1
|
Lv X, Wang C, Liu J, Sand W, Nabuk Etim II, Zhang Y, Xu A, Duan J, Zhang R. The Microbiologically Influenced Corrosion and Protection of Pipelines: A Detailed Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4996. [PMID: 39459699 PMCID: PMC11509198 DOI: 10.3390/ma17204996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Microbial corrosion is the deterioration of materials associated with microorganisms in environments, especially in oil- and gas-dominated sectors. It has been widely reported to cause great losses to industrial facilities such as drainage systems, sewage structures, food-processing equipment, and oil and gas facilities. Generally, bacteria, viruses, and other microorganisms are the most important microorganisms associated with microbial corrosion. The destructive nature of these microorganisms differs based on the kind of bacteria involved in the corrosion mechanism. Amongst the microorganisms related to microbial corrosion, sulfate-reducing bacteria (SRB) is reported to be the most common harmful bacteria. The detailed mechanistic explanations relating to the corrosion of pipelines by sulfate-reducing bacteria are discussed. The mechanism of microbial corrosion in pipelines showing the formation of pitting corrosion and cathodic depolarization is also reported. The current review provides theoretical information for the control and protection of pipelines caused by microbial corrosion and how new eco-friendly protection methods could be explored.
Collapse
Affiliation(s)
- Xueqing Lv
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777 Jialingjiang Rd, Qingdao 266000, China; (X.L.); (A.X.)
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.W.); (J.L.); (W.S.); (I.-I.N.E.); (Y.Z.); (J.D.)
| | - Can Wang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.W.); (J.L.); (W.S.); (I.-I.N.E.); (Y.Z.); (J.D.)
| | - Jia Liu
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.W.); (J.L.); (W.S.); (I.-I.N.E.); (Y.Z.); (J.D.)
| | - Wolfgang Sand
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.W.); (J.L.); (W.S.); (I.-I.N.E.); (Y.Z.); (J.D.)
- Aquatic Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
- Institute of Biosciences, Freiberg University of Mining and Technology, 09599 Freiberg, Germany
| | - Ini-Ibehe Nabuk Etim
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.W.); (J.L.); (W.S.); (I.-I.N.E.); (Y.Z.); (J.D.)
- Marine Chemistry and Corrosion Research Group, Department of Marine Science, Akwa Ibom State University, Uyo P.M.B. 1167, Nigeria
| | - Yimeng Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.W.); (J.L.); (W.S.); (I.-I.N.E.); (Y.Z.); (J.D.)
| | - Ailing Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777 Jialingjiang Rd, Qingdao 266000, China; (X.L.); (A.X.)
| | - Jizhou Duan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.W.); (J.L.); (W.S.); (I.-I.N.E.); (Y.Z.); (J.D.)
| | - Ruiyong Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777 Jialingjiang Rd, Qingdao 266000, China; (X.L.); (A.X.)
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.W.); (J.L.); (W.S.); (I.-I.N.E.); (Y.Z.); (J.D.)
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
2
|
Felföldi T. Microbiological aspects of sewage odor problems in the urban environment - a review. Biol Futur 2024; 75:371-377. [PMID: 39251555 DOI: 10.1007/s42977-024-00242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
Growing human population and increasing urbanization call for the need for proper wastewater treatment to reduce environmental pollution and reduce the excess use of natural resources. During the collection of municipal wastewater, the rapid aerobic respiration often causes oxygen depletion and anaerobic conditions in the sewer system resulting in the production of malodorous compounds. The odor problems may lead to public complaints, or in the case of the sewage workers the released volatile compounds even cause serious health hazards. Therefore, microbes have a dual contribution in the urban water cycle, since they have a decisive role in wastewater treatment and the removal of pollutants, but they can also cause problems in the artificial environment. In this review, I would like to summarize the processes underlying the generation of the bad smell associated with sewage and wastewater or with the collection and treatment infrastructure, tracking the way from the households to the plants, including the discussion of processes and possible mitigation related to the released hydrogen sulfide, volatile organics and other compounds.
Collapse
Affiliation(s)
- Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117, Budapest, Hungary.
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary.
| |
Collapse
|
3
|
Ding Y, Li Y, You T, Liu S, Wang S, Zeng X, Jia Y. Effects of denitrification on speciation and redistribution of arsenic in estuarine sediments. WATER RESEARCH 2024; 258:121766. [PMID: 38759285 DOI: 10.1016/j.watres.2024.121766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Microbially-mediated redox processes involving arsenic (As) and its host minerals significantly contribute to the mobilization of As in estuarine sediments. Despite its significance, the coupling between As dynamics and denitrification processes in these sediments is not well understood. This study employed sequential sediment extractions and simultaneous monitoring of dissolved iron (Fe), nitrogen (N), and sulfur (S) to investigate the impact of nitrate (NO3-) on the speciation and redistribution of As, alongside changes in microbial community composition. Our results indicated that NO3- additions significantly enhance anaerobic arsenite (As(III)) oxidation, facilitating its immobilization by increased adsorption onto sediment matrices in As-contaminated estuarine settings. Furthermore, NO3- promoted the conversion of As bound to troilite (FeS) and pyrite (FeS2) into forms associated with Fe oxides, challenging the previously assumed stability of FeS/FeS2-bound As in such environments. Continuous NO3- additions ensured As and Fe oxidation, thereby preventing their reductive dissolution and stabilizing the process that reduces As mobility. Changes in the abundance of bacterial communities and correlation analyses revealed that uncultured Anaerolineaceae and Thioalkalispira may be the main genus involved in these transformations. This study underscores the critical role of NO3- availability in modulating the biogeochemical cycle of As in estuarine sediments, offering profound insights for enhancing As immobilization techniques and informing environmental management and remediation strategies in As-contaminated coastal regions.
Collapse
Affiliation(s)
- Yu Ding
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yongbin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Tingting You
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shichao Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
4
|
Yuan Y, Zhang G, Fang H, Peng S, Xia Y, Wang F. The ecology of the sewer systems: Microbial composition, function, assembly, and network in different spatial locations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121107. [PMID: 38728984 DOI: 10.1016/j.jenvman.2024.121107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/04/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Microbial induced concrete corrosion (MICC) is the primary deterioration affecting global sewers. Disentangling ecological mechanisms in the sewer system is meaningful for implementing policies to protect sewer pipes using trenchless technology. It is necessary to understand microbial compositions, interaction networks, functions, alongside assembly processes in sewer microbial communities. In this study, sewer wastewater samples and microbial samples from the upper part (UP), middle part (MP) and bottom part (BP) of different pipes were collected for 16S rRNA gene amplicon analysis. It was found that BP harbored distinct microbial communities and the largest proportion of unique species (1141) compared to UP and MP. The community in BP tended to be more clustered. Furthermore, significant differences in microbial functions existed in different spatial locations, including the carbon cycle, nitrogen cycle and sulfur cycle. Active microbial sulfur cycling indicated the corrosion risk of MICC. Among the environmental factors, the oxidation‒reduction potential drove changes in BP, while sulfate managed changes in UP and BP. Stochasticity dominated community assembly in the sewer system. Additionally, the sewer microbial community exhibited numerous positive links. BP possessed a more complex, modular network with higher modularity. These deep insights into microbial ecology in the sewer system may guide engineering safety and disaster prevention in sewer infrastructure.
Collapse
Affiliation(s)
- Yiming Yuan
- School of Water Conservancy and Transportation, Zhengzhou University. Zhengzhou 450001, China; Yellow River Laboratory, Zhengzhou University. Zhengzhou 450001, China; National Local Joint Engineering Laboratory of Major Infrastructure Testing and Rehabilitation Technology, Zhengzhou 450001, China; Collaborative Innovation Center of Water Conservancy and Transportation Infrastructure Safety, Henan Province, Zhengzhou 450001, China
| | - Guangyi Zhang
- School of Water Conservancy and Transportation, Zhengzhou University. Zhengzhou 450001, China.
| | - Hongyuan Fang
- School of Water Conservancy and Transportation, Zhengzhou University. Zhengzhou 450001, China; Yellow River Laboratory, Zhengzhou University. Zhengzhou 450001, China; National Local Joint Engineering Laboratory of Major Infrastructure Testing and Rehabilitation Technology, Zhengzhou 450001, China; Collaborative Innovation Center of Water Conservancy and Transportation Infrastructure Safety, Henan Province, Zhengzhou 450001, China.
| | - Siwei Peng
- School of Water Conservancy and Transportation, Zhengzhou University. Zhengzhou 450001, China
| | - Yangyang Xia
- School of Water Conservancy and Transportation, Zhengzhou University. Zhengzhou 450001, China; Yellow River Laboratory, Zhengzhou University. Zhengzhou 450001, China; National Local Joint Engineering Laboratory of Major Infrastructure Testing and Rehabilitation Technology, Zhengzhou 450001, China; Collaborative Innovation Center of Water Conservancy and Transportation Infrastructure Safety, Henan Province, Zhengzhou 450001, China
| | - Fuming Wang
- School of Water Conservancy and Transportation, Zhengzhou University. Zhengzhou 450001, China; Yellow River Laboratory, Zhengzhou University. Zhengzhou 450001, China; National Local Joint Engineering Laboratory of Major Infrastructure Testing and Rehabilitation Technology, Zhengzhou 450001, China; Collaborative Innovation Center of Water Conservancy and Transportation Infrastructure Safety, Henan Province, Zhengzhou 450001, China
| |
Collapse
|
5
|
Pramanik SK, Bhuiyan M, Robert D, Roychand R, Gao L, Cole I, Pramanik BK. Bio-corrosion in concrete sewer systems: Mechanisms and mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171231. [PMID: 38417509 DOI: 10.1016/j.scitotenv.2024.171231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
The deterioration of concrete sewer structures due to bio-corrosion presents critical and escalating challenges from structural, economic and environmental perspectives. Despite decades of research, this issue remains inadequately addressed, resulting in billions of dollars in maintenance costs and a shortened service life for sewer infrastructure worldwide. This challenge is exacerbated by the absence of standardized test methods and universally accepted mitigation strategies, leaving industries and stakeholders confronting an increasingly pressing problem. This paper aims to bridge this knowledge gap by providing a comprehensive review of the complex mechanisms of bio-corrosion, focusing on the formation and accumulation of hydrogen sulfide, its conversion into sulfuric acid and the subsequent deterioration of concrete materials. The paper also explores various factors affecting bio-corrosion rates, including environmental conditions, concrete properties and wastewater characteristics. The paper further highlights existing corrosion test strategies, such as chemical tests, in-situ tests and microbial simulations tests along with their general analytical parameters. The conversion of hydrogen sulfide into sulfuric acid is a primary cause of concrete decay and its progression is influenced by environmental conditions, inherent concrete characteristics, and the composition of wastewater. Through illustrative case studies, the paper assesses the practical implications and efficacy of prevailing mitigation techniques. Coating materials provide a protective barrier against corrosive agents among the discussed techniques, while optimised concrete mix designs enhance the inherent resistance and durability of the concrete matrix. Finally, this review also outlines the future prospects and challenges in bio-corrosion research with an aim to promote the creation of more resilient and cost-efficient materials for sewer systems.
