1
|
Zhao X, Qin Y, Li B, Wang Y, Liu J, Wang B, Zhao J, Yin J, Zhang L, Li J, Huang J, Chen K, Liu L, Wu Y. Genetically engineered biomimetic ATP-responsive nanozyme for the treatment of cardiac fibrosis. J Nanobiotechnology 2025; 23:10. [PMID: 39780203 PMCID: PMC11715444 DOI: 10.1186/s12951-024-03083-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cardiac fibrosis plays a critical role in the progression of various forms of heart disease, significantly increasing the risk of sudden cardiac death. However, currently, there are no therapeutic strategies available to prevent the onset of cardiac fibrosis. METHODS AND RESULTS Here, biomimetic ATP-responsive nanozymes based on genetically engineered cell membranes are adapted to specifically recognize activated cardiac fibroblasts (CFs) for the treatment of cardiac fibrosis. By fusing the anti-FAP CAR genetically engineered cell membrane to zeolitic imidazole frameworks-90 (zif-90) cores loaded with antioxidant nanozymes CeO2 and siCTGF (siRNA targeting CTGF), these nanoparticles, called FM@zif-90/Ce/siR NPs, are demonstrated to effectively reduce the accumulation of myofibroblasts and the formation of fibrotic tissue, while restoring cardiac function. CONCLUSIONS These findings demonstrate that the combination of CeO2 and siCTGF has a beneficial curative effect on cardiac fibrosis, with significant translational potential.
Collapse
Affiliation(s)
- Xueli Zhao
- Department of Biochemistry and Molecular Biology, Shaanxi Provincial Key Laboratory of Clinical Genetics, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuze Qin
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bowen Li
- Department of Biochemistry and Molecular Biology, Shaanxi Provincial Key Laboratory of Clinical Genetics, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yue Wang
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiao Liu
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Wang
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia Zhao
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiaqi Yin
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lanlan Zhang
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Li
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Junzhe Huang
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Kun Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Liwen Liu
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yuanming Wu
- Department of Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China.
- Department of Biochemistry and Molecular Biology, Shaanxi Provincial Key Laboratory of Clinical Genetics, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Meng L, Chen HM, Zhang JS, Wu YR, Xu YZ. Matricellular proteins: From cardiac homeostasis to immune regulation. Biomed Pharmacother 2024; 180:117463. [PMID: 39305814 DOI: 10.1016/j.biopha.2024.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 09/19/2024] [Indexed: 11/14/2024] Open
Abstract
Tissue repair after myocardial injury is a complex process involving changes in all aspects of the myocardial tissue, including the extracellular matrix (ECM). The ECM is composed of large structural proteins such as collagen and elastin and smaller proteins with major regulatory properties called matricellular proteins. Matricellular cell proteins exert their functions and elicit cellular responses by binding to structural proteins not limited to interactions with cell surface receptors, cytokines, or proteases. At the same time, matricellular proteins act as the "bridge" of information exchange between cells and ECM, maintaining the integrity of the cardiac structure and regulating the immune environment, which is a key factor in determining cardiac homeostasis. In this review, we present an overview of the identified matricellular proteins and summarize the current knowledge regarding their roles in maintaining cardiac homeostasis and regulating the immune system.
Collapse
Affiliation(s)
- Li Meng
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Hui-Min Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Jia-Sheng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Yi-Rong Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| | - Yi-Zhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| |
Collapse
|
3
|
Li F, Zhang F, Shi H, Xia H, Wei X, Liu S, Wu T, Li Y, Shu F, Chen M, Li J, Duan R. Aerobic exercise suppresses CCN2 secretion from senescent muscle stem cells and boosts muscle regeneration in aged mice. J Cachexia Sarcopenia Muscle 2024; 15:1733-1749. [PMID: 38925632 PMCID: PMC11446704 DOI: 10.1002/jcsm.13526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/18/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Aging negatively impacts tissue repair, particularly in skeletal muscle, where the regenerative capacity of muscle stem cells (MuSCs) diminishes with age. Although aerobic exercise is known to attenuate skeletal muscle atrophy, its specific impact on the regenerative and repair capacity of MuSCs remains unclear. METHODS Mice underwent moderate-intensity continuous training (MICT) from 9 months (aged + Ex-9M) or 20 months (aged + Ex-20M) to 25 months, with age-matched (aged) and adult controls. Histological examinations and MuSC transplantation assays assessed aerobic exercise effects on MuSC function and muscle regeneration. CCN2/connective tissue growth factor modulation (overexpression and knockdown) in MuSCs and AICAR supplementation effects were explored. RESULTS Aged mice displayed significantly reduced running duration (65.33 ± 4.32 vs. 161.9 ± 1.29 min, mean ± SD, P < 0.001) and distance (659.17 ± 103.64 vs. 3058.28 ± 46.26 m, P < 0.001) compared with adults. This reduction was accompanied by skeletal muscle weight loss and decreased myofiber cross-sectional area (CSA). However, MICT initiated at 9 or 20 months led to a marked increase in running duration (142.75 ± 3.14 and 133.86 ± 20.47 min, respectively, P < 0.001 compared with aged mice) and distance (2347.58 ± 145.11 and 2263 ± 643.87 m, respectively, P < 0.001). Additionally, MICT resulted in increased skeletal muscle weight and enhanced CSA. In a muscle injury model, aged mice exhibited fewer central nuclear fibres (CNFs; 266.35 ± 68.66/mm2), while adult, aged + Ex-9M and aged + Ex-20M groups showed significantly higher CNF counts (610.82 ± 46.76, 513.42 ± 47.19 and 548.29 ± 71.82/mm2, respectively; P < 0.001 compared with aged mice). MuSCs isolated from aged mice displayed increased CCN2 expression, which was effectively suppressed by MICT. Transplantation of MuSCs overexpressing CCN2 (Lenti-CCN2, Lenti-CON as control) into injured tibialis anterior muscle compromised regeneration capacity, resulting in significantly fewer CNFs in the Lenti-CCN2 group compared with Lenti-CON (488.07 ± 27.63 vs. 173.99 ± 14.28/mm2, P < 0.001) at 7 days post-injury (dpi). Conversely, knockdown of CCN2 (Lenti-CCN2shR, Lenti-NegsiR as control) in aged MuSCs improved regeneration capacity, significantly increasing the CNF count from 254.5 ± 26.36 to 560.39 ± 48.71/mm2. Lenti-CCN2 MuSCs also increased fibroblast proliferation and exacerbated skeletal muscle fibrosis, while knockdown of CCN2 in aged MuSCs mitigated this pattern. AICAR supplementation, mimicking exercise, replicated the beneficial effects of aerobic exercise by mitigating muscle weight decline, enhancing satellite cell activity and reducing fibrosis. CONCLUSIONS Aerobic exercise effectively reverses the decline in endurance capacity and mitigates muscle atrophy in aged mice. It inhibits CCN2 secretion from senescent MuSCs, thereby enhancing skeletal muscle regeneration and preventing fibrosis in aged mice. AICAR supplementation mimics the beneficial effects of aerobic exercise.
