1
|
Zhao M, Tan X, Wu X. The Role of Ficolins in Lung Injury. J Innate Immun 2024; 16:440-450. [PMID: 39159606 PMCID: PMC11521482 DOI: 10.1159/000540954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Respiratory diseases seriously threaten human health worldwide, and lung injury is an important component of respiratory disease. Complement activation is an important function of the innate immune system. Complement activation helps the body defend against invasion by external microorganisms, whereas excessive complement activation can exacerbate tissue damage or lead to unwanted side effects. Ficolins are a class of immune-related proteins in the lectin pathway that play important roles in the body's immune defense. Although individual ficolins are not well understood, current information suggests that ficolins may play an important regulatory role in lung injury. SUMMARY Several studies have shown that ficolins are involved in the immune response in the lung, particularly in the response to infectious and inflammatory processes. KEY MESSAGES This review summarizes the role of ficolins in lung injury. Ficolins may influence the development and repair of lung injury by recognizing and binding pathogenic microorganisms, modulating the inflammatory response, and promoting the clearance of immune cells. In addition, ficolins are associated with the development and progression of lung diseases (such as pneumonia and ARDS) and may have an important impact on the pathophysiological processes of inflammatory diseases.
Collapse
Affiliation(s)
- Meiyun Zhao
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaowu Tan
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xu Wu
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
2
|
Lindelöf L, Rantapää-Dahlqvist S, Lundtoft C, Sandling JK, Leonard D, Sayadi A, Rönnblom L, Enocsson H, Sjöwall C, Jönsen A, Bengtsson AA, Hong MG, Diaz-Gallo LM, Bianchi M, Kozyrev SV, Lindblad-Toh K, Nilsson Ekdahl K, Nilsson B, Gunnarsson I, Svenungsson E, Eriksson O. A survey of ficolin-3 activity in Systemic Lupus Erythematosus reveals a link to hematological disease manifestations and autoantibody profile. J Autoimmun 2024; 143:103166. [PMID: 38219652 DOI: 10.1016/j.jaut.2023.103166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
The complement system plays a central role in the pathogenesis of Systemic Lupus Erythematosus (SLE), but most studies have focused on the classical pathway. Ficolin-3 is the main initiator of the lectin pathway of complement in humans, but its role in systemic autoimmune disease has not been conclusively determined. Here, we combined biochemical and genetic approaches to assess the contribution of ficolin-3 to SLE risk and disease manifestations. Ficolin-3 activity was measured by a functional assay in serum or plasma samples from Swedish SLE patients (n = 786) and controls matched for age and sex (n = 566). Genetic variants in an extended 300 kb genomic region spanning the FCN3 locus were analyzed for their association with ficolin-3 activity and SLE manifestations in a Swedish multicenter cohort (n = 985). Patients with ficolin-3 activity in the highest tertile showed a strong enrichment in an SLE cluster defined by anti-Sm/DNA/nucleosome antibodies (OR 3.0, p < 0.001) and had increased rates of hematological disease (OR 1.4, p = 0.078) and lymphopenia (OR = 1.6, p = 0.039). Genetic variants associated with low ficolin-3 activity mapped to an extended haplotype in high linkage disequilibrium upstream of the FCN3 gene. Patients carrying the lead genetic variant associated with low ficolin-3 activity had a lower frequency of hematological disease (OR 0.67, p = 0.018) and lymphopenia (OR 0.63, p = 0.031) and fewer autoantibodies (p = 0.0019). Loss-of-function variants in the FCN3 gene were not associated with SLE, but four (0.5 %) SLE patients developed acquired ficolin-3 deficiency where ficolin-3 activity in serum was depleted following diagnosis of SLE. Taken together, our results provide genetic and biochemical evidence that implicate the lectin pathway in hematological SLE manifestations. We also identify lectin pathway activation through ficolin-3 as a factor that contributes to the autoantibody response in SLE.
Collapse
Affiliation(s)
- Linnea Lindelöf
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Christian Lundtoft
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Johanna K Sandling
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Dag Leonard
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Ahmed Sayadi
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Helena Enocsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Christopher Sjöwall
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Andreas Jönsen
- Department of Clinical Sciences Lund, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anders A Bengtsson
- Department of Clinical Sciences Lund, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Mun-Gwan Hong
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lina-Marcela Diaz-Gallo
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Matteo Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sergey V Kozyrev
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kristina Nilsson Ekdahl
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Linnaeus Center for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Oskar Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Gao P, Tang K, Lu Y, Wang M, Wang W, Wang T, Sun Y, Zhao J, Mao Y. Increased expression of ficolin-1 is associated with airway obstruction in asthma. BMC Pulm Med 2023; 23:470. [PMID: 37996869 PMCID: PMC10668451 DOI: 10.1186/s12890-023-02772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND The activated complement cascade is involved in asthmatic airway inflammation. Ficolins are essential for innate immunity and can activate the complement lectin pathway. Despite this, the significance of ficolins in asthma has yet to be determined. This study aimed to explore the presence of ficolins in individuals with asthma and to determine the relationship between ficolins and clinical characteristics. METHODS For the study, 68 asthmatic patients and 30 healthy control subjects were recruited. Enzyme-linked immunosorbent assay was used to determine plasma ficolin-1, ficolin-2, and ficolin-3 concentrations both before and after inhaled corticosteroid (ICS) therapy. Further, the associations of plasma ficolin-1 level with pulmonary function and asthma control questionnaire (ACQ) score were examined in the asthma patients. RESULTS Patients with asthma exhibited significantly elevated plasma ficolin-1 levels (median, 493.9 ng/mL; IQR, 330.2-717.8 ng/mL) in comparison to healthy controls (median, 330.6 ng/mL; IQR, 233.8-371.1 ng/mL). After ICS treatment, plasma ficolin-1 (median, 518.1 ng/mL; IQR, 330.2-727.0 ng/mL) in asthmatic patients was significantly reduced (median, 374.7 ng/mL; IQR, 254.8-562.5 ng/mL). Additionally, ficolin-1 expressions in plasma were significantly correlated with pulmonary function parameters and ACQ score in asthmatic patients. Asthma patients with higher plasma ficolin-1 levels demonstrated poorer lung function than those with lower plasma ficolin-1 levels. CONCLUSIONS The results revealed that asthmatic patients had higher plasma ficolin-1 concentrations, which decreased after ICS treatment and were linked to their lung function, implying a potential involvement of ficolin-1 in asthma pathogenesis.
Collapse
Affiliation(s)
- Pengfei Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, China.
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Kun Tang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanjiao Lu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meijia Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, China
| | - Tongsheng Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yuxia Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yimin Mao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
4
|
Lin Y, Lai X, Huang S, Pu L, Zeng Q, Wang Z, Huang W. Identification of diagnostic hub genes related to neutrophils and infiltrating immune cell alterations in idiopathic pulmonary fibrosis. Front Immunol 2023; 14:1078055. [PMID: 37334348 PMCID: PMC10272521 DOI: 10.3389/fimmu.2023.1078055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Background There is still a lack of specific indicators to diagnose idiopathic pulmonary fibrosis (IPF). And the role of immune responses in IPF is elusive. In this study, we aimed to identify hub genes for diagnosing IPF and to explore the immune microenvironment in IPF. Methods We identified differentially expressed genes (DEGs) between IPF and control lung samples using the GEO database. Combining LASSO regression and SVM-RFE machine learning algorithms, we identified hub genes. Their differential expression were further validated in bleomycin-induced pulmonary fibrosis model mice and a meta-GEO cohort consisting of five merged GEO datasets. Then, we used the hub genes to construct a diagnostic model. All GEO datasets met the inclusion criteria, and verification methods, including ROC curve analysis, calibration curve (CC) analysis, decision curve analysis (DCA) and clinical impact curve (CIC) analysis, were performed to validate the reliability of the model. Through the Cell Type Identification by Estimating Relative Subsets of RNA Transcripts algorithm (CIBERSORT), we analyzed the correlations between infiltrating immune cells and hub genes and the changes in diverse infiltrating immune cells in IPF. Results A total of 412 DEGs were identified between IPF and healthy control samples, of which 283 were upregulated and 129 were downregulated. Through machine learning, three hub genes (ASPN, SFRP2, SLCO4A1) were screened. We confirmed their differential expression using pulmonary fibrosis model mice evaluated by qPCR, western blotting and immunofluorescence staining and analysis of the meta-GEO cohort. There was a strong correlation between the expression of the three hub genes and neutrophils. Then, we constructed a diagnostic model for diagnosing IPF. The areas under the curve were 1.000 and 0.962 for the training and validation cohorts, respectively. The analysis of other external validation cohorts, as well as the CC analysis, DCA, and CIC analysis, also demonstrated strong agreement. There was also a significant correlation between IPF and infiltrating immune cells. The frequencies of most infiltrating immune cells involved in activating adaptive immune responses were increased in IPF, and a majority of innate immune cells showed reduced frequencies. Conclusion Our study demonstrated that three hub genes (ASPN, SFRP2, SLCO4A1) were associated with neutrophils, and the model constructed with these genes showed good diagnostic value in IPF. There was a significant correlation between IPF and infiltrating immune cells, indicating the potential role of immune regulation in the pathological process of IPF.
