1
|
Xu Y, Xu M, Zhou C, Sun L, Cai W, Li X. Ferroptosis and its implications in treating cognitive impairment caused by aging: A study on the mechanism of repetitive transcranial magnetic stimulation. Exp Gerontol 2024; 192:112443. [PMID: 38697556 DOI: 10.1016/j.exger.2024.112443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVE Ferroptosis has been recognized as being closely associated with cognitive impairment. Research has established that Alzheimer's disease (AD)-associated proteins, such as amyloid precursor protein (APP) and phosphorylated tau, are involved in brain iron metabolism. These proteins are found in high concentrations within senile plaques and neurofibrillary tangles. Repetitive transcranial magnetic stimulation (rTMS) offers a non-pharmacological approach to AD treatment. This study aims to explore the potential therapeutic effects of rTMS on cognitive impairment through the modulation of the ferroptosis pathway, thereby laying both a theoretical and experimental groundwork for the application of rTMS in treating Alzheimer's disease. METHODS The study utilized senescence-accelerated mouse prone 8 (SAMP8) mice to model brain aging-related cognitive impairment, with senescence-accelerated-mouse resistant 1 (SAMR1) mice acting as controls. The SAMP8 mice were subjected to high-frequency rTMS at 25 Hz for durations of 14 and 28 days. Cognitive function was evaluated using behavioral tests. Resting-state functional magnetic resonance imaging (rs-fMRI) assessed alterations in cerebral activity by measuring the fractional amplitude of low-frequency fluctuations (fALFF) of the blood oxygen level-dependent signal. Neuronal recovery post-rTMS in the SAMP8 model was examined via HE and Nissl staining. Immunohistochemistry was employed to detect the expression of APP and Phospho-Tau (Thr231). Oxidative stress markers were quantified using biochemical assay kits. ELISA methods were utilized to measure hippocampal levels of Fe2+ and Aβ1-42. Finally, the expression of proteins related to the ferroptosis pathway was determined through western blot analysis. RESULTS The findings indicate that 25 Hz rTMS enhances cognitive function and augments cerebral activity in SAMP8 model mice. Treatment with rTMS in these mice resulted in diminished oxidative stress and safeguarded neurons against damage. Additionally, iron accumulation was mitigated, and the expression of ferroptosis pathway proteins Gpx4, system Xc-, and Nrf2 was elevated. CONCLUSIONS The Tau/APP-Fe-GPX4/system Xc-/Nrf2 pathway is implicated in the remedial effects of rTMS on cognitive dysfunction, offering a theoretical and experimental basis for employing rTMS in AD treatment.
Collapse
Affiliation(s)
- Yuya Xu
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang 150001, China
| | - Mengrong Xu
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang 150001, China
| | - Chengyu Zhou
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang 150001, China
| | - Ling Sun
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang 150001, China
| | - Wenqiang Cai
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang 150001, China
| | - Xuling Li
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang 150001, China.
| |
Collapse
|
2
|
Sultana R, Butterfield DA. Protein Oxidation in Aging and Alzheimer's Disease Brain. Antioxidants (Basel) 2024; 13:574. [PMID: 38790679 PMCID: PMC11117785 DOI: 10.3390/antiox13050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Proteins are essential molecules that play crucial roles in maintaining cellular homeostasis and carrying out biological functions such as catalyzing biochemical reactions, structural proteins, immune response, etc. However, proteins also are highly susceptible to damage by reactive oxygen species (ROS) and reactive nitrogen species (RNS). In this review, we summarize the role of protein oxidation in normal aging and Alzheimer's disease (AD). The major emphasis of this review article is on the carbonylation and nitration of proteins in AD and mild cognitive impairment (MCI). The oxidatively modified proteins showed a strong correlation with the reported changes in brain structure, carbohydrate metabolism, synaptic transmission, cellular energetics, etc., of both MCI and AD brains compared to the controls. Some proteins were found to be common targets of oxidation and were observed during the early stages of AD, suggesting that those changes might be critical in the onset of symptoms and/or formation of the pathological hallmarks of AD. Further studies are required to fully elucidate the role of protein oxidation and nitration in the progression and pathogenesis of AD.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080, USA;
| | - D. Allan Butterfield
- Department of Chemistry, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
3
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
4
|
Pan Y, Kagawa Y, Sun J, Lucas DSD, Takechi R, Mamo JCL, Wai DCC, Norton RS, Jin L, Nicolazzo JA. Peripheral Administration of the Kv1.3-Blocking Peptide HsTX1[R14A] Improves Cognitive Performance in Senescence Accelerated SAMP8 Mice. Neurotherapeutics 2023; 20:1198-1214. [PMID: 37226029 PMCID: PMC10457257 DOI: 10.1007/s13311-023-01387-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/26/2023] Open
Abstract
Increased expression of the voltage-gated potassium channel Kv1.3 in activated microglia, and the subsequent release of pro-inflammatory mediators, are closely associated with the progression of Alzheimer's disease (AD). Studies have shown that reducing neuroinflammation through the non-selective blockade of microglial Kv1.3 has the potential to improve cognitive function in mouse models of familial AD. We have previously demonstrated that a potent and highly-selective peptide blocker of Kv1.3, HsTX1[R14A], not only entered the brain parenchyma after peripheral administration in a lipopolysaccharide (LPS)-induced mouse model of inflammation, but also significantly reduced pro-inflammatory mediator release from activated microglia. In this study, we show that microglial expression of Kv1.3 is increased in senescence accelerated mice (SAMP8), an animal model of sporadic AD, and that subcutaneous dosing of HsTX1[R14A] (1 mg/kg) every other day for 8 weeks provided a robust improvement in cognitive deficits in SAMP8 mice. The effect of HsTX1[R14A] on the whole brain was assessed using transcriptomics, which revealed that the expression of genes associated with inflammation, neuron differentiation, synapse function, learning and memory were altered by HsTX1[R14A] treatment. Further study is required to investigate whether these changes are downstream effects of microglial Kv1.3 blockade or a result of alternative mechanisms, including any potential effect of Kv1.3 blockade on other brain cell types. Nonetheless, these results collectively demonstrate the cognitive benefits of Kv1.3 blockade with HsTX1[R14A] in a mouse model of sporadic AD, demonstrating its potential as a therapeutic candidate for this neurodegenerative disease.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Yoshiteru Kagawa
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Jiaqi Sun
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Deanna S Deveson Lucas
- Monash Bioinformatics Platform, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ryusuke Takechi
- School of Biomedical Sciences, Curtin University, Bentley, WA, 6102, Australia
- School of Public Health, Curtin University, Bentley, WA, 6102, Australia
| | - John C L Mamo
- School of Biomedical Sciences, Curtin University, Bentley, WA, 6102, Australia
- School of Public Health, Curtin University, Bentley, WA, 6102, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC, 3052, Australia
| | - Liang Jin
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
5
|
Oxidative Stress in Brain in Amnestic Mild Cognitive Impairment. Antioxidants (Basel) 2023; 12:antiox12020462. [PMID: 36830020 PMCID: PMC9952700 DOI: 10.3390/antiox12020462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 02/16/2023] Open
Abstract
Amnestic mild cognitive impairment (MCI), arguably the earliest clinical stage of Alzheimer disease (AD), is characterized by normal activities of daily living but with memory issues but no dementia. Oxidative stress, with consequent damaged key proteins and lipids, are prominent even in this early state of AD. This review article outlines oxidative stress in MCI and how this can account for neuronal loss and potential therapeutic strategies to slow progression to AD.
Collapse
|
6
|
Homeostasis of carbohydrates and reactive oxygen species is critically changed in the brain of middle-aged mice: molecular mechanisms and functional reasons. BBA ADVANCES 2023; 3:100077. [PMID: 37082254 PMCID: PMC10074963 DOI: 10.1016/j.bbadva.2023.100077] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/23/2023] Open
Abstract
The brain is an organ that consumes a lot of energy. In the brain, energy is required for synaptic transmission, numerous biosynthetic processes and axonal transport in neurons, and for many supportive functions of glial cells. The main source of energy in the brain is glucose and to a lesser extent lactate and ketone bodies. ATP is formed at glucose catabolism via glycolysis and oxidative phosphorylation in mitochondrial electron transport chain (ETC) within mitochondria being the main source of ATP. With age, brain's energy metabolism is disturbed, involving a decrease in glycolysis and mitochondrial dysfunction. The latter is accompanied by intensified generation of reactive oxygen species (ROS) in ETC leading to oxidative stress. Recently, we have found that crucial changes in energy metabolism and intensity of oxidative stress in the mouse brain occur in middle age with minor progression in old age. In this review, we analyze the metabolic changes and functional causes that lead to these changes in the aging brain.
Collapse
|
7
|
Cao L, Zhang Q, Miao R, Lin J, Feng R, Ni Y, Li W, Yang D, Zhao X. Application of omics technology in the research on edible fungi. Curr Res Food Sci 2022; 6:100430. [PMID: 36605463 PMCID: PMC9807862 DOI: 10.1016/j.crfs.2022.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Edible fungus is a large fungus distributed all over the world and used as food and medicine. But people's understanding of edible fungi is not as much as that of ordinary crops, so people have started a number of research on edible fungi in recent years. With the development of science and technology, omics technology has gradually walked into people's vision. Omics technology has high sensitivity and wide application range, which is favored by researchers. The application of omics technology to edible fungus research is a major breakthrough, which has transferred edible fungus research from artificial cultivation to basic research. Now omics technology in edible fungi has been flexibly combined with other research methods, involving multiple studies of edible fungus, such as genetic breeding, growth and development, stress resistance, and the use of special components in edible fungus as pharmaceutical additives. It is believed that in the future, the research of edible fungi will also be brought to a deeper level with the help of omics technology. This paper introduces the application progress of modern omics technology to the study on edible fungi and mentions the application prospect of edible fungi research with the constant development of omics technology, thereby providing ideas for the follow-up in-depth research on edible fungi.
