1
|
Tian X, Wen Y, Zhang Z, Zhu J, Song X, Phan TT, Li J. Recent advances in smart hydrogels derived from polysaccharides and their applications for wound dressing and healing. Biomaterials 2025; 318:123134. [PMID: 39904188 DOI: 10.1016/j.biomaterials.2025.123134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Owing to their inherent biocompatibility and biodegradability, hydrogels derived from polysaccharides have emerged as promising candidates for wound management. However, the complex nature of wound healing often requires the development of smart hydrogels---intelligent materials capable of responding dynamically to specific physical or chemical stimuli. Over the past decade, an increasing number of stimuli-responsive polysaccharide-based hydrogels have been developed to treat various types of wounds. While a range of hydrogel types and their versatile functions for wound management have been discussed in the literature, there is still a need for a review of the crosslinking strategies used to create smart hydrogels from polysaccharides. This review provides a comprehensive overview of how stimuli-responsive hydrogels can be designed and made using five key polysaccharides: chitosan, hyaluronic acid, alginate, dextran, and cellulose. Various methods, such as chemical crosslinking, dynamic crosslinking, and physical crosslinking, which are used to form networks within these hydrogels, ultimately determine their ability to respond to stimuli, have been explored. This article further looks at different polysaccharide-based hydrogel wound dressings that can respond to factors such as reactive oxygen species, temperature, pH, glucose, light, and ultrasound in the wound environment and discusses how these responses can enhance wound healing. Finally, this review provides insights into how stimuli-responsive polysaccharide-based hydrogels can be developed further as advanced wound dressings in the future.
Collapse
Affiliation(s)
- Xuehao Tian
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing, 401120, China.
| | - Zhongxing Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Xia Song
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Toan Thang Phan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, 119228, Singapore; Cell Research Corporation Pte. Ltd., 048943, Singapore
| | - Jun Li
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing, 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
2
|
Altin Çelik P, Aytekin M. Extracellular matrix dynamics in a rat model of pulmonary arterial hypertension: unveiling the role of hyaluronan in disease pathology. J Hypertens 2025; 43:768-773. [PMID: 40079867 DOI: 10.1097/hjh.0000000000003967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/02/2025] [Indexed: 03/15/2025]
Abstract
OBJECTIVE We aimed to investigate the feasibility of conducting extracellular matrix studies within this rat model. MATERIALS AND METHODS This study involved 24 Sprague Dawley rats, divided into two groups. Group 1 served as the normoxia control, while Group 2 is SU-5416 pulmonary arterial hypertension (PAH) model. Pulmonary artery pressure (PAP) was measured in both groups using a micro-catheter Power Lab device. Hyaluronan (HA) plasma level was quantified through ELISA, and HA levels were determined via lung tissue immunostaining. Western blotting detected protein levels, and real-time RT-PCR assessed mRNA expressions for HAS1, HAS2, and HAS3 and hyal1 and hyal2. RESULTS HA plasma levels were markedly higher in PAH rats compared to controls (HA ng/ml, mean ± SD: PAH 3.8 ± 0.41, control 1.96 ± 0.31, P < 0.0015). Protein analysis showed no detection of HAS1 and HAS3 proteins in both groups, while HAS2 protein expression was notably higher in PAH rats than controls (HAS2 levels, mean ± SD: PAH 2.0 ± 0.5, control 0.86 ± 0.07, P = 0.0493). Hyal2 protein expression remained consistent between groups (Hyal2 levels, mean ± SD: PAH 1.41 ± 0.18, control 1.05 ± 0.14, P = 0.214). No mRNA expression of HAS1, HAS3, and Hyal1 were detected in both groups, Hyal2 expression was identified in both without differences. HAS2 mRNA expression was present in both groups, with a significantly higher increase observed in the hypoxia SU-5416 PAH rat model compared to controls. CONCLUSION Establishing an extracellular matrix profile in the rat model, resembling human PAH under hypoxia SU-5416 conditions, highlights the model's suitability for matrix studies.
Collapse
Affiliation(s)
| | - Metin Aytekin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Im SB, Song HN, Jeong TK, Kim N, Kim K, Park SJ, Oh BH. Cryo-EM Structure of Human Hyaluronidase PH-20. Proteins 2025; 93:1067-1073. [PMID: 39722545 DOI: 10.1002/prot.26788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
PH-20 is a specific type of hyaluronidase that plays a critical role in the fertilization process by facilitating the initial binding of sperm to the glycoprotein layer surrounding the oocyte and subsequently breaking down hyaluronic acid polymers in the cumulus cell layer. PH-20 contains an epidermal growth factor (EGF)-like domain, which may be involved in the recognition of the glycoprotein layer in addition to the catalytic domain. Herein, we report the structure of human PH-20 determined by cryogenic electron microscopy. Comparative analyses of the PH-20 structure with two other available hyaluronidase structures reveal a general similarity in the central catalytic domains, including the conservation of catalytically essential residues at the equivalent spatial positions. However, unique difference is found in the EGF-like domain, characterized by a longer sequence that is likely to form a flexibly anchored β-hairpin containing a disulfide bond.
Collapse
Affiliation(s)
- Seong-Bin Im
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | | - Tae-Kyeong Jeong
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Nayun Kim
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | | | | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Graduate Program of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
4
|
McGee Talkington G, Ouvrier B, White AL, Hall G, Umar M, Bix GJ. Imaging Interstitial Fluids and Extracellular Matrix in Cerebrovascular Disorders: Current Perspectives and Clinical Applications. Neuroimaging Clin N Am 2025; 35:181-189. [PMID: 40210376 PMCID: PMC11995915 DOI: 10.1016/j.nic.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
This article provides a comprehensive review of current neuroimaging techniques for visualizing and quantifying extracellular matrix (ECM) components and interstitial fluid (ISF) dynamics in cerebrovascular disorders. It examines how alterations in ECM composition and ISF movement patterns correlate with various cerebrovascular pathologies, including ischemic stroke, frontotemporal dementia, cerebral small vessel disease, Alzhheimer's disease, and vascular dementia. The review emphasizes novel imaging markers specific to ECM/ISF alterations and their utility in differentiating various cerebrovascular pathologies. Special attention is given to the clinical applications of these imaging techniques for early disease detection, monitoring progression, and guiding therapeutic interventions.
Collapse
Affiliation(s)
- Grant McGee Talkington
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA.
| | - Blake Ouvrier
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
| | - Amanda Louise White
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gregory Hall
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Meenakshi Umar
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gregory Jaye Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA; Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
5
|
Wang X, Liu X, Li C, Li J, Qiu M, Wang Y, Han W. Effects of molecular weights on the bioactivity of hyaluronic acid: A review. Carbohydr Res 2025; 552:109472. [PMID: 40186950 DOI: 10.1016/j.carres.2025.109472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Hyaluronic acid (HA), the only non-sulfated glycosaminoglycan (GAG), is essential for maintaining the extracellular matrix's structural and functional integrity. Its bioactivity is determined by interactions between HA fragments of different molecular weights and specific receptors, which influence downstream signaling pathways. This review systematic summarizes the correlation between HA molecular weight dynamic changes and bioactivities focusing on imbalance of HA degradation and metabolism due to various pathological processes. Outline the core transduction mechanisms of HA receptors and signaling pathways, and innovatively hypothesize that discrepancies in cellular distribution with HA-molecular weights dependent lead to the activation of different signaling pathways from the perspective of molecular weight affecting cellular distribution. Finally, it addresses challenges in studying HA's biofunctions and provides new perspectives for future research.
Collapse
Affiliation(s)
- Xiaoyun Wang
- College of Life Science and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China; Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266024, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaojun Liu
- College of Life Science and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China; Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266024, China
| | - Chao Li
- College of Life Science and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China; Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266024, China
| | - Jiangtao Li
- College of Life Science and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Yongliang Wang
- College of Life Science and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China; Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266024, China.
| | - Wenwei Han
- College of Life Science and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China; Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266024, China.
| |
Collapse
|
6
|
Wang X, Huang Y, Yang Y, Tian X, Jin Y, Jiang W, He H, Xu Y, Liu Y. Polysaccharide-based biomaterials for regenerative therapy in intervertebral disc degeneration. Mater Today Bio 2025; 30:101395. [PMID: 39759846 PMCID: PMC11699348 DOI: 10.1016/j.mtbio.2024.101395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
Intervertebral disc (IVD) degeneration represents a significant cause of chronic back pain and disability, with a substantial impact on the quality of life. Conventional therapeutic modalities frequently address the symptoms rather than the underlying etiology, underscoring the necessity for regenerative therapies that restore disc function. Polysaccharide-based materials, such as hyaluronic acid, alginate, chitosan, and chondroitin sulfate, have emerged as promising candidates for intervertebral disc degeneration (IVDD) therapy due to their biocompatibility, biodegradability, and ability to mimic the native extracellular matrix (ECM) of the nucleus pulposus (NP). These materials have demonstrated the capacity to support cell viability, facilitate matrix production, and alleviate inflammation in vitro and in vivo, thus supporting tissue regeneration and restoring disc function in comparison to conventional treatment. Furthermore, polysaccharide-based hydrogels have demonstrated the potential to deliver bioactive molecules, including growth factors, cytokines and anti-inflammatory drugs, directly to the degenerated disc environment, thereby enhancing therapeutic outcomes. Therefore, polysaccharide-based materials provide structural support and facilitate the regeneration of native tissue, representing a versatile and effective approach for the treatment of IVDD. Despite their promise, challenges such as limited long-term stability, potential immunogenicity, and the difficulty in scaling up production for clinical use remain. This review delineates the potential of various polysaccharides during the fabrication of hydrogels and scaffolds for disc regeneration, guiding and inspiring future research to focus on optimizing these materials for clinical translation for IVDD repair and regeneration.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Yixue Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Yilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Xin Tian
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41346, Sweden
| | - Yesheng Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Weimin Jiang
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Hanliang He
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Yong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Yijie Liu
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| |
Collapse
|
7
|
Elnaggar YSR, Othman AMM, Farahat A, Essawy M, Omar SI. Formulation and clinical evaluation of hyaluronic acid nanogel in treatment of tear trough: nano-flipping from injectable fillers to topical nanofillers. Pharm Dev Technol 2025; 30:150-159. [PMID: 39873185 DOI: 10.1080/10837450.2025.2459908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
Tear trough deformity (TTD) is a significant cosmetic concern, with current treatments relying primarily on invasive injectable fillers, which are costly and carry risks of complications. Despite the widespread use of hyaluronic acid (HA) in cosmetic applications, its poor dermal permeation has limited the development of effective topical fillers for TTD. This study aim to develop and evaluate a novel hyaluronic acid nanogel (nanofiller, NF) as a non-invasive topical filler for TTD. The hyaluronic acid NF was formulated and characterized for size, zeta potential, and skin permeation using the Franz diffusion method. The nanofiller demonstrated a particle size of 213.28 ± 4.15 nm and a zeta potential of -22.1 ± 1.07 mV, with a tenfold superior permeation compared to conventional HA gel. Thirty adult female patients aged 21-50 years with TTD were enrolled in a clinical trial and randomly assigned to receive either the NF or a conventional HA gel (control). Participants were randomly assigned to receive either the NF or a conventional HA gel (control). Clinical evaluation included subjective assessments and objective photomorphometric measurements of TTD parameters such as skin roughness (fine lines), indentation index, mean density, and percentage of the affected area. The NF group showed a significant improvement in TTD parameters, including up to a 40-fold reduction in skin roughness and indentation index, with 100% patient satisfaction and no adverse effects, compared to the control group. "To conclude; this study demonstrates the efficacy and safety of the HA nanofiller as the first effective topical treatment for TTD, offering a non-invasive alternative to injectable fillers.