Collapse
Affiliation(s)
- Yingying Lin
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofan Lai
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaojie Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lvya Pu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qihao Zeng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhongxing Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Initiators of Classical and Lectin Complement Pathways Are Differently Engaged after Traumatic Brain Injury-Time-Dependent Changes in the Cortex, Striatum, Thalamus and Hippocampus in a Mouse Model. Int J Mol Sci 2020; 22:ijms22010045. [PMID: 33375205 PMCID: PMC7793095 DOI: 10.3390/ijms22010045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/16/2022] Open
Abstract
The complement system is involved in promoting secondary injury after traumatic brain injury (TBI), but the roles of the classical and lectin pathways leading to complement activation need to be clarified. To this end, we aimed to determine the ability of the brain to activate the synthesis of classical and lectin pathway initiators in response to TBI and to examine their expression in primary microglial cell cultures. We have modeled TBI in mice by controlled cortical impact (CCI), a clinically relevant experimental model. Using Real-time quantitative polymerase chain reaction (RT-qPCR) we analyzed the expression of initiators of classical the complement component 1q, 1r and 1s (C1q, C1r, and C1s) and lectin (mannose binding lectin A, mannose binding lectin C, collectin 11, ficolin A, and ficolin B) complement pathways and other cellular markers in four brain areas (cortex, striatum, thalamus and hippocampus) of mice exposed to CCI from 24 h and up to 5 weeks. In all murine ipsilateral brain structures assessed, we detected long-lasting, time- and area-dependent significant increases in the mRNA levels of all classical (C1q, C1s, C1r) and some lectin (collectin 11, ficolin A, ficolin B) initiator molecules after TBI. In parallel, we observed significantly enhanced expression of cellular markers for neutrophils (Cd177), T cells (Cd8), astrocytes (glial fibrillary acidic protein—GFAP), microglia/macrophages (allograft inflammatory factor 1—IBA-1), and microglia (transmembrane protein 119—TMEM119); moreover, we detected astrocytes (GFAP) and microglia/macrophages (IBA-1) protein level strong upregulation in all analyzed brain areas. Further, the results obtained in primary microglial cell cultures suggested that these cells may be largely responsible for the biosynthesis of classical pathway initiators. However, microglia are unlikely to be responsible for the production of the lectin pathway initiators. Immunofluorescence analysis confirmed that at the site of brain injury, the C1q is localized in microglia/macrophages and neurons but not in astroglial cells. In sum, the brain strongly reacts to TBI by activating the local synthesis of classical and lectin complement pathway activators. Thus, the brain responds to TBI with a strong, widespread and persistent upregulation of complement components, the targeting of which may provide protection in TBI.
Collapse
|
6
|
Wu X, Yao D, Bao L, Liu D, Xu X, An Y, Zhang X, Cao B. Ficolin A derived from local macrophages and neutrophils protects against lipopolysaccharide-induced acute lung injury by activating complement. Immunol Cell Biol 2020; 98:595-606. [PMID: 32339310 DOI: 10.1111/imcb.12344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Ficolins are important and widely distributed pattern recognition molecules that can induce lectin complement pathway activation and initiate the innate immune response. Although ficolins can bind lipopolysaccharide (LPS) in vitro, the sources, dynamic changes and roles of local ficolins in LPS-induced pulmonary inflammation and injury remain poorly understood. In this study, we established a ficolin knockout mouse model by clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) technology, and used flow cytometry and hematoxylin and eosin staining to study the expressions and roles of local ficolins in LPS-induced pulmonary inflammation and injury. Our results show that besides ficolin B (FcnB), ficolin A (FcnA) is also expressed in leukocytes from the bone marrow, peripheral blood, lung and spleen. Further analyses showed that macrophages and neutrophils are the main sources of FcnA and FcnB, and T and B cells also express a small amount of FcnB. The intranasal administration of LPS induced local pulmonary inflammation with the increased recruitment of macrophages and neutrophils. LPS stimulation induced increased expression of FcnA and FcnB in neutrophils at the acute stage and in macrophages at the late stage. The severity of the lung injury and local inflammation of Fcna-/- mice was increased by the induction of extracellular complement activation. The recovery of LPS-induced local lung inflammation and injury was delayed in Fcnb-/- mice. Hence, these findings suggested that the local macrophage- and neutrophil-derived FcnA protects against LPS-induced acute lung injury by mediating extracellular complement activation.
Collapse
Affiliation(s)
- Xu Wu
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100029, China
| | - Duoduo Yao
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Linlin Bao
- NHC Key Laboratory of Human Disease Comparative Medicine , Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Di Liu
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoxue Xu
- Department of Core Facility Center, Capital Medical University, Beijing, 100069, China
| | - Yunqing An
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Bin Cao
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100029, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100006, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, 100084, China
| |
Collapse
|
7
|
Jarlhelt I, Pilely K, Clausen JB, Skjoedt MO, Bayarri-Olmos R, Garred P. Circulating Ficolin-2 and Ficolin-3 Form Heterocomplexes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1919-1928. [PMID: 32094208 DOI: 10.4049/jimmunol.1900694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/18/2020] [Indexed: 01/16/2023]
Abstract
The complement system constitutes an important part of the innate immune system. The collectins and the ficolins are soluble pattern recognition molecules that contribute to complement activation via the lectin pathway. During previous experiments with ficolin-2 and ficolin-3, we have observed that the molecules may interact. We therefore hypothesized the existence of stable ficolin-2/-3 heterocomplexes. We could demonstrate ficolin-2/-3 heterocomplexes in normal human serum and plasma by ELISA using Abs specific for ficolin-2 and ficolin-3. The formation of heteromeric protein complexes were validated by coimmunoprecipitation and Western blot analysis. When recombinant ficolin-2 and recombinant ficolin-3 were mixed, no complexes were formed. However, when coexpressing ficolin-2 and ficolin-3 in Chinese hamster ovary cells, we could detect ficolin-2/-3 heterocomplexes in the supernatant. Furthermore, we measured concentration of the ficolin-2/-3 heterocomplexes in arbitrary units in 94 healthy individuals. We also established the relationship between the concentrations of ficolin-2, ficolin-3, and the ficolin-2/-3 heterocomplexes. We observed that the concentration of the ficolin-2/-3 heterocomplex correlated significantly with ficolin-2 (ρ: 0.24, p < 0.018) and ficolin-3 concentrations (ρ: 0.46, p < 0.0001). In conclusion, we describe a novel protein complex between ficolin-2 and ficolin-3 present in serum and plasma, which might be of additional biological relevance apart from the native ficolin-2 and ficolin-3 molecules.
Collapse
Affiliation(s)
- Ida Jarlhelt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jytte Bryde Clausen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
8
|
Tian X, Zheng Y, Yin K, Ma J, Tian J, Zhang Y, Mao L, Xu H, Wang S. LncRNA AK036396 Inhibits Maturation and Accelerates Immunosuppression of Polymorphonuclear Myeloid-Derived Suppressor Cells by Enhancing the Stability of Ficolin B. Cancer Immunol Res 2020; 8:565-577. [PMID: 32102837 DOI: 10.1158/2326-6066.cir-19-0595] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 11/16/2022]
Abstract
Long noncoding RNAs (lncRNA) are emerging as crucial regulators of cell biology. However, the role of lncRNAs in the development and function of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) remains unclear. Here, we identified that the lncRNA F730016J06Rik (AK036396) was highly expressed in PMN-MDSCs and that lncRNA AK036396 knockdown promoted the maturation and decreased the suppressive function of PMN-MDSCs. Ficolin B (Fcnb), the expression of which could be assessed as a surrogate for PMN-MDSC development, was the predicted target gene of lncRNA AK036396 based on microarray results. LncRNA AK036396 knockdown attenuated Fcnb protein stability in a manner dependent on the ubiquitin-proteasome system. Moreover, Fcnb inhibition downregulated the suppressive function of PMN-MDSCs. In addition, the expression of human M-ficolin, which is an ortholog of mouse Fcnb, was increased and positively correlated with arginase1 (ARG1) expression. This suppressive molecule is released by MDSCs, and its production is commonly used to represent the suppressive activity of MDSCs in patients with lung cancer, suggesting clinical relevance for these findings. These results indicate that lncRNA AK036396 can inhibit maturation and accelerate immunosuppression of PMN-MDSCs by enhancing Fcnb protein stability.
Collapse
Affiliation(s)
- Xinyu Tian
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yu Zheng
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Zhang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Huaxi Xu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Kobayashi T, Kuronuma K, Saito A, Ikeda K, Ariki S, Saitou A, Otsuka M, Chiba H, Takahashi S, Takahashi M, Takahashi H. Insufficient serum L-ficolin is associated with disease presence and extent of pulmonary Mycobacterium avium complex disease. Respir Res 2019; 20:224. [PMID: 31638993 PMCID: PMC6805425 DOI: 10.1186/s12931-019-1185-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/11/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The incidence of infectious disease caused by nontuberculous mycobacteria is increasing worldwide. Pulmonary Mycobacterium avium complex (MAC) disease is difficult to treat with chemotherapy, and its mechanism of infection, infection route, disease onset, and severity remain unknown. Ficolins are oligomeric defense lectins. L-ficolin plays an important role in innate immunity. This study's aim was to identify L-ficolin's role in patients with pulmonary MAC disease. METHODS Between April 2011 and September 2017, 61 Japanese patients with pulmonary MAC disease were seen at our hospital. A control group, comprising 30 healthy individuals, without respiratory disease were enrolled in our study. The relationship between serum L-ficolin levels and disease severity was assessed, and L-ficolin's antibacterial role was examined. RESULTS Serum L-ficolin levels were significantly lower in patients with pulmonary MAC disease than in healthy subjects (1.69 ± 1.27 μg/ml vs. 3.96 ± 1.42 μg/ml; p < 0.001). The cut-off value, based on receiver operating characteristic (ROC) analysis results, was 2.48 μg/ml (area under the curve (AUC) 0.90, sensitivity and specificity 83.6 and 86.7%, respectively). Serum L-ficolin levels were significantly lower in the patients with nodular bronchiectatic type disease compared with the patients with fibrocavitary type disease and were lower in the high-resolution computed tomography high-scoring group compared with low-scoring group. An in vitro analysis showed that purified recombinant L-ficolin bound to M. avium and its major cell wall component, lipoarabinomannan, in a concentration-dependent manner. In addition, recombinant L-ficolin suppressed M. avium growth in a concentration-dependent manner. CONCLUSIONS Insufficient serum L-ficolin is associated with disease progression in pulmonary MAC disease, and the level of serum L-ficolin is a possible biomarker. TRIAL REGISTRATION This study is registered with UMIN ( UMIN000022392 ).