Collapse
Affiliation(s)
- Luping Cao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Qin Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China,Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Renyun Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China,Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Junbin Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China,Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Rencai Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China,Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Yanqing Ni
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Wensheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Delong Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China,Corresponding author.
| | - Xu Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China,Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China,Facility Agriculture and Equipment Research Institute, Gansu Academy of Agri-engineering Technology, Wuwei, 733006, Gansu, China,Corresponding author. Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China.
| |
Collapse
|
8
|
Crochemore C, Cimmaruta C, Fernández-Molina C, Ricchetti M. Reactive Species in Progeroid Syndromes and Aging-Related Processes. Antioxid Redox Signal 2022; 37:208-228. [PMID: 34428933 DOI: 10.1089/ars.2020.8242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Significance: Reactive species have been classically considered causative of age-related degenerative processes, but the scenario appears considerably more complex and to some extent counterintuitive than originally anticipated. The impact of reactive species in precocious aging syndromes is revealing new clues to understand and perhaps challenge the resulting degenerative processes. Recent Advances: Our understanding of reactive species has considerably evolved, including their hormetic effect (beneficial at a certain level, harmful beyond this level), the occurrence of diverse hormetic peaks in different cell types and organisms, and the extended type of reactive species that are relevant in biological processes. Our understanding of the impact of reactive species has also expanded from the dichotomic damaging/signaling role to modulation of gene expression. Critical Issues: These new concepts are affecting the study of aging and diseases where aging is greatly accelerated. We discuss how notions arising from the study of the underlying mechanisms of a progeroid disease, Cockayne syndrome, represent a paradigm shift that may shed a new light in understanding the role of reactive species in age-related degenerative processes. Future Issues: Future investigations urge to explore established and emerging notions to elucidate the multiple contributions of reactive species in degenerative processes linked to pathophysiological aging and their possible amelioration. Antioxid. Redox Signal. 37, 208-228.
Collapse
Affiliation(s)
- Clément Crochemore
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France.,Sup'Biotech, Villejuif, France
| | - Chiara Cimmaruta
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France
| | - Cristina Fernández-Molina
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France.,Sorbonne Universités, UPMC, University of Paris 06, Paris, France
| | - Miria Ricchetti
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France
| |
Collapse
|
9
|
Khan H, Singh TG, Dahiya RS, Abdel-Daim MM. α-Lipoic Acid, an Organosulfur Biomolecule a Novel Therapeutic Agent for Neurodegenerative Disorders: An Mechanistic Perspective. Neurochem Res 2022; 47:1853-1864. [PMID: 35445914 DOI: 10.1007/s11064-022-03598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
Lipoic acid (α-LA) (1,2-dithiolane3-pentanoic acid (C8H14O2S2) is also called thioctic acid with an oxidized (disulfide, LA) and a reduced (di-thiol: dihydro-lipoic acid, DHLA) form of LA. α-LA is a potent anti-oxidative agent that has a significant potential to treat neurodegenerative disorders. α-LA is both hydrophilic and hydrophobic in nature. It is widely distributed in plants and animals in cellular membranes and in the cytosol, which is responsible for LA's action in both the cytosol and plasma membrane. A systematic literature review of Bentham, Scopus, PubMed, Medline, and EMBASE (Elsevier) databases was carried out to understand the Nature and mechanistic interventions of the α-Lipoic acid for central nervous system diseases. Moreover, α-LA readily crosses the blood-brain barrier, which is a significant factor for CNS activities. The mechanisms of α-LA reduction are highly tissue-specific. α-LA produces its neuroprotective effect by inhibiting reactive oxygen species formation and neuronal damage, modulating protein levels, and promoting neurotransmitters and anti-oxidant levels. Hence, the execution of α-LA as a therapeutic ingredient in the therapy of neurodegenerative disorders is promising. Finally, based on evidence, it can be concluded that α-LA can prevent diseases related to the nervous system.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | | | | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia.,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522, Ismailia, Egypt
| |
Collapse
|
10
|
Cioffi F, Adam RHI, Bansal R, Broersen K. A Review of Oxidative Stress Products and Related Genes in Early Alzheimer's Disease. J Alzheimers Dis 2021; 83:977-1001. [PMID: 34420962 PMCID: PMC8543250 DOI: 10.3233/jad-210497] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress is associated with the progression of Alzheimer’s disease (AD). Reactive oxygen species can modify lipids, DNA, RNA, and proteins in the brain. The products of their peroxidation and oxidation are readily detectable at incipient stages of disease. Based on these oxidation products, various biomarker-based strategies have been developed to identify oxidative stress levels in AD. Known oxidative stress-related biomarkers include lipid peroxidation products F2-isoprostanes, as well as malondialdehyde and 4-hydroxynonenal which both conjugate to specific amino acids to modify proteins, and DNA or RNA oxidation products 8-hydroxy-2’-deoxyguanosine (8-OHdG) and 8-hydroxyguanosine (8-OHG), respectively. The inducible enzyme heme oxygenase type 1 (HO-1) is found to be upregulated in response to oxidative stress-related events in the AD brain. While these global biomarkers for oxidative stress are associated with early-stage AD, they generally poorly differentiate from other neurodegenerative disorders that also coincide with oxidative stress. Redox proteomics approaches provided specificity of oxidative stress-associated biomarkers to AD pathology by the identification of oxidatively damaged pathology-specific proteins. In this review, we discuss the potential combined diagnostic value of these reported biomarkers in the context of AD and discuss eight oxidative stress-related mRNA biomarkers in AD that we newly identified using a transcriptomics approach. We review these genes in the context of their reported involvement in oxidative stress regulation and specificity for AD. Further research is warranted to establish the protein levels and their functionalities as well as the molecular mechanisms by which these potential biomarkers are involved in regulation of oxidative stress levels and their potential for determination of oxidative stress and disease status of AD patients.
Collapse
Affiliation(s)
- Federica Cioffi
- Department of Nanobiophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Department of Nanobiophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Department of Medical Cell Biophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.,Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Kerensa Broersen
- Department of Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
11
|
Effect of High-Oleic Peanut Intake on Aging and Its Hippocampal Markers in Senescence-Accelerated Mice (SAMP8). Nutrients 2020; 12:nu12113461. [PMID: 33187266 PMCID: PMC7697529 DOI: 10.3390/nu12113461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/18/2022] Open
Abstract
In many previous studies, the preventive effects of peanut against aging and cognitive impairment have often been unclear, so to clarify the effects we first investigated effective markers for evaluating its effects in the hippocampus of senescence-accelerated mouse prone/8 (SAMP8) mice, mainly using proteomics. The effects of dietary high-oleic peanuts on the hair appearance of SAMP8, the expression of effective markers in the hippocampus, and the TBARS and amino acid contents of the hippocampus were examined. Hippocampus solute carrier family 1 (glial high-affinity glutamate transporter), calcium/calmodulin-dependent protein kinase type II, and sodium- and chloride-dependent GABA transporter, which all are considered to be closely related to glutamic acid concentration were decreased by feeding of the samples, and the GABA/glutamic acid ratio in the hippocampus was increased by feeding with the samples. The formation of glial fibrillary acidic protein and synapsin-2, which showed higher levels in the SAMP8 than in SAMR1, and the protein expression of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein and dihydropteridine reductase, which are considered to be related to the formation of adrenergic neuron transmitters, were reduced by the feeding of peanuts and their germ-rich fraction. Ferulic acid, as an ester and minor component in peanuts, could be partly connected to the effect of peanuts. These results indicate that high-oleic peanuts and their germ-rich fraction can protect against aging and cognitive impairment by regulating protein expression, which could be measured by the proteomics of the above hippocampus proteins of SAMP8 and the hippocampal GABA/glutamic acid ratio.
Collapse
|
12
|
Mori Y, Oikawa S, Kurimoto S, Kitamura Y, Tada-Oikawa S, Kobayashi H, Yamashima T, Murata M. Proteomic analysis of the monkey hippocampus for elucidating ischemic resistance. J Clin Biochem Nutr 2020; 67:167-173. [PMID: 33041514 PMCID: PMC7533853 DOI: 10.3164/jcbn.19-78] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/13/2020] [Indexed: 01/25/2023] Open
Abstract
It is well-known that the cornu Ammonis 1 (CA1) sector of hippocampus is vulnerable for the ischemic insult, whereas the dentate gyrus (DG) is resistant. Here, to elucidate its underlying mechanism, alternations of protein oxidation and expression of DG in the monkey hippocampus after ischemia-reperfusion by the proteomic analysis were studied by comparing CA1 data. Oxidative damage to proteins such as protein carbonylation interrupt the protein function. Carbonyl modification of molecular chaperone, heat shock 70 kDa protein 1 (Hsp70.1) was increased remarkably in CA1, but slightly in DG. In addition, expression levels of nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase sirtuin-2 (SIRT2) was significantly increased in DG after ischemia, but decreased in CA1. Accordingly, it is likely that SIRT2 upregulation and negligible changes of carbonylation of Hsp70.1 exert its neuroprotective effect in DG. On the contrary, carbonylation level of dihydropyrimidinase related protein 2 (DRP-2) and l-lactate dehydrogenase B chain (LDHB) were slightly increased in CA1 as shown previously, but remarkably increased in DG after ischemia. It is considered that DRP-2 and LDHB are specific targets of oxidative stress by ischemia insult and high carbonylation levels of DRP-2 may play an important role in modulating ischemic neuronal death.
