1
|
Baek E, Noh SM, Kim SH, Lee GM. Antiapoptosis Engineering for Improved Protein Production from CHO Cells. Methods Mol Biol 2025; 2853:103-117. [PMID: 39460917 DOI: 10.1007/978-1-0716-4104-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Improving the time integral of viable cell concentration by overcoming cell death, namely apoptosis, is one of the most widely used strategies for the efficient production of therapeutic proteins. By establishing stable cell lines that overexpress antiapoptotic genes or downregulate proapoptotic genes, the final product yields can be enhanced as cells become more resistant to environmental stresses. From the selection of high-expressing clones to verification of antiapoptotic activity, the method to construct a stable antiapoptotic cell line is discussed in this chapter.
Collapse
Affiliation(s)
- Eric Baek
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Soo Min Noh
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Greenfield L, Brantley M, Geoffroy P, Mitchell J, DeWitt D, Zhang F, Mulukutla BC. Metabolic engineering of CHO cells towards cysteine prototrophy and systems analysis of the ensuing phenotype. Metab Eng 2024; 84:128-144. [PMID: 38908817 DOI: 10.1016/j.ymben.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/24/2024]
Abstract
Chinese hamster ovary (CHO) cells require cysteine for growth and productivity in fed-batch cultures. In intensified processes, supplementation of cysteine at high concentrations is a challenge due to its limited solubility and instability in solution. Methionine can be converted to cysteine (CYS) but key enzymes, cystathionine beta-synthase (Cbs) and cystathionine gamma-lyase (Cth), are not active in CHO cells resulting in accumulation of an intermediate, homocysteine (HCY), in cell culture milieu. In this study, Cbs and Cth were overexpressed in CHO cells to confer cysteine prototrophy, i.e., the ability to grow in a cysteine free environment. These pools (CbCt) needed homocysteine and beta-mercaptoethanol (βME) to grow in CYS-free medium. To increase intracellular homocysteine levels, Gnmt was overexpressed in CbCt pools. The resultant cell pools (GnCbCt), post adaptation in CYS-free medium with decreasing residual HCY and βME levels, were able to proliferate in the HCY-free, βME-free and CYS-free environment. Interestingly, CbCt pools were also able to be adapted to grow in HCY-free and CYS-free conditions, albeit at significantly higher doubling times than GnCbCt cells, but couldn't completely adapt to βME-free conditions. Further, single cell clones derived from the GnCbCt cell pool had a wide range in expression levels of Cbs, Cth and Gnmt and, when cultivated in CYS-free fed-batch conditions, performed similarly to the wild type (WT) cell line cultivated in CYS supplemented fed-batch culture. Intracellular metabolomic analysis showed that HCY and glutathione (GSH) levels were lower in the CbCt pool in CYS-free conditions but were restored closer to WT levels in the GnCbCt cells cultivated in CYS-free conditions. Transcriptomic analysis showed that GnCbCt cells upregulated several genes encoding transporters as well as methionine catabolism and transsulfuration pathway enzymes that support these cells to biosynthesize cysteine effectively. Further, 'omics analysis suggested CbCt pool was under ferroptotic stress in CYS-free conditions, which, when inhibited, enhanced the growth and viability of these cells in CYS-free conditions.
Collapse
Affiliation(s)
- Laura Greenfield
- Upstream Process Development, Pfizer Inc, 1 Burtt Road, Andover, MA, 01810, USA
| | - Mariah Brantley
- Upstream Process Development, Pfizer Inc, 1 Burtt Road, Andover, MA, 01810, USA
| | - Pauline Geoffroy
- Upstream Process Development, Pfizer Inc, 1 Burtt Road, Andover, MA, 01810, USA
| | - Jeffrey Mitchell
- Cell Line Development, Pfizer Inc, 1 Burtt Road, Andover, MA, 01810, USA
| | - Dylan DeWitt
- Analytical Research & Development, Pfizer Inc, 1 Burtt Road, Andover, MA, 01810, USA
| | - Fang Zhang
- Analytical Research & Development, Pfizer Inc, 1 Burtt Road, Andover, MA, 01810, USA
| | | |
Collapse
|
3
|
Lee HM, Park JH, Kim TH, Kim HS, Kim DE, Lee MK, You J, Lee GM, Kim YG. Effects of autophagy-inhibiting chemicals on sialylation of Fc-fusion glycoprotein in recombinant CHO cells. Appl Microbiol Biotechnol 2024; 108:224. [PMID: 38376550 PMCID: PMC10879319 DOI: 10.1007/s00253-024-13059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
The occurrence of autophagy in recombinant Chinese hamster ovary (rCHO) cell culture has attracted attention due to its effects on therapeutic protein production. Given the significance of glycosylation in therapeutic proteins, this study examined the effects of autophagy-inhibiting chemicals on sialylation of Fc-fusion glycoproteins in rCHO cells. Three chemical autophagy inhibitors known to inhibit different stages were separately treated with two rCHO cell lines that produce the same Fc-fusion glycoprotein derived from DUKX-B11 and DG44. All autophagy inhibitors significantly decreased the sialylation of Fc-fusion glycoprotein in both cell lines. The decrease in sialylation of Fc-fusion glycoprotein is unlikely to be attributed to the release of intracellular enzymes, given the high cell viability and low activity of extracellular sialidases. Interestingly, the five intracellular nucleotide sugars remained abundant in cells treated with autophagy inhibitors. In the mRNA expression profiles of 27 N-glycosylation-related genes using the NanoString nCounter system, no significant differences in gene expression were noted. With the positive effect of supplementing nucleotide sugar precursors on sialylation, attempts were made to enhance the levels of intracellular nucleotide sugars by supplying these precursors. The addition of nucleotide sugar precursors to cultures treated with inhibitors successfully enhanced the sialylation of Fc-fusion glycoproteins compared to the control culture. This was particularly evident under mild stress conditions and not under relatively severe stress conditions, which were characterized by a high decrease in sialylation. These results suggest that inhibiting autophagy in rCHO cell culture decreases sialylation of Fc-fusion glycoprotein by constraining the availability of intracellular nucleotide sugars. KEY POINTS: • The autophagy inhibition in rCHO cell culture leads to a significant reduction in the sialylation of Fc-fusion glycoprotein. • The pool of five intracellular nucleotide sugars remained highly abundant in cells treated with autophagy inhibitors. • Supplementation of nucleotide sugar precursors effectively restores decreased sialylation, particularly under mild stress conditions but not in relatively severe stress conditions.
Collapse
Affiliation(s)
- Hoon-Min Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Jong-Ho Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, Korea
| | - Tae-Ho Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Plant and Environmental New Resources, Graduate School of Biotechnology, College of Life Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, Korea
| | - Hyun-Seung Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Dae Eung Kim
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Korea
| | - Jungmok You
- Department of Plant and Environmental New Resources, Graduate School of Biotechnology, College of Life Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, Korea
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea.
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
4
|
Rahimi A, Karimipoor M, Mahdian R, Alipour A, Hosseini S, Mohammadi M, Kaghazian H, Abbasi A, Shahsavarani H, Shokrgozar MA. Efficient CRISPR/Cas9-Mediated BAX Gene Ablation in CHO Cells To Impair Apoptosis and Enhance Recombinant Protein Production. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3388. [PMID: 37228627 PMCID: PMC10203183 DOI: 10.30498/ijb.2023.343428.3388] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 01/25/2023] [Indexed: 05/27/2023]
Abstract
Background Despite recent advances in recombinant biotherapeutics production using CHO cells, their productivity remains lower than industrial needs, mainly due to apoptosis. Objectives Present study aimed to exploit CRISPR/Cas9 technology to specifically disrupt the BAX gene to attenuate apoptosis in recombinant Chinese hamster's ovary cells producing erythropoietin. Materials and Methods The STRING database was used to identify the key pro-apoptotic genes to be modified by CRISPR/Cas9 technique. The single guide RNAs (sgRNAs) targeting identified gene (BAX) were designed, and CHO cells were then transfected with vectors. Afterward, changes in the expression of the Bax gene and consequent production rates of erythropoietin were investigated in manipulated cells, even in the presence of an apoptosis inducer agent, oleuropein. Results BAX disruption significantly prolonged cell viability and increased proliferation rate in manipulated clones (152%, P-value = 0.0002). This strategy reduced the levels of Bax protein expression in manipulated cells by more than 4.3-fold (P-value <0.0001). The Bax-8 manipulated cells displayed higher threshold tolerance to the stress and consequence apoptosis compared to the control group. Also, they exhibited a higher IC50 compared to the control in the presence of oleuropein (5095 µM.ml-1 Vs. 2505 µM.ml-1). We found a significant increase in recombinant protein production levels in manipulated cells, even in the presence of 1,000 µM oleuropein compared to the control cell line (p-value=0.0002). Conclusions CRISPR/Cas9 assisted BAX gene ablation is promising to improve erythropoietin production in CHO cells via engineering anti-apoptotic genes. Therefore, exploiting genome editing tools such as CRISPR/Cas9 has been proposed to develop host cells that result in a safe, feasible, and robust manufacturing operation with a yield that meets the industrial requirements.
