1
|
Castanier S, Elbahnsi A, Chevalier B, Baatallah N, Pranke I, Berri L, Edelman A, Sermet-Gaudelus I, Mornon JP, Callebaut I, Hinzpeter A. Novel gain-of-function mutants identify a critical region within CFTR membrane-spanning domain 2 controlling cAMP-dependent and ATP-independent channel activation. Cell Mol Life Sci 2024; 81:426. [PMID: 39373784 PMCID: PMC11458853 DOI: 10.1007/s00018-024-05431-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024]
Abstract
CFTR is an anion channel that has evolved from the mold of an ABC transporter. It possesses specific structural features, including a lateral portal between the cytoplasmic extensions of its transmembrane helices TM4 and TM6. This TM4-TM6 portal is lined by basic residues attracting anions from the cytosol towards the intracellular vestibule. Even though a symmetric, open portal is not observed at the level of the TM10/TM12 interface, basic amino acids are also present at this level, exposed to solvent in the vicinity of the regulatory R region, whose phosphorylation enables channel activation. Here, using all-atom molecular dynamics simulations in combination with functional and biochemical assays, we investigate the importance of these basic amino acids (R1158 and R1030), and of a neighboring aromatic amino acid (W846) in the regulation of CFTR activity. Results indicate that mutation of these amino acids globally increased channel activity and enabled channel opening by potentiators without the need to elevate cAMP levels. These effects (i) were observed even when the binding site of the potentiator VX-770 was mutated, revealing a probable independent mechanism, and (ii) were additive to one gain-of-function mutant within the selectivity filter. Taken together, our results indicate that the region of the membrane-spanning domain 2 (MSD2), symmetric to the lateral portal located between MSD1 TM4 and TM6, is a novel critical actor of CFTR regulation.
Collapse
Affiliation(s)
- Solène Castanier
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, F-75015, France
| | - Ahmad Elbahnsi
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, 75005, France
- Université Paris Cité, Inserm U1268 MCTR, CiTCoM UMR 8038 CNRS, Paris, 75006, France
| | - Benoit Chevalier
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, F-75015, France
| | - Nesrine Baatallah
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, F-75015, France
| | - Iwona Pranke
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, F-75015, France
| | - Lynda Berri
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, F-75015, France
| | - Aleksander Edelman
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, F-75015, France
| | - Isabelle Sermet-Gaudelus
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, F-75015, France
| | - Jean-Paul Mornon
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, 75005, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, 75005, France
| | - Alexandre Hinzpeter
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, F-75015, France.
| |
Collapse
|
2
|
Barreca M, Renda M, Spanò V, Montalbano A, Raimondi MV, Giuffrida S, Bivacqua R, Bandiera T, Galietta LJV, Barraja P. Identification of 6,9-dihydro-5H-pyrrolo[3,2-h]quinazolines as a new class of F508del-CFTR correctors for the treatment of cystic fibrosis. Eur J Med Chem 2024; 276:116691. [PMID: 39089001 DOI: 10.1016/j.ejmech.2024.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/03/2024]
Abstract
Although substantial advances have been obtained in the pharmacological treatment of cystic fibrosis (CF) with the approval of Kaftrio, a combination of two correctors (VX-661, VX-445) and one potentiator (VX-770), new modulators are still needed to rescue F508del and other CFTR mutants with trafficking defects. We have previously identified PP compounds based on a tricyclic core as correctors with high efficacy in the rescue of F508del-CFTR on native epithelial cells of CF patients, particularly in combination with class 1 correctors (VX-809, VX-661). Compound PP028 was found as a lead candidate for the high rescue of F508del-CFTR and used for mechanistic insight indicating that PP028 behaves as a class 3 corrector, similarly to VX-445. From the exploration of the chemical space around the hit structure, based on iterative cycles of chemical synthesis and functional testing, the class of 6,9-dihydro-5H-pyrrolo [3,2-h]quinazolines with corrector activity was discovered. Within a series of 38 analogues, two derivatives emerged as promising candidates and used for further insight to assess the mechanism of action. Both compounds, decorated with a benzensulfonylamino group at the pyrimidine moiety, were able to generate a dose-dependent increase in CFTR function, particularly in the presence of VX-809. Half-effective concentrations (EC50) were in the single digit micromolar range and decreased in the presence of VX-809 thus indicating a synergistic interaction with class 1 correctors. Synergy was also observed with corr-4a (class 2 corrector) but not with VX-445 and PP028 (class 3 correctors) indicating that the new compounds behave as class 3 correctors. These results suggest that tricyclic pyrrolo-quinazolines interact with CFTR at a site different from that of VX-809 and represent a novel class of CFTR correctors suitable for combinatorial pharmacological treatments for the basic defect in CF.
Collapse
Affiliation(s)
- Marilia Barreca
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Mario Renda
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Virginia Spanò
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Maria Valeria Raimondi
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Stefano Giuffrida
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Roberta Bivacqua
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Tiziano Bandiera
- D3 PharmaChemistry, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; Department of Translational Medical Sciences (DISMET), University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy
| | - Paola Barraja
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| |
Collapse
|
3
|
Amaral MD, Pankonien I. Theranostics vs theratyping or theranostics plus theratyping? J Cyst Fibros 2024:S1569-1993(24)01782-X. [PMID: 39327193 DOI: 10.1016/j.jcf.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Treating all people with Cystic Fibrosis (pwCF) to the level of benefit achieved by highly efficient CFTR modulator therapies (HEMT) remains a significant challenge. Theratyping and theranostics are two distinct approaches to advance CF treatment. Both theratyping in cell lines and pwCF-derived biomaterials theranostics have unique strengths and limitations in the context of studying and treating CF. The challenges, advantages and disadvantages of both approaches are discussed here. While theratyping in cell lines offers ease of use, cost-effectiveness, and standardized platforms for experimentation, it misses physiological relevance and patient-specificity. Theranostics, on the other hand, provides a more human-relevant model for personalized medicine approaches but requires specialized expertise, resources, and access to patient samples. Integrating these two approaches in parallel and leveraging their respective strengths may enhance our understanding of CF and facilitate the development of more effective therapies for all pwCF.
Collapse
Affiliation(s)
- Margarida D Amaral
- BioISI- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal.
| | - Ines Pankonien
- BioISI- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Merlo CA, Thorat T, DerSarkissian M, McGarry LJ, Nguyen C, Gu YM, Healy J, Rubin JL, Brookhart MA. Long-term impact of ivacaftor on mortality rate and health outcomes in people with cystic fibrosis. Thorax 2024; 79:925-933. [PMID: 38937105 PMCID: PMC11503052 DOI: 10.1136/thorax-2023-220558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/21/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Ivacaftor (IVA) has been shown to improve lung function and other clinical outcomes in people with cystic fibrosis (CF). A decade of real-world IVA availability has enabled the examination of long-term outcomes with this treatment. This retrospective, longitudinal cohort study investigated the impact of IVA on mortality rate and health outcomes among people with CF in the US. METHODS Data from the US CF Foundation Patient Registry from January 2010 to December 2019 were analysed. The IVA-treated cohort included people with a CF transmembrane conductance regulator (CFTR) gating mutation (excluding R117H); age-matched comparator cohort included people with a F508del and a minimal function CFTR mutation who had no prior CFTR modulator treatment. Baseline characteristics were balanced between cohorts using standardised mortality ratio weighting generated from propensity scores. Outcomes of interest were overall survival, lung transplant, percent predicted forced expiratory volume in 1 s (ppFEV1), body mass index (BMI), pulmonary exacerbations (PEx), outpatient visits and hospitalisations. FINDINGS Over a maximum follow-up of 7.9 years, the IVA-treated cohort (N=736) had lower rates of mortality (hazard ratio [HR] (95% CI): 0.22 (0.09 to 0.45)), lung transplant (HR: 0.11 (95% CI 0.02 to 0.28)), PEx (rate ratio: 0.49 (95% CI 0.42 to 0.55)) and all-cause hospitalisations (rate ratio: 0.50 (95% CI 0.43 to 0.56)) as well as better lung function (mean difference in ppFEV1: 8.46 (95% CI 7.34 to 9.75)) and higher BMI/BMI z-scores (mean difference 1.20 (95% CI 0.92 to 1.71) kg/m2 and 0.27 (95% CI 0.25 to 0.40), respectively) than the comparator cohort (N=733). INTERPRETATION Our analysis suggests that IVA provides sustained clinical benefits in people with CF over a follow-up period of approximately 8 years. These findings reinforce the existing real-world evidence that IVA can slow disease progression and decrease the healthcare burden of CF over the long term.
Collapse
Affiliation(s)
| | - Teja Thorat
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts, USA
| | | | - Lisa J McGarry
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts, USA
| | | | - Yuqian M Gu
- Analysis Group Inc, Los Angeles, California, USA
| | - Joe Healy
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts, USA
| | - Jaime L Rubin
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts, USA
| | | |
Collapse
|
5
|
Xia H, Xu X, Chen J, Wu H, Shen Y, Chen X, Xu RA, Wu W. Inhibitory effects of calcium channel blockers nisoldipine and nimodipine on ivacaftor metabolism and their underlying mechanism. Front Pharmacol 2024; 15:1403649. [PMID: 39329117 PMCID: PMC11424460 DOI: 10.3389/fphar.2024.1403649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Ivacaftor is the first potentiator of the cystic fibrosis transmembrane conductance regulator (CFTR) protein approved for use alone in the treatment of cystic fibrosis (CF). Ivacaftor is primarily metabolized by CYP3A4 and therefore may interact with drugs that are CYP3A4 substrates, resulting in changes in plasma exposure to ivacaftor. The study determined the levels of ivacaftor and its active metabolite M1 by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). We screened 79 drugs and 19 severely inhibited ivacaftor metabolism, particularly two cardiovascular drugs (nisoldipine and nimodipine). In rat liver microsomes (RLM) and human liver microsomes (HLM), the half-maximal inhibitory concentrations (IC50) of nisoldipine on ivacaftor metabolism were 6.55 μM and 9.10 μM, respectively, and the inhibitory mechanism of nisoldipine on ivacaftor metabolism was mixed inhibition; the IC50 of nimodipine on ivacaftor metabolism in RLM and HLM were 4.57 μM and 7.15 μM, respectively, and the inhibitory mechanism of nimodipine on ivacaftor was competitive inhibition. In pharmacokinetic experiments in rats, it was observed that both nisoldipine and nimodipine significantly altered the pharmacokinetic parameters of ivacaftor, such as AUC(0-t) and CLz/F. However, this difference may not be clinically relevant. In conclusion, this paper presented the results of studies investigating the interaction between these drugs and ivacaftor in vitro and in vivo. The objective is to provide a rationale for the safety of ivacaftor in combination with other drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ren-ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenzhi Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Anwar S, Peng JL, Zahid KR, Zhou YM, Ali Q, Qiu CR. Cystic Fibrosis: Understanding Cystic Fibrosis Transmembrane Regulator Mutation Classification and Modulator Therapies. Adv Respir Med 2024; 92:263-277. [PMID: 39051188 PMCID: PMC11270331 DOI: 10.3390/arm92040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
A common life-threatening hereditary disease, Cystic Fibrosis (CF), affects primarily Caucasian infants. High sweat-salt levels are observed as a result of a single autosomal mutation in chromosome 7 that affects the critical function of the cystic fibrosis transmembrane regulator (CFTR). For establishing tailored treatment strategies, it is important to understand the broad range of CFTR mutations and their impacts on disease pathophysiology. This study thoroughly investigates the six main classes of classification of CFTR mutations based on their functional effects. Each class is distinguished by distinct molecular flaws, such as poor protein synthesis, misfolding, gating defects, conduction defects, and decreased CFTR expression at the apical membrane. Furthermore, this paper focuses on the emerging field of CFTR modulators, which intend to restore CFTR function or mitigate its consequences. These modulators, which are characterized by the mode of action and targeted mutation class, have the potential to provide personalized therapy regimens in CF patients. This review provides valuable insights into the genetic basis of CF pathology, and highlights the potential for precision medicine methods in CF therapy by thoroughly investigating CFTR mutation classification and related modulators.
Collapse
Affiliation(s)
- Saba Anwar
- Centre for Applied Molecular Biology, University of the Punjab Lahore, Lahore 53700, Pakistan;
| | - Jin-Liang Peng
- Department of Emergency, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, China; (J.-L.P.); (Y.-M.Z.)
| | - Kashif Rafiq Zahid
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianaapolis, IN 46202, USA;
| | - Yu-Ming Zhou
- Department of Emergency, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, China; (J.-L.P.); (Y.-M.Z.)
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Chong-Rong Qiu
- Department of Emergency, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, China; (J.-L.P.); (Y.-M.Z.)
| |
Collapse
|
7
|
Liu F, Kaplan AL, Levring J, Einsiedel J, Tiedt S, Distler K, Omattage NS, Kondratov IS, Moroz YS, Pietz HL, Irwin JJ, Gmeiner P, Shoichet BK, Chen J. Structure-based discovery of CFTR potentiators and inhibitors. Cell 2024; 187:3712-3725.e34. [PMID: 38810646 PMCID: PMC11262615 DOI: 10.1016/j.cell.2024.04.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, whereas its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available. However, the only potentiator, ivacaftor, has suboptimal pharmacokinetics and inhibitors have yet to be clinically developed. Here, we combine molecular docking, electrophysiology, cryo-EM, and medicinal chemistry to identify CFTR modulators. We docked ∼155 million molecules into the potentiator site on CFTR, synthesized 53 test ligands, and used structure-based optimization to identify candidate modulators. This approach uncovered mid-nanomolar potentiators, as well as inhibitors, that bind to the same allosteric site. These molecules represent potential leads for the development of more effective drugs for cystic fibrosis and secretory diarrhea, demonstrating the feasibility of large-scale docking for ion channel drug discovery.