Collapse
Affiliation(s)
- Yurie Mori
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Shota Kurimoto
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Yuki Kitamura
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan.,College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Saeko Tada-Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan.,Department of Human Nutrition, School of Life Studies, Sugiyama Jogakuen University, 17-3 Hoshigaoka-motomachi, Chikusa-ku, Nagoya, Aichi 464-8662, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Tetsumori Yamashima
- Departments of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Takakura-machi 13-1, Kanazawa, Ishikawa 920-8641, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| |
Collapse
|
13
|
Finelli MJ. Redox Post-translational Modifications of Protein Thiols in Brain Aging and Neurodegenerative Conditions-Focus on S-Nitrosation. Front Aging Neurosci 2020; 12:254. [PMID: 33088270 PMCID: PMC7497228 DOI: 10.3389/fnagi.2020.00254] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species and reactive nitrogen species (RONS) are by-products of aerobic metabolism. RONS trigger a signaling cascade that can be transduced through oxidation-reduction (redox)-based post-translational modifications (redox PTMs) of protein thiols. This redox signaling is essential for normal cellular physiology and coordinately regulates the function of redox-sensitive proteins. It plays a particularly important role in the brain, which is a major producer of RONS. Aberrant redox PTMs of protein thiols can impair protein function and are associated with several diseases. This mini review article aims to evaluate the role of redox PTMs of protein thiols, in particular S-nitrosation, in brain aging, and in neurodegenerative diseases. It also discusses the potential of using redox-based therapeutic approaches for neurodegenerative conditions.
Collapse
Affiliation(s)
- Mattéa J Finelli
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
14
|
Farr SA, Roesler E, Niehoff ML, Roby DA, McKee A, Morley JE. Metformin Improves Learning and Memory in the SAMP8 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2020; 68:1699-1710. [PMID: 30958364 DOI: 10.3233/jad-181240] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metformin is used for the treatment of insulin resistant diabetes. Diabetics are at an increased risk of developing dementia. Recent epidemiological studies suggest that metformin treatment prevents cognitive decline in diabetics. A pilot clinical study found cognitive improvement with metformin in patients with mild cognitive impairment (MCI). Preclinical studies suggest metformin reduces Alzheimer-like pathology in mouse models of Alzheimer's disease (AD). In the current study, we used 11-month-old SAMP8 mice. Mice were given daily injections of metformin at 20 mg/kg/sc or 200 mg/kg/sc for eight weeks. After four weeks, mice were tested in T-maze footshock avoidance, object recognition, and Barnes maze. At the end of the study, brain tissue was collected for analysis of PKC (PKCζ, PKCι, PKCα, PKCγ, PKCɛ), GSK-3β, pGSK-3βser9, pGSK-3βtyr216, pTau404, and APP. Metformin improved both acquisition and retention in SAMP8 mice in T-maze footshock avoidance, retention in novel object recognition, and acquisition in the Barnes maze. Biochemical analysis indicated that metformin increased both atypical and conventional forms of PKC; PKCζ, and PKCα at 20 mg/kg. Metformin significantly increased pGSK-3βser9 at 200 mg/kg, and decreased Aβ at 20 mg/kg and pTau404 and APPc99 at both 20 mg/kg and 200 mg/kg. There were no differences in blood glucose levels between the aged vehicle and metformin treated mice. Metformin improved learning and memory in the SAMP8 mouse model of spontaneous onset AD. Biochemical analysis indicates that metformin improved memory by decreasing APPc99 and pTau. The current study lends support to the therapeutic potential of metformin for AD.
Collapse
Affiliation(s)
- Susan A Farr
- Research and Development Service, VA Medical Center, MO, USA.,Division of Geriatric Medicine, Saint Louis University School of Medicine, MO, USA
| | - Elizabeth Roesler
- Division of Geriatric Medicine, Saint Louis University School of Medicine, MO, USA
| | - Michael L Niehoff
- Division of Geriatric Medicine, Saint Louis University School of Medicine, MO, USA
| | - Deborah A Roby
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, MO, USA
| | - Alexis McKee
- Division of Endocrinology, Diabetes, and Metabolism, Saint Louis University, MO, USA
| | - John E Morley
- Division of Geriatric Medicine, Saint Louis University School of Medicine, MO, USA
| |
Collapse
|
15
|
Redox States of Protein Cysteines in Pathways of Protein Turnover and Cytoskeleton Dynamics Are Changed with Aging and Reversed by Slc7a11 Restoration in Mouse Lung Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2468986. [PMID: 32587657 PMCID: PMC7298344 DOI: 10.1155/2020/2468986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/22/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022]
Abstract
Slc7a11 is the key component of system Xc−, an antiporter that imports cystine (CySS) and exports glutamate. It plays an important role in cellular defense against oxidative stress because cysteine (Cys), reduced from CySS, is used for and limits the synthesis of glutathione (GSH). We have shown that downregulation of Slc7a11 is responsible for oxidation of extracellular Cys/CySS redox potential in lung fibroblasts from old mice. However, how age-related change of Slc7a11 expression affects the intracellular redox environment of mouse lung fibroblasts remains unexplored. The purpose of this study is to evaluate the effects of aging on the redox states of intracellular proteins and to examine whether Slc7a11 contributes to the age-dependent effects. Iodoacetyl Tandem Mass Tags were used to differentially label reduced and oxidized forms of Cys residues in primary lung fibroblasts from young and old mice, as well as old fibroblasts transfected with Slc7a11. The ratio of oxidized/reduced forms (i.e., redox state) of a Cys residue was determined via multiplexed tandem mass spectrometry. Redox states of 151 proteins were different in old fibroblasts compared to young fibroblasts. Slc7a11 overexpression restored redox states of 104 (69%) of these proteins. Ingenuity Pathway Analysis (IPA) showed that age-dependent Slc7a11-responsive proteins were involved in pathways of protein translation initiation, ubiquitin-proteasome-mediated degradation, and integrin-cytoskeleton-associated signaling. Gene ontology analysis showed cell adhesion, protein translation, and organization of actin cytoskeleton were among the top enriched terms for biological process. Protein-protein interaction network demonstrated the interactions between components of the three enriched pathways predicted by IPA. Follow-up experiments confirmed that proteasome activity was lower in old cells than in young cells and that upregulation of Slc7a11 expression by sulforaphane restored this activity. This study finds that aging results in changes of redox states of proteins involved in protein turnover and cytoskeleton dynamics, and that upregulating Slc7a11 can partially restore the redox states of these proteins.
Collapse
|
16
|
Butterfield DA, Boyd-Kimball D. Redox proteomics and amyloid β-peptide: insights into Alzheimer disease. J Neurochem 2019; 151:459-487. [PMID: 30216447 PMCID: PMC6417976 DOI: 10.1111/jnc.14589] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/15/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disorder associated with aging and characterized pathologically by the presence of senile plaques, neurofibrillary tangles, and neurite and synapse loss. Amyloid beta-peptide (1-42) [Aβ(1-42)], a major component of senile plaques, is neurotoxic and induces oxidative stress in vitro and in vivo. Redox proteomics has been used to identify proteins oxidatively modified by Aβ(1-42) in vitro and in vivo. In this review, we discuss these proteins in the context of those identified to be oxidatively modified in animal models of AD, and human studies including familial AD, pre-clinical AD (PCAD), mild cognitive impairment (MCI), early AD, late AD, Down syndrome (DS), and DS with AD (DS/AD). These redox proteomics studies indicate that Aβ(1-42)-mediated oxidative stress occurs early in AD pathogenesis and results in altered antioxidant and cellular detoxification defenses, decreased energy yielding metabolism and mitochondrial dysfunction, excitotoxicity, loss of synaptic plasticity and cell structure, neuroinflammation, impaired protein folding and degradation, and altered signal transduction. Improved access to biomarker imaging and the identification of lifestyle interventions or treatments to reduce Aβ production could be beneficial in preventing or delaying the progression of AD. This article is part of the special issue "Proteomics".
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506
| | - Debra Boyd-Kimball
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, OH 44601
| |
Collapse
|
17
|
Farr SA, Sandoval KE, Niehoff ML, Witt KA, Kumar VB, Morley JE. Peripheral Administration of GSK-3β Antisense Oligonucleotide Improves Learning and Memory in SAMP8 and Tg2576 Mouse Models of Alzheimer's Disease. J Alzheimers Dis 2018; 54:1339-1348. [PMID: 27589526 DOI: 10.3233/jad-160416] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Glycogen synthase kinase (GSK)-3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer's disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ), and neurodegeneration. We have previously shown that an antisense oligonucleotide directed at the Tyr 216 site on GSK-3β (GAO) when injected centrally can decrease GSK-3β levels, improve learning and memory, and decrease oxidative stress. In addition, we showed that GAO can cross the blood-brain barrier. Herein the impact of peripherally administered GAO in both the non-transgenic SAMP8 and transgenic Tg2576 (APPswe) models of AD were examined respective to learning and memory. Brain tissues were then evaluated for expression changes in the phosphorylated-Tyr 216 residue, which leads to GSK-3β activation, and the phosphorylated-Ser9 residue, which reduces GSK-3β activity. SAMP8 GAO-treated mice showed improved acquisition and retention using aversive T-maze, and improved declarative memory as measured by the novel object recognition (NOR) test. Expression of the phosphorylated-Tyr 216 was decreased and the phosphorylated-Ser9 was increased in GAO-treated SAMP8 mice. Tg2576 GAO-treated mice improved acquisition and retention in both the T-maze and NOR tests, with an increased phosphorylated-Ser9 GSK-3β expression. Results demonstrate that peripheral administration of GAO improves learning and memory, corresponding with alterations in GSK-3β phosphorylation state. This study supports peripherally administered GAO as a viable means to mediate GSK-3β activity within the brain and a possible treatment for AD.