Collapse
Affiliation(s)
| | - Muhammed Bhuiyan
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| | - Dilan Robert
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Rajeev Roychand
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Li Gao
- South East Water, Frankston, Victoria 3199, Australia
| | - Ivan Cole
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | | |
Collapse
|
6
|
Zhou C, Xie Y, Tao Y, Wei H, Wang Y, Liu C. Changes in the transformation of nitrogen and phosphorus under different microbial communities in sewage pipes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11004. [PMID: 38369667 DOI: 10.1002/wer.11004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
Microbial communities living in different environments can affect the transformation of nitrogen and phosphorus in sewage pipes. Two different environments were simulated to investigate the differences in the transformation of nitrogen and phosphorus under different microbial communities in the pipe. Results showed that the concentration of nitrogen and phosphorus changed greatly in the first 25-33 days and the first 21 days, respectively, and then remained stable. The decrease in amino acid nitrogen (AAN) concentration and the increase in ammonia nitrogen (NH4 + -N) concentration in the sediments were evident in the contrast group. The concentrations of total phosphorus (TP), dissolved total phosphorus (DTP), and dissolved reactive phosphorus (DRP) in the overlying water and interstitial water decreased, and that of TP in the sediment increased. Some microorganisms in the sediments of both groups are related to the transformation of nitrogen and phosphorus, such as Clostridium_sensu_stricto_1, Sporacetigenium, Norank_f__Anaerolineaceae, Norank_f__norank_o__PeM15, and Caldisericum. The relative abundance of these microorganisms was remarkably differed between the two groups, which partly caused the difference in nitrogen and phosphorus transformation among overlying water, interstitial water, and sediment in the two environments. PRACTITIONER POINTS: The concentration of N and P changed greatly in the first 20-30 days. AAN and NH4 + -N in sediments had greater concentration variation in contrast group. In two groups, TP, DTP, and DRP of water decreased, and TP of sediment increased. Microbe related to the transformation of N and P differed between the two groups.
Collapse
Affiliation(s)
- Changfeng Zhou
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Yuling Xie
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Yang Tao
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Haodong Wei
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Yiyang Wang
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Cuiyun Liu
- College of Urban Construction, Nanjing Tech University, Nanjing, China
- Jiangsu Key Laboratory of Industrial Water-Conservation & Emission Reduction, Nanjing Tech University, Nanjing, China
| |
Collapse
|
7
|
Liu C, Wei H, Liu Q, Tao Y, Xie Y, Zhou C. Transformation of sulfur in the sediment-water system of the sewage pipeline under different hydraulic retention time. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122596. [PMID: 37748641 DOI: 10.1016/j.envpol.2023.122596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Transformation of sulfur in sewage pipeline was affected by water flow, and the transformation laws at different locations in the sediment-water system were different. This work studied the changes of sulfur in sediments, sewage, and upper space of the sewage pipeline, analyzed the differences in microbial community under different hydraulic retention time (HRT) and depth, and focused on the transformation law of sulfur. Results showed that sulfate and sulfide concentrations in sewage were higher than those in sediments under anaerobic conditions. Moreover, sulfate and sulfide concentrations in sediments decreased with depth. When HRT decreased from 3 h to 1 h, H2S concentration increased evidently, whereas sulfate concentration decreased in the sewage and sediment, and sulfide concentration increased in sewage and surface sediment. Those differences were related to the relative abundances of the two microbial communities. The relative abundances of sulfate-reducing bacteria (SRB), such as Desulfobacter, Desulfovibrio, and Desulfomicrobium, were higher in surface sediment. Correspondingly, those of Thiobacillus, Bacillus, and other sulfur-oxidizing bacteria (SOB) and Smithella were higher in deep sediment. The decrease of HRT might worsen the mass transfer effect of dissolved oxygen, thereby increasing the production rate of sulfur and causing H2S to easily escape from sewage.
Collapse
Affiliation(s)
- Cuiyun Liu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, China; Jiangsu Key Laboratory of Industrial Water-Conservation & Emission Reduction, Nanjing Tech University, Nanjing, 211800, China.
| | - Haodong Wei
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, China
| | - Qi Liu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, China
| | - Yang Tao
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, China
| | - Yuling Xie
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, China
| | - Changfeng Zhou
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, China
| |
Collapse
|
8
|
Wang D, Guan F, Feng C, Mathivanan K, Zhang R, Sand W. Review on Microbially Influenced Concrete Corrosion. Microorganisms 2023; 11:2076. [PMID: 37630635 PMCID: PMC10458460 DOI: 10.3390/microorganisms11082076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Microbially influenced concrete corrosion (MICC) causes substantial financial losses to modern societies. Concrete corrosion with various environmental factors has been studied extensively over several decades. With the enhancement of public awareness on the environmental and economic impacts of microbial corrosion, MICC draws increasingly public attention. In this review, the roles of various microbial communities on MICC and corresponding protective measures against MICC are described. Also, the current status and research methodology of MICC are discussed. Thus, this review aims at providing insight into MICC and its mechanisms as well as the development of protection possibilities.
Collapse
Affiliation(s)
- Dongsheng Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (D.W.); (F.G.); (K.M.)
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China;
| | - Fang Guan
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (D.W.); (F.G.); (K.M.)
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning 530007, China
| | - Chao Feng
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China;
| | - Krishnamurthy Mathivanan
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (D.W.); (F.G.); (K.M.)
| | - Ruiyong Zhang
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (D.W.); (F.G.); (K.M.)
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning 530007, China
| | - Wolfgang Sand
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (D.W.); (F.G.); (K.M.)
- Aquatic Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
- Institute of Biosciences, Freiberg University of Mining and Technology, 09599 Freiberg, Germany
| |
Collapse
|
9
|
Zhang L, Qiu YY, Sharma KR, Shi T, Song Y, Sun J, Liang Z, Yuan Z, Jiang F. Hydrogen sulfide control in sewer systems: A critical review of recent progress. WATER RESEARCH 2023; 240:120046. [PMID: 37224665 DOI: 10.1016/j.watres.2023.120046] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
In sewer systems where anaerobic conditions are present, sulfate-reducing bacteria reduce sulfate to hydrogen sulfide (H2S), leading to sewer corrosion and odor emission. Various sulfide/corrosion control strategies have been proposed, demonstrated, and optimized in the past decades. These included (1) chemical addition to sewage to reduce sulfide formation, to remove dissolved sulfide after its formation, or to reduce H2S emission from sewage to sewer air, (2) ventilation to reduce the H2S and humidity levels in sewer air, and (3) amendments of pipe materials/surfaces to retard corrosion. This work aims to comprehensively review both the commonly used sulfide control measures and the emerging technologies, and to shed light on their underlying mechanisms. The optimal use of the above-stated strategies is also analyzed and discussed in depth. The key knowledge gaps and major challenges associated with these control strategies are identified and strategies dealing with these gaps and challenges are recommended. Finally, we emphasize a holistic approach to sulfide control by managing sewer networks as an integral part of an urban water system.
Collapse
Affiliation(s)
- Liang Zhang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Yan-Ying Qiu
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Keshab R Sharma
- Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Tao Shi
- Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Yarong Song
- Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jianliang Sun
- School of Environment, South China Normal University, Guangzhou, China
| | - Zhensheng Liang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, St. Lucia, QLD 4072, Australia; School of Energy and Environment, City University of Hong Kong, Hong Kong, China.
| | - Feng Jiang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
10
|
Marais TS, Huddy RJ, Harrison STL. Elemental sulphur recovery from a sulphate-rich aqueous stream in a single hybrid linear flow channel reactor is mediated through microbial community dynamics and adaptation to reactor zones. FEMS Microbiol Ecol 2022; 98:6763417. [PMID: 36259757 DOI: 10.1093/femsec/fiac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/20/2022] [Accepted: 10/03/2022] [Indexed: 01/21/2023] Open
Abstract
The coupled application of biological sulphate reduction (BSR) and partial sulphide oxidation to treat sulphate-rich wastewater is an effective strategy to mitigate pollution and recover elemental sulphur for repurposing. The recent development of the hybrid linear flow channel reactor (LFCR) achieves simultaneous BSR and partial sulphide oxidation with biosulphur recovery via a floating sulphur biofilm (FSB). Here, we explore the microbial community zoning and dynamics facilitating the process. A total of three continuous LFCRs were used to evaluate the effect of reactor zones, hydraulic residence time (HRT), carbon source, namely lactate and acetate, as well as reactor geometry and scale on process performance and microbial community dynamics. Community composition of sessile and planktonic microbial consortia were resolved at a 5- and 2-day HRT through 16S rRNA amplicon sequencing. Preferential attachment and prevalence of specific phylotypes within the sessile and planktonic communities revealed clear adaptation of key microorganisms to different microenvironments. Key microbial taxa affiliated with sulphate reduction and sulphide oxidation as well as those implicated in fermentation and syntrophic metabolism, fluctuated in response to changes in HRT and process performance. Through understanding the relationship between microbial community dynamics and process performance, this research will inform better process design and optimization of the hybrid LFCR.
