MTT assay, using doxorubicin as cytotoxic control. Growth curves were established for all cell lines using trypan blue (TB) and MTT assays, corresponding doubling time (DT) and growth rate were obtained and compared. FINDINGS HEK 293 cell-line had the highest growth rate amongst the three cell lines. For TB assay, growth of HEK 293>THP-1 and for MTT, HEK 293>MCF-7 while the DT was in the order of THP-1>MCF-7>HEK 293. Sophorolipid showed anti-proliferative activity comparable to doxorubicin on THP-1>MCF-7>HEK 293. THP-1 showed high sensitivity to sophorolipid with IC50 of 10.50, 25.58 and 6.78(μg/ml) after 24, 48 and 72h respectively. However, sophorolipid was cytotoxic from 24 to 72h on HEK 293 cell lines with IC50 of 21.53, 40.57 and 27.53μg/ml respectively. Although, doxorubicin showed higher anti-proliferative activity than all biosurfactants, it had poorer selectivity index for the same time durations compared to the biosurfactants. This indicates that biosurfactants were more effective for slowing the growth of the tested cancer cell lines and hence may be potential candidates for use in human cancer therapy. Physico-chemical characteristics of the biosurfactants suggest that their mechanism of action may be due to activity on the cell membrane.
Collapse
|
45
|
Jiang L, Shen C, Long X, Zhang G, Meng Q. Rhamnolipids elicit the same cytotoxic sensitivity between cancer cell and normal cell by reducing surface tension of culture medium. Appl Microbiol Biotechnol 2014; 98:10187-96. [PMID: 25231070 DOI: 10.1007/s00253-014-6065-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 01/20/2023]
Abstract
Biosurfactant rhamnolipids have been claimed to show biological activities of inhibiting the proliferation of cancer cells. In this study, the cytotoxicity of rhamnolipids was examined on four cancer cells (HepG2, Caco-2, Hela, MCF-7 cells) and two normal cells (HK-2 cell, primary hepatocyte). Interestingly, both cancer cells and normal cells exhibited similar sensitivities to the addition of rhamnolipids in culture medium, and the cytotoxicity was largely attenuated by the presence of fetal bovine serum (FBS) in culture medium. In correlation of the mono-/di-rhamnolipid cytotoxicity with the surface tension of culture medium, it was found that rhamnolipids triggered cytotoxicity whenever the surface tension of culture medium decreased below 41 mN/m irrespective of the FBS content in culture medium, cell line, or rhamnolipid congener. Similarly, each chemical surfactant (Tween-80, sodium dodecyl sulfate, and sodium dodecyl benzene sulfonate) could cause cytotoxicity on HepG2 cells whenever its addition made the surface tension under 41 mN/m in culture medium with or without the presence of FBS. It seems that rhamnolipids, like chemical surfactants, exhibited cytotoxicity by reducing the surface tension of culture medium rather than by changing its specific molecular structure, which had no selection on tumor cells. This study could offer helps to correct the misleading biological activity of rhamnolipids and to avoid the possible large wastes of time and expenses on developing the applications in antitumor drugs.
Collapse
Affiliation(s)
- Lifang Jiang
- Department of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, Zhejiang, People's Republic of China
| | | | | | | | | |
Collapse
|
46
|
Dube N, Seo JW, Dong H, Shu J, Lund R, Mahakian LM, Ferrara KW, Xu T. Effect of alkyl length of peptide-polymer amphiphile on cargo encapsulation stability and pharmacokinetics of 3-helix micelles. Biomacromolecules 2014; 15:2963-70. [PMID: 24988250 PMCID: PMC4130244 DOI: 10.1021/bm5005788] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/01/2014] [Indexed: 02/01/2023]
Abstract
3-Helix micelles have demonstrated excellent in vitro and in vivo stability. Previous studies showed that the unique design of the peptide-polymer conjugate based on protein tertiary structure as the headgroup is the main design factor to achieve high kinetic stability. In this contribution, using amphiphiles with different alkyl tails, namely, C16 and C18, we quantified the effect of alkyl length on the stability of 3-helix micelles to delineate the contribution of the micellar core and shell on the micelle stability. Both amphiphiles form well-defined micelles, <20 nm in size, and show good stability, which can be attributed to the headgroup design. C18-micelles exhibit slightly higher kinetic stability in the presence of serum proteins at 37 °C, where the rate constant of subunit exchange is 0.20 h(-1) for C18-micelles vs 0.22 h(-1) for C16-micelles. The diffusion constant for drug release from C18-micelles is approximately half of that for C16-micelles. The differences between the two micelles are significantly more pronounced in terms of in vivo stability and extent of tumor accumulation. C18-micelles exhibit significantly longer blood circulation time of 29.5 h, whereas C16-micelles have a circulation time of 16.1 h. The extent of tumor accumulation at 48 h after injection is ∼43% higher for C18-micelles. The present studies underscore the importance of core composition on the biological behavior of 3-helix micelles. The quantification of the effect of this key design parameter on the stability of 3-helix micelles provides important guidelines for carrier selection and use in complex environment.
Collapse
Affiliation(s)
- Nikhil Dube
- Department of Materials Science & Engineering and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jai W. Seo
- Department
of Biomedical Engineering, University of
California, Davis, California 95616, United States
| | - He Dong
- Department of Materials Science & Engineering and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jessica
Y. Shu
- Department of Materials Science & Engineering and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Reidar Lund
- Department of Materials Science & Engineering and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Lisa M. Mahakian
- Department
of Biomedical Engineering, University of
California, Davis, California 95616, United States
| | - Katherine W. Ferrara
- Department
of Biomedical Engineering, University of
California, Davis, California 95616, United States
| | - Ting Xu
- Department of Materials Science & Engineering and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
47
|
Irfan-Maqsood M, Seddiq-Shams M. Rhamnolipids: Well-Characterized Glycolipids with Potential Broad Applicability as Biosurfactants. Ind Biotechnol (New Rochelle N Y) 2014. [DOI: 10.1089/ind.2014.0003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Muhammad Irfan-Maqsood
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Biotechnological Research, ParsTechRokh Biopharmaceuticals Co., Mashhad, Iran
| | - Mahsa Seddiq-Shams
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
48
|
Complex rhamnolipid mixture characterization and its influence on DPPC bilayer organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:776-83. [DOI: 10.1016/j.bbamem.2013.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 10/21/2013] [Accepted: 11/05/2013] [Indexed: 11/13/2022]
|
49
|
A bacterial monorhamnolipid alters the biophysical properties of phosphatidylethanolamine model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2083-90. [DOI: 10.1016/j.bbamem.2013.04.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 11/23/2022]
|
50
|
Jiang L, Long X, Meng Q. Rhamnolipids enhance epithelial permeability in Caco-2 monolayers. Int J Pharm 2013; 446:130-5. [DOI: 10.1016/j.ijpharm.2013.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/28/2013] [Accepted: 02/03/2013] [Indexed: 01/13/2023]
|