Collapse
Affiliation(s)
- Fan Li
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
| | - Fulong Zhang
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
- School of Physical EducationShanxi Datong UniversityDatongChina
| | - Haiwang Shi
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
| | - Honglin Xia
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
| | - Xiaobei Wei
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
| | - Siqi Liu
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
| | - Tao Wu
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
| | - Yuecheng Li
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
| | - Feng Shu
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
| | - Mengjie Chen
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
| | - Jie Li
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
| | - Rui Duan
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
| |
Collapse
|
4
|
Tejera-Muñoz A, Cortés M, Rodriguez-Rodriguez A, Tejedor-Santamaria L, Marchant V, Rayego-Mateos S, Gimeno-Longas MJ, Leask A, Nguyen TQ, Martín M, Tuñón J, Rodríguez I, Ruiz-Ortega M, Rodrigues-Díez RR. Ccn2 Deletion Reduces Cardiac Dysfunction, Oxidative Markers, and Fibrosis Induced by Doxorubicin Administration in Mice. Int J Mol Sci 2024; 25:9617. [PMID: 39273564 PMCID: PMC11394698 DOI: 10.3390/ijms25179617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Cellular Communication Network Factor 2 (CCN2) is a matricellular protein implicated in cell communication and microenvironmental signaling. Overexpression of CCN2 has been documented in various cardiovascular pathologies, wherein it may exert either deleterious or protective effects depending on the pathological context, thereby suggesting that its role in the cardiovascular system is not yet fully elucidated. In this study, we aimed to investigate the effects of Ccn2 gene deletion on the progression of acute cardiac injury induced by doxorubicin (DOX), a widely utilized chemotherapeutic agent. To this end, we employed conditional knockout (KO) mice for the Ccn2 gene (CCN2-KO), which were administered DOX and compared to DOX-treated wild-type (WT) control mice. Our findings demonstrated that the ablation of CCN2 ameliorated DOX-induced cardiac dysfunction, as evidenced by improvements in ejection fraction (EF) and fractional shortening (FS) of the left ventricle. Furthermore, DOX-treated CCN2-KO mice exhibited a significant reduction in the gene expression and activation of oxidative stress markers (Hmox1 and Nfe2l2/NRF2) relative to DOX-treated WT controls. Additionally, the deletion of Ccn2 markedly attenuated DOX-induced cardiac fibrosis. Collectively, these results suggest that CCN2 plays a pivotal role in the pathogenesis of DOX-mediated cardiotoxicity by modulating oxidative stress and fibrotic pathways. These findings provide a novel avenue for future investigations to explore the therapeutic potential of targeting CCN2 in the prevention of DOX-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Antonio Tejera-Muñoz
- Research Unit, Complejo Hospitalario La Mancha Centro, 13600 Alcázar de San Juan, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45004 Toledo, Spain
| | - Marcelino Cortés
- Cardiology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | | | - Lucia Tejedor-Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- RICORS2040, Instituto de Salud Carlos III, 28040 Madrid, Spain
| | - Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- RICORS2040, Instituto de Salud Carlos III, 28040 Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- RICORS2040, Instituto de Salud Carlos III, 28040 Madrid, Spain
| | - Maria José Gimeno-Longas
- Department of Cell Biology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - Tri Q Nguyen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - María Martín
- Cardiology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jose Tuñón
- Cardiology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Isabel Rodríguez
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- RICORS2040, Instituto de Salud Carlos III, 28040 Madrid, Spain
| | - Raul R Rodrigues-Díez
- RICORS2040, Instituto de Salud Carlos III, 28040 Madrid, Spain
- Department of Cell Biology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
5
|
Chatham JC, Patel RP. Protein glycosylation in cardiovascular health and disease. Nat Rev Cardiol 2024; 21:525-544. [PMID: 38499867 DOI: 10.1038/s41569-024-00998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Protein glycosylation, which involves the attachment of carbohydrates to proteins, is one of the most abundant protein co-translational and post-translational modifications. Advances in technology have substantially increased our knowledge of the biosynthetic pathways involved in protein glycosylation, as well as how changes in glycosylation can affect cell function. In addition, our understanding of the role of protein glycosylation in disease processes is growing, particularly in the context of immune system function, infectious diseases, neurodegeneration and cancer. Several decades ago, cell surface glycoproteins were found to have an important role in regulating ion transport across the cardiac sarcolemma. However, with very few exceptions, our understanding of how changes in protein glycosylation influence cardiovascular (patho)physiology remains remarkably limited. Therefore, in this Review, we aim to provide an overview of N-linked and O-linked protein glycosylation, including intracellular O-linked N-acetylglucosamine protein modification. We discuss our current understanding of how all forms of protein glycosylation contribute to normal cardiovascular function and their roles in cardiovascular disease. Finally, we highlight potential gaps in our knowledge about the effects of protein glycosylation on the heart and vascular system, highlighting areas for future research.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Rakesh P Patel
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
6
|
Fuster-Martínez I, Calatayud S. The current landscape of antifibrotic therapy across different organs: A systematic approach. Pharmacol Res 2024; 205:107245. [PMID: 38821150 DOI: 10.1016/j.phrs.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Fibrosis is a common pathological process that can affect virtually all the organs, but there are hardly any effective therapeutic options. This has led to an intense search for antifibrotic therapies over the last decades, with a great number of clinical assays currently underway. We have systematically reviewed all current and recently finished clinical trials involved in the development of new antifibrotic drugs, and the preclinical studies analyzing the relevance of each of these pharmacological strategies in fibrotic processes affecting tissues beyond those being clinically studied. We analyze and discuss this information with the aim of determining the most promising options and the feasibility of extending their therapeutic value as antifibrotic agents to other fibrotic conditions.
Collapse
Affiliation(s)
- Isabel Fuster-Martínez
- Departamento de Farmacología, Universitat de València, Valencia 46010, Spain; FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Valencia 46020, Spain.
| | - Sara Calatayud
- Departamento de Farmacología, Universitat de València, Valencia 46010, Spain; CIBERehd (Centro de Investigación Biomédica en Red - Enfermedades Hepáticas y Digestivas), Spain.
| |
Collapse
|
7
|
Chirikian O, Faynus MA, Merk M, Singh Z, Muray C, Pham J, Chialastri A, Vander Roest A, Goldstein A, Pyle T, Lane KV, Roberts B, Smith JE, Gunawardane RN, Sniadecki NJ, Mack DL, Davis J, Bernstein D, Streichan SJ, Clegg DO, Dey SS, Wilson MZ, Pruitt BL. YAP dysregulation triggers hypertrophy by CCN2 secretion and TGFβ uptake in human pluripotent stem cell-derived cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597045. [PMID: 38895282 PMCID: PMC11185505 DOI: 10.1101/2024.06.03.597045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hypertrophy Cardiomyopathy (HCM) is the most prevalent hereditary cardiovascular disease - affecting >1:500 individuals. Advanced forms of HCM clinically present with hypercontractility, hypertrophy and fibrosis. Several single-point mutations in b-myosin heavy chain (MYH7) have been associated with HCM and increased contractility at the organ level. Different MYH7 mutations have resulted in increased, decreased, or unchanged force production at the molecular level. Yet, how these molecular kinetics link to cell and tissue pathogenesis remains unclear. The Hippo Pathway, specifically its effector molecule YAP, has been demonstrated to be reactivated in pathological hypertrophic growth. We hypothesized that changes in force production (intrinsically or extrinsically) directly alter the homeostatic mechano-signaling of the Hippo pathway through changes in stresses on the nucleus. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we asked whether homeostatic mechanical signaling through the canonical growth regulator, YAP, is altered 1) by changes in the biomechanics of HCM mutant cardiomyocytes and 2) by alterations in the mechanical environment. We use genetically edited hiPSC-CM with point mutations in MYH7 associated with HCM, and their matched controls, combined with micropatterned traction force microscopy substrates to confirm the hypercontractile phenotype in MYH7 mutants. We next modulate contractility in healthy and disease hiPSC-CMs by treatment with positive and negative inotropic drugs and demonstrate a correlative relationship between contractility and YAP activity. We further demonstrate the activation of YAP in both HCM mutants and healthy hiPSC-CMs treated with contractility modulators is through enhanced nuclear deformation. We conclude that the overactivation of YAP, possibly initiated and driven by hypercontractility, correlates with excessive CCN2 secretion (connective tissue growth factor), enhancing cardiac fibroblast/myofibroblast transition and production of known hypertrophic signaling molecule TGFβ. Our study suggests YAP being an indirect player in the initiation of hypertrophic growth and fibrosis in HCM. Our results provide new insights into HCM progression and bring forth a testbed for therapeutic options in treating HCM.
Collapse
|
8
|
Suominen A, Saldo Rubio G, Ruohonen S, Szabó Z, Pohjolainen L, Ghimire B, Ruohonen ST, Saukkonen K, Ijas J, Skarp S, Kaikkonen L, Cai M, Wardlaw SL, Ruskoaho H, Talman V, Savontaus E, Kerkelä R, Rinne P. α-Melanocyte-stimulating hormone alleviates pathological cardiac remodeling via melanocortin 5 receptor. EMBO Rep 2024; 25:1987-2014. [PMID: 38454158 PMCID: PMC11014855 DOI: 10.1038/s44319-024-00109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
α-Melanocyte-stimulating hormone (α-MSH) regulates diverse physiological functions by activating melanocortin receptors (MC-R). However, the role of α-MSH and its possible target receptors in the heart remain completely unknown. Here we investigate whether α-MSH could be involved in pathological cardiac remodeling. We found that α-MSH was highly expressed in the mouse heart with reduced ventricular levels after transverse aortic constriction (TAC). Administration of a stable α-MSH analog protected mice against TAC-induced cardiac hypertrophy and systolic dysfunction. In vitro experiments revealed that MC5-R in cardiomyocytes mediates the anti-hypertrophic signaling of α-MSH. Silencing of MC5-R in cardiomyocytes induced hypertrophy and fibrosis markers in vitro and aggravated TAC-induced cardiac hypertrophy and fibrosis in vivo. Conversely, pharmacological activation of MC5-R improved systolic function and reduced cardiac fibrosis in TAC-operated mice. In conclusion, α-MSH is expressed in the heart and protects against pathological cardiac remodeling by activating MC5-R in cardiomyocytes. These results suggest that analogs of naturally occurring α-MSH, that have been recently approved for clinical use and have agonistic activity at MC5-R, may be of benefit in treating heart failure.
Collapse
Affiliation(s)
- Anni Suominen
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Drug Research Doctoral Programme (DRDP), University of Turku, Turku, Finland
| | - Guillem Saldo Rubio
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Saku Ruohonen
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Zoltán Szabó
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Lotta Pohjolainen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Bishwa Ghimire
- Institute for Molecular Medicine Finland (FIMM), HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Faculty of Medicine, University of Turku, Turku, Finland
| | - Suvi T Ruohonen
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Karla Saukkonen
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jani Ijas
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sini Skarp
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Leena Kaikkonen
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Minying Cai
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Sharon L Wardlaw
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Heikki Ruskoaho
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Virpi Talman
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Eriika Savontaus
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Petteri Rinne
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.
- Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| |
Collapse
|
9
|
Ye Z, Okamoto R, Ito H, Ito R, Moriwaki K, Ichikawa M, Kimena L, Ali Y, Ito M, Gomez‐Sanchez CE, Dohi K. Myosin Light Chain Phosphatase Plays an Important Role in Cardiac Fibrosis in a Model of Mineralocorticoid Receptor-Associated Hypertension. J Am Heart Assoc 2024; 13:e032828. [PMID: 38420846 PMCID: PMC10944028 DOI: 10.1161/jaha.123.032828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Myosin phosphatase targeting subunit 2 (MYPT2) is an important subunit of cardiac MLC (myosin light chain) phosphatase, which plays a crucial role in regulating the phosphorylation of MLC to phospho-MLC (p-MLC). A recent study demonstrated mineralocorticoid receptor-related hypertension is associated with RhoA/Rho-associated kinase/MYPT1 signaling upregulation in smooth muscle cells. Our purpose is to investigate the effect of MYPT2 on cardiac function and fibrosis in mineralocorticoid receptor-related hypertension. METHODS AND RESULTS HL-1 murine cardiomyocytes were incubated with different concentrations or durations of aldosterone. After 24-hour stimulation, aldosterone increased CTGF (connective tissue growth factor) and MYPT2 and decreased p-MLC in a dose-dependent manner. MYPT2 knockdown decreased CTGF. Cardiac-specific MYPT2-knockout (c-MYPT2-/-) mice exhibited decreased type 1 phosphatase catalytic subunit β and increased p-MLC. A disease model of mouse was induced by subcutaneous aldosterone and 8% NaCl food for 4 weeks after uninephrectomy. Blood pressure elevation and left ventricular hypertrophy were observed in both c-MYPT2-/- and MYPT2+/+ mice, with no difference in heart weights or nuclear localization of mineralocorticoid receptor in cardiomyocytes. However, c-MYPT2-/- mice had higher ejection fraction and fractional shortening on echocardiography after aldosterone treatment. Histopathology revealed less fibrosis, reduced CTGF, and increased p-MLC in c-MYPT2-/- mice. Basal global radial strain and global longitudinal strain were higher in c-MYPT2-/- than in MYPT2+/+ mice. After aldosterone treatment, both global radial strain and global longitudinal strain remained higher in c-MYPT2-/- mice compared with MYPT2+/+ mice. CONCLUSIONS Cardiac-specific MYPT2 knockout leads to decreased myosin light chain phosphatase and increased p-MLC. MYPT2 deletion prevented cardiac fibrosis and dysfunction in a model of mineralocorticoid receptor-associated hypertension.