Collapse
Affiliation(s)
- Susan A Farr
- Research & Development Service, VA Medical Center, St. Louis, Missouri, USA.,Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Michael L Niehoff
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Vijaya B Kumar
- Research & Development Service, VA Medical Center, St. Louis, Missouri, USA.,Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - John E Morley
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA.,Division of Endocrinology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
18
|
Baghel MS, Thakur MK. Differential proteome profiling in the hippocampus of amnesic mice. Hippocampus 2017; 27:845-859. [PMID: 28449397 DOI: 10.1002/hipo.22735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022]
Abstract
Amnesia or memory loss is associated with brain aging and several neurodegenerative pathologies including Alzheimer's disease (AD). This can be induced by a cholinergic antagonist scopolamine but the underlying molecular mechanism is poorly understood. This study of proteome profiling in the hippocampus could provide conceptual insights into the molecular mechanisms involved in amnesia. To reveal this, mice were administered scopolamine to induce amnesia and memory impairment was validated by novel object recognition test. Using two-dimensional gel electrophoresis coupled with MALDI-MS/MS, we have analyzed the hippocampal proteome and identified 18 proteins which were differentially expressed. Out of these proteins, 11 were downregulated and 7 were upregulated in scopolamine-treated mice as compared to control. In silico analysis showed that the majority of identified proteins are involved in metabolism, catalytic activity, and cytoskeleton architectural functions. STRING interaction network analysis revealed that majority of identified proteins exhibit common association with Actg1 cytoskeleton and Vdac1 energy transporter protein. Furthermore, interaction map analysis showed that Fascin1 and Coronin 1b individually interact with Actg1 and regulate the actin filament dynamics. Vdac1 was significantly downregulated in amnesic mice and showed interaction with other proteins in interaction network. Therefore, we silenced Vdac1 in the hippocampus of normal young mice and found similar impairment in recognition memory of Vdac1 silenced and scopolamine-treated mice. Thus, these findings suggest that Vdac1-mediated disruption of energy metabolism and cytoskeleton architecture might be involved in scopolamine-induced amnesia.
Collapse
Affiliation(s)
- Meghraj Singh Baghel
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Banaras Hindu University, Varanasi, 221005, India
| | - Mahendra Kumar Thakur
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
19
|
Butterfield DA, Palmieri EM, Castegna A. Clinical implications from proteomic studies in neurodegenerative diseases: lessons from mitochondrial proteins. Expert Rev Proteomics 2016; 13:259-74. [PMID: 26837425 DOI: 10.1586/14789450.2016.1149470] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria play a key role in eukaryotic cells, being mediators of energy, biosynthetic and regulatory requirements of these cells. Emerging proteomics techniques have allowed scientists to obtain the differentially expressed proteome or the proteomic redox status in mitochondria. This has unmasked the diversity of proteins with respect to subcellular location, expression and interactions. Mitochondria have become a research 'hot spot' in subcellular proteomics, leading to identification of candidate clinical targets in neurodegenerative diseases in which mitochondria are known to play pathological roles. The extensive efforts to rapidly obtain differentially expressed proteomes and unravel the redox proteomic status in mitochondria have yielded clinical insights into the neuropathological mechanisms of disease, identification of disease early stage and evaluation of disease progression. Although current technical limitations hamper full exploitation of the mitochondrial proteome in neurosciences, future advances are predicted to provide identification of specific therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- D Allan Butterfield
- a Department of Chemistry, and Sanders-Brown Center on Aging , University of Kentucky , Lexington , KY , USA
| | - Erika M Palmieri
- b Department of Biosciences, Biotechnologies and Biopharmaceutics , University of Bari 'Aldo Moro' , Bari , Italy
| | - Alessandra Castegna
- b Department of Biosciences, Biotechnologies and Biopharmaceutics , University of Bari 'Aldo Moro' , Bari , Italy
| |
Collapse
|
20
|
Triplett JC, Swomley AM, Kirk J, Grimes KM, Lewis KN, Orr ME, Rodriguez KA, Cai J, Klein JB, Buffenstein R, Butterfield DA. Reaching Out to Send a Message: Proteins Associated with Neurite Outgrowth and Neurotransmission are Altered with Age in the Long-Lived Naked Mole-Rat. Neurochem Res 2016; 41:1625-34. [DOI: 10.1007/s11064-016-1877-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 02/06/2016] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
|
21
|
Bowen TS, Mangner N, Werner S, Glaser S, Kullnick Y, Schrepper A, Doenst T, Oberbach A, Linke A, Steil L, Schuler G, Adams V. Diaphragm muscle weakness in mice is early-onset post-myocardial infarction and associated with elevated protein oxidation. J Appl Physiol (1985) 2014; 118:11-9. [PMID: 25359720 DOI: 10.1152/japplphysiol.00756.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Heart failure induced by myocardial infarction (MI) causes diaphragm muscle weakness, with elevated oxidants implicated. We aimed to determine whether diaphragm muscle weakness is 1) early-onset post-MI (i.e., within the early left ventricular remodeling phase of 72 h); and 2) associated with elevated protein oxidation. Ligation of the left coronary artery to induce MI (n = 10) or sham operation (n = 10) was performed on C57BL6 mice. In vitro contractile function of diaphragm muscle fiber bundles was assessed 72 h later. Diaphragm mRNA and protein expression, enzyme activity, and individual carbonylated proteins (by two-dimensional differential in-gel electrophoresis and mass spectrometry) were subsequently assessed. Infarct size averaged 57 ± 1%. Maximal diaphragm function was reduced (P < 0.01) by 20% post-MI, with the force-frequency relationship depressed (P < 0.01) between 80 and 300 Hz. The mRNA expression of inflammation, atrophy, and regulatory Ca(2+) proteins remained unchanged post-MI, as did the protein expression of key contractile proteins. However, enzyme activity of the oxidative sources NADPH oxidase and xanthine oxidase was increased (P < 0.01) by 45 and 33%, respectively. Compared with sham, a 57 and 45% increase (P < 0.05) was observed in the carbonylation of sarcomeric actin and creatine kinase post-MI, respectively. In conclusion, diaphragm muscle weakness was rapidly induced in mice during the early left ventricular remodeling phase of 72 h post-MI, which was associated with increased oxidation of contractile and energetic proteins. Collectively, these findings suggest diaphragm muscle weakness may be early onset in heart failure, which is likely mediated in part by posttranslational oxidative modifications at the myofibrillar level.