Collapse
Affiliation(s)
- Amirabbas Rahimi
- Laboratory of regenerative medicine and biomedical innovations, National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Reza Mahdian
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Atefeh Alipour
- Department of Nano-Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Saadi Hosseini
- Laboratory of regenerative medicine and biomedical innovations, National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Marzieh Mohammadi
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Hooman Kaghazian
- Department of Research & Development, Production & Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Abdolrahim Abbasi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Ali Shokrgozar
- Laboratory of regenerative medicine and biomedical innovations, National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Wu S, Ketcham SA, Corredor CC, Both D, Drennen JK, Anderson CA. Capacitance spectroscopy enables real-time monitoring of early cell death in mammalian cell culture. Biotechnol J 2023; 18:e2200231. [PMID: 36479620 DOI: 10.1002/biot.202200231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Previous work developed a quantitative model using capacitance spectroscopy in an at-line setup to predict the dying cell percentage measured from a flow cytometer. This work aimed to transfer the at-line model to monitor lab-scale bioreactors in real-time, waiving the need for frequent sampling and enabling precise controls. METHODS AND RESULTS Due to the difference between the at-line and in-line capacitance probes, direct application of the at-line model resulted in poor accuracy and high prediction bias. A new model with a variable range and offering similar spectral shape across all probes was first constructed, improving prediction accuracy. Moreover, the global calibration method included the variance of different probes and scales in the model, reducing prediction bias. External parameter orthogonalization, a preprocessing method, also mitigated the interference from feeding, which further improved model performance. The root-mean-square error of prediction of the final model was 6.56% (8.42% of the prediction range) with an R2 of 92.4%. CONCLUSION The culture evolution trajectory predicted by the in-line model captured the cell death and alarmed cell death onset earlier than the trypan blue exclusion test. Additionally, the incorporation of at-line spectra following orthogonal design into the calibration set was shown to generate calibration models that are more robust than the calibration models constructed using the in-line spectra only. This is advantageous, as at-line spectral collection is easier, faster, and more material-sparing than in-line spectra collection.
Collapse
Affiliation(s)
- Suyang Wu
- Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, USA.,Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, USA
| | - Stephanie A Ketcham
- Manufacturing Science and Technology, Bristol-Myers Squibb, Devens, Massachusetts, USA
| | - Claudia C Corredor
- Pharmaceutical Development, Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| | - Douglas Both
- Pharmaceutical Development, Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| | - James K Drennen
- Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, USA.,Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, USA
| | - Carl A Anderson
- Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, USA.,Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Dong T, Lin WZ, Zhu XH, Yuan KY, Hou LL, Huang ZW. Osteomodulin protects dental pulp stem cells from cisplatin-induced apoptosis in vitro. Stem Cell Rev Rep 2023; 19:188-200. [PMID: 35781607 DOI: 10.1007/s12015-022-10399-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 01/29/2023]
Abstract
Human dental pulp stem cells (hDPSCs) are considered promising multipotent cell sources for tissue regeneration. Regulation of apoptosis and maintaining the cell homeostasis is a critical point for the application of hDPSCs. Osteomodulin (OMD), a member of the small leucine-rich proteoglycan family, was proved an important regulatory protein of hDPSCs in our previous research. Thus, the role of OMD in the apoptosis of hDPSCs was explored in this study. The expression of OMD following apoptotic induction was investigated and then the hDPSCs stably overexpressing or knocking down OMD were established by lentiviral transfection. The proportion of apoptotic cells and apoptosis-relative genes and proteins were examined with flow cytometry, Hoechst staining, Caspase 3 activity assay, qRT-PCR and western blotting. RNA-Seq analysis was used to explore possible biological function and mechanism. Results showed that the expression of OMD decreased following the apoptotic induction. Overexpression of OMD enhanced the viability of hDPSCs, decreased the activity of Caspase-3 and protected hDPSCs from apoptosis. Knockdown of OMD showed the opposite results. Mechanistically, OMD may act as a negative modulator of apoptosis via activation of the Akt/Glycogen synthase kinase 3β (GSK-3β)/β-Catenin signaling pathway and more functional and mechanistic possibilities were revealed with RNA-Seq analysis. The present study provided evidence of OMD as a negative regulator of apoptosis in hDPSCs. Akt/GSK-3β/β-Catenin signaling pathway was involved in this process and more possible mechanism detected needed further exploration. This anti-apoptotic function of OMD provided a promising application prospect for hDPSCs in tissue regeneration.
Collapse
Affiliation(s)
- Ting Dong
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wen-Zhen Lin
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiao-Han Zhu
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ke-Yong Yuan
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Li-Li Hou
- Department of Nursing, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Zheng-Wei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
7
|
Mutaf T, Oncel SS. Bubble column and airlift bioreactor systems for animal cell culture applications. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tugce Mutaf
- Department of Bioengineering,Faculty of Engineering Ege University Izmir Turkey
- Department of Bioengineering, Faculty of Engineering Manisa Celal Bayar University Manisa Turkey
| | - Suphi S. Oncel
- Department of Bioengineering,Faculty of Engineering Ege University Izmir Turkey
| |
Collapse
|
8
|
Rahimi A, Karimipoor M, Mahdian R, Alipour A, Hosseini S, Kaghazian H, Abbasi A, Shahsavarani H, Shokrgozar MA. Targeting Caspase-3 Gene in rCHO Cell Line by CRISPR/Cas9 Editing Tool and Its Effect on Protein Production in Manipulated Cell Line. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e130236. [PMID: 36915405 PMCID: PMC10007989 DOI: 10.5812/ijpr-130236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/19/2022] [Accepted: 12/12/2022] [Indexed: 03/06/2023]
Abstract
Background Chinese hamster ovary (CHO) cells are the widely used mammalian cell host for biopharmaceutical manufacturing. During cell cultures, CHO cells lose viability mainly from apoptosis. Inhibiting cell death is useful because prolonging cell lifespans can direct to more productive cell culture systems for biotechnology requests. Objectives This study exploited a CRISPR/Cas9 technology to generate site-specific gene disruptions in the caspase-3 gene in the apoptosis pathway, which acts as an apoptotic regulator to extend cell viability in the CHO cell line. Methods The STRING database was used to identify the key pro-apoptotic genes to be modified by CRISPR/Cas9 system. The guide RNAs targeting the caspase-3 gene were designed, and vectors containing sgRNA and Cas9 were transfected into CHO cells that expressed erythropoietin as a heterologous protein. Indel formation was investigated by DNA sequencing. Caspase-3 expression was quantified by real-time PCR and western blot. The effect of editing the caspase-3 gene on the inhibition of apoptosis was also investigated by induction of apoptosis in manipulated cell lines by oleuropein. Finally, the erythropoietin production in the edited cells was compared to the control cells. Results The caspase-3 manipulation significantly prolongation of the cell viability and decreased the caspase-3 expression level of protein in manipulated CHO cells (more than 6-fold, P-value < 0.0001). Manipulated cells displayed higher threshold tolerance to apoptosis compared to the control cells when they were induced by oleuropein. They show a higher IC50 than the control ones (7271 µM/mL Vs. 5741 µM/mL). They also show a higher proliferation rate than the control cells in the presence of an apoptosis inducer (P-value < 0.0001). Furthermore, manipulated cell lines significantly produce more recombinant protein in the presence of 2,000 µM oleuropein compared to the control ones (P-value = 0.0021). Conclusions We understood that CRISPR/Cas9 could be effectively applied to suppress the expression of the caspase-3 gene and rescue CHO cells from apoptosis induced by cell stress and metabolites. The CRISPR/Cas9 system-assisted caspase-3 gene ablation can potentially increase erythropoietin yield in CHO cells.
Collapse
Affiliation(s)
- Amirabbas Rahimi
- Laboratory of Regenerative Medicine and Biomedical Innovations, Department of National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Mahdian
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Atefeh Alipour
- Department of Nano-Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Sadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, Department of National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Hooman Kaghazian
- Department of Research & Development, Production & Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Abdolrahim Abbasi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Corresponding Author: Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mohammad Ali Shokrgozar
- Laboratory of Regenerative Medicine and Biomedical Innovations, Department of National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
- Corresponding Author: Laboratory of Regenerative Medicine and Biomedical Innovations, Department of National Cell Bank, Pasteur Institute of Iran, 13169-43551, Tehran, Iran.
| |
Collapse
|
9
|
MacDonald MA, Barry C, Groves T, Martínez VS, Gray PP, Baker K, Shave E, Mahler S, Munro T, Marcellin E, Nielsen LK. Modelling Apoptosis Resistance in CHO cells with CRISPR-Mediated Knock-outs of Bak1, Bax, and Bok. Biotechnol Bioeng 2022; 119:1380-1391. [PMID: 35180317 PMCID: PMC9310834 DOI: 10.1002/bit.28062] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 12/02/2022]
Abstract
Chinese hamster ovary (CHO) cells are the primary platform for the production of biopharmaceuticals. To increase yields, many CHO cell lines have been genetically engineered to resist cell death. However, the kinetics that governs cell fate in bioreactors are confounded by many variables associated with batch processes. Here, we used CRISPR‐Cas9 to create combinatorial knockouts of the three known BCL‐2 family effector proteins: Bak1, Bax, and Bok. To assess the response to apoptotic stimuli, cell lines were cultured in the presence of four cytotoxic compounds with different mechanisms of action. A population‐based model was developed to describe the behavior of the resulting viable cell dynamics as a function of genotype and treatment. Our results validated the synergistic antiapoptotic nature of Bak1 and Bax, while the deletion of Bok had no significant impact. Importantly, the uniform application of apoptotic stresses permitted direct observation and quantification of a delay in the onset of cell death through Bayesian inference of meaningful model parameters. In addition to the classical death rate, a delay function was found to be essential in the accurate modeling of the cell death response. These findings represent an important bridge between cell line engineering strategies and biological modeling in a bioprocess context.