Collapse
Affiliation(s)
- Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Head of Research and International Publishing Administration (RIPA), Pharos University in Alexandria, Alexandria, Egypt
| | | | - Ashraf Farahat
- Department of Physics, College of Engineering and Physics, King Fahd University of Petroleum, and Minerals, Dhahran, Saudi Arabia
- Centre of Research Excellence in Aviation and Space Exploration, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- Centre of Research Excellence in Renewable Energy, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Marwa Essawy
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Shaimaa Ismail Omar
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Alexandria University, Egypt
| |
Collapse
|
8
|
Le Nguyen NL, Tichacek O, Jungwirth P, Martinez-Seara H, Mason PE, Duboué-Dijon E. Ion pairing in aqueous tetramethylammonium-acetate solutions by neutron scattering and molecular dynamics simulations. Phys Chem Chem Phys 2025; 27:2553-2562. [PMID: 39807025 DOI: 10.1039/d4cp04312j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Tetramethylammonium (TMA) is a ubiquitous cationic motif in biochemistry, found in the charged choline headgroup of membrane phospholipids and in tri-methylated lysine residues, which modulates histone-DNA interactions and impacts epigenetic mechanisms. TMA interactions with anionic species, particularly carboxylate groups of amino acid residues and extracellular sugars, are of substantial biological relevance, as these interactions mediate a wide range of cellular processes. This study investigates the molecular interactions between TMA and acetate, representing carboxylate-containing groups, using neutron scattering experiments complemented by force fields and ab initio molecular dynamics (MD) simulations. Neutron diffraction with isotopic substitution reveals specific ion pairing signatures between TMA and acetate, with simulations providing a detailed interpretation of the ion pairing structures. Force fields, notably CHARMM36 with the electronic continuum correction (ECC) (by a factor of 0.85) and AMBER99SB, capture essential pairing characteristics, but only revPBE-based ab initio MD simulations accurately model specific experimental features such as the low Q peak intensity in reciprocal space. Our study delivers a refined molecular model of TMA-carboxylate interactions, guiding the selection of force fields for complex biological systems where such interactions are of significant importance.
Collapse
Affiliation(s)
- Ngoc Lan Le Nguyen
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542, 160 00 Praha 6, Czech Republic.
| | - Ondrej Tichacek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542, 160 00 Praha 6, Czech Republic.
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542, 160 00 Praha 6, Czech Republic.
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542, 160 00 Praha 6, Czech Republic.
| | - Philip E Mason
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542, 160 00 Praha 6, Czech Republic.
| | - Elise Duboué-Dijon
- Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| |
Collapse
|
9
|
Simpson MA. Impacts of Hyaluronan on Extracellular Vesicle Production and Signaling. Cells 2025; 14:139. [PMID: 39851567 PMCID: PMC11763598 DOI: 10.3390/cells14020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Hyaluronan (HA) is a critical component of cell and tissue matrices and an important signaling molecule. The enzymes that synthesize and process HA, as well as the HA receptors through which the signaling properties of HA are transmitted, have been identified in extracellular vesicles and implicated in context-specific processes associated with health and disease. The goal of this review is to present a comprehensive summary of the research on HA and its related receptors and enzymes in extracellular vesicle biogenesis and the cellular responses to vesicles bearing these extracellular matrix modulators. When present in extracellular vesicles, HA is assumed to be on the outside of the vesicle and is sometimes found associated with CD44 or the HAS enzyme itself. Hyaluronidases may be inside the vesicles or present on the vesicle surface via a transmembrane domain or GPI linkage. The implication of presenting these signals in extracellular vesicles is that there is a greater range of systemic distribution and more complex delivery media than previously thought for secreted HA or hyaluronidase alone. Understanding the context for these HA signals offers new diagnostic and therapeutic insight.
Collapse
Affiliation(s)
- Melanie A Simpson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| |
Collapse
|
10
|
Elli S, Sisto T, Nizzolo S, Freato N, Bertocchi L, Bianchini G, Yates EA, Guerrini M. Modeling the Detailed Conformational Effects of the Lactosylation of Hyaluronic Acid. Biomacromolecules 2025; 26:541-555. [PMID: 39680036 DOI: 10.1021/acs.biomac.4c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Hyaluronic acid (HA) is a natural and biocompatible polysaccharide that is able to interact with CD44 receptors to regulate inflammation, fibrosis, and tissue reconstruction. It is a suitable chemical scaffold for drug delivery that can be functionalized with pharmacophores and/or vectorizable groups. The derivatization of HA is achieved to varying extents by reacting 1-amino-1-deoxy-lactitol via the carboxyl group to form amide linkages, giving rise to the grafted polymer, HYLACH. This retains the broad properties of HA, even though, as in most HA-grafted polymers, the detailed conformational effects of such substitutions, while crucial in the design or optimization of drug delivery systems, remain unknown. Here, the conformation, size, secondary structure, hydrogen bond network, and hydration features of lactosylated HA derivatives were evaluated by using multiple independent molecular dynamics simulations. This revealed subtle but nevertheless significant changes in the HA scaffold, establishing the density of grafting as the key parameter determining its properties.
Collapse
Affiliation(s)
- Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni', via G. Colombo 81, Milano 20133, Italy
| | - Tommaso Sisto
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni', via G. Colombo 81, Milano 20133, Italy
| | - Sofia Nizzolo
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni', via G. Colombo 81, Milano 20133, Italy
- University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, Milano 20126, Italy
| | | | | | | | - Edwin A Yates
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7BE, U.K
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme,Staffordshire ST5 5BG, U.K
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni', via G. Colombo 81, Milano 20133, Italy
| |
Collapse
|
11
|
Jelušić D, Komar Milas K, Čandrlić M, Butorac Prpić I, Trajkovski B, Cvijanović Peloza O, Perić Kačarević Ž. Histological and histomorphometric evaluation of natural bovine bone substitute with hyaluronate in socket preservation-a report of three cases. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:3. [PMID: 39777572 PMCID: PMC11706844 DOI: 10.1007/s10856-024-06844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025]
Abstract
Tooth extraction is physiologically followed by resorption of alveolar bone. Surgical method which aims to minimise this reduction in alveolar bone with a goal to provide enough bone volume for dental implant insertion is called socket preservation. The purpose of this article was to asses clinical, histomorphometric and histological results of socket preservation conducted with natural bovine bone substitute with hyaluronate. Three patients with one or more hopeless teeth in posterior region planned for extraction and implant placement were included in these case reports. After atraumatic extractions, empty sockets were filled with the bovine xenograft with hyaluronate, and then covered with collagen sponge. After 4-7.5 months the samples for biopsy were taken and then implants were inserted. The augmented sites healed uneventfully and without any complications. The histological specimens demonstrated new bone formation and osteoclastic activity around the biomaterial, as well as blood vessels in soft tissue. Histomorphometrically, formation of new bone averaged 24.8% ± 4.7% (mean ± standard deviation) in bone biopsies taken from the center of the augmented site, while the residual biomaterial averaged 52.7% ± 4.9% and the soft tissue averaged 22.6% ± 4%. In conclusion, the natural bovine bone substitute with hyaluronate demonstrated excellent osteoconductive potential for bone regeneration.
Collapse
Affiliation(s)
- Damir Jelušić
- Private practice Institute Dentalna Jelušić, Matuljska cesta 1, Opatija, Croatia
| | - Katarina Komar Milas
- Interdisciplinary University Study of Molecular Biosciences, J.J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Marija Čandrlić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Ivana Butorac Prpić
- Interdisciplinary University Study of Molecular Biosciences, J.J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Branko Trajkovski
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
- Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon
| | - Olga Cvijanović Peloza
- Department of Anatomy, Medical Faculty of the University of Rijeka, 51 000, Rijeka, Croatia
| | - Željka Perić Kačarević
- Department of Anatomy, Histology, Embriology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Osijek, Croatia.
| |
Collapse
|
12
|
Lee JK, Guevara V, Akanbi OD, Hoff JD, Kupor D, Brannon ER, Eniola-Adefeso O. Deciphering neutrophil dynamics: Enhanced phagocytosis of elastic particles and impact on vascular-targeted carrier performance. SCIENCE ADVANCES 2025; 11:eadp1461. [PMID: 39752488 PMCID: PMC11698085 DOI: 10.1126/sciadv.adp1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
Particle elasticity has widely been established to substantially influence immune cell clearance and circulation time of vascular-targeted carriers (VTCs). However, prior studies have primarily investigated interactions with macrophages, monocytic cell lines, and in vivo murine models. Interactions between particles and human neutrophils remain largely unexplored, although they represent a critical aspect of VTC performance. Here, we explore the impact of particle elasticity on primary human neutrophil phagocytosis using polyethylene glycol-based particles of different elastic moduli. We found that neutrophils effectively phagocytose deformable particles irrespective of their modulus, indicating a departure from established phagocytosis trends seen with other types of immune cells. These findings highlight the observed phenotypic difference between different types of phagocytes and underscore the need to characterize VTC performance using various cell types and animal models that represent human systems closely.
Collapse
Affiliation(s)
- Jonathan K. Lee
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Valentina Guevara
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Oluwaseun D. Akanbi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - J. Damon Hoff
- Small Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Kupor
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emma R. Brannon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
13
|
Buraschi S, Pascal G, Liberatore F, Iozzo RV. Comprehensive investigation of proteoglycan gene expression in breast cancer: Discovery of a unique proteoglycan gene signature linked to the malignant phenotype. PROTEOGLYCAN RESEARCH 2025; 3:e70014. [PMID: 40066261 PMCID: PMC11893098 DOI: 10.1002/pgr2.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/06/2024] [Indexed: 03/14/2025]
Abstract
Solid tumors present a formidable challenge in oncology, necessitating innovative approaches to improve therapeutic outcomes. Proteoglycans, multifaceted molecules within the tumor microenvironment, have garnered attention due to their diverse roles in cancer progression. Their unique ability to interact with specific membrane receptors, growth factors, and cytokines provides a promising avenue for the development of recombinant proteoglycan-based therapies that could enhance the precision and efficacy of cancer treatment. In this study, we performed a comprehensive analysis of the proteoglycan gene landscape in human breast carcinomas. Leveraging the available wealth of genomic and clinical data regarding gene expression in breast carcinoma and using a machine learning model, we identified a unique gene expression signature composed of five proteoglycans differentially modulated in the tumor tissue: Syndecan-1 and asporin (upregulated) and decorin, PRELP and podocan (downregulated). Additional query of the breast carcinoma data revealed that serglycin, previously shown to be increased in breast carcinoma patients and mouse models and to correlate with a poor prognosis, was indeed decreased in the vast majority of breast cancer patients and its levels inversely correlated with tumor progression and invasion. This proteoglycan gene signature could provide novel diagnostic capabilities in breast cancer biology and highlights the need for further utilization of publicly available datasets for the clinical validation of preclinical experimental results.