Collapse
Affiliation(s)
- T Scott Bowen
- Department of Internal Medicine and Cardiology, Leipzig University-Heart Center, Leipzig, Germany;
| | - Norman Mangner
- Department of Internal Medicine and Cardiology, Leipzig University-Heart Center, Leipzig, Germany
| | - Sarah Werner
- Department of Internal Medicine and Cardiology, Leipzig University-Heart Center, Leipzig, Germany
| | - Stefanie Glaser
- Department of Internal Medicine and Cardiology, Leipzig University-Heart Center, Leipzig, Germany
| | - Yvonne Kullnick
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Andrea Schrepper
- Department of Cardiothoracic Surgery, University of Jena, Jena, Germany
| | - Torsten Doenst
- Department of Cardiothoracic Surgery, University of Jena, Jena, Germany
| | - Andreas Oberbach
- Department of Cardiac Surgery, Leipzig University-Heart Center, Leipzig, Germany; and
| | - Axel Linke
- Department of Internal Medicine and Cardiology, Leipzig University-Heart Center, Leipzig, Germany
| | - Leif Steil
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Gerhard Schuler
- Department of Internal Medicine and Cardiology, Leipzig University-Heart Center, Leipzig, Germany
| | - Volker Adams
- Department of Internal Medicine and Cardiology, Leipzig University-Heart Center, Leipzig, Germany
| |
Collapse
|
22
|
Butterfield DA. The 2013 SFRBM discovery award: selected discoveries from the butterfield laboratory of oxidative stress and its sequela in brain in cognitive disorders exemplified by Alzheimer disease and chemotherapy induced cognitive impairment. Free Radic Biol Med 2014; 74:157-74. [PMID: 24996204 PMCID: PMC4146642 DOI: 10.1016/j.freeradbiomed.2014.06.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/05/2014] [Accepted: 06/10/2014] [Indexed: 12/21/2022]
Abstract
This retrospective review on discoveries of the roles of oxidative stress in brain of subjects with Alzheimer disease (AD) and animal models thereof as well as brain from animal models of chemotherapy-induced cognitive impairment (CICI) results from the author receiving the 2013 Discovery Award from the Society for Free Radical Biology and Medicine. The paper reviews our laboratory's discovery of protein oxidation and lipid peroxidation in AD brain regions rich in amyloid β-peptide (Aβ) but not in Aβ-poor cerebellum; redox proteomics as a means to identify oxidatively modified brain proteins in AD and its earlier forms that are consistent with the pathology, biochemistry, and clinical presentation of these disorders; how Aβ in in vivo, ex vivo, and in vitro studies can lead to oxidative modification of key proteins that also are oxidatively modified in AD brain; the role of the single methionine residue of Aβ(1-42) in these processes; and some of the potential mechanisms in the pathogenesis and progression of AD. CICI affects a significant fraction of the 14 million American cancer survivors, and due to diminished cognitive function, reduced quality of life of the persons with CICI (called "chemobrain" by patients) often results. A proposed mechanism for CICI employed the prototypical ROS-generating and non-blood brain barrier (BBB)-penetrating chemotherapeutic agent doxorubicin (Dox, also called adriamycin, ADR). Because of the quinone moiety within the structure of Dox, this agent undergoes redox cycling to produce superoxide free radical peripherally. This, in turn, leads to oxidative modification of the key plasma protein, apolipoprotein A1 (ApoA1). Oxidized ApoA1 leads to elevated peripheral TNFα, a proinflammatory cytokine that crosses the BBB to induce oxidative stress in brain parenchyma that affects negatively brain mitochondria. This subsequently leads to apoptotic cell death resulting in CICI. This review outlines aspects of CICI consistent with the clinical presentation, biochemistry, and pathology of this disorder. To the author's knowledge this is the only plausible and self-consistent mechanism to explain CICI. These two different disorders of the CNS affect millions of persons worldwide. Both AD and CICI share free radical-mediated oxidative stress in brain, but the source of oxidative stress is not the same. Continued research is necessary to better understand both AD and CICI. The discoveries about these disorders from the Butterfield Laboratory that led to the 2013 Discovery Award from the Society of Free Radical and Medicine provide a significant foundation from which this future research can be launched.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Free Radical Biology in Cancer, Shared Resource Facility of the Markey Cancer Center, Spinal Cord and Brain Injury Research Center, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
23
|
Swomley AM, Förster S, Keeney JT, Triplett J, Zhang Z, Sultana R, Butterfield DA. Abeta, oxidative stress in Alzheimer disease: evidence based on proteomics studies. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:1248-57. [PMID: 24120836 PMCID: PMC3981962 DOI: 10.1016/j.bbadis.2013.09.015] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 01/01/2023]
Abstract
The initiation and progression of Alzheimer disease (AD) is a complex process not yet fully understood. While many hypotheses have been provided as to the cause of the disease, the exact mechanisms remain elusive and difficult to verify. Proteomic applications in disease models of AD have provided valuable insights into the molecular basis of this disorder, demonstrating that on a protein level, disease progression impacts numerous cellular processes such as energy production, cellular structure, signal transduction, synaptic function, mitochondrial function, cell cycle progression, and proteasome function. Each of these cellular functions contributes to the overall health of the cell, and the dysregulation of one or more could contribute to the pathology and clinical presentation in AD. In this review, foci reside primarily on the amyloid β-peptide (Aβ) induced oxidative stress hypothesis and the proteomic studies that have been conducted by our laboratory and others that contribute to the overall understanding of this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Aaron M Swomley
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Sarah Förster
- Department of Biochemistry, Institute of Animal Sciences, University of Bonn, Bonn, Germany
| | - Jierel T Keeney
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Judy Triplett
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Zhaoshu Zhang
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
24
|
Butterfield DA, Gu L, Di Domenico F, Robinson RAS. Mass spectrometry and redox proteomics: applications in disease. MASS SPECTROMETRY REVIEWS 2014; 33:277-301. [PMID: 24930952 DOI: 10.1002/mas.21374] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/07/2013] [Accepted: 02/07/2013] [Indexed: 06/03/2023]
Abstract
Proteomics techniques are continuously being developed to further understanding of biology and disease. Many of the pathways that are relevant to disease mechanisms rely on the identification of post-translational modifications (PTMs) such as phosphorylation, acetylation, and glycosylation. Much attention has also been focused on oxidative PTMs which include protein carbonyls, protein nitration, and the incorporation of fatty acids and advanced glycation products to amino acid side chains, amongst others. The introduction of these PTMs in the cell can occur due to the attack of reactive oxygen and nitrogen species (ROS and RNS, respectively) on proteins. ROS and RNS can be present as a result of normal metabolic processes as well as external factors such as UV radiation, disease, and environmental toxins. The imbalance of ROS and RNS with antioxidant cellular defenses leads to a state of oxidative stress, which has been implicated in many diseases. Redox proteomics techniques have been used to characterize oxidative PTMs that result as a part of normal cell signaling processes as well as oxidative stress conditions. This review highlights many of the redox proteomics techniques which are currently available for several oxidative PTMs and brings to the reader's attention the application of redox proteomics for understanding disease pathogenesis in neurodegenerative disorders and others such as cancer, kidney, and heart diseases.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, 40506
| | | | | | | |
Collapse
|
25
|
Bernstein LR, Mackenzie ACL, Kraemer DC, Morley JE, Farr S, Chaffin CL, Merchenthaler I. Shortened estrous cycle length, increased FSH levels, FSH variance, oocyte spindle aberrations, and early declining fertility in aging senescence-accelerated mouse prone-8 (SAMP8) mice: concomitant characteristics of human midlife female reproductive aging. Endocrinology 2014; 155:2287-300. [PMID: 24654787 DOI: 10.1210/en.2013-2153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Women experience a series of specific transitions in their reproductive function with age. Shortening of the menstrual cycle begins in the mid to late 30s and is regarded as the first sign of reproductive aging. Other early changes include elevation and increased variance of serum FSH levels, increased incidences of oocyte spindle aberrations and aneuploidy, and declining fertility. The goal of this study was to investigate whether the mouse strain senescence-accelerated mouse-prone-8 (SAMP8) is a suitable model for the study of these midlife reproductive aging characteristics. Midlife SAMP8 mice aged 6.5-7.85 months (midlife SAMP8) exhibited shortened estrous cycles compared with SAMP8 mice aged 2-3 months (young SAMP8, P = .0040). Midlife SAMP8 mice had high FSH levels compared with young SAMP8 mice, and mice with a single day of high FSH exhibited statistically elevated FSH throughout the cycle, ranging from 1.8- to 3.6-fold elevation on the days of proestrus, estrus, metestrus, and diestrus (P < .05). Midlife SAMP8 mice displayed more variance in FSH than young SAMP8 mice (P = .01). Midlife SAMP8 ovulated fewer oocytes (P = .0155). SAMP8 oocytes stained with fluorescently labeled antitubulin antibodies and scored in fluorescence microscopy exhibited increased incidence of meiotic spindle aberrations with age, from 2/126 (1.59%) in young SAMP8 to 38/139 (27.3%) in midlife SAMP8 (17.2-fold increase, P < .0001). Finally, SAMP8 exhibited declining fertility from 8.9 pups/litter in young SAMP8 to 3.5 pups/litter in midlife SAMP8 mice (P < .0001). The age at which these changes occur is younger than for most mouse strains, and their simultaneous occurrence within a single strain has not been described previously. We propose that SAMP8 mice are a model of midlife human female reproductive aging.
Collapse
Affiliation(s)
- Lori R Bernstein
- Pregmama, LLC (L.R.B.), Gaithersburg, Maryland 20886; Departments of Epidemiology and Public Health (L.R.B., A.C.L.M., I.M.) and Obstetrics, Gynecology, and Reproductive Sciences (C.L.C.), University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Gynecology and Obstetrics (L.R.B.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Departments of Veterinary Integrative Biosciences (L.R.B.) and Veterinary Physiology and Pharmacology (D.C.K.), Texas A&M College of Veterinary Medicine, College Station, Texas 77843; Divisions of Geriatric Medicine and Endocrinology (J.E.M., S.F.), St. Louis University School of Medicine, St. Louis, Missouri 63103; and St. Louis Veterans Affairs Medical Center (S.F.), St. Louis, Missouri 63106
| | | | | | | | | | | | | |
Collapse
|
26
|
Morley JE, Farr SA. The role of amyloid-beta in the regulation of memory. Biochem Pharmacol 2014; 88:479-85. [DOI: 10.1016/j.bcp.2013.12.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/20/2013] [Accepted: 12/20/2013] [Indexed: 01/01/2023]
|
27
|
Autophagy and oxidative stress in gliomas with IDH1 mutations. Acta Neuropathol 2014; 127:221-33. [PMID: 24150401 DOI: 10.1007/s00401-013-1194-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/27/2013] [Accepted: 10/04/2013] [Indexed: 12/20/2022]
Abstract
IDH1 mutations in gliomas associate with longer survival. Prooxidant and antiproliferative effects of IDH1 mutations and its D-2-hydroxyglutarate (2-HG) product have been described in vitro, but inconsistently observed. It is also unclear whether overexpression of mutant IDH1 in wild-type cells accurately phenocopies the effects of endogenous IDH1-mutations on tumor apoptosis and autophagy. Herein we investigated the effects of 2-HG and mutant IDH1 overexpression on proliferation, apoptosis, oxidative stress, and autophagy in IDH1 wild-type glioma cells, and compared those results with patient-derived tumors. 2-HG reduced viability and proliferation of U87MG and LN18 cells, triggered apoptosis in LN18 cells, and autophagy in U87MG cells. In vitro studies and flank xenografts of U87MG cells overexpressing R132H IDH1 exhibited increased oxidative stress, including increases of both manganese superoxide dismutase (MnSOD) and p62. Patient-derived IDH1-mutant tumors showed no significant differences in apoptosis or autophagy, but showed p62 accumulation and actually trended toward reduced MnSOD expression. These data indicate that mutant IDH1 and 2-HG can induce oxidative stress, autophagy, and apoptosis, but these effects vary greatly according to cell type.
