1
|
Wirsing A. Dynamic fine-tuning of anti-predator behaviour in snowshoe hares illustrates the context dependence of risk effects. J Anim Ecol 2024. [PMID: 39535841 DOI: 10.1111/1365-2656.14219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Research Highlight: Shiratsuru, S., & Pauli, J. N. (2024). Food-safety trade-offs drive dynamic behavioural antipredator responses among snowshoe hares. Journal of Animal Ecology, DOI: 10.1111/1365-2656.14183. Predation-risk effects are known to be context dependent, with impacts of perceived predation threat on individual antipredator responses, prey population demography, species interactions and community organization hinging on traits of the prey, the predator(s) and setting of the interaction. Yet, few empirical studies to date have simultaneously explored how these three drivers shape contingency in antipredator behaviour, the key first step in the process by which predation-risk effects play out, especially in free-living vertebrates. In a new study, Shiratsuru & Pauli (2024) address this knowledge deficit by showing that snowshoe hares (Lepus americanus) trade foraging for anti-predator vigilance dynamically as a function of winter food availability (a proxy for individual energetic state), the timing and intensity of predator activity, and environmental properties associated with elevated vulnerability to predator-induced mortality, notably including coat colour mismatch caused by variation in snow cover. These results offer new insight into the complexity of predation-risk effects and should serve as a guide for research aiming to better understand the expression of these effects under varying circumstances.
Collapse
Affiliation(s)
- Aaron Wirsing
- University of Washington College of the Environment, School of Environmental and Forest Sciences, Seattle, Washington, USA
| |
Collapse
|
2
|
Liu Y, Geng Y, Si M, Zhu D, Huang Z, Yin H, Zeng H, Feng J, Jiang T. Trait responses, nonconsumptive effects, and the physiological basis of Helicoverpa armigera to bat predation risk. Commun Biol 2024; 7:1436. [PMID: 39501073 PMCID: PMC11538460 DOI: 10.1038/s42003-024-07166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Predation reduces the population density of prey, affecting its fitness and population dynamics. Few studies have connected trait changes with fitness consequences in prey and the molecular basis and metabolic mechanisms of such changes in bat-insect systems. This study focuses on the responses of Helicoverpa armigera to different predation risks, focusing on echolocating bats and their calls. Substantial modifications were observed in the nocturnal and diurnal activities of H. armigera under predation risk, with enhanced evasion behaviors. Accelerated development and decreased fitness were observed under predation risks. Transcriptomic and metabolomic analyses indicated that exposure to bats induced the upregulation of amino acid metabolism- and antioxidant pathway-related genes, reflecting shifts in resource utilization in response to oxidative stress. Exposure to bat predation risks enhanced the activity of DNA damage repair pathways and suppressed energy metabolism, contributing to the observed trait changes and fitness decreases. The current results underscore the complex adaptive strategies that prey species evolve in response to predation risk, enhancing our understanding of the predator-prey dynamic and offering valuable insights for innovative and ecologically informed pest management strategies.
Collapse
Affiliation(s)
- Yingying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yang Geng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Man Si
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Dan Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Zhenglanyi Huang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Hanli Yin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Hao Zeng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China.
- College of Life Science, Jilin Agricultural University, Changchun, China.
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China.
- Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China.
| |
Collapse
|
3
|
Drummond-Clarke RC, Kivell TL, Sarringhaus L, Stewart FA, Piel AK. Sex differences in positional behavior of chimpanzees (Pan troglodytes schweinfurthii) living in the dry and open habitat of Issa Valley, Tanzania. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25007. [PMID: 39056239 DOI: 10.1002/ajpa.25007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVES Many early fossil hominins are associated with savanna-mosaic paleohabitats, and high sexual dimorphism that may reflect differences in positional behavior between sexes. However, reconstructions of hominin behavior and the selective pressures they faced in an open habitat are limited by a lack of studies of extant apes living in contemporary, analogous habitats. Here, we describe adult chimpanzee positional behavior in the savanna-mosaic habitat of the Issa Valley, Tanzania, to test whether Issa chimpanzees show larger sex-differences in positional behavior than their forest-dwelling counterparts. MATERIALS AND METHODS We quantified and compared adult locomotor and postural behavior across sexes (6 females, 7 males) in the riparian forest (closed) and miombo woodland (open) vegetation types at Issa Valley (13,743 focal observations). We then compared our results to published data of chimpanzee communities living in more forested habitats. RESULTS Issa females and males both spent less time arboreally in open vegetation and showed similar locomotor and postural behavior on the same substrates, notably using a high level of suspensory locomotion when arboreal. Females were, however, more arboreal than males during locomotor behavior, as well as compared with females from other communities. Issa males behaved similarly to males from other communities. CONCLUSION Results suggest that open habitats do not elicit less arboreal behaviors in either sex, and may even select for suspensory locomotion to effectively navigate an open canopy. An open habitat may, however, increase sex differences in positional behavior by driving female arboreality. We suggest this is because of higher energetic demands and predator pressures associated with open vegetation, which are likely exaggerated for reproducing females. These results have implications for the interpretation of how sexual dimorphism may influence reconstructions of hominin positional behavior.
Collapse
Affiliation(s)
| | - Tracy L Kivell
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Fiona A Stewart
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University College London, London, UK
| | - Alex K Piel
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University College London, London, UK
| |
Collapse
|
4
|
Ozsanlav-Harris L, McIntosh ALS, Griffin LR, Hilton GM, Cao L, Shaw JM, Bearhop S. Contrasting effects of shooting disturbance on the movement and behavior of sympatric wildfowl species. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024:e3032. [PMID: 39452617 DOI: 10.1002/eap.3032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 04/29/2024] [Accepted: 06/24/2024] [Indexed: 10/26/2024]
Abstract
Human-wildlife conflict is a global conservation issue, necessitating effective mitigation strategies. Hunting is a common management approach to reduce conflict, but the indirect consequences are often overlooked. Chronic hunting-related disturbance can reduce fitness and redistribute species. In recent decades, goose-agricultural conflict has intensified due to increasing abundance and shifts towards agricultural foraging. On Islay, Scotland, escalating conflict culminated in shooting Greenland barnacle geese Branta leucopsis to reduce damage to agricultural grassland. In this study, we contrast the impact of shooting disturbance on the movement, behavior, energy expenditure and habitat selection of the target species (Greenland barnacle goose) and a vulnerable nontarget species (Greenland white-fronted goose, Anser albifrons flavirostris) using biologging devices (target species: n = 33; nontarget species: n = 94). Both species were displaced by shooting, and greater distances were subsequently traveled by the target species (1.71 km when directly targeted). When disturbed at any distance, total daily movement increased significantly by 1.18 km for the target species but not for the nontarget species. The target species exhibited no accompanying change in diurnal energy expenditure (measured via accelerometery) but foraged in improved grasslands further from roads after shooting disturbance, where disturbance from all sources was likely lower. The significant increases in movement and changes in foraging site selection of the target species could reduce fitness but given the infrequency of shooting disturbances (0.09 per day) there is likely capacity for compensatory feeding to recoup energetic losses. The nontarget species expectedly showed no significant change in energy expenditure, behavior or habitat selection following shooting disturbance, suggesting mitigation strategies have been effective at minimizing fitness impacts. Refuge areas with a 3.5 km diameter (three times the maximum distance from shooting that displacement was detectable) could provide undisturbed foraging for the target species, minimizing compensatory feeding and further agricultural damage. Wildlife managers should, where possible, consider the fitness implications of shooting disturbance, and whether compensatory feeding and redistribution could hamper conflict mitigation. Management strategies should also include species-specific monitoring and mitigation as we have demonstrated differing responses potentially due to imposed mitigation but also differing species ecology and "landscapes of fear."
Collapse
Affiliation(s)
- Luke Ozsanlav-Harris
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, UK
- Wildfowl & Wetlands Trust, Slimbridge, Gloucester, UK
| | - Aimée L S McIntosh
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, UK
- Wildfowl & Wetlands Trust, Slimbridge, Gloucester, UK
- NatureScot, Stilligarry, Isle of South Uist, UK
| | - Larry R Griffin
- Wildfowl & Wetlands Trust, Slimbridge, Gloucester, UK
- ECO-LG Ltd, Dumfries, UK
| | | | - Lei Cao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | | | - Stuart Bearhop
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, UK
| |
Collapse
|
5
|
Gaynor KM, Abrahms B, Manlove KR, Oestreich WK, Smith JA. Anthropogenic impacts at the interface of animal spatial and social behaviour. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220527. [PMID: 39230457 PMCID: PMC11449167 DOI: 10.1098/rstb.2022.0527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 09/05/2024] Open
Abstract
Human disturbance is contributing to widespread, global changes in the distributions and densities of wild animals. These anthropogenic impacts on wildlife arise from multiple bottom-up and top-down pathways, including habitat loss, resource provisioning, climate change, pollution, infrastructure development, hunting and our direct presence. Animal behaviour is an important mechanism linking these disturbances to population outcomes, although these behavioural pathways are often complex and can remain obscured when different aspects of behaviour are studied in isolation from one another. The spatial-social interface provides a lens for understanding how an animal's spatial and social environments interact to determine its spatial and social phenotype (i.e. measurable characteristics of an individual), and how these phenotypes interact and feed back to reshape environments. Here, we review studies of animal behaviour at the spatial-social interface to understand and predict how human disturbance affects animal movement, distribution and intraspecific interactions, with consequences for the conservation of populations and ecosystems. By understanding the spatial-social mechanisms linking human disturbance to conservation outcomes, we can better design management interventions to mitigate undesired consequences of disturbance.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Kaitlyn M Gaynor
- Departments of Zoology and Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Briana Abrahms
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Kezia R Manlove
- Department of Wildland Resources, Utah State University, Logan, UT 84322, USA
| | | | - Justine A Smith
- Department of Wildlife Fish, and Conservation Biology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
6
|
Russo NJ, Nshom DL, Ferraz A, Barbier N, Wikelski M, Noonan MJ, Ordway EM, Saatchi S, Smith TB. Three-dimensional vegetation structure drives patterns of seed dispersal by African hornbills. J Anim Ecol 2024. [PMID: 39421883 DOI: 10.1111/1365-2656.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024]
Abstract
Three-dimensional (3D) vegetation structure influences animal movements and, consequently, ecosystem functions. Animals disperse the seeds of 60%-90% of trees in tropical rainforests, which are among the most structurally complex ecosystems on Earth. Here, we investigated how 3D rainforest structure influences the movements of large, frugivorous birds and resulting spatial patterns of seed dispersal. We GPS-tracked white-thighed (Bycanistes albotibialis) and black-casqued hornbills (Ceratogymna atrata) in a study area surveyed by light detection and ranging (LiDAR) in southern Cameroon. We found that both species preferred areas of greater canopy height and white-thighed hornbill preferred areas of greater vertical complexity. In addition, 33% of the hornbills preferred areas close to canopy gaps, while 16.7% and 27.8% avoided large and small gaps, respectively. White-thighed hornbills avoided swamp habitats, while black-casqued increased their preference for swamps during the hottest temperatures. We mapped spatial probabilities of seed dispersal by hornbills, showing that 3D structural attributes shape this ecological process by influencing hornbill behaviour. These results provide evidence of a possible feedback loop between rainforest vegetation structure and seed dispersal by animals. Interactions between seed dispersers and vegetation structure described here are essential for understanding ecosystem functions in tropical rainforests and critical for predicting how rainforests respond to anthropogenic impacts.
Collapse
Affiliation(s)
- Nicholas J Russo
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Docas L Nshom
- Department of Forestry and Wildlife Technology, College of Technology, University of Bamenda, Bambili, Cameroon
| | - António Ferraz
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, University of California, Los Angeles, California, USA
| | - Nicolas Barbier
- AMAP, Université de Montpellier, IRD, CNRS, INRAE, CIRAD, Montpellier, France
| | - Martin Wikelski
- Department of Migration and Immuno-Ecology, Max Planck Institute of Animal Behaviour, Radolfzell, Germany
- Department of Biology, University of Konstanz, Constance, Germany
| | - Michael J Noonan
- Department of Biology, The University of British Columbia Okanagan, Kelowna, British Columbia, Canada
- Okanagan Institute for Biodiversity, Resilience and Ecosystem Services, The University of British Columbia Okanagan, Kelowna, British Columbia, Canada
- Department of Computer Science, Math, Physics and Statistics, The University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Elsa M Ordway
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA
| | - Sassan Saatchi
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, University of California, Los Angeles, California, USA
| | - Thomas B Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA
| |
Collapse
|
7
|
Wagnon CJ, Bestelmeyer BT, Schooley RL. Dryland state transitions alter trophic interactions in a predator-prey system. J Anim Ecol 2024. [PMID: 39415421 DOI: 10.1111/1365-2656.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/30/2024] [Indexed: 10/18/2024]
Abstract
Environmental change is expected to alter trophic interactions and food web dynamics with consequences for ecosystem structure, function and stability. However, the mechanisms by which environmental change influences top-down and bottom-up processes are poorly documented. Here, we examined how environmental change caused by shrub encroachment affects trophic interactions in a dryland. The predator-prey system included an apex canid predator (coyote; Canis latrans), an intermediate canid predator (kit fox; Vulpes macrotis), and two herbivorous lagomorph prey (black-tailed jackrabbit, Lepus californicus; and desert cottontail, Sylvilagus audubonii) in the Chihuahuan Desert of New Mexico, USA. We evaluated alternative hypotheses for how shrub encroachment could affect habitat use and trophic interactions, including (i) modifying bottom-up processes by reducing herbaceous forage, (ii) modifying top-down processes by changing canid space use or the landscape of fear experienced by lagomorph prey and (iii) altering intraguild interactions between the dominant coyote and the intermediate kit fox. We used 7 years of camera trap data collected across grassland-to-shrubland gradients under variable precipitation to test our a priori hypotheses within a structural equation modelling framework. Lagomorph prey responded strongly to bottom-up pulses during years of high summer precipitation, but only at sites with moderate to high shrub cover. This outcome is inconsistent with the hypothesis that bottom-up effects should be strongest in grasslands because of greater herbaceous food resources. Instead, this interaction likely reflects changes in the landscape of fear because perceived predation risk in lagomorphs is reduced in shrub-dominated habitats. Shrub encroachment did not directly affect predation pressure on lagomorphs by changing canid site use intensity. However, site use intensity of both canid species was positively associated with jackrabbits, indicating additional bottom-up effects. Finally, we detected interactions between predators in which coyotes restricted space use of kit foxes, but these intraguild interactions also depended on shrub encroachment. Our findings demonstrate how environmental change can affect trophic interactions beyond traditional top-down and bottom-up processes by altering perceived predation risk in prey. These results have implications for understanding spatial patterns of herbivory and the feedbacks that reinforce shrubland states in drylands worldwide.