Collapse
Affiliation(s)
- Simone Buraschi
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Gabriel Pascal
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Federico Liberatore
- School of Computer Science and Informatics, Cardiff University, Cardiff CF24 4AG, UK
| | - Renato V Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
14
|
Cylwik B, Gan K, Kazberuk M, Gruszewska E, Panasiuk A, Chrostek L. Diagnostic Usefulness of Serum Hyaluronic Acid in Patients with SARS-CoV-2 Infection. J Clin Med 2024; 13:7471. [PMID: 39685929 DOI: 10.3390/jcm13237471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/06/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objective: The aim of our study is to comprehensively assess the diagnostic usefulness of serum hyaluronic acid (HA) determination in COVID-19 patients. Methods: The study group included 87 patients with COVID-19 disease and 45 healthy subjects. The HA concentration was measured using the immunochemical method. Results: The serum HA concentration was significantly higher in the COVID-19 patients before admission to hospital than that in the controls (p < 0.001). Differences were found in HA levels between the groups categorized according to disease severity (p = 002), being significantly higher in patients with critical as compared to moderate disease severity (p < 0.001). The HA concentration varied depending on the type of oxygen therapy (p = 0.004). It was significantly higher in patients on a ventilator than in those without oxygen therapy (p = 0.002). In patients who qualified for the steroid treatment and immunotherapy, the HA levels were significantly higher compared to those who did not qualify for such therapies (p = 0.043, p = 0.049, respectively). The HA levels were significantly higher in patients with cytokine storm compared to those without it (p < 0.001) and were significantly more elevated in non-survivors than in survivors (p < 0.001). HA had an excellent diagnostic power (AUC = 0.994) with sensitivity (83.3%) and specificity (97.8%) in identifying patients with critical disease severity and an excellent diagnostic power (AUC = 0.932) with sensitivity (88.2%) and specificity (95.6%) in identifying non-surviving patients. Conclusions: In summary, the results of our study indicate that HA is closely associated with severe SARS-CoV-2 infection and could be used as a novel serum biomarker to predict the risk of disease progression and as a predictor of COVID-19 mortality.
Collapse
Affiliation(s)
- Bogdan Cylwik
- Department of Paediatric Laboratory Diagnostics, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Kacper Gan
- Department of Gastroenterology, Hepatology and Internal Diseases, Provincial Welded Hospital, 15-278 Bialystok, Poland
| | - Marcin Kazberuk
- Department of Gastroenterology, Hepatology and Internal Diseases, Provincial Welded Hospital, 15-278 Bialystok, Poland
| | - Ewa Gruszewska
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Anatol Panasiuk
- Department of Gastroenterology, Hepatology and Internal Diseases, Provincial Welded Hospital, 15-278 Bialystok, Poland
- Department of Clinical Medicine, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Lech Chrostek
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
15
|
Kim SY, Muthuramalingam K, Lee HJ. Effects of fragmented polycaprolactone electrospun nanofiber in a hyaluronic acid hydrogel on fibroblasts. Tissue Cell 2024; 91:102582. [PMID: 39413457 DOI: 10.1016/j.tice.2024.102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Hyaluronic acid (HA) hydrogels have shown promise as biomaterials for soft tissue engineering applications due to their biocompatibility and ability to mimic the extracellular matrix (ECM). However, their limited cell adhesion properties and the need for improved crosslinking methods have hindered their widespread use. In this study, we developed an ECM-mimicking HA hydrogel reinforced with alkaline hydrolyzed (1 M NaOH) fragmented (1.5 cm×1.5 cm) electrospun polycaprolactone (PCL) fibers to enhance cell adhesion and mechanical properties of HA hydrogel. Formation of HA hydrogel was achieved through a thiol-ene click reaction, which is initiated by exposure to visible blue light-activated biocompatible photoinitiator, riboflavin phosphate. The incorporation of alkaline hydrolyzed PCL fiber fragments (PFF) (0 %, 0.1 %, and 1 % w/v) into HA hydrogel precursor solution significantly increased the mechanical stiffness of the HA hydrogel, with the storage modulus ranging from 18.6 ± 0.7 Pa to 216.0 ± 38.2 Pa. The cytocompatibility of the PCL fiber-reinforced HA hydrogel was evaluated using NIH/3T3 fibroblasts. The results demonstrated improved cell adhesion, proliferation, and enhanced cellular functions, including increased production of glycosaminoglycans (GAGs) and collagen, in the PCL fiber-reinforced HA hydrogel compared to the control HA hydrogel. These findings suggest that the developed PCL fiber-reinforced HA hydrogel system, with tunable mechanical properties and excellent cytocompatibility, has potential applications in soft tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Seo Young Kim
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Karthika Muthuramalingam
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| | - Hyun Jong Lee
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
16
|
Xu J, Zou Z, Liu W, Zhang Q, Shen J, Hao F, Chen G, Yu D, Li Y, Zhang Z, Qin Y, Yang R, Wang Y, Duan L. HAPLN3 p.T34A contributes to incomplete penetrance of moyamoya disease in Chinese carrying RNF213 p.R4810K. Eur J Neurol 2024; 31:e16473. [PMID: 39315749 PMCID: PMC11555006 DOI: 10.1111/ene.16473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND AND PURPOSE The penetrance of the RNF213 p.R4810K, a founder mutation of moyamoya disease (MMD), is estimated to be only 1/150-1/300. However, the factors affecting its penetrance remain unclear. Therefore, our study aims to identify modifier genes associated with the incomplete penetrance of this founder mutation. METHODS Whole-exome sequencing (WES) was performed on 36 participants, including 22 MMD patients and 14 non-MMD controls with RNF213 p.R4810K mutation. Fisher's exact test was used to assess the presence of genetic variants that differed significantly between MMD patients and non-MMD controls. In order to exclude false-positive results, another 55 carriers were included to perform Fisher's exact test for the selected sites in the WES discovery stage. Subsequently, human brain microvascular endothelial cells were transfected with wild-type and mutant HAPLN3 for tube formation assays and western blotting to explore the impact of candidate genes on angiogenesis. RESULTS Analysis of variants from WES data revealed a total of 12 non-synonymous variants. Through bioinformatics analysis, the focus was on the HAPLN3 p.T34A variant with a significant p value of 0.00731 in Fisher's exact test. Validation through Sanger sequencing confirmed the presence of this variant in the WES data. In vitro experiments revealed that silencing HAPLN3 and transfecting HAPLN3 p.T34A significantly enhanced tube formation and increased the relative protein expression of vascular endothelial growth factor in endothelial cells. CONCLUSIONS These results suggest that HAPLN3 may function as a modifier gene of RNF213 p.R4810K, promoting the development of MMD and contributing to the incomplete penetrance of MMD founder mutations.
Collapse
Affiliation(s)
- Jun Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Department of Nutrition and Food Hygiene, School of Public HealthChina Medical UniversityShenyangChina
| | - Zhengxing Zou
- Department of Neurosurgery, the Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Wanyang Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Department of Nutrition and Food Hygiene, School of Public HealthChina Medical UniversityShenyangChina
| | - Qian Zhang
- Department of Neurosurgery, the Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Juan Shen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Department of Nutrition and Food Hygiene, School of Public HealthChina Medical UniversityShenyangChina
| | - Fangbin Hao
- Department of Neurosurgery, the Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Gan Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Department of Nutrition and Food Hygiene, School of Public HealthChina Medical UniversityShenyangChina
| | - Dan Yu
- Department of Neurosurgery, the Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Yunzhu Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Department of Nutrition and Food Hygiene, School of Public HealthChina Medical UniversityShenyangChina
| | - Zhengshan Zhang
- Department of Neurosurgery, the Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Yuchen Qin
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Department of Nutrition and Food Hygiene, School of Public HealthChina Medical UniversityShenyangChina
| | - Rimiao Yang
- Department of Neurosurgery, the Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Yue Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Department of Nutrition and Food Hygiene, School of Public HealthChina Medical UniversityShenyangChina
| | - Lian Duan
- Department of Neurosurgery, the Fifth Medical CentreChinese PLA General HospitalBeijingChina
| |
Collapse
|
17
|
Simińska-Stanny J, Podstawczyk D, Delporte C, Nie L, Shavandi A. Hyaluronic Acid Role in Biomaterials Prevascularization. Adv Healthc Mater 2024; 13:e2402045. [PMID: 39254277 DOI: 10.1002/adhm.202402045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 09/11/2024]
Abstract
Tissue vascularization is a major bottleneck in tissue engineering. In this review, the state of the art on the intricate role of hyaluronic acid (HA) in angiogenesis is explored. HA plays a twofold role in angiogenesis. First, when released as a free polymer in the extracellular matrix (ECM), HA acts as a signaling molecule triggering multiple cascades that foster smooth muscle cell differentiation, migration, and proliferation thereby contributing to vessel wall thickening. Simultaneously, HA bound to the plasma membrane in the pericellular space functions as a polymer block, participating in vessel formation. Starting with the HA origins in native vascular tissues, the approaches aimed at achieving vascularization in vivo are reviewed. The significance of HA molecular weight (MW) in angiogenesis and the challenges associated with utilizing HA in vascular tissue engineering (VTE) are conscientiously addressed. The review finally focuses on a thorough examination and comparison of the diverse strategies adopted to harness the benefits of HA in the vascularization of bioengineered materials. By providing a nuanced perspective on the multifaceted role of HA in angiogenesis, this review contributes to the ongoing discourse in tissue engineering and advances the collective understanding of optimizing vascularization processes assisted by functional biomaterials.
Collapse
Affiliation(s)
- Julia Simińska-Stanny
- 3BIO-BioMatter, Faculty of Engineering, Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, Brussels, 1050, Belgium
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, Wroclaw, 50-373, Poland
| | - Christine Delporte
- Laboratoire de Biochimie physiopathologique et nutritionnelle (LBNP), Faculté de Médecine, Université libre de Bruxelles (ULB), Campus Erasme - CP 611, Route de Lennik 808, Bruxelles, 1070, Belgium
| | - Lei Nie
- College of Life Science, Xinyang Normal University, Xinyang, 464031, China
| | - Armin Shavandi
- 3BIO-BioMatter, Faculty of Engineering, Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, Brussels, 1050, Belgium
| |
Collapse
|
18
|
Hu T, Fang J, Shen Y, Li M, Wang B, Xu Z, Hu W. Advances of naturally derived biomedical polymers in tissue engineering. Front Chem 2024; 12:1469183. [PMID: 39635576 PMCID: PMC11614639 DOI: 10.3389/fchem.2024.1469183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
The extensive utilization of natural polymers in tissue engineering is attributed to their excellent biocompatibility, degradability, and resemblance to the natural extracellular matrix. These polymers have a wide range of applications such as delivering therapeutic medicine, detecting diseases, sensing biological substances, promoting tissue regeneration, and treating diseases. This is a brief review of current developments in the properties and uses of widely used biomedical polymers derived from nature. Additionally, it explores the correlation between the characteristics and functions of these materials in different biomedical applications and highlights the prospective direction for the advancement of natural polymer materials in tissue engineering.
Collapse
Affiliation(s)
- Tao Hu
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, China
| | - Jie Fang
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, China
- Shenzhen Youcare Medical Equipment Co. Ltd., Shenzhen, China
| | - Yang Shen
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, China
| | - Mingyang Li
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, China
| | - Zushun Xu
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, China
| | - Weikang Hu
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, China
| |
Collapse
|
19
|
Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol 2024; 25:865-885. [PMID: 39223427 PMCID: PMC11931590 DOI: 10.1038/s41580-024-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
20
|
Espona-Noguera A, Živanić M, Smits E, Bogaerts A, Privat-Maldonado A, Canal C. Unlocking Novel Anticancer Strategies: Bioactive Hydrogels for Local Delivery of Plasma-Derived Oxidants in an In Ovo Cancer Model. Macromol Biosci 2024; 24:e2400213. [PMID: 38899954 DOI: 10.1002/mabi.202400213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Cold atmospheric plasma (CAP) is a tool with the ability to generate reactive oxygen and nitrogen species (RONS), which can induce therapeutic effects like disinfection, wound healing, and cancer treatment. In the plasma oncology field, CAP-treated hydrogels (PTHs) are being explored for the local administration of CAP-derived RONS as a novel anticancer approach. PTHs have shown anticancer effects in vitro, however, they have not yet been studied in more relevant cancer models. In this context, the present study explores for the first time the therapeutic potential of PTHs using an advanced in ovo cancer model. PTHs composed of alginate (Alg), gelatin (Gel), Alg/Gel combination, or Alg/hyaluronic acid (HA) combination are investigated. All embryos survived the PTHs treatment, suggesting that the in ovo model could become a time- and cost-effective tool for developing hydrogel-based anticancer approaches. Results revealed a notable reduction in CD44+ cell population and their proliferative state for the CAP-treated Alg-HA condition. Moreover, the CAP-treated Alg-HA formulation alters the extracellular matrix composition, which may help combat drug-resistance. In conclusion, the present study validates the utility of in ovo cancer model for PTHs exploration and highlights the promising potential of Alg-based PTHs containing HA and CAP-derived RONS for cancer treatment.