Collapse
Affiliation(s)
- Zhe Ye
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| | - Ryuji Okamoto
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
- Regional Medical Support CenterMie University HospitalTsuMieJapan
- Department of Clinical Training and Career Support CenterMie University HospitalTsuMieJapan
| | - Hiromasa Ito
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| | - Rie Ito
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| | - Keishi Moriwaki
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| | - Mizuki Ichikawa
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| | - Lupiya Kimena
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| | - Yusuf Ali
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMS
| | - Masaaki Ito
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| | - Celso E. Gomez‐Sanchez
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMS
| | - Kaoru Dohi
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| |
Collapse
|
10
|
Lu J, Ren J, Liu J, Lu M, Cui Y, Liao Y, Zhou Y, Gao Y, Tang F, Wang J, Wang S, Wen L, Song L. High-resolution single-cell transcriptomic survey of cardiomyocytes from patients with hypertrophic cardiomyopathy. Cell Prolif 2024; 57:e13557. [PMID: 37766635 PMCID: PMC10905351 DOI: 10.1111/cpr.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/28/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common inherited cardiovascular disease, which can cause heart failure and lead to death. In this study, we performed high-resolution single-cell RNA-sequencing of 2115 individual cardiomyocytes obtained from HCM patients and normal controls. Signature up- and down-regulated genes in HCM were identified by integrative analysis across 37 patients and 41 controls from our data and published human single-cell and single-nucleus RNA-seq datasets, which were further classified into gene modules by single-cell co-expression analysis. Using our high-resolution dataset, we also investigated the heterogeneity among individual cardiomyocytes and revealed five distinct clusters within HCM cardiomyocytes. Interestingly, we showed that some extracellular matrix (ECM) genes were up-regulated in the HCM cardiomyocytes, suggesting that they play a role in cardiac remodelling. Taken together, our study comprehensively profiled the transcriptomic programs of HCM cardiomyocytes and provided insights into molecular mechanisms underlying the pathogenesis of HCM.
Collapse
Affiliation(s)
- Jiansen Lu
- College of Life Sciences, Biomedical Pioneering Innovation CenterMinistry of Education Key Laboratory of Cell Proliferation and DifferentiationBeijingChina
- Beijing Advanced Innovation Center for Genomics, College of Life SciencesPeking UniversityBeijingChina
| | - Jie Ren
- College of Life Sciences, Biomedical Pioneering Innovation CenterMinistry of Education Key Laboratory of Cell Proliferation and DifferentiationBeijingChina
- Beijing Advanced Innovation Center for Genomics, College of Life SciencesPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Jie Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Minjie Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yueli Cui
- College of Life Sciences, Biomedical Pioneering Innovation CenterMinistry of Education Key Laboratory of Cell Proliferation and DifferentiationBeijingChina
- Beijing Advanced Innovation Center for Genomics, College of Life SciencesPeking UniversityBeijingChina
| | - Yuhan Liao
- College of Life Sciences, Biomedical Pioneering Innovation CenterMinistry of Education Key Laboratory of Cell Proliferation and DifferentiationBeijingChina
- Beijing Advanced Innovation Center for Genomics, College of Life SciencesPeking UniversityBeijingChina
| | - Yuan Zhou
- College of Life Sciences, Biomedical Pioneering Innovation CenterMinistry of Education Key Laboratory of Cell Proliferation and DifferentiationBeijingChina
- Beijing Advanced Innovation Center for Genomics, College of Life SciencesPeking UniversityBeijingChina
| | - Yun Gao
- College of Life Sciences, Biomedical Pioneering Innovation CenterMinistry of Education Key Laboratory of Cell Proliferation and DifferentiationBeijingChina
- Beijing Advanced Innovation Center for Genomics, College of Life SciencesPeking UniversityBeijingChina
| | - Fuchou Tang
- College of Life Sciences, Biomedical Pioneering Innovation CenterMinistry of Education Key Laboratory of Cell Proliferation and DifferentiationBeijingChina
- Beijing Advanced Innovation Center for Genomics, College of Life SciencesPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Jizheng Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shuiyun Wang
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lu Wen
- College of Life Sciences, Biomedical Pioneering Innovation CenterMinistry of Education Key Laboratory of Cell Proliferation and DifferentiationBeijingChina
- Beijing Advanced Innovation Center for Genomics, College of Life SciencesPeking UniversityBeijingChina
| | - Lei Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Cardiomyopathy ward, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
11
|
Liu N, Zhen Z, Xiong X, Xue Y. Aerobic exercise protects MI heart through miR-133a-3p downregulation of connective tissue growth factor. PLoS One 2024; 19:e0296430. [PMID: 38271362 PMCID: PMC10810442 DOI: 10.1371/journal.pone.0296430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE To investigate the effect of aerobic exercise intervention to inhibit cardiomyocyte apoptosis and thus improve cardiac function in myocardial infarction (MI) mice by regulating CTGF expression through miR-133a-3p. METHODS Male C57/BL6 mice, 7-8 weeks old, were randomly divided into sham-operated group (S group), sham-operated +aerobic exercise group (SE group), myocardial infarction group (MI group) and MI + aerobic exercise group (ME group). The mice were anesthetized the day after training and cardiac function was assessed by cardiac echocardiography. Myocardial collagen volume fraction (CVF%) was analyzed by Masson staining. Myocardial CTGF, Bax and Bcl-2 were detected by Western blotting, and myocardial miR-133a-3p was measured by RT-qPCR. RESULTS Compared with the S group, miR-133a-3p, Bcl-2 and EF were significantly decreased and CTGF, Bax, Bax/ Bcl-2, Caspase 3, Cleaved Caspase-3, LVIDd, LVIDs and CVF were significantly increased in the MI group. Compared with the MI group, miR-133a-3p, Bcl-2 and EF were significantly increased, cardiac function was significantly improved, and CTGF, Bax, Bax/ Bcl-2, Caspase 3, Cleaved Caspase-3, LVIDd, LVIDs and CVF were significantly decreased in ME group. The miR-133a-3p was significantly lower and CTGF was significantly higher in the H2O2 intervention group compared with the control group of H9C2 rat cardiomyocytes. miR-133a-3p was significantly higher and CTGF was significantly lower in the AICAR intervention group compared to the H2O2 intervention group. Compared with the control group of H9C2 rat cardiomyocytes, CTGF, Bax and Bax/Bcl-2 were significantly increased and Bcl-2 was significantly decreased in the miR-133a-3p inhibitor intervention group; CTGF, Bax and Bax/Bcl-2 were significantly decreased and Bcl-2 was significantly upregulated in the miR-133a-3p mimics intervention group. CONCLUSION Aerobic exercise down-regulated CTGF expression in MI mouse myocardium through miR-133a-3p, thereby inhibiting cardiomyocyte apoptosis and improving cardiac function.
Collapse
Affiliation(s)
- Niu Liu
- College of P.E, Beijing Normal University, Beijing, China
- School of Physical Education, Weinan Normal University, Weinan, Shaanxi, China
| | - Zhiping Zhen
- College of P.E, Beijing Normal University, Beijing, China
| | - Xin Xiong
- College of P.E, Beijing Normal University, Beijing, China
| | - Yaqi Xue
- College of P.E, Beijing Normal University, Beijing, China
| |
Collapse
|
12
|
Orgil BO, Purevjav E. Molecular Pathways and Animal Models of Cardiomyopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:991-1019. [PMID: 38884766 DOI: 10.1007/978-3-031-44087-8_64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cardiomyopathies are a heterogeneous group of disorders of the heart muscle that ultimately result in congestive heart failure. Rapid progress in genetics, molecular and cellular biology with breakthrough innovative genetic-engineering techniques, such as next-generation sequencing and multiomics platforms, stem cell reprogramming, as well as novel groundbreaking gene-editing systems over the past 25 years has greatly improved the understanding of pathogenic signaling pathways in inherited cardiomyopathies. This chapter will focus on intracellular and intercellular molecular signaling pathways that are activated by a genetic insult in cardiomyocytes to maintain tissue and organ level regulation and resultant cardiac remodeling in certain forms of cardiomyopathies. In addition, animal models of different clinical forms of human cardiomyopathies with their summaries of triggered key molecules and signaling pathways will be described.