Collapse
Affiliation(s)
- T S Marais
- Centre for Bioprocess Engineering Research, Department of Chemical Engineering, University of Cape Town, Private Bag X1, Rondebosch 7701, South Africa.,Future Water Institute, 1 Madiba Circle, University of Cape Town, 7700, South Africa
| | - R J Huddy
- Centre for Bioprocess Engineering Research, Department of Chemical Engineering, University of Cape Town, Private Bag X1, Rondebosch 7701, South Africa.,Future Water Institute, 1 Madiba Circle, University of Cape Town, 7700, South Africa
| | - S T L Harrison
- Centre for Bioprocess Engineering Research, Department of Chemical Engineering, University of Cape Town, Private Bag X1, Rondebosch 7701, South Africa.,Future Water Institute, 1 Madiba Circle, University of Cape Town, 7700, South Africa
| |
Collapse
|
11
|
Jana A, Sarkar TK, Chouhan A, Dasgupta D, Khatri OP, Ghosh D. Microbiologically Influenced Corrosion of Wastewater Pipeline and its Mitigation by Phytochemicals: Mechanistic Evaluation based on Spectroscopic, Microscopic and Theoretical Analyses. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Narenkumar J, Devanesan S, AlSalhi MS, Kokilaramani S, Ting YP, Rahman PK, Rajasekar A. Biofilm formation on copper and its control by inhibitor/biocide in cooling water environment. Saudi J Biol Sci 2021; 28:7588-7594. [PMID: 34867063 PMCID: PMC8626344 DOI: 10.1016/j.sjbs.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022] Open
Abstract
The present study has successfully identified the nitrate reducing bacteria present in the cooling water system and also investigated the performance of industrially applied biocide and inhibitor on the bacterial inhibition. In order to carry out the objective of this study, facilities and methods such as 16S rRNA gene sequencing, Lowry assay, SEM, EIS, ICP-MS and weight loss analysis were being utilized. In this study, two out of the five morphologically dis- similar colonies identified through 16S rRNA gene sequencing, namely the Massilia timonae and the Pseudomonas, were being utilized in the biocorrosion study on copper metal. From the surface analysis using SEM demonstrated the phenomenon of biofilm formation on the copper surface. 2-methylbenzimidazole has the addition of methyl group in the diazole ring position of benzimidazole it has create basicity environment and inhibit the metal deterioration. Meanwhile, it is also deducible from the EIS and protein analysis that com- bination of biocide with either of the inhibitors gives rise to better biocorrosion suppression (0.00178 mpy and 0.00171mpy) as compared to the sole effect of either biocide or inhibitor (0.00219 mpy, 0.00162 and 0.00143). Biocorrosion system biocide with MBM was found to exhibit 65% corrosion inhibition efficiency. Moreover, adoption of 2-Methylbenzimidazole seems to display better performance as compared to Multionic 8151, which is adopted in cooling water system.
Collapse
Affiliation(s)
- Jayaraman Narenkumar
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu 600073, India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, Kingdom of Saudi Arabia, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mohamad S. AlSalhi
- Department of Physics and Astronomy, College of Science, Kingdom of Saudi Arabia, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Seenivasan Kokilaramani
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, India
| | - Yen-Peng Ting
- Department of Chemical and Biomolecular Engineering, National University of Singapore, engineering Drive, Singapore 117576, Singapore
| | | | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, India
- Corresponding author.
| |
Collapse
|
13
|
Song Y, Chetty K, Garbe U, Wei J, Bu H, O'moore L, Li X, Yuan Z, McCarthy T, Jiang G. A novel granular sludge-based and highly corrosion-resistant bio-concrete in sewers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148270. [PMID: 34119799 DOI: 10.1016/j.scitotenv.2021.148270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Bio-concrete is known for its self-healing capacity although the corrosion resistance was not investigated previously. This study presents an innovative bio-concrete by mixing anaerobic granular sludge into concrete to mitigate sewer corrosion. The control concrete and bio-concrete (with granular sludge at 1% and 2% of the cement weight) were partially submerged in a corrosion chamber for 6 months, simulating the tidal-region corrosion in sewers. The corrosion rates of 1% and 2% bio-concrete were about 17.2% and 42.8% less than that of the control concrete, together with 14.6% and 35.0% less sulfide uptake rates, 15.3% and 55.6% less sulfate concentrations, and higher surface pH (up to 1.8 units). Gypsum and ettringite were major corrosion products but in smaller sizes on bio-concrete than that of control concrete. The total relative abundance of corrosion-causing microorganisms, i.e. sulfide-oxidizing bacteria, was significantly reduced on bio-concrete, while more sulfate-reducing bacteria (SRB) was detected. The corrosion-resistance of bio-concrete was mainly attributed to activities of SRB derived from the granular sludge, which supported the sulfur cycle between the aerobic and anaerobic corrosion sub-layers. This significantly reduced the net production of biogenic sulfuric acid and thus corrosion. The results suggested that the novel granular sludge-based bio-concrete provides a highly potential solution to reduce sewer corrosion.
Collapse
Affiliation(s)
- Yarong Song
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kirthi Chetty
- School of Civil, Mining & Environmental Engineering, The University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, Lucas Heights, NSW 2234, Australia
| | - Ulf Garbe
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, Lucas Heights, NSW 2234, Australia
| | - Jing Wei
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Hao Bu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Liza O'moore
- School of Civil Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Xuan Li
- School of Civil, Mining & Environmental Engineering, The University of Wollongong, Wollongong, NSW 2522, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Timothy McCarthy
- School of Civil, Mining & Environmental Engineering, The University of Wollongong, Wollongong, NSW 2522, Australia; Sustainable Buildings Research Centre, University of Wollongong, Wollongong, Australia
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Civil, Mining & Environmental Engineering, The University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
14
|
Laboratory Test to Evaluate the Resistance of Cementitious Materials to Biodeterioration in Sewer Network Conditions. MATERIALS 2021; 14:ma14030686. [PMID: 33540710 PMCID: PMC7867231 DOI: 10.3390/ma14030686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/26/2022]
Abstract
The biodeterioration of cementitious materials in sewer networks has become a major economic, ecological, and public health issue. Establishing a suitable standardized test is essential if sustainable construction materials are to be developed and qualified for sewerage environments. Since purely chemical tests are proven to not be representative of the actual deterioration phenomena in real sewer conditions, a biological test–named the Biogenic Acid Concrete (BAC) test–was developed at the University of Toulouse to reproduce the biological reactions involved in the process of concrete biodeterioration in sewers. The test consists in trickling a solution containing a safe reduced sulfur source onto the surface of cementitious substrates previously covered with a high diversity microbial consortium. In these conditions, a sulfur-oxidizing metabolism naturally develops in the biofilm and leads to the production of biogenic sulfuric acid on the surface of the material. The representativeness of the test in terms of deterioration mechanisms has been validated in previous studies. A wide range of cementitious materials have been exposed to the biodeterioration test during half a decade. On the basis of this large database and the expertise gained, the purpose of this paper is (i) to propose a simple and robust performance criterion for the test (standardized leached calcium as a function of sulfate produced by the biofilm), and (ii) to demonstrate the repeatability, reproducibility, and discriminability of the test method. In only a 3-month period, the test was able to highlight the differences in the performances of common cement-based materials (CEM I, CEM III, and CEM V) and special calcium aluminate cement (CAC) binders with different nature of aggregates (natural silica and synthetic calcium aluminate). The proposed performance indicator (relative standardized leached calcium) allowed the materials to be classified according to their resistance to biogenic acid attack in sewer conditions. The repeatability of the test was confirmed using three different specimens of the same material within the same experiment and the reproducibility of the results was demonstrated by standardizing the results using a reference material from 5 different test campaigns. Furthermore, developing post-testing processing and calculation methods constituted a first step toward a standardized test protocol.
Collapse
|
15
|
Flores-Cortés M, Pérez-Trevilla J, de María Cuervo-López F, Buitrón G, Quijano G. H 2S oxidation coupled to nitrate reduction in a two-stage bioreactor: Targeting H 2S-rich biogas desulfurization. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:76-84. [PMID: 33285376 DOI: 10.1016/j.wasman.2020.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/27/2020] [Accepted: 11/07/2020] [Indexed: 05/13/2023]
Abstract
A two-stage bioreactor operated under anoxic denitrifying conditions was evaluated for desulfurization of synthetic biogas laden with H2S concentrations between 2500 and 10,000 ppmv. H2S removal efficiencies higher than 95% were achieved for H2S loads ranging from 16.2 to 51.9 gS mliquid-3h-1. Average H2S oxidation performance (fraction of S-SO42- produced per gram of S-H2S absorbed) ranged between 8.2 ± 1.2 and 18.7 ± 5.3% under continuous liquid operation. Nitrogen mass balance showed that only 2-6% of the N-NO3- consumed was directed to biomass growth and the rest was directed to denitrification. Significant changes in the bacterial community composition did not hinder the H2S removal efficiency. The bioreactor configuration proposed avoided clogging issues due to elemental sulfur accumulation as commonly occurs in packed bed bioreactors devoted to H2S-rich biogas desulfurization.
Collapse
Affiliation(s)
- Mauricio Flores-Cortés
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico
| | - Jaime Pérez-Trevilla
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico
| | - Flor de María Cuervo-López
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, C.P. 09340 Mexico City, Mexico
| | - Germán Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico
| | - Guillermo Quijano
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico.
| |
Collapse
|
16
|
Pérez-Díaz MI, Zárate-Segura P, Bermeo-Fernández LA, Nirmalkar K, Bastida-González F, García-Mena J, Jan-Roblero J, Guerrero-Barajas C. "Bacterial consortium from hydrothermal vent sediments presents electrogenic activity achieved under sulfate reducing conditions in a microbial fuel cell". JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1189-1205. [PMID: 33312634 PMCID: PMC7721773 DOI: 10.1007/s40201-020-00537-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/07/2020] [Indexed: 05/27/2023]
Abstract
PURPOSE The aim of the present work was to assess the electrogenic activity of bacteria from hydrothermal vent sediments achieved under sulfate reducing (SR) conditions in a microbial fuel cell design with acetate, propionate and butyrate as electron donors. METHODS Two different mixtures of volatile fatty acids (VFA) were evaluated as the carbon source at two chemical oxygen demand (COD) proportions. The mixtures of VFA used were: acetate, propionate and butyrate COD: 3:0.5:0.5 (stage 1) and acetate - butyrate COD: 3.5:0.5 (stage 2). Periodical analysis of sulfate (SO4 -2), sulfide (HS-) and COD were conducted to assess sulfate reduction (SR) and COD removal along with measurements of voltage and current to assess the global performance of the consortium in the system. RESULTS Percentage of SR was of 97.5 ± 0.7 and 74.3 ± 1.5% for stage 1 and 2, respectively. The % COD removal was of 91 ± 2.1 and 75.3 ± 9.6 for stage 1 and 2, respectively. Although SR and COD removal were higher at stage 1, in regards of energy, stage 2 presented higher current and power densities and Coulombic efficiency as follows: 741.7 ± 30.5 μA/m2, 376 ± 34.4 μW/m2 and 5 ± 2.7%, whereas for stage 1 these values were: 419 ± 71 μA/m2, 52.7 ± 18 μW/m2 and 0.02%, respectively. A metagenomic analysis - stage 2 - in the anodic chamber, demonstrated that SR was due to Dethiosulfovibrionaceae (HA73), Desulfobacter and Desulfococcus and the electrogenic microorganisms were Planococcus, SHD-231, Proteiniclasticum, vadinCA02, and families Porphyromonadacea and Pseudomonadaceae. CONCLUSIONS It was demonstrated that microorganisms prevenient from hydrothermal vent sediments adapted to a microbial fuel cell system are able to generate electricity coupled to 74.3 ± 1.5 and 75.3 ± 9.6% of SR and COD removal respectively, with a mixture of acetate - butyrate.