Collapse
|
28
|
Farr SA, Ripley JL, Sultana R, Zhang Z, Niehoff ML, Platt TL, Murphy MP, Morley JE, Kumar V, Butterfield DA. Antisense oligonucleotide against GSK-3β in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: Involvement of transcription factor Nrf2 and implications for Alzheimer disease. Free Radic Biol Med 2014; 67:387-95. [PMID: 24355211 PMCID: PMC3945161 DOI: 10.1016/j.freeradbiomed.2013.11.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/12/2013] [Accepted: 11/14/2013] [Indexed: 12/30/2022]
Abstract
Glycogen synthase kinase (GSK)-3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer's disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ), and neurodegeneration. In this study we used 12-month-old SAMP8 mice, an AD model, to examine the effects GSK-3β may cause regarding the cognitive impairment and oxidative stress associated with AD. To suppress the level of GSK-3β, SAMP8 mice were treated with an antisense oligonucleotide (GAO) directed at this kinase. We measured a decreased level of GSK-3β in the cortex of the mice, indicating the success of the antisense treatment. Learning and memory assessments of the SAMP8 mice were tested post-antisense treatment using an aversive T-maze and object recognition test, both of which observably improved. In cortex samples of the SAMP8 mice, decreased levels of protein carbonyl and protein-bound HNE were measured, indicating decreased oxidative stress. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription factor known to increase the level of many antioxidants, including glutathione-S transferase (GST), and is negatively regulated by the activity of GSK-3β. Our results indicated the increased nuclear localization of Nrf2 and level of GST, suggesting the increased activity of the transcription factor as a result of GSK-3β suppression, consistent with the decreased oxidative stress observed. Consistent with the improved learning and memory, and consistent with GSK-3b being a tau kinase, we observed decreased tau phosphorylation in brain of GAO-treated SAMP8 mice compared to that of RAO-treated SAMP8 mice. Lastly, we examined the ability of GAO to cross the blood-brain barrier and determined it to be possible. The results presented in this study demonstrate that reducing GSK-3 with a phosphorothionated antisense against GSK-3 improves learning and memory, reduces oxidative stress, possibly coincident with increased levels of the antioxidant transcriptional activity of Nrf2, and decreases tau phosphorylation. Our study supports the notion of GAO as a possible treatment for AD.
Collapse
Affiliation(s)
- Susan A Farr
- Research & Development Service, VA Medical Center, St. Louis, MO, USA
| | - Jessica L Ripley
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Zhaoshu Zhang
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Michael L Niehoff
- Research & Development Service, VA Medical Center, St. Louis, MO, USA
| | - Thomas L Platt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - M Paul Murphy
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - John E Morley
- Research & Development Service, VA Medical Center, St. Louis, MO, USA; Division of Endocrinology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Vijaya Kumar
- Research & Development Service, VA Medical Center, St. Louis, MO, USA; Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
29
|
Rabilloud T, Chevallet M, Luche S, Leize-Wagner E. Oxidative stress response: a proteomic view. Expert Rev Proteomics 2014; 2:949-56. [PMID: 16307523 DOI: 10.1586/14789450.2.6.949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The oxidative stress response is characterized by various effects on a range of biologic molecules. When examined at the protein level, both expression levels and protein modifications are altered by oxidative stress. While these effects have been studied in the past by classic biochemical methods, the recent onset of proteomics methods has allowed the oxidative stress response to be studied on a much wider scale. The input of proteomics in the study of oxidative stress response and in the evidence of an oxidative stress component in biologic phenomena is reviewed in this paper.
Collapse
Affiliation(s)
- Thierry Rabilloud
- DRDC/ICH, INSERM U 548, CEA-Laboratoire d'Immunochimie, CEA-Grenoble, 17 rue des martyrs, F-38054 Grenoble Cedex 9, France.
| | | | | | | |
Collapse
|
30
|
Abstract
The scope of the current paper is to review existing and potential applications of proteomic analysis to aging research. The focus will lie on the unique opportunities of high-throughput studies for uncovering specific alterations in protein expression, protein complexes or protein modifications caused by biological aging. The result of such studies will outline aging phenotypes and potentially indicate pathways involved in the pathogenesis of age-associated disfunctions. Specific attention is paid to the illustrations of successful applications of proteomic technologies and potential applications of new proteomic concepts to biogerontological studies.
Collapse
Affiliation(s)
- Victor S Sharov
- University of Kansas, Pharmaceutical Chemistry Department, Lawrence, KS 66047, USA.
| | | |
Collapse
|
31
|
Redox proteomics and the dynamic molecular landscape of the aging brain. Ageing Res Rev 2014; 13:75-89. [PMID: 24374232 DOI: 10.1016/j.arr.2013.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/04/2013] [Accepted: 12/16/2013] [Indexed: 12/13/2022]
Abstract
It is well established that the risk to develop neurodegenerative disorders increases with chronological aging. Accumulating studies contributed to characterize the age-dependent changes either at gene and protein expression level which, taken together, show that aging of the human brain results from the combination of the normal decline of multiple biological functions with environmental factors that contribute to defining disease risk of late-life brain disorders. Finding the "way out" of the labyrinth of such complex molecular interactions may help to fill the gap between "normal" brain aging and development of age-dependent diseases. To this purpose, proteomics studies are a powerful tool to better understand where to set the boundary line of healthy aging and age-related disease by analyzing the variation of protein expression levels and the major post translational modifications that determine "protein" physio/pathological fate. Increasing attention has been focused on oxidative modifications due to the crucial role of oxidative stress in aging, in addition to the fact that this type of modification is irreversible and may alter protein function. Redox proteomics studies contributed to decipher the complexity of brain aging by identifying the proteins that were increasingly oxidized and eventually dysfunctional as a function of age. The purpose of this review is to summarize the most important findings obtained by applying proteomics approaches to murine models of aging with also a brief overview of some human studies, in particular those related to dementia.
Collapse
|
32
|
Cabiscol E, Tamarit J, Ros J. Protein carbonylation: proteomics, specificity and relevance to aging. MASS SPECTROMETRY REVIEWS 2014; 33:21-48. [PMID: 24114980 DOI: 10.1002/mas.21375] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/13/2013] [Accepted: 02/13/2013] [Indexed: 06/02/2023]
Abstract
Detection and quantification of protein carbonyls present in biological samples has become a popular, albeit indirect, method to determine the existence of oxidative stress. Moreover, the rise of proteomics has allowed the identification of the specific proteins targeted by protein carbonylation. This review discusses these methodologies and proteomic strategies and then focuses on the relationship between protein carbonylation and aging and the parameters that may explain the increased sensitivity of certain proteins to protein carbonylation.
Collapse
Affiliation(s)
- Elisa Cabiscol
- Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | | | | |
Collapse
|
33
|
Fiorini A, Sultana R, Förster S, Perluigi M, Cenini G, Cini C, Cai J, Klein JB, Farr SA, Niehoff ML, Morley JE, Kumar VB, Butterfield DA. Antisense directed against PS-1 gene decreases brain oxidative markers in aged senescence accelerated mice (SAMP8) and reverses learning and memory impairment: a proteomics study. Free Radic Biol Med 2013; 65:1-14. [PMID: 23777706 PMCID: PMC3855183 DOI: 10.1016/j.freeradbiomed.2013.06.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/29/2013] [Accepted: 06/07/2013] [Indexed: 01/12/2023]
Abstract
Amyloid β-peptide (Aβ) plays a central role in the pathophysiology of Alzheimer's disease (AD) through the induction of oxidative stress. This peptide is produced by proteolytic cleavage of amyloid precursor protein (APP) by the action of β- and γ-secretases. Previous studies demonstrated that reduction of Aβ, using an antisense oligonucleotide (AO) directed against the Aβ region of APP, reduced oxidative stress-mediated damage and prevented or reverted cognitive deficits in senescence-accelerated prone mice (SAMP8), a useful animal model for investigating the events related to Aβ pathology and possibly to the early phase of AD. In the current study, aged SAMP8 were treated by AO directed against PS-1, a component of the γ-secretase complex, and tested for learning and memory in T-maze foot shock avoidance and novel object recognition. Brain tissue was collected to identify the decrease of oxidative stress and to evaluate the proteins that are differently expressed and oxidized after the reduction in free radical levels induced by Aβ. We used both expression proteomics and redox proteomics approaches. In brain of AO-treated mice a decrease of oxidative stress markers was found, and the proteins identified by proteomics as expressed differently or nitrated are involved in processes known to be impaired in AD. Our results suggest that the treatment with AO directed against PS-1 in old SAMP8 mice reverses learning and memory deficits and reduces Aβ-mediated oxidative stress with restoration to the normal condition and identifies possible pharmacological targets to combat this devastating dementing disease.