Collapse
Affiliation(s)
- Fangyu Liu
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anat Levit Kaplan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jesper Levring
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Stephanie Tiedt
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Katharina Distler
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Natalie S Omattage
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Ivan S Kondratov
- Enamine Ltd., Chervonotkatska Street 78, 02094 Kyïv, Ukraine; V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Street 1, 02660 Kyïv, Ukraine
| | - Yurii S Moroz
- Chemspace, Chervonotkatska Street 85, 02094 Kyïv, Ukraine; Taras Shevchenko National University of Kyïv, Volodymyrska Street 60, 01601 Kyïv, Ukraine
| | - Harlan L Pietz
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - John J Irwin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany.
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
8
|
Bihler H, Sivachenko A, Millen L, Bhatt P, Patel AT, Chin J, Bailey V, Musisi I, LaPan A, Allaire NE, Conte J, Simon NR, Magaret AS, Raraigh KS, Cutting GR, Skach WR, Bridges RJ, Thomas PJ, Mense M. In vitro modulator responsiveness of 655 CFTR variants found in people with cystic fibrosis. J Cyst Fibros 2024; 23:664-675. [PMID: 38388235 DOI: 10.1016/j.jcf.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND In 2017, the US Food and Drug Administration initiated expansion of drug labels for the treatment of cystic fibrosis (CF) to include CF transmembrane conductance regulator (CFTR) gene variants based on in vitro functional studies. This study aims to identify CFTR variants that result in increased chloride (Cl-) transport function by the CFTR protein after treatment with the CFTR modulator combination elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA). These data may benefit people with CF (pwCF) who are not currently eligible for modulator therapies. METHODS Plasmid DNA encoding 655 CFTR variants and wild-type (WT) CFTR were transfected into Fisher Rat Thyroid cells that do not natively express CFTR. After 24 h of incubation with control or TEZ and ELX, and acute addition of IVA, CFTR function was assessed using the transepithelial current clamp conductance assay. Each variant's forskolin/cAMP-induced baseline Cl- transport activity, responsiveness to IVA alone, and responsiveness to the TEZ/ELX/IVA combination were measured in three different laboratories. Western blots were conducted to evaluate CFTR protein maturation and complement the functional data. RESULTS AND CONCLUSIONS 253 variants not currently approved for CFTR modulator therapy showed low baseline activity (<10 % of normal CFTR Cl- transport activity). For 152 of these variants, treatment with ELX/TEZ/IVA improved the Cl- transport activity by ≥10 % of normal CFTR function, which is suggestive of clinical benefit. ELX/TEZ/IVA increased CFTR function by ≥10 percentage points for an additional 140 unapproved variants with ≥10 % but <50 % of normal CFTR function at baseline. These findings significantly expand the number of rare CFTR variants for which ELX/TEZ/IVA treatment should result in clinical benefit.
Collapse
Affiliation(s)
- Hermann Bihler
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | | | - Linda Millen
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Priyanka Bhatt
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | | | - Justin Chin
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - Violaine Bailey
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - Isaac Musisi
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - André LaPan
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | | | - Joshua Conte
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - Noah R Simon
- University of Washington, Seattle, WA 98195-9300, USA
| | | | - Karen S Raraigh
- Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | - Garry R Cutting
- Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | | | - Robert J Bridges
- Rosalind Franklin University Medical School, Chicago, IL 60064, USA
| | - Philip J Thomas
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Martin Mense
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA.
| |
Collapse
|
9
|
Bush A. Learning from cystic fibrosis: How can we start to personalise treatment of Children's Interstitial Lung Disease (chILD)? Paediatr Respir Rev 2024; 50:46-53. [PMID: 37996258 DOI: 10.1016/j.prrv.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Cystic fibrosis (CF) is a monogenic disorder cause by mutations in the CF Transmembrane Regulator (CFTR) gene. The prognosis of cystic fibrosis has been transformed by the discovery of highly effective modulator therapies (HEMT). Treatment has changed from reactive therapy dealing with complications of the disease to pro-active correction of the underlying molecular functional abnormality. This has come about by discovering the detailed biology of the different CF molecular sub-endotypes; the development of biomarkers to assess response even in mild disease or young children; the performance of definitive large randomised controlled trials in patients with a common mutation and the development of in vitro testing systems to test efficacy in those patients with rare CFTR mutations. As a result, CF is now an umbrella term, rather than a specific diagnostic label; we have moved from clinical phenotypes to molecular subendotypes. Children's Interstitial Lung Diseases (chILDs) comprise more than 200 entities, and are a diverse group of diseases, for an increasing number of which an underlying gene mutation has been discovered. Many of these entities are umbrella terms, such as pulmonary alveolar proteinosis or hypersensitivity pneumonitis, for each of which there are multiple and very different endotypes. Even those chILDs for which a specific gene mutation has been discovered comprise, as with CF, different molecular subendotypes likely mandating different therapies. For most chILDs, current treatment is non-specific (corticosteroids, azithromycin, hydroxychloroquine). The variability of the different entities means that there is little evidence for the efficacy of any treatment. This review considers how some of the lessons of the success story of CF are being applied to chILD, thus opening the opportunities for truly personalised medicine in these conditions. Advances in knowledge in the molecular biology of surfactant protein C and Adenosine triphosphate binding cassette subfamily A member 3 (ABCA3), and the possibilities of discovering novel therapies by in vitro studies will especially be highlighted.
Collapse
Affiliation(s)
- Andrew Bush
- National Heart and Lung Institute, Imperial College, and Imperial Centre for Paediatrics and Child Health, Consultant Paediatric Chest Physician, Royal Brompton Hospital, UK.
| |
Collapse
|
10
|
Azoicai AN, Lupu A, Trandafir LM, Alexoae MM, Alecsa M, Starcea IM, Cuciureanu M, Knieling A, Salaru DL, Hanganu E, Mocanu A, Lupu VV, Ioniuc I. Cystic fibrosis management in pediatric population-from clinical features to personalized therapy. Front Pediatr 2024; 12:1393193. [PMID: 38798310 PMCID: PMC11116730 DOI: 10.3389/fped.2024.1393193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations of the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). In 1949, it's been identified as a monogenic disease and was thought to primarily affect individuals of Northern European descent. It was the most prevalent autosomal recessive disease that shortens life. With the availability of multiple testing methodologies nowadays, there is a chance to create novel and enhanced treatment options. Even in the absence of a high sweat chloride test (SCT) result, the discovery of two causal mutations is diagnostic for cystic fibrosis (CF). For a CF diagnosis, however, at least two positive E sweat chloride tests are still required. In order to achieve early and active intervention to manage cystic fibrosis (CF) and its comorbidities, treatment regimens for pediatric patients should be evaluated, improved, and closely monitored. New developments in the treatment of cystic fibrosis (CF) have led to the development of medications derived from molecules that target the pathogenetic pathway of the illness. These options are very efficient and allow pediatric patients to receive individualized care. However, in order to better direct patient care and enhance patient outcomes, it is crucial to research uncommon CF mutations, which can provide crucial information about the prognosis of the disease and the relationships between genotype and phenotype. To ensure the success of creating novel, safer, and more efficient treatment approaches, a deeper understanding of the pathogeny of the illness is required. In the age of customized medicine, genetic research will be essential to improving patient care and quality of life for those with uncommon mutations.
Collapse
Affiliation(s)
| | - Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | | | - Mirabela Alecsa
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Magdalena Cuciureanu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Anton Knieling
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Elena Hanganu
- Department of Biomedical Sciences, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Adriana Mocanu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ileana Ioniuc
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
11
|
McNally P, Singh A, McColley SA, Davies JC, Higgins M, Liu M, Lu J, Rodriguez-Romero V, Shih JL, Rosenfeld M. Safety and efficacy of ivacaftor in infants aged 1 to less than 4 months with cystic fibrosis. J Cyst Fibros 2024; 23:429-435. [PMID: 38580563 DOI: 10.1016/j.jcf.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Ivacaftor (IVA) has been shown to be safe and efficacious in children aged ≥4 months with cystic fibrosis (CF) and CFTR gating variants. We evaluated safety, pharmacokinetics (PK), and efficacy of IVA in a small cohort of infants aged 1 to <4 months with CF. METHODS In this phase 3, open-label study, infants 1 to <4 months with CF and an IVA-responsive CFTR variant received an initial low dose of IVA based on age and weight. Because IVA is a sensitive CYP3A substrate and CYP3A maturation is uncertain in infants, doses were adjusted at day 15 to better match median adult exposures based on individual PK measurements taken on day 4. Primary endpoints were safety and PK measurements. RESULTS Seven infants (residual function CFTR variants [n=5]; minimal function CFTR variants [n=2]) received ≥1 dose of IVA. Six infants had doses adjusted at day 15 and one infant did not require dose adjustment; subsequent PK analyses showed mean trough concentrations for IVA and metabolites were within range of prior clinical experience. Four infants (57.1%) had adverse events (AEs); no serious AEs were noted. One infant discontinued study drug due to a non-serious AE of elevated alanine aminotransferase >8x the upper limit of normal. Mean sweat chloride concentration decreased (-40.3 mmol/L [SD: 29.2]) through week 24. Improvements in biomarkers of pancreatic function and intestinal inflammation, as well as growth parameters, were observed. CONCLUSIONS In this small, open-label study, IVA dosing in infants achieved exposures previously shown to be safe and efficacious. Because PK was predictable, a dosing regimen based on age and weight is proposed. IVA was generally safe and well tolerated, and led to improvements in CFTR function, markers of pancreatic function and intestinal inflammation, and growth parameters, supporting use in infants as young as 1 month of age.
Collapse
Affiliation(s)
- Paul McNally
- RCSI University of Medicine and Health Sciences and Children's Health Ireland, Dublin, Ireland
| | - Alvin Singh
- Children's Mercy Kansas City, Kansas City, MO, USA
| | - Susanna A McColley
- Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jane C Davies
- NHLI, Imperial College London & Royal Brompton Hospital, Part of Guy's & St Thomas' Trust, London, UK
| | - Mark Higgins
- Vertex Pharmaceuticals Incorporated, Boston, MA, USA
| | - Meng Liu
- Vertex Pharmaceuticals Incorporated, Boston, MA, USA
| | - Jennifer Lu
- Vertex Pharmaceuticals Incorporated, Boston, MA, USA
| | | | - Judy L Shih
- Vertex Pharmaceuticals Incorporated, Boston, MA, USA
| | - Margaret Rosenfeld
- Center for Clinical and Translational Research, Seattle Children's Research Institute, and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
12
|
Han X, Li D, Zhu Y, Schneider-Futschik EK. Recommended Tool Compounds for Modifying the Cystic Fibrosis Transmembrane Conductance Regulator Channel Variants. ACS Pharmacol Transl Sci 2024; 7:933-950. [PMID: 38633590 PMCID: PMC11019735 DOI: 10.1021/acsptsci.3c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/19/2024]
Abstract
Cystic fibrosis (CF) is a genetic disorder arising from variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, leading to multiple organ system defects. CFTR tool compounds are molecules that can modify the activity of the CFTR channel. Especially, patients that are currently not able to benefit from approved CFTR modulators, such as patients with rare CFTR variants, benefit from further research in discovering novel tools to modulate CFTR. This Review explores the development and classification of CFTR tool compounds, including CFTR blockers (CFTRinh-172, GlyH-101), potentiators (VRT-532, Genistein), correctors (VRT-325, Corr-4a), and other approved and unapproved modulators, with detailed descriptions and discussions for each compound. The challenges and future directions in targeting rare variants and optimizing drug delivery, and the potential synergistic effects in combination therapies are outlined. CFTR modulation holds promise not only for CF treatment but also for generating CF models that contribute to CF research and potentially treating other diseases such as secretory diarrhea. Therefore, continued research on CFTR tool compounds is critical.
Collapse
Affiliation(s)
- XiaoXuan Han
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Danni Li
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yimin Zhu
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Elena K. Schneider-Futschik
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
13
|
Liu F, Kaplan AL, Levring J, Einsiedel J, Tiedt S, Distler K, Omattage NS, Kondratov IS, Moroz YS, Pietz HL, Irwin JJ, Gmeiner P, Shoichet BK, Chen J. Structure-based discovery of CFTR potentiators and inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.09.557002. [PMID: 37745391 PMCID: PMC10515777 DOI: 10.1101/2023.09.09.557002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, while its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available. However, the only potentiator, ivacaftor, has suboptimal pharmacokinetics and inhibitors have yet to be clinically developed. Here we combine molecular docking, electrophysiology, cryo-EM, and medicinal chemistry to identify novel CFTR modulators. We docked ~155 million molecules into the potentiator site on CFTR, synthesized 53 test ligands, and used structure-based optimization to identify candidate modulators. This approach uncovered novel mid-nanomolar potentiators as well as inhibitors that bind to the same allosteric site. These molecules represent potential leads for the development of more effective drugs for cystic fibrosis and secretory diarrhea, demonstrating the feasibility of large-scale docking for ion channel drug discovery.