Collapse
Affiliation(s)
- Casey J Wagnon
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois, USA
| | - Brandon T Bestelmeyer
- USDA-ARS-Jornada Experimental Range, New Mexico State University, Las Cruces, New Mexico, USA
| | - Robert L Schooley
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
8
|
Wooster EIF, Middleton OS, Wallach AD, Ramp D, Sanisidro O, Harris VK, Rowan J, Schowanek SD, Gordon CE, Svenning JC, Davis M, Scharlemann JPW, Nimmo DG, Lundgren EJ, Sandom CJ. Australia's recently established predators restore complexity to food webs simplified by extinction. Curr Biol 2024:S0960-9822(24)01290-9. [PMID: 39389058 DOI: 10.1016/j.cub.2024.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/23/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Since prehistory, humans have altered the composition of ecosystems by causing extinctions and introducing species. However, our understanding of how waves of species extinctions and introductions influence the structure and function of ecological networks through time remains piecemeal. Here, focusing on Australia, which has experienced many extinctions and introductions since the Late Pleistocene, we compared the functional trait composition of Late Pleistocene (130,00-115,000 years before present [ybp]), Holocene (11,700-3,000 ybp), and current Australian mammalian predator assemblages (≥70% vertebrate meat consumption; ≥1 kg adult body mass). We then constructed food webs for each period based on estimated prey body mass preferences. We found that introduced predators are functionally distinct from extinct Australian predators, but they rewire food webs toward a state that closely resembles the Late Pleistocene, prior to the megafauna extinctions. Both Late Pleistocene and current-day food webs consist of an apex predator and three smaller predators. This leads to food web networks with a similar total number of links, link densities, and compartmentalizations. However, this similarity depends on the presence of dingoes: in their absence, food webs become simplified and reminiscent of those following the Late Pleistocene extinctions. Our results suggest that recently established predators, even those implicated in species extinctions and declines, can restore complexity to food webs simplified by extinction.
Collapse
Affiliation(s)
- Eamonn I F Wooster
- Gulbali Institute, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Albury, NSW 2640, Australia.
| | - Owen S Middleton
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Arian D Wallach
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Daniel Ramp
- Centre for Compassionate Conservation, TD School, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Oscar Sanisidro
- Universidad de Alcalá, GloCEE-Global Change Ecology and Evolution Research Group, Department of Life Sciences, 28805 Alcalá de Henares, Madrid, Spain
| | - Valerie K Harris
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - John Rowan
- Department of Archaeology, University of Cambridge, Cambridge CB2 1QJ, UK
| | - Simon D Schowanek
- Center for Ecological Dynamis in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Chris E Gordon
- Center for Ecological Dynamis in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, 8000 Aarhus C, Denmark; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Jens-Christian Svenning
- Center for Ecological Dynamis in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Matt Davis
- Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| | - Jörn P W Scharlemann
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK; Sussex Sustainability Research Programme, University of Sussex, Brighton BN1 9QQ, UK
| | - Dale G Nimmo
- Gulbali Institute, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Albury, NSW 2640, Australia
| | - Erick J Lundgren
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia; Center for Ecological Dynamis in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Christopher J Sandom
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK; Sussex Sustainability Research Programme, University of Sussex, Brighton BN1 9QQ, UK
| |
Collapse
|
9
|
MacLeod CD, Luong LT. Navigating the landscape of fear: Fruit flies exhibit distinct antipredator and antiparasite defensive behaviors. Ecology 2024; 105:e4397. [PMID: 39223438 DOI: 10.1002/ecy.4397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/19/2024] [Accepted: 05/24/2024] [Indexed: 09/04/2024]
Abstract
Most organisms are at risk of being consumed by a predator or getting infected by a parasite at some point in their life. Theoretical constructs such as the landscape of fear (perception of risk) and nonconsumptive effects (NCEs, costly responses sans predation or infection) have been proposed to describe and quantify antipredator and antiparasite responses. How prey/host species identify and respond to these risks determines their survival, reproductive success and, ultimately, fitness. Most studies to date have focused on either predator-prey or parasite-host interactions, yet habitats and ecosystems contain both parasitic and/or predatory species that represent a complex and heterogenous mosaic of risk factors. Here, we experimentally investigated the behavioral responses of a cactophilic fruit fly, Drosophila nigrospiracula, exposed to a range of species that include parasites (ectoparasitic mite), predators (jumping spiders), as well as harmless heterospecifics (nonparasitic mites, ants, and weevils). We demonstrate that D. nigrospiracula can differentiate between threat and non-threat species, increase erratic movements and decrease velocity in the presence of parasites, but decrease erratic movements and time spent grooming in the presence of predators. Of particular importance, flies could distinguish between parasitic female mites and nonparasitic male mites of the same species, and respond accordingly. We also show that the direction of these NCEs differs when exposed to parasitic mites (i.e., risk of infection) versus spiders (i.e., risk of predation). Given the opposing effects of predation versus infection risk on fly behavior, we discuss potential trade-offs between parasite and predator avoidance behaviors. Our findings illustrate the complexity of risk assessment in a landscape of fear and the fine-tuned NCEs that arise in response. Moreover, this study is the first to examine these behavioral NCEs in a terrestrial system.
Collapse
Affiliation(s)
- Colin D MacLeod
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Lien T Luong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Painter KJ, Giunta V, Potts JR, Bernardi S. Variations in non-local interaction range lead to emergent chase-and-run in heterogeneous populations. J R Soc Interface 2024; 21:20240409. [PMID: 39474790 PMCID: PMC11522976 DOI: 10.1098/rsif.2024.0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 11/02/2024] Open
Abstract
In a chase-and-run dynamic, the interaction between two individuals is such that one moves towards the other (the chaser), while the other moves away (the runner). Examples can be found in both interacting cells and animals. Here, we investigate the behaviours that can emerge at a population level, for a heterogeneous group that contains subpopulations of chasers and runners. We show that a wide variety of patterns can form, from stationary patterns to oscillatory and population-level chase-and-run, where the latter describes a synchronized collective movement of the two populations. We investigate the conditions under which different behaviours arise, specifically focusing on the interaction ranges: the distances over which cells or organisms can sense one another's presence. We find that when the interaction range of the chaser is sufficiently larger than that of the runner-or when the interaction range of the chase is sufficiently larger than that of the run-population-level chase-and-run emerges in a robust manner. We discuss the results in the context of phenomena observed in cellular and ecological systems, with particular attention to the dynamics observed experimentally within populations of neural crest and placode cells.
Collapse
Affiliation(s)
- Kevin J. Painter
- Dipartimento Interateneo di Scienze, Progetto e Politiche del Territorio (DIST), Politecnico di Torino, Viale Pier Andrea Mattioli 39, Turin10125, Italy
| | - Valeria Giunta
- Department of Mathematics, Swansea University, Computational Foundry, Bay Campus, SwanseaSA1 8EN, UK
| | - Jonathan R. Potts
- School of Mathematical and Physical Sciences, University of Sheffield, Hounsfield Road, SheffieldS3 7RH, UK
| | - Sara Bernardi
- Department of Mathematical Sciences ‘G. L. Lagrange’, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino10129, Italy
| |
Collapse
|
11
|
Hollings J, Kagan D, Batabyal A, Lukowiak K. How to reduce fear in a snail: Take an aspirin, call me in the morning. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109978. [PMID: 39094989 DOI: 10.1016/j.cbpc.2024.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 07/14/2024] [Indexed: 08/04/2024]
Abstract
Aspirin (Acetylsalicylic acid, ASA), one of the widely used non-steroid anti-inflammatory drugs can easily end up in sewage effluents and thus it becomes necessary to investigate the effects of aspirin on behaviour of aquatic organisms. Previous studies in mammals have shown ASA to alter fear and anxiety-like behaviours. In the great pond snail Lymnaea stagnalis, ASA has been shown to block a 'sickness state' induced by lipopolysaccharide injection which upregulates immune and stress-related genes thus altering behavioural responses. In Lymnaea, eliciting physiological stress may enhance memory formation or block its retrieval depending on the stimulus type and intensity. Here we examine whether ASA will alter two forms of associative-learning memory in crayfish predator-experienced Lymnaea when ASA exposure accompanies predator-cue-induced stress during the learning procedure. The two trainings procedures are: 1) operant conditioning of aerial respiration; and 2) a higher form of learning, called configural learning, which here is dependent on evoking a fear response. We show here that ASA alone does not alter homeostatic aerial respiration, feeding behaviour or long-term memory (LTM) formation of operantly conditioned aerial respiration. However, ASA blocked the enhancement of LTM formation normally elicited by training snails in predator cue. ASA also blocked configural learning, which makes use of the fear response elicited by the predator cue. Thus, ASA alters how Lymnaea responds cognitively to predator detection.
Collapse
Affiliation(s)
- Jasper Hollings
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Diana Kagan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Department of Physical and Natural Sciences, FLAME University, Pune, India
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
12
|
Slovikosky SA, Montgomery RA. Large mammal behavioral defenses induced by the cues of human predation. PNAS NEXUS 2024; 3:pgae382. [PMID: 39282006 PMCID: PMC11398908 DOI: 10.1093/pnasnexus/pgae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Large mammals respond to human hunting via proactive and reactive responses, which can induce subsequent nonconsumptive effects (NCEs). Thus, there is evidence that large mammals exhibit considerable behavioral plasticity in response to human hunting risk. Currently, however, it is unclear which cues of human hunting large mammals may be responding to. We conducted a literature review to quantify the large mammal behavioral responses induced by the cues of human hunting. We detected 106 studies published between 1978 and 2022 of which 34 (32%) included at least one measure of cue, typically visual (n = 26 of 106, 25%) or auditory (n = 11 of 106, 10%). Space use (n = 37 of 106, 35%) and flight (n = 31 of 106, 29%) were the most common behavioral responses studied. Among the 34 studies that assessed at least one cue, six (18%) measured large mammal behavioral responses in relation to proxies of human hunting (e.g. hunting site or season). Only 14% (n = 15 of 106) of the studies quantified an NCE associated with an animal's response to human hunting. Moreover, the association between cues measured and antipredator behaviors is unclear due to a consistent lack of controls. Thus, while human hunting can shape animal populations via consumptive effects, the cues triggering these responses are poorly understood. There hence remains a need to link cues, responses, NCEs, and the dynamics of large mammal populations. Human activities can then be adjusted accordingly to prevent both overexploitation and unintended NCEs in animal populations.
Collapse
Affiliation(s)
- Sandy A Slovikosky
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, United Kingdom
| | - Robert A Montgomery
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, United Kingdom
| |
Collapse
|
13
|
Rezvani A, Lorestani N, Nematollahi S, Hemami MR, Ahmadi M. Should I stay or move? Quantifying landscape of fear to enhance environmental management of road networks in a highly transformed landscape. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122192. [PMID: 39142105 DOI: 10.1016/j.jenvman.2024.122192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
The development and expansion of road networks pose considerable threats to natural habitats and wildlife, fostering a landscape of fear. In addition to direct mortality caused by road collisions, road construction and maintenance often result in habitat fragmentation and loss, impeding animal movement and gene flow between populations. Mountain ungulates are already confined to fragmented habitat patches and roads can cause substantial disturbances to their critical ecological processes, such as dispersal and migration. In this study, we employed two key mountain ungulates, the wild goat (Capra aegagrus) and mouflon (Ovis gmelini), as functional models to examine how road networks impact the quantity and connectivity of natural habitats in southwestern Iran, where extensive road construction has led to significant landscape changes. We used the MaxEnt method to predict species distribution, the circuit theory to evaluate habitat connectivity, and the Spatial Road Disturbance Index (SPROADI) to assess road impacts. During the modeling process, we selected eleven important variables and employed a model parametrization strategy to identify the optimal configuration for the MaxEnt model. For SPROADI index we used three sub-indices, including traffic intensity, vicinity impact, and fragmentation grade. We then integrated the results of these analyses to identify areas with the most significant environmental impacts of roads on the coherency of the natural habitats. The findings indicate that suitable habitats for wild goats are widely distributed across the study area, while suitable habitats for mouflon are primarily concentrated in the northeastern region. Conservation gap analysis revealed that only 8% of wild goat habitats and 7% of mouflon habitats are covered by protected areas (PAs). The SPROADI map highlighted that 23% of the study area is negatively influenced by road networks. Moreover, 30.4% of highest-probability corridors for mouflon, and 25.7% for wild goat, were highly vulnerable to the impacts of roads. Our combined approach enabled us to quantitatively assess species-specific vulnerability to the impacts of heavy road networks. This study emphasizes the urgent need to address the negative effects of road networks on wildlife habitats and connectivity corridors. Our approach effectively identifies sensitive areas, which can help inform mitigation strategies and support more effective conservation planning in significantly transformed landscapes.
Collapse
Affiliation(s)
- Azita Rezvani
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Niloufar Lorestani
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Shekoufeh Nematollahi
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mahmoud-Reza Hemami
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohsen Ahmadi
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
14
|
Kuntze CC, Peery MZ, Pauli JN. Asymmetrical predation intensity produces divergent antipredator behaviours in primary and secondary prey. J Anim Ecol 2024. [PMID: 39205404 DOI: 10.1111/1365-2656.14166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/13/2024] [Indexed: 09/04/2024]
Abstract
It is widely recognized that predators can influence prey through both direct consumption and by inducing costly antipredator behaviours, the latter of which can produce nonconsumptive effects that cascade through trophic systems. Yet, determining how particular prey manage risk in natural settings remains challenging as empirical studies disproportionately focus on single predator-prey dyads. Here, we contrast foraging strategies within the context of a primary and secondary prey to explore how antipredator behaviours emerge as a product of predation intensity as well as the setting in which an encounter takes place. We studied the effects of spotted owls (Strix occidentalis) on two species experiencing asymmetrical risk: dusky-footed woodrats (Neotoma fuscipes; primary prey) and deer mice (Peromyscus spp.; alternative prey). Woodrats are most abundant within young forests, but predominantly captured by owls foraging within mature forests; in contrast, deer mice occur in high densities across forest types and seral stages and are consumed at lower per-capita rates overall. We deployed experimental foraging patches within areas of high and low spotted owl activity, created artificial risky and safe refuge treatments, and monitored behaviour throughout the entirety of prey foraging bouts. Woodrats were more vigilant and foraged less within mature forests and at riskier patches, although the effect of refuge treatment was contingent upon forest type. In contrast, deer mice only demonstrated consistent behavioural responses to riskier refuge treatments; forest type had little effect on perceived risk or the relative importance of refuge treatment. Thus, habitat can interact with predator activity to structure antipredator responses differently for primary versus secondary prey. Our findings show that asymmetrical predation can modulate both the magnitude of perceived risk and the strategies used to manage it, thus highlighting an important and understudied contingency in risk effects research. Evaluating the direct and indirect effects of predation through the paradigm of primary and secondary prey may improve our understanding of how nonconsumptive effects can extend to population- and community-level responses.