Collapse
Affiliation(s)
- Tomofumi Kobayashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Koji Kuronuma
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan.
| | - Atsushi Saito
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kimiyuki Ikeda
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Shigeru Ariki
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Atsushi Saitou
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Mitsuo Otsuka
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hiroki Takahashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| |
Collapse
|
10
|
Eriksson O, Mohlin C, Nilsson B, Ekdahl KN. The Human Platelet as an Innate Immune Cell: Interactions Between Activated Platelets and the Complement System. Front Immunol 2019; 10:1590. [PMID: 31354729 PMCID: PMC6635567 DOI: 10.3389/fimmu.2019.01590] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Platelets play an essential role in maintaining homeostasis in the circulatory system after an injury by forming a platelet thrombus, but they also occupy a central node in the intravascular innate immune system. This concept is supported by their extensive interactions with immune cells and the cascade systems of the blood. In this review we discuss the close relationship between platelets and the complement system and the role of these interactions during thromboinflammation. Platelets are protected from complement-mediated damage by soluble and membrane-expressed complement regulators, but they bind several complement components on their surfaces and trigger complement activation in the fluid phase. Furthermore, localized complement activation may enhance the procoagulant responses of platelets through the generation of procoagulant microparticles by insertion of sublytic amounts of C5b9 into the platelet membrane. We also highlight the role of post-translational protein modifications in regulating the complement system and the critical role of platelets in driving these reactions. In particular, modification of disulfide bonds by thiol isomerases and protein phosphorylation by extracellular kinases have emerged as important mechanisms to fine-tune complement activity in the platelet microenvironment. Lastly, we describe disorders with perturbed complement activation where part of the clinical presentation includes uncontrolled platelet activation that results in thrombocytopenia, and illustrate how complement-targeting drugs are alleviating the prothrombotic phenotype in these patients. Based on these clinical observations, we discuss the role of limited complement activation in enhancing platelet activation and consider how these drugs may provide opportunities for further dissecting the complex interactions between complement and platelets.
Collapse
Affiliation(s)
- Oskar Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Camilla Mohlin
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kristina N. Ekdahl
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
11
|
Ficolin-3 Deficiency Is Associated with Disease and an Increased Risk of Systemic Lupus Erythematosus. J Clin Immunol 2019; 39:421-429. [DOI: 10.1007/s10875-019-00627-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/07/2019] [Indexed: 01/06/2023]
|
12
|
Jarlhelt I, Genster N, Kirketerp-Møller N, Skjoedt MO, Garred P. The ficolin response to LPS challenge in mice. Mol Immunol 2019; 108:121-127. [PMID: 30818229 DOI: 10.1016/j.molimm.2019.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/07/2019] [Accepted: 02/15/2019] [Indexed: 12/30/2022]
Abstract
The ficolins belong to an important family of pattern recognition molecules, which contributes to complement activation via the lectin pathway. How the ficolins respond to inflammatory stimuli remains only partly understood. In the present study, we investigated the ficolin A and ficolin B expression and protein distribution patterns in a mouse model of LPS-induced inflammation. The time- and tissue-specific expression of ficolin A and B was determined by real time PCR. Furthermore, ficolin protein levels in serum and bone marrow extracts from LPS challenged mice were determined by novel in-house developed sandwich ELISAs. Ficolin A was mainly expressed in liver and spleen. However, our data also suggested that ficolin A is expressed in bone marrow, which is the main site of ficolin B expression. The level of ficolin A and B expression was increased after stimulation with LPS in the investigated tissues. This was followed by a downregulation of expression, causing mRNA levels to return to baseline 24 h post LPS challenge. Protein levels appeared to follow the same pattern as the expression profiles, with an exception of ficolin B levels in serum, which kept increasing for 24 h. Ficolin A was likewise significantly increased in bronchoalveolar lavage fluid from mice infected with the fungi A. fumigatus, pointing towards a similar effect of the ficolins in non-sterile mouse models of inflammation. The results demonstrate that LPS-induced inflammation can induce a significant ficolin response, suggesting that the murine ficolins are acute phase reactants with increase in both mRNA expression and protein levels during systemic inflammation.
Collapse
Affiliation(s)
- Ida Jarlhelt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj Kirketerp-Møller
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Katayama M, Ota K, Nagi-Miura N, Ohno N, Yabuta N, Nojima H, Kumanogoh A, Hirano T. Ficolin-1 is a promising therapeutic target for autoimmune diseases. Int Immunol 2019; 31:23-32. [PMID: 30169661 PMCID: PMC6364620 DOI: 10.1093/intimm/dxy056] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/27/2018] [Indexed: 01/29/2023] Open
Abstract
Previously, we reported that mRNA expression of ficolin-1 (FCN1), a component of the complement lectin pathway, is elevated in peripheral blood mononuclear cells of patients with vasculitis syndrome, and that FCN1-positive cells infiltrate into inflamed regions in patient specimens. In addition, we reported that the serum FCN1 concentration is elevated in patients with Kawasaki disease (KD), a pediatric vasculitis, but dramatically decreases after intravenous immunoglobulin (IVIG) treatment. Furthermore, we showed that FCN1 binds to IgG1 in a pull-down assay. These results suggested that removal of FCN1 may be a therapeutic mechanism of IVIG. In this study, we prepared anti-FCN1 monoclonal antibody (mAb) and examined its therapeutic potential in mice treated with Candida albicans water-soluble fraction (CAWS), which induces KD-like vasculitis in the coronary artery. Indeed, treatment with anti-FCN1 mAb decreased the histological score of vasculitis (P = 0.03). To investigate the role of FCN1, we assessed blood samples of patients with various autoimmune diseases and demonstrated that serum levels of FCN1 were elevated not only in patients with vasculitis, but also in those with rheumatoid arthritis. Additionally, FCN1-targeted treatment of a mouse model of arthritis [collagen antibody-induced arthritis (CAIA)] revealed that administration of anti-FCN1 mAb ameliorated symptoms of arthritis (P < 0.01). These results suggest that FCN1 is involved in the pathogenesis of autoimmune diseases, and that targeting FCN1 represents a promising strategy for treating these diseases.
Collapse
Affiliation(s)
- Michihito Katayama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Kaori Ota
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Noriko Nagi-Miura
- Center for the Advancement of Pharmaceutical Education, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, Japan
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, Japan
| | - Norikazu Yabuta
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Hiroshi Nojima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Toru Hirano
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
14
|
Bidula S, Sexton DW, Schelenz S. Ficolins and the Recognition of Pathogenic Microorganisms: An Overview of the Innate Immune Response and Contribution of Single Nucleotide Polymorphisms. J Immunol Res 2019; 2019:3205072. [PMID: 30868077 PMCID: PMC6379837 DOI: 10.1155/2019/3205072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/29/2018] [Accepted: 12/24/2018] [Indexed: 12/19/2022] Open
Abstract
Ficolins are innate pattern recognition receptors (PRR) and play integral roles within the innate immune response to numerous pathogens throughout the circulation, as well as within organs. Pathogens are primarily removed by direct opsonisation following the recognition of cell surface carbohydrates and other immunostimulatory molecules or via the activation of the lectin complement pathway, which results in the deposition of C3b and the recruitment of phagocytes. In recent years, there have been a number of studies implicating ficolins in the recognition and removal of numerous bacterial, viral, fungal, and parasitic pathogens. Moreover, there has been expanding evidence highlighting that mutations within these key immune proteins, or the possession of particular haplotypes, enhance susceptibility to colonization by pathogens and dysfunctional immune responses. This review will therefore encompass previous knowledge on the role of ficolins in the recognition of bacterial and viral pathogens, while acknowledging the recent advances in the immune response to fungal and parasitic infections. Additionally, we will explore the various genetic susceptibility factors that predispose individuals to infection.
Collapse
Affiliation(s)
- Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Darren W. Sexton
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Silke Schelenz
- Department of Microbiology, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| |
Collapse
|
15
|
Eriksson O, Chiu J, Hogg PJ, Atkinson JP, Liszewski MK, Flaumenhaft R, Furie B. Thiol isomerase ERp57 targets and modulates the lectin pathway of complement activation. J Biol Chem 2019; 294:4878-4888. [PMID: 30670593 DOI: 10.1074/jbc.ra118.006792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/13/2019] [Indexed: 11/06/2022] Open
Abstract
ER protein 57 (ERp57), a thiol isomerase secreted from vascular cells, is essential for complete thrombus formation in vivo, but other extracellular ERp57 functions remain unexplored. Here, we employed a kinetic substrate-trapping approach to identify extracellular protein substrates of ERp57 in platelet-rich plasma. MS-based identification with immunochemical confirmation combined with gene ontology enrichment analysis revealed that ERp57 targets, among other substrates, components of the lectin pathway of complement activation: mannose-binding lectin, ficolin-2, ficolin-3, collectin-10, collectin-11, mannose-binding lectin-associated serine protease-1, and mannose-binding lectin-associated serine protease-2. Ficolin-3, the most abundant lectin pathway initiator in humans, circulates as disulfide-linked multimers of a monomer. ERp57 attenuated ficolin-3 ligand recognition and complement activation by cleaving intermolecular disulfide bonds in large ficolin-3 multimers, thereby reducing multimer size and ligand-binding affinity. We used MS to identify the disulfide-bonding pattern in ficolin-3 multimers and the disulfide bonds targeted by ERp57 and found that Cys6 and Cys23 in the N-terminal region of ficolin-3 form the intermolecular disulfide bonds in ficolin-3 multimers that are reduced by ERp57. Our results not only demonstrate that ERp57 can negatively regulate complement activation, but also identify a control mechanism for lectin pathway initiation in the vasculature. We conclude that extensive multimerization in large ficolin-3 multimers leads to a high affinity for ligands and strong complement-activating potential and that ERp57 suppresses complement activation by cleaving disulfide bonds in ficolin-3 and reducing its multimer size.
Collapse
Affiliation(s)
- Oskar Eriksson
- From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Joyce Chiu
- the Centenary Institute, National Health and Medical Research Council Clinical Trials Centre, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia, and
| | - Philip J Hogg
- the Centenary Institute, National Health and Medical Research Council Clinical Trials Centre, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia, and
| | - John P Atkinson
- the Department of Medicine/Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - M Kathryn Liszewski
- the Department of Medicine/Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Robert Flaumenhaft
- From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Bruce Furie
- From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115,
| |
Collapse
|
16
|
Bertuzzi M, Hayes GE, Icheoku UJ, van Rhijn N, Denning DW, Osherov N, Bignell EM. Anti-Aspergillus Activities of the Respiratory Epithelium in Health and Disease. J Fungi (Basel) 2018; 4:E8. [PMID: 29371501 PMCID: PMC5872311 DOI: 10.3390/jof4010008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 02/06/2023] Open
Abstract
Respiratory epithelia fulfil multiple roles beyond that of gaseous exchange, also acting as primary custodians of lung sterility and inflammatory homeostasis. Inhaled fungal spores pose a continual antigenic, and potentially pathogenic, challenge to lung integrity against which the human respiratory mucosa has developed various tolerance and defence strategies. However, respiratory disease and immune dysfunction frequently render the human lung susceptible to fungal diseases, the most common of which are the aspergilloses, a group of syndromes caused by inhaled spores of Aspergillus fumigatus. Inhaled Aspergillus spores enter into a multiplicity of interactions with respiratory epithelia, the mechanistic bases of which are only just becoming recognized as important drivers of disease, as well as possible therapeutic targets. In this mini-review we examine current understanding of Aspergillus-epithelial interactions and, based upon the very latest developments in the field, we explore two apparently opposing schools of thought which view epithelial uptake of Aspergillus spores as either a curative or disease-exacerbating event.