Collapse
Affiliation(s)
- Fangyu Liu
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Anat Levit Kaplan
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Jesper Levring
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Jürgen Einsiedel
- Dept. of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Stephanie Tiedt
- Dept. of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Katharina Distler
- Dept. of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Natalie S Omattage
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- Current address: Department of Infectious Diseases, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Ivan S Kondratov
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyїv 02094, Ukraine
- V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Street 1, Kyїv 02660, Ukraine
| | - Yurii S Moroz
- Chemspace (www.chem-space.com), Chervonotkatska Street 85, Kyїv 02094, Ukraine
- Taras Shevchenko National University of Kyїv, Volodymyrska Street 60, Kyїv 01601, Ukraine
| | - Harlan L Pietz
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - John J Irwin
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Peter Gmeiner
- Dept. of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Brian K Shoichet
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
14
|
Thakur S, Ankita, Dash S, Verma R, Kaur C, Kumar R, Mazumder A, Singh G. Understanding CFTR Functionality: A Comprehensive Review of Tests and Modulator Therapy in Cystic Fibrosis. Cell Biochem Biophys 2024; 82:15-34. [PMID: 38048024 DOI: 10.1007/s12013-023-01200-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023]
Abstract
Cystic fibrosis is a genetic disorder inherited in an autosomal recessive manner. It is caused by a mutation in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene on chromosome 7, which leads to abnormal regulation of chloride and bicarbonate ions in cells that line organs like the lungs and pancreas. The CFTR protein plays a crucial role in regulating chloride ion flow, and its absence or malfunction causes the production of thick mucus that affects several organs. There are more than 2000 identified mutations that are classified into seven categories based on their dysfunction mechanisms. In this article, we have conducted a thorough examination and consolidation of the diverse array of tests essential for the quantification of CFTR functionality. Furthermore, we have engaged in a comprehensive discourse regarding the recent advancements in CFTR modulator therapy, a pivotal approach utilized for the management of cystic fibrosis, alongside its concomitant relevance in evaluating CFTR functionality.
Collapse
Affiliation(s)
- Shorya Thakur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Panjab, India
| | - Ankita
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Panjab, India
| | - Shubham Dash
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Panjab, India
| | - Rupali Verma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Panjab, India
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Panjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Panjab, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, UP, India
| | - Gurvinder Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Panjab, India.
| |
Collapse
|
15
|
Cao L, Wu Y, Gong Y, Zhou Q. Small molecule modulators of cystic fibrosis transmembrane conductance regulator (CFTR): Structure, classification, and mechanisms. Eur J Med Chem 2024; 265:116120. [PMID: 38194776 DOI: 10.1016/j.ejmech.2023.116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
The advent of small molecule modulators targeting the cystic fibrosis transmembrane conductance regulator (CFTR) has revolutionized the treatment of persons with cystic fibrosis (CF) (pwCF). Presently, these small molecule CFTR modulators have gained approval for usage in approximately 90 % of adult pwCF. Ongoing drug development endeavors are focused on optimizing the therapeutic benefits while mitigating potential adverse effects associated with this treatment approach. Based on their mode of interaction with CFTR, these drugs can be classified into two distinct categories: specific CFTR modulators and non-specific CFTR modulators. Specific CFTR modulators encompass potentiators and correctors, whereas non-specific CFTR modulators encompass activators, proteostasis modulators, stabilizers, reader-through agents, and amplifiers. Currently, four small molecule modulators, all classified as potentiators and correctors, have obtained marketing approval. Furthermore, numerous novel small molecule modulators, exhibiting diverse mechanisms of action, are currently undergoing development. This review aims to explore the classification, mechanisms of action, molecular structures, developmental processes, and interrelationships among small molecule CFTR modulators.
Collapse
Affiliation(s)
- Luyang Cao
- China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yong Wu
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China
| | - Yanchun Gong
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China.
| | - Qingfa Zhou
- China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
16
|
Bacalhau M, Camargo M, Lopes-Pacheco M. Laboratory Tools to Predict CFTR Modulator Therapy Effectiveness and to Monitor Disease Severity in Cystic Fibrosis. J Pers Med 2024; 14:93. [PMID: 38248793 PMCID: PMC10820563 DOI: 10.3390/jpm14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The implementation of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulator drugs into clinical practice has been attaining remarkable therapeutic outcomes for CF, a life-threatening autosomal recessive genetic disease. However, there is elevated CFTR allelic heterogeneity, and various individuals carrying (ultra)rare CF genotypes remain without any approved modulator therapy. Novel translational model systems based on individuals' own cells/tissue are now available and can be used to interrogate in vitro CFTR modulator responses and establish correlations of these assessments with clinical features, aiming to provide prediction of therapeutic effectiveness. Furthermore, because CF is a progressive disease, assessment of biomarkers in routine care is fundamental in monitoring treatment effectiveness and disease severity. In the first part of this review, we aimed to focus on the utility of individual-derived in vitro models (such as bronchial/nasal epithelial cells and airway/intestinal organoids) to identify potential responders and expand personalized CF care. Thereafter, we discussed the usage of CF inflammatory biomarkers derived from blood, bronchoalveolar lavage fluid, and sputum to routinely monitor treatment effectiveness and disease progression. Finally, we summarized the progress in investigating extracellular vesicles as a robust and reliable source of biomarkers and the identification of microRNAs related to CFTR regulation and CF inflammation as novel biomarkers, which may provide valuable information for disease prognosis.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Mariana Camargo
- Department of Surgery, Division of Urology, Sao Paulo Federal University, Sao Paulo 04039-060, SP, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| |
Collapse
|
17
|
Li H, Rodrat M, Al-Salmani MK, Veselu DF, Han ST, Raraigh KS, Cutting GR, Sheppard DN. Two rare variants that affect the same amino acid in CFTR have distinct responses to ivacaftor. J Physiol 2024; 602:333-354. [PMID: 38186087 PMCID: PMC10872379 DOI: 10.1113/jp285727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Some residues in the cystic fibrosis transmembrane conductance regulator (CFTR) channel are the site of more than one CFTR variant that cause cystic fibrosis. Here, we investigated the function of S1159F and S1159P, two variants associated with different clinical phenotypes, which affect the same pore-lining residue in transmembrane segment 12 that are both strongly potentiated by ivacaftor when expressed in CFBE41o- bronchial epithelial cells. To study the single-channel behaviour of CFTR, we applied the patch-clamp technique to Chinese hamster ovary cells heterologously expressing CFTR variants incubated at 27°C to enhance channel residence at the plasma membrane. S1159F- and S1159P-CFTR formed Cl- channels activated by cAMP-dependent phosphorylation and gated by ATP that exhibited thermostability at 37°C. Both variants modestly reduced the single-channel conductance of CFTR. By severely attenuating channel gating, S1159F- and S1159P-CFTR reduced the open probability (Po ) of wild-type CFTR by ≥75% at ATP (1 mM); S1159F-CFTR caused the greater decrease in Po consistent with its more severe clinical phenotype. Ivacaftor (10-100 nM) doubled the Po of both CFTR variants without restoring Po values to wild-type levels, but concomitantly, ivacaftor decreased current flow through open channels. For S1159F-CFTR, the reduction of current flow was marked at high (supersaturated) ivacaftor concentrations (0.5-1 μM) and voltage-independent, identifying an additional detrimental action of elevated ivacaftor concentrations. In conclusion, S1159F and S1159P are gating variants, which also affect CFTR processing and conduction, but not stability, necessitating the use of combinations of CFTR modulators to optimally restore their channel activity. KEY POINTS: Dysfunction of the ion channel cystic fibrosis transmembrane conductance regulator (CFTR) causes the genetic disease cystic fibrosis (CF). This study investigated two rare pathogenic CFTR variants, S1159F and S1159P, which affect the same amino acid in CFTR, to understand the molecular basis of disease and response to the CFTR-targeted therapy ivacaftor. Both rare variants diminished CFTR function by modestly reducing current flow through the channel and severely inhibiting ATP-dependent channel gating with S1159F exerting the stronger adverse effect, which correlates with its association with more severe disease. Ivacaftor potentiated channel gating by both rare variants without restoring their activity to wild-type levels, but concurrently reduced current flow through open channels, particularly those of S1159F-CFTR. Our data demonstrate that S1159F and S1159P cause CFTR dysfunction by multiple mechanisms that require combinations of CFTR-targeted therapies to fully restore channel function.
Collapse
Affiliation(s)
- Hongyu Li
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Mayuree Rodrat
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Center of Research and Development for Biomedical Instrumentation, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Majid K Al-Salmani
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoudh, Muscat, Sultanate of Oman
| | | | - Sangwoo T Han
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karen S Raraigh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Garry R Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
18
|
Yeh HI, Sutcliffe KJ, Sheppard DN, Hwang TC. CFTR Modulators: From Mechanism to Targeted Therapeutics. Handb Exp Pharmacol 2024; 283:219-247. [PMID: 35972584 DOI: 10.1007/164_2022_597] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
People with cystic fibrosis (CF) suffer from a multi-organ disorder caused by loss-of-function variants in the gene encoding the epithelial anion channel cystic fibrosis transmembrane conductance regulator (CFTR). Tremendous progress has been made in both basic and clinical sciences over the past three decades since the identification of the CFTR gene. Over 90% of people with CF now have access to therapies targeting dysfunctional CFTR. This success was made possible by numerous studies in the field that incrementally paved the way for the development of small molecules known as CFTR modulators. The advent of CFTR modulators transformed this life-threatening illness into a treatable disease by directly binding to the CFTR protein and correcting defects induced by pathogenic variants. In this chapter, we trace the trajectory of structural and functional studies that brought CF therapies from bench to bedside, with an emphasis on mechanistic understanding of CFTR modulators.
Collapse
Affiliation(s)
- Han-I Yeh
- Department of Pharmacology, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Katy J Sutcliffe
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Tzyh-Chang Hwang
- Department of Pharmacology, National Yang Ming Chiao Tung University, Taipei City, Taiwan.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
19
|
Ersoy A, Altintel B, Livnat Levanon N, Ben-Tal N, Haliloglu T, Lewinson O. Computational analysis of long-range allosteric communications in CFTR. eLife 2023; 12:RP88659. [PMID: 38109179 PMCID: PMC10727502 DOI: 10.7554/elife.88659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Malfunction of the CFTR protein results in cystic fibrosis, one of the most common hereditary diseases. CFTR functions as an anion channel, the gating of which is controlled by long-range allosteric communications. Allostery also has direct bearings on CF treatment: the most effective CFTR drugs modulate its activity allosterically. Herein, we integrated Gaussian network model, transfer entropy, and anisotropic normal mode-Langevin dynamics and investigated the allosteric communications network of CFTR. The results are in remarkable agreement with experimental observations and mutational analysis and provide extensive novel insight. We identified residues that serve as pivotal allosteric sources and transducers, many of which correspond to disease-causing mutations. We find that in the ATP-free form, dynamic fluctuations of the residues that comprise the ATP-binding sites facilitate the initial binding of the nucleotide. Subsequent binding of ATP then brings to the fore and focuses on dynamic fluctuations that were present in a latent and diffuse form in the absence of ATP. We demonstrate that drugs that potentiate CFTR's conductance do so not by directly acting on the gating residues, but rather by mimicking the allosteric signal sent by the ATP-binding sites. We have also uncovered a previously undiscovered allosteric 'hotspot' located proximal to the docking site of the phosphorylated regulatory (R) domain, thereby establishing a molecular foundation for its phosphorylation-dependent excitatory role. This study unveils the molecular underpinnings of allosteric connectivity within CFTR and highlights a novel allosteric 'hotspot' that could serve as a promising target for the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Ayca Ersoy
- Department of Chemical Engineering, Bogazici UniversityIstanbulTurkey
- Polymer Research Center, Bogazici UniversityIstanbulTurkey
| | - Bengi Altintel
- Department of Chemical Engineering, Bogazici UniversityIstanbulTurkey
- Polymer Research Center, Bogazici UniversityIstanbulTurkey
| | - Nurit Livnat Levanon
- Department of Molecular Microbiology, Bruce and Ruth Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyTel AvivIsrael
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv UniversityTel-AvivIsrael
| | - Turkan Haliloglu
- Department of Chemical Engineering, Bogazici UniversityIstanbulTurkey
- Polymer Research Center, Bogazici UniversityIstanbulTurkey
| | - Oded Lewinson
- Department of Molecular Microbiology, Bruce and Ruth Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyTel AvivIsrael
| |
Collapse
|
20
|
Bolger GB. Therapeutic Targets and Precision Medicine in COPD: Inflammation, Ion Channels, Both, or Neither? Int J Mol Sci 2023; 24:17363. [PMID: 38139192 PMCID: PMC10744217 DOI: 10.3390/ijms242417363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The development of a wider range of therapeutic options is a key objective in drug discovery for chronic obstructive pulmonary disease (COPD). Fundamental advances in lung biology have the potential to greatly expand the number of therapeutic targets in COPD. The recently reported successful Phase 3 clinical trial of the first biologic agent for COPD, the monoclonal antibody dupilumab, adds additional support to the importance of targeting inflammatory pathways in COPD. However, numerous other cellular mechanisms are important targets in COPD therapeutics, including airway remodeling, the CFTR ion channel, and mucociliary function. Some of these emerging targets can be exploited by the expanded use of existing COPD drugs, such as roflumilast, while targeting others will require the development of novel molecular entities. The identification of additional therapeutic targets and agents has the potential to greatly expand the value of using clinical and biomarker data to classify COPD into specific subsets, each of which can be predictive of an enhanced response to specific subset(s) of targeted therapies. The author reviews established and emerging drug targets in COPD and uses this as a framework to define a novel classification of COPD based on therapeutic targets. This novel classification has the potential to enhance precision medicine in COPD patient care and to accelerate clinical trials and pre-clinical drug discovery efforts.