Collapse
Affiliation(s)
- Corbin C Kuntze
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Wisconsin, USA
| | - M Zachariah Peery
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jonathan N Pauli
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
15
|
Olejarz A, Augustsson E, Kjellander P, Ježek M, Podgórski T. Experience shapes wild boar spatial response to drive hunts. Sci Rep 2024; 14:19930. [PMID: 39198665 PMCID: PMC11358132 DOI: 10.1038/s41598-024-71098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024] Open
Abstract
Human-induced disturbances of the environment are rapid and often unpredictable in space and time, exposing wildlife to strong selection pressure favouring plasticity in specific traits. Measuring wildlife behavioural plasticity in response to human-induced disturbances such as hunting pressures is crucial in understanding population expansion in the highly plastic wild boar species. We collected GPS-based movement data from 55 wild boars during drive hunts over three hunting seasons (2019-2022) in the Czech Republic and Sweden to identify behavioural plasticity in space use and movement strategies over a range of experienced hunting disturbances. Daily distance, daily range, and daily range overlap with hunting area were not affected by hunting intensity but were clearly related to wild boar hunting experience. On average, the post-hunt flight distance was 1.80 km, and the flight duration lasted 25.8 h until they returned to their previous ranging area. We detected no relationship in flight behaviour to hunting intensity or wild boar experience. Wild boar monitored in our study showed two behavioural responses to drive hunts, "remain" or "leave". Wild boars tended to "leave" more often with increasing hunting experience. Overall, this study highlights the behavioural plasticity of wild boar in response to drive hunts.
Collapse
Affiliation(s)
- Astrid Olejarz
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Prague 6-Suchdol, 165 00, Czech Republic.
| | - Evelina Augustsson
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 73993, Riddarhyttan, Sweden
| | - Petter Kjellander
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 73993, Riddarhyttan, Sweden
| | - Miloš Ježek
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Prague 6-Suchdol, 165 00, Czech Republic
| | - Tomasz Podgórski
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Prague 6-Suchdol, 165 00, Czech Republic
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, 17-230, Białowieża, Poland
| |
Collapse
|
16
|
Bransford TD, Harris SA, Forys EA. Seasonal Variation in Mammalian Mesopredator Spatiotemporal Overlap on a Barrier Island Complex. Animals (Basel) 2024; 14:2431. [PMID: 39199963 PMCID: PMC11350757 DOI: 10.3390/ani14162431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Due to lack of apex predators in human-dominated landscapes, mesopredator relationships are complex and spatiotemporal niche partitioning strategies can vary, especially when seasonal shifts in resource availability occur. Our objective was to understand spatiotemporal niche overlap across seasons among mesopredators inhabiting a barrier island complex. We placed 19 unbaited cameras throughout Fort De Soto County Park, Florida, USA between February 2021 and July 2023. Of six mesopredator species detected, three species had >75 detections during both the wet and dry seasons (coyote, Canis latrans; Virginia opossum, Didelphis virginiana; and raccoon, Procyon lotor). Using general linear mixed models, we determined that during the wet season coyote-raccoon and raccoon-opossum detections were positively associated with each other (p < 0.05). During the dry season, raccoon-opossum detections were positively associated, and opossums were more likely to be detected around mangroves. After calculating coefficients of overlap, we found all three species varied their temporal activity between seasons. During the dry season exclusively, all three mesopredators occupied different temporal niches. The park's isolated but developed nature has potentially led to a destabilized mesopredator community. Understanding seasonal mesopredator dynamics of Fort De Soto is particularly important because this park supports a high number of nesting shorebirds and sea turtles, which are known food sources for mesopredators.
Collapse
Affiliation(s)
| | - Spencer A. Harris
- Animal Studies Discipline, Eckerd College, St. Petersburg, FL 33711, USA
- Economics Discipline, Eckerd College, St. Petersburg, FL 33711, USA
- Environmental Studies Discipline, Eckerd College, St. Petersburg, FL 33711, USA
| | - Elizabeth A. Forys
- Environmental Studies Discipline, Eckerd College, St. Petersburg, FL 33711, USA
- Biology Discipline, Eckerd College, St. Petersburg, FL 33711, USA
| |
Collapse
|
17
|
Thapa SK, de Jong JF, Hof AR, Subedi N, Liefting Y, Prins HHT. Integration of the landscape of fear concept in grassland management: An experimental study on subtropical monsoon grasslands in Bardia National Park, Nepal. Ecol Evol 2024; 14:e70098. [PMID: 39100204 PMCID: PMC11294578 DOI: 10.1002/ece3.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024] Open
Abstract
The 'landscape of fear' concept offers valuable insights into wildlife behaviour, yet its practical integration into habitat management for conservation remains underexplored. In this study, conducted in the subtropical monsoon grasslands of Bardia National Park, Nepal, we aimed to bridge this gap through a multi-year, landscape-scale experimental investigation in Bardia National Park, Nepal. The park has the highest density of tigers (with an estimated density of ~7 individuals per 100 km2) in Nepal, allowing us to understand the effect of habitat management on predation risk and resource availability especially for three cervid species: chital (Axis axis), swamp deer (Rucervus duvaucelii) and hog deer (Axis porcinus). We used plots with varying mowing frequency (0-4 times per year), size (ranging from small: 49 m2 to large: 3600 m2) and artificial fertilisation type (none, phosphorus, nitrogen) to assess the trade-offs between probable predation risk and resources for these cervid species, which constitute primary prey for tigers in Nepal. Our results showed distinct responses of these deer to perceived predation risk within grassland habitats. Notably, these deer exhibited heightened use of larger plots, indicative of a perceived sense of safety, as evidenced by the higher occurrence of pellet groups in the larger plots (mean = 0.1 pellet groups m-2 in 3600 m2 plots vs. 0.07 in 400 m2 and 0.05 in 49 m2 plots). Furthermore, the level of use by the deer was significantly higher in larger plots that received mowing and fertilisation treatments compared to smaller plots subjected to similar treatments. Of particular interest is the observation that chital and swamp deer exhibited greater utilisation of the centre (core) areas within the larger plots (mean = 0.21 pellet groups m-2 at the centre vs. 0.13 at the edge) despite the edge (periphery) also provided attractive resources to these deer. In contrast, hog deer did not display any discernible reaction to the experimental treatments, suggesting potential species-specific variations in response to perceived predation risk arising from management interventions. Our findings emphasise the importance of a sense of security as a primary determinant of habitat selection for medium-sized deer within managed grassland environments. These insights carry practical implications for park managers, providing a nuanced understanding of integrating the 'landscape of fear' into habitat management strategies. This study emphasises that the 'landscape of fear' concept can and should be integrated into habitat management to maintain delicate predator-prey dynamics within ecosystems.
Collapse
Affiliation(s)
- Shyam Kumar Thapa
- National Trust for Nature ConservationLalitpurNepal
- Zoological Society of London, Nepal OfficeKathmanduNepal
| | - Joost F. de Jong
- Wildlife Ecology and Conservation GroupWageningen University and ResearchWageningenThe Netherlands
| | - Anouschka R. Hof
- Wildlife Ecology and Conservation GroupWageningen University and ResearchWageningenThe Netherlands
| | | | - Yorick Liefting
- Wildlife Ecology and Conservation GroupWageningen University and ResearchWageningenThe Netherlands
| | | |
Collapse
|
18
|
Kondor D, Bennett JS, Gronenborn D, Turchin P. Landscape of fear: indirect effects of conflict can account for large-scale population declines in non-state societies. J R Soc Interface 2024; 21:20240210. [PMID: 39192728 DOI: 10.1098/rsif.2024.0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 07/11/2024] [Indexed: 08/29/2024] Open
Abstract
The impact of inter-group conflict on population dynamics has long been debated, especially for prehistoric and non-state societies. In this work, we consider that beyond direct battle casualties, conflicts can also create a 'landscape of fear' in which many non-combatants near theatres of conflict abandon their homes and migrate away. This process causes population decline in the abandoned regions and increased stress on local resources in better-protected areas that are targeted by refugees. By applying analytical and computational modelling, we demonstrate that these indirect effects of conflict are sufficient to produce substantial, long-term population boom-and-bust patterns in non-state societies, such as the case of Mid-Holocene Europe. We also demonstrate that greater availability of defensible locations act to protect and maintain the supply of combatants, increasing the permanence of the landscape of fear and the likelihood of endemic warfare.
Collapse
Affiliation(s)
| | - James S Bennett
- Complexity Science Hub , Vienna, Austria
- University of Washington , Seattle, WA, USA
| | | | | |
Collapse
|
19
|
Calhoun KL, Connor T, Gaynor KM, Van Scoyoc A, McInturff A, Kreling SES, Brashares JS. Movement behavior in a dominant ungulate underlies successful adjustment to a rapidly changing landscape following megafire. MOVEMENT ECOLOGY 2024; 12:53. [PMID: 39085926 PMCID: PMC11293098 DOI: 10.1186/s40462-024-00488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/23/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Movement plays a key role in allowing animal species to adapt to sudden environmental shifts. Anthropogenic climate and land use change have accelerated the frequency of some of these extreme disturbances, including megafire. These megafires dramatically alter ecosystems and challenge the capacity of several species to adjust to a rapidly changing landscape. Ungulates and their movement behaviors play a central role in the ecosystem functions of fire-prone ecosystems around the world. Previous work has shown behavioral plasticity is an important mechanism underlying whether large ungulates are able to adjust to recent changes in their environments effectively. Ungulates may respond to the immediate effects of megafire by adjusting their movement and behavior, but how these responses persist or change over time following disturbance is poorly understood. METHODS We examined how an ecologically dominant ungulate with strong site fidelity, Columbian black-tailed deer (Odocoileus hemionus columbianus), adjusted its movement and behavior in response to an altered landscape following a megafire. To do so, we collected GPS data from 21 individual female deer over the course of a year to compare changes in home range size over time and used resource selection functions (RSFs) and hidden Markov movement models (HMMs) to assess changes in behavior and habitat selection. RESULTS We found compelling evidence of adaptive capacity across individual deer in response to megafire. Deer avoided exposed and severely burned areas that lack forage and could be riskier for predation immediately following megafire, but they later altered these behaviors to select areas that burned at higher severities, potentially to take advantage of enhanced forage. CONCLUSIONS These results suggest that despite their high site fidelity, deer can navigate altered landscapes to track rapid shifts in encounter risk with predators and resource availability. This successful adjustment of movement and behavior following extreme disturbance could help facilitate resilience at broader ecological scales.
Collapse
Affiliation(s)
- Kendall L Calhoun
- Department of Environmental, Science, Policy, and Management, University of California Berkeley, 137 Mulford #3114, Berkeley, CA, 94720, USA.
- , 210 Wellman Hall, Berkeley, CA, 94720, USA.
| | - Thomas Connor
- Department of Environmental, Science, Policy, and Management, University of California Berkeley, 137 Mulford #3114, Berkeley, CA, 94720, USA
| | - Kaitlyn M Gaynor
- Departments of Zoology & Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Amy Van Scoyoc
- Department of Environmental, Science, Policy, and Management, University of California Berkeley, 137 Mulford #3114, Berkeley, CA, 94720, USA
| | - Alex McInturff
- Washington Cooperative Fish and Wildlife Research Unit, School of Environmental and Forest Sciences, U.S. Geological Survey, University of Washington, Seattle, WA, USA
| | - Samantha E S Kreling
- School of Environmental and Forest Sciences, University of Washington, University of Washington, Anderson Hall, Box 352100, Seattle, WA, 98195, USA
| | - Justin S Brashares
- Department of Environmental, Science, Policy, and Management, University of California Berkeley, 137 Mulford #3114, Berkeley, CA, 94720, USA
| |
Collapse
|
20
|
Li X, Bleisch WV, Hu W, Li Q, Wang H, Chen Z, Bai R, Jiang XL. Human disturbance increases spatiotemporal associations among mountain forest terrestrial mammal species. eLife 2024; 12:RP92457. [PMID: 38949865 PMCID: PMC11216745 DOI: 10.7554/elife.92457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Spatial and temporal associations between sympatric species underpin biotic interactions, structure ecological assemblages, and sustain ecosystem functioning and stability. However, the resilience of interspecific spatiotemporal associations to human activity remains poorly understood, particularly in mountain forests where anthropogenic impacts are often pervasive. Here, we applied context-dependent Joint Species Distribution Models to a systematic camera-trap survey dataset from a global biodiversity hotspot in eastern Himalayas to understand how prominent human activities in mountain forests influence species associations within terrestrial mammal communities. We obtained 10,388 independent detections of 17 focal species (12 carnivores and five ungulates) from 322 stations over 43,163 camera days of effort. We identified a higher incidence of positive associations in habitats with higher levels of human modification (87%) and human presence (83%) compared to those located in habitats with lower human modification (64%) and human presence (65%) levels. We also detected a significant reduction of pairwise encounter time at increasing levels of human disturbance, corresponding to more frequent encounters between pairs of species. Our findings indicate that human activities can push mammals together into more frequent encounters and associations, which likely influences the coexistence and persistence of wildlife, with potential far-ranging ecological consequences.
Collapse
Affiliation(s)
- Xueyou Li
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - William V Bleisch
- China Exploration and Research Society, 2707-08 SouthMark, Wong Chuk HangHong KongChina
| | - Wenqiang Hu
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Quan Li
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Hongjiao Wang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Zhongzheng Chen
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal UniversityWuhuChina
| | - Ru Bai
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Xue-Long Jiang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| |
Collapse
|
21
|
Patten MA, Burger JC. Hyperbolic discounting underpins response curves of mammalian avoidance behaviour. Biol Lett 2024; 20:20240054. [PMID: 39046286 PMCID: PMC11268154 DOI: 10.1098/rsbl.2024.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/29/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
As humans clear natural habitat, they are brought into increased conflict with wild animals. Some conflict is direct (e.g. elevated exposure of people to predators), some indirect (e.g. abandoning suitable habitat because of human activity). The magnitude of avoidance is expected to track frequency of human activity, but the type of response is an open question. We postulated that animals do not respond passively to increased disturbance nor does response follow a power law; instead, their ability to estimate magnitude leads to 'discounting' behaviour, as in classic time-to-reward economic models in which individuals discount larger value (or risk) in more distant time. We used a 10-year camera dataset from southern California to characterize response curves of seven mammal species. Bayesian regressions of two non-discounting models (exponential and inverse polynomial) and two discounting models (hyperbolic and harmonic) revealed that the latter better fit response curves. The Arps equation, from petroleum extraction modelling, was used to estimate a discount exponent, a taxon-specific 'sensitivity' to humans, yielding a general model across species. Although discounting can mean mammal activity recovers rapidly after disturbance, increased recreational pressure on reserves limits recovery potential, highlighting a need to strike a balance between animal conservation and human use.