Collapse
Affiliation(s)
- Ada Fiorini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Sarah Förster
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA; Department of Biochemistry, Institute of Animal Sciences, University of Bonn, Bonn, Germany
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Giovanna Cenini
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Chiara Cini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Jian Cai
- Department of Nephrology and Proteomics Center, University of Louisville, Louisville, KY 40292, USA
| | - Jon B Klein
- Department of Nephrology and Proteomics Center, University of Louisville, Louisville, KY 40292, USA
| | - Susan A Farr
- Division of Geriatric Medicine Saint Louis University School of Medicine, St. Louis, MO, USA; VA Medical Center, St. Louis, MO, USA
| | - Michael L Niehoff
- Division of Geriatric Medicine Saint Louis University School of Medicine, St. Louis, MO, USA; VA Medical Center, St. Louis, MO, USA
| | - John E Morley
- Division of Geriatric Medicine Saint Louis University School of Medicine, St. Louis, MO, USA; VA Medical Center, St. Louis, MO, USA
| | - Vijaya B Kumar
- Division of Geriatric Medicine Saint Louis University School of Medicine, St. Louis, MO, USA; VA Medical Center, St. Louis, MO, USA
| | - D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
34
|
Nam SM, Choi JH, Yoo DY, Kim W, Jung HY, Kim JW, Kang SY, Park J, Kim DW, Kim WJ, Yoon YS, Hwang IK. Valeriana officinalis extract and its main component, valerenic acid, ameliorate D-galactose-induced reductions in memory, cell proliferation, and neuroblast differentiation by reducing corticosterone levels and lipid peroxidation. Exp Gerontol 2013; 48:1369-77. [PMID: 24055511 DOI: 10.1016/j.exger.2013.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 01/08/2023]
Abstract
Valeriana officinalis is used in herbal medicine of many cultures as mild sedatives and tranquilizers. In this study, we investigated the effects of extract from valerian root extracts and its major component, valerenic acid on memory function, cell proliferation, neuroblast differentiation, serum corticosterone, and lipid peroxidation in adult and aged mice. For the aging model, D-galactose (100 mg/kg) was administered subcutaneously to 6-week-old male mice for 10 weeks. At 13 weeks of age, valerian root extracts (100 mg/kg) or valerenic acid (340 μg/kg) was administered orally to control and D-galactose-treated mice for 3 weeks. The dosage of valerenic acid (340 μg/kg), which is the active ingredient of valerian root extract, was determined by the content of valerenic acid in valerian root extract (3.401±0.066 mg/g) measured by HPLC. The administration of valerian root extract and valerenic acid significantly improved the preferential exploration of new objects in novel object recognition test and the escape latency, swimming speeds, platform crossings, and spatial preference for the target quadrant in Morris water maze test compared to the D-galactose-treated mice. Cell proliferation and neuroblast differentiation were significantly decreased, while serum corticosterone level and lipid peroxidation in hippocampus were significantly increased in the D-galactose-treated group compared to that in the control group. The administration of valerian root extract significantly ameliorated these changes in the dentate gyrus of both control and D-galactose-treated groups. In addition, valerenic acid also mitigated the D-galactose-induced reduction of these changes. These results indicate that valerian root extract and valerenic acid enhance cognitive function, promote cell proliferation and neuroblast differentiation, and reduce serum corticosterone and lipid peroxidation in aged mice.
Collapse
Affiliation(s)
- Sung Min Nam
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Guo SJ, Qi CH, Zhou WX, Zhang YX, Zhang XM, Wang J, Wang HX. Proteomic data show an increase in autoantibodies and alpha-fetoprotein and a decrease in apolipoprotein A-II with time in sera from senescence-accelerated mice. Braz J Med Biol Res 2013; 46:417-25. [PMID: 23588375 PMCID: PMC3854399 DOI: 10.1590/1414-431x20132663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 01/04/2013] [Indexed: 11/22/2022] Open
Abstract
We evaluated changes in levels by comparing serum proteins in
senescence-accelerated mouse-prone 8 (SAMP8) mice at 2, 6, 12, and 15 months of
age (SAMP8-2 m, -6 m, -12 m, -15 m) to age-matched
SAM-resistant 1 (SAMR1) mice. Mice were sacrificed, and blood was analyzed by
2-dimensional electrophoresis combined with mass spectrometry. Five protein
spots were present in all SAMP8 serum samples, but only appeared in SAMR1
samples at 15 months of age except for spot 3, which also showed a slight
expression in SAMR1-12 m sera. Two proteins decreased in the sera from
SAMP8-2 m, -6 m, and -12 m mice, and divided into 2 spots
each in SAMP8-15 m sera. Thus, the total number of altered spots in SAMP8
sera was 7; of these, 4 were identified as Ig kappa chain V region (M-T413),
chain A of an activity suppressing Fab fragment to cytochrome P450 aromatase
(32C2_A), alpha-fetoprotein, and apolipoprotein A-II. M-T413 is a monoclonal CD4
antibody, which inhibits T cell proliferation. We found that M-T413 RNA level
was significantly enhanced in splenocytes from SAMP8-2 m mice. This
agreed with serum M-T413 protein alterations and a strikingly lower blood
CD4+ T cell count in SAMP8 mice when compared to the
age-matched SAMR1 mice, with the latter negatively correlating with serum M-T413
protein volume. Age-related changes in serum proteins favored an increase in
autoantibodies and alpha-fetoprotein and a decrease of apolipoprotein A-II,
which occurred in SAMP8 mice at 2 months of age and onwards. These proteins may
serve as candidate biomarkers for early aging.
Collapse
Affiliation(s)
- S J Guo
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Sepsis-Induced Hypercytokinemia and Lymphocyte Apoptosis in Aging-Accelerated Klotho Knockout Mice. Shock 2013; 39:311-6. [DOI: 10.1097/shk.0b013e3182845445] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Pallàs M. Senescence-Accelerated Mice P8: A Tool to Study Brain Aging and Alzheimer's Disease in a Mouse Model. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/917167] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The causes of aging remain unknown, but they are probably intimately linked to a multifactorial process that affects cell networks to varying degrees. Although a growing number of aging and Alzheimer’s disease (AD) animal models are available, a more comprehensive and physiological mouse model is required. In this context, the senescence-accelerated mouse prone 8 (SAMP8) has a number of advantages, since its rapid physiological senescence means that it has about half the normal lifespan of a rodent. In addition, according to data gathered over the last five years, some of its behavioral traits and histopathology resemble AD human dementia. SAMP8 has remarkable pathological similarities to AD and may prove to be an excellent model for acquiring more in-depth knowledge of the age-related neurodegenerative processes behind brain senescence and AD in particular. We review these facts and particularly the data on parameters related to neurodegeneration. SAMP8 also shows signs of aging in the immune, vascular, and metabolic systems, among others.
Collapse
Affiliation(s)
- Mercè Pallàs
- Unitat de Farmacologia i Farmacognòosia, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona y Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Nucli Universitari de Pedralbes, 08028 Barcelona, Spain
| |
Collapse
|
38
|
Di Carlo M, Giacomazza D, Picone P, Nuzzo D, San Biagio PL. Are oxidative stress and mitochondrial dysfunction the key players in the neurodegenerative diseases? Free Radic Res 2012; 46:1327-38. [DOI: 10.3109/10715762.2012.714466] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Nonaka N, Farr SA, Nakamachi T, Morley JE, Nakamura M, Shioda S, Banks WA. Intranasal administration of PACAP: uptake by brain and regional brain targeting with cyclodextrins. Peptides 2012; 36:168-75. [PMID: 22687366 PMCID: PMC3418062 DOI: 10.1016/j.peptides.2012.05.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 05/31/2012] [Accepted: 05/31/2012] [Indexed: 11/22/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a potent neurotrophic and neuroprotectant that is transported across the blood-brain barrier in amounts sufficient to affect brain function. However, its short half-life in blood makes it difficult to administer peripherally. Here, we determined whether the radioactively labeled 38 amino acid form of PACAP can enter the brain after intranasal (i.n.) administration. Occipital cortex and striatum were the regions with the highest uptake, peaking at levels of about 2-4% of the injected dose per gram of brain region. Inclusion of unlabeled PACAP greatly increased retention of I-PACAP by brain probably because of inhibition of the brain-to-blood efflux transporter for PACAP located at the blood-brain barrier. Sufficient amounts of PACAP could be delivered to the brain to affect function as shown by improvement of memory in aged SAMP8 mice, a model of Alzheimer's disease. We found that each of three cyclodextrins when included in the i.n. injection produced a unique distribution pattern of I-PACAP among brain regions. As examples, β-cyclodextrin greatly increased uptake by the occipital cortex and hypothalamus, α-cyclodextrin increased uptake by the olfactory bulb and decreased uptake by the occipital cortex and striatum, and (2-hydropropyl)-β-cyclodextrin increased uptake by the thalamus and decreased uptake by the striatum. These results show that therapeutic amounts of PACAP can be delivered to the brain by intranasal administration and that cyclodextrins may be useful in the therapeutic targeting of peptides to specific brain regions.
Collapse
Affiliation(s)
- Naoko Nonaka
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Banks WA. Drug delivery to the brain in Alzheimer's disease: consideration of the blood-brain barrier. Adv Drug Deliv Rev 2012; 64:629-39. [PMID: 22202501 DOI: 10.1016/j.addr.2011.12.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/09/2011] [Accepted: 12/09/2011] [Indexed: 12/21/2022]
Abstract
The successful treatment of Alzheimer's disease (AD) will require drugs that can negotiate the blood-brain barrier (BBB). However, the BBB is not simply a physical barrier, but a complex interface that is in intimate communication with the rest of the central nervous system (CNS) and influenced by peripheral tissues. This review examines three aspects of the BBB in AD. First, it considers how the BBB may be contributing to the onset and progression of AD. In this regard, the BBB itself is a therapeutic target in the treatment of AD. Second, it examines how the BBB restricts drugs that might otherwise be useful in the treatment of AD and examines strategies being developed to deliver drugs to the CNS for the treatment of AD. Third, it considers how drug penetration across the AD BBB may differ from the BBB of normal aging. In this case, those differences can complicate the treatment of CNS diseases such as depression, delirium, psychoses, and pain control in the AD population.