Collapse
Affiliation(s)
- Margarita Isabel Pérez-Díaz
- Laboratorio de Biotecnología Ambiental Posgrado. Departamento de Bioprocesos. Unidad Profesional Interdisciplinaria de Biotecnología (UPIBI), Instituto Politécnico Nacional, Av. Acueducto s/n, Col. Barrio la Laguna Ticomán, 07340 Mexico City, Mexico
| | - Paola Zárate-Segura
- Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, 11340 Mexico City, Mexico
| | - Luis Antonio Bermeo-Fernández
- Laboratorio de Biotecnología Ambiental Posgrado. Departamento de Bioprocesos. Unidad Profesional Interdisciplinaria de Biotecnología (UPIBI), Instituto Politécnico Nacional, Av. Acueducto s/n, Col. Barrio la Laguna Ticomán, 07340 Mexico City, Mexico
| | - Khemlal Nirmalkar
- Departamento de Genética y Biología Molecular, CINVESTAV – IPN, Av. IPN # 2508, Col. Zacatenco, 07360 Mexico City, Mexico
| | - Fernando Bastida-González
- Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, 11340 Mexico City, Mexico
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, CINVESTAV – IPN, Av. IPN # 2508, Col. Zacatenco, 07360 Mexico City, Mexico
| | - Janet Jan-Roblero
- Laboratorio de Biotecnología Ambiental. Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n, Col. Santo Tomás, 11340 Mexico City, Mexico
| | - Claudia Guerrero-Barajas
- Laboratorio de Biotecnología Ambiental Posgrado. Departamento de Bioprocesos. Unidad Profesional Interdisciplinaria de Biotecnología (UPIBI), Instituto Politécnico Nacional, Av. Acueducto s/n, Col. Barrio la Laguna Ticomán, 07340 Mexico City, Mexico
| |
Collapse
|
17
|
Qiu L, Dong S, Ashour A, Han B. Antimicrobial concrete for smart and durable infrastructures: A review. CONSTRUCTION AND BUILDING MATERIALS 2020; 260:120456. [PMID: 32904479 PMCID: PMC7455550 DOI: 10.1016/j.conbuildmat.2020.120456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 05/23/2023]
Abstract
Concrete structures in sewer systems, marine engineering, underground engineering and other humid environments are easily subjected to microbial attachment, colonization and, eventually, deterioration. With careful selection and treatment, some additives including inorganic and organic antimicrobial agents were found to be able to endow concrete with excellent antimicrobial performance. This paper reviews various types of antimicrobial concrete fabricated with different types of antimicrobial agents. The classification and methods of applying antimicrobial agents into concrete are briefly introduced. The antimicrobial and mechanical properties as well as mass/weight loss of concrete incorporating antimicrobial agents are summarized. Applications reported in this field are presented and future research opportunities and challenges of antimicrobial concrete are also discussed in this review.
Collapse
Affiliation(s)
- Liangsheng Qiu
- School of Civil Engineering, Dalian University of Technology, Dalian 116024 China
| | - Sufen Dong
- School of Material Science and Engineering, Dalian University of Technology, Dalian 116024 China
| | - Ashraf Ashour
- Faculty of Engineering & Informatics, University of Bradford, Bradford BD7 1DP, UK
| | - Baoguo Han
- School of Civil Engineering, Dalian University of Technology, Dalian 116024 China
| |
Collapse
|
18
|
Gao R, Zhang Z, Zhang T, Liu J, Lu J. Upstream Natural Pulsed Ventilation: A simple measure to control the sulfide and methane production in gravity sewer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140579. [PMID: 32629266 DOI: 10.1016/j.scitotenv.2020.140579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/04/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Production of sulfide and methane due to anaerobic biological transformations in sewer pipes causes serious problems to sewer maintenance. For gravity sewers, enhancing ventilation is a practical method that reduces the production of both sulfide and methane. This study aimed to determine the effectiveness of a new method, Upstream Natural Pulsed Ventilation (UNPV), to control sulfide and methane production in gravity sewers. Two lab-scale reactors simulating the gravity sewer pipe with and without ventilation were set up to assess the effectiveness. The results show that compared with the gravity sewer pipe without ventilation, under the UNPV condition, the total sulfide concentration reduced by 39.08% and 58.74%, and the methane concentration reduced by 42.29% and 35.70% in the upstream and downstream sewer pipe, respectively. High-throughput sequencing analysis showed that the UNPV method could inhibit the proliferation of sulfate-reducing bacteria and stimulate the proliferation of sulfur-oxidizing bacteria within the whole sewer pipe. The composition of methanogenic archaea that are responsible for methane production was changed by ventilation. The increased oxidation-reduction potential and organic carbon transportation in wastewater under ventilation may be responsible for the microbial community changes. The findings of this study may provide new insight to reduce sulfide and methane production in gravity sewers.
Collapse
Affiliation(s)
- Ruyue Gao
- Environmental and Municipal Engineering Department, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, PR China
| | - Zhiqiang Zhang
- Environmental and Municipal Engineering Department, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, PR China
| | - Tingwei Zhang
- Environmental and Municipal Engineering Department, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, PR China
| | - Junzhuo Liu
- Environmental and Municipal Engineering Department, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, PR China
| | - Jinsuo Lu
- Environmental and Municipal Engineering Department, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, PR China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, PR China; Key Laboratory of Environmental Engineering, Shaanxi Province, PR China.
| |
Collapse
|
19
|
Tetracycline Induces the Formation of Biofilm of Bacteria from Different Phases of Wastewater Treatment. Processes (Basel) 2020. [DOI: 10.3390/pr8080989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The study monitored the effect of tetracycline on bacterial biofilm formation and compared biofilm formation by resistant bacterial strains in different phases of the wastewater treatment process in wastewater treatment plant (WWTP). The crystal violet staining method was used to evaluate the biofilm formation. Biofilm-related bacterial properties were characterized by hydrophobicity, autoaggregation and motility tests. The relative abundance of tetracycline resistance genes (tetW, tetM, tetO, tetA and tetB) in wastewaters were subsequently quantified using qPCR. The results show that the isolates from the nitrification tank produce biofilm with up to 10 times greater intensity relative to the isolates from the sedimentation tank. In isolates of Aeromonas sp. from the nitrification tank, increased biofilm production in the occurrence of tetracycline from a concentration of 0.03125 µg/mL was observed. The tetW gene showed the highest relative abundance out of all the tested genes. From the sampling points, its abundance was the highest in the sedimentation tank of the WWTP. Based on these results, it can be assumed that resistant bacteria are able to form a biofilm and sub-inhibitory tetracycline concentrations induce biofilm formation. WWTPs thus represent a reservoir of antibiotic resistance genes and contribute to the spread of resistance in the natural environment.
Collapse
|
20
|
Li X, Bond PL, O'Moore L, Wilkie S, Hanzic L, Johnson I, Mueller K, Yuan Z, Jiang G. Increased Resistance of Nitrite-Admixed Concrete to Microbially Induced Corrosion in Real Sewers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2323-2333. [PMID: 31977201 DOI: 10.1021/acs.est.9b06680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbially induced concrete corrosion is a major deterioration process in sewers, causing a huge economic burden, and improved mitigating technologies are required. This study reports a novel and promising effective solution to attenuate the corrosion in sewers using calcium nitrite-admixed concrete. This strategy aims to suppress the development and activity of corrosion-inducing microorganisms with the antimicrobial free nitrous acid, which is generated in situ from calcium nitrite that is added to the concrete. Concrete coupons with calcium nitrite as an admixture were exposed in a sewer manhole, together with control coupons that had no nitrite admixture, for 18 months. The corrosion process was monitored by measuring the surface pH, corrosion product composition, concrete corrosion loss, and the microbial community on the corrosion layer. During the exposure, the corrosion loss of the admixed concrete coupons was 30% lower than that of the control coupons. The sulfide uptake rate of the admixed concrete was also 30% lower, leading to a higher surface pH (0.5-0.6 unit), in comparison to that of the control coupons. A negative correlation between the calcium nitrite admixture in concrete and the abundance of sulfide-oxidizing microorganisms was determined by DNA sequencing. The results obtained in this field study demonstrated that this novel use of calcium nitrite as an admixture in concrete is a promising strategy to mitigate the microbially induced corrosion in sewers.
Collapse
Affiliation(s)
- Xuan Li
- Advanced Water Management Centre , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Philip L Bond
- Advanced Water Management Centre , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Liza O'Moore
- School of Civil Engineering , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Simeon Wilkie
- Advanced Water Management Centre , The University of Queensland , Brisbane , QLD 4072 , Australia
- Getty Conservation Institute , Los Angeles , California 90049 , United States
| | - Lucija Hanzic
- School of Civil Engineering , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Ian Johnson
- Council of the City of Gold Coast , Gold Coast , QLD 4211 , Australia
| | - Kara Mueller
- Council of the City of Gold Coast , Gold Coast , QLD 4211 , Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Guangming Jiang
- Advanced Water Management Centre , The University of Queensland , Brisbane , QLD 4072 , Australia
- School of Civil, Mining and Environmental Engineering , University of Wollongong , Wollongong , NSW 2522 , Australia
| |
Collapse
|
21
|
Narenkumar J, AlSalhi MS, Arul Prakash A, Abilaji S, Devanesan S, Rajasekar A, Alfuraydi AA. Impact and Role of Bacterial Communities on Biocorrosion of Metals Used in the Processing Industry. ACS OMEGA 2019; 4:21353-21360. [PMID: 31867530 PMCID: PMC6921611 DOI: 10.1021/acsomega.9b02954] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/15/2019] [Indexed: 05/04/2023]
Abstract
In the present study, the effects of the corrosive bacterial community and the biofilm on cooling water systems made from mild steel (MS) and brass (BR) were studied under field exposure conditions using electrochemical impedance spectroscopy measurements, scanning electron microscope, and X-ray diffraction methods. Results from16S rRNA gene sequences showed that the predominant bacteria species detected in the biofilm of MS and BR metals during 360 days of exposure were Bacillus cereus EN14, Achromobacter xylosoxidans EN15, A. xylosoxidans EN16, and B. cereus EN17. The weight loss results revealed that a higher corrosion rate was observed in MS (0.7 ± 0.1 mm/y) compared with that in BR (0.17 ± 0.05 mm/y) at the end of the exposure period. This can be explained by the bacterial communities enhancing the corrosion rates by creating a local corrosive environment. Scanning electron microscope images revealed the adsorption of biofilm on the MS and BR surfaces following180 days of exposure. From the electrochemical impedance study, a higher charge transfer resistance (R ct) was obtained for BR (119.6 Ω cm2) when compared with that of MS (43.4 Ω cm2). This study explains the role of bacterial communities and their mechanisms in the corrosion of MS and BR in cooling water systems.