Collapse
Affiliation(s)
- Buyan-Ochir Orgil
- Department of Pediatrics, The Heart Institute, Division of Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Enkhsaikhan Purevjav
- Department of Pediatrics, The Heart Institute, Division of Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
13
|
Ruf L, Bukowska A, Gardemann A, Goette A. Coagulation Factor Xa Has No Effects on the Expression of PAR1, PAR2, and PAR4 and No Proinflammatory Effects on HL-1 Cells. Cells 2023; 12:2849. [PMID: 38132169 PMCID: PMC10741780 DOI: 10.3390/cells12242849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Atrial fibrillation (AF), characterised by irregular high-frequency contractions of the atria of the heart, is of increasing clinical importance. The reasons are the increasing prevalence and thromboembolic complications caused by AF. So-called atrial remodelling is characterised, among other things, by atrial dilatation and fibrotic remodelling. As a result, AF is self-sustaining and forms a procoagulant state. But hypercoagulation not only appears to be the consequence of AF. Coagulation factors can exert influence on cells via protease-activated receptors (PAR) and thereby the procoagulation state could contribute to the development and maintenance of AF. In this work, the influence of FXa on Heart Like-1 (HL-1) cells, which are murine adult atrial cardiomyocytes (immortalized), was investigated. PAR1, PAR2, and PAR4 expression was detected. After incubations with FXa (5-50 nM; 4-24 h) or PAR1- and PAR2-agonists (20 µM; 4-24 h), no changes occurred in PAR expression or in the inflammatory signalling cascade. There were no time- or concentration-dependent changes in the phosphorylation of the MAP kinases ERK1/2 or the p65 subunit of NF-κB. In addition, there was no change in the mRNA expression of the cell adhesion molecules (ICAM-1, VCAM-1, fibronectin). Thus, FXa has no direct PAR-dependent effects on HL-1 cells. Future studies should investigate the influence of FXa on human cardiomyocytes or on other cardiac cell types like fibroblasts.
Collapse
Affiliation(s)
- Lukas Ruf
- Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Alicja Bukowska
- Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Andreas Gardemann
- Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Andreas Goette
- Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
- Department of Cardiology and Intensive Care Medicine, St. Vincenz-Hospital Paderborn, Am Busdorf 2, 33098 Paderborn, Germany
| |
Collapse
|
14
|
Luo X, Wang R, Zhang X, Wen X, Xie W. Identification of key genes associated with heart failure based on bioinformatics analysis and screening of traditional Chinese medicines for the prevention and treatment of heart failure. Medicine (Baltimore) 2023; 102:e35959. [PMID: 38065888 PMCID: PMC10713177 DOI: 10.1097/md.0000000000035959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023] Open
Abstract
Heart failure (HF) is the final stage of heart disease. An increasing number of experiments and clinical reports have shown that traditional Chinese medicine (TCM) has many therapeutic effects and advantages in treating HF. In this study, we used bioinformatics methods to screen key genes and predict the components of Chinese herbal medicines with preventive and therapeutic effects on HF. GSE120895 and GSE21610 HF chips were downloaded from the Gene Expression Omnibus database. We screened differentially expressed genes (DEGs). Weighted gene coexpression network analysis was performed to determine key modules. Genes in key modules were used for Gene Ontology and Kyoto Encyclopedia of Genes Genomes analysis to determine the biological functions. Finally, receiver operating characteristic curve analysis was used to screen out key genes, and single-sample GSEA was conducted to screen TCM compounds and effective ingredients of TCM compounds related to HF. We have selected a key module (MeTerquoise) and identified 489 DEGs, of which 357 are up regulated and 132 are down regulated. Gene Ontology and Kyoto Encyclopedia of Genes Genomes analyses indicated that the DEGs were associated with the extracellular matrix, fat metabolism and inflammatory response. We identified IL2, CXCR4, CCL5, THY1, CCN2, and IL7R as key genes. Single-sample GSEA showed that key genes were mainly related to energy metabolism, mitochondrial oxidative phosphorylation, extracellular matrix, and immunity. Finally, a total of 70 TCM compounds and 30 active ingredients of TCM compounds were identified. Bioinformatics methods were applied to preliminarily predict the key genes and TCM compounds involved in HF. These results provide theoretical support for the treatment of HF with TCM compounds and provide targets and research strategies for the development of related new Chinese medicines.
Collapse
Affiliation(s)
- Xu Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rui Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xin Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xin Wen
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wen Xie
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine (Traditional Chinese Medicine Hospital of Sichuan), Chengdu, Sichuan, China
| |
Collapse
|
15
|
Haybar H, Sadati NS, Purrahman D, Mahmoudian-Sani MR, Saki N. lncRNA TUG1 as potential novel biomarker for prognosis of cardiovascular diseases. Epigenomics 2023; 15:1273-1290. [PMID: 38088089 DOI: 10.2217/epi-2023-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Globally, cardiovascular diseases (CVDs) are among the leading causes of death. In light of the high prevalence and mortality of CVDs, it is imperative to understand the molecules involved in CVD pathogenesis and the signaling pathways that they initiate. This may facilitate the development of more precise and expedient diagnostic techniques, the identification of more effective prognostic molecules and the identification of potential therapeutic targets. Numerous studies have examined the role of lncRNAs, such as TUG1, in CVD pathogenesis in recent years. According to this review article, TUG1 can be considered a biomarker for predicting the prognosis of CVD.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narjes Sadat Sadati
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
16
|
Van Bruggen S, Kraisin S, Van Wauwe J, Bomhals K, Stroobants M, Carai P, Frederix L, Van De Bruaene A, Witsch T, Martinod K. Neutrophil peptidylarginine deiminase 4 is essential for detrimental age-related cardiac remodelling and dysfunction in mice. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220475. [PMID: 37778383 PMCID: PMC10542445 DOI: 10.1098/rstb.2022.0475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/21/2023] [Indexed: 10/03/2023] Open
Abstract
Mice fully deficient in peptidylarginine deiminase 4 (PAD4) enzyme have preserved cardiac function and reduced collagen deposition during ageing. The cellular source of PAD4 is hypothesized to be neutrophils, likely due to PAD4's involvement in neutrophil extracellular trap release. We investigated haematopoietic PAD4 impact on myocardial remodelling and systemic inflammation in cardiac ageing by generating mice with Padi4 deletion in circulating neutrophils under the MRP8 promoter (Ne-PAD4-/-), and ageing them for 2 years together with littermate controls (PAD4fl/fl). Ne-PAD4-/- mice showed protection against age-induced fibrosis, seen by reduced cardiac collagen deposition. Echocardiography analysis of structural and functional parameters also demonstrated preservation of both systolic and diastolic function with MRP8-driven PAD4 deletion. Furthermore, cardiac gene expression and plasma cytokine levels were evaluated. Cardiac genes and plasma cytokines involved in neutrophil recruitment were downregulated in aged Ne-PAD4-/- animals compared to PAD4fl/fl controls, including decreased levels of C-X-C ligand 1 (CXCL1). Our data confirm PAD4 involvement from circulating neutrophils in detrimental cardiac remodelling, leading to cardiac dysfunction with old age. Deletion of PAD4 in MRP8-expressing cells impacts the CXCL1-CXCR2 axis, known to be involved in heart failure development. This supports the future use of PAD4 inhibitors in cardiovascular disease. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
- Stijn Van Bruggen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, O&N1 Herestraat 49 - Bus 911, 3000 Leuven, Belgium
| | - Sirima Kraisin
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, O&N1 Herestraat 49 - Bus 911, 3000 Leuven, Belgium
| | - Jore Van Wauwe
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, O&N1 Herestraat 49 - Bus 911, 3000 Leuven, Belgium
| | - Katrien Bomhals
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, O&N1 Herestraat 49 - Bus 911, 3000 Leuven, Belgium
| | - Mathias Stroobants
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, O&N1 Herestraat 49 - Bus 911, 3000 Leuven, Belgium
| | - Paolo Carai
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, O&N1 Herestraat 49 - Bus 911, 3000 Leuven, Belgium
| | - Liesbeth Frederix
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, O&N1 Herestraat 49 - Bus 911, 3000 Leuven, Belgium
| | - Alexander Van De Bruaene
- Division of Cardiology, Department of Cardiovascular Sciences, KU Leuven, KU Leuven, Leuven 3000, Belgium
- Division of Structural and Congenital Cardiology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Thilo Witsch
- Department of Cardiology and Angiology I, University of Freiburg, Heart Center, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
| | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, O&N1 Herestraat 49 - Bus 911, 3000 Leuven, Belgium
| |
Collapse
|
17
|
Mogharehabed F, Czubryt MP. The role of fibrosis in the pathophysiology of muscular dystrophy. Am J Physiol Cell Physiol 2023; 325:C1326-C1335. [PMID: 37781738 DOI: 10.1152/ajpcell.00196.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Muscular dystrophy exerts significant and dramatic impacts on affected patients, including progressive muscle wasting leading to lung and heart failure, and results in severely curtailed lifespan. Although the focus for many years has been on the dysfunction induced by the loss of function of dystrophin or related components of the striated muscle costamere, recent studies have demonstrated that accompanying pathologies, particularly muscle fibrosis, also contribute adversely to patient outcomes. A significant body of research has now shown that therapeutically targeting these accompanying pathologies via their underlying molecular mechanisms may provide novel approaches to patient management that can complement the current standard of care. In this review, we discuss the interplay between muscle fibrosis and muscular dystrophy pathology. A better understanding of these processes will contribute to improved patient care options, restoration of muscle function, and reduced patient morbidity and mortality.