Collapse
Affiliation(s)
- Michael A. Patten
- Faculty of Biosciences and Aquaculture, Ecology Research Group, Nord University, Steinkjer, Trøndelag, Norway
| | | |
Collapse
|
22
|
Takada H, Nakamura K. Effects of Human Harvesting, Residences, and Forage Abundance on Deer Spatial Distribution. Animals (Basel) 2024; 14:1924. [PMID: 38998036 PMCID: PMC11240362 DOI: 10.3390/ani14131924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 05/31/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
It has been known that harvesting by humans strongly influences individual within-home range habitat selection of many deer species; however, little is known about the effect of harvesting on coarse-scale habitat selection (i.e., spatial distribution). We examined the summer spatial distribution of sika deer Cervus nippon in relation to human harvesting and other factors, such as human residences, forage abundance, and cover, using pellet group counts at Mount Fuji, central Japan, in 2018. In the study area, harvesting is conducted at medium elevation areas throughout the year, but not at high or low elevation areas where access is difficult or harvesting is prohibited. Spatial distribution of deer was significantly biased to non-harvesting areas and far from residential areas, suggesting that they avoid riskier spaces by establishing a landscape of fear. High-quality food resources (deciduous broad-leaved trees and forbs) were more abundant in harvesting areas than in non-harvesting areas, suggesting that foraging pressure by deer reduce them. However, there were no differences in abundances of more fibrous dwarf bamboo between harvesting and non-harvesting areas, and spatial distribution of deer was significantly biased to higher dwarf bamboo abundance areas, suggesting that the dwarf bamboo is an alternative food resource in non-harvesting areas where supplies of high-quality food were limited. Our results suggest that human harvesting pressure and residences shifted the spatial distribution of deer from the montane forests to subalpine/alpine zones, which may increase damage to vulnerable ecosystems due to severe foraging pressure.
Collapse
Affiliation(s)
- Hayato Takada
- Mount Fuji Research Institute, Yamanashi Prefecture Government, 5597-1 Kenmarubi, Kamiyoshida, Fujiyoshida 403-0005, Yamanashi, Japan
- Wildlife Management Center, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu 183-8509, Tokyo, Japan
| | - Keita Nakamura
- Mount Fuji Research Institute, Yamanashi Prefecture Government, 5597-1 Kenmarubi, Kamiyoshida, Fujiyoshida 403-0005, Yamanashi, Japan
| |
Collapse
|
23
|
Nautiyal H, Mathur V, Gajare KH, Teichroeb J, Sarkar D, Diogo R. Predatory Dogs as Drivers of Social Behavior Changes in the Central Himalayan Langur ( Semnopithecus schistaceus) in Agro-Forest Landscapes. BIOLOGY 2024; 13:410. [PMID: 38927290 PMCID: PMC11200765 DOI: 10.3390/biology13060410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Globally, habitat fragmentation has increased the proximity between wildlife, humans, and emerging predators such as free-ranging dogs. In these fragmented landscapes, encounters between primates and dogs are escalating, with primates often falling victim to dog attacks while navigating patchy landscapes and fragmented forests. We aim to investigate how these primates deal with the simultaneous threats posed by humans and predators, specifically focusing on the adaptive strategies of Central Himalayan langur (CHL) in the landscape of fear. To address this, we conducted a behavioral study on the CHL in an agro-forest landscape, studying them for a total of 3912 h over two consecutive years. Our results indicate that, compared to their most common resting behavior, CHLs allocate more time to feeding and locomotion, and less time to socializing in the presence of humans and predatory dogs. Additionally, they exhibit increased feeding and locomotion and reduced social behavior in agro-forest or open habitats. These behavioral patterns reflect adaptive responses to the landscape of fear, where the presence of predators significantly influences their behavior and resource utilization. This study suggests measures to promote coexistence between humans and wildlife through the integration of effective management strategies that incorporate both ecological and social dimensions of human-wildlife interactions.
Collapse
Affiliation(s)
- Himani Nautiyal
- College of Medicine, Howard University, 520 W St, NW, Washington, DC 20059, USA;
| | - Virendra Mathur
- Department of Anthropology, University of Toronto, Scarborough 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (V.M.); (J.T.)
| | - Kimaya Hemant Gajare
- Bharatiya Vidya Bhavan’s, Bhavan’s College, University of Mumbai, Andheri (w), Mumbai 400 058, India;
| | - Julie Teichroeb
- Department of Anthropology, University of Toronto, Scarborough 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (V.M.); (J.T.)
| | - Dipto Sarkar
- Department of Geography and Environmental Studies, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada;
| | - Rui Diogo
- College of Medicine, Howard University, 520 W St, NW, Washington, DC 20059, USA;
| |
Collapse
|
24
|
van der Kolk HJ, Smit CJ, Allen AM, Ens BJ, van de Pol M. Frequency-dependent tolerance to aircraft disturbance drastically alters predicted impact on shorebirds. Ecol Lett 2024; 27:e14452. [PMID: 38857324 DOI: 10.1111/ele.14452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
Anthropogenic disturbance of wildlife is increasing globally. Generalizing impacts of disturbance to novel situations is challenging, as the tolerance of animals to human activities varies with disturbance frequency (e.g. due to habituation). Few studies have quantified frequency-dependent tolerance, let alone determined how it affects predictions of disturbance impacts when these are extrapolated over large areas. In a comparative study across a gradient of air traffic intensities, we show that birds nearly always fled (80%) if aircraft were rare, while birds rarely responded (7%) if traffic was frequent. When extrapolating site-specific responses to an entire region, accounting for frequency-dependent tolerance dramatically alters the predicted costs of disturbance: the disturbance map homogenizes with fewer hotspots. Quantifying frequency-dependent tolerance has proven challenging, but we propose that (i) ignoring it causes extrapolations of disturbance impacts from single sites to be unreliable, and (ii) it can reconcile published idiosyncratic species- or source-specific disturbance responses.
Collapse
Affiliation(s)
- Henk-Jan van der Kolk
- Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
- Centre for Avian Population Studies (CAPS), Wageningen, Netherlands
| | - Cor J Smit
- Wageningen Marine Research, Den Helder, Netherlands
| | - Andrew M Allen
- Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
- Centre for Avian Population Studies (CAPS), Wageningen, Netherlands
- Department of Animal Husbandry, Van Hall Larenstein University of Applied Sciences, Velp, Netherlands
| | - Bruno J Ens
- Centre for Avian Population Studies (CAPS), Wageningen, Netherlands
- Sovon Dutch Centre for Field Ornithology, Den Burg, Netherlands
- The Royal Netherlands Institute of Sea Research (NIOZ), Texel, Netherlands
| | - Martijn van de Pol
- Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
- Centre for Avian Population Studies (CAPS), Wageningen, Netherlands
- College of Science and Engineering, James Cook University, Townsville, Australia
| |
Collapse
|
25
|
Brown L, Zedrosser A, Kindberg J, Pelletier F. Behavioural responses of brown bears to roads and hunting disturbance. Ecol Evol 2024; 14:e11532. [PMID: 38882533 PMCID: PMC11176727 DOI: 10.1002/ece3.11532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
Harvest regulations commonly attenuate the consequences of hunting on specific segments of a population. However, regulations may not protect individuals from non-lethal effects of hunting and their consequences remain poorly understood. In this study, we compared the movement rates of Scandinavian brown bears (Ursus arctos, n = 47) across spatiotemporal variations in risk in relation to the onset of bear hunting. We tested two alternative hypotheses based on whether behavioural responses to hunting involve hiding or escaping. If bears try to reduce risk exposure by avoiding being detected by hunters, we expect individuals from all demographic groups to reduce their movement rate during the hunting season. On the other hand, if bears avoid hunters by escaping, we expect them to increase their movement rate in order to leave high-risk areas faster. We found an increased movement rate in females accompanied by dependent offspring during the morning hours of the bear hunting season, a general decrease in movement rate in adult lone females, and no changes in males and subadult females. The increased movement rate that we observed in females with dependant offspring during the hunting season was likely an antipredator response because it only occurred in areas located closer to roads, whereas the decreased movement rate in lone females could be either part of seasonal activity patterns or be associated with an increased selection for better concealment. Our study suggests that female brown bears accompanied by offspring likely move faster in high-risk areas to minimize risk exposure as well as the costly trade-offs (i.e. time spent foraging vs. time spent hiding) typically associated with anti-predator tactics that involve changes in resource selection. Our study also highlights the importance of modelling fine-scale spatiotemporal variations in risk to adequately capture the complexity in behavioural responses caused by human activities in wildlife.
Collapse
Affiliation(s)
- Ludovick Brown
- Département de Biologie Université de Sherbrooke Sherbrooke Canada
| | - Andreas Zedrosser
- Department of Natural Sciences and Environmental Health University of South-Eastern Norway Bø in Telemark Norway
- Institute for Wildlife Biology and Game Management University for Natural Resources and Life Sciences Vienna Austria
| | - Jonas Kindberg
- Norwegian Institute for Nature Research Trondheim Norway
- Department of Wildlife, Fish and Environmental Studies Swedish University of Agricultural Sciences Umeå Sweden
| | - Fanie Pelletier
- Département de Biologie Université de Sherbrooke Sherbrooke Canada
| |
Collapse
|
26
|
Lazzaroni M, Brogi R, Napolitano V, Apollonio M, Range F, Marshall-Pescini S. Urbanization does not affect red foxes' interest in anthropogenic food, but increases their initial cautiousness. Curr Zool 2024; 70:394-405. [PMID: 39035755 PMCID: PMC11255992 DOI: 10.1093/cz/zoae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/25/2024] [Indexed: 07/23/2024] Open
Abstract
Human presence and activities have profoundly altered animals' habitats, exposing them to greater risks but also providing new opportunities and resources. The animals' capacity to effectively navigate and strike a balance between risks and benefits is crucial for their survival in the Anthropocene era. Red foxes (Vulpes vulpes), adept urban dwellers, exhibit behavioral plasticity in human-altered environments. We investigated variations in detection frequency on trail cameras and the behavioral responses (explorative, bold, and fearful) of wild red foxes living along an urbanization gradient when exposed to a metal bin initially presented clean and then filled with anthropogenic food. All fox populations displayed an increased interest and similar explorative behavioral responses toward the anthropogenic food source, irrespective of the urbanization gradient. Despite no impact on explorative behaviors, foxes in more urbanized areas initially showed heightened fear toward the empty bin, indicating increased apprehension toward novel objects. However, this fear diminished over time, and in the presence of food, urban foxes displayed slightly reduced fear compared with their less urban counterparts. Our results highlight foxes' potential for adaptability to human landscapes, additionally underscoring the nuanced interplay of fear and explorative behavioral response of populations living along the urbanization gradient.
Collapse
Affiliation(s)
- Martina Lazzaroni
- Domestication Laboratory, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna A-1160, Austria
| | - Rudy Brogi
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, I-07100 Sassari, Italy
| | - Valentina Napolitano
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, I-07100 Sassari, Italy
| | - Marco Apollonio
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, I-07100 Sassari, Italy
| | - Friederike Range
- Domestication Laboratory, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna A-1160, Austria
| | - Sarah Marshall-Pescini
- Domestication Laboratory, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna A-1160, Austria
| |
Collapse
|
27
|
Short ML, Service CN, Suraci JP, Artelle KA, Field KA, Darimont CT. Ecology of fear alters behavior of grizzly bears exposed to bear-viewing ecotourism. Ecology 2024; 105:e4317. [PMID: 38687245 DOI: 10.1002/ecy.4317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/20/2023] [Accepted: 02/29/2024] [Indexed: 05/02/2024]
Abstract
Humans are perceived as predators by many species and may generate landscapes of fear, influencing spatiotemporal activity of wildlife. Additionally, wildlife might seek out human activity when faced with predation risks (human shield hypothesis). We used the anthropause, a decrease in human activity resulting from the COVID-19 pandemic, to test ecology of fear and human shield hypotheses and quantify the effects of bear-viewing ecotourism on grizzly bear (Ursus arctos) activity. We deployed camera traps in the Khutze watershed in Kitasoo Xai'xais Territory in the absence of humans in 2020 and with experimental treatments of variable human activity when ecotourism resumed in 2021. Daily bear detection rates decreased with more people present and increased with days since people were present. Human activity was also associated with more bear detections at forested sheltered sites and less at exposed sites, likely due to the influence of habitat on bear perception of safety. The number of people negatively influenced adult male detection rates, but we found no influence on female with young detections, providing no evidence that females responded behaviorally to a human shield effect from reduced male activity. We also observed apparent trade-offs of risk avoidance and foraging. When salmon levels were moderate to high, detected bears were more likely to be females with young than adult males on days with more people present. Should managers want to minimize human impacts on bear activity and maintain baseline age-sex class composition at ecotourism sites, multiday closures and daily occupancy limits may be effective. More broadly, this work revealed that antipredator responses can vary with intensity of risk cues, habitat structure, and forage trade-offs and manifest as altered age-sex class composition of individuals using human-influenced areas, highlighting that wildlife avoid people across multiple spatiotemporal scales.
Collapse
Affiliation(s)
- Monica L Short
- Department of Geography, University of Victoria, Victoria, British Columbia, Canada
- Raincoast Conservation Foundation, Sidney, British Columbia, Canada
| | | | - Justin P Suraci
- Conservation Science Partners, Inc., Truckee, California, USA
| | - Kyle A Artelle
- Department of Geography, University of Victoria, Victoria, British Columbia, Canada
- Raincoast Conservation Foundation, Sidney, British Columbia, Canada
- College of Environmental Science and Forestry, State University of New York, Syracuse, New York, USA
- Department of Earth, Environmental and Geographic Sciences, University of British Columbia, Okanagan, British Columbia, Canada
| | - Kate A Field
- Department of Geography, University of Victoria, Victoria, British Columbia, Canada
- Raincoast Conservation Foundation, Sidney, British Columbia, Canada
| | - Chris T Darimont
- Department of Geography, University of Victoria, Victoria, British Columbia, Canada
- Raincoast Conservation Foundation, Sidney, British Columbia, Canada
| |
Collapse
|
28
|
Hahn NR, Wall J, Deninger‐Snyder K, Tiedeman K, Sairowua W, Goss M, Ndambuki S, Eblate E, Mbise N, Wittemyer G. Crop use structures resource selection strategies for African elephants in a human-dominated landscape. Ecol Evol 2024; 14:e11574. [PMID: 38919648 PMCID: PMC11196896 DOI: 10.1002/ece3.11574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
To conserve wide-ranging species in degraded landscapes, it is essential to understand how the behavior of animals changes in relation to the degree and composition of modification. Evidence suggests that large inter-individual variation exists in the propensity for use of degraded areas and may be driven by both behavioral and landscape factors. The use of cultivated lands by wildlife is of particular interest, given the importance of reducing human-wildlife conflicts and understanding how such areas can function as biodiversity buffers. African elephant space use can be highly influenced by human activity and the degree to which individuals crop-raid. We analyzed GPS data from 56 free-ranging elephants in the Serengeti-Mara Ecosystem using resource selection functions (RSFs) to assess how crop use may drive patterns of resource selection and space use within a population. We quantified drivers of similarity in resource selection across individuals using proximity analysis of individual RSF coefficients derived from random forest models. We found wide variation in RSF coefficient values between individuals indicating strongly differentiated resource selection strategies. Proximity assessment indicated the degree of crop use in the dry season, individual repeatability, and time spent in unprotected areas drove similarity in resource selection patterns. Crop selection was also spatially structured in relation to agricultural fragmentation. In areas with low fragmentation, elephants spent less time in crops and selected most strongly for crops further from protected area boundaries, but in areas of high fragmentation, elephants spent twice as much time in crops and selected most strongly for crops closer to the protected area boundary. Our results highlight how individual differences and landscape structure can shape use of agricultural landscapes. We discuss our findings in respect to the conservation challenges of human-elephant conflict and incorporating behavioral variation into human-wildlife coexistence efforts.