Collapse
Affiliation(s)
- Jayaraman Narenkumar
- Environmental Molecular Microbiology
Research
Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamilnadu, India
- Shenyang
National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
| | - Mohamad S. AlSalhi
- Department
of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- E-mail: , (M.S.A.)
| | - Arumugam Arul Prakash
- Environmental Molecular Microbiology
Research
Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamilnadu, India
| | - Subramani Abilaji
- Environmental Molecular Microbiology
Research
Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamilnadu, India
| | - Sandhanasamy Devanesan
- Department
of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology
Research
Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamilnadu, India
- E-mail: , (A.R.)
| | - Akram A. Alfuraydi
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
22
|
Li X, O'Moore L, Song Y, Bond PL, Yuan Z, Wilkie S, Hanzic L, Jiang G. The rapid chemically induced corrosion of concrete sewers at high H 2S concentration. WATER RESEARCH 2019; 162:95-104. [PMID: 31255785 DOI: 10.1016/j.watres.2019.06.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/04/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
Concrete corrosion in sewers is primarily caused by H2S in sewer atmosphere. H2S concentration can vary from several ppm to hundreds of ppm in real sewers. Our understanding of sewer corrosion has increased dramatically in recent years, however, there is limited knowledge of the concrete corrosion at high H2S levels. This study examined the corrosion development in sewers with high H2S concentrations. Fresh concrete coupons, manufactured according to sewer pipe standards, were exposed to corrosive conditions in a pilot-scale gravity sewer system with gaseous H2S at 1100 ± 100 ppm. The corrosion process was continuously monitored by measuring the surface pH, corrosion product composition, corrosion loss and the microbial community. The surface pH of concrete was reduced from 10.5 ± 0.3 to 3.1 ± 0.5 within 20 days and this coincided with a rapid corrosion rate of 3.5 ± 0.3 mm year -1. Microbial community analysis based on 16S rRNA gene sequencing indicated the absence of sulfide-oxidizing microorganisms in the corrosion layer. The chemical analysis of corrosion products supported the reaction of cement with sulfuric acid formed by the chemical oxidation of H2S. The rapid corrosion of concrete in the gravity pipe was confirmed to be caused by the chemical oxidation of hydrogen sulfide at high concentrations. This is in contrast to the conventional knowledge that is focused on microbially induced corrosion. This first-ever systematic investigation shows that chemically induced oxidation of H2S leads to the rapid corrosion of new concrete sewers within a few weeks. These findings contribute novel understanding of in-sewer corrosion processes and hold profound implications for sewer operation and corrosion management.
Collapse
Affiliation(s)
- Xuan Li
- Advanced Water Management Centre, The University of Queensland, Australia.
| | - Liza O'Moore
- School of Civil Engineering, The University of Queensland, Australia.
| | - Yarong Song
- Advanced Water Management Centre, The University of Queensland, Australia.
| | - Philp L Bond
- Advanced Water Management Centre, The University of Queensland, Australia.
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, Australia.
| | - Simeon Wilkie
- Advanced Water Management Centre, The University of Queensland, Australia; Division of Civil Engineering, University of Dundee, Scotland, United Kingdom.
| | - Lucija Hanzic
- School of Civil Engineering, The University of Queensland, Australia.
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, Australia; School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia.
| |
Collapse
|
23
|
Khanongnuch R, Di Capua F, Lakaniemi AM, Rene ER, Lens PNL. Transient-state operation of an anoxic biotrickling filter for H 2S removal. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:42-51. [PMID: 31136892 DOI: 10.1016/j.jhazmat.2019.05.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/11/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
The application of an anoxic biotrickling filter (BTF) for H2S removal from contaminated gas streams is a promising technology for simultaneous H2S and NO3- removal. Three transient-state conditions, i.e. different liquid flow rates, wet-dry bed operations and H2S shock loads, were applied to a laboratory-scale anoxic BTF. In addition, bioaugmentation of the BTF with a H2S removing-strain, Paracoccus MAL 1HM19, to enhance the biomass stability was investigated. Liquid flow rates (120, 60 and 30 L d-1) affected the pH and NO3- removal efficiency (RE) in the liquid phase. Wet-dry bed operations at 2-2 h and 24-24 h reduced the H2S elimination capacity (EC) by 60-80%, while the operations at 1-1 h and 12-12 h had a lower effect on the BTF performance. When the BTF was subjected to H2S shock loads by instantly increasing the gas flow rate (from 60 to 200 L h-1) and H2S inlet concentration (from 112 (± 15) to 947 (± 151) ppmv), the BTF still showed a good H2S RE (>93%, EC of 37.8 g S m-3 h-1). Bioaugmentation with Paracoccus MAL 1HM19 enhanced the oxidation of the accumulated S0 to sulfate in the anoxic BTF.
Collapse
Affiliation(s)
- Ramita Khanongnuch
- Tampere University, Faculty of Engineering and Natural Sciences, P. O. Box 541, 33014 Tampere, Finland.
| | - Francesco Di Capua
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Aino-Maija Lakaniemi
- Tampere University, Faculty of Engineering and Natural Sciences, P. O. Box 541, 33014 Tampere, Finland
| | - Eldon R Rene
- UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands
| | - Piet N L Lens
- Tampere University, Faculty of Engineering and Natural Sciences, P. O. Box 541, 33014 Tampere, Finland; UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands
| |
Collapse
|
24
|
Effect of nano-zerovalent iron incorporated polyvinyl-alginate hybrid hydrogel matrix on inhibition of corrosive bacteria in a cooling tower water environment. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0443-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
25
|
Vishwakarma V, Anandkumar B. Molecular biological tools in concrete biodeterioration - a mini review. ENVIRONMENTAL TECHNOLOGY 2019; 40:i-xi. [PMID: 30112961 DOI: 10.1080/09593330.2018.1513082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
Concrete structures develop biofilms when exposed to various environments. At a certain stage, the microbial films destroy the concrete structures leading to significant deterioration. Culture-dependent techniques give an incomplete picture of the microbial communities on the concrete surface. Culture-independent techniques or molecular biological tools pave a new way to analyse microbial communities involved in concrete biodeterioration. This study highlights the need to 'build' a database, for Microbiologically Influenced Concrete Corrosion (MICC) involving microbial groups that are being identified using culture-dependent and independent techniques. The role of molecular tools such as 16S rRNA sequencing, denaturing gradient gel electrophoresis (DGGE), Fluorescent in situ hybridization (FISH), Real-time Polymerase Chain Reaction (RT-PCR), microarray analysis, 2-Dimensional gel electrophoresis (2-DE) in analysing microbial communities on the concrete structures have been reviewed in this paper.
Collapse
Affiliation(s)
- Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, India
| | - Balakrishnan Anandkumar
- Corrosion Science and Technology Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, India
| |
Collapse
|
26
|
Grengg C, Mittermayr F, Ukrainczyk N, Koraimann G, Kienesberger S, Dietzel M. Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review. WATER RESEARCH 2018; 134:341-352. [PMID: 29453009 DOI: 10.1016/j.watres.2018.01.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
Microbial induced concrete corrosion (MICC) is recognized as one of the main degradation mechanisms of subsurface infrastructure worldwide, raising the demand for sustainable construction materials in corrosive environments. This review aims to summarize the key research progress acquired during the last decade regarding the understanding of MICC reaction mechanisms and the development of durable materials from an interdisciplinary perspective. Special focus was laid on aspects governing concrete - micoorganisms interaction since being the central process steering biogenic acid corrosion. The insufficient knowledge regarding the latter is proposed as a central reason for insufficient progress in tailored material development for aggressive wastewater systems. To date no cement-based material exists, suitable to withstand the aggressive conditions related to MICC over its entire service life. Research is in particular needed on the impact of physiochemical material parameters on microbial community structure, growth characteristics and limitations within individual concrete speciation. Herein an interdisciplinary approach is presented by combining results from material sciences, microbiology, mineralogy and hydrochemistry to stimulate the development of novel and sustainable materials and mitigation strategies for MICC. For instance, the application of antibacteriostatic agents is introduced as an effective instrument to limit microbial growth on concrete surfaces in aggressive sewer environments. Additionally, geopolymer concretes are introduced as highly resistent in acid environments, thus representing a possible green alternative to conventional cement-based construction materials.