Collapse
Affiliation(s)
- Farnaz Mogharehabed
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael P Czubryt
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
18
|
Amano H, Inoue T, Kusano T, Fukaya D, Kosakai W, Okada H. Module 4-Deficient CCN2/Connective Tissue Growth Factor Attenuates the Progression of Renal Fibrosis via Suppression of Focal Adhesion Kinase Phosphorylation in Tubular Epithelial Cells. Mol Cell Biol 2023; 43:515-530. [PMID: 37746701 PMCID: PMC10569360 DOI: 10.1080/10985549.2023.2253130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
CCN2/connective tissue growth factor (CTGF) potentially serves as a therapeutic target for chronic kidney disease. Here we investigated CCN2 module-4, encoded by Ccn2 exon 5, through the generation of Ccn2 exon 5 knockout mice (Ex5-/- mice). To investigate renal fibrosis pathogenesis, Ex5-/- mice were employed to model unilateral ureteral obstruction (UUO), unilateral ischemic-reperfusion injury (UIRI), and 5/6 nephrectomy. Interstitial fibrosis was significantly attenuated in the Ex5-/- mice in the three models. Furthermore, phosphorylated focal adhesion kinase (FAK) levels in tubular epithelial cells were significantly lower in the kidneys of the UUO- and UIRI-Ex5-/- mice than those of the Ex5+/+ mice. Moreover, CCN2 module 4-mediated renal tubule FAK and promoted fibrosis. These findings indicate that CCN2 module-4-FAK pathway components will serve as therapeutic targets for effectively attenuating renal fibrosis.
Collapse
Affiliation(s)
- Hiroaki Amano
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Tsutomu Inoue
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Takeru Kusano
- General Internal Medicine, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Daichi Fukaya
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Wakako Kosakai
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Hirokazu Okada
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
19
|
Yu Z, Xu C, Song B, Zhang S, Chen C, Li C, Zhang S. Tissue fibrosis induced by radiotherapy: current understanding of the molecular mechanisms, diagnosis and therapeutic advances. J Transl Med 2023; 21:708. [PMID: 37814303 PMCID: PMC10563272 DOI: 10.1186/s12967-023-04554-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Cancer remains the leading cause of death around the world. In cancer treatment, over 50% of cancer patients receive radiotherapy alone or in multimodal combinations with other therapies. One of the adverse consequences after radiation exposure is the occurrence of radiation-induced tissue fibrosis (RIF), which is characterized by the abnormal activation of myofibroblasts and the excessive accumulation of extracellular matrix. This phenotype can manifest in multiple organs, such as lung, skin, liver and kidney. In-depth studies on the mechanisms of radiation-induced fibrosis have shown that a variety of extracellular signals such as immune cells and abnormal release of cytokines, and intracellular signals such as cGAS/STING, oxidative stress response, metabolic reprogramming and proteasome pathway activation are involved in the activation of myofibroblasts. Tissue fibrosis is extremely harmful to patients' health and requires early diagnosis. In addition to traditional serum markers, histologic and imaging tests, the diagnostic potential of nuclear medicine techniques is emerging. Anti-inflammatory and antioxidant therapies are the traditional treatments for radiation-induced fibrosis. Recently, some promising therapeutic strategies have emerged, such as stem cell therapy and targeted therapies. However, incomplete knowledge of the mechanisms hinders the treatment of this disease. Here, we also highlight the potential mechanistic, diagnostic and therapeutic directions of radiation-induced fibrosis.
Collapse
Affiliation(s)
- Zuxiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chaoyu Xu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Bin Song
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China
| | - Shihao Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chong Chen
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221200, China
| | - Changlong Li
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- Department of Molecular Biology and Biochemistry, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China.
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China.
| |
Collapse
|
20
|
Nettersheim FS, Schlüter JD, Kreuzberg W, Mehrkens D, Grimm S, Nemade H, Braumann S, Hof A, Guthoff H, Peters V, Hoyer FF, Kargapolova Y, Lackmann JW, Müller S, Pallasch CP, Hallek M, Sachinidis A, Adam M, Winkels H, Baldus S, Geißen S, Mollenhauer M. Myeloperoxidase is a critical mediator of anthracycline-induced cardiomyopathy. Basic Res Cardiol 2023; 118:36. [PMID: 37656254 PMCID: PMC10474188 DOI: 10.1007/s00395-023-01006-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Cardiotoxicity is a major complication of anthracycline therapy that negatively impacts prognosis. Effective pharmacotherapies for prevention of anthracycline-induced cardiomyopathy (AICM) are currently lacking. Increased plasma levels of the neutrophil-derived enzyme myeloperoxidase (MPO) predict occurrence of AICM in humans. We hypothesized that MPO release causally contributes to AICM. Mice intravenously injected with the anthracycline doxorubicin (DOX) exhibited higher neutrophil counts and MPO levels in the circulation and cardiac tissue compared to saline (NaCl)-treated controls. Neutrophil-like HL-60 cells exhibited increased MPO release upon exposition to DOX. DOX induced extensive nitrosative stress in cardiac tissue alongside with increased carbonylation of sarcomeric proteins in wildtype but not in Mpo-/- mice. Accordingly, co-treatment of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with DOX and MPO aggravated loss of hiPSC-CM-contractility compared to DOX treatment alone. DOX-treated animals exhibited pronounced cardiac apoptosis and inflammation, which was attenuated in MPO-deficient animals. Finally, genetic MPO deficiency and pharmacological MPO inhibition protected mice from the development of AICM. The anticancer efficacy of DOX was unaffected by MPO deficiency. Herein we identify MPO as a critical mediator of AICM. We demonstrate that DOX induces cardiac neutrophil infiltration and release of MPO, which directly impairs cardiac contractility through promoting oxidation of sarcomeric proteins, cardiac inflammation and cardiomyocyte apoptosis. MPO thus emerges as a promising pharmacological target for prevention of AICM.
Collapse
Affiliation(s)
- Felix Sebastian Nettersheim
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Johannes David Schlüter
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Wiebke Kreuzberg
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Dennis Mehrkens
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Simon Grimm
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Harshal Nemade
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Simon Braumann
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Alexander Hof
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Henning Guthoff
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Vera Peters
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Friedrich Felix Hoyer
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Yulia Kargapolova
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jan-Wilm Lackmann
- CECAD, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Stefan Müller
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Christian P Pallasch
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Cologne, Germany
| | - Michael Hallek
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Cologne, Germany
| | - Agapios Sachinidis
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Neurophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Matti Adam
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Stephan Baldus
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Simon Geißen
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Martin Mollenhauer
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
21
|
Patricelli C, Lehmann P, Oxford JT, Pu X. Doxorubicin-Induced Modulation of TGF-β Signaling Cascade in Mouse Fibroblasts: Insights into Cardiotoxicity Mechanisms. RESEARCH SQUARE 2023:rs.3.rs-3186393. [PMID: 37546862 PMCID: PMC10402200 DOI: 10.21203/rs.3.rs-3186393/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Doxorubicin (DOX)-induced cardiotoxicity has been widely observed, yet the specific impact on cardiac fibroblasts is not fully understood. Additionally, the modulation of the transforming growth factor beta (TGF-β) signaling pathway by DOX remains to be fully elucidated. This study investigated DOX's ability to modulate the expression of genes and proteins involved in the TGF-β signaling cascade in mouse fibroblasts from two sources by assessing the impact of DOX treatment on TGF-β inducible expression of pivotal genes and proteins within fibroblasts. Mouse embryonic fibroblasts (NIH3T3) and mouse primary cardiac fibroblasts (CFs) were treated with DOX in the presence of TGF-β1 to assess changes in protein levels by western blot and changes in mRNA levels by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Our results revealed a dose-dependent reduction in cellular communication network factor 2 (CCN2) protein levels upon DOX treatment in both NIH3T3 and CFs. Moreover, we observed that DOX inhibited the TGF-β1 induced expression of BMP1 in NIH3T3 cells, while BMP1 levels remained high in CFs, and that TGF-β1 induces the phosphorylation of SMAD2 in both NIH3T3 cells and CFs. While DOX treatment diminished the extent of phosphorylation, the reduction did not reach statistical significance. DOX also inhibited the TGF-β1 induced expression of COL1 in NIH3T3 cells and CFs. Finally, DOX inhibited the TGF-β1 induced expression of Atf4 and increased the expression of Cdkn1a, Id1, Id2, Runx1, Tgfb1, Inhba, Thbs1, Bmp1, and Stat1 in NIH3T3 cells but not CFs, indicating the potential for cell-specific responses to DOX and its modulation of the TGF-β signaling pathway. Understanding the underlying mechanisms of the ability of DOX to modulate gene expression and signaling pathways in fibroblasts holds promise for future development of targeted therapeutic strategies to mitigate DOX-induced cardiotoxicity specifically affecting CFs.
Collapse
|
22
|
Xega V, Alami T, Liu JL. Recent progress on the role of cellular communication network factors (CCN) 3, 4 and 6 in regulating adiposity, liver fibrosis and pancreatic islets. J Cell Commun Signal 2023:10.1007/s12079-023-00765-8. [PMID: 37245185 DOI: 10.1007/s12079-023-00765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/03/2023] [Indexed: 05/29/2023] Open
Abstract
CCN/WISP (cellular communication network factors, or Wnt-inducted secreted proteins) family of proteins consists of six extracellular matrix (ECM)-associated proteins that regulate development, cell adhesion and proliferation, ECM remodeling, inflammation, and tumorigenesis. In the last two decades, metabolic regulation by these matricellular proteins has been studied extensively, several excellent reviews have covered the roles of CCN1, -2 and - 5. In this brief review, we will focus on those lesser-known members and more recent discoveries, together with other recent articles presenting a more complete picture of the current state of knowledge. We have found that CCN2, -4, and - 5 promote pancreatic islet function, while CCN3 plays a unique and negative role. CCN3 and - 4 are pro-adiposity leading to insulin resistance, but CCN5 and - 6 are anti-adiposity. While CCN2 and - 4 promote tissue fibrosis and inflammation, all other four members are clearly anti-fibrotic. As for cellular signaling, they are known to interact with integrins, other cell membrane proteins and ECM thereby regulate Akt/protein kinase B, myocardin-related transcription factor (MRTF), and focal adhesion kinase. Yet, a cohesive mechanism of action to comprehensively explain those major functions is still lacking.