Collapse
Affiliation(s)
- Nathan R. Hahn
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
| | - Jake Wall
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
- Mara Elephant ProjectNarokKenya
| | - Kristen Deninger‐Snyder
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
- Grumeti FundMugumu‐SerengetiTanzania
| | - Kate Tiedeman
- Max Planck Institute of Animal BehaviorKonstanzGermany
| | | | | | | | - Ernest Eblate
- Wildlife Research and Training InstituteNaivashaKenya
- Tanzania Wildlife Research InstituteArushaTanzania
| | | | - George Wittemyer
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
- Save the ElephantsNairobiKenya
| |
Collapse
|
29
|
Goodale E, Magrath RD. Species diversity and interspecific information flow. Biol Rev Camb Philos Soc 2024; 99:999-1014. [PMID: 38279871 DOI: 10.1111/brv.13055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
Interspecific information flow is known to affect individual fitness, population dynamics and community assembly, but there has been less study of how species diversity affects information flow and thereby ecosystem functioning and services. We address this question by first examining differences among species in the sensitivity, accuracy, transmissibility, detectability and value of the cues and signals they produce, and in how they receive, store and use information derived from heterospecifics. We then review how interspecific information flow occurs in communities, involving a diversity of species and sensory modes, and how this flow can affect ecosystem-level functions, such as decomposition, seed dispersal or algae removal on coral reefs. We highlight evidence that some keystone species are particularly critical as a source of information used by eavesdroppers, and so have a disproportionate effect on information flow. Such keystone species include community informants producing signals, particularly about predation risk, that influence other species' landscapes of fear, and aggregation initiators creating cues or signals about resources. We suggest that the presence of keystone species means that there will likely be a positive relationship in many communities between species diversity and information through a 'sampling effect', in which larger pools of species are more likely to include the keystone species by chance. We then consider whether the number and relative abundance of species, irrespective of the presence of keystone species, matter to interspecific information flow; on this issue, the theory is less developed, and the evidence scant and indirect. Higher diversity could increase the quantity or quality of information that is used by eavesdroppers because redundancy increases the reliability of information or because the species provide complementary information. Alternatively, there could be a lack of a relationship between species diversity and information if there is widespread information parasitism where users are not sources, or if information sourced from heterospecifics is of lower value than that gained personally or sourced from conspecifics. Recent research suggests that species diversity does have information-modulated community and ecosystem consequences, especially in birds, such as the diversity of species at feeders increasing resource exploitation, or the number of imitated species increasing responses to vocal mimics. A first step for future research includes comprehensive observations of information flow among different taxa and habitats. Then studies should investigate whether species diversity influences the cumulative quality or quantity of information at the community level, and consequently ecosystem-level processes. An applied objective is to conserve species in part for their value as sources of information for other species, including for humans.
Collapse
Affiliation(s)
- Eben Goodale
- Department of Health and Environmental Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Robert D Magrath
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| |
Collapse
|
30
|
Bakner NW, Ulrey EE, Wightman PH, Gulotta NA, Collier BA, Chamberlain MJ. Spatial roost networks and resource selection of female wild turkeys. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231938. [PMID: 39076792 PMCID: PMC11285678 DOI: 10.1098/rsos.231938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 07/31/2024]
Abstract
Wildlife demography is influenced by behavioural decisions, with sleep being a crucial avian behaviour. Avian species use roost sites to minimize thermoregulation costs, predation risk and enhance foraging efficiency. Sleep locations are often reused, forming networks within the home range. Our study, focusing on female eastern wild turkeys (Meleagris gallopavo silvestris) during the reproductive season, used social network analysis to quantify both roost site selection and network structure. We identified roost networks which were composed of a small percentage of hub roost sites connecting satellite roosts. Hub roosts were characterized by greater values of betweenness (β = 0.62, s.e. = 0.02), closeness (β = 0.59, s.e. = 0.03) and eigenvalue centrality (β = 1.15, s.e. = 0.05), indicating their importance as connectors and proximity to the network's functional centre. The probability of a roost being a hub increased significantly with greater eigenvalue centrality. Female wild turkeys consistently chose roost sites at lower elevations and with greater topographical ruggedness. Hub roost probability was higher near secondary roads and further from water. Our research highlights well-organized roost site networks around hub roosts, emphasizing the importance of further investigations into how these networks influence conspecific interactions, reproduction and resource utilization in wild turkeys.
Collapse
Affiliation(s)
- Nicholas W. Bakner
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA30602, USA
| | - Erin E. Ulrey
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA30602, USA
| | - Patrick H. Wightman
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA30602, USA
| | - Nick A. Gulotta
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA30602, USA
| | - Bret A. Collier
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA70803, USA
| | - Michael J. Chamberlain
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA30602, USA
| |
Collapse
|
31
|
Burton AC, Beirne C, Gaynor KM, Sun C, Granados A, Allen ML, Alston JM, Alvarenga GC, Calderón FSÁ, Amir Z, Anhalt-Depies C, Appel C, Arroyo-Arce S, Balme G, Bar-Massada A, Barcelos D, Barr E, Barthelmess EL, Baruzzi C, Basak SM, Beenaerts N, Belmaker J, Belova O, Bezarević B, Bird T, Bogan DA, Bogdanović N, Boyce A, Boyce M, Brandt L, Brodie JF, Brooke J, Bubnicki JW, Cagnacci F, Carr BS, Carvalho J, Casaer J, Černe R, Chen R, Chow E, Churski M, Cincotta C, Ćirović D, Coates TD, Compton J, Coon C, Cove MV, Crupi AP, Farra SD, Darracq AK, Davis M, Dawe K, De Waele V, Descalzo E, Diserens TA, Drimaj J, Duľa M, Ellis-Felege S, Ellison C, Ertürk A, Fantle-Lepczyk J, Favreau J, Fennell M, Ferreras P, Ferretti F, Fiderer C, Finnegan L, Fisher JT, Fisher-Reid MC, Flaherty EA, Fležar U, Flousek J, Foca JM, Ford A, Franzetti B, Frey S, Fritts S, Frýbová Š, Furnas B, Gerber B, Geyle HM, Giménez DG, Giordano AJ, Gomercic T, Gompper ME, Gräbin DM, Gray M, Green A, Hagen R, Hagen RB, Hammerich S, Hanekom C, Hansen C, Hasstedt S, Hebblewhite M, Heurich M, Hofmeester TR, Hubbard T, Jachowski D, Jansen PA, Jaspers KJ, Jensen A, Jordan M, Kaizer MC, Kelly MJ, Kohl MT, Kramer-Schadt S, Krofel M, Krug A, Kuhn KM, Kuijper DPJ, Kuprewicz EK, Kusak J, Kutal M, Lafferty DJR, LaRose S, Lashley M, Lathrop R, Lee TE, Lepczyk C, Lesmeister DB, Licoppe A, Linnell M, Loch J, Long R, Lonsinger RC, Louvrier J, Luskin MS, MacKay P, Maher S, Manet B, Mann GKH, Marshall AJ, Mason D, McDonald Z, McKay T, McShea WJ, Mechler M, Miaud C, Millspaugh JJ, Monteza-Moreno CM, Moreira-Arce D, Mullen K, Nagy C, Naidoo R, Namir I, Nelson C, O'Neill B, O'Mara MT, Oberosler V, Osorio C, Ossi F, Palencia P, Pearson K, Pedrotti L, Pekins CE, Pendergast M, Pinho FF, Plhal R, Pocasangre-Orellana X, Price M, Procko M, Proctor MD, Ramalho EE, Ranc N, Reljic S, Remine K, Rentz M, Revord R, Reyna-Hurtado R, Risch D, Ritchie EG, Romero A, Rota C, Rovero F, Rowe H, Rutz C, Salvatori M, Sandow D, Schalk CM, Scherger J, Schipper J, Scognamillo DG, Şekercioğlu ÇH, Semenzato P, Sevin J, Shamon H, Shier C, Silva-Rodríguez EA, Sindicic M, Smyth LK, Soyumert A, Sprague T, St Clair CC, Stenglein J, Stephens PA, Stępniak KM, Stevens M, Stevenson C, Ternyik B, Thomson I, Torres RT, Tremblay J, Urrutia T, Vacher JP, Visscher D, Webb SL, Weber J, Weiss KCB, Whipple LS, Whittier CA, Whittington J, Wierzbowska I, Wikelski M, Williamson J, Wilmers CC, Windle T, Wittmer HU, Zharikov Y, Zorn A, Kays R. Mammal responses to global changes in human activity vary by trophic group and landscape. Nat Ecol Evol 2024; 8:924-935. [PMID: 38499871 DOI: 10.1038/s41559-024-02363-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human-wildlife interactions along gradients of human influence.
Collapse
Affiliation(s)
- A Cole Burton
- Department of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, Canada.
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Christopher Beirne
- Department of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kaitlyn M Gaynor
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Departments of Zoology and Botany, University of British Columbia, Vancouver, British Columbia, Canada
- National Center for Ecological Analysis and Synthesis, Santa Barbara, CA, USA
| | - Catherine Sun
- Department of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alys Granados
- Department of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maximilian L Allen
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Jesse M Alston
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | | | | | - Zachary Amir
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | | | - Cara Appel
- College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA
| | | | | | - Avi Bar-Massada
- Department of Biology and Environment, University of Haifa at Oranim, Kiryat Tivon, Israel
| | | | - Evan Barr
- Watershed Studies Institute, Murray State University, Murray, KY, USA
| | | | - Carolina Baruzzi
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, FL, USA
| | - Sayantani M Basak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Natalie Beenaerts
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Jonathan Belmaker
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Olgirda Belova
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Kėdainių, Lithuania
| | | | | | | | - Neda Bogdanović
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Andy Boyce
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Mark Boyce
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jedediah F Brodie
- Division of Biological Sciences & Wildlife Biology Program, University of Montana, Missoula, MT, USA
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | | | - Jakub W Bubnicki
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Francesca Cagnacci
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Benjamin Scott Carr
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - João Carvalho
- Department of Biology and Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Jim Casaer
- Research Institute for Nature and Forest, Brussels, Belgium
| | - Rok Černe
- Slovenia Forest Service, Ljubljana, Slovenia
| | - Ron Chen
- Hamaarag, Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | - Emily Chow
- British Columbia Ministry of Forests, Cranbrook, British Columbia, Canada
| | - Marcin Churski
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | | | - Duško Ćirović
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - T D Coates
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | | | | | - Michael V Cove
- North Carolina Museum of Natural Sciences, Raleigh, NC, USA
| | | | - Simone Dal Farra
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Andrea K Darracq
- Watershed Studies Institute, Murray State University, Murray, KY, USA
| | | | - Kimberly Dawe
- Quest University Canada, Squamish, British Columbia, Canada
| | | | - Esther Descalzo
- Instituto de Investigación en Recursos Cinegéticos, Ciudad Real, Spain
| | - Tom A Diserens
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jakub Drimaj
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Martin Duľa
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
- Friends of the Earth Czech Republic, Carnivore Conservation Programme, Olomouc, Czech Republic
| | | | | | - Alper Ertürk
- Hunting and Wildlife Program, Kastamonu University, Kastamonu, Turkey
| | - Jean Fantle-Lepczyk
- College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL, USA
| | | | - Mitch Fennell
- Department of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pablo Ferreras
- Instituto de Investigación en Recursos Cinegéticos, Ciudad Real, Spain
| | - Francesco Ferretti
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Christian Fiderer
- Bavarian Forest National Park, Grafenau, Germany
- University of Freiburg, Breisgau, Germany
| | | | - Jason T Fisher
- University of Victoria, Victoria, British Columbia, Canada
| | | | | | - Urša Fležar
- Slovenia Forest Service, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jiří Flousek
- Krkonoše Mountains National Park, Vrchlabí, Czech Republic
| | - Jennifer M Foca
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Adam Ford
- Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada
| | - Barbara Franzetti
- Italian Institute for Environmental Protection and Research, Rome, Italy
| | - Sandra Frey
- University of Victoria, Victoria, British Columbia, Canada
| | | | - Šárka Frýbová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Brett Furnas
- California Department of Fish and Wildlife, Sacramento, CA, USA
| | | | - Hayley M Geyle
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Diego G Giménez
- Society for the Preservation of Endangered Carnivores and their International Ecological Study (S.P.E.C.I.E.S.), Ventura, CA, USA
| | - Anthony J Giordano
- Society for the Preservation of Endangered Carnivores and their International Ecological Study (S.P.E.C.I.E.S.), Ventura, CA, USA
| | - Tomislav Gomercic
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | | | | | | | - Robert Hagen
- Agricultural Center for Cattle, Grassland, Dairy, Game and Fisheries of Baden-Württemberg, Aulendorf, Germany
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | | | | | | | | | | | - Mark Hebblewhite
- Division of Biological Sciences & Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - Marco Heurich
- Bavarian Forest National Park, Grafenau, Germany
- University of Freiburg, Breisgau, Germany
- Inland Norway University, Hamar, Norway
| | - Tim R Hofmeester
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Tru Hubbard
- Northern Michigan University, Marquette, MI, USA
| | | | - Patrick A Jansen
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
- Department of Environmental Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | | | | | | | | | | | - Michel T Kohl
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Stephanie Kramer-Schadt
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Institute of Ecology, Technische Universität Berlin, Berlin, Germany
| | - Miha Krofel
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Dries P J Kuijper
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | | | - Josip Kusak
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Miroslav Kutal
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
- Friends of the Earth Czech Republic, Carnivore Conservation Programme, Olomouc, Czech Republic
| | | | | | - Marcus Lashley
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | | | | | - Christopher Lepczyk
- College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL, USA
| | - Damon B Lesmeister
- United States Department of Agriculture Forest Service, Pacific Northwest Research Station, Corvallis, OR, USA
| | | | - Marco Linnell
- United States Department of Agriculture Forest Service, Pacific Northwest Research Station, Corvallis, OR, USA
| | - Jan Loch
- Scientific Laboratory of Gorce National Park, Niedźwiedź, Poland
| | | | | | - Julie Louvrier
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Matthew Scott Luskin
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | | | - Sean Maher
- Missouri State University, Springfield, MO, USA
| | | | | | | | - David Mason
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | | | | | - William J McShea
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | | | - Claude Miaud
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | | | | | - Dario Moreira-Arce
- Universidad de Santiago de Chile (USACH) and Institute of Ecology and Biodiversity (IEB), Santiago, Chile
| | | | | | | | - Itai Namir
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Carrie Nelson
- Effigy Mounds National Monument, Harper's Ferry, WV, USA
| | - Brian O'Neill
- University of Wisconsin-Whitewater, Whitewater, WI, USA