Collapse
Affiliation(s)
- Albert Espona-Noguera
- Biomaterials, Biomechanics, and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, Barcelona, 08019, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, 08019, Spain
| | - Milica Živanić
- Biomaterials, Biomechanics, and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, Barcelona, 08019, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, 08019, Spain
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Antwerp, 2610, Belgium
| | - Evelien Smits
- Center for Oncological Research, Integrated Personalized and Precision Oncology Network, University of Antwerp, Antwerp, 2610, Belgium
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Antwerp, 2610, Belgium
| | - Angela Privat-Maldonado
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Antwerp, 2610, Belgium
| | - Cristina Canal
- Biomaterials, Biomechanics, and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, Barcelona, 08019, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, 08019, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos II, Barcelona, 28029, Spain
| |
Collapse
|
21
|
Ishii T, Hirai K, Higashi K, Aijima A, Yokota N, Toida T, Iwasaki Y, Ito R, Higashi N, Akiyama H. Novel simultaneous analysis of 18 types of glycosaminoglycan-derived disaccharides using 4-aminobenzoic acid ethyl ester derivatization by HPLC with fluorescence detection. Anal Bioanal Chem 2024; 416:6209-6221. [PMID: 39212700 DOI: 10.1007/s00216-024-05504-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Glycosaminoglycans (GAGs), including hyaluronic acid (HA), chondroitin sulfate (CS)/dermatan sulfate (DS), heparan sulfate (HS)/heparin (HP), and keratan sulfate (KS), play pivotal roles in living organisms. Generally, GAGs are analyzed after enzymatic digestion into unsaturated or saturated disaccharides. Due to high structural similarity between disaccharides, however, separation during analysis is challenging. Additionally, little is known about the structures of GAGs and their functional relationships. Elucidating the function of GAGs requires highly sensitive quantitative analytical methods. We developed a method for the simultaneous analysis of 18 types of disaccharides derived from HA (1 type), CS/DS (7 types), HS/HP (8 types), and KS (2 types) potentially detectable in analyses of human urine. The simple method involves HPLC separation with fluorescence detection following derivatization of GAG-derived disaccharides using 4-aminobenzoic acid ethyl ester (ABEE) as a pre-labeling agent and 2-picoline borane as a reductant. The ABEE derivatization reaction can be performed under aqueous conditions, and excess derivatization reagents can be easily, rapidly, and safely removed. This method enables highly sensitive simultaneous analysis of the 18 abovementioned types of GAG-derived disaccharides using HPLC with fluorescence detection in small amounts of urine (1 mL) in a single run. The versatile method described here could be applied to the analysis of GAGs in other biological samples.
Collapse
Affiliation(s)
- Takamasa Ishii
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Kengo Hirai
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Kyohei Higashi
- Department of Clinical and Analytical Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ayaka Aijima
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Nae Yokota
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Toshihiko Toida
- The Center for Preventive Medical Sciences, Chiba University, 1-8-1, Inohana, Chiba-Shi, Chiba, 260-8675, Japan
| | - Yusuke Iwasaki
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Rie Ito
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Nobuaki Higashi
- Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Hiroshi Akiyama
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan.
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki, Kanagawa, 210-9501, Japan.
| |
Collapse
|
22
|
Sabit H, Arneth B, Abdel-Ghany S, Madyan EF, Ghaleb AH, Selvaraj P, Shin DM, Bommireddy R, Elhashash A. Beyond Cancer Cells: How the Tumor Microenvironment Drives Cancer Progression. Cells 2024; 13:1666. [PMID: 39404428 PMCID: PMC11475877 DOI: 10.3390/cells13191666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
Liver cancer represents a substantial global health challenge, contributing significantly to worldwide morbidity and mortality. It has long been understood that tumors are not composed solely of cancerous cells, but also include a variety of normal cells within their structure. These tumor-associated normal cells encompass vascular endothelial cells, fibroblasts, and various inflammatory cells, including neutrophils, monocytes, macrophages, mast cells, eosinophils, and lymphocytes. Additionally, tumor cells engage in complex interactions with stromal cells and elements of the extracellular matrix (ECM). Initially, the components of what is now known as the tumor microenvironment (TME) were thought to be passive bystanders in the processes of tumor proliferation and local invasion. However, recent research has significantly advanced our understanding of the TME's active role in tumor growth and metastasis. Tumor progression is now known to be driven by an intricate imbalance of positive and negative regulatory signals, primarily influenced by specific growth factors produced by both inflammatory and neoplastic cells. This review article explores the latest developments and future directions in understanding how the TME modulates liver cancer, with the aim of informing the design of novel therapies that target critical components of the TME.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt; (H.S.); (E.F.M.)
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
| | - Engy F. Madyan
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt; (H.S.); (E.F.M.)
| | - Ashraf H. Ghaleb
- Department of Surgery, College of Medicine, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
- Department of Surgery, College of Medicine, Cairo University, Giza 12613, Egypt
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.S.); (R.B.)
| | - Dong M. Shin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Ramireddy Bommireddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.S.); (R.B.)
| | - Ahmed Elhashash
- Department of Biology, Texas A&M University, 3258 TAMU I, College Station, TX 77843-3258, USA
| |
Collapse
|
23
|
Yu S, Wang S, Wang X, Xu X. The axis of tumor-associated macrophages, extracellular matrix proteins, and cancer-associated fibroblasts in oncogenesis. Cancer Cell Int 2024; 24:335. [PMID: 39375726 PMCID: PMC11459962 DOI: 10.1186/s12935-024-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The extracellular matrix (ECM) is a complex, dynamic network of multiple macromolecules that serve as a crucial structural and physical scaffold for neighboring cells. In the tumor microenvironment (TME), ECM proteins play a significant role in mediating cellular communication between cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). Revealing the ECM modification of the TME necessitates the intricate signaling cascades that transpire among diverse cell populations and ECM proteins. The advent of single-cell sequencing has enabled the identification and refinement of specific cellular subpopulations, which has substantially enhanced our comprehension of the intricate milieu and given us a high-resolution perspective on the diversity of ECM proteins. However, it is essential to integrate single-cell data and establish a coherent framework. In this regard, we present a comprehensive review of the relationships among ECM, TAMs, and CAFs. This encompasses insights into the ECM proteins released by TAMs and CAFs, signaling integration in the TAM-ECM-CAF axis, and the potential applications and limitations of targeted therapies for CAFs. This review serves as a reliable resource for focused therapeutic strategies while highlighting the crucial role of ECM proteins as intermediates in the TME.
Collapse
Affiliation(s)
- Shuhong Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Siyu Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuanyu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
24
|
Joshi VM, Kandaswamy E, Germain JS, Schiavo JH, Fm HS. Effect of hyaluronic acid on palatal wound healing: A systematic review. Clin Oral Investig 2024; 28:565. [PMID: 39358570 DOI: 10.1007/s00784-024-05955-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVES To evaluate the efficacy of topically applied hyaluronic acid on wound healing (patient-reported outcomes and clinical healing) after a palatal autogenous gingival graft is harvested. MATERIALS AND METHODS A systematic search was performed in April 2024 in eleven electronic databases. Two investigators independently screened the references for inclusion. Outcomes of interest included postoperative pain, analgesic consumption, complete epithelialization, and color match, which were synthesized using narrative synthesis. RESULTS A total of 535 results were identified and eight articles were included in the systematic review. Hyaluronic acid use on the palatal donor site had a better response to healing and wound size compared to the control sites with no agent applied. Hyaluronic acid demonstrated a positive effect in the form of complete epithelialization, and color match, with improved patient-reported outcomes such as post-operative pain. CONCLUSION Within the limitations of this systematic review, it can be concluded that hyaluronic acid shows a strong potential to improve patient-reported outcomes and clinical wound healing at the graft donor site on the palate. Future studies are required to clarify the optimal concentration, frequency of application, and synergistic effect when HA is combined with other interventions. CLINICAL RELEVANCE Within the limitations of this systematic review, it can be concluded that hyaluronic acid shows a strong potential to improve patient-reported outcomes and clinical wound healing at the graft donor site on the palate. Future studies are required to clarify the optimal concentration, frequency of application, and synergistic effect when HA is combined with other interventions.
Collapse
Affiliation(s)
- Vinayak M Joshi
- Department of Periodontics, School of Dentistry, Louisiana State University Health Sciences Center, 1100 Florida Avenue, New Orleans, LA, 70119, USA
| | - Eswar Kandaswamy
- Department of Periodontics, School of Dentistry, Louisiana State University Health Sciences Center, 1100 Florida Avenue, New Orleans, LA, 70119, USA.
| | - Jeanne St Germain
- Department of Periodontics, School of Dentistry, Louisiana State University Health Sciences Center, 1100 Florida Avenue, New Orleans, LA, 70119, USA
| | - Julie H Schiavo
- Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | | |
Collapse
|
25
|
Wang S, Yang B, Mu H, Dong W, Yang B, Wang X, Yu W, Dong Z, Wang J. PTX3 promotes cementum formation and cementoblast differentiation via HA/ITGB1/FAK/YAP1 signaling pathway. Bone 2024; 187:117199. [PMID: 38992453 DOI: 10.1016/j.bone.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Cementum is a vital component of periodontium, yet its regeneration remains a challenge. Pentraxin 3 (PTX3) is a multifunctional glycoprotein involved in extracellular matrix remodeling and bone metabolism regulation. However, the role of PTX3 in cementum formation and cementoblast differentiation has not been elucidated. In this study, we initially observed an increase in PTX3 expression during cementum formation and cementoblast differentiation. Then, overexpression of PTX3 significantly enhanced the differentiation ability of cementoblasts. While conversely, PTX3 knockdown exerted an inhibitory effect. Moreover, in Ptx3-deficient mice, we found that cementum formation was hampered. Furthermore, we confirmed the presence of PTX3 within the hyaluronan (HA) matrix, thereby activating the ITGB1/FAK/YAP1 signaling pathway. Notably, inhibiting any component of this signaling pathway partially reduced the ability of PTX3 to promote cementoblast differentiation. In conclusion, our study indicated that PTX3 promotes cementum formation and cementoblast differentiation, which is partially dependent on the HA/ITGB1/FAK/YAP1 signaling pathway. This research will contribute to our understanding of cementum regeneration after destruction.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Beining Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Hailin Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Baochen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xinyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wenqian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhipeng Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
26
|
Rosales P, Vitale D, Icardi A, Sevic I, Alaniz L. Role of Hyaluronic acid and its chemical derivatives in immunity during homeostasis, cancer and tissue regeneration. Semin Immunopathol 2024; 46:15. [PMID: 39240397 DOI: 10.1007/s00281-024-01024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Over the last few decades, scientists have recognized the critical role that various components of the extracellular matrix (ECM) play in maintaining homeostatic immunity. Besides, dysregulation in the synthesis or degradation levels of these components directly impacts the mechanisms of immune response during tissue injury caused by tumor processes or the regeneration of the tissue itself in the event of damage. ECM is a complex network of protein compounds, proteoglycans and glycosaminoglycans (GAGs). Hyaluronic acid (HA) is one of the major GAGs of this network, whose metabolism is strictly physiologically regulated and quickly altered in injury processes, affecting the behavior of different cells, from stem cells to differentiated immune cells. In this revision we discuss how the native or chemically modified HA interacts with its specific receptors and modulates intra and intercellular communication of immune cells, focusing on cancer and tissue regeneration conditions.