Collapse
Affiliation(s)
- Viktoria Xega
- MeDiC Program, The Research Institute of McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Tara Alami
- MeDiC Program, The Research Institute of McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Jun-Li Liu
- MeDiC Program, The Research Institute of McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
23
|
Ly TD, Sambale M, Klösener L, Traut P, Fischer B, Hendig D, Kuhn J, Knabbe C, Faust-Hinse I. Understanding of arthrofibrosis: New explorative insights into extracellular matrix remodeling of synovial fibroblasts. PLoS One 2023; 18:e0286334. [PMID: 37235555 DOI: 10.1371/journal.pone.0286334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Arthrofibrosis following total knee arthroplasty is a fibroproliferative joint disorder marked by dysregulated biosynthesis of extracellular matrix proteins, such as collagens and proteoglycans. The underlying cellular events remain incompletely understood. Myofibroblasts are highly contractile matrix-producing cells characterized by increased alpha-smooth muscle actin expression and xylosyltransferase-I (XT-I) secretion. Human XT-I has been identified as a key mediator of arthrofibrotic remodeling. Primary fibroblasts from patients with arthrofibrosis provide a useful in vitro model to identify and characterize disease regulators and potential therapeutic targets. This study aims at characterizing primary synovial fibroblasts from arthrofibrotic tissues (AFib) regarding their molecular and cellular phenotype by utilizing myofibroblast cell culture models. Compared to synovial control fibroblasts (CF), AFib are marked by enhanced cell contractility and a higher XT secretion rate, demonstrating an increased fibroblast-to-myofibroblast transition rate during arthrofibrosis. Histochemical assays and quantitative gene expression analysis confirmed higher collagen and proteoglycan expression and accumulation in AFib compared to CF. Furthermore, fibrosis-based gene expression profiling identified novel modifier genes in the context of arthrofibrosis remodeling. In summary, this study revealed a unique profibrotic phenotype in AFib that resembles some traits of other fibroproliferative diseases and can be used for the future development of therapeutic interventions.
Collapse
Affiliation(s)
- Thanh-Diep Ly
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Meike Sambale
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Lara Klösener
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Philipp Traut
- Orthopädische Beratung und Begutachtung, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Bastian Fischer
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Joachim Kuhn
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Isabel Faust-Hinse
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| |
Collapse
|
24
|
Sisto M, Lisi S. Towards a Unified Approach in Autoimmune Fibrotic Signalling Pathways. Int J Mol Sci 2023; 24:ijms24109060. [PMID: 37240405 DOI: 10.3390/ijms24109060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Autoimmunity is a chronic process resulting in inflammation, tissue damage, and subsequent tissue remodelling and organ fibrosis. In contrast to acute inflammatory reactions, pathogenic fibrosis typically results from the chronic inflammatory reactions characterizing autoimmune diseases. Despite having obvious aetiological and clinical outcome distinctions, most chronic autoimmune fibrotic disorders have in common a persistent and sustained production of growth factors, proteolytic enzymes, angiogenic factors, and fibrogenic cytokines, which together stimulate the deposition of connective tissue elements or epithelial to mesenchymal transformation (EMT) that progressively remodels and destroys normal tissue architecture leading to organ failure. Despite its enormous impact on human health, there are currently no approved treatments that directly target the molecular mechanisms of fibrosis. The primary goal of this review is to discuss the most recent identified mechanisms of chronic autoimmune diseases characterized by a fibrotic evolution with the aim to identify possible common and unique mechanisms of fibrogenesis that might be exploited in the development of effective antifibrotic therapies.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Piazza Giulio Cesare 1, I-70124 Bari, Italy
| | - Sabrina Lisi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Piazza Giulio Cesare 1, I-70124 Bari, Italy
| |
Collapse
|
25
|
Martinez VR, Martins Lima A, Stergiopulos N, Velez Rueda JO, Islas MS, Griera M, Calleros L, Rodriguez Puyol M, Jaquenod de Giusti C, Portiansky EL, Ferrer EG, De Giusti V, Williams PAM. Effect of the structural modification of Candesartan with Zinc on hypertension and left ventricular hypertrophy. Eur J Pharmacol 2023; 946:175654. [PMID: 36930883 DOI: 10.1016/j.ejphar.2023.175654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Hypertension is the most common cause of left ventricular hypertrophy, contributing to heart failure progression. Candesartan (Cand) is an angiotensin receptor antagonist widely used for hypertension treatment. Structural modifications were previously performed by our group using Zinc (ZnCand) as a strategy for improving its pharmacological properties. The measurements showed that ZnCand exerts a stronger interaction with the angiotensin II receptor, type 1 (AT1 receptor), reducing oxidative stress and intracellular calcium flux, a mechanism implied in cell contraction. These results were accompanied by the reduction of the contractile capacity of mesangial cells. In vivo experiments showed that the complex causes a significant decrease in systolic blood pressure after 8 weeks of treatment in spontaneously hypertensive rats (SHR). The reduction of heart hypertrophy was evidenced by echocardiography, the histologic cross-sectional area of cardiomyocytes, collagen content, the B-type natriuretic peptide (BNP) marker and connective tissue growth factor (CTGF) and the matrix metalloproteinase 2 (MMP-2) expression. Besides, the complex restored the redox status. In this study, we demonstrated that the complexation with Zn(II) improves the antihypertensive and cardiac effects of the parental drug.
Collapse
Affiliation(s)
- Valeria R Martinez
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N◦ 1465, 1900, La Plata, Argentina; CIC-CONICET-UNLP, Facultad de Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Augusto Martins Lima
- Laboratory of Hemodynamics & Cardiovascular Technology (LHTC), Institute of Bioengineering (Bâtiment MED), Station 9, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Nikolaous Stergiopulos
- Laboratory of Hemodynamics & Cardiovascular Technology (LHTC), Institute of Bioengineering (Bâtiment MED), Station 9, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Jorge O Velez Rueda
- CIC-CONICET-UNLP, Facultad de Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Maria S Islas
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Mercedes Griera
- Departamento de Fisiología, Universidad de Alcalá, Campus Universitario, 28871, Alcalá de Henares, Madrid, Spain
| | - Laura Calleros
- Departamento de Fisiología, Universidad de Alcalá, Campus Universitario, 28871, Alcalá de Henares, Madrid, Spain
| | - Manuel Rodriguez Puyol
- Departamento de Fisiología, Universidad de Alcalá, Campus Universitario, 28871, Alcalá de Henares, Madrid, Spain
| | - Carolina Jaquenod de Giusti
- CIC-CONICET-UNLP, Facultad de Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Enrique L Portiansky
- Laboratorio de Análisis de Imágenes-UNLP, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 y 118, 1900, La Plata, Argentina
| | - Evelina G Ferrer
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N◦ 1465, 1900, La Plata, Argentina
| | - Verónica De Giusti
- CIC-CONICET-UNLP, Facultad de Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina.
| | - Patricia A M Williams
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N◦ 1465, 1900, La Plata, Argentina.
| |
Collapse
|
26
|
Selina PI, Alekseenko IV, Kurtova AI, Pleshkan VV, Voronezhskaya EE, Demidyuk IV, Kostrov SV. Efficiency of Promoters of Human Genes FAP and CTGF at Organism Level in a Danio rerio Model. Int J Mol Sci 2023; 24:ijms24087192. [PMID: 37108352 PMCID: PMC10138699 DOI: 10.3390/ijms24087192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The identification of tissue-specific promoters for gene therapeutic constructs is one of the aims of complex tumor therapy. The genes encoding the fibroblast activation protein (FAP) and the connective tissue growth factor (CTGF) can function in tumor-associated stromal cells but are practically inactive in normal adult cells. Accordingly, the promoters of these genes can be used to develop vectors targeted to the tumor microenvironment. However, the efficiency of these promoters within genetic constructs remains underexplored, particularly, at the organism level. Here, we used the model of Danio rerio embryos to study the efficiency of transient expression of marker genes under the control of promoters of the FAP, CTGF, and immediate early genes of Human cytomegalovirus (CMV). Within 96 h after the injection of vectors, the CTGF and CMV promoters provided similar equal efficiency of reporter protein accumulation. In the case of the FAP promoter, a high level of reporter protein accumulation was observed only in certain zebrafish individuals that were considered developmentally abnormal. Disturbed embryogenesis was the factor of changes in the exogenous FAP promoter function. The data obtained make a significant contribution to understanding the function of the human CTGF and FAP promoters within vectors to assess their potential in gene therapy.
Collapse
Affiliation(s)
- Polina I Selina
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| | - Irina V Alekseenko
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Victor V Pleshkan
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Ilya V Demidyuk
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| | - Sergey V Kostrov
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| |
Collapse
|
27
|
Song X, Cui Y, Zhu T. MicroRNA-19 upregulation attenuates cardiac fibrosis via targeting connective tissue growth factor. Am J Med Sci 2023; 365:375-385. [PMID: 36539014 DOI: 10.1016/j.amjms.2022.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 09/21/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Previous studies have shown the role of microRNA (miR)-19 in aging-related heart failure. The present study aimed to verify the effects of miR-19 on cardiac fibrosis and its target. METHODS Cardiac fibrosis was induced by myocardial infarction (MI)-induced heart failure and angiotensin (Ang) II-treated rats in vivo, and was induced in Ang II-treated cardiac fibroblasts (CFs) in vitro. RESULTS The expression of miR-19 was reduced in the heart tissue of MI and Ang II-treated rats, and Ang II-treated CFs. The impaired cardiac function in rats was repaired after miR-19 administration. The levels of collagen I, collagen III and transforming growth factor-beta (TGF-β) increased in the heart tissue of MI and Ang II-treated rats, and Ang II-treated CFs. These increases were reversed by miR-19 agomiR. Moreover, the bioinformatic analysis and luciferase reporter assays demonstrated that connective tissue growth factor (CTGF) was a direct target of miR-19. MiR-19 treatment inhibited CTGF expression in CFs, while CTGF overexpression inhibited miR-19 agomiR to attenuate the Ang II-induced increases of collagen I and collagen III in CFs. The increases of p-ERK, p-JNK and p-p38 in the CFs induced by Ang II were repressed by miR-19 agomiR. CONCLUSIONS Upregulating miR-19 can improve cardiac function and attenuate cardiac fibrosis by inhibiting the CTGF and MAPK pathways.