Collapse
Affiliation(s)
- Cyrill Grengg
- Institute of Applied Geosciences, Graz University of Technology, Rechbauerstraße 12, 8010, Graz, Austria.
| | - Florian Mittermayr
- Institute of Technology and Testing of Building Materials, Graz University of Technology, Inffeldgasse 24, 8010, Graz, Austria
| | - Neven Ukrainczyk
- Institute of Construction and Building Materials, Technische Universität Darmstadt, Franziska-Braun-Straße 3, 64287, Darmstadt, Germany
| | - Günther Koraimann
- Institute of Molecular Biosciences, University of Graz, Humboldstraße 50, 8010, Graz, Austria
| | - Sabine Kienesberger
- Institute of Molecular Biosciences, University of Graz, Humboldstraße 50, 8010, Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
| | - Martin Dietzel
- Institute of Applied Geosciences, Graz University of Technology, Rechbauerstraße 12, 8010, Graz, Austria
| |
Collapse
|
27
|
Cyprowski M, Stobnicka-Kupiec A, Ławniczek-Wałczyk A, Bakal-Kijek A, Gołofit-Szymczak M, Górny RL. Anaerobic bacteria in wastewater treatment plant. Int Arch Occup Environ Health 2018; 91:571-579. [PMID: 29594341 PMCID: PMC6002452 DOI: 10.1007/s00420-018-1307-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/25/2018] [Indexed: 12/19/2022]
Abstract
Purpose The objective of this study was to assess exposure to anaerobic bacteria released into air from sewage and sludge at workplaces from a wastewater treatment plant (WWTP). Methods Samples of both sewage and sludge were collected at six sampling points and bioaerosol samples were additionally collected (with the use of a 6-stage Andersen impactor) at ten workplaces covering different stages of the technological process. Qualitative identification of all isolated strains was performed using the biochemical API 20A test. Additionally, the determination of Clostridium pathogens was carried out using 16S rRNA gene sequence analysis. Results The average concentration of anaerobic bacteria in the sewage samples was 5.49 × 104 CFU/mL (GSD = 85.4) and in sludge—1.42 × 106 CFU/g (GSD = 5.1). In turn, the average airborne bacterial concentration was at the level of 50 CFU/m3 (GSD = 5.83) and the highest bacterial contamination (4.06 × 103 CFU/m3) was found in winter at the bar screens. In total, 16 bacterial species were determined, from which the predominant strains belonged to Actinomyces, Bifidobacterium, Clostridium, Propionibacterium and Peptostreptococcus genera. The analysis revealed that mechanical treatment processes were responsible for a substantial emission of anaerobic bacteria into the air. In both the sewage and air samples, Clostridium perfringens pathogen was identified. Conclusions Anaerobic bacteria were widely present both in the sewage and in the air at workplaces from the WWTP, especially when the technological process was performed in closed spaces. Anaerobic bacteria formed small aggregates with both wastewater droplets and dust particles of sewage sludge origin and as such may be responsible for adverse health outcomes in exposed workers.
Collapse
Affiliation(s)
- Marcin Cyprowski
- Central Institute for Labour Protection-National Research Institute, 16 Czerniakowska St., 00-701, Warsaw, Poland.
| | - Agata Stobnicka-Kupiec
- Central Institute for Labour Protection-National Research Institute, 16 Czerniakowska St., 00-701, Warsaw, Poland
| | - Anna Ławniczek-Wałczyk
- Central Institute for Labour Protection-National Research Institute, 16 Czerniakowska St., 00-701, Warsaw, Poland
| | - Aleksandra Bakal-Kijek
- Central Institute for Labour Protection-National Research Institute, 16 Czerniakowska St., 00-701, Warsaw, Poland
| | - Małgorzata Gołofit-Szymczak
- Central Institute for Labour Protection-National Research Institute, 16 Czerniakowska St., 00-701, Warsaw, Poland
| | - Rafał L Górny
- Central Institute for Labour Protection-National Research Institute, 16 Czerniakowska St., 00-701, Warsaw, Poland
| |
Collapse
|
28
|
Narenkumar J, Parthipan P, Madhavan J, Murugan K, Marpu SB, Suresh AK, Rajasekar A. Bioengineered silver nanoparticles as potent anti-corrosive inhibitor for mild steel in cooling towers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5412-5420. [PMID: 29209978 DOI: 10.1007/s11356-017-0768-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Silver nanoparticle-aided enhancement in the anti-corrosion potential and stability of plant extract as ecologically benign alternative for microbially induced corrosion treatment is demonstrated. Bioengineered silver nanoparticles (AgNPs) surface functionalized with plant extract material (proteinacious) was generated in vitro in a test tube by treating ionic AgNO3 with the leaf extract of Azadirachta indica that acted as dual reducing as well as stabilizing agent. Purity and crystallinity of the AgNPs, along with physical and surface characterizations, were evaluated by performing transmission electron microscopy, Fourier transform infrared spectroscopy, energy dispersive x-ray spectra, single-area electron diffractions, zeta potential, and dynamic light scattering measurements. Anti-corrosion studies against mild steel (MS1010) by corrosion-inducive bacterium, Bacillus thuringiensis EN2 isolated from cooling towers, were evaluated by performing electrochemical impedance spectroscopy (EIS), weight loss analysis, and surface analysis by infrared spectroscopy. Our studies revealed that AgNPs profoundly inhibited the biofilm on MS1010 surface and reduced the corrosion rates with the CR of 0.5 mm/y and an inhibition efficiency of 77% when compared to plant extract alone with a CR of 2.2 mm/y and an inhibition efficiency of 52%. Further surface analysis by infrared spectra revealed that AgNPs formed a protective layer of self-assembled film on the surface of MS1010. Additionally, EIS and surface analysis revealed that the AgNPs have inhibited the bacterial biofilm and reduced the pit on MS1010. This is the first report disclosing the application of bioengineered AgNP formulations as potent anti-corrosive inhibitor upon forming a protective layer over mild steel in cooling water towers. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jayaraman Narenkumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, India
| | - Punniyakotti Parthipan
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, India
- Electrochemical Energy Research Lab, Centre for Nanoscience and Technology, Pondicherry University, Puducherry, 605014, India
| | - Jagannathan Madhavan
- Solar energy Laboratory, Department of Chemistry, Thiruvalluvar University, Serkkadu, Vellore, 632115, India
| | - Kadarkarai Murugan
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, India
- Department of Zoology, Bharathiar University, Coimbatore, 641046, India
| | - Sreekar Babu Marpu
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| | - Anil Kumar Suresh
- Bio-Nanotechnology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Chennai, 603203, India.
- Department of Biotechnology, SRM University-AP, Amaravati, 522502, India.
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, India.
| |
Collapse
|
29
|
Volpi E, Foiadelli C, Trasatti S, Koleva DA. Development of Smart Corrosion Inhibitors for Reinforced Concrete Structures Exposed to a Microbial Environment. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Enrico Volpi
- Faculty
of Sciences and Technologies, Department of Chemistry, University of Milan, Via, Golgi 1920133, Milano, Italy
| | - Cristian Foiadelli
- Faculty
of Sciences and Technologies, Department of Chemistry, University of Milan, Via, Golgi 1920133, Milano, Italy
| | - Stefano Trasatti
- Faculty
of Sciences and Technologies, Department of Chemistry, University of Milan, Via, Golgi 1920133, Milano, Italy
| | - Dessi A. Koleva
- Faculty of Civil Engineering and Geosciences, Department Materials & Environment, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- Faculty
of Science and Engineering, School of Chemical and Petroleum Engineering, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
30
|
Li X, Kappler U, Jiang G, Bond PL. The Ecology of Acidophilic Microorganisms in the Corroding Concrete Sewer Environment. Front Microbiol 2017; 8:683. [PMID: 28473816 PMCID: PMC5397505 DOI: 10.3389/fmicb.2017.00683] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/04/2017] [Indexed: 12/19/2022] Open
Abstract
Concrete corrosion is one of the most significant problems affecting valuable sewer infrastructure on a global scale. This problem occurs in the aerobic zone of the sewer, where a layer of surface corrosion develops on the exposed concrete and the surface pH is typically lowered from around 11–10 (pristine concrete) to pH 2–4. Acidophilic microorganisms become established as biofilms within the concrete corrosion layer and enhance the loss of concrete mass. Until recently, the acidophilic community was considered to comprise relatively few species of microorganisms, however, the biodiversity of the corrosion community is now recognized as being extensive and varying from different sewer environmental conditions. The diversity of acidophiles in the corrosion communities includes chemolithoautotrophs, chemolithoheterotrophs, and chemoorganoheterotrophs. The activity of these microorganisms is strongly affected by H2S levels in the sewer gas phase, although CO2, organic matter, and iron in the corrosion layer influence this acidic ecosystem. This paper briefly presents the conditions within the sewer that lead to the development of concrete corrosion in that environment. The review focuses on the acidophilic microorganisms detected in sewer corrosion environments, and then summarizes their proposed functions and physiology, especially in relation to the corrosion process. To our knowledge, this is the first review of acidophilic corrosion microbial communities, in which, the ecology and the environmental conditions (when available) are considered. Ecological studies of sewer corrosion are limited, however, where possible, we summarize the important metabolic functions of the different acidophilic species detected in sewer concrete corrosion layers. It is evident that microbial functions in the acidic sewer corrosion environment can be linked to those occurring in the analogous acidic environments of acid mine drainage and bioleaching.
Collapse
Affiliation(s)
- Xuan Li
- Advanced Water Management Centre, The University of Queensland, BrisbaneQLD, Australia
| | - Ulrike Kappler
- Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, The University of Queensland, BrisbaneQLD, Australia
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, BrisbaneQLD, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, BrisbaneQLD, Australia
| |
Collapse
|
31
|
Dong Q, Shi H, Liu Y. Microbial Character Related Sulfur Cycle under Dynamic Environmental Factors Based on the Microbial Population Analysis in Sewerage System. Front Microbiol 2017; 8:64. [PMID: 28261160 PMCID: PMC5306501 DOI: 10.3389/fmicb.2017.00064] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/10/2017] [Indexed: 11/22/2022] Open
Abstract
The undesired sulfur cycle derived by microbial population can ultimately causes the serious problems of sewerage systems. However, the microbial community characters under dynamic environment factors in actual sewerage system is still not enough. This current study aimed to character the distributions and compositions of microbial communities that participate in the sulfur cycle under the dynamic environmental conditions in a local sewerage system. To accomplish this, microbial community compositions were assessed using 454 high-throughput sequencing (16S rDNA) combined with dsrB gene-based denaturing gradient gel electrophoresis. The results indicated that a higher diversity of microbial species was present at locations in sewers with high concentrations of H2S. Actinobacteria and Proteobacteria were dominant in the sewerage system, while Actinobacteria alone were dominant in regions with high concentrations of H2S. Specifically, the unique operational taxonomic units could aid to characterize the distinct microbial communities within a sewerage manhole. The proportion of sulfate-reducing bacteria, each sulfur-oxidizing bacteria (SOB) were strongly correlated with the liquid parameters (DO, ORP, COD, Sulfide, NH3-N), while the Mycobacterium and Acidophilic SOB (M&A) was strongly correlated with gaseous factors within the sewer, such as H2S, CH4, and CO. Identifying the distributions and proportions of critical microbial communities within sewerage systems could provide insights into how the microbial sulfur cycle is affected by the dynamic environmental conditions that exist in sewers and might be useful for explaining the potential sewerage problems.