Collapse
Affiliation(s)
- Margherita Bertuzzi
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK.
| | - Gemma E Hayes
- Northern Devon Healthcare NHS Trust, North Devon District Hospital, Raleigh Park, Barnstaple EX31 4JB, UK.
| | - Uju J Icheoku
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK.
| | - Norman van Rhijn
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK.
| | - David W Denning
- The National Aspergillosis Centre, Education and Research Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK.
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Elaine M Bignell
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK.
| |
Collapse
|
17
|
Ding Q, Shen Y, Li D, Yang J, Yu J, Yin Z, Zhang XL. Ficolin-2 triggers antitumor effect by activating macrophages and CD8 + T cells. Clin Immunol 2017; 183:145-157. [PMID: 28844702 DOI: 10.1016/j.clim.2017.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/02/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
Abstract
Ficolin-2 is an important serum complement lectin. Here, we describe novel findings indicating that serum ficolin-2 concentrations in multiple tumor patients are significantly lower than those in healthy donors. Administration of exogenous ficolin-2 or ficolin-A (a ficolin-2-like molecule in mouse), with only once, could remarkably inhibit the tumor cells growth in murine tumor models via early macrophages, dendritic cells (DCs) and CD8+ T cells, but not CD4+ T cells. Ficolin-A (FCN-A) knockout (KO) mice exhibits significantly increased tumor cell growth. Ficolin-2 induces macrophage activation, promotes M1 polarization and facilitates proliferation and antigen-specific cytotoxicity of CD8+ T cells. Ficolin-2 binds to Toll-like receptor 4 (TLR4) on macrophages and DCs and promotes their antigen-presenting abilities to CD8+ T cells. Our findings provide a new therapeutic strategy for tumors based on the triggering of immune-mediated antitumor effect by ficolin-2.
Collapse
Affiliation(s)
- Quanquan Ding
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Yanying Shen
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Dongqing Li
- Department of Microbiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Juan Yang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Jing Yu
- Hubei Province Cancer Hospital, Wuhan 430079, PR China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China.
| |
Collapse
|
18
|
Genster N, Østrup O, Schjalm C, Eirik Mollnes T, Cowland JB, Garred P. Ficolins do not alter host immune responses to lipopolysaccharide-induced inflammation in vivo. Sci Rep 2017; 7:3852. [PMID: 28634324 PMCID: PMC5478672 DOI: 10.1038/s41598-017-04121-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/09/2017] [Indexed: 11/17/2022] Open
Abstract
Ficolins are a family of pattern recognition molecules that are capable of activating the lectin pathway of complement. A limited number of reports have demonstrated a protective role of ficolins in animal models of infection. In addition, an immune modulatory role of ficolins has been suggested. Yet, the contribution of ficolins to inflammatory disease processes remains elusive. To address this, we investigated ficolin deficient mice during a lipopolysaccharide (LPS)-induced model of systemic inflammation. Although murine serum ficolin was shown to bind LPS in vitro, there was no difference between wildtype and ficolin deficient mice in morbidity and mortality by LPS-induced inflammation. Moreover, there was no difference between wildtype and ficolin deficient mice in the inflammatory cytokine profiles after LPS challenge. These findings were substantiated by microarray analysis revealing an unaltered spleen transcriptome profile in ficolin deficient mice compared to wildtype mice. Collectively, results from this study demonstrate that ficolins are not involved in host response to LPS-induced systemic inflammation.
Collapse
Affiliation(s)
- Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olga Østrup
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Camilla Schjalm
- Department of Immunology, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, and K.J. Jebsen TREC, University of Tromsø, Tromsø, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jack B Cowland
- The Granulocyte Research Laboratory, Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Garred P, Genster N, Pilely K, Bayarri-Olmos R, Rosbjerg A, Ma YJ, Skjoedt MO. A journey through the lectin pathway of complement-MBL and beyond. Immunol Rev 2016; 274:74-97. [PMID: 27782323 DOI: 10.1111/imr.12468] [Citation(s) in RCA: 288] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mannose-binding lectin (MBL), collectin-10, collectin-11, and the ficolins (ficolin-1, ficolin-2, and ficolin-3) are soluble pattern recognition molecules in the lectin complement pathway. These proteins act as mediators of host defense and participate in maintenance of tissue homeostasis. They bind to conserved pathogen-specific structures and altered self-antigens and form complexes with the pentraxins to modulate innate immune functions. All molecules exhibit distinct expression in different tissue compartments, but all are found to a varying degree in the circulation. A common feature of these molecules is their ability to interact with a set of serine proteases named MASPs (MASP-1, MASP-2, and MASP-3). MASP-1 and -2 trigger the activation of the lectin pathway and MASP-3 may be involved in the activation of the alternative pathway of complement. Furthermore, MASPs mediate processes related to coagulation, bradykinin release, and endothelial and platelet activation. Variant alleles affecting expression and structure of the proteins have been associated with a variety of infectious and non-infectious diseases, most commonly as disease modifiers. Notably, the severe 3MC (Malpuech, Michels, Mingarelli, and Carnevale) embryonic development syndrome originates from rare mutations affecting either collectin-11 or MASP-3, indicating a broader functionality of the complement system than previously anticipated. This review summarizes the characteristics of the molecules in the lectin pathway.
Collapse
Affiliation(s)
- Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ying Jie Ma
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Abstract
Ficolins are pattern-recognition molecules of the innate immune system able to trigger the lectin pathway of the complement activation upon binding to microbial surfaces. In humans, two plasma ficolins have been identified and characterized, whereas a third cell-associated ficolin (M-ficolin) was found on monocyte surfaces. The mouse homologue of M-ficolin is called ficolin B. Although the spatial—temporal expression patterns of mouse ficolins have been described recently, the subcellular localization of ficolin B protein is so far unknown. By using ficolin B-specific antibodies and confocal microscopy, we show that ficolin B is expressed within mouse peritoneal exudate macrophages and is co-localized with Lamp-1, a marker for lysosomes and late endosomes. In addition, the data indicate that ficolin B expression is up-regulated upon macrophage activation.
Collapse
|
21
|
Orsini F, Chrysanthou E, Dudler T, Cummings WJ, Takahashi M, Fujita T, Demopulos G, De Simoni MG, Schwaeble W. Mannan binding lectin-associated serine protease-2 (MASP-2) critically contributes to post-ischemic brain injury independent of MASP-1. J Neuroinflammation 2016; 13:213. [PMID: 27577570 PMCID: PMC5006610 DOI: 10.1186/s12974-016-0684-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 08/18/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Complement activation via the lectin activation pathway (LP) has been identified as the key mechanism behind post-ischemic tissue inflammation causing ischemia-reperfusion injury (IRI) which can significantly impact the clinical outcome of ischemic disease. This work defines the contributions of each of the three LP-associated enzymes-mannan-binding lectin-associated serine protease (MASP)-1, MASP-2, and MASP-3-to ischemic brain injury in experimental mouse models of stroke. METHODS Focal cerebral ischemia was induced in wild-type (WT) mice or mice deficient for defined complement components by transient middle cerebral artery occlusion (tMCAO) or three-vessel occlusion (3VO). The inhibitory MASP-2 antibody was administered systemically 7 and 3.5 days before and at reperfusion in WT mice in order to assure an effective MASP-2 inhibition throughout the study. Forty-eight hours after ischemia, neurological deficits and infarct volumes were assessed. C3 deposition and microglia/macrophage morphology were detected by immunohistochemical, immunofluorescence, and confocal analyses. RESULTS MASP-2-deficient mice (MASP-2(-/-)) and WT mice treated with an antibody that blocks MASP-2 activity had significantly reduced neurological deficits and histopathological damage after transient ischemia and reperfusion compared to WT or control-treated mice. Surprisingly, MASP-1/3(-/-) mice were not protected, while mice deficient in factor B (fB(-/-)) showed reduced neurological deficits compared to WT mice. Consistent with behavioral and histological data, MASP-2(-/-) had attenuated C3 deposition and presented with a significantly higher proportion of ramified, surveying microglia in contrast to the hypertrophic pro-inflammatory microglia/macrophage phenotype seen in the ischemic brain tissue of WT mice. CONCLUSIONS This work demonstrates the essential role of the low-abundant MASP-2 in the mediation of cerebral ischemia-reperfusion injury and demonstrates that targeting MASP-2 by an inhibitory therapeutic antibody markedly improved the neurological and histopathological outcome after focal cerebral ischemia. These results contribute to identifying the key lectin pathway component driving brain tissue injury following cerebral ischemia and call for a revision of the presently widely accepted view that MASP-1 is an essential activator of the lectin pathway effector component MASP-2.
Collapse
Affiliation(s)
- Franca Orsini
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, via La Masa, 19-20156, Milan, Italy
| | - Elvina Chrysanthou
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, via La Masa, 19-20156, Milan, Italy.,Department of Infection, Immunity and Inflammation, University of Leicester, MSB, University Road, Leicester, LE1 9HN, UK.,MRC Toxicology Unit, Leicester, LE1 9HN, UK
| | - Thomas Dudler
- OMEROS Corporation, 201 Elliott Ave W, Seattle, WA, 98119, USA
| | | | - Minoru Takahashi
- Fukushima Prefectural General Hygiene Institute and Department of Immunology, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, 960-1295, Japan
| | - Teizo Fujita
- Fukushima Prefectural General Hygiene Institute and Department of Immunology, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, 960-1295, Japan
| | | | - Maria-Grazia De Simoni
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, via La Masa, 19-20156, Milan, Italy.
| | - Wilhelm Schwaeble
- Department of Infection, Immunity and Inflammation, University of Leicester, MSB, University Road, Leicester, LE1 9HN, UK.
| |
Collapse
|
22
|
Genster N, Præstekjær Cramer E, Rosbjerg A, Pilely K, Cowland JB, Garred P. Ficolins Promote Fungal Clearance in vivo and Modulate the Inflammatory Cytokine Response in Host Defense against Aspergillus fumigatus. J Innate Immun 2016; 8:579-588. [PMID: 27467404 PMCID: PMC6738752 DOI: 10.1159/000447714] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 01/24/2023] Open
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen that causes severe invasive infections in immunocompromised patients. Innate immunity plays a major role in protection against A. fumigatus. The ficolins are a family of soluble pattern recognition receptors that are capable of activating the lectin pathway of complement. Previous in vitro studies reported that ficolins bind to A. fumigatus, but their part in host defense against fungal infections in vivo is unknown. In this study, we used ficolin-deficient mice to investigate the role of ficolins during lung infection with A. fumigatus. Ficolin knockout mice showed significantly higher fungal loads in the lungs 24 h postinfection compared to wild-type mice. The delayed clearance of A. fumigatus in ficolin knockout mice could not be attributed to a compromised recruitment of inflammatory cells. However, it was revealed that ficolin knockout mice exhibited a decreased production of proinflammatory cytokines in the lungs compared to wild-type mice following A. fumigatus infection. The impaired clearance and cytokine production in ficolin knockout mice was independent of complement, as shown by equivalent levels of A. fumigatus-mediated complement activation in ficolin knockout mice and wild-type mice. In conclusion, this study demonstrates that ficolins are important in initial innate host defense against A. fumigatus infections in vivo.