Collapse
Affiliation(s)
- Paolo Rosales
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina
| | - Daiana Vitale
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina
| | - Antonella Icardi
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina
| | - Ina Sevic
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina.
| |
Collapse
|
27
|
Singh A, Arora A, John OO. CD44 as the Target Site for Hyaluronic Acid in Favor of Colitis Management. LETT DRUG DES DISCOV 2024; 21:2189-2194. [DOI: 10.2174/1570180820666230511155747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 01/05/2025]
Affiliation(s)
- Amandeep Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Akshita Arora
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Okesanya Olalekan John
- Department of Medical
Laboratory Science, Neuropsychiatric Hospital Aro, Sacred Heart Hospital, Abeokuta, Nigeria
| |
Collapse
|
28
|
Rampratap P, Lasorsa A, Arunachalam A, Kamperman M, Walvoort MTC, van der Wel PCA. Resolving Atomic-Level Dynamics and Interactions of High-Molecular-Weight Hyaluronic Acid by Multidimensional Solid-State NMR. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43317-43328. [PMID: 39121380 PMCID: PMC11345730 DOI: 10.1021/acsami.4c08428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 08/11/2024]
Abstract
High-molecular-weight (HMW) hyaluronic acid (HA) is a highly abundant natural polysaccharide and a fundamental component of the extracellular matrix (ECM). Its size and concentration regulate tissues' macro- and microenvironments, and its upregulation is a hallmark feature of certain tumors. Yet, the conformational dynamics of HMW-HA and how it engages with the components of the ECM microenvironment remain poorly understood at the molecular level. Probing the molecular structure and dynamics of HMW polysaccharides in a hydrated, physiological-like environment is crucial and also technically challenging. Here, we deploy advanced magic-angle spinning (MAS) solid-state NMR spectroscopy in combination with isotopic enrichment to enable an in-depth study of HMW-HA to address this challenge. This approach resolves multiple coexisting HA conformations and dynamics as a function of environmental conditions. By combining 13C-labeled HA with unlabeled ECM components, we detect by MAS NMR HA-specific changes in global and local conformational dynamics as a consequence of hydration and ECM interactions. These measurements reveal atom-specific variations in the dynamics and structure of the N-acetylglucosamine moiety of HA. We discuss possible implications for interactions that stabilize the structure of HMW-HA and facilitate its recognition by HA-binding proteins. The described methods apply similarly to the studies of the molecular structure and dynamics of HA in tumor contexts and in other biological tissues as well as HMW-HA hydrogels and nanoparticles used for biomedical and/or pharmaceutical applications.
Collapse
Affiliation(s)
- Pushpa Rampratap
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Alessia Lasorsa
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Abinaya Arunachalam
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Marleen Kamperman
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Marthe T. C. Walvoort
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Patrick C. A. van der Wel
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| |
Collapse
|
29
|
Rossi A, Furlani F, Bassi G, Cunha C, Lunghi A, Molinari F, Teran FJ, Lista F, Bianchi M, Piperno A, Montesi M, Panseri S. Contactless magnetically responsive injectable hydrogel for aligned tissue regeneration. Mater Today Bio 2024; 27:101110. [PMID: 39211510 PMCID: PMC11360152 DOI: 10.1016/j.mtbio.2024.101110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 09/04/2024] Open
Abstract
Cellular alignment plays a pivotal role in several human tissues, including skeletal muscle, spinal cord and tendon. Various techniques have been developed to control cellular alignment using 3D biomaterials. However, the majority of 3D-aligned scaffolds require invasive surgery for implantation. In contrast, injectable hydrogels provide a non-invasive delivery method, gaining considerable attention for the treatment of diverse conditions, including osteochondral lesions, volumetric muscle loss, and traumatic brain injury. We engineered a biomimetic hydrogel with magnetic responsiveness by combining gellan gum, hyaluronic acid, collagen, and magnetic nanoparticles (MNPs). Collagen type I was paired with MNPs to form magnetic collagen bundles (MCollB), allowing the orientation control of these bundles within the hydrogel matrix through the application of a remote low-intensity magnetic field. This resulted in the creation of an anisotropic architecture. The hydrogel mechanical properties were comparable to those of human soft tissues, such as skeletal muscle, and proof of the aligned hydrogel concept was demonstrated. In vitro findings confirmed the absence of toxicity and pro-inflammatory effects. Notably, an increased fibroblast cell proliferation and pro-regenerative activation of macrophages were observed. The in-vivo study further validated the hydrogel biocompatibility and demonstrated the feasibility of injection with rapid in situ gelation. Consequently, this magnetically controlled injectable hydrogel exhibits significant promise as a minimally invasive, rapid gelling and effective treatment for regenerating various aligned human tissues.
Collapse
Affiliation(s)
- Arianna Rossi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences. Viale Ferdinando Stagno d'Alcontres, 31, 98166, Messina, Italy
| | - Franco Furlani
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
| | - Giada Bassi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
- University of G. D'Annunzio, Department of Neurosciences, Imaging and Clinical Sciences. Via Luigi Polacchi, 11, 66100 Chieti, Italy
| | - Carla Cunha
- i3S - Instituto de Investigação e Inovação em Saúde. Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Alice Lunghi
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia 44121 Ferrara, Italy
- Section of Physiology, Università di Ferrara 44121 Ferrara, Italy
| | - Filippo Molinari
- Defense Institute for Biomedical Sciences, IGESAN, Via di Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Francisco J. Teran
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Nanotech Solutions, Ctra Madrid23, 40150 Villacastín, Spain
| | - Florigio Lista
- Defense Institute for Biomedical Sciences, IGESAN, Via di Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Michele Bianchi
- Department of Life Sciences, Università degli Studi di Modena e Reggio Emilia 44125 Modena, Italy
| | - Anna Piperno
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences. Viale Ferdinando Stagno d'Alcontres, 31, 98166, Messina, Italy
| | - Monica Montesi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
| | - Silvia Panseri
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
| |
Collapse
|
30
|
Ricard-Blum S, Vivès RR, Schaefer L, Götte M, Merline R, Passi A, Heldin P, Magalhães A, Reis CA, Skandalis SS, Karamanos NK, Perez S, Nikitovic D. A biological guide to glycosaminoglycans: current perspectives and pending questions. FEBS J 2024; 291:3331-3366. [PMID: 38500384 DOI: 10.1111/febs.17107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions. They include the regulation of GAG biosynthesis and postsynthetic modifications in heparin (HP) and HS, the composition, heterogeneity, and function of the tetrasaccharide linkage region and its role in disease, the functional characterization of the new PGs recently identified by glycoproteomics, the selectivity of interactions mediated by GAG chains, the display of GAG chains and PGs at the cell surface and their impact on the availability and activity of soluble ligands, and on their move through the glycocalyx layer to reach their receptors, the human GAG profile in health and disease, the roles of GAGs and particular PGs (syndecans, decorin, and biglycan) involved in cancer, inflammation, and fibrosis, the possible use of GAGs and PGs as disease biomarkers, and the design of inhibitors targeting GAG biosynthetic enzymes and GAG-protein interactions to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon 1, ICBMS, UMR 5246 University Lyon 1 - CNRS, Villeurbanne cedex, France
| | | | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| | - Rosetta Merline
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | | | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Serge Perez
- Centre de Recherche sur les Macromolécules Végétales, University of Grenoble-Alpes, CNRS, France
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
31
|
Eckert JV, Moshal KS, Burge K, Wilson A, Chaaban H. Endogenous Hyaluronan Promotes Intestinal Homeostasis and Protects against Murine Necrotizing Enterocolitis. Cells 2024; 13:1179. [PMID: 39056761 PMCID: PMC11274784 DOI: 10.3390/cells13141179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a complex, multifactorial gastrointestinal disorder predominantly affecting preterm infants. The pathogenesis of this condition involves a complex interplay between intestinal barrier dysfunction, microbial dysbiosis, and an altered immune response. This study investigates the potential role of endogenous hyaluronan (HA) in both the early phases of intestinal development and in the context of NEC-like intestinal injury. We treated neonatal CD-1 mouse pups with PEP1, a peptide inhibiting HA receptor interactions, from postnatal days 8 to 12. We evaluated postnatal intestinal developmental indicators, such as villi length, crypt depth, epithelial cell proliferation, crypt fission, and differentiation of goblet and Paneth cells, in PEP1-treated animals compared with those treated with scrambled peptide. PEP1 treatment significantly impaired intestinal development, as evidenced by reductions in villi length, crypt depth, and epithelial cell proliferation, along with a decrease in crypt fission activity. These deficits in PEP1-treated animals correlated with increased susceptibility to NEC-like injuries, including higher mortality rates, and worsened histological intestinal injury. These findings highlight the role of endogenous HA in supporting intestinal development and protecting against NEC.
Collapse
Affiliation(s)
| | | | | | | | - Hala Chaaban
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.V.E.); (K.S.M.); (K.B.); (A.W.)
| |
Collapse
|
32
|
Zhang H, Li Y, Fu Y, Jiao H, Wang X, Wang Q, Zhou M, Yong YC, Liu J. A structure-functionality insight into the bioactivity of microbial polysaccharides toward biomedical applications: A review. Carbohydr Polym 2024; 335:122078. [PMID: 38616098 DOI: 10.1016/j.carbpol.2024.122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Microbial polysaccharides (MPs) are biopolymers secreted by microorganisms such as bacteria and fungi during their metabolic processes. Compared to polysaccharides derived from plants and animals, MPs have advantages such as wide sources, high production efficiency, and less susceptibility to natural environmental influences. The most attractive feature of MPs lies in their diverse biological activities, such as antioxidative, anti-tumor, antibacterial, and immunomodulatory activities, which have demonstrated immense potential for applications in functional foods, cosmetics, and biomedicine. These bioactivities are precisely regulated by their sophisticated molecular structure. However, the mechanisms underlying this precise regulation are not yet fully understood and continue to evolve. This article presents a comprehensive review of the most representative species of MPs, including their fermentation and purification processes and their biomedical applications in recent years. In particular, this work presents an in-depth analysis into the structure-activity relationships of MPs across multiple molecular levels. Additionally, this review discusses the challenges and prospects of investigating the structure-activity relationships, providing valuable insights into the broad and high-value utilization of MPs.