Collapse
Affiliation(s)
- Graeme B Bolger
- BZI Pharma LLC, 1500 1st Ave N., Unit 36, Birmingham, AL 35203-1872, USA
| |
Collapse
|
21
|
Nguyen NH, Sarangi S, McChesney EM, Sheng S, Durrant JD, Porter AW, Kleyman TR, Pitluk ZW, Brodsky JL. Genome mining yields putative disease-associated ROMK variants with distinct defects. PLoS Genet 2023; 19:e1011051. [PMID: 37956218 PMCID: PMC10695394 DOI: 10.1371/journal.pgen.1011051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/04/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Bartter syndrome is a group of rare genetic disorders that compromise kidney function by impairing electrolyte reabsorption. Left untreated, the resulting hyponatremia, hypokalemia, and dehydration can be fatal, and there is currently no cure. Bartter syndrome type II specifically arises from mutations in KCNJ1, which encodes the renal outer medullary potassium channel, ROMK. Over 40 Bartter syndrome-associated mutations in KCNJ1 have been identified, yet their molecular defects are mostly uncharacterized. Nevertheless, a subset of disease-linked mutations compromise ROMK folding in the endoplasmic reticulum (ER), which in turn results in premature degradation via the ER associated degradation (ERAD) pathway. To identify uncharacterized human variants that might similarly lead to premature degradation and thus disease, we mined three genomic databases. First, phenotypic data in the UK Biobank were analyzed using a recently developed computational platform to identify individuals carrying KCNJ1 variants with clinical features consistent with Bartter syndrome type II. In parallel, we examined genomic data in both the NIH TOPMed and ClinVar databases with the aid of Rhapsody, a verified computational algorithm that predicts mutation pathogenicity and disease severity. Subsequent phenotypic studies using a yeast screen to assess ROMK function-and analyses of ROMK biogenesis in yeast and human cells-identified four previously uncharacterized mutations. Among these, one mutation uncovered from the two parallel approaches (G228E) destabilized ROMK and targeted it for ERAD, resulting in reduced cell surface expression. Another mutation (T300R) was ERAD-resistant, but defects in channel activity were apparent based on two-electrode voltage clamp measurements in X. laevis oocytes. Together, our results outline a new computational and experimental pipeline that can be applied to identify disease-associated alleles linked to a range of other potassium channels, and further our understanding of the ROMK structure-function relationship that may aid future therapeutic strategies to advance precision medicine.
Collapse
Affiliation(s)
- Nga H. Nguyen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Srikant Sarangi
- Paradigm4, Inc., Waltham, Massachusetts, United States of America
| | - Erin M. McChesney
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shaohu Sheng
- Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jacob D. Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aidan W. Porter
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
22
|
Rab A, Yang X, Tracy WF, Hong JS, Joshi D, Manfredi C, Ponnaluri SS, Kolykhalov AA, Qui M, Fu H, Du Y, Davies HML, Sorscher EJ. A Novel 7 H-[1,2,4]Triazolo[3,4- b]thiadiazine-based Cystic Fibrosis Transmembrane Conductance Regulator Potentiator Directed toward Treatment of Cystic Fibrosis. ACS Med Chem Lett 2023; 14:1338-1343. [PMID: 37849531 PMCID: PMC10577695 DOI: 10.1021/acsmedchemlett.3c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/25/2023] [Indexed: 10/19/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal genetic disorder caused by disrupted anion transport in epithelial cells lining tissues in the human airways and digestive system. While cystic fibrosis transmembrane conductance regulator (CFTR) modulator compounds have provided transformative improvement in CF respiratory function, certain patients exhibit marginal clinical benefit or detrimental effects or have a form of the disease not approved or unlikely to respond using CFTR modulation. We tested hit compounds from a 300,000-drug screen for their ability to augment CFTR transepithelial transport alone or in combination with the FDA-approved CFTR potentiator ivacaftor (VX-770). A subsequent SAR campaign led us to a class of 7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines that in combination with VX-770 rescued function of G551D mutant CFTR channels to approximately 400% above the activity of VX-770 alone and to nearly wild-type CFTR levels in the same Fischer rat thyroid model system.
Collapse
Affiliation(s)
- Andras Rab
- Department
of Pediatrics, Emory University School of
Medicine, Atlanta, Georgia 30322, United States
| | - Xun Yang
- Department
of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30329, United States
| | - William F. Tracy
- Department
of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30329, United States
| | - Jeong S. Hong
- Department
of Pediatrics, Emory University School of
Medicine, Atlanta, Georgia 30322, United States
| | - Disha Joshi
- Department
of Pediatrics, Emory University School of
Medicine, Atlanta, Georgia 30322, United States
| | - Candela Manfredi
- Department
of Pediatrics, Emory University School of
Medicine, Atlanta, Georgia 30322, United States
| | - Sadhana S. Ponnaluri
- Department
of Pediatrics, Emory University School of
Medicine, Atlanta, Georgia 30322, United States
| | | | - Min Qui
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
- Emory
Chemical Biology Discovery Center, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Haian Fu
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
- Emory
Chemical Biology Discovery Center, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Yuhong Du
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
- Emory
Chemical Biology Discovery Center, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Huw M. L. Davies
- Department
of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30329, United States
| | - Eric J. Sorscher
- Department
of Pediatrics, Emory University School of
Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
23
|
Pinzaru AD, Mihai CM, Chisnoiu T, Pantazi AC, Lupu VV, Kassim MAK, Lupu A, Grosan E, Al Jumaili AZN, Ion I, Stoleriu G, Ion I. Oxidative Stress Biomarkers in Cystic Fibrosis and Cystic Fibrosis-Related Diabetes in Children: A Literature Review. Biomedicines 2023; 11:2671. [PMID: 37893045 PMCID: PMC10604378 DOI: 10.3390/biomedicines11102671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The most common inherited condition that results in death, particularly in those of Caucasian heritage, is cystic fibrosis (CF). Of all the young adults diagnosed with cystic fibrosis, 20% will develop hyperglycemia as a complication, later classified as a disease associated with cystic fibrosis. Impaired insulin secretion and glucose intolerance represent the primary mechanisms associated with diabetes (type 1 or type 2) and cystic fibrosis. Oxidative stress represents the imbalance between oxygen-reactive species and antioxidant defense mechanisms. This pathogenic mechanism is vital in triggering other chronic diseases, including cystic fibrosis-related diabetes. It is essential to understand oxidative stress and the significant impact it has on CFRD. This way, therapies can be individually adjusted and tailored to each patient's needs. This review aims to understand the connection between CFRD and oxidative stress. As a subsidiary element, we analyzed the effects of glycemic balance on complications and their evolution over time, providing insights into their potential benefits in mitigating oxidative stress-associated complications.
Collapse
Affiliation(s)
- Anca Daniela Pinzaru
- Department of Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Cristina Maria Mihai
- Department of Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Tatiana Chisnoiu
- Department of Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | | | - Vasile Valeriu Lupu
- Department of Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Ancuta Lupu
- Department of Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Grosan
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Ahmed Zaki Naji Al Jumaili
- National Institute of Diabetes, Nutrition and Metabolic Diseases “N.C. Paulescu”, 020475 Bucharest, Romania
| | - Irina Ion
- Department of Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Gabriela Stoleriu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Ileana Ion
- Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
| |
Collapse
|
24
|
Lefferts JW, Bierlaagh MC, Kroes S, Nieuwenhuijze NDA, Sonneveld van Kooten HN, Niemöller PJ, Verburg TF, Janssens HM, Muilwijk D, van Beuningen SFB, van der Ent CK, Beekman JM. CFTR Function Restoration upon Elexacaftor/Tezacaftor/Ivacaftor Treatment in Patient-Derived Intestinal Organoids with Rare CFTR Genotypes. Int J Mol Sci 2023; 24:14539. [PMID: 37833986 PMCID: PMC10572896 DOI: 10.3390/ijms241914539] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. The combination of the CFTR modulators elexacaftor, tezacaftor, and ivacaftor (ETI) enables the effective rescue of CFTR function in people with the most prevalent F508del mutation. However, the functional restoration of rare CFTR variants remains unclear. Here, we use patient-derived intestinal organoids (PDIOs) to identify rare CFTR variants and potentially individuals with CF that might benefit from ETI. First, steady-state lumen area (SLA) measurements were taken to assess CFTR function and compare it to the level observed in healthy controls. Secondly, the forskolin-induced swelling (FIS) assay was performed to measure CFTR rescue within a lower function range, and to further compare it to ETI-mediated CFTR rescue in CFTR genotypes that have received market approval. ETI responses in 30 PDIOs harboring the F508del mutation served as reference for ETI responses of 22 PDIOs with genotypes that are not currently eligible for CFTR modulator treatment, following European Medicine Agency (EMA) and/or U.S. Food and Drug Administration (FDA) regulations. Our data expand previous datasets showing a correlation between in vitro CFTR rescue in organoids and corresponding in vivo ppFEV1 improvement upon a CFTR modulator treatment in published clinical trials, and suggests that the majority of individuals with rare CFTR variants could benefit from ETI. CFTR restoration was further confirmed on protein levels using Western blot. Our data support that CFTR function measurements in PDIOs with rare CFTR genotypes can help to select potential responders to ETI, and suggest that regulatory authorities need to consider providing access to treatment based on the principle of equality for people with CF who do not have access to treatment.
Collapse
Affiliation(s)
- Juliet W. Lefferts
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Marlou C. Bierlaagh
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Suzanne Kroes
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Natascha D. A. Nieuwenhuijze
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| | - Heleen N. Sonneveld van Kooten
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| | - Paul J. Niemöller
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Tibo F. Verburg
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Hettie M. Janssens
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus Medical Center-Sophia Children’s Hospital, University Hospital Rotterdam, 3015 CN Rotterdam, The Netherlands
| | - Danya Muilwijk
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Sam F. B. van Beuningen
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| | - Cornelis K. van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Jeffrey M. Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| |
Collapse
|
25
|
Woodall M, Tarran R, Lee R, Anfishi H, Prins S, Counsell J, Vergani P, Hart S, Baines D. Expression of gain-of-function CFTR in cystic fibrosis airway cells restores epithelial function better than wild-type or codon-optimized CFTR. Mol Ther Methods Clin Dev 2023; 30:593-605. [PMID: 37701179 PMCID: PMC10494266 DOI: 10.1016/j.omtm.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023]
Abstract
Class Ia/b cystic fibrosis transmembrane regulator (CFTR) variants cause severe lung disease in 10% of cystic fibrosis (CF) patients and are untreatable with small-molecule pharmaceuticals. Genetic replacement of CFTR offers a cure, but its effectiveness is limited in vivo. We hypothesized that enhancing protein levels (using codon optimization) and/or activity (using gain-of-function variants) of CFTR would more effectively restore function to CF bronchial epithelial cells. Three different variants of the CFTR protein were tested: codon optimized (high codon adaptation index [hCAI]), a gain-of-function (GOF) variant (K978C), and a combination of both (hˆK978C). In human embryonic kidney (HEK293T) cells, initial results showed that hCAI and hˆK978C produced greater than 10-fold more CFTR protein and displayed ∼4-fold greater activity than wild-type (WT) CFTR. However, functionality was profoundly different in CF bronchial epithelial cells. Here, K978C CFTR more potently restored essential epithelial functions (anion transport, airway surface liquid height, and pH) than WT CFTR. hCAI and hˆK978C CFTRs had limited impact because of mislocalization in the cell. These data provide a proof of principle showing that GOF variants may be more effective than codon-optimized forms of CFTR for CF gene therapy. Video abstract
Collapse
Affiliation(s)
- Maximillian Woodall
- Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Robert Tarran
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7248, USA
| | - Rhianna Lee
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7248, USA
| | - Hafssa Anfishi
- Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Stella Prins
- Neuroscience, Physiology, & Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - John Counsell
- Genetics & Genomic Medicine Department, Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Paola Vergani
- Neuroscience, Physiology, & Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Stephen Hart
- Genetics & Genomic Medicine Department, Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Deborah Baines
- Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| |
Collapse
|
26
|
Esposito C, Kamper M, Trentacoste J, Galvin S, Pfister H, Wang J. Advances in the Cystic Fibrosis Drug Development Pipeline. Life (Basel) 2023; 13:1835. [PMID: 37763239 PMCID: PMC10532558 DOI: 10.3390/life13091835] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Cystic fibrosis is a genetic disease that results in progressive multi-organ manifestations with predominance in the respiratory and gastrointestinal systems. The significant morbidity and mortality seen in the CF population has been the driving force urging the CF research community to further advance treatments to slow disease progression and, in turn, prolong life expectancy. Enormous strides in medical advancements have translated to improvement in quality of life, symptom burden, and survival; however, there is still no cure. This review discusses the most current mainstay treatments and anticipated therapeutics in the CF drug development pipeline within the mechanisms of mucociliary clearance, anti-inflammatory and anti-infective therapies, restoration of the cystic fibrosis transmembrane conductance regulator (CFTR) protein (also known as highly effective modulator therapy (HEMT)), and genetic therapies. Ribonucleic acid (RNA) therapy, gene transfer, and gene editing are being explored in the hopes of developing a treatment and potential cure for people with CF, particularly for those not responsive to HEMT.
Collapse
Affiliation(s)
- Christine Esposito
- Division of Pulmonary, Critical Care and Sleep Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York, NY 11042, USA; (M.K.); (J.W.)
| | - Martin Kamper
- Division of Pulmonary, Critical Care and Sleep Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York, NY 11042, USA; (M.K.); (J.W.)
| | - Jessica Trentacoste
- Division of Pulmonary, Critical Care and Sleep Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York, NY 11042, USA; (M.K.); (J.W.)
| | - Susan Galvin
- Division of Pediatric Pulmonology, The Steven and Alexandra Cohen Children’s Medical Center, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, New York, NY 11042, USA;
| | - Halie Pfister
- Manhasset Office of Clinical Research, The Feinstein Institutes for Medical Research, Lake Success, New York, NY 11042, USA;
| | - Janice Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York, NY 11042, USA; (M.K.); (J.W.)