| | | | | | | | - Federico Ossi
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Pablo Palencia
- University of Castilla-La Mancha Instituto de Investigación en Recursos Cinegéticos, Ciudad Real, Spain
- Department of Veterinary Sciences, University of Torino, Turin, Italy
| | - Kimberly Pearson
- Parks Canada-Waterton Lakes National Park, Waterton Park, Alberta, Canada
| | | | | | | | | | - Radim Plhal
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | | | | | - Michael Procko
- Department of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Nathan Ranc
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- Université de Toulouse, INRAE, CEFS, Castanet-Tolosan, France
| | - Slaven Reljic
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | | | | | | | - Derek Risch
- University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Euan G Ritchie
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne, Victoria, Australia
| | - Andrea Romero
- University of Wisconsin-Whitewater, Whitewater, WI, USA
| | | | - Francesco Rovero
- Museo delle Scienze (MUSE), Trento, Italy
- Department of Biology, University of Florence, Florence, Italy
| | - Helen Rowe
- McDowell Sonoran Conservancy, Scottsdale, AZ, USA
- Northern Arizona University, Flagstaff, AZ, USA
| | - Christian Rutz
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - Marco Salvatori
- Museo delle Scienze (MUSE), Trento, Italy
- Department of Biology, University of Florence, Florence, Italy
| | - Derek Sandow
- Northern and Yorke Landscape Board, Clare, South Australia, Australia
| | - Christopher M Schalk
- United States Department of Agriculture Forest Service, Southern Research Station, Nacogdoches, TX, USA
| | - Jenna Scherger
- Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jan Schipper
- Arizona State University, West, Glendale, AZ, USA
| | | | | | - Paola Semenzato
- Research, Ecology and Environment Dimension (D.R.E.A.M.), Pistoia, Italy
| | | | - Hila Shamon
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Catherine Shier
- Planning and Environmental Services, City of Edmonton, Edmonton, Alberta, Canada
| | - Eduardo A Silva-Rodríguez
- Instituto de Conservación, Biodiversidad y Territorio & Programa Austral Patagonia, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia, Chile
| | - Magda Sindicic
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Lucy K Smyth
- Panthera, New York, NY, USA
- iCWild, Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Anil Soyumert
- Hunting and Wildlife Program, Kastamonu University, Kastamonu, Turkey
| | | | | | | | - Philip A Stephens
- Conservation Ecology Group, Department of Biosciences, Durham University, Durham, UK
| | - Kinga Magdalena Stępniak
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Cassondra Stevenson
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Bálint Ternyik
- Conservation Ecology Group, Department of Biosciences, Durham University, Durham, UK
- United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
| | - Ian Thomson
- Coastal Jaguar Conservation, Heredia, Costa Rica
| | - Rita T Torres
- Department of Biology and Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | | | | | - Jean-Pierre Vacher
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | | | - Stephen L Webb
- Natural Resources Institute and Department of Rangeland, Wildlife and Fisheries Management, Texas A&M University, College Station, TX, USA
| | - Julian Weber
- Oeko-Log Freilandforschung, Friedrichswalde, Germany
| | | | | | | | | | - Izabela Wierzbowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behaviour, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Christopher C Wilmers
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Todd Windle
- Parks Canada, Alberni-Clayoquot, British Columbia, Canada
| | | | | | - Adam Zorn
- University of Mount Union, Alliance, OH, USA
| | - Roland Kays
- North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
32
|
Farley ZJ, Thompson CJ, Boyle ST, Tatman NM, Cain JW. Behavioral trade-offs and multitasking by elk in relation to predation risk from Mexican gray wolves. Ecol Evol 2024; 14:e11383. [PMID: 38803606 PMCID: PMC11128461 DOI: 10.1002/ece3.11383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Predator non-consumptive effects (NCE) can alter prey foraging time and habitat use, potentially reducing fitness. Prey can mitigate NCEs by increasing vigilance, chewing-vigilance synchronization, and spatiotemporal avoidance of predators. We quantified the relationship between Mexican wolf (Canis lupus baileyi) predation risk and elk (Cervus canadensis) behavior. We conducted behavioral observations on adult female elk and developed predation risk indices using GPS collar data from Mexican wolves, locations of elk killed by wolves, and landscape covariates. We compared a priori models to determine the best predictors of adult female behavior and multitasking. Metrics that quantified both spatial and temporal predation risk were the most predictive. Vigilance was positively associated with increased predation risk. The effect of predation risk on foraging and resting differed across diurnal periods. During midday when wolf activity was lower, the probability of foraging increased while resting decreased in high-risk areas. During crepuscular periods when elk and wolves were most active, increased predation risk was associated with increased vigilance and slight decreases in foraging. Our results suggest elk are temporally avoiding predation risk from Mexican wolves by trading resting for foraging, a trade-off often not evaluated in behavioral studies. Probability of multitasking depended on canopy openness and an interaction between maternal period and predation risk; multitasking decreased prior to parturition and increased post parturition in high-risk areas. Openness was inversely related to multitasking. These results suggest adult female elk are altering the type of vigilance used depending on resource availability/quality, current energetic needs, and predation risk. Our results highlight potentially important, but often-excluded behaviors and trade-offs prey species may use to reduce the indirect effects of predation and contribute additional context to our understanding of predator-prey dynamics.
Collapse
Affiliation(s)
- Zachary J. Farley
- Department of Fish Wildlife and Conservation EcologyNew Mexico State UniversityLas CrucesNew MexicoUSA
| | - Cara J. Thompson
- Department of Fish Wildlife and Conservation EcologyNew Mexico State UniversityLas CrucesNew MexicoUSA
| | - Scott T. Boyle
- Department of Fish Wildlife and Conservation EcologyNew Mexico State UniversityLas CrucesNew MexicoUSA
| | | | - James W. Cain
- U.S. Geological Survey New Mexico Cooperative Fish and Wildlife Research Unit, Department of Fish Wildlife and Conservation EcologyNew Mexico State UniversityLas CrucesNew MexicoUSA
| |
Collapse
|
33
|
Sheppard CE, Boström-Einarsson L, Williams GJ, Exton DA, Keith SA. Variation in farming damselfish behaviour creates a competitive landscape of risk on coral reefs. Biol Lett 2024; 20:20240035. [PMID: 38807544 PMCID: PMC11285810 DOI: 10.1098/rsbl.2024.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Interspecific interactions are fundamental drivers of animal space use. Yet while non-consumptive effects of predation risk on prey space use are well-known, the risk of aggressive interactions on space use of competitors is largely unknown. We apply the landscape of risk framework to competition-driven space use for the first time, with the hypothesis that less aggressive competitors may alter their behaviour to avoid areas of high competitor density. Specifically, we test how aggressive risk from territorial algal-farming damselfishes can shape the spatial distribution of herbivore fish competitors. We found that only the most aggressive damselfish had fewer competitors in their surrounding area, demonstrating that individual-level behavioural variation can shape spatial distributions. In contradiction to the landscape of risk framework, abundances of farming damselfish and other fishes were positively associated. Our results suggest that reef fishes do not simply avoid areas of high damselfish abundance, but that spatial variation in aggressive behaviour, rather than of individuals, created a competitive landscape of risk. We emphasize the importance of individual-level behaviour in identifying patterns of space use and propose expanding the landscape of risk framework to non-predatory interactions to explore cascading behavioural responses to aggressive risk.
Collapse
Affiliation(s)
| | | | | | - Dan A. Exton
- Operation Wallacea, Wallace House, Old Bolingbroke, Spilsby PE23 4EX, UK
| | - Sally A. Keith
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| |
Collapse
|
34
|
Manz ST, Sieving KE, Brown RN, Klug PE, Kluever BM. Experimental assessment of laser scarecrows for reducing avian damage to sweet corn. PEST MANAGEMENT SCIENCE 2024; 80:1547-1556. [PMID: 37966431 DOI: 10.1002/ps.7888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Birds damage crops, costing millions of dollars annually, and growers utilize a variety of lethal and nonlethal deterrents in an attempt to reduce crop damage by birds. We experimentally tested laser scarecrows for their effectiveness at reducing sweet corn (Zea mays) damage. We presented 18 captive flocks of free-flying European starlings (Sturnus vulgaris) with fresh sweet corn ears distributed on two plots where laser and control treatments were alternated each day and allowed each flock to forage over 5 days. In 16 trials, fresh sweet corn ears were mounted on wooden sticks distributed from 0 to 32 m from laser units (Stick Trials), and in two trials birds foraged on ripe corn grown from seed in the flight pen (Natural Trials). We aimed to determine if laser-treated plots had significantly less damage overall and closer to the laser unit, and whether birds became more or less likely to forage in laser-treated plots over time. RESULTS Lasers reduced damage overall, marginally in Stick Trials and dramatically in Natural Trials. Damage increased during each week in both trial types. Damage increased significantly with distance from lasers, and significant treatment effects occurred up to ~20 m from lasers. CONCLUSION Our results concur with recent field trials demonstrating strong reductions in sweet corn damage when lasers are deployed. This study provides a first look at how birds respond to repeated laser exposure and whether damage increases with distance from lasers. Key differences between pen and field trials are discussed. © 2023 Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Sean T Manz
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Kathryn E Sieving
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Rebecca N Brown
- Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, RI, USA
| | - Page E Klug
- US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, North Dakota Field Station, Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Bryan M Kluever
- US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Florida Field Station, Gainesville, FL, USA
| |
Collapse
|
35
|
Subramanian A, Germain RM. Landscape use by large grazers in a grassland is restructured by wildfire. PLoS One 2024; 19:e0297290. [PMID: 38349917 PMCID: PMC10863880 DOI: 10.1371/journal.pone.0297290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
Animals navigate landscapes based on perceived risks vs. rewards, as inferred from features of the landscape. In the wild, knowing how strongly animal movement is directed by landscape features is difficult to ascertain but widespread disturbances such as wildfires can serve as natural experiments. We tested the hypothesis that wildfires homogenize the risk/reward landscape, causing movement to become less directed, given that fires reduce landscape complexity as habitat structures (e.g., tree cover, dense brush) are burned. We used satellite imagery of a research reserve in Northern California to count and categorize paths made primarily by mule deer (Odocoileus hemionus) in grasslands. Specifically, we compared pre-wildfire (August 2014) and post-wildfire (September 2018) image history layers among locations that were or were not impacted by wildfire (i.e., a Before/After Control/Impact design). Wildfire significantly altered spatial patterns of deer movement: more new paths were gained and more old paths were lost in areas of the reserve that were impacted by wildfire; movement patterns became less directed in response to fire, suggesting that the risk/reward landscape became more homogenous, as hypothesized. We found evidence to suggest that wildfire affects deer populations at spatial scales beyond their scale of direct impact and raises the interesting possibility that deer perceive risks and rewards at different spatial scales. In conclusion, our study provides an example of how animals integrate spatial information from the environment to make movement decisions, setting the stage for future work on the broader ecological implications for populations, communities, and ecosystems, an emerging interest in ecology.
Collapse
Affiliation(s)
- Aishwarya Subramanian
- Department of Biology, Irving K. Barber Faculty of Science, University of British Columbia Okanagan, Kelowna, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Rachel M. Germain
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
36
|
Grabowski KL, Phillips EM, Gaynor KM. Limited spatiotemporal niche partitioning among mesocarnivores in Gorongosa National Park, Mozambique. Ecol Evol 2024; 14:e10965. [PMID: 38371865 PMCID: PMC10869889 DOI: 10.1002/ece3.10965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/04/2023] [Accepted: 01/09/2024] [Indexed: 02/20/2024] Open
Abstract
Competition drives community composition and structure in many ecosystems. Spatial and temporal niche partitioning, in which competing species divide the environment in space or time, are mechanisms that may allow for coexistence among ecologically similar species. Such division of resources may be especially important for carnivores in African savannas, which support diverse carnivore assemblages. We used camera traps to explore patterns of spatial and temporal niche partitioning among four mesocarnivore species in Mozambique's Gorongosa National Park: large-spotted genet (Genetta maculata), African civet (Civettictis civetta), honey badger (Mellivora capensis) and marsh mongoose (Atilax paludinosus). We applied a multispecies occupancy model to evaluate spatial partitioning among mesocarnivores and to quantify the environmental factors that affect species-specific habitat use, including relative lion (Panthera leo) activity. We also analyzed the temporal activity overlap of the four focal species. We identified species-specific habitat covariates that influenced detection probabilities but found no evidence of spatial or temporal partitioning among mesocarnivores in the study system. Indeed, we found some evidence for spatial co-occurrence between two of our focal species: African civet and marsh mongoose. There may be limited competition among mesocarnivores in this system, perhaps due to niche and diet differentiation among these species and an abundance of resources. While we found limited evidence that lion activity impacts mesocarnivores, ongoing monitoring of intraguild interactions is vital as apex predator populations recover in the system. This study adds to a growing understanding of African mesocarnivore ecology and highlights the importance of understanding these dynamics for effective multispecies conservation and restoration.
Collapse
Affiliation(s)
- Kathryn L. Grabowski
- School of Geography and the EnvironmentUniversity of OxfordOxfordUK
- Department of BiologyMcGill UniversityMontréalQuébecCanada
| | - Erin M. Phillips
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Kaitlyn M. Gaynor
- Department of Zoology and BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
37
|
Wooster EIF, Gaynor KM, Carthey AJR, Wallach AD, Stanton LA, Ramp D, Lundgren EJ. Animal cognition and culture mediate predator-prey interactions. Trends Ecol Evol 2024; 39:52-64. [PMID: 37839906 DOI: 10.1016/j.tree.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023]
Abstract
Predator-prey ecology and the study of animal cognition and culture have emerged as independent disciplines. Research combining these disciplines suggests that both animal cognition and culture can shape the outcomes of predator-prey interactions and their influence on ecosystems. We review the growing body of work that weaves animal cognition or culture into predator-prey ecology, and argue that both cognition and culture are significant but poorly understood mechanisms mediating how predators structure ecosystems. We present a framework exploring how previous experiences with the predation process creates feedback loops that alter the predation sequence. Cognitive and cultural predator-prey ecology offers ecologists new lenses through which to understand species interactions, their ecological consequences, and novel methods to conserve wildlife in a changing world.