Collapse
Affiliation(s)
- Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyu Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Mengbo Zhou
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
33
|
Erkanli ME, Kang TK, Kirsch T, Turley EA, Kim JR, Cowman MK. The spatial separation of basic amino acids is similar in RHAMM and hyaluronan binding peptide P15-1 despite different sequences and conformations. PROTEOGLYCAN RESEARCH 2024; 2:e70001. [PMID: 39290872 PMCID: PMC11404675 DOI: 10.1002/pgr2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
Peptides that increase pro-reparative responses to injury and disease by modulating the functional organization of hyaluronan (HA) with its cell surface binding proteins (e.g., soluble receptor for hyaluronan-mediated motility [RHAMM] and integral membrane CD44) have potential therapeutic value. The binding of RHAMM to HA is an attractive target, since RHAMM is normally absent or expressed at low levels in homeostatic conditions, but its expression is significantly elevated in the extracellular matrix during tissue stress, response-to-injury, and in cancers and inflammation-based diseases. The HA-binding site in RHAMM contains two closely spaced sequences of clustered basic amino acids, in an alpha-helical conformation. In the present communication, we test whether an alpha-helical conformation is required for effective peptide binding to HA, and competitive disruption of HA-RHAMM interaction. The HA-binding RHAMM-competitive peptide P15-1, identified using the unbiased approach of phage display, was examined using circular dichroism spectroscopy and the conformation-predictive AI-based AlphaFold2 algorithm. Unlike the HA-binding site in RHAMM, peptide P15-1 was found to adopt irregular conformations in solution rather than alpha helices. Instead, our structural analysis suggests that the primary determinant of peptide-HA binding is associated with a specific clustering and spacing pattern of basic amino acids, allowing favorable electrostatic interaction with carboxylate groups on HA.
Collapse
Affiliation(s)
- Mehmet Emre Erkanli
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering New York University Brooklyn New York USA
| | - Ted Keunsil Kang
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering New York University Brooklyn New York USA
| | - Thorsten Kirsch
- Department of Biomedical Engineering, Tandon School of Engineering New York University New York New York USA
- Department of Orthopedic Surgery, Grossman School of Medicine New York University New York New York USA
| | - Eva A Turley
- Verspeeten Family Cancer Centre, London Health Sciences Centre, Lawson Health Research Institute London Ontario Canada
- Departments of Oncology, Biochemistry and Surgery, Schulich School of Medicine and Dentistry Western University London Ontario Canada
| | - Jin Ryoun Kim
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering New York University Brooklyn New York USA
| | - Mary K Cowman
- Department of Biomedical Engineering, Tandon School of Engineering New York University New York New York USA
- Department of Orthopedic Surgery, Grossman School of Medicine New York University New York New York USA
| |
Collapse
|
34
|
Zhu X, Sculean A, Eick S. In-vitro effects of different hyaluronic acids on periodontal biofilm-immune cell interaction. Front Cell Infect Microbiol 2024; 14:1414861. [PMID: 38938883 PMCID: PMC11208323 DOI: 10.3389/fcimb.2024.1414861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Recent studies have demonstrated a positive role of hyaluronic acid (HA) on periodontal clinical outcomes. This in-vitro study aimed to investigate the impact of four different HAs on interactions between periodontal biofilm and immune cells. Methods The four HAs included: high-molecular-weight HA (HHA, non-cross-linked), low-molecular-weight HA (LHA), oligomers HA (OHA), and cross-linked high-molecular-weight HA (CHA). Serial experiments were conducted to verify the influence of HAs on: (i) 12-species periodontal biofilm (formation and pre-existing); (ii) expression of inflammatory cytokines and HA receptors in monocytic (MONO-MAC-6) cells and periodontal ligament fibroblasts (PDLF) with or without exposure to periodontal biofilms; (iii) generation of reactive oxygen species (ROS) in MONO-MAC-6 cells and PDLF with presence of biofilm and HA. Results The results indicated that HHA and CHA reduced the bacterial counts in a newly formed (4-h) biofilm and in a pre-existing five-day-old biofilm. Without biofilm challenge, OHA triggered inflammatory reaction by increasing IL-1β and IL-10 levels in MONO-MAC cells and IL-8 in PDLF in a time-dependent manner, whereas CHA suppressed this response by inhibiting the expression of IL-10 in MONO-MAC cells and IL-8 in PDLF. Under biofilm challenge, HA decreased the expression of IL-1β (most decreasing HHA) and increased IL-10 levels in MONO-MAC-6 cells in a molecular weight dependent manner (most increasing CHA). The interaction between HA and both cells may occur via ICAM-1 receptor. Biofilm stimulus increased ROS levels in MONO-MAC-6 cells and PDLF, but only HHA slightly suppressed the high generation of ROS induced by biofilm stimulation in both cells. Conclusion Overall, these results indicate that OHA induces inflammation, while HHA and CHA exhibit anti-biofilm, primarily anti-inflammatory, and antioxidant properties in the periodontal environment.
Collapse
Affiliation(s)
- Xilei Zhu
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
35
|
Tolg C, Hill KA, Turley EA. CD44 and RHAMM Are Microenvironmental Sensors with Dual Metastasis Promoter and Suppressor Functions. Adv Biol (Weinh) 2024; 8:e2300693. [PMID: 38638002 DOI: 10.1002/adbi.202300693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/18/2024] [Indexed: 04/20/2024]
Abstract
The progression of primary tumors to metastases remains a significant roadblock to the treatment of most cancers. Emerging evidence has identified genes that specifically affect metastasis and are potential therapeutic targets for managing tumor progression. However, these genes can have dual tumor promoter and suppressor functions that are contextual in manifestation, and that complicate their development as targeted therapies. CD44 and RHAMM/HMMR are examples of multifunctional proteins that can either promote or suppress metastases, as demonstrated in experimental models. These two proteins can be viewed as microenvironmental sensors and this minireview addresses the known mechanistic underpinnings that may determine their metastasis suppressor versus promoter functions. Leveraging this mechanistic knowledge for CD44, RHAMM, and other multifunctional proteins is predicted to improve the precision of therapeutic targeting to achieve more effective management of metastasis.
Collapse
Affiliation(s)
- Cornelia Tolg
- Cancer Research Laboratory Program, Lawson Health Research Institute, Victoria Hospital, London, ON, N6A 5W9, Canada
| | | | - Eva Ann Turley
- Cancer Research Laboratory Program, Lawson Health Research Institute, Victoria Hospital, London, ON, N6A 5W9, Canada
- Departments of Oncology, Biochemistry, and Surgery, Western University, London, ON, N6A 5W9, Canada
| |
Collapse
|
36
|
Kikuchi T, Udagawa K, Sasazaki Y. High-molecular-weight Hyaluronan Administration Inhibits Bone Resorption and Promotes Bone Formation in Young-age Osteoporosis Rats. J Histochem Cytochem 2024; 72:373-385. [PMID: 38804525 PMCID: PMC11179592 DOI: 10.1369/00221554241255724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Osteoporosis poses a significant global health concern, affecting both the elderly and young individuals, including athletes. Despite the development of numerous antiosteoporotic drugs, addressing the unique needs of young osteoporosis patients remains challenging. This study focuses on young rats subjected to ovariectomy (OVX) to explore the impact of high-molecular-weight hyaluronan (HA) on preventing OVX-induced osteoporosis. Twenty-four rats underwent OVX, while 12 underwent sham procedures (sham control group). Among the OVX rats, half received subcutaneous injections of HA (MW: 2700 kDa) at 10 mg/kg/week into their backs (OVX-HA group), whereas the other half received saline injections (0.5 ml/week) at the same site (OVX-saline group). OVX-HA group exhibited significantly higher percentages of osteoclast surface (Oc. S/BS), osteoblast surface per bone surface (Ob. S/BS), and bone volume/tissue volume (BV/TV) compared with OVX-saline group at the same age. The proportions of Ob. S/BS and BV/TV in the OVX-HA group closely resembled those of the sham control group, whereas the proportion of Oc. S/BS in the OVX-HA group was notably higher than that in the sham control group. In summary, the administration of HA significantly mitigated bone resorption and enhanced bone formation, suggesting a crucial role for HA in the treatment of young adult osteoporosis.
Collapse
Affiliation(s)
- Toshiyuki Kikuchi
- National Hospital Organization Murayama Medical Center, Tokyo, Japan
| | - Kazuhiko Udagawa
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
37
|
Chang W, Chen L, Chen K. The bioengineering application of hyaluronic acid in tissue regeneration and repair. Int J Biol Macromol 2024; 270:132454. [PMID: 38763255 DOI: 10.1016/j.ijbiomac.2024.132454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
The multifaceted role of hyaluronic acid (HA) across diverse biomedical disciplines underscores its versatility in tissue regeneration and repair. HA hydrogels employ different crosslinking including chemical (chitosan, collagen), photo- initiation (riboflavin, LAP), enzymatic (HRP/H2O2), and physical interactions (hydrogen bonds, metal coordination). In biophysics and biochemistry, HA's signaling pathways, primarily through CD44 and RHAMM receptors, modulate cell behavior (cell migration; internalization of HA), inflammation, and wound healing. Particularly, smaller HA fragments stimulate inflammatory responses through toll-like receptors, impacting macrophages and cytokine expression. HA's implications in oncology highlight its involvement in tumor progression, metastasis, and treatment. Elevated HA in tumor stroma impacts apoptosis resistance and promotes tumor growth, presenting potential therapeutic targets to halt tumor progression. In orthopedics, HA's presence in synovial fluid aids in osteoarthritis management, as its supplementation alleviates pain, enhances synovial fluid's viscoelastic properties, and promotes cartilage integrity. In ophthalmology, HA's application in dry eye syndrome addresses symptoms by moisturizing the eyes, replenishing tear film deficiencies, and facilitating wound healing. Intravitreal injections and hydrogel-based systems offer versatile approaches for drug delivery and vitreous humor replacement. For skin regeneration and wound healing, HA hydrogel dressings exhibit exceptional properties by promoting moist wound healing and facilitating tissue repair. Integration of advanced regenerative tools like stem cells and solubilized amnion membranes into HA-based systems accelerates wound closure and tissue recovery. Overall, HA's unique properties and interactions render it a promising candidate across diverse biomedical domains, showcasing immense potentials in tissue regeneration and therapeutic interventions. Nevertheless, many detailed cellular and molecular mechanisms of HA and its applications remain unexplored and warrant further investigation.
Collapse
Affiliation(s)
- WeiTing Chang
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan
| | - LiRu Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei, Taiwan; Department of Mechanical Engineering, National YangMing ChiaoTung University, Hsinchu, Taiwan
| | - KuoHu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan; School of Medicine, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
38
|
He S, Li H, Zhang Q, Zhao W, Li W, Dai C, Li B, Cheng J, Wu S, Zhou Z, Yang J, Li S. Berberine alleviates inflammation in polycystic ovary syndrome by inhibiting hyaluronan synthase 2 expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155456. [PMID: 38537446 DOI: 10.1016/j.phymed.2024.155456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a heterogeneous metabolic and endocrine disorder that causes anovulatory infertility and abnormal folliculogenesis in women of reproductive age. Several studies have revealed inflammation in PCOS follicles, and recent evidence suggests that Berberine (BBR) effectively reduces inflammatory responses in PCOS, however, the underlying mechanisms remain unclear. PURPOSE To determine the underlying mechanisms by which BBR alleviates inflammation in PCOS. STUDY DESIGN Primary human GCs from healthy women and women with PCOS, and KGN cells were used for in vitro studies. ICR mice were used for in vivo studies. METHODS Gene expression was measured using RT-qPCR. HAS2, inflammatory cytokines, and serum hormones were assayed by ELISA. Protein expression profiles were assayed by Western blot. Chronic low-grade inflammatory mouse models were developed by intraperitoneal injection with LPS, and PCOS mouse models were established by subcutaneous intraperitoneal injection of DHEA. BBR and 4-MU were administered by gavage. Ovarian morphologic changes were evaluated using H&E staining. HAS2 expression in the ovary was assayed using Western blot and immunohistochemistry. RESULTS Our results confirmed that HAS2 expression and hyaluronan (HA) accumulation are closely associated with inflammatory responses in PCOS. Data obtained from in vitro studies showed that HAS2 and inflammatory genes (e.g., MCP-1, IL-1β, and IL-6) are significantly upregulated in PCOS samples and LPS-induced KGN cells compared to their control groups. In addition, these effects were reversed by blocking HAS2 expression or HA synthesis using BBR or 4-MU, respectively. Furthermore, HAS2 overexpression induces the expression of inflammatory genes in PCOS. These results were further confirmed in LPS- and DHEA-induced mouse models, where inflammatory genes were reduced by BBR or 4-MU, and ovarian morphology was restored. CONCLUSIONS Our results define previously unknown links between HAS2 and chronic low-grade inflammation in the follicles of women with PCOS. BBR exerts its anti-inflammatory effects by down-regulating HAS2. This study provides a novel therapeutic target for alleviating ovarian inflammation in women with PCOS.