Collapse
Affiliation(s)
- Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth Præstekjær Cramer
- The Granulocyte Research Laboratory, Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jack Bernard Cowland
- The Granulocyte Research Laboratory, Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Endo Y, Matsushita M, Fujita T. New insights into the role of ficolins in the lectin pathway of innate immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:49-110. [PMID: 25805122 DOI: 10.1016/bs.ircmb.2015.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the innate immune system, a variety of recognition molecules provide the first-line host defense to prevent infection and maintain endogenous homeostasis. Ficolin is a soluble recognition molecule, which senses pathogen-associated molecular patterns on microbes and aberrant sugar structures on self-cells. It consists of a collagen-like stalk and a globular fibrinogen-like domain, the latter binding to carbohydrates such as N-acetylglucosamine. Ficolins have been widely identified in animals from higher invertebrates to mammals. In mammals, ficolins form complexes with mannose-binding lectin-associated serine proteases (MASPs), and ficolin-MASP complexes trigger complement activation via the lectin pathway. Once activated, complement mediates many immune responses including opsonization, phagocytosis, and cytokine production. Although the precise function of each ficolin is still under investigation, accumulating information suggests that ficolins have a crucial role in host defense by recognizing a variety of microorganisms and interacting with effector proteins.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan; Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Kanagawa, Japan
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan; Fukushima General Hygiene Institute, Fukushima, Japan
| |
Collapse
|
24
|
Genster N, Takahashi M, Sekine H, Endo Y, Garred P, Fujita T. Lessons learned from mice deficient in lectin complement pathway molecules. Mol Immunol 2014; 61:59-68. [PMID: 25060538 DOI: 10.1016/j.molimm.2014.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 01/04/2023]
Abstract
The lectin pathway of the complement system is initiated when the pattern-recognition molecules, mannose-binding lectin (MBL), ficolins or collectin-11, bind to invading pathogens or damaged host cells. This leads to activation of MBL/ficolin/collectin-11 associated serine proteases (MASPs), which in turn activate downstream complement components, ultimately leading to elimination of the pathogen. Mice deficient in the key molecules of lectin pathway of complement have been generated in order to build knowledge of the molecular mechanisms of the lectin pathway in health and disease. Despite differences in the genetic arrangements of murine and human orthologues of lectin pathway molecules, the knockout mice have proven to be valuable models to explore the effect of deficiency states in humans. In addition, new insight and unexpected findings on the diverse roles of lectin pathway molecules in complement activation, pathogen infection, coagulation, host tissue injury and developmental biology have been revealed by in vivo investigations. This review provides an overview of the mice deficient in lectin pathway molecules and highlights some of the most important findings that have resulted from studies of these.
Collapse
Affiliation(s)
- Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631 Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Minoru Takahashi
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuichi Endo
- Radioisotope Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631 Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Teizo Fujita
- Fukushima General Hygiene Institute, Fukushima, Japan
| |
Collapse
|
25
|
Brady AM, Geno KA, Dalecki AG, Cheng X, Nahm MH. Commercially available complement component-depleted sera are unexpectedly codepleted of ficolin-2. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1323-9. [PMID: 25030054 PMCID: PMC4178573 DOI: 10.1128/cvi.00370-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/10/2014] [Indexed: 11/20/2022]
Abstract
The ficolins are a family of innate pattern recognition molecules that are known to bind acetylated compounds and activate complement through the association of mannose binding lectin (MBL)/ficolin-associated serine proteases (MASPs). Their importance has more recently become appreciated, as they have been shown to play a role in a variety of disease processes from infection to autoimmunity. While studying ficolin-2-mediated complement deposition on Streptococcus pneumoniae, we found that sera depleted of C1q or other complement components were also codepleted of ficolin-2 but not ficolin-1, ficolin-3, or MBL. MBL present in C1q-depleted sera was able to mediate complement deposition on Saccharomyces cerevisiae, suggesting the presence of MASPs. We found that complement was activated on pneumococci in C1q-depleted serum only after opsonization with exogenous recombinant ficolin-2 (rFicolin-2). Also, no complement deposition was observed in C1q-depleted serum when pneumococci were opsonized with rFicolin-2 mutated at its lysine-57 residue, where MASPs are known to associate. Thus, these depleted sera are a unique tool to study ficolin-2-mediated complement pathways; however, one should be aware that ficolin-2 is absent from complement component-depleted sera.
Collapse
Affiliation(s)
- Allison M Brady
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - K Aaron Geno
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alex G Dalecki
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xiaogang Cheng
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Moon H Nahm
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
26
|
Panda S, Zhang J, Yang L, Anand GS, Ding JL. Molecular interaction between natural IgG and ficolin--mechanistic insights on adaptive-innate immune crosstalk. Sci Rep 2014; 4:3675. [PMID: 24419227 PMCID: PMC3891018 DOI: 10.1038/srep03675] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 12/13/2013] [Indexed: 11/09/2022] Open
Abstract
Recently, we found that natural IgG (nIgG; a non-specific immunoglobulin of adaptive immunity) is not quiescent, but plays a crucial role in immediate immune defense by collaborating with ficolin (an innate immune protein). However, how the nIgG and ficolin interplay and what factors control the complex formation during infection is unknown. Here, we found that mild acidosis and hypocalcaemia induced by infection- inflammation condition increased the nIgG:ficolin complex formation. Hydrogen-deuterium exchange mass spectrometry delineated the binding interfaces to the CH2-CH3 region of nIgG Fc and P-subdomain of ficolin FBG domain. Infection condition exposes novel binding sites. Site-directed mutagenesis and surface plasmon resonance analyses of peptides, derived from nIgG and ficolin, defined the interacting residues between the proteins. These results provide mechanistic insights on the interaction between two molecules representing the adaptive and innate immune pathways, prompting potential development of immunomodulatory/prophylactic peptides tunable to prevailing infection conditions.
Collapse
Affiliation(s)
- Saswati Panda
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543
| | - Jing Zhang
- NUS graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, 117543
- Current address: FIMS & BJRC, The 1 Affiliated Hospital and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China, 710061
| | - Lifeng Yang
- Computational and Systems Biology, Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore, 117576
- Current address: School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637511
| | - Ganesh S. Anand
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543
| | - Jeak L. Ding
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543
- Computational and Systems Biology, Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore, 117576
| |
Collapse
|
27
|
Luo F, Sun X, Wang Y, Wang Q, Wu Y, Pan Q, Fang C, Zhang XL. Ficolin-2 defends against virulent Mycobacteria tuberculosis infection in vivo, and its insufficiency is associated with infection in humans. PLoS One 2013; 8:e73859. [PMID: 24040095 PMCID: PMC3767610 DOI: 10.1371/journal.pone.0073859] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/29/2013] [Indexed: 12/28/2022] Open
Abstract
Human ficolin-2 (ficolin-2/P35) is a lectin complement pathway activator that is present in normal human plasma and is associated with infectious diseases; however, little is known regarding the roles and mechanisms of ficolin-2 during Mycobacterium tuberculosis (Mtb) infection. Here, we describe our novel findings that the ficolin-2 serum levels of 107 pulmonary tuberculosis (TB) patients were much lower compared with 107 healthy controls. In vitro analysis showed that ficolin-2 bound to the virulent Mtb H37Rv strain much more strongly than to the non-virulent M. bovis BCG and M. smegmatis. Ficolin-2 bound to the surface glycolipid portion of H37Rv and blocked H37Rv infection in human lung A549 cells. Opsonophagocytosis was also promoted by ficolin-2. Importantly, we found that administration of exogenous ficolin-2 had a remarkable protective effect against virulent Mtb H37Rv infection in both C57BL/6J and BALB/c mice. Ficolin-A (a ficolin-2-like molecule in mouse) knockout mice exhibited increased susceptibility to H37Rv infection. We further demonstrated that ficolin-2 could defend against virulent Mtb H37Rv infection at least partially by activating JNK phosphorylation and stimulating the secretion of interferon (IFN)-γ, interleukin (IL)-17, IL-6, tumor necrosis factor (TNF)-α, and nitric oxide (NO) production by macrophages. Our data provide a new immunotherapeutic strategy against TB based on the innate immune molecule ficolin-2 and indicate that ficolin-2 insufficiency is associated with higher susceptibility to infection in humans.
Collapse
Affiliation(s)
- Fengling Luo
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Wuhan, P. R. China
| | - Xiaoming Sun
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Wuhan, P. R. China
| | - Yubin Wang
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Wuhan, P. R. China
| | - Qilong Wang
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Wuhan, P. R. China
| | - Yanhong Wu
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Wuhan, P. R. China
| | - Qin Pan
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Wuhan, P. R. China
| | - Chao Fang
- Department of Anesthesiology, Wuhan University Zhongnan Hospital, Wuhan, P. R. China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Wuhan, P. R. China
| |
Collapse
|
28
|
Matsushita M. Ficolins in complement activation. Mol Immunol 2013; 55:22-6. [PMID: 22959617 DOI: 10.1016/j.molimm.2012.08.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 11/30/2022]
Abstract
Ficolins are a group of multimeric lectins made up of single subunits each of which is composed of a collagen-like domain and a fibrinogen-like domain. Most of the ficolins identified to date bind to acetylated compounds such as N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc). Ficolins in serum are complexed with MBL-associated serine proteases (MASPs) and their truncated proteins. These lectins play an important role in innate immunity. Binding of the ficolin-MASP complex to carbohydrates present on the surface of microbes initiates complement activation via the lectin pathway.