Collapse
Affiliation(s)
- Eamonn I F Wooster
- Gulbali Institute, School of Agricultural, Environmental, and Veterinary Sciences, Charles Sturt University, Albury, NSW, Australia.
| | - Kaitlyn M Gaynor
- Departments of Zoology and Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Alexandra J R Carthey
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW 2113, Australia
| | - Arian D Wallach
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lauren A Stanton
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA 94720-3114, USA
| | - Daniel Ramp
- Centre for Compassionate Conservation, TD School, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Erick J Lundgren
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark; Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
38
|
Carrilho M, Monarca RI, Aparício G, Mathias MDL, Tapisso JT, von Merten S. Physiological and behavioural adjustment of a wild rodent to laboratory conditions. Physiol Behav 2024; 273:114385. [PMID: 37866641 DOI: 10.1016/j.physbeh.2023.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
Wild animals are brought to captivity for different reasons, for example to be kept in zoos and rehabilitation centres, but also for basic research. Such animals usually undergo a process of adjustment to captive conditions. While this adjustment occurs on the behavioural and the physiological level, those are usually studied separately. The aim of this study was to assess both the physiological and behavioural responses of wild wood mice, Apodemus sylvaticus, while adjusting to laboratory conditions. Over the course of four weeks, we measured in wild-caught mice brought to the laboratory faecal corticosterone metabolites and body mass as physiological parameters, stereotypic behaviour and nest-quality, as welfare-linked behavioural parameters, and four personality measures as additional behavioural parameters. The results of our study indicate that mice exhibited an adjustment in both behaviour and physiology over time in the laboratory. While the hormonal stress response decreased significantly, body mass and the proportion of stereotypic behaviours showed a tendency to increase over time. The slight increase of stereotypic behaviours, although not statistically significant, suggests the development of repetitive and non-functional behaviours as a response to laboratory conditions. However, we suggest that those behaviours might have been used by animals as a coping strategy to decrease the physiological stress response. Other behavioural parameters measured, such as boldness and nestbuilding behaviour were stable over time. The information obtained in the present study hints at a complex interplay between behavioural and physiological adjustments of wild animals to laboratory conditions, which should be considered when intending to use wild animals in experimental research.
Collapse
Affiliation(s)
- Maílis Carrilho
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal.
| | - Rita I Monarca
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal
| | - Guilherme Aparício
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal
| | - Maria da Luz Mathias
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal
| | - Joaquim T Tapisso
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal
| | - Sophie von Merten
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal; Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| |
Collapse
|
39
|
Diserens TA, Churski M, Bubnicki JW, Zalewski A, Brzeziński M, Kuijper DPJ. Badgers remain fearless in the face of simulated wolf presence near their setts. Ecol Evol 2024; 14:e10654. [PMID: 38187920 PMCID: PMC10767146 DOI: 10.1002/ece3.10654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 01/09/2024] Open
Abstract
Many mesocarnivores are fossorial and use burrow systems to avoid predators. But fossorial animals cannot stay safely underground forever; they must also risk emerging overground to forage and find mates. To make this trade-off effectively and maximise their own fitness, it is imperative they assess how risk varies in space and time and adapt their denning behaviour accordingly. We used the badger in Białowieża Forest, Poland, as a model for investigating how the denning behaviour of a fossorial mesocarnivore varies in response to short-term large carnivore risk. To this end, we experimentally simulated perceived wolf presence outside 10 badger setts using audio playbacks of wolves (their howls). We assayed two behavioural measures of fear: badger emergence time from setts on the day playbacks were broadcast and their presence in setts on the day after. We found that neither badger emergence time nor next-day sett use varied in response to wolf playbacks. The results of the present study contrast with a previous study of ours that found badgers used setts in areas with high landscape level perceived wolf risk less often than those in lower-risk areas. Together, these papers' findings suggest that different spatiotemporal scales of perceived risk can have differential effects on badger behaviour. We conclude that rather than take risk avoidance measures at all risky times and places, badgers likely display a diversity of reactions to large carnivore presence that depend on the context and spatiotemporal scale of the risk being perceived.
Collapse
Affiliation(s)
- Tom A. Diserens
- Mammal Research InstitutePolish Academy of SciencesBiałowieżaPoland
- Faculty of BiologyUniversity of WarsawWarsawPoland
| | - Marcin Churski
- Mammal Research InstitutePolish Academy of SciencesBiałowieżaPoland
| | | | - Andrzej Zalewski
- Mammal Research InstitutePolish Academy of SciencesBiałowieżaPoland
| | | | | |
Collapse
|
40
|
Passoni G, Coulson T, Cagnacci F, Hudson P, Stahler DR, Smith DW, Lachish S. Investigating tritrophic interactions using bioenergetic demographic models. Ecology 2024; 105:e4197. [PMID: 37897692 DOI: 10.1002/ecy.4197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 10/30/2023]
Abstract
A central debate in ecology has been the long-running discussion on the role of apex predators in affecting the abundance and dynamics of their prey. In terrestrial systems, research has primarily relied on correlational approaches, due to the challenge of implementing robust experiments with replication and appropriate controls. A consequence of this is that we largely suffer from a lack of mechanistic understanding of the population dynamics of interacting species, which can be surprisingly complex. Mechanistic models offer an opportunity to examine the causes and consequences of some of this complexity. We present a bioenergetic mechanistic model of a tritrophic system where the primary vegetation resource follows a seasonal growth function, and the herbivore and carnivore species are modeled using two integral projection models (IPMs) with body mass as the phenotypic trait. Within each IPM, the demographic functions are structured according to bioenergetic principles, describing how animals acquire and transform resources into body mass, energy reserves, and breeding potential. We parameterize this model to reproduce the population dynamics of grass, elk, and wolves in northern Yellowstone National Park (USA) and investigate the impact of wolf reintroduction on the system. Our model generated predictions that closely matched the observed population sizes of elk and wolf in Yellowstone prior to and following wolf reintroduction. The introduction of wolves into our basal grass-elk bioenergetic model resulted in a population of 99 wolves and a reduction in elk numbers by 61% (from 14,948 to 5823) at equilibrium. In turn, vegetation biomass increased by approximately 25% in the growing season and more than threefold in the nongrowing season. The addition of wolves to the model caused the elk population to switch from being food-limited to being predator-limited and had a stabilizing effect on elk numbers across different years. Wolf predation also led to a shift in the phenotypic composition of the elk population via a small increase in elk average body mass. Our model represents a novel approach to the study of predator-prey interactions, and demonstrates that explicitly considering and linking bioenergetics, population demography and body mass phenotypes can provide novel insights into the mechanisms behind complex ecosystem processes.
Collapse
Affiliation(s)
- Gioele Passoni
- Department of Biology, University of Oxford, Oxford, UK
- Animal Ecology Unit, Research and Innovation Centre (CRI), Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Tim Coulson
- Department of Biology, University of Oxford, Oxford, UK
| | - Francesca Cagnacci
- Animal Ecology Unit, Research and Innovation Centre (CRI), Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Peter Hudson
- The Huck Institutes, Penn State University, State College, Pennsylvania, USA
| | - Daniel R Stahler
- Yellowstone Center for Resources, Yellowstone National Park, Wyoming, USA
| | - Douglas W Smith
- Yellowstone Center for Resources, Yellowstone National Park, Wyoming, USA
| | - Shelly Lachish
- Commonwealth Scientific Industrial Research Organisation (CSIRO) Environment Unit, Dutton Park, Queensland, Australia
| |
Collapse
|
41
|
Ceccarelli DM, Evans RD, Logan M, Jones GP, Puotinen M, Petus C, Russ GR, Srinivasan M, Williamson DH. Physical, biological and anthropogenic drivers of spatial patterns of coral reef fish assemblages at regional and local scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166695. [PMID: 37660823 DOI: 10.1016/j.scitotenv.2023.166695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Species abundance, diversity and community assemblage structure are determined by multiple physical, habitat and management drivers that operate across multiple spatial scales. Here we used a multi-scale coral reef monitoring dataset to examine regional and local differences in the abundance, species richness and composition of fish assemblages in no-take marine reserve (NTMR) and fished zones at four island groups in the Great Barrier Reef Marine Park, Australia. We applied boosted regression trees to quantify the influence of 20 potential drivers on the coral reef fish assemblages. Reefs in two locations, Magnetic Island and the Keppel Islands, had distinctive fish assemblages and low species richness, while the Palm and Whitsunday Islands had similar species composition and higher species richness. Overall, our analyses identified several important physical (temperature, wave exposure) and biological (coral, turf, macroalgal and unconsolidated substratum cover) drivers of inshore reef fish communities, some of which are being altered by human activities. Of these, sea surface temperature (SST) was more influential at large scales, while wave exposure was important both within and between island groups. Species richness declined with increasing macroalgal cover and exposure to cyclones, and increased with SST. Species composition was most strongly influenced by mean SST and percent cover of macroalgae. There was substantial regional variation in the local drivers of spatial patterns. Although NTMR zoning influenced total fish density in some regions, it had negligible effects on fish species richness, composition and trophic structure because of the relatively small number of species targeted by the fishery. These findings show that inshore reef fishes are directly influenced by disturbances typical of the nearshore Great Barrier Reef, highlighting the need to complement global action on climate change with more targeted localised efforts to maintain or improve the condition of coral reef habitats.
Collapse
Affiliation(s)
- Daniela M Ceccarelli
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Marine Science, Townsville, QLD 4810, Australia.
| | - Richard D Evans
- Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia; Oceans Institute, University of Western Australia, Crawley, WA 6009, Australia
| | - Murray Logan
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Geoffrey P Jones
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Marji Puotinen
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Caroline Petus
- Centre for Tropical Water and Aquatic System Research, James Cook University, Townsville, QLD 4811, Australia
| | - Garry R Russ
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Maya Srinivasan
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia; Centre for Tropical Water and Aquatic System Research, James Cook University, Townsville, QLD 4811, Australia
| | - David H Williamson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Great Barrier Reef Marine Park Authority, Townsville, QLD 4811, Australia
| |
Collapse
|
42
|
Leighton GRM, Froneman W, Serieys LEK, Bishop JM. Trophic downgrading of an adaptable carnivore in an urbanising landscape. Sci Rep 2023; 13:21582. [PMID: 38062237 PMCID: PMC10703923 DOI: 10.1038/s41598-023-48868-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Urbanisation critically alters wildlife habitat and resource distribution, leading to shifts in trophic dynamics. The loss of apex predators in human-transformed landscapes can result in changes in the ecological roles of the remaining mesocarnivores. Decreased top-down control together with increased bottom-up forcing through greater availability of anthropogenic foods can result in a predation paradox. Understanding these changes is important for conserving ecological function and biodiversity in rapidly urbanising systems. Here, we use stable isotope analysis to provide insight into longer term changes in trophic position, niche width and overlap of an elusive, medium-sized urban adapter, the caracal (Caracal caracal) in and around the city of Cape Town, South Africa. Using fur samples (n = 168) from individuals along a gradient of urbanisation we find that overall caracals have a broad isotopic dietary niche that reflects their large variation in resource use. When accounting for underlying environmental differences, the intensity of anthropogenic pressure, measured using the Human Footprint Index (HFI), explained variation in both food subsidy use (δ13C values) and trophic status (δ15N values). The significantly higher δ13C values (P < 0.01) and lower δ15N values (P < 0.001) of caracals in more urbanised areas suggest that predator subsidy consumption occurs via predictable, anthropogenic resource subsidies to synanthropic prey. These prey species are predominantly primary consumers, resulting in shifts in diet composition towards lower trophic levels. Further, caracals using areas with higher HFI had narrower isotope niches than those in less impacted areas, likely due to their hyperfocus on a few lower trophic level prey species. This pattern of niche contraction in urban areas is retained when accounting for caracal demographics, including sex and age. The removal of apex predators in human-transformed landscapes together with reliable resource availability, including abundant prey, may paradoxically limit the ecological influence of the remaining predators, and bring about a degree of predator trophic downgrading. The dampening of top-down control, and thus ecosystem regulation, likely points to widespread disruption of trophic dynamics in rapidly developing areas globally.
Collapse
Affiliation(s)
- Gabriella R M Leighton
- SARChI Chair in Marine Ecology, Department of Zoology and Entomology, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa.
- Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa.
| | - William Froneman
- SARChI Chair in Marine Ecology, Department of Zoology and Entomology, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa
| | - Laurel E K Serieys
- Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- Panthera, 8 W 40th St, New York, NY, 10018, USA
- Cape Leopard Trust, Cape Town, South Africa
| | - Jacqueline M Bishop
- Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| |
Collapse
|
43
|
Bełcik M, Lenda ML, Pustkowiak S, Woźniak B, Skórka P. Social information modifies the associations between forest fragmentation and the abundance of a passerine bird. Sci Rep 2023; 13:21386. [PMID: 38049553 PMCID: PMC10696010 DOI: 10.1038/s41598-023-48512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
Habitat loss and fragmentation are the main factors driving the occurrence and abundance of species in the landscape. However, the local occurrence and abundance of species may also depend on conspecific and heterospecific social information e.g. clues of animals' presence or their voices. We investigated the impact of the interaction between different types of social information and forest fragmentation on the abundance of the song thrush, Turdus philomelos, in Central Europe. Three types of social information (attractive, repulsive, and mixed) and procedural control were broadcasted via loudspeakers in 150 forest patches that varied in size and isolation metrics. Repulsive social information (cues of presence of predator) decreased abundance of song thrush. Also, the repulsive social information changed the association between forest patch isolation, size and the abundance. Attractive social information (songs of the studied thrush) had no effect on song thrush abundance. However, the attractive social information reversed the positive correlation between habitat patch size and the abundance. Mixed social information (both repulsive and attractive) had no impact on the abundance nor interacted with habitat fragmentation. The observed effects mostly did not last to the next breeding season. Overall, our findings indicate that lands of fear and social attraction could modify the effect of habitat fragmentation on the species abundance but these effects probably are not long-lasting.
Collapse
Affiliation(s)
- Michał Bełcik
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120, Kraków, Poland.
- Centre for Biodiversity and Conservation Science, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Magdalena Lidia Lenda
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120, Kraków, Poland
| | - Sylwia Pustkowiak
- Population Ecology Lab, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Bartłomiej Woźniak
- Department of Forest Zoology and Wildlife Management, Institute of Forest Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Piotr Skórka
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120, Kraków, Poland
| |
Collapse
|
44
|
Blackburn G, Ashton BJ, Thornton A, Woodiss-Field S, Ridley AR. Cognition mediates response to anthropogenic noise in wild Western Australian magpies (Gmynorhina tibicen dorsalis). GLOBAL CHANGE BIOLOGY 2023; 29:6912-6930. [PMID: 37846601 DOI: 10.1111/gcb.16975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023]
Abstract
Anthropogenic noise is a pollutant of growing concern, with wide-ranging effects on taxa across ecosystems. Until recently, studies investigating the effects of anthropogenic noise on animals focused primarily on population-level consequences, rather than individual-level impacts. Individual variation in response to anthropogenic noise may result from extrinsic or intrinsic factors. One such intrinsic factor, cognitive performance, varies between individuals and is hypothesised to aid behavioural response to novel stressors. Here, we combine cognitive testing, behavioural focals and playback experiments to investigate how anthropogenic noise affects the behaviour and anti-predator response of Western Australian magpies (Gymnorhina tibicen dorsalis), and to determine whether this response is linked to cognitive performance. We found a significant population-level effect of anthropogenic noise on the foraging effort, foraging efficiency, vigilance, vocalisation rate and anti-predator response of magpies, with birds decreasing their foraging, vocalisation behaviours and anti-predator response, and increasing vigilance when loud anthropogenic noise was present. We also found that individuals varied in their response to playbacks depending on their cognitive performance, with individuals that performed better in an associative learning task maintaining their anti-predator response when an alarm call was played in anthropogenic noise. Our results add to the growing body of literature documenting the adverse effects of anthropogenic noise on wildlife and provide the first evidence for an association between individual cognitive performance and behavioural responses to anthropogenic noise.