Collapse
Affiliation(s)
- Qian Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University Beijing, China
| | - Hanchang Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University Beijing, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University Beijing, China
| |
Collapse
|
32
|
SATOH H, MIYAZAKI Y, TANIUCHI S, OSHIKI M, RATHNAYAKE RMLD, TAKAHASHI M, OKABE S. Improvement of a Phosphate Ion-selective Microsensor Using Bis(dibromophenylstannyl)methane as a Carrier. ANAL SCI 2017; 33:825-830. [DOI: 10.2116/analsci.33.825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hisashi SATOH
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University
| | - Yuji MIYAZAKI
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University
| | - Shou TANIUCHI
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University
| | - Mamoru OSHIKI
- Department of Civil Engineering, National Institute of Technology, Nagaoka College
| | | | - Masahiro TAKAHASHI
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University
| | - Satoshi OKABE
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University
| |
Collapse
|
33
|
Zhang S, Qiu J, Ren Y, Yu W, Zhang F, Liu X. Reciprocal interaction between dental alloy biocorrosion and Streptococcus mutans virulent gene expression. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:78. [PMID: 26896953 DOI: 10.1007/s10856-015-5645-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
Corrosion of dental alloys is a major concern in dental restorations. Streptococcus mutans reduces the pH in oral cavity and induces demineralization of the enamel as well as corrosion of restorative dental materials. The rough surfaces of dental alloys induced by corrosion enhance the subsequent accumulation of plaque. In this study, the corrosion process of nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloys in a nutrient-rich medium containing S. mutans was studied using inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test. Our results showed that the release of Ni and Co ions increased, particularly after incubation for 3 days. The electrochemical corrosion results showed a significant decrease in the corrosion resistance (Rp) value after the alloys were immersed in the media containing S. mutans for 3 days. Correspondingly, XPS revealed a reduction in the relative dominance of Ni, Co, and Cr in the surface oxides after the alloys were immersed in the S. mutans culture. After removal of the biofilm, the pre-corroded alloys were re-incubated in S. mutans medium, and the expressions of genes associated with the adhesion and acidogenesis of S. mutans, including gtfBCD, gbpB, fif and ldh, were evaluated by detecting the mRNA levels using real-time reverse transcription polymerase chain reaction (RT-PCR). We found that the gtfBCD, gbpB, ftf and Idh expression of S. mutans were noticeably increased after incubation with pre-corroded alloys for 24 h. This study demonstrated that S. mutans enhanced the corrosion behavior of the dental alloys, on the other hand, the presence of corroded alloy surfaces up-regulated the virulent gene expression in S. mutans. Compared with smooth surfaces, the rough corroded surfaces of dental alloys accelerated the bacteria-adhesion and corrosion process by changing the virulence gene expression of S. mutans.
Collapse
Affiliation(s)
- Songmei Zhang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 20001, China
| | - Jing Qiu
- Department of Oral Implantology, College of Stomatology, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Yanfang Ren
- Department of General Dentistry, University of Rochester Eastman Institute for Oral Health, Rochester, 14642, USA
| | - Weiqiang Yu
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 20001, China
| | - Fuqiang Zhang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 20001, China.
| | - Xiuxin Liu
- Department of General Dentistry, University of Rochester Eastman Institute for Oral Health, Rochester, 14642, USA.
| |
Collapse
|
34
|
Turick CE, Berry CJ. Review of concrete biodeterioration in relation to nuclear waste. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 151 Pt 1:12-21. [PMID: 26397745 DOI: 10.1016/j.jenvrad.2015.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
Storage of radioactive waste in concrete structures is a means of containing wastes and related radionuclides generated from nuclear operations in many countries. Previous efforts related to microbial impacts on concrete structures that are used to contain radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete structures used to store or dispose of radioactive waste. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources such as components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The microbial contribution to degradation of the concrete structures containing radioactive waste is a constant possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Parameters to focus on for modeling activities and possible options for mitigation that would minimize concrete biodegradation are discussed and include key conditions that drive microbial activity on concrete surfaces.
Collapse
Affiliation(s)
- Charles E Turick
- Environmental Science and Biotechnology, Savannah River National Laboratory, Building 999-W, Aiken, SC, 29808, USA.
| | - Christopher J Berry
- Environmental Science and Biotechnology, Savannah River National Laboratory, Building 999-W, Aiken, SC, 29808, USA
| |
Collapse
|
35
|
Sun X, Jiang G, Bond PL, Keller J. Impact of fluctuations in gaseous H2S concentrations on sulfide uptake by sewer concrete: The effect of high H2S loads. WATER RESEARCH 2015; 81:84-91. [PMID: 26043374 DOI: 10.1016/j.watres.2015.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/07/2015] [Accepted: 05/22/2015] [Indexed: 06/04/2023]
Abstract
The acid production from the oxidation of hydrogen sulfide (H2S) in sewer air results in serious corrosion of exposed concrete surfaces in sewers. Large fluctuations of gaseous H2S concentrations occur in sewers due to the diurnal profiles of sewage flow and retention times and the necessity of intermittent pumping of sewage from pressure pipes into gravity pipes. How the high concentrations of H2S due to these events may affect H2S uptake and subsequent corrosion by concrete sewers is largely unknown. This study determined the effect of short- and long-term increases in H2S levels on the sulfide uptake rate (SUR) of concrete surfaces with an active corrosion layer. The results showed that during the high load situation the SUR increased significantly but then decreased (compared to the baseline SUR) by about 7-14% and 41-50% immediately after short- and long-term H2S high-load periods, respectively. For both exposure conditions, the SUR gradually (over several hours) recovered to approximately 90% of the baseline SUR. Further tests suggest multiple factors may contribute to the observed decrease of SUR directly after the high H2S load. This includes the temporary storage of elemental sulfur in the corrosion layer and inhibition of sulfide oxidizing bacteria (SOB) due to high H2S level and temporary acid surge. Additionally, the delay of the corrosion layer to fully recover the SUR after the high H2S load suggests that there is a longer-term inhibitive effect of the high H2S levels on the activity of the SOB in the corrosion layer. Due to the observed activity reductions, concrete exposed to occasional short-term high H2S load periods had an overall lower H2S uptake compared to concrete exposed to constant H2S levels at the same average concentration. To accurately predict H2S uptake by sewer concrete and hence the likely maximum corrosion rates, a correction factor should be adopted for the H2S fluctuations when average H2S levels are used in the prediction.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Guangming Jiang
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Philip L Bond
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Jurg Keller
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
36
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
37
|
Jiang G, Sun J, Sharma KR, Yuan Z. Corrosion and odor management in sewer systems. Curr Opin Biotechnol 2015; 33:192-7. [DOI: 10.1016/j.copbio.2015.03.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 10/23/2022]
|
38
|
Distribution and population structure characteristics of microorganisms in urban sewage system. Appl Microbiol Biotechnol 2015; 99:7723-34. [DOI: 10.1007/s00253-015-6661-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 04/23/2015] [Accepted: 05/01/2015] [Indexed: 12/29/2022]
|
39
|
Modaresi ZK, Bakhtiari F, Darezereshki E, Ataei SA. Electrodeposition of Cu2O particles on reinforced concrete substrate. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2014.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Ling AL, Robertson CE, Harris JK, Frank DN, Kotter CV, Stevens MJ, Pace NR, Hernandez MT. High-resolution microbial community succession of microbially induced concrete corrosion in working sanitary manholes. PLoS One 2015; 10:e0116400. [PMID: 25748024 PMCID: PMC4352008 DOI: 10.1371/journal.pone.0116400] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/09/2014] [Indexed: 12/19/2022] Open
Abstract
Microbially-induced concrete corrosion in headspaces threatens wastewater infrastructure worldwide. Models for predicting corrosion rates in sewer pipe networks rely largely on information from culture-based investigations. In this study, the succession of microbes associated with corroding concrete was characterized over a one-year monitoring campaign using rRNA sequence-based phylogenetic methods. New concrete specimens were exposed in two highly corrosive manholes (high concentrations of hydrogen sulfide and carbon dioxide gas) on the Colorado Front Range for up to a year. Community succession on corroding surfaces was assessed using Illumina MiSeq sequencing of 16S bacterial rRNA amplicons and Sanger sequencing of 16S universal rRNA clones. Microbial communities associated with corrosion fronts presented distinct succession patterns which converged to markedly low α-diversity levels (< 10 taxa) in conjunction with decreasing pH. The microbial community succession pattern observed in this study agreed with culture-based models that implicate acidophilic sulfur-oxidizer Acidithiobacillus spp. in advanced communities, with two notable exceptions. Early communities exposed to alkaline surface pH presented relatively high α-diversity, including heterotrophic, nitrogen-fixing, and sulfur-oxidizing genera, and one community exposed to neutral surface pH presented a diverse transition community comprised of less than 20% sulfur-oxidizers.
Collapse
Affiliation(s)
- Alison L. Ling
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, United States of America
| | - Charles E. Robertson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, United States of America
| | - J. Kirk Harris
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, United States of America
| | - Daniel N. Frank
- Department of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, 80045, United States of America
| | - Cassandra V. Kotter
- Department of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, 80045, United States of America
| | - Mark J. Stevens
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, United States of America
| | - Norman R. Pace
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, United States of America
| | - Mark T. Hernandez
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, United States of America
- * E-mail:
| |
Collapse
|
41
|
Grengg C, Mittermayr F, Baldermann A, Böttcher M, Leis A, Koraimann G, Dietzel M. Stable Isotope Signatures within Microbial Induced Concrete Corrosion: A Field Study. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proeps.2015.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Sun X, Jiang G, Bond PL, Wells T, Keller J. A rapid, non-destructive methodology to monitor activity of sulfide-induced corrosion of concrete based on H2S uptake rate. WATER RESEARCH 2014; 59:229-238. [PMID: 24810739 DOI: 10.1016/j.watres.2014.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/06/2014] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
Many existing methods to monitor the corrosion of concrete in sewers are either very slow or destructive measurements. To overcome these limitations, a rapid, non-invasive methodology was developed to monitor the sulfide-induced corrosion process on concrete through the measurement of the H2S uptake rates of concrete at various corrosion stages. The H2S uptake rate for a concrete coupon was determined by measuring the gaseous H2S concentrations over time in a temperature- and humidity-controlled gas-tight reactor. The reliability of this method was evaluated by carrying out repeated tests on different concrete coupons previously exposed to 50 ppm of H2S, at 30 °C and 100% relative humidity for over 32 months. The H2S uptake measurements showed good reproducibility. It was also shown that a severely corroded coupon exhibited higher sulfide uptake rates than a less corroded coupon. This could be explained by the corrosion layer in the more corroded coupon having a higher biological sulfide oxidation activity than the less corroded coupon. Additionally, temperature changes had a stronger effect on the uptake rate of the heavily corroded coupon compared to the less corroded coupon. A corrosion rate of 8.9 ± 0.5 mm/year, estimated from the H2S uptake results, agreed well with the corrosion rate observed in real sewers under similar conditions. The method could be applied to investigate important factors affecting sulfide-induced concrete corrosion, particularly temperature, fluctuating gaseous H2S concentrations, oxygen concentrations, surface pH and relative humidity.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Guangming Jiang
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Philip L Bond
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Tony Wells
- Centre for Infrastructure Performance and Reliability, The University of Newcastle, Australia.