Collapse
Affiliation(s)
- Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa, Japan.
| |
Collapse
|
29
|
Matsushita M, Endo Y, Fujita T. Structural and functional overview of the lectin complement pathway: its molecular basis and physiological implication. Arch Immunol Ther Exp (Warsz) 2013; 61:273-83. [PMID: 23563865 DOI: 10.1007/s00005-013-0229-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 03/25/2013] [Indexed: 01/19/2023]
Abstract
The complement system is an effector mechanism in immunity. It is activated in three ways, the classical, alternative and lectin pathways. The lectin pathway is initiated by the binding of mannose-binding lectin (MBL) or ficolins to carbohydrates on the surfaces of pathogens. In humans, MBL and three types of ficolins (L-ficolin, H-ficolin, and M-ficolin) are present in plasma. Of these lectins, at least, MBL, L-ficolin, and H-ficolin are complexed with three types of MBL-associated serine proteases (MASPs), MASP-1, MASP-2, and MASP-3 and their truncated proteins (MAp44 and sMAP). In the lectin pathway, the lectin-MASP complex (i.e., a complex of lectin, MASPs and their truncated proteins) binds to pathogens, resulting in the activation of C4 and C2 to generate a C3 convertase capable of activating C3. MASP-2 is involved in the activation of C4 and C2. MASP-1 activates C2 and MASP-2. The functions of MASP-3, sMAP, and MAp44 in the lectin pathway remain unknown. MASP-1 and MASP-3 also have a role in the alternative pathway. MBL and ficolins are able to bind to a variety of pathogens depending on their carbohydrate binding specificity, resulting in the activation of the lectin pathway. Deficiencies of the components of the lectin pathway are associated to susceptibility to infection, indicating an important role of the lectin pathway in innate immunity. The lectin-MASP complex is also involved in innate immunity by activating the coagulation system. Recent findings suggest a crucial role of MASP-3 in development.
Collapse
Affiliation(s)
- Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | | | | |
Collapse
|
30
|
Degn SE, Thiel S. Humoral Pattern Recognition and the Complement System. Scand J Immunol 2013; 78:181-93. [DOI: 10.1111/sji.12070] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 12/16/2022]
Affiliation(s)
- S. E. Degn
- Department of Biomedicine; Aarhus University; Aarhus; Denmark
| | - S. Thiel
- Department of Biomedicine; Aarhus University; Aarhus; Denmark
| |
Collapse
|
31
|
Brinkmann CR, Jensen L, Dagnæs-Hansen F, Holm IE, Endo Y, Fujita T, Thiel S, Jensenius JC, Degn SE. Mitochondria and the lectin pathway of complement. J Biol Chem 2013; 288:8016-8027. [PMID: 23378531 PMCID: PMC3605621 DOI: 10.1074/jbc.m112.430249] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/28/2013] [Indexed: 01/19/2023] Open
Abstract
Mitochondria, the powerhouses of our cells, are remnants of a eubacterial endosymbiont. Notwithstanding the evolutionary time that has passed since the initial endosymbiotic event, mitochondria have retained many hallmarks of their eubacterial origin. Recent studies have indicated that during perturbations of normal homeostasis, such as following acute trauma leading to massive necrosis and release of mitochondria, the immune system might mistake symbiont for enemy and initiate an inappropriate immune response. The innate immune system is the first line of defense against invading microbial pathogens, and as such is the primary suspect in the recognition of mitochondria-derived danger-associated molecular patterns and initiation of an aberrant response. Conversely, innate immune mechanisms are also central to noninflammatory clearance of innocuous agents. Here we investigated the role of a central humoral component of innate immunity, the lectin pathway of complement, in recognition of mitochondria in vitro and in vivo. We found that the soluble pattern recognition molecules, mannan-binding lectin (MBL), L-ficolin, and M-ficolin, were able to recognize mitochondria. Furthermore, MBL in complex with MBL-associated serine protease 2 (MASP-2) was able to activate the lectin pathway and deposit C4 onto mitochondria, suggesting that these molecules are involved either in homeostatic clearance of mitochondria or in induction of untoward inflammatory reactions. We found that following mitochondrial challenge, C3 was consumed in vivo in the absence of overt inflammation, indicating a potential role of complement in noninflammatory clearance of mitochondria. Thus, we report here the first indication of involvement of the lectin pathway in mitochondrial immune handling.
Collapse
Affiliation(s)
- Christel R Brinkmann
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Lisbeth Jensen
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Frederik Dagnæs-Hansen
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Ida E Holm
- Laboratory for Experimental Neuropathology, Department of Pathology, Randers Hospital, DK-8930 Randers NØ, Denmark; Institute of Clinical Medicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Yuichi Endo
- Department of Immunology, Fukushima Medical University, 1-Hikariga-oka, Fukushima City, Fukushima 960-1295, Japan
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University, 1-Hikariga-oka, Fukushima City, Fukushima 960-1295, Japan
| | - Steffen Thiel
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jens C Jensenius
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Søren E Degn
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
32
|
Endo Y, Takahashi M, Iwaki D, Ishida Y, Nakazawa N, Kodama T, Matsuzaka T, Kanno K, Liu Y, Tsuchiya K, Kawamura I, Ikawa M, Waguri S, Wada I, Matsushita M, Schwaeble WJ, Fujita T. Mice deficient in ficolin, a lectin complement pathway recognition molecule, are susceptible to Streptococcus pneumoniae infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:5860-6. [PMID: 23150716 DOI: 10.4049/jimmunol.1200836] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mannose-binding lectin (MBL) and ficolin are complexed with MBL-associated serine proteases, key enzymes of complement activation via the lectin pathway, and act as soluble pattern recognition molecules in the innate immune system. Although numerous reports have revealed the importance of MBL in infectious diseases and autoimmune disorders, the role of ficolin is still unclear. To define the specific role of ficolin in vivo, we generated model mice deficient in ficolins. The ficolin A (FcnA)-deficient (Fcna(-/-)) and FcnA/ficolin B double-deficient (Fcna(-/-)b(-/-)) mice lacked FcnA-mediated complement activation in the sera, because of the absence of complexes comprising FcnA and MBL-associated serine proteases. When the host defense was evaluated by transnasal infection with a Streptococcus pneumoniae strain, which was recognized by ficolins, but not by MBLs, the survival rate was significantly reduced in all three ficolin-deficient (Fcna(-/-), Fcnb(-/-), and Fcna(-/-)b(-/-)) mice compared with wild-type mice. Reconstitution of the FcnA-mediated lectin pathway in vivo improved survival rate in Fcna(-/-) but not in Fcna(-/-)b(-/-) mice, suggesting that both FcnA and ficolin B are essential in defense against S. pneumoniae. These results suggest that ficolins play a crucial role in innate immunity against pneumococcal infection through the lectin complement pathway.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Verma A, White M, Vathipadiekal V, Tripathi S, Mbianda J, Ieong M, Qi L, Taubenberger JK, Takahashi K, Jensenius JC, Thiel S, Hartshorn KL. Human H-ficolin inhibits replication of seasonal and pandemic influenza A viruses. THE JOURNAL OF IMMUNOLOGY 2012; 189:2478-87. [PMID: 22851708 DOI: 10.4049/jimmunol.1103786] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The collectins have been shown to have a role in host defense against influenza A virus (IAV) and other significant viral pathogens (e.g., HIV). The ficolins are a related group of innate immune proteins that are present at relatively high concentrations in serum, but also in respiratory secretions; however, there has been little study of the role of ficolins in viral infection. In this study, we demonstrate that purified recombinant human H-ficolin and H-ficolin in human serum and bronchoalveolar lavage fluid bind to IAV and inhibit viral infectivity and hemagglutination activity in vitro. Removal of ficolins from human serum or bronchoalveolar lavage fluid reduces their antiviral activity. Inhibition of IAV did not involve the calcium-dependent lectin activity of H-ficolin. We demonstrate that H-ficolin is sialylated and that removal of sialic acid abrogates IAV inhibition, while addition of the neuraminidase inhibitor oseltamivir potentiates neutralization, hemagglutinin inhibition, and viral aggregation caused by H-ficolin. Pandemic and mouse-adapted strains of IAV are generally not inhibited by the collectins surfactant protein D or mannose binding lectin because of a paucity of glycan attachments on the hemagglutinin of these strains. In contrast, H-ficolin inhibited both the mouse-adapted PR-8 H1N1 strain and a pandemic H1N1 strain from 2009. H-ficolin also fixed complement to a surface coated with IAV. These findings suggest that H-ficolin contributes to host defense against IAV.
Collapse
Affiliation(s)
- Anamika Verma
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hummelshøj T, Ma YJ, Munthe-Fog L, Bjarnsholt T, Moser C, Skjoedt MO, Romani L, Fujita T, Endo Y, Garred P. The interaction pattern of murine serum ficolin-A with microorganisms. PLoS One 2012; 7:e38196. [PMID: 22666482 PMCID: PMC3364236 DOI: 10.1371/journal.pone.0038196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/01/2012] [Indexed: 11/19/2022] Open
Abstract
The ficolins are soluble pattern recognition molecules in the lectin pathway of complement, but the spectrum and mode of interaction with pathogens are largely unknown. In this study, we investigated the binding properties of the murine serum ficolin-A towards a panel of different clinical relevant microorganisms (N = 45) and compared the binding profile with human serum ficolin-2 and ficolin-3. Ficolin-A was able to bind Gram-positive bacteria strains including E. faecalis, L. monocytogenes and some S. aureus strains, but not to the investigated S. agalactiae (Group B streptococcus) strains. Regarding Gram-negative bacteria ficolin-A was able to bind to some E. coli and P. aeruginosa strains, but not to the investigated Salmonella strains. Of particular interest ficolin-A bound strongly to the pathogenic E. coli, O157:H7 and O149 strains, but it did not bind to the non-pathogenic E. coli, ATCC 25922 strain. Additionally, ficolin-A was able to bind purified LPS from these pathogenic strains. Furthermore, ficolin-A bound to a clinical isolate of the fungus A. fumigatus. In general ficolin-2 showed similar selective binding spectrum towards pathogenic microorganisms as observed for ficolin-A indicating specific pathophysiological roles of these molecules in host defence. In contrast, ficolin-3 did not bind to any of the investigated microorganisms and the anti-microbial role of ficolin-3 still remains elusive.