Collapse
Affiliation(s)
- Grace Blackburn
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Benjamin J Ashton
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Sarah Woodiss-Field
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Amanda R Ridley
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
45
|
Feistel R. Self-Organisation of Prediction Models. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1596. [PMID: 38136476 PMCID: PMC10743227 DOI: 10.3390/e25121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023]
Abstract
Living organisms are active open systems far from thermodynamic equilibrium. The ability to behave actively corresponds to dynamical metastability: minor but supercritical internal or external effects may trigger major substantial actions such as gross mechanical motion, dissipating internally accumulated energy reserves. Gaining a selective advantage from the beneficial use of activity requires a consistent combination of sensual perception, memorised experience, statistical or causal prediction models, and the resulting favourable decisions on actions. This information processing chain originated from mere physical interaction processes prior to life, here denoted as structural information exchange. From there, the self-organised transition to symbolic information processing marks the beginning of life, evolving through the novel purposivity of trial-and-error feedback and the accumulation of symbolic information. The emergence of symbols and prediction models can be described as a ritualisation transition, a symmetry-breaking kinetic phase transition of the second kind previously known from behavioural biology. The related new symmetry is the neutrally stable arbitrariness, conventionality, or code invariance of symbols with respect to their meaning. The meaning of such symbols is given by the structural effect they ultimately unleash, directly or indirectly, by deciding on which actions to take. The early genetic code represents the first symbols. The genetically inherited symbolic information is the first prediction model for activities sufficient for survival under the condition of environmental continuity, sometimes understood as the "final causality" property of the model.
Collapse
Affiliation(s)
- Rainer Feistel
- Leibniz Institute for Baltic Sea Research (IOW), 18119 Rostock, Germany
| |
Collapse
|
46
|
Crawford SG, Coker RH, O’Hara TM, Breed GA, Gelatt T, Fadely B, Burkanov V, Rivera PM, Rea LD. Fasting durations of Steller sea lion pups vary among subpopulations-evidence from two plasma metabolites. CONSERVATION PHYSIOLOGY 2023; 11:coad084. [PMID: 38026798 PMCID: PMC10673819 DOI: 10.1093/conphys/coad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Geographic differences in population growth trends are well-documented in Steller sea lions (Eumetopias jubatus), a species of North Pacific pinniped listed under the U.S. Endangered Species Act in 1990 following a marked decline in population abundance that began during the 1970s. As population growth is intrinsically linked to pup production and survival, examining factors related to pup physiological condition provides useful information to management authorities regarding potential drivers of regional differences. During dam foraging trips, pups predictably transition among three fasting phases, distinguished by the changes in the predominant metabolic byproduct. We used standardized ranges of two plasma metabolites (blood urea nitrogen and β-hydroxybutyrate) to assign pups to fasting categories (n = 1528, 1990-2016, 12 subpopulations): Recently Fed-Phase I (digestion/assimilation-expected hepatic/muscle glycogen usage), Phase II (expected lipid utilization), transitioning between Phases II-III (expected lipid utilization with increased protein reliance), or Phase III (expected protein catabolism). As anticipated, the majority of pups were classified as Recently Fed-Phase I (overall mean proportion = 0.72) and few pups as Phase III (overall mean proportion = 0.04). By further comparing pups in Short (Recently Fed-Phase II) and Long (all other pups) duration fasts, we identified three subpopulations with significantly (P < 0.03) greater proportions of pups dependent upon endogenous sources of energy for extended periods, during a life stage of somatic growth and development: the 1) central (0.27 ± 0.09) and 2) western (0.36 ± 0.13) Aleutian Island (declining population trend) and 3) southern Southeast Alaska (0.32 ± 0.06; increasing population trend) subpopulations had greater Long fast proportions than the eastern Aleutian Islands (0.10 ± 0.05; stabilized population). Due to contrasting population growth trends among these highlighted subpopulations over the past 50+ years, both density-independent and density-dependent factors likely influence the dam foraging trip duration, contributing to longer fasting durations for pups at some rookeries.
Collapse
Affiliation(s)
- Stephanie G Crawford
- Department of Biology and Wildlife and Institute of Northern Engineering, University of Alaska Fairbanks, 1764 Tanana Loop, Fairbanks, Alaska 99775, USA
| | - Robert H Coker
- Montana Center for Work Physiology and Exercise Metabolism, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA
| | - Todd M O’Hara
- Veterinary Integrative Biosciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 402 Raymond Stotzer Parkway, Bldg 2, College Station, Texas 77843, USA
| | - Greg A Breed
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA
| | - Tom Gelatt
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7600 Sand Point Way N.E., Bldg. 4, Seattle, Washington 98115, USA
| | - Brian Fadely
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7600 Sand Point Way N.E., Bldg. 4, Seattle, Washington 98115, USA
| | - Vladimir Burkanov
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7600 Sand Point Way N.E., Bldg. 4, Seattle, Washington 98115, USA
| | - Patricia M Rivera
- Center for Alaska Native Health Research, Institute of Arctic Biology, University of Alaska Fairbanks, 2141 Koyukuk Drive, Fairbanks, Alaska 99775, USA
| | - Lorrie D Rea
- Institute of Northern Engineering, University of Alaska Fairbanks, 1764 Tanana Loop, Fairbanks, Alaska 99775, USA
| |
Collapse
|
47
|
Gable TD, Johnson-Bice SM, Homkes AT, Fieberg J, Bump JK. Wolves alter the trajectory of forests by shaping the central place foraging behaviour of an ecosystem engineer. Proc Biol Sci 2023; 290:20231377. [PMID: 37935367 PMCID: PMC10645084 DOI: 10.1098/rspb.2023.1377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
Predators can directly and indirectly alter the foraging behaviour of prey through direct predation and the risk of predation, and in doing so, initiate indirect effects that influence myriad species and ecological processes. We describe how wolves indirectly alter the trajectory of forests by constraining the distance that beavers, a central place forager and prolific ecosystem engineer, forage from water. Specifically, we demonstrate that wolves wait in ambush and kill beavers on longer feeding trails than would be expected based on the spatio-temporal availability of beavers. This pattern is driven by temporal dynamics of beaver foraging: beavers make more foraging trips and spend more time on land per trip on longer feeding trails that extend farther from water. As a result, beavers are more vulnerable on longer feeding trails than shorter ones. Wolf predation appears to be a selective evolutionary pressure propelled by consumptive and non-consumptive mechanisms that constrain the distance from water beavers forage, which in turn limits the area of forest around wetlands, lakes and rivers beavers alter through foraging. Thus, wolves appear intricately linked to boreal forest dynamics by shaping beaver foraging behaviour, a form of natural disturbance that alters the successional and ecological states of forests.
Collapse
Affiliation(s)
- Thomas D. Gable
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, 2003 Upper Buford Circles, St Paul, MN 55108, USA
| | - Sean M. Johnson-Bice
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Austin T. Homkes
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, 2003 Upper Buford Circles, St Paul, MN 55108, USA
| | - John Fieberg
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, 2003 Upper Buford Circles, St Paul, MN 55108, USA
| | - Joseph K. Bump
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, 2003 Upper Buford Circles, St Paul, MN 55108, USA
| |
Collapse
|
48
|
Fennell MJE, Ford AT, Martin TG, Burton AC. Assessing the impacts of recreation on the spatial and temporal activity of mammals in an isolated alpine protected area. Ecol Evol 2023; 13:e10733. [PMID: 38034339 PMCID: PMC10682857 DOI: 10.1002/ece3.10733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
The management objectives of many protected areas must meet the dual mandates of protecting biodiversity while providing recreational opportunities. It is difficult to balance these mandates because it takes considerable effort to monitor both the status of biodiversity and impacts of recreation. Using detections from 45 camera traps deployed between July 2019 and September 2021, we assessed the potential impacts of recreation on spatial and temporal activity for 8 medium- and large-bodied terrestrial mammals in an isolated alpine protected area: Cathedral Provincial Park, British Columbia, Canada. We hypothesised that some wildlife perceive a level of threat from people, such that they avoid 'risky times' or 'risky places' associated with human activity. Other species may benefit from associating with people, be it through access to anthropogenic resource subsidies or filtering of competitors/predators that are more human-averse (i.e., human shield hypothesis). Specifically, we predicted that large carnivores would show the greatest segregation from people while mesocarnivores and ungulates would associate spatially with people. We found spatial co-occurrence between ungulates and recreation, consistent with the human shield hypothesis, but did not see the predicted negative relationship between larger carnivores and humans, except for coyotes (Canis latrans). Temporally, all species other than cougars (Puma concolor) had diel activity patterns significantly different from that of recreationists, suggesting potential displacement in the temporal niche. Wolves (Canis lupus) and mountain goats (Oreamnos americanus) showed shifts in temporal activity away from people on recreation trails relative to off-trail areas, providing further evidence of potential displacement. Our results highlight the importance of monitoring spatial and temporal interactions between recreation activities and wildlife communities, in order to ensure the effectiveness of protected areas in an era of increasing human impacts.
Collapse
Affiliation(s)
| | - Adam T. Ford
- Irving K Barber Faculty of ScienceUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
- Biodiversity Research CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Tara G. Martin
- Faculty of ForestryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Biodiversity Research CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - A. Cole Burton
- Faculty of ForestryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Biodiversity Research CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
49
|
Gresham A, Healey JR, Eichhorn MP, Barton O, Smith AR, Shannon G. Horizontal viewsheds of large herbivores as a function of woodland structure. Ecol Evol 2023; 13:e10699. [PMID: 37953987 PMCID: PMC10636313 DOI: 10.1002/ece3.10699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
There is great potential for the use of terrestrial laser scanning (TLS) to quantify aspects of habitat structure in the study of animal ecology and behaviour. Viewsheds-the area visible from a given position-influence an animal's perception of risk and ability to respond to potential danger. The management and conservation of large herbivores and their habitats can benefit greatly from understanding how vegetation structure shapes viewsheds and influences animal activity patterns and foraging behaviour. This study aimed to identify how woodland understory structure influenced horizontal viewsheds at deer eye height. Mobile TLS was used in August 2020 to quantify horizontal visibility-in the form of Viewshed Coefficients (VC)-and understory leaf area index (LAI) of 71 circular sample plots (15-m radius) across 10 woodland sites in North Wales (UK) where fallow deer (Dama dama) are present. The plots were also surveyed in summer for woody plant size structure, stem density and bramble (Rubus fruticosus agg.). Eight plots were re-scanned twice in winter to compare seasonal VC values and assess scan consistency. Sample plots with higher densities of small stems had significantly reduced VC 1 m from the ground. Other stem size classes, mean percentage bramble cover and understory LAI did not significantly affect VC. There was no difference in VC between summer and winter scans, or between repeated winter scans. The density of small stems influenced viewsheds at deer eye height and may alter behavioural responses to perceived risk. This study demonstrates how TLS technology can be applied to address questions in large herbivore ecology and conservation.
Collapse
Affiliation(s)
- Amy Gresham
- School of Environmental and Natural SciencesBangor UniversityBangorUK
- School of Biological SciencesUniversity of ReadingReadingUK
| | - John R. Healey
- School of Environmental and Natural SciencesBangor UniversityBangorUK
| | - Markus P. Eichhorn
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteCorkIreland
| | - Owain Barton
- School of Environmental and Natural SciencesBangor UniversityBangorUK
| | - Andrew R. Smith
- School of Environmental and Natural SciencesBangor UniversityBangorUK
| | - Graeme Shannon
- School of Environmental and Natural SciencesBangor UniversityBangorUK
| |
Collapse
|
50
|
Mills KL, Belant JL, Beukes M, Dröge E, Everatt KT, Fyumagwa R, Green DS, Hayward MW, Holekamp KE, Radloff FGT, Spong G, Suraci JP, Van der Weyde LK, Wilmers CC, Carter NH, Sanders NJ. Tradeoffs between resources and risks shape the responses of a large carnivore to human disturbance. Commun Biol 2023; 6:986. [PMID: 37848509 PMCID: PMC10582050 DOI: 10.1038/s42003-023-05321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/04/2023] [Indexed: 10/19/2023] Open
Abstract
Wide-ranging carnivores experience tradeoffs between dynamic resource availabilities and heterogeneous risks from humans, with consequences for their ecological function and conservation outcomes. Yet, research investigating these tradeoffs across large carnivore distributions is rare. We assessed how resource availability and anthropogenic risks influence the strength of lion (Panthera leo) responses to disturbance using data from 31 sites across lions' contemporary range. Lions avoided human disturbance at over two-thirds of sites, though their responses varied depending on site-level characteristics. Lions were more likely to exploit human-dominated landscapes where resources were limited, indicating that resource limitation can outweigh anthropogenic risks and might exacerbate human-carnivore conflict. Lions also avoided human impacts by increasing their nocturnal activity more often at sites with higher production of cattle. The combined effects of expanding human impacts and environmental change threaten to simultaneously downgrade the ecological function of carnivores and intensify human-carnivore conflicts, escalating extinction risks for many species.
Collapse
Affiliation(s)
- Kirby L Mills
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Jerrold L Belant
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Maya Beukes
- Senckenberg Research Institute and Nature Museum, Terrestrial Zoology, Frankfurt, Germany
| | - Egil Dröge
- WildCRU, Department of Biology, University of Oxford, Tubney, UK
- Zambian Carnivore Programme, Mfuwe, Zambia
| | - Kristoffer T Everatt
- Panthera, New York, NY, USA
- Centre for African Conservation Ecology, Nelson Mandela University, Port Elizabeth, South Africa
- Greater Limpopo Carnivore Programme, Limpopo, Mozambique
| | - Robert Fyumagwa
- Wildlife Conservation Initiative, Arusha, United Republic of Tanzania
| | - David S Green
- Institute for Natural Resources, Portland State University, Portland, OR, USA
| | - Matt W Hayward
- Conservation Science Research Group, School of Environmental and Life Science, University of Newcastle, Callaghan, NSW, Australia
- Centre for African Conservation Ecology, Nelson Mandela University, Qgeberha, South Africa
- Centre for Wildlife Management, University of Pretoria, Tshwane, South Africa
| | - Kay E Holekamp
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, Michigan, MI, USA
| | - F G T Radloff
- Department of Conservation and Marine Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Göran Spong
- Molecular Ecology Group, SLU, 901 83, UMEÅ, Sweden
| | | | - Leanne K Van der Weyde
- Cheetah Conservation Botswana, Gaborone, Botswana
- San Diego Zoo Institute for Conservation Research, Escondido, CA, USA
| | | | - Neil H Carter
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Nathan J Sanders
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|