Collapse
Affiliation(s)
- Michael A MacDonald
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Craig Barry
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Teddy Groves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Verónica S Martínez
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Peter P Gray
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kym Baker
- Patheon by Thermo Fisher Scientific, Woolloongabba, Queensland, 4102, Australia
| | - Evan Shave
- Patheon by Thermo Fisher Scientific, Woolloongabba, Queensland, 4102, Australia
| | - Stephen Mahler
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Trent Munro
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Esteban Marcellin
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia.,Metabolomics Australia, The University of Queensland, Brisbane, Queensland, Australia
| | - Lars K Nielsen
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| |
Collapse
|
10
|
Yao Z, Wang L, Cai D, Jiang X, Sun J, Wang Y, Bai W. Warangalone Induces Apoptosis in HeLa Cells via Mitochondria-Mediated Endogenous Pathway. EFOOD 2022. [DOI: 10.53365/efood.k/145663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cervical cancer as one of the major malignant tumors seriously threatens women's health. More than 270,000 women die of cervical cancer each year. Warangalone is an isoflavone compound isolated from Cudrania tricuspidata with excellent antitumor activity. In this research, we investigated the molecular mechanism of warangalone-induced apoptosis in HeLa cells. The results show that warangalone can selectively and effectively inhibit HeLa cells proliferation. Warangalone can effectively inhibit the invasion and migration of HeLa cells. Furthermore, warangalone was confirmed to activate p53 and mitogen-activated protein kinase (MAPK) family signaling pathways to cause apoptosis. In this case, the expression of the B-cell lymphoma-2 (Bcl-2) family is regulated, and caspase-3 is eventually cleaved, finally triggering the mitochondrial apoptosis. In conclusion, warangalone can induce HeLa cells apoptosis via a mitochondria-mediated endogenous pathway, which represented the potential therapeutic effect of warangalone on cervical cancer.
Collapse
|
11
|
Safari F, Akbari B. Knockout of caspase-7 gene improves the expression of recombinant protein in CHO cell line through the cell cycle arrest in G2/M phase. Biol Res 2022; 55:2. [PMID: 35016732 PMCID: PMC8753818 DOI: 10.1186/s40659-021-00369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background Chinese hamster ovary cell line has been used routinely as a bioproduction factory of numerous biopharmaceuticals. So far, various engineering strategies have been recruited to improve the production efficiency of this cell line such as apoptosis engineering. Previously, it is reported that the caspase-7 deficiency in CHO cells reduces the cell proliferation rate. But the effect of this reduction on the CHO cell productivity remained unclear. Hence, in the study at hand the effect of caspase-7 deficiency was assessed on the cell growth, viability and protein expression. In addition, the enzymatic activity of caspase-3 was investigated in the absence of caspase-7. Results Findings showed that in the absence of caspase-7, both cell growth and cell viability were decreased. Cell cycle analysis illustrated that the CHO knockout (CHO-KO) cells experienced a cell cycle arrest in G2/M phase. This cell cycle arrest resulted in a 1.7-fold increase in the expression of luciferase in CHO-KO cells compared to parenteral cells. Furthermore, in the apoptotic situation the enzymatic activity of caspase-3 in CHO-KO cells was approximately 3 times more than CHO-K1 cells. Conclusions These findings represented that; however, caspase-7 deficiency reduces the cell proliferation rate but the resulted cell cycle arrest leads to the enhancement of recombinant protein expression. Moreover, increasing in the caspase-3 enzymatic activity compensates the absence of caspase-7 in the caspase cascade of apoptosis.
Collapse
Affiliation(s)
- Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Meshkinfam Ave, Shiraz, Iran. .,Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Bahman Akbari
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
12
|
Wu S, Ketcham SA, Corredor CC, Both D, Drennen JK, Anderson CA. Rapid At-line Early Cell Death Quantification using Capacitance Spectroscopy. Biotechnol Bioeng 2021; 119:857-867. [PMID: 34927241 DOI: 10.1002/bit.28011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022]
Abstract
Cell death is one of the failure modes of mammalian cell culture. Apoptosis is a regulated cell death process mainly observed in cell culture. Timely detection of apoptosis onset allows opportunities for preventive controls that ensure high productivity and consistent product quality. Capacitance spectroscopy captures the apoptosis-related cellular properties changes and thus quantifies the percentage of dying cells. This work demonstrated a quantification model that measures the percentage of apoptotic cells using a capacitance spectrometer in an at-line setup. When predicting the independent test set collected from bench-scale bioreactors, the root-mean-squared error of prediction (RMSEP) was 8.8% (equivalent to 9.9% of the prediction range). The predicted culture evolution trajectory aligned with measured values from the flow cytometer. Furthermore, this method alarms cell death onset earlier than the traditional viability test, i.e., trypan blue exclusion test. Comparing to flow cytometry (the traditional early cell death detection method), this method is rapid, simple, and less labor-intensive. Additionally, this at-line setup can be easily transferred between scales (e.g., lab-scale for development to manufacturing-scale), which benefits process transfers between facilities, scale-up, and other process transitions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Suyang Wu
- Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, 15282.,Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, 15282
| | - Stephanie A Ketcham
- Manufacutring Science and Technology, Bristol-Myers Squibb, Devens, Massachusetts, 01434
| | - Claudia C Corredor
- Pharmaceutical Development, Bristol-Myers Squibb, New Brunswick, New Jersey, 08903
| | - Douglas Both
- Pharmaceutical Development, Bristol-Myers Squibb, New Brunswick, New Jersey, 08903
| | - James K Drennen
- Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, 15282.,Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, 15282
| | - Carl A Anderson
- Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, 15282.,Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, 15282
| |
Collapse
|
13
|
Wu Q, Li Q, Zhu W, Zhang X, Li H. Epsin 3 potentiates the NF‑κB signaling pathway to regulate apoptosis in breast cancer. Mol Med Rep 2021; 25:15. [PMID: 34779498 PMCID: PMC8600415 DOI: 10.3892/mmr.2021.12531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022] Open
Abstract
Endocrine drug resistance is common in some patients with estrogen receptor (ER)-positive breast cancer, so it is necessary to identify potential therapeutic targets. The aim of the present study was to investigate the regulatory effect and mechanism of epsin 3 (EPN3) expression level changes on the proliferation and apoptosis of ER-positive breast cancer. Online GEPIA was used to analyze the expression level of EPN3 in breast cancer. The online Kaplan-Meier plotter tool was used to analyze the relationship between EPN3 expression and the prognosis of patients with breast cancer. Reverse transcription-quantitative PCR, immunohistochemistry and western blotting were performed to detect the mRNA and protein expression levels of EPN3 in breast cancer tissues and cells. A lentiviral infection system was used to knockdown the expression of EPN3 in breast cancer cell lines. Cell Counting Kit-8 and flow cytometry assays were conducted to detect the effect of EPN3 knockdown on breast cancer cell proliferation and apoptosis. Western blotting was used to detect the regulation of EPN3 expression on NF-κB, and immunofluorescence was performed to detect the effect of EPN3 expression on NF-κB nuclear translocation. The results demonstrated that the expression level of EPN3 in breast cancer tissues was higher compared with that in adjacent tissues (P<0.05). The expression level of EPN3 in the ER-positive breast cancer cell line, MCF7, was higher compared with that in the other cell lines (MCF10A, ZR75-1, MDA-MB-231, BT549 and SK-BR-3). After knocking down the expression of EPN3 in MCF7 cells, the proliferative ability of the cells was decreased, and the apoptosis rate was increased (P<0.05). After EPN3 knockdown in MCF7 cells, the phosphorylation of NF-κB was decreased (P<0.05), and the nuclear translocation signal was weakened. Thus, it was suggested that EPN3 promoted cell proliferation and inhibited cell apoptosis by regulating the NF-κB signaling pathway in ER-positive breast cancer.
Collapse
Affiliation(s)
- Qianxue Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qing Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wenming Zhu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiang Zhang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hongyuan Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
14
|
Ji X, Lee YJ, Eyster T, Parrillo A, Galosy S, Ao Z, Patel P, Zhu Y. Characterization of cell cycle and apoptosis in Chinese hamster ovary cell culture using flow cytometry for bioprocess monitoring. Biotechnol Prog 2021; 38:e3211. [PMID: 34549552 DOI: 10.1002/btpr.3211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/02/2021] [Accepted: 09/12/2021] [Indexed: 11/09/2022]
Abstract
Chinese hamster ovary (CHO) cells are by far the most important mammalian cell lines used for producing antibodies and other therapeutic proteins. It is critical to fully understand their physiological conditions during a bioprocess in order to achieve the highest productivity and the desired product quality. Flow cytometry technology possesses unique advantages for measuring multiple cellular attributes for a given cell and examining changes in cell culture heterogeneity over time that can be used as metrics for enhanced process understanding and control strategy. Flow cytometry-based assays were utilized to examine the progression of cell cycle and apoptosis in three case studies using different antibody-producing CHO cell lines in both fed-batch and perfusion bioprocesses. In our case studies, we found that G0/G1 phase distribution and early apoptosis accumulation responded to subtle changes in culture conditions, such as pH shifting or momentary glucose depletion. In a perfusion process, flow cytometry provided an insightful understanding of the cell physiological status under a hypothermic condition. More importantly, these changes in cell cycle and apoptosis were not detected by a routine trypan blue exclusion-based cell counting and viability measurement. In summary, integration of flow cytometry into bioprocesses as a process analytical technology tool can be beneficial for establishing optimum process conditions and process control.