- Manhasset Office of Clinical Research, The Feinstein Institutes for Medical Research, Lake Success, New York, NY 11042, USA;
| |
Collapse
|
27
|
Li JQ, Wang HJ. [Research advances in pharmacotherapy for rare diseases in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:759-766. [PMID: 37529960 PMCID: PMC10414178 DOI: 10.7499/j.issn.1008-8830.2302048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/15/2023] [Indexed: 08/03/2023]
Abstract
There are more than 7 000 rare diseases and approximately 475 million individuals with rare diseases globally, with children accounting for two-thirds of this population. Due to a relatively small patient population and limited financial resources allocated for drug research and development in pharmaceutical enterprises, there are still no drugs approved for the treatment of several thousands of these rare diseases. At present, there are no drugs for 95% of the patients with rare diseases, and consequently, the therapeutic drugs for rare diseases have been designated as orphan drugs. In order to guide pharmaceutical enterprises to strengthen the research and development of orphan drugs, various nations have enacted the acts for rare disease drugs, promoted and simplified the patent application process for orphan drugs, and provided scientific recommendations and guidance for the research and development of orphan drugs. Since there is a relatively high incidence rate of rare diseases in children, this article reviews the latest research on pharmacotherapy for children with rare diseases.
Collapse
Affiliation(s)
- Jia-Qi Li
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Hui-Jun Wang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
28
|
Chen J, Thrasher K, Fu L, Wang W, Aghamohammadzadeh S, Wen H, Tang L, Keeling KM, Falk Libby E, Bedwell DM, Rowe SM. The synthetic aminoglycoside ELX-02 induces readthrough of G550X-CFTR producing superfunctional protein that can be further enhanced by CFTR modulators. Am J Physiol Lung Cell Mol Physiol 2023; 324:L756-L770. [PMID: 37014818 PMCID: PMC10202470 DOI: 10.1152/ajplung.00038.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
Ten percent of cystic fibrosis (CF) patients carry a premature termination codon (PTC); no mutation-specific therapies exist for these individuals. ELX-02, a synthetic aminoglycoside, suppresses translation termination at PTCs (i.e., readthrough) by promoting the insertion of an amino acid at the PTC and restoring expression of full-length CFTR protein. The identity of amino acids inserted at PTCs affects the processing and function of the resulting full-length CFTR protein. We examined readthrough of the rare G550X-CFTR nonsense mutation due to its unique properties. We found that forskolin-induced swelling in G550X patient-derived intestinal organoids (PDOs) was significantly higher than in G542X PDOs (both UGA PTCs) with ELX-02 treatment, indicating greater CFTR function from the G550X allele. Using mass spectrometry, we identified tryptophan as the sole amino acid inserted in the G550X position during ELX-02- or G418-mediated readthrough, which differs from the three amino acids (cysteine, arginine, and tryptophan) inserted in the G542X position after treatment with G418. Compared with wild-type CFTR, Fischer rat thyroid (FRT) cells expressing the G550W-CFTR variant protein exhibited significantly increased forskolin-activated Cl- conductance, and G550W-CFTR channels showed increased PKA sensitivity and open probability. After treatment with ELX-02 and CFTR correctors, CFTR function rescued from the G550X allele in FRTs reached 20-40% of the wild-type level. These results suggest that readthrough of G550X produces greater CFTR function because of gain-of-function properties of the CFTR readthrough product that stem from its location in the signature LSGGQ motif found in ATP-binding cassette (ABC) transporters. G550X may be a particularly sensitive target for translational readthrough therapy.NEW & NOTEWORTHY We found that forskolin-induced swelling in G550X-CFTR patient-derived intestinal organoids (PDOs) was significantly higher than in G542X-CFTR PDOs after treatment with ELX-02. Tryptophan (W) was the sole amino acid inserted in the G550X position after readthrough. Resulting G550W-CFTR protein exhibited supernormal CFTR activity, PKA sensitivity, and open probability. These results show that aminoglycoside-induced readthrough of G550X produces greater CFTR function because of the gain-of-function properties of the CFTR readthrough product.
Collapse
Affiliation(s)
- Jianguo Chen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kari Thrasher
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Lianwu Fu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Wei Wang
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | | | - Hui Wen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Liping Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kim M Keeling
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Emily Falk Libby
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David M Bedwell
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
29
|
Allan KM, Astore MA, Kardia E, Wong SL, Fawcett LK, Bell JL, Visser S, Chen PC, Griffith R, Jaffe A, Sivam S, Vittorio O, Kuyucak S, Waters SA. Q1291H-CFTR molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor/tezacaftor/ivacaftor in a Q1291H/F508del patient. Front Mol Biosci 2023; 10:1148501. [PMID: 37325471 PMCID: PMC10267335 DOI: 10.3389/fmolb.2023.1148501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Background: Cystic fibrosis (CF) is caused by a wide spectrum of mutations in the CF transmembrane conductance regulator (CFTR) gene, with some leading to non-classical clinical presentations. We present an integrated in vivo, in silico and in vitro investigation of an individual with CF carrying the rare Q1291H-CFTR allele and the common F508del allele. At age 56 years, the participant had obstructive lung disease and bronchiectasis, qualifying for Elexacaftor/Tezacaftor/Ivacaftor (ETI) CFTR modulator treatment due to their F508del allele. Q1291H CFTR incurs a splicing defect, producing both a normally spliced but mutant mRNA isoform and a misspliced isoform with a premature termination codon, causing nonsense mediated decay. The effectiveness of ETI in restoring Q1291H-CFTR is largely unknown. Methods: We collected clinical endpoint measurements, including forced expiratory volume in 1 s percent predicted (FEV1pp) and body mass index (BMI), and examined medical history. In silico simulations of the Q1291H-CFTR were compared to Q1291R, G551D, and wild-type (WT)-CFTR. We quantified relative Q1291H CFTR mRNA isoform abundance in patient-derived nasal epithelial cells. Differentiated pseudostratified airway epithelial cell models at air liquid interface were created and ETI treatment impact on CFTR was assessed by electrophysiology assays and Western blot. Results: The participant ceased ETI treatment after 3 months due to adverse events and no improvement in FEV1pp or BMI. In silico simulations of Q1291H-CFTR identified impairment of ATP binding similar to known gating mutants Q1291R and G551D-CFTR. Q1291H and F508del mRNA transcripts composed 32.91% and 67.09% of total mRNA respectively, indicating 50.94% of Q1291H mRNA was misspliced and degraded. Mature Q1291H-CFTR protein expression was reduced (3.18% ± 0.60% of WT/WT) and remained unchanged with ETI. Baseline CFTR activity was minimal (3.45 ± 0.25 μA/cm2) and not enhanced with ETI (5.73 ± 0.48 μA/cm2), aligning with the individual's clinical evaluation as a non-responder to ETI. Conclusion: The combination of in silico simulations and in vitro theratyping in patient-derived cell models can effectively assess CFTR modulator efficacy for individuals with non-classical CF manifestations or rare CFTR mutations, guiding personalized treatment strategies and optimizing clinical outcomes.
Collapse
Affiliation(s)
- Katelin M Allan
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Miro A Astore
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Egi Kardia
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sharon L Wong
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Laura K Fawcett
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Jessica L Bell
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Simone Visser
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Po-Chia Chen
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Renate Griffith
- School of Natural Sciences (Chemistry), University of Tasmania, Hobart, TAS, Australia
| | - Adam Jaffe
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Sheila Sivam
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Orazio Vittorio
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Serdar Kuyucak
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Shafagh A Waters
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| |
Collapse
|
30
|
Renda M, Barreca M, Borrelli A, Spanò V, Montalbano A, Raimondi MV, Bivacqua R, Musante I, Scudieri P, Guidone D, Buccirossi M, Genovese M, Venturini A, Bandiera T, Barraja P, Galietta LJV. Novel tricyclic pyrrolo-quinolines as pharmacological correctors of the mutant CFTR chloride channel. Sci Rep 2023; 13:7604. [PMID: 37165082 PMCID: PMC10172366 DOI: 10.1038/s41598-023-34440-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/29/2023] [Indexed: 05/12/2023] Open
Abstract
F508del, the most frequent mutation in cystic fibrosis (CF), impairs the stability and folding of the CFTR chloride channel, thus resulting in intracellular retention and CFTR degradation. The F508del defect can be targeted with pharmacological correctors, such as VX-809 and VX-445, that stabilize CFTR and improve its trafficking to plasma membrane. Using a functional test to evaluate a panel of chemical compounds, we have identified tricyclic pyrrolo-quinolines as novel F508del correctors with high efficacy on primary airway epithelial cells from CF patients. The most effective compound, PP028, showed synergy when combined with VX-809 and VX-661 but not with VX-445. By testing the ability of correctors to stabilize CFTR fragments of different length, we found that VX-809 is effective on the amino-terminal portion of the protein that includes the first membrane-spanning domain (amino acids 1-387). Instead, PP028 and VX-445 only show a stabilizing effect when the second membrane-spanning domain is included (amino acids 1-1181). Our results indicate that tricyclic pyrrolo-quinolines are a novel class of CFTR correctors that, similarly to VX-445, interact with CFTR at a site different from that of VX-809. Tricyclic pirrolo-quinolines may represent novel CFTR correctors suitable for combinatorial pharmacological treatments to treat the basic defect in CF.
Collapse
Affiliation(s)
- Mario Renda
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Marilia Barreca
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Anna Borrelli
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Virginia Spanò
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Maria Valeria Raimondi
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Roberta Bivacqua
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Ilaria Musante
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genoa, Italy
| | - Paolo Scudieri
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genoa, Italy
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Martina Buccirossi
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Michele Genovese
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Arianna Venturini
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Tiziano Bandiera
- D3 PharmaChemistry, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Paola Barraja
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy.
- Department of Translational Medical Sciences (DISMET), University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
31
|
Nguyen NH, Sarangi S, McChesney EM, Sheng S, Porter AW, Kleyman TR, Pitluk ZW, Brodsky JL. Genome mining yields new disease-associated ROMK variants with distinct defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539609. [PMID: 37214976 PMCID: PMC10197530 DOI: 10.1101/2023.05.05.539609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bartter syndrome is a group of rare genetic disorders that compromise kidney function by impairing electrolyte reabsorption. Left untreated, the resulting hyponatremia, hypokalemia, and dehydration can be fatal. Although there is no cure for this disease, specific genes that lead to different Bartter syndrome subtypes have been identified. Bartter syndrome type II specifically arises from mutations in the KCNJ1 gene, which encodes the renal outer medullary potassium channel, ROMK. To date, over 40 Bartter syndrome-associated mutations in KCNJ1 have been identified. Yet, their molecular defects are mostly uncharacterized. Nevertheless, a subset of disease-linked mutations compromise ROMK folding in the endoplasmic reticulum (ER), which in turn results in premature degradation via the ER associated degradation (ERAD) pathway. To identify uncharacterized human variants that might similarly lead to premature degradation and thus disease, we mined three genomic databases. First, phenotypic data in the UK Biobank were analyzed using a recently developed computational platform to identify individuals carrying KCNJ1 variants with clinical features consistent with Bartter syndrome type II. In parallel, we examined ROMK genomic data in both the NIH TOPMed and ClinVar databases with the aid of a computational algorithm that predicts protein misfolding and disease severity. Subsequent phenotypic studies using a high throughput yeast screen to assess ROMK function-and analyses of ROMK biogenesis in yeast and human cells-identified four previously uncharacterized mutations. Among these, one mutation uncovered from the two parallel approaches (G228E) destabilized ROMK and targeted it for ERAD, resulting in reduced protein expression at the cell surface. Another ERAD-targeted ROMK mutant (L320P) was found in only one of the screens. In contrast, another mutation (T300R) was ERAD-resistant, but defects in ROMK activity were apparent after expression and two-electrode voltage clamp measurements in Xenopus oocytes. Together, our results outline a new computational and experimental pipeline that can be applied to identify disease-associated alleles linked to a range of other potassium channels, and further our understanding of the ROMK structure-function relationship that may aid future therapeutic strategies. Author Summary Bartter syndrome is a rare genetic disorder characterized by defective renal electrolyte handing, leading to debilitating symptoms and, in some patients, death in infancy. Currently, there is no cure for this disease. Bartter syndrome is divided into five types based on the causative gene. Bartter syndrome type II results from genetic variants in the gene encoding the ROMK protein, which is expressed in the kidney and assists in regulating sodium, potassium, and water homeostasis. Prior work established that some disease-associated ROMK mutants misfold and are destroyed soon after their synthesis in the endoplasmic reticulum (ER). Because a growing number of drugs have been identified that correct defective protein folding, we wished to identify an expanded cohort of similarly misshapen and unstable disease-associated ROMK variants. To this end, we developed a pipeline that employs computational analyses of human genome databases with genetic and biochemical assays. Next, we both confirmed the identity of known variants and uncovered previously uncharacterized ROMK variants associated with Bartter syndrome type II. Further analyses indicated that select mutants are targeted for ER-associated degradation, while another mutant compromises ROMK function. This work sets-the-stage for continued mining for ROMK loss of function alleles as well as other potassium channels, and positions select Bartter syndrome mutations for correction using emerging pharmaceuticals.
Collapse
|
32
|
Palla JB. Disparities and therapeutic advances in cystic fibrosis. Pediatr Pulmonol 2023. [PMID: 37133222 DOI: 10.1002/ppul.26445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Cystic fibrosis (CF) has seen a multitude of therapeutic advances targeting its downstream effects. This has led to a steady increase in survival over the past few decades. The recent development of disease-modifying drugs targeting the underlying CFTR mutation has revolutionized treatment for CF. Despite these advances, individuals with CF who are racial and ethnic minorities, from low socioeconomic status, or female sex have worse clinical outcomes. The inequitable access to CFTR modulators from cost and/or genetic eligibility has the potential to further worsen the existing health disparities seen within the CF community.