Collapse
Affiliation(s)
- William A Banks
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA , USA.
| |
Collapse
|
41
|
Morley JE, Armbrecht HJ, Farr SA, Kumar VB. The senescence accelerated mouse (SAMP8) as a model for oxidative stress and Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:650-6. [DOI: 10.1016/j.bbadis.2011.11.015] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/11/2011] [Accepted: 11/12/2011] [Indexed: 12/11/2022]
|
42
|
Mehan ND, Strauss KI. Combined age- and trauma-related proteomic changes in rat neocortex: a basis for brain vulnerability. Neurobiol Aging 2011; 33:1857-73. [PMID: 22088680 DOI: 10.1016/j.neurobiolaging.2011.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/17/2011] [Indexed: 11/16/2022]
Abstract
This proteomic study investigates the widely observed clinical phenomenon, that after comparable brain injuries, geriatric patients fare worse and recover less cognitive and neurologic function than younger victims. Utilizing a rat traumatic brain injury model, sham surgery or a neocortical contusion was induced in 3 age groups. Geriatric (21 months) rats performed worse on behavioral measures than young adults (12-16 weeks) and juveniles (5-6 weeks). Motor coordination and certain cognitive deficits showed age-dependence both before and after injury. Brain proteins were analyzed using silver-stained two-dimensional electrophoresis gels. Spot volume changes (>2-fold change, p<0.01) were identified between age and injury groups using computer-assisted densitometry. Sequences were determined by mass spectrometry of tryptic peptides. The 19 spots identified represented 13 different genes that fell into 4 general age- and injury-dependent expression patterns. Fifteen isoforms changed differentially with respect to both age and injury (p<0.05). Further investigations into the nature and function of these isoforms may yield insights into the vulnerability of older patients and resilience of younger patients in recovery after brain injuries.
Collapse
Affiliation(s)
- Neal D Mehan
- University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0517, USA
| | | |
Collapse
|
43
|
Hippocampal gene network analysis suggests that coral calcium hydride may reduce accelerated senescence in mice. Nutr Res 2011; 31:863-72. [DOI: 10.1016/j.nutres.2011.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 08/22/2011] [Accepted: 09/19/2011] [Indexed: 01/26/2023]
|
44
|
Reed TT. Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med 2011; 51:1302-19. [PMID: 21782935 DOI: 10.1016/j.freeradbiomed.2011.06.027] [Citation(s) in RCA: 442] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 06/17/2011] [Accepted: 06/22/2011] [Indexed: 11/27/2022]
Abstract
Lipid peroxidation is a complex process involving the interaction of oxygen-derived free radicals with polyunsaturated fatty acids, resulting in a variety of highly reactive electrophilic aldehydes. Since 1975, lipid peroxidation has been extensively studied in a variety of organisms. As neurodegenerative diseases became better understood, research establishing a link between this form of oxidative damage, neurodegeneration, and disease has provided a wealth of knowledge to the scientific community. With the advent of proteomics in 1995, the identification of biomarkers for neurodegenerative disorders became of paramount importance to better understand disease pathogenesis and develop potential therapeutic strategies. This review focuses on the relationship between lipid peroxidation and neurodegenerative diseases. It also demonstrates how findings in current research support the common themes of altered energy metabolism and mitochondrial dysfunction in neurodegenerative disorders.
Collapse
Affiliation(s)
- Tanea T Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, KY 40475, USA.
| |
Collapse
|
45
|
Ma F, Wang H, Chen B, Wang F, Xu H. Metallothionein 3 attenuated the apoptosis of neurons in the CA1 region of the hippocampus in the senescence-accelerated mouse/PRONE8 (SAMP8). ARQUIVOS DE NEURO-PSIQUIATRIA 2011; 69:105-11. [PMID: 21359432 DOI: 10.1590/s0004-282x2011000100020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 06/18/2010] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Metallothionein 3 (MT-3) has been shown to protect against apoptotic neuronal death in the brains of patients with Alzheimer's disease. Zinc is a potent inhibitor of caspase-3 and its deficiency was found to promote apoptosis. Here, we measured the zinc and copper content in the brains of senescence-accelerated mouse/PRONE8 (SAMP8) and sought to investigate the effect of MT-3 on the apoptosis of neurons in the hippocampal CA1 region of these mice. METHOD The zinc and copper content in the brain samples of SAMP8 and normal control SAMR1 mice were determined using an atomic absorption spectrophotometer. The mice were administered intraperitoneally for four weeks with MT-3 or MT1 and thereafter apoptosis was measured using the TUNEL method and the expression of anti-apoptotic protein Bcl-2 and proapoptotic protein Bax was examined by immunohistochemistry. RESULTS Compared with that in SMAR1 mice, the content of zinc in the brains of SAMP8 mice was significantly reduced (P<0.05). Moreover, significant levels of apoptosis of neurons were observed in the hippocampus of SAMP8 mice, which, compared with those in SMAR1 mice, also showed significantly lower levels of Bcl-2 and higher levels of Bax (P<0.05). MT-3 increased zinc concentration in the hippocampus of SAMP8 mice and also significantly decreased apoptosis in these neurons dose-dependently and increased the levels of Bcl-2 and decreased the levels of Bax. CONCLUSION MT-3 could attenuate apoptotic neuron death in the hippocampus of SAMP8, suggesting that the protein may lessen the development of neurodegeneration.
Collapse
Affiliation(s)
- Feiyu Ma
- Department of Neurology, Shantou Central Hospital, Sun Yat-sen University, Guangdong, China
| | | | | | | | | |
Collapse
|
46
|
Sultana R, Butterfield DA. Identification of the oxidative stress proteome in the brain. Free Radic Biol Med 2011; 50:487-94. [PMID: 21111808 PMCID: PMC3052741 DOI: 10.1016/j.freeradbiomed.2010.11.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/14/2010] [Accepted: 11/16/2010] [Indexed: 12/15/2022]
Abstract
The redox proteomics technique normally combines two-dimensional gel electrophoresis, mass spectrometry, and protein databases to analyze the cell proteome from various samples, thereby leading to the identification of specific targets of oxidative modification. Oxidative stress that occurs because of increased levels of reactive oxygen species and reactive nitrogen species can target most biomolecules, consequently leading to altered physiological function of the cells. Redox proteomics has identified oxidatively modified protein targets in various pathological conditions, consequently providing insight into the pathways involved in the pathogenesis of these conditions. This approach also can be used to identify possible protective mechanisms to prevent or delay these disorders.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, KY 40506
- Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - D. Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY 40506
- Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
47
|
Sokolowska I, Woods AG, Wagner J, Dorler J, Wormwood K, Thome J, Darie CC. Mass Spectrometry for Proteomics-Based Investigation of Oxidative Stress and Heat Shock Proteins. ACS SYMPOSIUM SERIES 2011. [DOI: 10.1021/bk-2011-1083.ch013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Izabela Sokolowska
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810, U.S.A
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| | - Alisa G. Woods
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810, U.S.A
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| | - Jessica Wagner
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810, U.S.A
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| | - Jeannette Dorler
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810, U.S.A
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| | - Kelly Wormwood
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810, U.S.A
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| | - Johannes Thome
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810, U.S.A
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| | - Costel C. Darie
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810, U.S.A
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| |
Collapse
|
48
|
Di Domenico F, Perluigi M, Butterfield DA, Cornelius C, Calabrese V. Oxidative damage in rat brain during aging: interplay between energy and metabolic key target proteins. Neurochem Res 2010; 35:2184-92. [PMID: 20963486 DOI: 10.1007/s11064-010-0295-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2010] [Indexed: 12/21/2022]
Abstract
Aging is characterized by a gradual and continuous loss of physiological functions and responses particularly marked in the central nervous system. Reactive oxygen species (ROS) can react with all major biological macromolecules such as carbohydrates, nucleic acids, lipids, and proteins. Since proteins are the major components of biological systems and regulate multiple cellular pathways, oxidative damage of key proteins are considered to be the principal molecular mechanisms leading to age-related deficits. Recent evidences support the notion that a decrease of energy metabolism in the brain contribute to neuronal loss and cognitive decline associated with aging. In the present study we identified selective protein targets which are oxidized in aged rats compared with adult rats. Most of the oxidatively modified proteins we found in the present study are key proteins involved in energy metabolism and ATP production. Oxidative modification of these proteins was associated with decreased enzyme activities. In addition, we also found decreased levels of thiol reducing system. Our study demonstrated that oxidative damage to specific proteins impairs energy metabolism and ATP production thus contributing to shift neuronal cells towards a more oxidized environment which ultimately might compromise multiple neuronal functions. These results further confirm that increased protein oxidation coupled with decreased reducing systems are characteristic hallmarks of aging and aging-related degenerative processes.
Collapse
Affiliation(s)
- F Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, P le A Moro 5, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Cui Y, Piao CS, Ha KC, Kim DS, Lee GH, Kim HK, Chae SW, Lee YC, Park SJ, Yoo WH, Kim HR, Chae HJ. Measuring adriamycin-induced cardiac hemodynamic dysfunction with a proteomics approach. Immunopharmacol Immunotoxicol 2010; 32:376-86. [DOI: 10.3109/08923970903440168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|