Collapse
Affiliation(s)
- Xiaodan Ji
- Biopharm Process Development, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| | - Young Je Lee
- Biopharm Process Development, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| | - Tom Eyster
- Biopharm Process Development, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| | - Alexis Parrillo
- Biopharm Process Development, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| | - Sybille Galosy
- Biopharm Process Development, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| | - Zhaohui Ao
- Biopharm Process Development, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| | - Pramthesh Patel
- Biopharm Process Development, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| | - Yuan Zhu
- Biopharm Process Development, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Kuang B, Dhara VG, Hoang D, Jenkins J, Ladiwala P, Tan Y, Shaffer SA, Galbraith SC, Betenbaugh MJ, Yoon S. Identification of novel inhibitory metabolites and impact verification on growth and protein synthesis in mammalian cells. Metab Eng Commun 2021; 13:e00182. [PMID: 34522610 PMCID: PMC8427323 DOI: 10.1016/j.mec.2021.e00182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/24/2022] Open
Abstract
Mammalian cells consume large amount of nutrients during growth and production. However, endogenous metabolic inefficiencies often prevent cells to fully utilize nutrients to support growth and protein production. Instead, significant fraction of fed nutrients is diverted into extracellular accumulation of waste by-products and metabolites, further inhibiting proliferation and protein synthesis. In this study, an LC-MS/MS based metabolomics pipeline was used to screen Chinese hamster ovary (CHO) extracellular metabolites. Six out of eight identified inhibitory metabolites, caused by the inefficient cell metabolism, were not previously studied in CHO cells: aconitic acid, 2-hydroxyisocaproic acid, methylsuccinic acid, cytidine monophosphate, trigonelline, and n-acetyl putrescine. When supplemented back into a fed-batch culture, significant reduction in cellular growth was observed in the presence of each metabolite and all the identified metabolites were shown to impact the glycosylation of a model secreted antibody, with seven of these also reducing CHO cellular productivity (titer) and all eight inhibiting the formation of mono-galactosylated biantennary (G1F) and biantennary galactosylated (G2F) N-glycans. These inhibitory metabolites further impact the metabolism of cells, leading to a significant reduction in CHO cellular growth and specific productivity in fed-batch culture (maximum reductions of 27.2% and 40.6% respectively). In-depth pathway analysis revealed that these metabolites are produced when cells utilize major energy sources such as glucose and select amino acids (tryptophan, arginine, isoleucine, and leucine) for growth, maintenance, and protein production. Furthermore, these novel inhibitory metabolites were observed to accumulate in multiple CHO cell lines (CHO–K1 and CHO-GS) as well as HEK293 cell line. This study provides a robust and holistic methodology to incorporate global metabolomic analysis into cell culture studies for elucidation and structural verification of novel metabolites that participate in key metabolic pathways to growth, production, and post-translational modification in biopharmaceutical production. Mammalian metabolic inefficiencies lead to accumulation of waste by-products. Untargeted and targeted metabolomics for identification of novel metabolites. Identified six CHO metabolic inhibitors negatively impact growth and titer production. Inhibitors were shown to accumulate across different mammalian cell lines. A holistic methodology incorporating metabolomics analysis into cell culture studies.
Collapse
Affiliation(s)
- Bingyu Kuang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Venkata Gayatri Dhara
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Duc Hoang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Jack Jenkins
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Pranay Ladiwala
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yanglan Tan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Shrewsbury, MA, 01545, USA
| | - Scott A Shaffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Shrewsbury, MA, 01545, USA
| | - Shaun C Galbraith
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
16
|
Xu J, Zheng S, Dawood Z, Hill C, Jin W, Xu X, Ding J, Borys MC, Ghose S, Li ZJ, Pendse G. Productivity improvement and charge variant modulation for intensified cell culture processes by adding a carboxypeptidase B (CpB) treatment step. Biotechnol Bioeng 2021; 118:3334-3347. [PMID: 33624836 DOI: 10.1002/bit.27723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/11/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
The goal of cell culture process intensification is to improve productivity while maintaining acceptable quality attributes. In this report, four processes, namely a conventional manufacturing Process A, and processes intensified by enriched N-1 seed (Process B), by perfusion N-1 seed (Process C), and by perfusion production (Process D) were developed for the production of a monoclonal antibody. The three intensified processes substantially improved productivity, however, the product either failed to meet the specification for charge variant species (main peak) for Process D or the production process required early harvest to meet the specification for charge variant species, Day 10 or Day 6 for Processes B and C, respectively. The lower main peak for the intensified processes was due to higher basic species resulting from higher C-terminal lysine. To resolve this product quality issue, we developed an enzyme treatment method by introducing carboxypeptidase B (CpB) to clip the C-terminal lysine, leading to significantly increased main peak and an acceptable and more homogenous product quality for all the intensified processes. Additionally, Processes B and C with CpB treatment extended bioreactor durations to Day 14 increasing titer by 38% and 108%, respectively. This simple yet effective enzyme treatment strategy could be applicable to other processes that have similar product quality issues.
Collapse
Affiliation(s)
- Jianlin Xu
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Shun Zheng
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Zeinab Dawood
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Charles Hill
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Weixin Jin
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Xuankuo Xu
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Julia Ding
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Michael C Borys
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Sanchayita Ghose
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Zheng Jian Li
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Girish Pendse
- Global Product Development and Supply, Bristol Myers Squibb Company, Summit, New Jersey, USA
| |
Collapse
|
17
|
Sharker SM, Rahman A. A Review on the Current Methods of Chinese Hamster Ovary (CHO) Cells Cultivation for the Production of Therapeutic Protein. Curr Drug Discov Technol 2021; 18:354-364. [PMID: 32164511 DOI: 10.2174/1570163817666200312102137] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Most of the clinical approved protein-based drugs or under clinical trials have a profound impact on the treatment of critical diseases. The mammalian eukaryotic cells culture approaches, particularly the CHO (Chinese Hamster Ovary) cells are mainly used in the biopharmaceutical industry for the mass-production of the therapeutic protein. Recent advances in CHO cell bioprocessing to yield recombinant proteins and monoclonal antibodies have enabled the expression of quality protein. The developments of cell lines are possible to enhance specific productivity. As a result, it holds an interesting area for academic as well as industrial researchers around the world. This review will focus on the recent progress of the mammalian CHO cells culture technology and the future scope of further development for the mass-production of protein therapeutics.
Collapse
Affiliation(s)
- Shazid Md Sharker
- Department of Pharmaceutical Sciences, North South University, Plot # 15, Block # B, Bashundhara R/A, Dhaka-1229, Bangladesh
| | - Atiqur Rahman
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, Arizona, United States
| |
Collapse
|
18
|
Patil AA, Bhor SA, Rhee WJ. Cell death in culture: Molecular mechanisms, detections, and inhibition strategies. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Orellana CA, Martínez VS, MacDonald MA, Henry MN, Gillard M, Gray PP, Nielsen LK, Mahler S, Marcellin E. 'Omics driven discoveries of gene targets for apoptosis attenuation in CHO cells. Biotechnol Bioeng 2020; 118:481-490. [PMID: 32865815 DOI: 10.1002/bit.27548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/22/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
Abstract
Chinese hamster ovary (CHO) cells are widely used in biopharmaceutical production. Improvements to cell lines and bioprocesses are constantly being explored. One of the major limitations of CHO cell culture is that the cells undergo apoptosis, leading to rapid cell death, which impedes reaching high recombinant protein titres. While several genetic engineering strategies have been successfully employed to reduce apoptosis, there is still room to further enhance CHO cell lines performance. 'Omics analysis is a powerful tool to better understand different phenotypes and for the identification of gene targets for engineering. Here, we present a comprehensive review of previous CHO 'omics studies that revealed changes in the expression of apoptosis-related genes. We highlight targets for genetic engineering that have reduced, or have the potential to reduce, apoptosis or to increase cell proliferation in CHO cells, with the final aim of increasing productivity.
Collapse
Affiliation(s)
- Camila A Orellana
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia.,Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Verónica S Martínez
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Michael A MacDonald
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Matthew N Henry
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Marianne Gillard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Peter P Gray
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Lars K Nielsen
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia.,Metabolomics Australia, The University of Queensland, Brisbane, Australia.,The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Stephen Mahler
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Esteban Marcellin
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia.,Metabolomics Australia, The University of Queensland, Brisbane, Australia
| |
Collapse
|
20
|
Möller J, Rosenberg M, Riecken K, Pörtner R, Zeng AP, Jandt U. Quantification of the dynamics of population heterogeneities in CHO cultures with stably integrated fluorescent markers. Anal Bioanal Chem 2020; 412:2065-2080. [PMID: 32130440 PMCID: PMC7072063 DOI: 10.1007/s00216-020-02401-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022]
Abstract
Cell population heterogeneities and their changes in mammalian cell culture processes are still not well characterized. In this study, the formation and dynamics of cell population heterogeneities were investigated with flow cytometry and stably integrated fluorescent markers based on the lentiviral gene ontology (LeGO) vector system. To achieve this, antibody-producing CHO cells were transduced with different LeGO vectors to stably express single or multiple fluorescent proteins. This enables the tracking of the transduced populations and is discussed in two case studies from the field of bioprocess engineering: In case study I, cells were co-transduced to express red, green, and blue fluorescent proteins and the development of sub-populations and expression heterogeneities were investigated in high passage cultivations (total 130 days). The formation of a fast-growing and more productive population was observed with a simultaneous increase in cell density and product titer. In case study II, different preculture growth phases and their influence on the population dynamics were investigated in mixed batch cultures with flow cytometry (offline and automated). Four cell line derivatives, each expressing a different fluorescent protein, were generated and cultivated for different time intervals, corresponding to different growth phases. Mixed cultures were inoculated from them, and changes in the composition of the cell populations were observed during the first 48 h of cultivation with reduced process productivity. In summary, we showed how the dynamics of population heterogeneities can be characterized. This represents a novel approach to investigate the dynamics of cell population heterogeneities under near-physiological conditions with changing productivity in mammalian cell culture processes.