Collapse
Affiliation(s)
- Xiaozheng Song
- Department of Cardiology, Shengli Oilfield Central Hospital, 31 Jinan Road, Dongying 257034, China
| | - Yuqiang Cui
- Department of Cardiology, Shengli Oilfield Central Hospital, 31 Jinan Road, Dongying 257034, China
| | - Teng Zhu
- Department of Cardiology, Shengli Oilfield Central Hospital, 31 Jinan Road, Dongying 257034, China.
| |
Collapse
|
28
|
Bekedam FT, Goumans MJ, Bogaard HJ, de Man FS, Llucià-Valldeperas A. Molecular mechanisms and targets of right ventricular fibrosis in pulmonary hypertension. Pharmacol Ther 2023; 244:108389. [PMID: 36940790 DOI: 10.1016/j.pharmthera.2023.108389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/19/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Right ventricular fibrosis is a stress response, predominantly mediated by cardiac fibroblasts. This cell population is sensitive to increased levels of pro-inflammatory cytokines, pro-fibrotic growth factors and mechanical stimulation. Activation of fibroblasts results in the induction of various molecular signaling pathways, most notably the mitogen-activated protein kinase cassettes, leading to increased synthesis and remodeling of the extracellular matrix. While fibrosis confers structural protection in response to damage induced by ischemia or (pressure and volume) overload, it simultaneously contributes to increased myocardial stiffness and right ventricular dysfunction. Here, we review state-of-the-art knowledge of the development of right ventricular fibrosis in response to pressure overload and provide an overview of all published preclinical and clinical studies in which right ventricular fibrosis was targeted to improve cardiac function.
Collapse
Affiliation(s)
- F T Bekedam
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - M J Goumans
- Department of Cell and Chemical Biology, Leiden UMC, 2300 RC Leiden, the Netherlands
| | - H J Bogaard
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - F S de Man
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| | - A Llucià-Valldeperas
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| |
Collapse
|
29
|
Al-U'datt DGF, Tranchant CC, Alu'datt M, Abusara S, Al-Dwairi A, AlQudah M, Al-Shboul O, Hiram R, Altuntas Y, Jaradat S, Alzoubi KH. Inhibition of transglutaminase 2 (TG2) ameliorates ventricular fibrosis in isoproterenol-induced heart failure in rats. Life Sci 2023; 321:121564. [PMID: 36931499 DOI: 10.1016/j.lfs.2023.121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
AIMS Transglutaminase (TG) inhibitors represent promising therapeutic interventions in cardiac fibrosis and related dysfunctions. However, it remains unknown how TG inhibition, TG2 in particular, affects the signaling systems that drive pathological fibrosis. This study aimed to examine the effect TG inhibition by cystamine on the progression of isoproterenol (ISO)-induced cardiac fibrosis and dysfunction in rats. MATERIALS AND METHODS Cardiac fibrosis was established by intraperitoneal injection of ISO to rats (ISO group), followed by 6 weeks of cystamine injection (ISO + Cys group). The control groups were administered normal saline alone or with cystamine. Hemodynamics, lipid profile, liver enzymes, urea, and creatinine were assessed in conjunction with heart failure markers (serum NT-proANP and cTnI). Left ventricular (LV) and atrial (LA) fibrosis, total collagen content, and mRNA expression of profibrotic markers including TG2 were quantified by Masson's trichrome staining, LC-MS/MS and quantitative PCR, respectively. KEY FINDINGS Cystamine administration to ISO rats significantly decreased diastolic and mean arterial pressures, total cholesterol, triglycerides, LDL, liver enzymes, urea, and creatinine levels, while increasing HDL. NT-proANP and cTnI serum levels remained unchanged. In LV tissues, significant reductions in ISO-induced fibrosis and elevated total collagen content were achieved after cystamine treatment, together with a reduction in TG2 concentration. Reduced mRNA expression of several profibrotic genes (COL1A1, FN1, MMP-2, CTGF, periostin, CX43) was also evidenced in LV tissues of ISO rats upon cystamine administration, whereas TGF-β1 expression was depressed in LA tissues. Cystamine decreased TG2 mRNA expression in the LV of control rats, while LV expression of TG2 was relatively low in ISO rats irrespective of cystamine treatment. SIGNIFICANCE TG2 inhibition by cystamine in vivo exerted cardioprotective effects against ISO-induced cardiac fibrosis in rats decreasing the LV abundance of several profibrotic markers and the content of TG2 and collagen, suggesting that TG2 pharmacological inhibition could be beneficial to alleviate cardiac fibrosis.
Collapse
Affiliation(s)
- Doa'a G F Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Carole C Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, New Brunswick, Canada
| | - Muhammad Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Sara Abusara
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohammad AlQudah
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; Physiology Department, Arabian Gulf University, Manama, Bahrain
| | - Othman Al-Shboul
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Roddy Hiram
- Montreal Heart Institute and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Yasemin Altuntas
- Montreal Heart Institute and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Saied Jaradat
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates; Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
30
|
Khan SM, Martin RD, Bayne A, Pétrin D, Bourque K, Jones-Tabah J, Bouazza C, Blaney J, Lau J, Martins-Cannavino K, Gora S, Zhang A, MacKinnon S, Trieu P, Clarke PBS, Trempe JF, Tanny JC, Hébert TE. Gβγ subunits colocalize with RNA polymerase II and regulate transcription in cardiac fibroblasts. J Biol Chem 2023; 299:103064. [PMID: 36841480 PMCID: PMC10060754 DOI: 10.1016/j.jbc.2023.103064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Gβγ subunits mediate many different signaling processes in various compartments of the cell, including the nucleus. To gain insight into the functions of nuclear Gβγ signaling, we investigated the functional role of Gβγ signaling in the regulation of GPCR-mediated gene expression in primary rat neonatal cardiac fibroblasts. We identified a novel, negative, regulatory role for the Gβ1γ dimer in the fibrotic response. Depletion of Gβ1 led to derepression of the fibrotic response at the mRNA and protein levels under basal conditions and an enhanced fibrotic response after sustained stimulation of the angiotensin II type I receptor. Our genome-wide chromatin immunoprecipitation experiments revealed that Gβ1 colocalized and interacted with RNA polymerase II on fibrotic genes in an angiotensin II-dependent manner. Additionally, blocking transcription with inhibitors of Cdk9 prevented association of Gβγ with transcription complexes. Together, our findings suggest that Gβ1γ is a novel transcriptional regulator of the fibrotic response that may act to restrict fibrosis to conditions of sustained fibrotic signaling. Our work expands the role for Gβγ signaling in cardiac fibrosis and may have broad implications for the role of nuclear Gβγ signaling in other cell types.
Collapse
Affiliation(s)
- Shahriar M Khan
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Ryan D Martin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Andrew Bayne
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada; Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Jace Jones-Tabah
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Celia Bouazza
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Jacob Blaney
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Jenny Lau
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | | | - Sarah Gora
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Andy Zhang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Sarah MacKinnon
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Phan Trieu
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Paul B S Clarke
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Jean-François Trempe
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec, Canada
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
31
|
Bertaud A, Joshkon A, Heim X, Bachelier R, Bardin N, Leroyer AS, Blot-Chabaud M. Signaling Pathways and Potential Therapeutic Strategies in Cardiac Fibrosis. Int J Mol Sci 2023; 24:ijms24021756. [PMID: 36675283 PMCID: PMC9866199 DOI: 10.3390/ijms24021756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Cardiac fibrosis constitutes irreversible necrosis of the heart muscle as a consequence of different acute (myocardial infarction) or chronic (diabetes, hypertension, …) diseases but also due to genetic alterations or aging. Currently, there is no curative treatment that is able to prevent or attenuate this phenomenon that leads to progressive cardiac dysfunction and life-threatening outcomes. This review summarizes the different targets identified and the new strategies proposed to fight cardiac fibrosis. Future directions, including the use of exosomes or nanoparticles, will also be discussed.
Collapse
|
32
|
The Carthamus tinctorius L. and Lepidium apetalum Willd. Drug Pair Inhibits EndMT through the TGF β1/Snail Signaling Pathway in the Treatment of Myocardial Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:6018375. [PMID: 36686974 PMCID: PMC9851799 DOI: 10.1155/2023/6018375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Abstract
Background Myocardial fibrosis (MF) is an essential pathological factor for heart failure. Previous studies have shown that the combination of Carthamus tinctorius L. and Lepidium apetalum Willd. (C-L), two types of Chinese herbal medicine, can ameliorate MF after myocardial infarction (MI) in rats and inhibit the activation of myocardial fibroblasts. However, the mechanism of C-L in the treatment of MF remains unclear. Methods A rat model of MF with left anterior descending coronary ligation-induced MI was first established. Then, the effects of C-L on cardiac function, MF, and endothelial-to-mesenchymal transition (EndMT) were evaluated by the left ventricular ejection fraction (LVEF), serum N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, Masson's trichrome staining, and immunohistochemical and immunofluorescence staining. Next, a hypoxia-induced cardiac microvascular endothelial cell (CMEC) model was established to observe the effects of C-L on EndMT. The supernatant of CMECs was collected and used to culture cardiac fibroblasts (CFs) and observe the effects of CMEC paracrine factors on CFs. Results Animal experiments indicated that C-L improves the cardiac function of rats after MI, inhibits the progression of EndMT and MF, and downregulates TGFβ1, Snail, and CTGF expression. Cell experiments showed that drug-loaded serum containing C-L inhibits the EndMT of CMECs under hypoxic conditions. The culture supernatant of CMECs grown under hypoxic conditions significantly activated CFs. After treatment with C-L, the activating factor for CFs in hypoxic CMEC culture supernatant was substantially downregulated, and the effect of the culture supernatant on CF activation was also reduced. However, TGFβ1 agonists inhibited the effects of C-L on CMECs and CFs. Conclusion Our data demonstrated that by regulating the TGFβ1/Snail pathway, C-L inhibits EndMT of CMECs and reduces the release of CF-activating factors in cells undergoing EndMT.