| | - Jurg Keller
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
43
|
Utilization of Ion-Exclusion Chromatography for Water Quality Monitoring in a Suburban River in Jakarta, Indonesia. WATER 2014. [DOI: 10.3390/w6071945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Ling AL, Robertson CE, Harris JK, Frank DN, Kotter CV, Stevens MJ, Pace NR, Hernandez MT. Carbon dioxide and hydrogen sulfide associations with regional bacterial diversity patterns in microbially induced concrete corrosion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7357-7364. [PMID: 24842376 DOI: 10.1021/es500763e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The microbial communities associated with deteriorating concrete corrosion fronts were characterized in 35 samples taken from wastewater collection and treatment systems in ten utilities. Bacterial communities were described using Illumina MiSeq sequencing of the V1V2 region of the small subunit ribosomal ribonucleic acid (SSU-rRNA) gene recovered from fresh corrosion products. Headspace gas concentrations (hydrogen sulfide, carbon dioxide, and methane), pore water pH, moisture content, and select mineralogy were tested for correlation to community outcomes and corrosion extent using pairwise linear regressions and canonical correspondence analysis. Corroding concrete was most commonly characterized by moisture contents greater than 10%, pore water pH below one, and limited richness (<10 taxa). Bacterial community composition was not correlated to geographic location when considered independently from other environmental factors. Corrosion was most severe in sites with high levels of hydrogen sulfide (>100 ppm) and carbon dioxide (>1%) gases, conditions which also were associated with low diversity biofilms dominated by members of the acidophilic sulfur-oxidizer genus Acidithiobacillus.
Collapse
Affiliation(s)
- Alison L Ling
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Pagaling E, Yang K, Yan T. Pyrosequencing reveals correlations between extremely acidophilic bacterial communities with hydrogen sulphide concentrations, pH and inert polymer coatings at concrete sewer crown surfaces. J Appl Microbiol 2014; 117:50-64. [DOI: 10.1111/jam.12491] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/14/2014] [Accepted: 02/27/2014] [Indexed: 01/31/2023]
Affiliation(s)
- E. Pagaling
- Department of Civil and Environmental Engineering; University of Hawai'i at Mānoa; Honolulu HI USA
| | - K. Yang
- Department of Civil and Environmental Engineering; University of Hawai'i at Mānoa; Honolulu HI USA
| | - T. Yan
- Department of Civil and Environmental Engineering; University of Hawai'i at Mānoa; Honolulu HI USA
| |
Collapse
|
46
|
Wei S, Jiang Z, Liu H, Zhou D, Sanchez-Silva M. Microbiologically induced deterioration of concrete--a review. Braz J Microbiol 2014; 44:1001-7. [PMID: 24688488 PMCID: PMC3958164 DOI: 10.1590/s1517-83822014005000006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/04/2013] [Indexed: 11/22/2022] Open
Abstract
Microbiologically induced deterioration (MID) causes corrosion of concrete by producing acids (including organic and inorganic acids) that degrade concrete components and thus compromise the integrity of sewer pipelines and other structures, creating significant problems worldwide. Understanding of the fundamental corrosion process and the causal agents will help us develop an appropriate strategy to minimize the costs in repairs. This review presents how microorganisms induce the deterioration of concrete, including the organisms involved and their colonization and succession on concrete, the microbial deterioration mechanism, the approaches of studying MID and safeguards against concrete biodeterioration. In addition, the uninvestigated research area of MID is also proposed.
Collapse
Affiliation(s)
- Shiping Wei
- School of Marine Sciences, China University of Geosciences, Beijing, China
| | - Zhenglong Jiang
- School of Marine Sciences, China University of Geosciences, Beijing, China
| | - Hao Liu
- School of Marine Sciences, China University of Geosciences, Beijing, China
| | - Dongsheng Zhou
- School of Marine Sciences, China University of Geosciences, Beijing, China
| | - Mauricio Sanchez-Silva
- Department of Civil and Environmental Engineering, Universidad de Los Andes, Bogota, Colombia
| |
Collapse
|
47
|
Jiang G, Wightman E, Donose BC, Yuan Z, Bond PL, Keller J. The role of iron in sulfide induced corrosion of sewer concrete. WATER RESEARCH 2014; 49:166-174. [PMID: 24326021 DOI: 10.1016/j.watres.2013.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/04/2013] [Accepted: 11/07/2013] [Indexed: 06/03/2023]
Abstract
The sulfide-induced corrosion of concrete sewer is a widespread and expensive problem for water utilities worldwide. Fundamental knowledge of the initiation and propagation of sewer corrosion, especially the interactions between chemical reactions and physical structure changes, is still largely unknown. Advanced mineral analytical techniques were applied to identify the distribution of corrosion products and the micro-cracking that developed along the corrosion boundary. It was found that sewer concrete corrosion caused by reactions with sulfuric acid progressed uniformly in the cement of concrete. In contrast to conventional knowledge, iron rust rather than gypsum and ettringite was likely the factor responsible for cracking ahead of the corrosion front. The analysis also allowed quantitative determination of the major corrosion products, i.e., gypsum and ettringite, with the latter found closer to the corrosion front. The conceptual model based on these findings clearly demonstrated the complex interactions among different chemical reactions, diffusion, and micro-structure changes.
Collapse
Affiliation(s)
- Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Elaine Wightman
- Sustainable Minerals Institute, Julius Kruttschnitt Mineral Research Centre, The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Bogdan C Donose
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jurg Keller
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
48
|
Biofilm-growing bacteria involved in the corrosion of concrete wastewater pipes: protocols for comparative metagenomic analyses. Methods Mol Biol 2014; 1147:323-40. [PMID: 24664844 DOI: 10.1007/978-1-4939-0467-9_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in high-throughput next-generation sequencing (NGS) technology for direct sequencing of environmental DNA (i.e., shotgun metagenomics) are transforming the field of microbiology. NGS technologies are now regularly being applied in comparative metagenomic studies, which provide the data for functional annotations, taxonomic comparisons, community profile, and metabolic reconstructions. For example, comparative metagenomic analysis of corroded pipes unveiled novel insights on the bacterial populations associated with the sulfur and nitrogen cycle, which may be directly or indirectly implicated in concrete wastewater pipe corrosion. The objective of this chapter is to describe the steps involved in the taxonomic and functional analysis of metagenome datasets from biofilm involved in microbial-induced concrete corrosion (MICC).
Collapse
|
49
|
Zhang SM, Qiu J, Tian F, Guo XK, Zhang FQ, Huang QF. Corrosion behavior of pure titanium in the presence of Actinomyces naeslundii. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1229-1237. [PMID: 23430335 DOI: 10.1007/s10856-013-4888-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 02/08/2013] [Indexed: 06/01/2023]
Abstract
It is well known that some microorganisms affect the corrosion of dental metal. Oral bacteria such as Actinomyces naeslundii may alter the corrosion behavior and stability of titanium. In this study, the corrosion behavior of titanium was studied in a nutrient-rich medium both in the presence and the absence of A. naeslundii using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). A. naeslundii was able to colonize the surface of titanium and then form a dense biofilm. The SEM images revealed the occurrence of micropitting corrosion on the metal surface after removal of the biofilm. The electrochemical corrosion results from EIS showed a significant decrease in the corrosion resistant (R(p)) value after immersing the metal in A. naeslundii culture for 3 days. Correspondingly, XPS revealed a reduction in the relative levels of titanium and oxygen and an obvious reduction of dominant titanium dioxide (TiO₂) in the surface oxides after immersion of the metal in A. naeslundii culture. These results suggest that the metabolites produced by A. naeslundii can weaken the integrity and stability of the protective TiO₂ in the surface oxides, which in turn decreases the corrosion resistance of titanium, resulting in increased corrosion of titanium immersed in A. naeslundii solution as a function of time.
Collapse
Affiliation(s)
- Song-Mei Zhang
- Department of Prosthodontics, School of Stomatology, Shanghai Ninth People's Hospital, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | | | | | | | | | | |
Collapse
|
50
|
Gomez-Alvarez V, Revetta RP, Santo Domingo JW. Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system. BMC Microbiol 2012; 12:122. [PMID: 22727216 PMCID: PMC3409016 DOI: 10.1186/1471-2180-12-122] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 06/22/2012] [Indexed: 11/17/2022] Open
Abstract
Background Concrete corrosion of wastewater collection systems is a significant cause of deterioration and premature collapse. Failure to adequately address the deteriorating infrastructure networks threatens our environment, public health, and safety. Analysis of whole-metagenome pyrosequencing data and 16S rRNA gene clone libraries was used to determine microbial composition and functional genes associated with biomass harvested from crown (top) and invert (bottom) sections of a corroded wastewater pipe. Results Taxonomic and functional analysis demonstrated that approximately 90% of the total diversity was associated with the phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. The top (TP) and bottom pipe (BP) communities were different in composition, with some of the differences attributed to the abundance of sulfide-oxidizing and sulfate-reducing bacteria. Additionally, human fecal bacteria were more abundant in the BP communities. Among the functional categories, proteins involved in sulfur and nitrogen metabolism showed the most significant differences between biofilms. There was also an enrichment of genes associated with heavy metal resistance, virulence (protein secretion systems) and stress response in the TP biofilm, while a higher number of genes related to motility and chemotaxis were identified in the BP biofilm. Both biofilms contain a high number of genes associated with resistance to antibiotics and toxic compounds subsystems. Conclusions The function potential of wastewater biofilms was highly diverse with level of COG diversity similar to that described for soil. On the basis of the metagenomic data, some factors that may contribute to niche differentiation were pH, aerobic conditions and availability of substrate, such as nitrogen and sulfur. The results from this study will help us better understand the genetic network and functional capability of microbial members of wastewater concrete biofilms.
Collapse
Affiliation(s)
- Vicente Gomez-Alvarez
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | | | | |
Collapse
|