Collapse
Affiliation(s)
- Johannes Möller
- Hamburg University of Technology, Bioprocess and Biosystems Engineering, Denickestr. 15, 21073, Hamburg, Germany.
| | - Marcel Rosenberg
- Hamburg University of Technology, Bioprocess and Biosystems Engineering, Denickestr. 15, 21073, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre (UMC) Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Ralf Pörtner
- Hamburg University of Technology, Bioprocess and Biosystems Engineering, Denickestr. 15, 21073, Hamburg, Germany
| | - An-Ping Zeng
- Hamburg University of Technology, Bioprocess and Biosystems Engineering, Denickestr. 15, 21073, Hamburg, Germany
| | - Uwe Jandt
- Hamburg University of Technology, Bioprocess and Biosystems Engineering, Denickestr. 15, 21073, Hamburg, Germany
| |
Collapse
|
21
|
Henry MN, MacDonald MA, Orellana CA, Gray PP, Gillard M, Baker K, Nielsen LK, Marcellin E, Mahler S, Martínez VS. Attenuating apoptosis in Chinese hamster ovary cells for improved biopharmaceutical production. Biotechnol Bioeng 2020; 117:1187-1203. [DOI: 10.1002/bit.27269] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/25/2019] [Accepted: 01/04/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Matthew N. Henry
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Michael A. MacDonald
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
| | - Camila A. Orellana
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Peter P. Gray
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Marianne Gillard
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Kym Baker
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
- Patheon Biologics—A Part of Thermo Fisher Scientific Brisbane Queensland Australia
| | - Lars K. Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
- Metabolomics Australia The University of Queensland Brisbane Queensland Australia
- The Novo Nordisk Foundation Center for Biosustainability Technical University of Denmark Kgs. Lyngby Denmark
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
- Metabolomics Australia The University of Queensland Brisbane Queensland Australia
| | - Stephen Mahler
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
| | - Verónica S. Martínez
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
22
|
Snigirevskaya ES, Komissarchik YY. Ultrastructural traits of apoptosis. Cell Biol Int 2019; 43:728-738. [DOI: 10.1002/cbin.11148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/03/2019] [Accepted: 04/07/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Ekaterina S. Snigirevskaya
- Group of Cell Membrane Ultrastructure, Institute of CytologyRussian Academy of Sciences4 Tikhoretsky Ave 194064 St. Petersburg Russia
| | - Yan Y. Komissarchik
- Group of Cell Membrane Ultrastructure, Institute of CytologyRussian Academy of Sciences4 Tikhoretsky Ave 194064 St. Petersburg Russia
| |
Collapse
|
23
|
Grilo AL, Mantalaris A. Apoptosis: A mammalian cell bioprocessing perspective. Biotechnol Adv 2019; 37:459-475. [PMID: 30797096 DOI: 10.1016/j.biotechadv.2019.02.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/08/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
Apoptosis is a form of programmed and controlled cell death that accounts for the majority of cellular death in bioprocesses. Cell death affects culture longevity and product quality; it is instigated by several stresses experienced by the cells within a bioreactor. Understanding the factors that cause apoptosis as well as developing strategies that can protect cells is crucial for robust bioprocess development. This review aims to a) address apoptosis from a bioprocess perspective; b) describe the significant apoptotic mechanisms linking them to the most relevant stresses encountered in bioreactors; c) discuss the design of operating conditions in order to avoid cell death; d) focus on industrially relevant cell lines; and e) present anti-apoptosis strategies including cell engineering and model-based optimization of bioprocesses. In addition, the importance of apoptosis in quality-by-design bioprocess development from clone screening to production scale are highlighted.
Collapse
Affiliation(s)
- Antonio L Grilo
- Biological Systems Engineering Laboratory, Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.
| | - Athanasios Mantalaris
- Biological Systems Engineering Laboratory, Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.
| |
Collapse
|
24
|
Ma F, Zhang A, Chang D, Velev OD, Wiltberger K, Kshirsagar R. Real-time monitoring and control of CHO cell apoptosis by in situ multifrequency scanning dielectric spectroscopy. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Kang SJ, Rhee WJ. Silkworm Storage Protein 1 Inhibits Autophagy-Mediated Apoptosis. Int J Mol Sci 2019; 20:ijms20020318. [PMID: 30646576 PMCID: PMC6359030 DOI: 10.3390/ijms20020318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/25/2018] [Accepted: 01/08/2019] [Indexed: 02/02/2023] Open
Abstract
Autophagy is a natural physiological process, and it induces the lysosomal degradation of intracellular components in response to environmental stresses, including nutrient starvation. Although an adequate autophagy level helps in cell survival, excessive autophagy triggered by stress such as starvation leads to autophagy-mediated apoptosis. Chinese hamster ovary (CHO) cells are widely used for producing biopharmaceuticals, including monoclonal antibodies. However, apoptosis induced by high stress levels, including nutrient deficiency, is a major problem in cell cultures grown in bioreactors, which should be overcome. Therefore, it is necessary to develop a method for suppressing excessive autophagy and for maintaining an appropriate autophagy level in cells. Therefore, we investigated the effect of silkworm storage protein 1 (SP1), an antiapoptotic protein, on autophagy-mediated apoptosis. SP1-expressing CHO cells were generated to assess the effect and molecular mechanism of SP1 in suppressing autophagy. These cells were cultured under starvation conditions by treatment with Earle’s balanced salt solution (EBSS) to induce autophagy. We observed that SP1 significantly inhibited autophagy-mediated apoptosis by suppressing caspase-3 activation and reactive oxygen species generation. In addition, SP1 suppressed EBSS-induced conversion of LC3-I to LC3-II and the expression of autophagy-related protein 7. Notably, basal Beclin-1 level was significantly low in the SP1-expressing cells, indicating that SP1 regulated upstream events in the autophagy pathway. Together, these findings suggest that SP1 offers a new strategy for overcoming severe autophagy-mediated apoptosis in mammalian cells, and it can be used widely in biopharmaceutical production.
Collapse
Affiliation(s)
- Su Jin Kang
- Division of Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 406-772, Korea.
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 406-772, Korea.
| |
Collapse
|
26
|
Kwon T, Yao R, Hamel JFP, Han J. Continuous removal of small nonviable suspended mammalian cells and debris from bioreactors using inertial microfluidics. LAB ON A CHIP 2018; 18:2826-2837. [PMID: 30079919 DOI: 10.1039/c8lc00250a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Removing nonviable cells from a cell suspension is crucial in biotechnology and biomanufacturing. Label-free microfluidic cell separation devices based on dielectrophoresis, acoustophoresis, and deterministic lateral displacement are used to remove nonviable cells. However, their volumetric throughputs and test cell concentrations are generally too low to be useful in typical bioreactors in biomanufacturing. In this study, we demonstrate the efficient removal of small (<10 μm) nonviable cells from bioreactors while maintaining viable cells using inertial microfluidic cell sorting devices and characterize their performance. Despite the size overlap between viable and nonviable cell populations, the devices demonstrated 3.5-28.0% dead cell removal efficiency with 88.3-83.6% removal purity as well as 97.8-99.8% live cell retention efficiency at 4 million cells per mL with 80% viability. Cascaded and parallel configurations increased the cell concentration capacity (10 million cells per mL) and volumetric throughput (6-8 mL min-1). The system can be used for the removal of small nonviable cells from a cell suspension during continuous perfusion cell culture operations.
Collapse
Affiliation(s)
- Taehong Kwon
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, USA.
| | | | | | | |
Collapse
|
27
|
Perfusion mammalian cell culture for recombinant protein manufacturing – A critical review. Biotechnol Adv 2018; 36:1328-1340. [DOI: 10.1016/j.biotechadv.2018.04.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 01/04/2023]
|
28
|
Anti-apoptotic effects of the alpha-helix domain of silkworm storage protein 1. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-017-0283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Han S, Rhee WJ. Inhibition of apoptosis using exosomes in Chinese hamster ovary cell culture. Biotechnol Bioeng 2018; 115:1331-1339. [PMID: 29337363 DOI: 10.1002/bit.26549] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/04/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022]
Abstract
Animal cell culture technology for therapeutic protein production has shown significant improvement over the last few decades. Chinese hamster ovary (CHO) cells have been widely adapted for the production of biopharmaceutical drugs. In the biopharmaceutical industry, it is crucial to develop cell culture media and culturing conditions to achieve the highest productivity and quality. However, CHO cells are significantly affected by apoptosis in the bioreactors, resulting in a substantial decrease in product quantity and quality. Thus, to overcome the obstacle of apoptosis in CHO cell culture, it is critical to develop a novel method that does not have minimal concern of safety or cost. Herein, we showed for the first time that exosomes, which are nano-sized extracellular vesicles, derived from CHO cells inhibited apoptosis in CHO cell culture when supplemented to the culture medium. Flow cytometric and microscopic analyses revealed that substantial amounts of exosomes were delivered to CHO cells. Higher cell viability after staurosporine treatment was observed by exosome supplementation (67.3%) as compared to control (41.1%). Furthermore, exosomes prevented the mitochondrial membrane potential loss and caspase-3 activation, meaning that the exosomes enhanced cellular activities under pro-apoptotic condition. As the exosomes supplements are derived from CHO cells themselves, it is not only beneficial for the biopharmaceutical productivity of CHO cell culture to inhibit apoptosis, but also from a regulatory standpoint to diminish any safety concerns. Thus, we conclude that the method developed in this research may contribute to the biopharmaceutical industry where minimizing apoptosis in CHO cell culture is beneficial.
Collapse
Affiliation(s)
- Seora Han
- Division of Bioengineering, Incheon National University, Incheon, Yeonsu-gu, Republic of Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon, Yeonsu-gu, Republic of Korea
| |
Collapse
|
30
|
Zhang X, Han L, Zong H, Ding K, Yuan Y, Bai J, Zhou Y, Zhang B, Zhu J. Enhanced production of anti-PD1 antibody in CHO cells through transient co-transfection with anti-apoptotic genes Bcl-x L and Mcl-1. Bioprocess Biosyst Eng 2018; 41:633-640. [PMID: 29368032 DOI: 10.1007/s00449-018-1898-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022]
Abstract
Apoptosis has a negative impact on the cell survival state during cell cultivation. To optimize mammalian cell culture for production of biopharmaceuticals, one of the important approaches is to extend cell life through over-expression of anti-apoptotic genes. Here, we reported a cost-effective process to enhance cell survival and production of an antibody through transient co-transfection with anti-apoptotic genes Bcl-x L or Mcl-1 in Chinese hamster ovary (CHO) cells with polyethylenimine (PEI). Under the optimal conditions, it showed reduced levels of apoptosis and improved cell viability after co-transfected with Bcl-x L or Mcl-1. The overall production yield of the antibody anti-PD1 increased approximately 82% in CHO cells co-transfected with Bcl-x L , and 34% in CHO cells co-transfected with Mcl-1. This work provides an effective way to increase viability of host cells through delaying apoptosis onset, thus, raise production yield of biopharmaceuticals without the process of generating stable cell lines and subsequent screening.