Collapse
Affiliation(s)
- Shaojing He
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hui Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Qianjie Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Weimin Zhao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Wei Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Chaohui Dai
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Bixia Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Jinhua Cheng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Shuang Wu
- Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Traditional Chinese Medicine, Wuhan, 430060, China
| | - Zhongming Zhou
- Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Traditional Chinese Medicine, Wuhan, 430060, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Saijiao Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
39
|
Ebrahimi T, Keramati M, Khodabakhsh F, Cohan RA. Enzyme variants in biosynthesis and biological assessment of different molecular weight hyaluronan. AMB Express 2024; 14:56. [PMID: 38730188 PMCID: PMC11087452 DOI: 10.1186/s13568-024-01713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024] Open
Abstract
In the present study, low- and high-molecular-weight hyaluronic acids (LMW-HA and HMW-HA) were synthesized in vitro by truncated Streptococcus equisimilis hyaluronan synthases (SeHAS). The enzyme kinetic parameters were determined for each enzyme variant. The MW, structure, dispersity, and biological activity of polymers were determined by electrophoresis, FTIR spectroscopy, carbazole, cell proliferation, and cell migration assay, respectively. The specific activities were calculated as 7.5, 6.8, 4.9, and 2.8 µgHA µgenzyme-1 min-1 for SeHAS, HAS123, HAS23, and HASIntra, respectively. The results revealed SeHAS produced a polydisperse HMW-HA (268 kDa), while HAS123 and HAS23 produced a polydisperse LMW-HA (< 30 kDa). Interestingly, HASIntra produced a low-disperse LMW-HA. Kinetics studies revealed the truncated variants displayed increased Km values for two substrates when compared to the wild-type enzyme. Biological assessments indicated all LMW-HAs showed a dose-dependent proliferation activity on endothelial cells (ECs), whereas HMW-HAs exhibited an inhibitory effect. Also, LMW-HAs had the highest cell migration effect at 10 µg/mL, while at 200 µg/mL, both LMW- and HMW-HAs postponed the healing recovery rate. The study elucidated that the transmembrane domains (TMDs) of SeHAS affect the enzyme kinetics, HA-titer, HA-size, and HA-dispersity. These findings open new insight into the rational engineering of SeHAS to produce size-defined HA.
Collapse
Affiliation(s)
- Tahereh Ebrahimi
- New Technologies Research Group, Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Malihe Keramati
- New Technologies Research Group, Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran.
| | - Farnaz Khodabakhsh
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Ahangari Cohan
- New Technologies Research Group, Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
40
|
Jokelainen O, Rintala TJ, Fortino V, Pasonen-Seppänen S, Sironen R, Nykopp TK. Differential expression analysis identifies a prognostically significant extracellular matrix-enriched gene signature in hyaluronan-positive clear cell renal cell carcinoma. Sci Rep 2024; 14:10626. [PMID: 38724670 PMCID: PMC11082176 DOI: 10.1038/s41598-024-61426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Hyaluronan (HA) accumulation in clear cell renal cell carcinoma (ccRCC) is associated with poor prognosis; however, its biology and role in tumorigenesis are unknown. RNA sequencing of 48 HA-positive and 48 HA-negative formalin-fixed paraffin-embedded (FFPE) samples was performed to identify differentially expressed genes (DEG). The DEGs were subjected to pathway and gene enrichment analyses. The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) data and DEGs were used for the cluster analysis. In total, 129 DEGs were identified. HA-positive tumors exhibited enhanced expression of genes related to extracellular matrix (ECM) organization and ECM receptor interaction pathways. Gene set enrichment analysis showed that epithelial-mesenchymal transition-associated genes were highly enriched in the HA-positive phenotype. A protein-protein interaction network was constructed, and 17 hub genes were discovered. Heatmap analysis of TCGA-KIRC data identified two prognostic clusters corresponding to HA-positive and HA-negative phenotypes. These clusters were used to verify the expression levels and conduct survival analysis of the hub genes, 11 of which were linked to poor prognosis. These findings enhance our understanding of hyaluronan in ccRCC.
Collapse
Affiliation(s)
- Otto Jokelainen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211, Kuopio, Finland.
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland.
| | - Teemu J Rintala
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Vittorio Fortino
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | - Reijo Sironen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Timo K Nykopp
- Department of Surgery, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Surgery, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
41
|
Jiang Y, Jiang Y, Li L, Liu X, Hou X, Wang W. High-Molecular-Weight Hyaluronic Acid Can Be Used as a Food Additive to Improve the Symptoms of Persistent Inflammation, Immunosuppression and Catabolism Syndrome (PICS). BIOLOGY 2024; 13:319. [PMID: 38785801 PMCID: PMC11118101 DOI: 10.3390/biology13050319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Hyaluronic acid (HA) is a new functional food additive which has the potential to ameliorate persistent inflammation, immunosuppression and catabolism syndrome (PICS), but the biological effects of HA with various molecular weights differ dramatically. To systematically investigate the efficacy of HA in altering PICS symptoms, medium-molecular-weight (MMW) HA was specifically selected to test its intervention effect on a PICS mouse model induced by CLP through oral administration, with high-molecular-weight (HMW) and low-molecular-weight (LMW) HA also participating in the experimental validation process. The results of pathological observations and gut flora showed that MMW HA rapidly alleviated lung lesions and intestinal structural changes in PICS mice in the short term. However, although long-term MMW HA administration significantly reduced the proportions of harmful bacteria in gut flora, inflammatory responses in the intestines and lungs of PICS mice were significantly higher in the MMW HA group than in the HMW HA and LMW HA groups. The use of HMW HA not only rapidly reduced the mortality rate of PICS mice but also improved their grip strength and the recovery of spleen and thymus indices. Furthermore, it consistently promoted the recovery of lung and intestinal tissues in PICS mice, and it also assisted in the sustained restoration of their gut microbiota. These effects were superior to those of LMW HA and MMW HA. The experimental results indicate that HMW weight HA has the greatest potential to be an adjunct in alleviating PICS as a food additive, while the safety of other HAs requires further attention.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoming Hou
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.J.); (Y.J.); (L.L.); (X.L.)
| | - Wenfei Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.J.); (Y.J.); (L.L.); (X.L.)
| |
Collapse
|
42
|
Lagunas-Rangel FA. Naked mole-rat hyaluronan. Biochimie 2024; 220:58-66. [PMID: 38158036 DOI: 10.1016/j.biochi.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Naked mole rats (NMRs) are renowned for their exceptional longevity and remarkable maintenance of health throughout their lifetime. Their subterranean lifestyle has led to adaptations that have resulted in elevated levels of a very high molecular weight hyaluronan in their tissues. Hyaluronan, a glycosaminoglycan, is a key component of the extracellular matrix, which plays a critical role in maintaining tissue structure and regulating cell signaling pathways. This phenomenon in NMRs is attributed to a higher processing and production capacity by some of their hyaluronan synthases, along with lower degradation by certain hyaluronidases. Furthermore, this adaptation indirectly confers several advantages to NMRs, such as the preservation of skin elasticity and youthful appearance, accelerated wound healing, protection against oxidative stress, and resistance to conditions such as cancer and arthritis, largely attributable to CD44 signaling and other intricate mechanisms. Thus, the main objective of this study was to conduct a comprehensive study of the distinctive features of NMR hyaluronan, particularly emphasizing the currently known molecular mechanisms that contribute to its beneficial properties. Furthermore, this research delves into the potential applications of NMR hyaluronan in both cosmetic and therapeutic fields, as well as the challenges involved.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
43
|
Huber RE, Babbitt C, Peyton SR. Heterogeneity of brain extracellular matrix and astrocyte activation. J Neurosci Res 2024; 102:e25356. [PMID: 38773875 DOI: 10.1002/jnr.25356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/01/2024] [Accepted: 05/05/2024] [Indexed: 05/24/2024]
Abstract
From the blood brain barrier to the synaptic space, astrocytes provide structural, metabolic, ionic, and extracellular matrix (ECM) support across the brain. Astrocytes include a vast array of subtypes, their phenotypes and functions varying both regionally and temporally. Astrocytes' metabolic and regulatory functions poise them to be quick and sensitive responders to injury and disease in the brain as revealed by single cell sequencing. Far less is known about the influence of the local healthy and aging microenvironments on these astrocyte activation states. In this forward-looking review, we describe the known relationship between astrocytes and their local microenvironment, the remodeling of the microenvironment during disease and injury, and postulate how they may drive astrocyte activation. We suggest technology development to better understand the dynamic diversity of astrocyte activation states, and how basal and activation states depend on the ECM microenvironment. A deeper understanding of astrocyte response to stimuli in ECM-specific contexts (brain region, age, and sex of individual), paves the way to revolutionize how the field considers astrocyte-ECM interactions in brain injury and disease and opens routes to return astrocytes to a healthy quiescent state.
Collapse
Affiliation(s)
- Rebecca E Huber
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Courtney Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
44
|
Klimovič Š, Beckerová D, Věžník J, Kabanov D, Lacina K, Jelinkova S, Gumulec J, Rotrekl V, Přibyl J. Hyaluronic acid-based hydrogels with tunable mechanics improved structural and contractile properties of cells. BIOMATERIALS ADVANCES 2024; 159:213819. [PMID: 38430724 DOI: 10.1016/j.bioadv.2024.213819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Extracellular matrix (ECM) regulates cellular responses through mechanotransduction. The standard approach of in vitro culturing on plastic surfaces overlooks this phenomenon, so there is a need for biocompatible materials that exhibit adjustable mechanical and structural properties, promote cell adhesion and proliferation at low cost and for use in 2D or 3D cell cultures. This study presents a new tunable hydrogel system prepared from high-molecular hyaluronic acid (HA), Bovine serum albumin (BSA), and gelatin cross-linked using EDC/NHS. Hydrogels with Young's moduli (E) ranging from subunit to units of kilopascals were prepared by gradually increasing HA and BSA concentrations. Concentrated high-molecular HA network led to stiffer hydrogel with lower cluster size and swelling capacity. Medium and oxygen diffusion capability of all hydrogels showed they are suitable for 3D cell cultures. Mechanical and structural changes of mouse embryonic fibroblasts (MEFs) on hydrogels were compared with cells on standard cultivation surfaces. Experiments showed that hydrogels have suitable mechanical and cell adhesion capabilities, resulting in structural changes of actin filaments. Lastly, applying hydrogel for a more complex HL-1 cell line revealed improved mechanical and electrophysiological contractile properties.