Collapse
Affiliation(s)
- Tina Hummelshøj
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
| | - Ying Jie Ma
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
| | - Lea Munthe-Fog
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
| | - Luigina Romani
- Microbiology Section, Department of Experimental Medicine and Biochemical Science, University of Perugia, Perugia, Italy
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
35
|
Boldt ABW, Goeldner I, de Messias-Reason IJT. Relevance of the lectin pathway of complement in rheumatic diseases. Adv Clin Chem 2012; 56:105-53. [PMID: 22397030 DOI: 10.1016/b978-0-12-394317-0.00012-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Due to its importance both in the clearance of pathogens that contribute as rheumatic etiological agents and in the disposal of apoptotic bodies and potential autoimmune initiators, deficiencies of the components of the lectin pathway of complement have been found to increase susceptibility and modulate the severity of most rheumatic disorders. This chapter introduces the general aspects of the structure, function, and genetics of lectin pathway components and summarizes current knowledge of the field regarding rheumatic diseases predisposition and modulation.
Collapse
Affiliation(s)
- Angelica B W Boldt
- Molecular Immunopathology Laboratory, Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
| | | | | |
Collapse
|
36
|
Endo Y, Iwaki D, Ishida Y, Takahashi M, Matsushita M, Fujita T. Mouse ficolin B has an ability to form complexes with mannose-binding lectin-associated serine proteases and activate complement through the lectin pathway. J Biomed Biotechnol 2012; 2012:105891. [PMID: 22523468 PMCID: PMC3306798 DOI: 10.1155/2012/105891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/08/2011] [Indexed: 11/18/2022] Open
Abstract
Ficolins are thought to be pathogen-associated-molecular-pattern-(PAMP-) recognition molecules that function to support innate immunity. Like mannose-binding lectins (MBLs), most mammalian ficolins form complexes with MBL-associated serine proteases (MASPs), leading to complement activation via the lectin pathway. However, the ability of murine ficolin B, a homologue of human M-ficolin, to perform this function is still controversial. The results of the present study show that ficolin B in mouse bone marrow is an oligomeric protein. Ficolin B, pulled down using GlcNAc-agarose, contained very low, but detectable, amounts of MASP-2 and small MBL-associated protein (sMAP) and showed detectable C4-deposition activity on immobilized N-acetylglucosamine. These biochemical features of ficolin B were confirmed using recombinant mouse ficolin B produced in CHO cells. Taken together, these results suggest that like other mammalian homologues, murine ficolin B has an ability to exert its function via the lectin pathway.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, 1-Hikarigaoka, Fukushima 960-1295, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Zacho RM, Jensen L, Terp R, Jensenius JC, Thiel S. Studies of the pattern recognition molecule H-ficolin: specificity and purification. J Biol Chem 2012; 287:8071-81. [PMID: 22238349 DOI: 10.1074/jbc.m111.301044] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ficolins are pattern recognition molecules of the innate immune system. H-ficolin is found in plasma associated with mannan-binding lectin-associated serine proteases (MASPs). When H-ficolin binds to microorganisms the MASPs are activated, which in turn activate the complement system. H-ficolin is the most abundant ficolin in humans, yet its ligand binding characteristics and biological role remain obscure. We examined the binding of H-ficolin to Aerococcus viridans as well as to a more defined artificial target, i.e. acetylated bovine serum albumin. A strict dependence for calcium ions and inhibition at high NaCl concentration was found. The binding to acetylated bovine serum albumin was inhibited by acetylsalicylic acid and sodium acetate as well as by N-acetylated glucosamine and galactosamine (GlcNAc and GalNAc) and glycine (GlyNAc). The binding to A. viridans was sensitive to the same compounds, but, importantly, higher concentrations were needed for inhibition. N-Acetylated cysteine was also inhibitory, but this inhibition was parallel with reduction in the oligomerization of H-ficolin and thus represents structural changes of the molecule. Based on our findings, we developed a procedure for the purification of H-ficolin from serum, involving PEG precipitation, affinity chromatography on Sepharose derivatized with acetylated serum albumin, ion exchange chromatography, and gel permeation chromatography. The purified H-ficolin was observed to elute at 700 kDa, similar to what we find for H-ficolin in whole serum. MASP-2 was co-purified with H-ficolin, and the purified H-ficolin·MASP-2 complex could activate complement as measured by cleavage of complement factor C4. This study extends our knowledge of the specificity of this pattern recognition molecule, and the purified product will enable further studies.
Collapse
Affiliation(s)
- Rikke M Zacho
- Department of Medical Microbiology and Immunology, Aarhus University, 8000 Aarhus, Denmark
| | | | | | | | | |
Collapse
|
38
|
Hummelshøj T, Nissen J, Munthe-Fog L, Koch C, Frost Bertelsen M, Garred P. Allelic lineages of the ficolin genes (FCNs) are passed from ancestral to descendant primates. PLoS One 2011; 6:e28187. [PMID: 22194813 PMCID: PMC3240626 DOI: 10.1371/journal.pone.0028187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/02/2011] [Indexed: 12/02/2022] Open
Abstract
The ficolins recognize carbohydrates and acetylated compounds on microorganisms and dying host cells and are able to activate the lectin pathway of the complement system. In humans, three ficolin genes have been identified: FCN1, FCN2 and FCN3, which encode ficolin-1, ficolin-2 and ficolin-3, respectively. Rodents have only two ficolins designated ficolin-A and ficolin-B that are closely related to human ficolin-1, while the rodent FCN3 orthologue is a pseudogene. Ficolin-2 and ficolin-3 have so far only been observed in humans. Thus, we performed a systematic investigation of the FCN genes in non-human primates. The exons and intron-exon boundaries of the FCN1-3 genes were sequenced in the following primate species: chimpanzee, gorilla, orangutan, rhesus macaque, cynomolgus macaque, baboon and common marmoset. We found that the exon organisation of the FCN genes was very similar between all the non-human primates and the human FCN genes. Several variations in the FCN genes were found in more than one primate specie suggesting that they were carried from one species to another including humans. The amino acid diversity of the ficolins among human and non-human primate species was estimated by calculating the Shannon entropy revealing that all three proteins are generally highly conserved. Ficolin-1 and ficolin-2 showed the highest diversity, whereas ficolin-3 was more conserved. Ficolin-2 and ficolin-3 were present in non-human primate sera with the same characteristic oligomeric structures as seen in human serum. Taken together all the FCN genes show the same characteristics in lower and higher primates. The existence of trans-species polymorphisms suggests that different FCN allelic lineages may be passed from ancestral to descendant species.
Collapse
Affiliation(s)
- Tina Hummelshøj
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Janna Nissen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lea Munthe-Fog
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Koch
- Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Zhang J, Yang L, Anand GS, Ho B, Ding JL. Pathophysiological condition changes the conformation of a flexible FBG-related protein, switching it from pathogen-recognition to host-interaction. Biochimie 2011; 93:1710-9. [PMID: 21689722 DOI: 10.1016/j.biochi.2011.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 06/05/2011] [Indexed: 12/24/2022]
Abstract
Although homeostatic disturbance of the blood pH and calcium in the vicinity of tissue injury/malignancy/local infection seems subtle, it can cause substantial pathophysiological consequences, a phenomenon which has remained largely unexplored. The fibrinogen-related proteins (FREPs) containing fibrinogen-like domain (FBG) represent a conserved protein family with a common calcium-binding region, implying the presence of elements responsive to physiological perturbation. Here, we studied the molecular interaction between a representative FREP, the M-ficolin, and an acute phase blood protein, the C-reactive protein (CRP), both of which are known to trigger and control seminal pathways in infection and injury. Using hydrogen-deuterium exchange mass spectrometry, we showed that the C-terminal region of M-ficolin FBG underwent dramatic conformational change upon pH and calcium perturbations. Biochemical and biophysical assays showed that under defined pathophysiological condition (pH 6.5, 2.0 mM calcium), the FBG:CRP interaction occurred more strongly compared to that under physiological condition (pH 7.4, 2.5 mM calcium). We identified the binding interface between CRP and FBG, locating it to the pH- and calcium-sensitive C-terminal region of FBG. By site-directed mutagenesis, we determined H284 in the N-acetylglucosamine (GlcNAc)-binding pocket of the FBG, to be the critical CRP-binding residue. This conformational switch involving H284, explains how the pathophysiologically-driven FBG:CRP interaction diverts the M-ficolin away from GlcNAc/pathogen-recognition to host protein-protein interaction, thus enabling the host to regain homeostatic control. Our elucidation of the binding interface at the flexible FBG domain provides insights into the bioactive centre of the M-ficolin, and possibly other FREPs, which might aid future development of immunomodulators.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | | | | | | | | |
Collapse
|
40
|
Bhadury P, Song B, Ward BB. Intron features of key functional genes mediating nitrogen metabolism in marine phytoplankton. Mar Genomics 2011; 4:207-13. [DOI: 10.1016/j.margen.2011.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 05/31/2011] [Accepted: 06/04/2011] [Indexed: 10/18/2022]
|
41
|
Endo Y, Matsushita M, Fujita T. The role of ficolins in the lectin pathway of innate immunity. Int J Biochem Cell Biol 2011; 43:705-12. [PMID: 21315829 DOI: 10.1016/j.biocel.2011.02.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 11/29/2022]
Abstract
Ficolins are a family of oligomeric proteins consisting of an N-terminal collagen-like domain and a C-terminal globular fibrinogen-like domain. They are novel lectins that employ the fibrinogen-like domain as a functional domain. Ficolins specifically recognize N-acetyl compounds such as N-acetylglucosamine, components of bacterial and fungal cell walls, and certain bacteria. Like mannose-binding lectin (MBL), ficolins circulate in complexes with MBL-associated serine proteases (MASPs). MASP complexes form with ficolins and MBL, thereby activating the complement through the lectin pathway. Upon binding of ficolins and MBL to carbohydrates on pathogens, MASPs convert to active forms, and subsequently activate the complement. The activated complements lead to pathogen phagocytosis, aggregation and lysis. In humans, three ficolins (L-, M- and H-ficolins) have been identified, which exhibit differences in tissue expression, protein location site, ligand-binding and bacteria-recognition, suggesting a specific role of each ficolin. In addition, these ficolins form complexes with three MASPs (MASP-1, MASP-2 and MASP-3) and two nonenzymatic proteins (sMAP and MAP-1), suggesting a highly sophisticated organization and regulated activation of the ficolin-dependent lectin pathway. This review provides an overview of our current knowledge of ficolins, especially human ficolins and their mouse homologues. We also discuss their possible physiological roles in innate immunity, especially their defensive role against bacterial infection.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, 1-Hikarigaoka, Fukushima 960-1295, Japan.