Collapse
Affiliation(s)
- Xinyu Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Lei Han
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Huifang Zong
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Kai Ding
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Yuan Yuan
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jingyi Bai
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Yuexian Zhou
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Baohong Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
- Jecho Laboratories, Inc. 7320 Executive Way, Frederick, MD, 21704, USA.
| |
Collapse
|
31
|
Rangan S, Kamal S, Konorov SO, Schulze HG, Blades MW, Turner RFB, Piret JM. Types of cell death and apoptotic stages in Chinese Hamster Ovary cells distinguished by Raman spectroscopy. Biotechnol Bioeng 2017; 115:401-412. [DOI: 10.1002/bit.26476] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/01/2017] [Accepted: 10/08/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Shreyas Rangan
- Genome Science & Technology Program; Vancouver Canada
- Michael Smith Laboratories; Vancouver Canada
| | - Sepehr Kamal
- Genome Science & Technology Program; Vancouver Canada
- Michael Smith Laboratories; Vancouver Canada
| | - Stanislav O. Konorov
- Michael Smith Laboratories; Vancouver Canada
- Department of Electrical and Computer Engineering; Vancouver Canada
| | - Hans Georg Schulze
- Michael Smith Laboratories; Vancouver Canada
- Department of Electrical and Computer Engineering; Vancouver Canada
| | | | - Robin F. B. Turner
- Michael Smith Laboratories; Vancouver Canada
- Department of Electrical and Computer Engineering; Vancouver Canada
| | - James M. Piret
- Genome Science & Technology Program; Vancouver Canada
- Michael Smith Laboratories; Vancouver Canada
- Chemical and Biological Engineering; University of British Columbia; Vancouver Canada
| |
Collapse
|
32
|
Gulce Iz S, Inevi MA, Metiner PS, Tamis DA, Kisbet N. A BioDesign Approach to Obtain High Yields of Biosimilars by Anti-apoptotic Cell Engineering: a Case Study to Increase the Production Yield of Anti-TNF Alpha Producing Recombinant CHO Cells. Appl Biochem Biotechnol 2017; 184:303-322. [PMID: 28685239 DOI: 10.1007/s12010-017-2540-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/14/2017] [Indexed: 10/19/2022]
Abstract
Recent developments in medical biotechnology have facilitated to enhance the production of monoclonal antibodies (mAbs) and recombinant proteins in mammalian cells. Human mAbs for clinical applications have focused on three areas, particularly cancer, immunological disorders, and infectious diseases. Tumor necrosis factor alpha (TNF-α), which has both proinflammatory and immunoregulatory functions, is an important target in biopharmaceutical industry. In this study, a humanized anti-TNF-α mAb producing stable CHO cell line which produces a biosimilar of Humira (adalimumab) was used. Adalimumab is a fully human anti-TNF mAb among the top-selling mAb products in recent years as a biosimilar. Products from mammalian cell bioprocesses are a derivative of cell viability and metabolism, which is mainly disrupted by cell death in bioreactors. Thus, different strategies are used to increase the product yield. Suppression of apoptosis, also called anti-apoptotic cell engineering, is the most remarkable strategy to enhance lifetime of cells for a longer production period. In fact, using anti-apoptotic cell engineering as a BioDesign approach was inspired by nature; nature gives prolonged life span to some cells like stem cells, tumor cells, and memory B and T cells, and researchers have been using this strategy for different purposes. In this study, as a biomimicry approach, anti-apoptotic cell engineering was used to increase the anti-TNF-α mAb production from the humanized anti-TNF-α mAb producing stable CHO cell line by Bcl-xL anti-apoptotic protein. It was shown that transient transfection of CHO cells by the Bcl-xL anti-apoptotic protein expressing plasmid prolonged the cell survival rate and protected cells from apoptosis. The transient expression of Bcl-xL using CHO cells enhanced the anti-TNF-α production. The production of anti-TNF-α in CHO cells was increased up to 215 mg/L with an increase of 160% after cells were transfected with Bcl-xL expressing plasmid with polyethylenimine (PEI) reagent at the ratio of 1:6 (DNA:PEI). In conclusion, the anti-apoptotic efficacy of the Bcl-xL expressing plasmid in humanized anti-TNF-α MAb producing stable CHO cells is compatible with curative effect for high efficiency recombinant protein production. Thus, this model can be used for large-scale production of biosimilars through transient Bcl-xL gene expression as a cost-effective method.
Collapse
Affiliation(s)
- Sultan Gulce Iz
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Bornova, Turkey.
| | - Muge Anil Inevi
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Bornova, Turkey
- Department of Biotechnology and Bioengineering, Izmir Institute of Technology, 35430, Izmir, Urla, Turkey
| | - Pelin Saglam Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Bornova, Turkey
| | - Duygu Ayyildiz Tamis
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Bornova, Turkey
- Turgut Ilaclari A.S, 34394, Istanbul, Besiktas, Turkey
| | - Nazli Kisbet
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Bornova, Turkey
- GlaxoSmithKline, 34394, Istanbul, Besiktas, Turkey
| |
Collapse
|
33
|
Snigirevskaya ES, Komissarchik YY. Ultrastructural analysis of human leukemia U-937 cells after apoptosis induction: Localization of proteasomes and perichromatin fibers. Acta Histochem 2017; 119:471-480. [PMID: 28545761 DOI: 10.1016/j.acthis.2017.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/27/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
Abstract
We studied the ultrastructure of human histiocytic lymphoma U-937cells after apoptosis induction with two external agents, hypertonic shock and etoposide. Appearance of aggregates of particles of nuclear origin within the nuclei and cytoplasm of the induced cells was the first and the most prominent morphological sign of apoptosis. These aggregates were not coated by a membrane, had variable shape, density and size. Two types of particles dominated in the aggregates: perichromatin fibers (PFs) and proteasomes (PRs). PFs represent a morphological expression of transcriptional and co-transcriptional processing of pre-mRNA (Biggiogera et al., 2008), PRs are involved in hydrolysis of proteins and nucleoproteins, and participate in regulation of apoptosis (Ciechanover, 1998; Liu et al., 2007). We examined the ultrastructure and localization of PFs and PRs, and confirmed the proteasome nature of the latter by immunoelectron microscopy. We traced the formation and migration of the aggregates along the nucleus and their exit into the cytoplasm across the nuclear pores. Finally, we demonstrated degradation of the aggregates and relocating their content into exosomes at the terminal stages of apoptosis with aid of exosomes. We suggest that proteasomes function as morphologically definite and independent intracellular organelles. Alongside with proteasomes, autophagic vacuoles were revealed in apoptotic cells. Occurrence of autophagic vacuoles in apoptotic cells may suggest that both proteolytic pathways, autophagy and proteasome degradation, are coordinated with each other along the programmed cell death pathway.
Collapse
|
34
|
Martí-Centelles R, Murga J, Falomir E, Carda M, Marco JA. Synthesis and Biological Evaluation of Imines Structurally Related to Resveratrol as Dual Inhibitors of VEGF Protein Secretion and hTERT Gene Expression 1. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A group of 28 N-benzylidene aniline derivatives structurally related to the natural stilbene resveratrol has been prepared through condensation of anilines with the corresponding aldehydes. The ability of these imines to inhibit proliferation of two tumor cell lines (HT-29 and MCF-7) and one non-tumor cell line (HEK-293) was first determined. Subsequently, we determined the ability of some of the most cytotoxic compounds to inhibit the secretion of the VEGF-A factor in HT-29 cells and to downregulate the expression of the VEGF and hTERT genes, the latter one being involved in the activation of telomerase.
Collapse
Affiliation(s)
| | - Juan Murga
- Depart. de Q. Inorgánica y Orgánica, Univ. Jaume I, E-12071 Castellón, Spain
| | - Eva Falomir
- Depart. de Q. Inorgánica y Orgánica, Univ. Jaume I, E-12071 Castellón, Spain
| | - Miguel Carda
- Depart. de Q. Inorgánica y Orgánica, Univ. Jaume I, E-12071 Castellón, Spain
| | - J. Alberto Marco
- Depart. de Q. Orgánica, Univ. de Valencia, E-46100 Burjassot, Valencia, Spain
| |
Collapse
|
35
|
Botta L, Maccari G, Calandro P, Tiberi M, Brai A, Zamperini C, Canducci F, Chiariello M, Martí-Centelles R, Falomir E, Carda M. One drug for two targets: Biological evaluation of antiretroviral agents endowed with antiproliferative activity. Bioorg Med Chem Lett 2017; 27:2502-2505. [PMID: 28408224 DOI: 10.1016/j.bmcl.2017.03.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 12/31/2022]
Abstract
AIDS-related cancer diseases are malignancies with low incidence on healthy people that affect mostly subjects already immunocompromised. The connection between HIV/AIDS and these cancers has not been established yet, but a weakened immune system is certainly the main cause. We envisaged the possibility to screen a small library of compounds synthesized in our laboratory against opportunistic tumors mainly due to HIV infection like Burkitt's Lymphoma. From cellular assays and gene expression analysis we identified two promising compounds. These derivatives have the dual action required inhibiting HIV replication in human TZM-bl cells infected with HIV-1 NL4.3 and showing cytotoxic activity on human colon HT-29 and breast adenocarcinoma MCF-7 cells. In addition, preclinical in vitro adsorption, distribution, metabolism, and excretion studies highlighted a satisfactory pharmacokinetic profile.