Collapse
Affiliation(s)
- John B Palla
- Division of Pulmonary and Sleep Medicine, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
33
|
Lefferts JW, Boersma V, Nieuwenhuijze NDA, Suen SWF, Hajo K, Collantes NS, Vermeulen C, Groeneweg T, Hagemeijer MC, de Jonge HR, van der Ent CK, Splinter E, Beekman JM. Targeted locus amplification reveals heterogeneity between and within CFTR genotypes and association with CFTR function in patient-derived intestinal organoids. J Cyst Fibros 2023; 22:538-547. [PMID: 37100706 DOI: 10.1016/j.jcf.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) disease severity can be highly variable, even between people with CF (pwCF) with similar genotypes. Here we use patient-derived intestinal organoids to study the influence of genetic variation within the cystic fibrosis transmembrane conductance regulator (CFTR) gene on CFTR function. METHODS Organoids of F508del/class I, F508del/S1251N and pwCF with only one detected CF-causing mutation were cultured. Allele-specific CFTR variation was investigated using targeted locus amplification (TLA), CFTR function was measured using the forskolin-induced swelling assay and mRNA levels were quantified using RT-qPCR. RESULTS We were able to distinguish CFTR genotypes based on TLA data. Additionally, we observed heterogeneity within genotypes, which we were able to link to CFTR function for S1251N alleles. CONCLUSIONS Our results indicate that the paired analysis of CFTR intragenic variation and CFTR function can gain insights in the underlying CFTR defect for individuals where the disease phenotype does not match the CFTR mutations detected during diagnosis.
Collapse
Affiliation(s)
- J W Lefferts
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center, Center for Living Technologies, University Medical Center Utrecht, Utrecht, the Netherlands
| | - V Boersma
- Cergentis BV., Utrecht, the Netherlands
| | - N D A Nieuwenhuijze
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center, Center for Living Technologies, University Medical Center Utrecht, Utrecht, the Netherlands; Gastroenterology & Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - S W F Suen
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center, Center for Living Technologies, University Medical Center Utrecht, Utrecht, the Netherlands; Xilis BV, Utrecht, the Netherlands
| | - K Hajo
- Cergentis BV., Utrecht, the Netherlands
| | - N Sanchez Collantes
- Oncode Institute, Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - C Vermeulen
- Oncode Institute, Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - T Groeneweg
- Gastroenterology & Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - M C Hagemeijer
- Current affiliation: Center for Lysosomal and Metabolic Diseases, Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - H R de Jonge
- Gastroenterology & Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - C K van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - J M Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center, Center for Living Technologies, University Medical Center Utrecht, Utrecht, the Netherlands; Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, the Netherlands.
| |
Collapse
|
34
|
Levring J, Terry DS, Kilic Z, Fitzgerald G, Blanchard SC, Chen J. CFTR function, pathology and pharmacology at single-molecule resolution. Nature 2023; 616:606-614. [PMID: 36949202 PMCID: PMC10115640 DOI: 10.1038/s41586-023-05854-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/16/2023] [Indexed: 03/24/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that regulates salt and fluid homeostasis across epithelial membranes1. Alterations in CFTR cause cystic fibrosis, a fatal disease without a cure2,3. Electrophysiological properties of CFTR have been analysed for decades4-6. The structure of CFTR, determined in two globally distinct conformations, underscores its evolutionary relationship with other ATP-binding cassette transporters. However, direct correlations between the essential functions of CFTR and extant structures are lacking at present. Here we combine ensemble functional measurements, single-molecule fluorescence resonance energy transfer, electrophysiology and kinetic simulations to show that the two nucleotide-binding domains (NBDs) of human CFTR dimerize before channel opening. CFTR exhibits an allosteric gating mechanism in which conformational changes within the NBD-dimerized channel, governed by ATP hydrolysis, regulate chloride conductance. The potentiators ivacaftor and GLPG1837 enhance channel activity by increasing pore opening while NBDs are dimerized. Disease-causing substitutions proximal (G551D) or distal (L927P) to the ATPase site both reduce the efficiency of NBD dimerization. These findings collectively enable the framing of a gating mechanism that informs on the search for more efficacious clinical therapies.
Collapse
Affiliation(s)
- Jesper Levring
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zeliha Kilic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gabriel Fitzgerald
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
35
|
Abstract
Cystic fibrosis (CF) is an inherited multisystemic disease that can cause progressive bronchiectasis, pancreatic endocrine and exocrine insufficiency, distal intestinal obstruction syndrome, liver dysfunction, and other disorders. Traditional therapies focused on the treatment or prevention of damage to each organ system with incremental modalities such as nebulized medications for the lungs, insulin for diabetes, and supplementation with pancreatic enzymes. However, the advent of highly effective modulator therapies that target specific cystic fibrosis transmembrane conductance regulator protein malformations resulting from individual genetic mutations has transformed the lives and prognosis for persons with CF.
Collapse
Affiliation(s)
- Shijing Jia
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA;
| | - Jennifer L Taylor-Cousar
- Divisions of Pulmonary Sciences and Critical Care Medicine and Pediatric Pulmonology, National Jewish Health, Denver, Colorado, USA;
| |
Collapse
|
36
|
Bacalhau M, Ferreira FC, Silva IAL, Buarque CD, Amaral MD, Lopes-Pacheco M. Additive Potentiation of R334W-CFTR Function by Novel Small Molecules. J Pers Med 2023; 13:jpm13010102. [PMID: 36675763 PMCID: PMC9862739 DOI: 10.3390/jpm13010102] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
The R334W (c.1000C>T, p.Arg334Trp) is a rare cystic fibrosis (CF)-causing mutation for which no causal therapy is currently approved. This mutation leads to a significant reduction of CF transmembrane conductance regulator (CFTR) channel conductance that still allows for residual function. Potentiators are small molecules that interact with CFTR protein at the plasma membrane to enhance CFTR-dependent chloride secretion, representing thus pharmacotherapies targeting the root cause of the disease. Here, we generated a new CF bronchial epithelial (CFBE) cell line to screen a collection of compounds and identify novel potentiators for R334W-CFTR. The active compounds were then validated by electrophysiological assays and their additive effects in combination with VX-770, genistein, or VX-445 were exploited in this cell line and further confirmed in intestinal organoids. Four compounds (LSO-24, LSO-25, LSO-38, and LSO-77) were active in the functional primary screen and their ability to enhance R334W-CFTR-dependent chloride secretion was confirmed using electrophysiological measurements. In silico ADME analyses demonstrated that these compounds follow Lipinski’s rule of five and are thus suggested to be orally bioavailable. Dose−response relationships revealed nevertheless suboptimal efficacy and weak potency exerted by these compounds. VX-770 and genistein also displayed a small potentiation of R334W-CFTR function, while VX-445 demonstrated no potentiator activity for this mutation. In the R334W-expressing cell line, CFTR function was further enhanced by the combination of LSO-24, LSO-25, LSO-38, or LSO-77 with VX-770, but not with genistein. The efficacy of potentiator VX-770 combined with active LSO compounds was further confirmed in intestinal organoids (R334W/R334W genotype). Taken together, these molecules were demonstrated to potentiate R334W-CFTR function by a different mechanism than that of VX-770. They may provide a feasible starting point for the design of analogs with improved CFTR-potentiator activity.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Filipa C. Ferreira
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Iris A. L. Silva
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Camilla D. Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22541-041, Brazil
| | - Margarida D. Amaral
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
37
|
Simmonds NJ, van der Ent CK, Colombo C, Kinnman N, DeSouza C, Thorat T, Chew ML, Chandarana K, Castellani C. VOCAL: An observational study of ivacaftor for people with cystic fibrosis and selected non-G551D-CFTR gating mutations. J Cyst Fibros 2023; 22:124-131. [PMID: 35613999 DOI: 10.1016/j.jcf.2022.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/09/2022] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND VOCAL was an observational study of the effect of long-term ivacaftor on real-world clinical outcomes and healthcare resource utilization (HCRU) in people with cystic fibrosis (pwCF) in Italy, the Netherlands, and the UK. METHODS pwCF aged ≥6 years with non-G551D-CFTR gating mutations were eligible. Prospective data were collected up to 48 months after enrollment; retrospective data were collected to ensure that 12 months of pre-ivacaftor data were available. Endpoints included absolute change from baseline in percent predicted forced expiratory volume in 1 second (ppFEV1) and measures of nutritional status. Pulmonary exacerbation (PEx) rates, HCRU, and respiratory microbiology during ivacaftor treatment were compared with data from the 12-month period before initiation. RESULTS Seventy-three eligible pwCF were enrolled and received ivacaftor; 65 (89.0%) completed the study (48 [65.8%] completed ≥48 months of ivacaftor). During the first 6 months of ivacaftor, ppFEV1, body mass index (BMI), and BMI-for-age z-score showed least-squares mean absolute improvements of 10.8 percentage points, 0.79 kg/m2, and 0.54, respectively; improvements were maintained through 48 months. Rates of PEx, antibiotic use due to PEx, and hospitalization decreased by >50% during ivacaftor treatment compared with before ivacaftor. The number of respiratory cultures and sputum was lower post-ivacaftor, as was the percentage of pwCF with positive respiratory cultures for 3 of 9 pathogens evaluated (Pseudomonas aeruginosa, Aspergillus fumigatus, Stenotrophomonas maltophilia). Reported safety results were consistent with CF and ivacaftor's known safety profile. CONCLUSIONS These results demonstrate the positive long-term effectiveness of ivacaftor on clinical outcomes and HCRU in pwCF with non-G551D-CFTR gating mutations in real-world settings.
Collapse
Affiliation(s)
- Nicholas J Simmonds
- Adult Cystic Fibrosis Centre, Royal Brompton Hospital, London, UK, and National Heart and Lung Institute, Imperial College London, London, UK.
| | - C Kors van der Ent
- Department of Pediatric Respiratory Diseases, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Carla Colombo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Nils Kinnman
- Vertex Pharmaceuticals Incorporated, Boston, MA, USA
| | | | - Teja Thorat
- Vertex Pharmaceuticals Incorporated, Boston, MA, USA
| | - Marci L Chew
- Vertex Pharmaceuticals Incorporated, Boston, MA, USA
| | | | - Carlo Castellani
- Cystic Fibrosis Centre, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
38
|
Mayer-Hamblett N, Zemanick ET, Odem-Davis K, VanDevanter D, Warden M, Rowe SM, Young J, Konstan MW, For-The-Chec-Sc-Study-Group. Characterizing CFTR modulated sweat chloride response across the cf population: Initial results from the CHEC-SC study. J Cyst Fibros 2023; 22:79-88. [PMID: 35871974 PMCID: PMC10103635 DOI: 10.1016/j.jcf.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND CHEC-SC is an ongoing epidemiologic study characterizing modulator-induced sweat chloride (SC) responses across the CF population, with interim results available prior to the availability of triple combination modulator therapy. METHODS Eligible participants had been prescribed a modulator for ≥90 days with re-enrollment allowed upon establishment of a new modulator. Pre-modulator SC values were obtained from chart review; post-modulator sweat was collected and analyzed locally. SC changes were descriptively summarized with biologic sex effects adjusted for age, weight, and CFTR genotype. Heterogeneity in ivacaftor SC response was characterized in relation to published CFTR functional responses. RESULTS 1848 participants provided 2004 SC measurements, 26.2% on ivacaftor, 39.1% on lumacaftor/ivacaftor, and 34.7% on tezacaftor/ivacaftor. Average SC changes for all modulators were consistent with those reported in previous clinical studies, with greater variation in SC response observed among rarer mutations and notable shifts in the proportion with SC <60mmol/L independent of the magnitude of SC change. Ivacaftor induced in vitro CFTR functional change was significantly correlated with ivacaftor-modulated SC response (Pearson correlation= ‒0.52, 95% CI: ‒0.773, ‒0.129). Average SC change from ivacaftor to tezacaftor/ivacaftor was ‒4.9 mmol/L (n=17,95% CI:‒9.3, ‒0.5) and differed from those switching from lumacaftor/ivacaftor (10.0 mmol/L, n=139, 95% CI:7.8,12.3). Sex at birth was not associated with SC response. CONCLUSIONS CHEC-SC is the largest study characterizing modulator-induced SC changes across the CF population. There was a strong association between ivacaftor induced in vitro CFTR function and SC response across a genotypically heterogenous cohort. Biological sex was not associated with SC response.