Collapse
Affiliation(s)
- Šimon Klimovič
- CEITEC, Masaryk University, Brno, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Deborah Beckerová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Jakub Věžník
- CEITEC, Masaryk University, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Daniil Kabanov
- CEITEC, Masaryk University, Brno, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Lacina
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jaromír Gumulec
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vladimír Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Přibyl
- CEITEC, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
45
|
Buruiană A, Gheban BA, Gheban-Roșca IA, Georgiu C, Crișan D, Crișan M. The Tumor Stroma of Squamous Cell Carcinoma: A Complex Environment That Fuels Cancer Progression. Cancers (Basel) 2024; 16:1727. [PMID: 38730679 PMCID: PMC11083853 DOI: 10.3390/cancers16091727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
The tumor microenvironment (TME), a complex assembly of cellular and extracellular matrix (ECM) components, plays a crucial role in driving tumor progression, shaping treatment responses, and influencing metastasis. This narrative review focuses on the cutaneous squamous cell carcinoma (cSCC) tumor stroma, highlighting its key constituents and their dynamic contributions. We examine how significant changes within the cSCC ECM-specifically, alterations in fibronectin, hyaluronic acid, laminins, proteoglycans, and collagens-promote cancer progression, metastasis, and drug resistance. The cellular composition of the cSCC TME is also explored, detailing the intricate interplay of cancer-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), endothelial cells, pericytes, adipocytes, and various immune cell populations. These diverse players modulate tumor development, angiogenesis, and immune responses. Finally, we emphasize the TME's potential as a therapeutic target. Emerging strategies discussed in this review include harnessing the immune system (adoptive cell transfer, checkpoint blockade), hindering tumor angiogenesis, disrupting CAF activity, and manipulating ECM components. These approaches underscore the vital role that deciphering TME interactions plays in advancing cSCC therapy. Further research illuminating these complex relationships will uncover new avenues for developing more effective treatments for cSCC.
Collapse
Affiliation(s)
- Alexandra Buruiană
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Bogdan-Alexandru Gheban
- Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Emergency Clinical County Hospital, 400347 Cluj-Napoca, Romania
| | - Ioana-Andreea Gheban-Roșca
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400129 Cluj-Napoca, Romania;
| | - Carmen Georgiu
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Doința Crișan
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Maria Crișan
- Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
46
|
Maeso L, Antezana PE, Hvozda Arana AG, Evelson PA, Orive G, Desimone MF. Progress in the Use of Hydrogels for Antioxidant Delivery in Skin Wounds. Pharmaceutics 2024; 16:524. [PMID: 38675185 PMCID: PMC11053627 DOI: 10.3390/pharmaceutics16040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The skin is the largest organ of the body, and it acts as a protective barrier against external factors. Chronic wounds affect millions of people worldwide and are associated with significant morbidity and reduced quality of life. One of the main factors involved in delayed wound healing is oxidative injury, which is triggered by the overproduction of reactive oxygen species. Oxidative stress has been implicated in the pathogenesis of chronic wounds, where it is known to impair wound healing by causing damage to cellular components, delaying the inflammatory phase of healing, and inhibiting the formation of new blood vessels. Thereby, the treatment of chronic wounds requires a multidisciplinary approach that addresses the underlying causes of the wound, provides optimal wound care, and promotes wound healing. Among the promising approaches to taking care of chronic wounds, antioxidants are gaining interest since they offer multiple benefits related to skin health. Therefore, in this review, we will highlight the latest advances in the use of natural polymers with antioxidants to generate tissue regeneration microenvironments for skin wound healing.
Collapse
Affiliation(s)
- Lidia Maeso
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (L.M.); (G.O.)
| | - Pablo Edmundo Antezana
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (P.E.A.); (A.G.H.A.); (P.A.E.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Buenos Aires 1113, Argentina
| | - Ailen Gala Hvozda Arana
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (P.E.A.); (A.G.H.A.); (P.A.E.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química General e Inorgánica, Buenos Aires 1113, Argentina
| | - Pablo Andrés Evelson
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (P.E.A.); (A.G.H.A.); (P.A.E.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química General e Inorgánica, Buenos Aires 1113, Argentina
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (L.M.); (G.O.)
- NanoBioCel Research Group, Bioaraba, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| | - Martín Federico Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| |
Collapse
|
47
|
Le T, Ferling I, Qiu L, Nabaile C, Assunção L, Roskelley CD, Grinstein S, Freeman SA. Redistribution of the glycocalyx exposes phagocytic determinants on apoptotic cells. Dev Cell 2024; 59:853-868.e7. [PMID: 38359833 DOI: 10.1016/j.devcel.2024.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/08/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Phagocytes remove dead and dying cells by engaging "eat-me" ligands such as phosphatidylserine (PtdSer) on the surface of apoptotic targets. However, PtdSer is obscured by the bulky exofacial glycocalyx, which also exposes ligands that activate "don't-eat-me" receptors such as Siglecs. Clearly, unshielding the juxtamembrane "eat-me" ligands is required for the successful engulfment of apoptotic cells, but the mechanisms underlying this process have not been described. Using human and murine cells, we find that apoptosis-induced retraction and weakening of the cytoskeleton that anchors transmembrane proteins cause an inhomogeneous redistribution of the glycocalyx: actin-depleted blebs emerge, lacking the glycocalyx, while the rest of the apoptotic cell body retains sufficient actin to tether the glycocalyx in place. Thus, apoptotic blebs can be engaged by phagocytes and are targeted for engulfment. Therefore, in cells with an elaborate glycocalyx, such as mucinous cancer cells, this "don't-come-close-to-me" barrier must be removed to enable clearance by phagocytosis.
Collapse
Affiliation(s)
- Trieu Le
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Iuliia Ferling
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Lanhui Qiu
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Clement Nabaile
- Department of Learning and Research in Biology, Ecole Normale Supérieure Paris-Saclay, Gif-sur-Yvette, France
| | - Leonardo Assunção
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Calvin D Roskelley
- Department of Cellular and Physiological Sciences, the Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
48
|
Angeli E, Jordan M, Otto M, Stojanović SD, Karsdal M, Bauersachs J, Thum T, Fiedler J, Genovese F. The role of fibrosis in cardiomyopathies: An opportunity to develop novel biomarkers of disease activity. Matrix Biol 2024; 128:65-78. [PMID: 38423395 DOI: 10.1016/j.matbio.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Cardiomyopathies encompass a spectrum of heart disorders with diverse causes and presentations. Fibrosis stands out as a shared hallmark among various cardiomyopathies, reflecting a common thread in their pathogenesis. This prevalent fibrotic response is intricately linked to the consequences of dysregulated extracellular matrix (ECM) remodeling, emphasizing its significance in the development and progression the disease. This review explores the ECM involvement in various cardiomyopathies and its impact on myocardial stiffness and fibrosis. Additionally, we discuss the potential of ECM fragments as early diagnosis, prognosis, and risk stratification. Biomarkers deriving from turnover of collagens and other ECM proteins hold promise in clinical applications. We outline current clinical management, future directions, and the potential for personalized ECM-targeted therapies with specific focus on microRNAs. In summary, this review examines the role of the fibrosis in cardiomyopathies, highlighting the potential of ECM-derived biomarkers in improving disease management with implications for precision medicine.
Collapse
Affiliation(s)
- Elisavet Angeli
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Nordic Bioscience A/S, Herlev, Denmark.
| | - Maria Jordan
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Federal Republic of Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Hanover, Federal Republic of Germany
| | - Mandy Otto
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Federal Republic of Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Hanover, Federal Republic of Germany
| | - Stevan D Stojanović
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Federal Republic of Germany; Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Federal Republic of Germany
| | | | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Federal Republic of Germany
| | - Thomas Thum
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Federal Republic of Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Hanover, Federal Republic of Germany; Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Federal Republic of Germany
| | - Jan Fiedler
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Federal Republic of Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Hanover, Federal Republic of Germany
| | - Federica Genovese
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Shim HE, Kim YJ, Park KH, Park H, Huh KM, Kang SW. Enhancing cartilage regeneration through spheroid culture and hyaluronic acid microparticles: A promising approach for tissue engineering. Carbohydr Polym 2024; 328:121734. [PMID: 38220328 DOI: 10.1016/j.carbpol.2023.121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/20/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Cell therapy using chondrocytes has shown promise for cartilage regeneration, but maintaining functional characteristics during in vitro culture and ensuring survival after transplantation are challenges. Three-dimensional (3D) cell culture methods, such as spheroid culture, and hydrogels can improve cell survival and functionality. In this study, a new method of culturing spheroids using hyaluronic acid (HA) microparticles was developed. The spheroids mixed with HA microparticles effectively maintained the functional characteristics of chondrocytes during in vitro culture, resulting in improved cell survival and successful cartilage formation in vivo following transplantation. This new method has the potential to improve cell therapy production for cartilage regeneration.
Collapse
Affiliation(s)
- Hye-Eun Shim
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | | | - Kyoung Hwan Park
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Honghyun Park
- Department of Advanced Biomaterials Research, Ceramics Materials Division, Korea Institute of Materials Science, Changwon 51508, Republic of Korea.
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Sun-Woong Kang
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, Republic of Korea.
| |
Collapse
|
50
|
Iliescu DG, Petrita R, Teodorescu C, Olaru RA, Alexa AA, Petre I. Real‑world performance and safety of vaginal ovules in reducing the vaginal symptoms associated with vulvovaginal atrophy and postmenopausal sexual dysfunction. Biomed Rep 2024; 20:35. [PMID: 38312435 PMCID: PMC10831781 DOI: 10.3892/br.2024.1723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/11/2023] [Indexed: 02/06/2024] Open
Abstract
Decreasing estrogen levels during the postmenopausal period results in tissue atrophy and physiological changes, such as thinning of the vaginal epithelium, prolapse and decreased pelvic floor strength and control. Sexual dysfunction associated with vaginal dryness occurs in postmenopausal patients. The present study (trial no. NCT05654610) was designed as an observational, multicenter, real-world clinical investigation to evaluate the performance and safety of the medical device Halova® ovules in decreasing vaginal symptoms associated with vulvovaginal atrophy and sexual dysfunction. A total of 249 female participants were treated with Halova ovules, both in monotherapy and in combination with vaginal lubricants. The primary objective was to evaluate the tolerability of Halova ovules in the management of symptoms associated with perimenopause or genitourinary syndrome of menopause. The evolution of clinical manifestations such as vaginal dryness, dysuria, dyspareunia and endometrial thickness was defined a secondary objective. Halova ovules were rated with 'excellent' clinical performance by 92.74% of participants as a standalone treatment and 95.71% of the study participants when used in association with vaginal lubricants. Sexual dysfunction-associated parameters, such as vaginal dryness and dyspareunia, were reduced by similar percentages in each arm, 82% (monotherapy) and 80% (polytherapy) for vaginal dryness and 72% in monotherapy vs. 48% polytherapy reducing dyspareunia. No adverse reactions associated with treatment with Halova were reported. The medical device demonstrated anti-atrophic activity in the genitourinary tract, resulting in significantly improved symptoms associated with normal sexual functioning.
Collapse
Affiliation(s)
- Dominic-Gabriel Iliescu
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| | - Ramona Petrita
- Biometrics Unit, MDX Research, 300633 Timisoara, Romania
| | - Cristina Teodorescu
- Department of Obstetrics and Gynecology, ‘Nicolae Malaxa’ Clinical Hospital, 022441 Bucharest, Romania
| | - Raluca Alexandra Olaru
- Department of Obstetrics and Gynecology III, National Institute Alessandrescu Rusescu, Clinic of Obstetrics and Gynecology ‘Polizu’, 011061 Bucharest, Romania
| | - Andreea Anda Alexa
- Department of Biochemistry IV, University of Medicine and Pharmacy Victor Babes, 300041 Timisoara, Romania
| | - Izabella Petre
- Department of Obstetrics and Gynecology XII, University of Medicine and Pharmacy Victor Babes, 300041 Timisoara, Romania
| |
Collapse
|