Collapse
Affiliation(s)
- Lorenzo Botta
- Dipartimento di Farmacia, Università Federico II di Napoli, Via D. Montesano 49, 80131 Napoli, Italy.
| | - Giorgio Maccari
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Pierpaolo Calandro
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Marika Tiberi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Annalaura Brai
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Claudio Zamperini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Filippo Canducci
- Department of Clinical and Experimental Medicine, Università degli Studi dell'Insubria, Varese, Italy
| | - Mario Chiariello
- Istituto Toscano Tumori (ITT), Core Research Laboratory (CRL), AOU Senese, Siena, Italy
| | - Rosa Martí-Centelles
- Departamento de Química Inorgánica y Orgánica, Universidad Jaume I, E-12071 Castellón, Spain
| | - Eva Falomir
- Departamento de Química Inorgánica y Orgánica, Universidad Jaume I, E-12071 Castellón, Spain
| | - Miguel Carda
- Departamento de Química Inorgánica y Orgánica, Universidad Jaume I, E-12071 Castellón, Spain
| |
Collapse
|
36
|
Lund AM, Kaas CS, Brandl J, Pedersen LE, Kildegaard HF, Kristensen C, Andersen MR. Network reconstruction of the mouse secretory pathway applied on CHO cell transcriptome data. BMC SYSTEMS BIOLOGY 2017; 11:37. [PMID: 28298216 PMCID: PMC5353859 DOI: 10.1186/s12918-017-0414-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 02/27/2017] [Indexed: 11/21/2022]
Abstract
Background Protein secretion is one of the most important processes in eukaryotes. It is based on a highly complex machinery involving numerous proteins in several cellular compartments. The elucidation of the cell biology of the secretory machinery is of great importance, as it drives protein expression for biopharmaceutical industry, a 140 billion USD global market. However, the complexity of secretory process is difficult to describe using a simple reductionist approach, and therefore a promising avenue is to employ the tools of systems biology. Results On the basis of manual curation of the literature on the yeast, human, and mouse secretory pathway, we have compiled a comprehensive catalogue of characterized proteins with functional annotation and their interconnectivity. Thus we have established the most elaborate reconstruction (RECON) of the functional secretion pathway network to date, counting 801 different components in mouse. By employing our mouse RECON to the CHO-K1 genome in a comparative genomic approach, we could reconstruct the protein secretory pathway of CHO cells counting 764 CHO components. This RECON furthermore facilitated the development of three alternative methods to study protein secretion through graphical visualizations of omics data. We have demonstrated the use of these methods to identify potential new and known targets for engineering improved growth and IgG production, as well as the general observation that CHO cells seem to have less strict transcriptional regulation of protein secretion than healthy mouse cells. Conclusions The RECON of the secretory pathway represents a strong tool for interpretation of data related to protein secretion as illustrated with transcriptomic data of Chinese Hamster Ovary (CHO) cells, the main platform for mammalian protein production. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0414-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Mathilde Lund
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kgs. Lyngby, Denmark
| | - Christian Schrøder Kaas
- Recombinant Expression Technologies, Global Research Unit, Novo Nordisk A/S, Novo Nordisk Park, DK-2760, Måløv, Denmark
| | - Julian Brandl
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kgs. Lyngby, Denmark
| | - Lasse Ebdrup Pedersen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800, Kgs. Lyngby, Denmark
| | - Helene Faustrup Kildegaard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800, Kgs. Lyngby, Denmark
| | - Claus Kristensen
- Faculty of Health and Medical Sciences, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200, København N, Denmark
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
37
|
Qian Y, Lewis AM, Sidnam SM, Bergeron A, Abu-Absi NR, Vaidyanathan N, Deresienski A, Qian NX, Borys MC, Li ZJ. LongR3 enhances Fc-fusion protein N-linked glycosylation while improving protein productivity in an industrial CHO cell line. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
Roointan A, Morowvat MH. Road to the future of systems biotechnology: CRISPR-Cas-mediated metabolic engineering for recombinant protein production. Biotechnol Genet Eng Rev 2017; 32:74-91. [PMID: 28052722 DOI: 10.1080/02648725.2016.1270095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rising potential for CRISPR-Cas-mediated genome editing has revolutionized our strategies in basic and practical bioengineering research. It provides a predictable and precise method for genome modification in a robust and reproducible fashion. Emergence of systems biotechnology and synthetic biology approaches coupled with CRISPR-Cas technology could change the future of cell factories to possess some new features which have not been found naturally. We have discussed the possibility and versatile potentials of CRISPR-Cas technology for metabolic engineering of a recombinant host for heterologous protein production. We describe the mechanisms involved in this metabolic engineering approach and present the diverse features of its application in biotechnology and protein production.
Collapse
Affiliation(s)
- Amir Roointan
- a Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies , Shiraz , Iran.,c Department of Medical Biotechnology, School of Medicine , Fasa University of Medical Sciences , Fasa , Iran
| | - Mohammad Hossein Morowvat
- a Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies , Shiraz , Iran.,b Pharmaceutical Sciences Research Center, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
39
|
Abstract
Improving the time integral of viable cell concentration by overcoming cell death, namely apoptosis, is one of the widely used strategies for efficient production of therapeutic proteins. By establishing stable cell lines that overexpress anti-apoptotic genes or down-regulate pro-apoptotic genes, the final product yields can be enhanced as cells become more resistance to environmental stresses. From the selection of high-expressing clones to verification of anti-apoptotic activity, the method to construct a stable anti-apoptotic cell line is discussed in this chapter.
Collapse
Affiliation(s)
- Eric Baek
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Soo Min Noh
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
40
|
Feary M, Racher AJ, Young RJ, Smales CM. Methionine sulfoximine supplementation enhances productivity in GS-CHOK1SV cell lines through glutathione biosynthesis. Biotechnol Prog 2016; 33:17-25. [DOI: 10.1002/btpr.2372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/12/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Marc Feary
- New Expression Technologies Group, Research and Technology, Lonza Biologics; Granta Park Cambridge CB21 6GS U.K
| | - Andrew J. Racher
- Future Technologies, Research and Technology, Lonza Biologics; Slough SL1 4DX U.K
| | - Robert J. Young
- New Expression Technologies Group, Research and Technology, Lonza Biologics; Granta Park Cambridge CB21 6GS U.K
| | - C. Mark Smales
- Centre for Industrial Biotechnology and School of Biosciences, University of Kent; Canterbury CT2 7NJ U.K
| |
Collapse
|
41
|
Reimonn TM, Park SY, Agarabi CD, Brorson KA, Yoon S. Effect of amino acid supplementation on titer and glycosylation distribution in hybridoma cell cultures-Systems biology-based interpretation using genome-scale metabolic flux balance model and multivariate data analysis. Biotechnol Prog 2016; 32:1163-1173. [PMID: 27452371 DOI: 10.1002/btpr.2335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/17/2016] [Indexed: 01/24/2023]
Abstract
Genome-scale flux balance analysis (FBA) is a powerful systems biology tool to characterize intracellular reaction fluxes during cell cultures. FBA estimates intracellular reaction rates by optimizing an objective function, subject to the constraints of a metabolic model and media uptake/excretion rates. A dynamic extension to FBA, dynamic flux balance analysis (DFBA), can calculate intracellular reaction fluxes as they change during cell cultures. In a previous study by Read et al. (2013), a series of informed amino acid supplementation experiments were performed on twelve parallel murine hybridoma cell cultures, and this data was leveraged for further analysis (Read et al., Biotechnol Prog. 2013;29:745-753). In order to understand the effects of media changes on the model murine hybridoma cell line, a systems biology approach is applied in the current study. Dynamic flux balance analysis was performed using a genome-scale mouse metabolic model, and multivariate data analysis was used for interpretation. The calculated reaction fluxes were examined using partial least squares and partial least squares discriminant analysis. The results indicate media supplementation increases product yield because it raises nutrient levels extending the growth phase, and the increased cell density allows for greater culture performance. At the same time, the directed supplementation does not change the overall metabolism of the cells. This supports the conclusion that product quality, as measured by glycoform assays, remains unchanged because the metabolism remains in a similar state. Additionally, the DFBA shows that metabolic state varies more at the beginning of the culture but less by the middle of the growth phase, possibly due to stress on the cells during inoculation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1163-1173, 2016.
Collapse
Affiliation(s)
- Thomas M Reimonn
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell
| | - Seo-Young Park
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell
| | - Cyrus D Agarabi
- Division II, Office of Biotechnology Products, Office of Pharmaceutical Quality, CDER, FDA, Silver Springs, MD, USA
| | - Kurt A Brorson
- Division II, Office of Biotechnology Products, Office of Pharmaceutical Quality, CDER, FDA, Silver Springs, MD, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell.