Collapse
Affiliation(s)
- N Mayer-Hamblett
- University of Washington, Seattle, WA, United States; Seattle Children's Hospital, Seattle, WA, United States.
| | - E T Zemanick
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - K Odem-Davis
- Seattle Children's Hospital, Seattle, WA, United States
| | - D VanDevanter
- Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - M Warden
- Seattle Children's Hospital, Seattle, WA, United States
| | - S M Rowe
- University of Alabama at Birmingham, Birmingham, AL, England
| | - J Young
- Seattle Children's Hospital, Seattle, WA, United States
| | - M W Konstan
- Case Western Reserve University School of Medicine, Cleveland, OH, United States; Rainbow Babies and Children's Hospital, Cleveland, OH, United States
| | | |
Collapse
|
39
|
Bergougnoux A, Billet A, Ka C, Heller M, Degrugillier F, Vuillaume ML, Thoreau V, Sasorith S, Bareil C, Thèze C, Ferec C, Gac GL, Bienvenu T, Bieth E, Gaston V, Lalau G, Pagin A, Malinge MC, Dufernez F, Lemonnier L, Koenig M, Fergelot P, Claustres M, Taulan-Cadars M, Kitzis A, Reboul MP, Becq F, Fanen P, Mekki C, Audrezet MP, Girodon E, Raynal C. The multi-faceted nature of 15 CFTR exonic variations: Impact on their functional classification and perspectives for therapy. J Cyst Fibros 2022:S1569-1993(22)01423-0. [PMID: 36567205 DOI: 10.1016/j.jcf.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND The majority of variants of unknown clinical significance (VUCS) in the CFTR gene are missense variants. While change on the CFTR protein structure or function is often suspected, impact on splicing may be neglected. Such undetected splicing default of variants may complicate the interpretation of genetic analyses and the use of an appropriate pharmacotherapy. METHODS We selected 15 variants suspected to impact CFTR splicing after in silico predictions on 319 missense variants (214 VUCS), reported in the CFTR-France database. Six specialized laboratories assessed the impact of nucleotide substitutions on splicing (minigenes), mRNA expression levels (quantitative PCR), synthesis and maturation (western blot), cellular localization (immunofluorescence) and channel function (patch clamp) of the CFTR protein. We also studied maturation and function of the truncated protein, consecutive to in-frame aberrant splicing, on additional plasmid constructs. RESULTS Six of the 15 variants had a major impact on CFTR splicing by in-frame (n = 3) or out-of-frame (n = 3) exon skipping. We reclassified variants into: splicing variants; variants causing a splicing defect and the impairment of CFTR folding and/or function related to the amino acid substitution; deleterious missense variants that impair CFTR folding and/or function; and variants with no consequence on the different processes tested. CONCLUSION The 15 variants have been reclassified by our comprehensive approach of in vitro experiments that should be used to properly interpret very rare exonic variants of the CFTR gene. Targeted therapies may thus be adapted to the molecular defects regarding the results of laboratory experiments.
Collapse
Affiliation(s)
- A Bergougnoux
- Génétique Moléculaire, CHU Montpellier, Montpellier, France; PhyMedExp, INSERM, CNRS UMR, Montpellier, France; Université de Montpellier, Montpellier, France
| | - A Billet
- Laboratoire STIM, Université de Poitiers, Poitiers, France
| | - C Ka
- Service de génétique moléculaire, CHRU Brest, Brest, France; Université de Brest, Inserm, UMR 1078, GGB, Brest, France
| | - M Heller
- Service de Médecine Génomique des Maladies de Système et d'Organe, APHP Centre - Université de Paris, Hôpital Cochin, Paris, France
| | - F Degrugillier
- Université Paris-Est Créteil, INSERM, IMRB, Créteil F-94010, France
| | - M-L Vuillaume
- Génétique Moléculaire, CHU Bordeaux, Bordeaux, France
| | - V Thoreau
- Laboratoire NEUVACOD-3808, Université de Poitiers, Poitiers, France
| | - S Sasorith
- Génétique Moléculaire, CHU Montpellier, Montpellier, France; PhyMedExp, INSERM, CNRS UMR, Montpellier, France
| | - C Bareil
- Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | - C Thèze
- Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | - C Ferec
- Université de Brest, Inserm, UMR 1078, GGB, Brest, France
| | - G Le Gac
- Service de génétique moléculaire, CHRU Brest, Brest, France; Université de Brest, Inserm, UMR 1078, GGB, Brest, France
| | - T Bienvenu
- Service de Médecine Génomique des Maladies de Système et d'Organe, APHP Centre - Université de Paris, Hôpital Cochin, Paris, France
| | - E Bieth
- Génétique Médicale, CHU Toulouse, Toulouse, France
| | - V Gaston
- Génétique Médicale, CHU Toulouse, Toulouse, France
| | - G Lalau
- Biochimie et Biologie Moléculaire, CHU Lille, Lille, France
| | - A Pagin
- Biochimie et Biologie Moléculaire, CHU Lille, Lille, France
| | - M-C Malinge
- Biochimie et Génétique, CHU Angers, Angers, France
| | - F Dufernez
- Génétique, CHU Poitiers, Poitiers, France
| | - L Lemonnier
- Association Vaincre la Mucoviscidose, Paris, France
| | - M Koenig
- Génétique Moléculaire, CHU Montpellier, Montpellier, France; PhyMedExp, INSERM, CNRS UMR, Montpellier, France; Université de Montpellier, Montpellier, France
| | - P Fergelot
- MRGM, INSERM UMR 1211 Université de Bordeaux, Bordeaux, France
| | - M Claustres
- Université de Montpellier, Montpellier, France
| | - M Taulan-Cadars
- PhyMedExp, INSERM, CNRS UMR, Montpellier, France; Université de Montpellier, Montpellier, France
| | - A Kitzis
- Génétique, CHU Poitiers, Poitiers, France
| | - M-P Reboul
- Génétique Moléculaire, CHU Bordeaux, Bordeaux, France
| | - F Becq
- Laboratoire STIM, Université de Poitiers, Poitiers, France
| | - P Fanen
- AP-HP, Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, Hôpital Henri Mondor, Créteil F-94010, France
| | - C Mekki
- AP-HP, Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, Hôpital Henri Mondor, Créteil F-94010, France
| | - M-P Audrezet
- Service de génétique moléculaire, CHRU Brest, Brest, France; Université de Brest, Inserm, UMR 1078, GGB, Brest, France
| | - E Girodon
- Service de Médecine Génomique des Maladies de Système et d'Organe, APHP Centre - Université de Paris, Hôpital Cochin, Paris, France; INSERM U1151, Institut Necker Enfants Malades, Université de Paris, Paris, France
| | - C Raynal
- Génétique Moléculaire, CHU Montpellier, Montpellier, France; PhyMedExp, INSERM, CNRS UMR, Montpellier, France.
| |
Collapse
|
40
|
Hillenaar T, Beekman J, van der Sluijs P, Braakman I. Redefining Hypo- and Hyper-Responding Phenotypes of CFTR Mutants for Understanding and Therapy. Int J Mol Sci 2022; 23:15170. [PMID: 36499495 PMCID: PMC9735543 DOI: 10.3390/ijms232315170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Mutations in CFTR cause misfolding and decreased or absent ion-channel function, resulting in the disease Cystic Fibrosis. Fortunately, a triple-modulator combination therapy (Trikafta) has been FDA-approved for 178 mutations, including all patients who have F508del on one allele. That so many CFTR mutants respond well to modulators developed for a single mutation is due to the nature of the folding process of this multidomain protein. We have addressed the question 'What characterizes the exceptions: the mutants that functionally respond either not or extremely well'. A functional response is the product of the number of CFTR molecules on the cell surface, open probability, and conductivity of the CFTR chloride channel. By combining biosynthetic radiolabeling with protease-susceptibility assays, we have followed CF-causing mutants during the early and late stages of folding in the presence and absence of modulators. Most CFTR mutants showed typical biochemical responses for each modulator, such as a TMD1 conformational change or an increase in (cell-surface) stability, regardless of a functional response. These modulators thus should still be considered for hypo-responder genotypes. Understanding both biochemical and functional phenotypes of outlier mutations will boost our insights into CFTR folding and misfolding, and lead to improved therapeutic strategies.
Collapse
Affiliation(s)
- Tamara Hillenaar
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, 3584 CS Utrecht, The Netherlands; (T.H.); (P.v.d.S.)
| | - Jeffrey Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands;
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, 3584 CS Utrecht, The Netherlands; (T.H.); (P.v.d.S.)
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, 3584 CS Utrecht, The Netherlands; (T.H.); (P.v.d.S.)
| |
Collapse
|
41
|
Tomati V, Costa S, Capurro V, Pesce E, Pastorino C, Lena M, Sondo E, Di Duca M, Cresta F, Cristadoro S, Zara F, Galietta LJ, Bocciardi R, Castellani C, Lucanto MC, Pedemonte N. Rescue by elexacaftor-tezacaftor-ivacaftor of the G1244E cystic fibrosis mutation's stability and gating defects are dependent on cell background. J Cyst Fibros 2022:S1569-1993(22)01425-4. [DOI: 10.1016/j.jcf.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
|
42
|
Guimbellot JS, Ryan KJ, Anderson JD, Parker KL, Odom LV, Rowe SM, Acosta EP. Plasma and cellular ivacaftor concentrations in patients with cystic fibrosis. Pediatr Pulmonol 2022; 57:2745-2753. [PMID: 35927224 PMCID: PMC9588676 DOI: 10.1002/ppul.26093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 11/08/2022]
Abstract
Access to cystic fibrosis transmembrane conductance regulator (CFTR) modulators has been gradually increasing for people with cystic fibrosis, the first of which was ivacaftor, a CFTR potentiator that is part of all clinically available modulator treatments. In this study, we hypothesized that the steady-state concentrations in blood and tissue are highly variable in patients taking ivacaftor in a real-world context, which may have an impact on the treatment approach. We collected nasal epithelial cells to estimate target site concentrations and blood samples to estimate pharmacokinetic parameters at a steady state. We found that patients on ivacaftor monotherapy have variable concentrations well above the maximal effective concentration and may maintain concentrations necessary for the clinical benefit even if dosing is reduced. We also are the first to provide detailed target site concentration data over time, which shows that tissue concentrations do not fluctuate significantly and do not correlate with plasma concentrations. These findings show that some patients may have higher-than-expected concentrations and may benefit from tailored dosing to balance clinical response with side effects or adherence needs.
Collapse
Affiliation(s)
- Jennifer S. Guimbellot
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL
| | - Kevin J. Ryan
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, UAB, Birmingham, AL
| | - Justin D. Anderson
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL
| | - Kennedy L. Parker
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL
| | - L. Victoria Odom
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL
| | - Steven M. Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL
- Departments of Medicine and Cell Developmental and Integrative Biology, UAB, Birmingham, AL
| | - Edward P. Acosta
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, UAB, Birmingham, AL
| |
Collapse
|
43
|
Advances in Preclinical In Vitro Models for the Translation of Precision Medicine for Cystic Fibrosis. J Pers Med 2022; 12:jpm12081321. [PMID: 36013270 PMCID: PMC9409685 DOI: 10.3390/jpm12081321] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over the last 30 years and they have been instrumental not only in enhancing the understanding of CF pathological mechanisms but also in developing therapies targeting the underlying defects in CFTR mutations with further validation in patient-derived samples. Furthermore, recent advances toward precision medicine in CF have been made possible by optimizing protocols and establishing novel assays using human bronchial, nasal and rectal tissues, and by progressing from two-dimensional monocultures to more complex three-dimensional culture platforms. These models also enable to potentially predict clinical efficacy and responsiveness to CFTR modulator therapies at an individual level. In parallel, advanced systems, such as induced pluripotent stem cells and organ-on-a-chip, continue to be developed in order to more closely recapitulate human physiology for disease modeling and drug testing. In this review, we have highlighted novel and optimized cell models that are being used in CF research to develop novel CFTR-directed therapies (or alternative therapeutic interventions) and to expand the usage of existing modulator drugs to common and rare CF-causing mutations.
Collapse
|
44
|
Cuyx S, Ramalho SS, Callebaut I, Cuppens H, Kmit A, Arnauts K, Ferrante M, Verfaillie C, Ensinck M, Carlon MS, Boon M, Proesmans M, Dupont L, De Boeck K, Farinha CM, Vermeulen F, Ramalho AS. Severity of the S1251N allele in cystic fibrosis is affected by the presence of the F508C variant in cis. J Cyst Fibros 2022; 21:644-651. [PMID: 35690578 DOI: 10.1016/j.jcf.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND In cystic fibrosis (CF), genotype-phenotype correlation is complicated by the large number of CFTR variants, the influence of modifier genes, environmental effects, and the existence of complex alleles. We document the importance of complex alleles, in particular the F508C variant present in cis with the S1251N disease-causing variant, by detailed analysis of a patient with CF, with the [S1251N;F508]/G542X genotype and a very mild phenotype, contrasting it to that of four subjects with the [S1251N;F508C]/F508del genotype and classical CF presentation. METHODS Genetic differences were identified by Sanger sequencing and CFTR function was quantified using rectal organoids in rectal organoid morphology analysis (ROMA) and forskolin-induced swelling (FIS) assays. CFTR variants were further characterised in CF bronchial epithelial (CFBE) cell lines. The impact of involved amino acid changes in the CFTR 3D protein structure was evaluated. RESULTS Organoids of the patient [S1251N;F508] with mild CF phenotype confirmed the CF diagnosis but showed higher residual CFTR function compared to the four others [S1251N;F508C]. CFBE cell lines showed a decrease in [S1251N;F508C]-CFTR function but not in processing when compared to [S1251N;F508]-CFTR. Analysis of the 3D CFTR structure suggested an additive deleterious effect of the combined presence of S1251N and F508C with respect to NBD1-2 dimerisation. CONCLUSIONS In vitro and in silico data show that the presence of F508C in cis with S1251N decreases CFTR function without affecting processing. Complex CFTR alleles play a role in clinical phenotype and their identification is relevant in the context of personalised medicine for each patient with CF.