| | | | | |
Collapse
|
42
|
Thomsen T, Schlosser A, Holmskov U, Sorensen GL. Ficolins and FIBCD1: soluble and membrane bound pattern recognition molecules with acetyl group selectivity. Mol Immunol 2011; 48:369-81. [PMID: 21071088 DOI: 10.1016/j.molimm.2010.09.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 09/30/2010] [Indexed: 12/27/2022]
Abstract
A network of molecules, which recognizes pathogens, work together to establish a quick and efficient immune response to infectious agents. Molecules containing a fibrinogen related domain in invertebrates and vertebrates have been implicated in immune responses against pathogens, and characterized as pattern recognition molecules. Ficolins are soluble oligomeric proteins composed of trimeric collagen-like regions linked to fibrinogen-related domains (FReDs) that have the ability to sense molecular patterns on both pathogens and apoptotic cell surfaces and activate the complement system. The ficolins have acetyl-binding properties, which have been localized to different binding sites in the FReD-region. A newly discovered tetrameric transmembrane protein, FIBCD1, likewise binds acetylated structures via the highly conserved FReD. This review presents current knowledge on acetyl binding FReD-containing molecules, and discusses structural resemblance but also diversity in recognition of acetylated ligands.
Collapse
Affiliation(s)
- Theresa Thomsen
- Institute of Molecular Medicine, University of Southern Denmark, Denmark
| | | | | | | |
Collapse
|
43
|
Zhang J, Yang L, Ang Z, Yoong SL, Tran TTT, Anand GS, Tan NS, Ho B, Ding JL. Secreted M-ficolin anchors onto monocyte transmembrane G protein-coupled receptor 43 and cross talks with plasma C-reactive protein to mediate immune signaling and regulate host defense. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:6899-910. [PMID: 21037097 DOI: 10.4049/jimmunol.1001225] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Although transmembrane C-type lectins (CLs) are known to initiate immune signaling, the participation and mechanism of action of soluble CLs have remained enigmatic. In this study, we found that M-ficolin, a conserved soluble CL of monocyte origin, overcomes its lack of membrane-anchor domain by docking constitutively onto a monocyte transmembrane receptor, G protein-coupled receptor 43 (GPCR43), to form a pathogen sensor-cum-signal transducer. On encountering microbial invaders, the M-ficolin-GPCR43 complex activates the NF-κB cascade to upregulate IL-8 production. We showed that mild acidosis at the local site of infection induces conformational changes in the M-ficolin molecule, which provokes a strong interaction between the C-reactive protein (CRP) and the M-ficolin-GPCR43 complex. The collaboration among CRP-M-ficolin-GPCR43 under acidosis curtails IL-8 production thus preventing immune overactivation. Therefore, we propose that a soluble CL may become membrane-associated through interaction with a transmembrane protein, whereupon infection collaborates with other plasma protein to transduce the infection signal and regulate host defense. Our finding implies a possible mechanism whereby the host might expand its repertoire of immune recognition-cum-regulation tactics by promiscuous protein networking. Furthermore, our identification of the pH-sensitive interfaces of M-ficolin-CRP provides a powerful template for future design of potential immunomodulators.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Miyagawa S, Yamamoto A, Matsunami K, Wang D, Takama Y, Ueno T, Okabe M, Nagashima H, Fukuzawa M. Complement regulation in the GalT KO era. Xenotransplantation 2010; 17:11-25. [DOI: 10.1111/j.1399-3089.2010.00569.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
45
|
Garred P, Honoré C, Ma YJ, Munthe-Fog L, Hummelshøj T. MBL2, FCN1, FCN2 and FCN3-The genes behind the initiation of the lectin pathway of complement. Mol Immunol 2009; 46:2737-44. [PMID: 19501910 DOI: 10.1016/j.molimm.2009.05.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/01/2009] [Accepted: 05/03/2009] [Indexed: 10/20/2022]
Abstract
Mannose-binding lectin (MBL) and the ficolins (Ficolin-1, Ficolin-2 and Ficolin-3) are soluble collagen-like proteins that are involved in innate immune defence. They bind sugar structures or acetylated compounds present on microorganisms and on dying host cells and they initiate activation of the lectin complement pathway in varying degrees. Common variant alleles situated both in promoter and structural regions of the human MBL gene (MBL2) influence the stability and the serum concentration of the protein. Although not as thoroughly investigated as the MBL2 gene polymorphisms the ficolin genes (FCNs) also exhibit genetic variations affecting both the serum concentration, stability and binding capacity of the corresponding proteins. Epidemiological studies have suggested that the genetically determined variations in MBL serum concentrations influence the susceptibility to and the course of different types of diseases, while the importance of the ficolins in general and the genetic variation in the FCNs genes in particular is still largely unresolved. This overview will summarize the current molecular knowledge of the human MBL2, FCN1, FCN2 and FCN3 genes.
Collapse
Affiliation(s)
- Peter Garred
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
46
|
Lacroix M, Dumestre-Pérard C, Schoehn G, Houen G, Cesbron JY, Arlaud GJ, Thielens NM. Residue Lys57 in the collagen-like region of human L-ficolin and its counterpart Lys47 in H-ficolin play a key role in the interaction with the mannan-binding lectin-associated serine proteases and the collectin receptor calreticulin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:456-65. [PMID: 19109177 DOI: 10.4049/jimmunol.182.1.456] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
L- and H-ficolins are serum oligomeric defense proteins consisting of a collagen-like region and a fibrinogen-like recognition domain that bind to pathogen- and apoptotic cell-associated molecular patterns. They share with mannan-binding lectin (MBL) the ability to associate with MBL-associated serine proteases (MASP)-1, -2, -3, and protein MAp19 and to trigger the lectin complement pathway through MASP-2 activation. Recent studies have revealed the essential role of Lys(55) in the collagenous region of MBL in the interaction with the MASPs and calreticulin (CRT). To test the possible involvement of the homologous residues Lys(57) of L-ficolin and Lys(47) of H-ficolin, point mutants of both proteins were produced in which these residues were mutated to Ala, Glu, or Arg. The resulting mutants exhibited oligomerization patterns and ligand binding properties similar to those of their wild-type counterparts. In contrast, all three mutations strongly inhibited the interaction of L- and H-ficolins with MAp19 and MASP-2 and impaired the ability of each ficolin to trigger the lectin pathway. In the case of MASP-1 and MASP-3, replacement of the target Lys residues by Ala or Glu abolished interaction, whereas the Lys to Arg mutations had only slight inhibitory effects. Likewise, binding of each ficolin to CRT was inhibited by mutation of Lys to Ala or Glu, but not to Arg. In conclusion, residues Lys(57) of L-ficolin and Lys(47) of H-ficolin are key components of the interaction with the MASPs and CRT, providing strong indication that MBL and the ficolins share homologous binding sites for both types of proteins.
Collapse
Affiliation(s)
- Monique Lacroix
- Institut de Biologie Structurale Jean-Pierre Ebel, Unité Mixte de Recherche 5075, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique, Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Thiel S, Gadjeva M. Humoral pattern recognition molecules: mannan-binding lectin and ficolins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 653:58-73. [PMID: 19799112 DOI: 10.1007/978-1-4419-0901-5_5] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Innate immunity comprises a sophisticated network of molecules, which recognize pathogens, and effector molecules, working together to establish a quick and efficient immune response to infectious agents. Complement activation triggered by mannan binding lectin (MBL) or ficolins represents a beautiful example of this network Both MBL and ficolins recognize specific chemical structures on the surface of antigens and pathogens, thus bind to a broad variety of pathogens. Once bound further complement deposition is achieved through a cascade of proteolytic reactions. MBL and ficolin induced complement activation is critical for adequate anti-bacterial, anti-fungal and anti-viral responses. This is well illustrated by numerous and convincing studies that demonstrate associations between MBL deficiency and infections. Recent work has also highlighted that MBL and ficolins recognize self-structures, thus extending the role of these molecules beyond the traditional view of first line defense molecules. It appears that MBL deficiency may modulate the prognosis of inflammatory and autoimmune diseases. What is known about the mechanisms behind this broad scope of activities of MBL and ficolins is discussed in this chapter.
Collapse
Affiliation(s)
- Steffen Thiel
- Department of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | | |
Collapse
|
48
|
Endo Y, Fujita T. [Pattern-recognition molecule, Ficolin]. Nihon Saikingaku Zasshi 2008; 63:399-405. [PMID: 19317229 DOI: 10.3412/jsb.63.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295
| | | |
Collapse
|
49
|
Demonstration of β-glucan receptors in the skin of aquatic mammals—a preliminary report. EUR J WILDLIFE RES 2008. [DOI: 10.1007/s10344-008-0173-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Irimia M, Roy SW. Spliceosomal introns as tools for genomic and evolutionary analysis. Nucleic Acids Res 2008; 36:1703-12. [PMID: 18263615 PMCID: PMC2275149 DOI: 10.1093/nar/gkn012] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Over the past 5 years, the availability of dozens of whole genomic sequences from a wide variety of eukaryotic lineages has revealed a very large amount of information about the dynamics of intron loss and gain through eukaryotic history, as well as the evolution of intron sequences. Implicit in these advances is a great deal of information about the structure and evolution of surrounding sequences. Here, we review the wealth of ways in which structures of spliceosomal introns as well as their conservation and change through evolution may be harnessed for evolutionary and genomic analysis. First, we discuss uses of intron length distributions and positions in sequence assembly and annotation, and for improving alignment of homologous regions. Second, we review uses of introns in evolutionary studies, including the utility of introns as indicators of rates of sequence evolution, for inferences about molecular evolution, as signatures of orthology and paralogy, and for estimating rates of nucleotide substitution. We conclude with a discussion of phylogenetic methods utilizing intron sequences and positions.
Collapse
Affiliation(s)
- Manuel Irimia
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|