| |
Collapse
|
42
|
Jiang Q, Sun Y, Guo Z, Fu M, Wang Q, Zhu H, Lei P, Shen G. Overexpression of GRP78 enhances survival of CHO cells in response to serum deprivation and oxidative stress. Eng Life Sci 2016; 17:107-116. [PMID: 32624757 DOI: 10.1002/elsc.201500152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 05/13/2016] [Accepted: 06/14/2016] [Indexed: 01/11/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are regarded as one of the most commonly used mammalian hosts, which decreases the productivity due to loss in culture viability. Overexpressing antiapoptosis genes in CHO cells was developed as a means of limiting cell death upon exposure to environmental insults. Glucose-regulated protein 78 (GRP78) is traditionally regarded as a major ER chaperone that participates in protein folding and other cell processes. It is also a potent antiapoptotic protein and plays a critical role in cell survival, proliferation, and metastasis. In this study, the impact of GRP78 on CHO cells in response to environmental insults such as serum deprivation and oxidative stress was investigated. First, it was confirmed that CHO cells were very sensitive to environmental insults. Then, GRP78 overexpressing CHO cell line was established and exposed to serum deprivation and H2O2. Results showed that GRP78 engineering increased the viability and decreased the apoptosis of CHO cells. The survival advantage due to GRP78 engineering could be mediated by suppression of caspase-3 involved in cell death pathways in stressed cells. Besides, GRP78 engineering also enhanced yields of antibody against transferrin receptor in CHO cells. GRP78 should be a potential application in the biopharmaceutical industries.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Immunology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Hubei China
| | - Yuanli Sun
- Department of Immunology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Hubei China
| | - Zilong Guo
- Department of Immunology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Hubei China
| | - Mingpeng Fu
- Department of Immunology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Hubei China
| | - Qiang Wang
- Department of Immunology Medical College of Wuhan University of Science and Technology Hubei China
| | - Huifen Zhu
- Department of Immunology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Hubei China
| | - Ping Lei
- Department of Immunology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Hubei China
| | - Guanxin Shen
- Department of Immunology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Hubei China
| |
Collapse
|
43
|
Falomir E, Lucas R, Peñalver P, Martí-Centelles R, Dupont A, Zafra-Gómez A, Carda M, Morales JC. Cytotoxic, Antiangiogenic and Antitelomerase Activity of Glucosyl- and Acyl- Resveratrol Prodrugs and Resveratrol Sulfate Metabolites. Chembiochem 2016; 17:1343-8. [DOI: 10.1002/cbic.201600084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Eva Falomir
- Department of Inorganic and Organic Chemistry; University Jaume I; Avda Sos Baynat, sn 12071 Castellón Spain
| | - Ricardo Lucas
- Department of Bioorganic Chemistry; Instituto de Investigaciones Químicas (IIQ); CSIC-Universidad de Sevilla; Avda Americo Vespucio, 49 41092 Sevilla Spain
| | - Pablo Peñalver
- Instituto de Parasitología y Biomedicina “López Neyra”; CSIC; Parque Tecnológico Ciencias de la Salud; Avenida del Conocimiento, 17 18016 Armilla Granada Spain
| | - Rosa Martí-Centelles
- Department of Inorganic and Organic Chemistry; University Jaume I; Avda Sos Baynat, sn 12071 Castellón Spain
| | - Alexia Dupont
- Department of Bioorganic Chemistry; Instituto de Investigaciones Químicas (IIQ); CSIC-Universidad de Sevilla; Avda Americo Vespucio, 49 41092 Sevilla Spain
| | - Alberto Zafra-Gómez
- Department of Analytical Chemistry; Faculty of Sciences; University of Granada; C/ Severo Ochoa, s/n 18001 Granada Spain
| | - Miguel Carda
- Department of Inorganic and Organic Chemistry; University Jaume I; Avda Sos Baynat, sn 12071 Castellón Spain
| | - Juan C. Morales
- Department of Bioorganic Chemistry; Instituto de Investigaciones Químicas (IIQ); CSIC-Universidad de Sevilla; Avda Americo Vespucio, 49 41092 Sevilla Spain
- Instituto de Parasitología y Biomedicina “López Neyra”; CSIC; Parque Tecnológico Ciencias de la Salud; Avenida del Conocimiento, 17 18016 Armilla Granada Spain
| |
Collapse
|
44
|
Martí-Centelles R, Falomir E, Carda M, Nieto CI, Cornago MP, Claramunt RM. Effects of Curcuminoid Pyrazoles on Cancer Cells and on the Expression of Telomerase Related Genes. Arch Pharm (Weinheim) 2016; 349:532-8. [PMID: 27270752 DOI: 10.1002/ardp.201600067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 03/15/2016] [Accepted: 05/06/2016] [Indexed: 11/12/2022]
Abstract
A group of 13 curcuminoid pyrazoles was investigated for their cytotoxicity on three tumoral cell lines (HT-29, MCF-7, and HeLa) and one non-tumoral human cell line (HEK-293). The values obtained were compared with those of curcumin. A subset of selected derivatives was also studied for their ability to downregulate expression of the hTERT and c-Myc genes, which are both involved in telomerase activity.
Collapse
Affiliation(s)
- Rosa Martí-Centelles
- Departamento de Química Inorgánica y Orgánica, Universidad Jaume I, Castellón, Spain
| | - Eva Falomir
- Departamento de Química Inorgánica y Orgánica, Universidad Jaume I, Castellón, Spain
| | - Miguel Carda
- Departamento de Química Inorgánica y Orgánica, Universidad Jaume I, Castellón, Spain
| | - Carla I Nieto
- Facultad de Ciencias, Departamento de Química Orgánica y Bio-Orgánica, UNED, Madrid, Spain
| | - M Pilar Cornago
- Facultad de Ciencias, Departamento de Química Orgánica y Bio-Orgánica, UNED, Madrid, Spain
| | - Rosa M Claramunt
- Facultad de Ciencias, Departamento de Química Orgánica y Bio-Orgánica, UNED, Madrid, Spain
| |
Collapse
|
45
|
Cell growth stimulating effect of Ganoderma lucidum spores and their potential application for Chinese hamster ovary K1 cell cultivation. Bioprocess Biosyst Eng 2016; 39:925-35. [PMID: 26921102 DOI: 10.1007/s00449-016-1572-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/14/2016] [Indexed: 01/29/2023]
Abstract
In this work, water-soluble extracts of Ganoderma lucidum spores (Gls), a Chinese medicinal herb that possesses cell growth stimulating function, were found to be an effective growth factor for Chinese hamster ovary (CHO) cell cultivation. The Gls extract was prepared and supplemented to CHO K1 cell culture media with various serum levels. Our results obtained from both the static culture and the spinner-flask suspension culture showed that use of small-amount Gls extract effectively promoted cell growth and suppressed cell apoptosis induced by serum deprivation with normal cell cycle maintained in a low-serum medium. The low-serum medium containing 1 % (v/v) fetal bovine serum (FBS) and 0.01 % (w/v) Gls extract showed a comparable performance on both cell growth and fusion protein productivity with the conventional CHO culture medium containing 10 % (v/v) FBS and a commercial serum-free medium. This is the first study of the potential of Gls extracts for use as an alternative cell growth factor and nutrient for CHO cells. The findings have presented a new approach to economic cultivation of CHO cells for therapeutic protein production.
Collapse
|
46
|
Improving expression of recombinant human IGF-1 using IGF-1R knockout CHO cell lines. Biotechnol Bioeng 2016; 113:1094-101. [DOI: 10.1002/bit.25877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/11/2015] [Accepted: 10/28/2015] [Indexed: 12/13/2022]
|
47
|
Ji YZ, Geng L, Zhou HB, Wei HC, Chen HD. Chinese herbal medicine Yougui Pill reduces exogenous glucocorticoid-induced apoptosis in anterior pituitary cells. Neural Regen Res 2016; 11:1962-1968. [PMID: 28197193 PMCID: PMC5270435 DOI: 10.4103/1673-5374.197138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Long-term glucocorticoid use may result in sustained suppression of one or more secreted components from the hypothalamo-pituitary-adrenal axis, and often results in apoptosis. Yougui Pill (YGP), a 10-component traditional Chinese herbal medicine, has been shown to be clinically effective for glucocorticoid-induced suppression of the hypothalamo-pituitary-adrenal axis. However, the pharmacological and molecular mechanisms remain unclear. We hypothesized that YGP would exert an anti-apoptosis effect on dexamethasone-treated anterior pituitary cells. In vivo experiments showed that YGP significantly reduced the number of apoptotic cells, down-regulated mRNA expression of cytochrome c, caspase-3, and caspase-9, and up-regulated mRNA expression of Bcl-2. These findings suggest that YGP reduced glucocorticoid-induced apoptosis in rat anterior pituitary cells by regulating the mitochondria-mediated apoptosis pathway.
Collapse
Affiliation(s)
- Yong-Zhi Ji
- Department of Dermatology, Second Hospital of Jilin University, Changchun, Jinlin Province, China
| | - Long Geng
- Department of Dermatology, First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hong-Bo Zhou
- Department of Dermatology, First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hua-Chen Wei
- Department of Dermatology, Mount Sinai Medical Center, New York, USA
| | - Hong-Duo Chen
- Department of Dermatology, First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
48
|
Versatile microscale screening platform for improving recombinant protein productivity in Chinese hamster ovary cells. Sci Rep 2015; 5:18016. [PMID: 26657798 PMCID: PMC4676018 DOI: 10.1038/srep18016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/10/2015] [Indexed: 11/09/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are widely used as cell factories for the production of biopharmaceuticals. In contrast to the highly optimized production processes for monoclonal antibody (mAb)-based biopharmaceuticals, improving productivity of non-mAb therapeutic glycoproteins is more likely to reduce production costs significantly. The aim of this study was to establish a versatile target gene screening platform for improving productivity for primarily non-mAb glycoproteins with complete interchangeability of model proteins and target genes using transient expression. The platform consists of four techniques compatible with 96-well microplates: lipid-based transient transfection, cell cultivation in microplates, cell counting and antibody-independent product titer determination based on split-GFP complementation. We were able to demonstrate growth profiles and volumetric productivity of CHO cells in 96-half-deepwell microplates comparable with those obtained in shake flasks. In addition, we demonstrate that split-GFP complementation can be used to accurately measure relative titers of therapeutic glycoproteins. Using this platform, we were able to detect target gene-specific increase in titer and specific productivity of two non-mAb glycoproteins. In conclusion, the platform provides a novel miniaturized and parallelisable solution for screening target genes and holds the potential to unravel genes that can enhance the secretory capacity of CHO cells.
Collapse
|
49
|
The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Biotechnol Adv 2015; 33:1878-96. [DOI: 10.1016/j.biotechadv.2015.10.015] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/21/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022]
|
50
|
Zalai D, Tobak T, Putics Á. Impact of apoptosis on the on-line measured dielectric properties of CHO cells. Bioprocess Biosyst Eng 2015; 38:2427-37. [DOI: 10.1007/s00449-015-1479-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/28/2015] [Indexed: 12/20/2022]
|