Collapse
Affiliation(s)
- Senne Cuyx
- KU Leuven, Department of Development and Regeneration, Woman and Child Unit, CF research lab, B-3000 Leuven, Belgium; University Hospital Leuven, Department of Pediatrics, Pediatric Pulmonology, B-3000 Leuven, Belgium
| | - Sofia S Ramalho
- University of Lisboa, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005 Paris, France
| | | | - Arthur Kmit
- University of Lisboa, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Kaline Arnauts
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium; KU Leuven, Department of Development and Regeneration, Stem Cell Institute Leuven (SCIL), B-3000 Leuven, Belgium
| | - Marc Ferrante
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium; KU Leuven, Department of Gastroenterology and Hepatology, University Hospital Leuven, B-3000 Leuven, Belgium
| | - Catherine Verfaillie
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute Leuven (SCIL), B-3000 Leuven, Belgium
| | - Marjolein Ensinck
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium; KU Leuven, Department of Chronic Diseases, Metabolism and Ageing; BREATHE, B-3000 Leuven, Belgium
| | - Marianne S Carlon
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium; KU Leuven, Department of Chronic Diseases, Metabolism and Ageing; BREATHE, B-3000 Leuven, Belgium
| | - Mieke Boon
- KU Leuven, Department of Development and Regeneration, Woman and Child Unit, CF research lab, B-3000 Leuven, Belgium; University Hospital Leuven, Department of Pediatrics, Pediatric Pulmonology, B-3000 Leuven, Belgium
| | - Marijke Proesmans
- KU Leuven, Department of Development and Regeneration, Woman and Child Unit, CF research lab, B-3000 Leuven, Belgium; University Hospital Leuven, Department of Pediatrics, Pediatric Pulmonology, B-3000 Leuven, Belgium
| | - Lieven Dupont
- KU Leuven, Department of Chronic Diseases, Metabolism and Ageing; BREATHE, B-3000 Leuven, Belgium; University Hospital Leuven, Department of Respiratory Diseases, B-3000 Leuven, Belgium
| | - Kris De Boeck
- KU Leuven, Department of Development and Regeneration, Woman and Child Unit, CF research lab, B-3000 Leuven, Belgium; University Hospital Leuven, Department of Pediatrics, Pediatric Pulmonology, B-3000 Leuven, Belgium
| | - Carlos M Farinha
- University of Lisboa, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - François Vermeulen
- KU Leuven, Department of Development and Regeneration, Woman and Child Unit, CF research lab, B-3000 Leuven, Belgium; University Hospital Leuven, Department of Pediatrics, Pediatric Pulmonology, B-3000 Leuven, Belgium
| | - Anabela S Ramalho
- KU Leuven, Department of Development and Regeneration, Woman and Child Unit, CF research lab, B-3000 Leuven, Belgium
| |
Collapse
|
45
|
Ronan NJ, Einarsson GG, Deane J, Fouhy F, Rea M, Hill C, Shanahan F, Elborn JS, Ross RP, McCarthy M, Murphy DM, Eustace JA, Mm T, Stanton C, Plant BJ. Modulation, microbiota and inflammation in the adult CF gut: A prospective study. J Cyst Fibros 2022; 21:837-843. [PMID: 35764510 DOI: 10.1016/j.jcf.2022.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cystic Fibrosis (CF) has prominent gastrointestinal and pancreatic manifestations. The aim of this study was to determine the effect of Cystic fibrosis transmembrane conductance regulator (CFTR) modulation on, gastrointestinal inflammation, pancreatic function and gut microbiota composition in people with cystic fibrosis (CF) and the G551D-CFTR mutation. METHODS Fourteen adult patients with the G551D-CFTR mutation were assessed clinically at baseline and for up to 1 year after treatment with ivacaftor. The change in gut inflammatory markers (calprotectin and lactoferrin), exocrine pancreatic status and gut microbiota composition and structure were assessed in stool samples. RESULTS There was no significant change in faecal calprotectin nor lactoferrin in patients with treatment while all patients remained severely pancreatic insufficient. There was no significant change in gut microbiota diversity and richness following treatment. CONCLUSION There was no significant change in gut inflammation after partial restoration of CFTR function with ivacaftor, suggesting that excess gut inflammation in CF is multi-factorial in aetiology. In this adult cohort, exocrine pancreatic function was irreversibly lost. Longer term follow-up may reveal more dynamic changes in the gut microbiota and possible restoration of CFTR function.
Collapse
Affiliation(s)
- N J Ronan
- Cork Adult CF Centre, Cork University Hospital, Wilton, Cork; HRB Clinical research facility, University College Cork
| | - G G Einarsson
- Halo Research Group, Queen's University Belfast, Belfast, UK; Wellcome-Wolfson Institute for Experimental Medicine. School of Medicine, Dentistry and Biomedical Sciences Queen's University Belfast, Belfast, UK
| | - J Deane
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland; APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - F Fouhy
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland; APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - M Rea
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland; APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - C Hill
- APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - F Shanahan
- APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - J S Elborn
- Halo Research Group, Queen's University Belfast, Belfast, UK; Wellcome-Wolfson Institute for Experimental Medicine. School of Medicine, Dentistry and Biomedical Sciences Queen's University Belfast, Belfast, UK
| | - R P Ross
- APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - M McCarthy
- Cork Adult CF Centre, Cork University Hospital, Wilton, Cork
| | - D M Murphy
- Cork Adult CF Centre, Cork University Hospital, Wilton, Cork
| | - J A Eustace
- HRB Clinical research facility, University College Cork
| | - Tunney Mm
- Halo Research Group, Queen's University Belfast, Belfast, UK; School of Pharmacy, Queen's University Belfast, Belfast, UK; HRB Clinical research facility, University College Cork
| | - C Stanton
- Wellcome-Wolfson Institute for Experimental Medicine. School of Medicine, Dentistry and Biomedical Sciences Queen's University Belfast, Belfast, UK; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - B J Plant
- Cork Adult CF Centre, Cork University Hospital, Wilton, Cork; HRB Clinical research facility, University College Cork; APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland.
| |
Collapse
|
46
|
Wang C, Anglès F, Balch WE. Triangulating variation in the population to define mechanisms for precision management of genetic disease. Structure 2022; 30:1190-1207.e5. [PMID: 35714602 PMCID: PMC9357173 DOI: 10.1016/j.str.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
To understand mechanistically how the protein fold is shaped by therapeutics to inform precision management of disease, we developed variation-capture (VarC) mapping. VarC triangulates sparse sequence variation information found in the population using Gaussian process regression (GPR)-based machine learning to define the combined pairwise-residue interactions contributing to dynamic protein function in the individual in response to therapeutics. Using VarC mapping, we now reveal the pairwise-residue covariant relationships across the entire protein fold of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) to define the molecular mechanisms of clinically approved CF chemical modulators. We discover an energetically destabilized covariant core containing a di-acidic YKDAD endoplasmic reticulum (ER) exit code that is only weakly corrected by current therapeutics. Our results illustrate that VarC provides a generalizable tool to triangulate information from genetic variation in the population to mechanistically discover therapeutic strategies that guide precision management of the individual.
Collapse
Affiliation(s)
- Chao Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Frédéric Anglès
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - William E Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
47
|
Raraigh KS, Lewis MH, Collaco JM, Corey M, Penland CM, Stephenson AL, Rommens JM, Castellani C, Cutting GR. Caution advised in the use of CFTR modulator treatment for individuals harboring specific CFTR variants. J Cyst Fibros 2022; 21:856-860. [DOI: 10.1016/j.jcf.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/09/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
|
48
|
Anglès F, Wang C, Balch WE. Spatial covariance analysis reveals the residue-by-residue thermodynamic contribution of variation to the CFTR fold. Commun Biol 2022; 5:356. [PMID: 35418593 PMCID: PMC9008016 DOI: 10.1038/s42003-022-03302-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Although the impact of genome variation on the thermodynamic properties of function on the protein fold has been studied in vitro, it remains a challenge to assign these relationships across the entire polypeptide sequence in vivo. Using the Gaussian process regression based principle of Spatial CoVariance, we globally assign on a residue-by-residue basis the biological thermodynamic properties that contribute to the functional fold of CFTR in the cell. We demonstrate the existence of a thermodynamically sensitive region of the CFTR fold involving the interface between NBD1 and ICL4 that contributes to its export from endoplasmic reticulum. At the cell surface a new set of residues contribute uniquely to the management of channel function. These results support a general 'quality assurance' view of global protein fold management as an SCV principle describing the differential pre- and post-ER residue interactions contributing to compartmentalization of the energetics of the protein fold for function. Our results set the stage for future analyses of the quality systems managing protein sequence-to-function-to-structure broadly encompassing genome design leading to protein function in complex cellular relationships responsible for diversity and fitness in biology in response to the environment.
Collapse
Affiliation(s)
- Frédéric Anglès
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Chao Wang
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - William E Balch
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
49
|
Gong J, He G, Wang C, Bartlett C, Panjwani N, Mastromatteo S, Lin F, Keenan K, Avolio J, Halevy A, Shaw M, Esmaeili M, Côté-Maurais G, Adam D, Bégin S, Bjornson C, Chilvers M, Reisman J, Price A, Parkins M, van Wylick R, Berthiaume Y, Bilodeau L, Mateos-Corral D, Hughes D, Smith MJ, Morrison N, Brusky J, Tullis E, Stephenson AL, Quon BS, Wilcox P, Leung WM, Solomon M, Sun L, Brochiero E, Moraes TJ, Gonska T, Ratjen F, Rommens JM, Strug LJ. Genetic evidence supports the development of SLC26A9 targeting therapies for the treatment of lung disease. NPJ Genom Med 2022; 7:28. [PMID: 35396391 PMCID: PMC8993824 DOI: 10.1038/s41525-022-00299-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
Over 400 variants in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) are CF-causing. CFTR modulators target variants to improve lung function, but marked variability in response exists and current therapies do not address all CF-causing variants highlighting unmet needs. Alternative epithelial ion channel/transporters such as SLC26A9 could compensate for CFTR dysfunction, providing therapeutic targets that may benefit all individuals with CF. We investigate the relationship between rs7512462, a marker of SLC26A9 activity, and lung function pre- and post-treatment with CFTR modulators in Canadian and US CF cohorts, in the general population, and in those with chronic obstructive pulmonary disease (COPD). Rs7512462 CC genotype is associated with greater lung function in CF individuals with minimal function variants (for which there are currently no approved therapies; p = 0.008); and for gating (p = 0.033) and p.Phe508del/ p.Phe508del (p = 0.006) genotypes upon treatment with CFTR modulators. In parallel, human nasal epithelia with CC and p.Phe508del/p.Phe508del after Ussing chamber analysis of a combination of approved and experimental modulator treatments show greater CFTR function (p = 0.0022). Beyond CF, rs7512462 is associated with peak expiratory flow in a meta-analysis of the UK Biobank and Spirometa Consortium (p = 2.74 × 10-44) and provides p = 0.0891 in an analysis of COPD case-control status in the UK Biobank defined by spirometry. These findings support SLC26A9 as a therapeutic target to improve lung function for all people with CF and in individuals with other obstructive lung diseases.
Collapse
Affiliation(s)
- Jiafen Gong
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Gengming He
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Cheng Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Claire Bartlett
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Naim Panjwani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Scott Mastromatteo
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Fan Lin
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Katherine Keenan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julie Avolio
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anat Halevy
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michelle Shaw
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mohsen Esmaeili
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Guillaume Côté-Maurais
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Stéphanie Bégin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | | | - Mark Chilvers
- British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Joe Reisman
- The Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - April Price
- The Children's Hospital, London Health Science Centre, London, ON, Canada
| | | | | | - Yves Berthiaume
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Lara Bilodeau
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec City, QC, Canada
| | | | | | - Mary J Smith
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Nancy Morrison
- Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | - Janna Brusky
- Department of Pediatrics, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | | | | - Melinda Solomon
- Respiratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Lei Sun
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Theo J Moraes
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Respiratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Tanja Gonska
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | - Felix Ratjen
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Johanna M Rommens
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lisa J Strug
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada.
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
50
|
Ricotta EE, Prevots DR, Olivier KN. CFTR Modulator Use and Risk of Nontuberculous Mycobacteria Positivity in Cystic Fibrosis, 2011–2018. ERJ Open Res 2022; 8:00724-2021. [PMID: 35415188 PMCID: PMC8995538 DOI: 10.1183/23120541.00724-2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background People with cystic fibrosis are at increased risk of pulmonary nontuberculous mycobacteria (NTM) disease. Cystic fibrosis transmembrane conductance regulator (CFTR) modulators are associated with reduced lung infection with pathogens like Pseudomonas aeruginosa and Staphylococcus aureus. This association has not been studied with NTM. Methods Using encounter-level data from the US Cystic Fibrosis Foundation Patient Registry from 2011 to 2018, we identified individuals aged >12 years with one or more NTM-negative sputum culture and information on receipt of ivacaftor therapy. We used a Cox proportional hazards model to assess the relationship between CFTR modulator usage (any and monotherapy versus combination therapy) and NTM sputum culture positivity, controlling for sex, least severe class of CFTR mutation, receipt of chronic macrolides, age, body mass index and percentage predicted forced expiratory volume. Results Out of 25 987 unique individuals, 17 403 individuals met inclusion criteria. During follow-up, 42% of individuals received CFTR modulator therapy, and 23% had incident NTM. The median (interquartile range) time to event was 6.1 (4.0–7.3) years for those ever receiving CFTR modulators compared to 4.0 (1.6–6.5) years in those never receiving CFTR modulators. CFTR modulator use was associated with a significantly reduced hazard of NTM culture positivity (hazard ratio (HR) 0.88, 95% CI 0.79–0.97); there was no significant difference in the hazard between those receiving ivacaftor monotherapy versus combination therapy (combination HR 1.01, 95% CI 0.79–1.23). Conclusions CFTR modulator therapy is associated with a decreased risk of NTM positivity in individuals with cystic fibrosis. Therapeutic use of cystic fibrosis transmembrane conductance regulator (CFTR) modulators is significantly associated with a decreased risk of NTM positivity in individuals with cystic fibrosishttps://bit.ly/3GZC74b
Collapse
|