Collapse
|
33
|
Cheng Y, Wang Y, Yin R, Xu Y, Zhang L, Zhang Y, Yang L, Zhao D. Central role of cardiac fibroblasts in myocardial fibrosis of diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2023; 14:1162754. [PMID: 37065745 PMCID: PMC10102655 DOI: 10.3389/fendo.2023.1162754] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), a main cardiovascular complication of diabetes, can eventually develop into heart failure and affect the prognosis of patients. Myocardial fibrosis is the main factor causing ventricular wall stiffness and heart failure in DCM. Early control of myocardial fibrosis in DCM is of great significance to prevent or postpone the progression of DCM to heart failure. A growing body of evidence suggests that cardiomyocytes, immunocytes, and endothelial cells involve fibrogenic actions, however, cardiac fibroblasts, the main participants in collagen production, are situated in the most central position in cardiac fibrosis. In this review, we systematically elaborate the source and physiological role of myocardial fibroblasts in the context of DCM, and we also discuss the potential action and mechanism of cardiac fibroblasts in promoting fibrosis, so as to provide guidance for formulating strategies for prevention and treatment of cardiac fibrosis in DCM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dong Zhao
- *Correspondence: Longyan Yang, ; Dong Zhao,
| |
Collapse
|
34
|
Wang X, Min D, Twigg SM. Regulation of CCN2 and Its Bioactivity by Advanced Glycation End Products. Methods Mol Biol 2023; 2582:355-367. [PMID: 36370363 DOI: 10.1007/978-1-0716-2744-0_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Advanced glycation end products (AGEs) have been implicated in the tissue fibrosis and extracellular matrix (ECM) expansion in organ complications of diabetes mellitus and in other diseases. CCN2, also known as cellular communication factor 2 and earlier as connective tissue growth factor, is a matrix-associated protein that acts as a pro-fibrotic cytokine to cause fibrosis in tissues in many diseases. We were the first to report that AGEs regulate CCN2, which itself can then affect ECM synthesis. In this chapter, we describe the methods of preparation of soluble AGEs and matrix-bound AGEs that can be used to study AGE effect on CCN2 and ECM expansion.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Danqing Min
- Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Stephen M Twigg
- Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
| |
Collapse
|
35
|
Kubatzky KF. Pasteurella multocida toxin - lessons learned from a mitogenic toxin. Front Immunol 2022; 13:1058905. [PMID: 36591313 PMCID: PMC9800868 DOI: 10.3389/fimmu.2022.1058905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
The gram-negative, zoonotic bacterium Pasteurella multocida was discovered in 1880 and found to be the causative pathogen of fowl cholera. Pasteurella-related diseases can be found in domestic and wild life animals such as buffalo, sheep, goat, deer and antelope, cats, dogs and tigers and cause hemorrhagic septicemia in cattle, rhinitis or pneumonia in rabbits or fowl cholera in poultry and birds. Pasteurella multocida does not play a major role in the immune-competent human host, but can be found after animal bites or in people with close contact to animals. Toxigenic strains are most commonly found in pigs and express a phage-encoded 146 kDa protein, the Pasteurella multocida toxin (PMT). Toxin-expressing strains cause atrophic rhinitis where nasal turbinate bones are destroyed through the inhibition of bone building osteoblasts and the activation of bone resorbing osteoclasts. After its uptake through receptor-mediated endocytosis, PMT specifically targets the alpha subunit of several heterotrimeric G proteins and constitutively activates them through deamidation of a glutamine residue to glutamate in the alpha subunit. This results in cytoskeletal rearrangement, proliferation, differentiation and survival of cells. Because of the toxin's mitogenic effects, it was suggested that it might have carcinogenic properties, however, no link between Pasteurella infections and cell transformation could be established, neither in tissue culture models nor through epidemiological data. In the recent years it was shown that the toxin not only affects bone, but also the heart as well as basically all cells of innate and adaptive immunity. During the last decade the focus of research shifted from signal transduction processes to understanding how the bacteria might benefit from a bone-destroying toxin. The primary function of PMT seems to be the modulation of immune cell activation which at the same time creates an environment permissive for osteoclast formation. While the disease is restricted to pigs, the implications of the findings from PMT research can be used to explore human diseases and have a high translational potential. In this review our current knowledge will be summarized and it will be discussed what can be learned from using PMT as a tool to understand human pathologies.
Collapse
Affiliation(s)
- Katharina F. Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
36
|
Han Y, Xian Y, Gao X, Qiang P, Hao J, Yang F, Shimosawa T, Chang Y, Xu Q. Eplerenone inhibits the macrophage-to-myofibroblast transition in rats with UUO-induced type 4 cardiorenal syndrome through the MR/CTGF pathway. Int Immunopharmacol 2022; 113:109396. [PMID: 36461595 DOI: 10.1016/j.intimp.2022.109396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Cardiovascular complications are the leading causes of death in patients with chronic kidney disease (CKD), accounting for approximately 50% of deaths. Despite significant advances in the understanding of cardiac disease due to CKD, the underlying mechanisms involved in many pathological changes have not been fully elucidated. In our previous study, we observed severe fibrosis in the contralateral kidney of a 6-month-old rat UUO model. In the present experiment, we also observed severe fibrosis in the hearts of rats subjected to UUO and the macrophage-to-myofibroblast transition (MMT). These effects were inhibited by the mineralocorticoid receptor (MR) blocker eplerenone. Notably, in vitro, aldosterone-activated MR induced the MMT and subsequently promoted the secretion of CTGF, the target of MR, from macrophages; these changes were inhibited by eplerenone. The CTGF also induced the MMT and both the aldosterone and CTGF-induced MMT could be alleviated by the CTGF blocker. In conclusion, our results suggest that targeting the MR/CTGF pathway to inhibit the MMT may be an effective therapeutic strategy for the treatment of cardiac fibrosis.
Collapse
|
37
|
Ebrahimighaei R, Sala-Newby GB, Hudson C, Kimura TE, Hathway T, Hawkins J, McNeill MC, Richardson R, Newby AC, Bond M. Combined role for YAP-TEAD and YAP-RUNX2 signalling in substrate-stiffness regulation of cardiac fibroblast proliferation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119329. [PMID: 35905788 PMCID: PMC7616274 DOI: 10.1016/j.bbamcr.2022.119329] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Cardiac fibrosis is associated with increased stiffness of the myocardial extracellular matrix (ECM) in part mediated by increased cardiac fibroblast proliferation However, our understanding of the mechanisms regulating cardiac fibroblast proliferation are incomplete. Here we characterise a novel mechanism involving a combined activation of Yes-associated protein (YAP) targets RUNX Family Transcription Factor 2 (RUNX2) and TEA Domain Transcription Factor (TEAD). We demonstrate that cardiac fibroblast proliferation is enhanced by interaction with a stiff ECM compared to a soft ECM. This is associated with activation of the transcriptional co-factor, YAP. We demonstrate that this stiffness induced activation of YAP enhances the transcriptional activity of both TEAD and RUNX2 transcription factors. Inhibition of either TEAD or RUNX2, using gene silencing, expression of dominant-negative mutants or pharmacological inhibition, reduces cardiac fibroblast proliferation. Using mutants of YAP, defective in TEAD or RUNX2 activation ability, we demonstrate a dual role of YAP-mediated activation of TEAD and RUNX2 for substrate stiffness induced cardiac fibroblast proliferation. Our data highlights a previously unrecognised role of YAP mediated RUNX2 activation for cardiac fibroblast proliferation in response to increased ECM stiffness.
Collapse
Affiliation(s)
- Reza Ebrahimighaei
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Graciela B Sala-Newby
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Claire Hudson
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Tomomi E Kimura
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Tom Hathway
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Joseph Hawkins
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Madeleine C McNeill
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Rebecca Richardson
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Andrew C Newby
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Mark Bond
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK.
| |
Collapse
|
38
|
Wang J, Shang R, Yang J, Liu Z, Chen Y, Chen C, Zheng W, Tang Y, Zhang X, Hu X, Huang Y, Shen HM, Luo G, He W. P311 promotes type II transforming growth factor-β receptor mediated fibroblast activation and granulation tissue formation in wound healing. BURNS & TRAUMA 2022; 10:tkac027. [PMID: 37469904 PMCID: PMC9562783 DOI: 10.1093/burnst/tkac027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/07/2022] [Indexed: 07/21/2023]
Abstract
Background P311, a highly conserved 8 kDa intracellular protein, has recently been reported to play an important role in aggravating hypertrophic scaring by promoting the differentiation and secretion of fibroblasts. Nevertheless, how P311 regulates the differentiation and function of fibroblasts to affect granulation tissue formation remains unclear. In this work, we studied the underlying mechanisms via which P311 affects fibroblasts and promotes acute skin wound repair. Methods To explore the role of P311, both in vitro and in vivo wound-healing models were used. Full-thickness skin excisional wounds were made in wild-type and P311-/- C57 adult mice. Wound healing rate, re-epithelialization, granulation tissue formation and collagen deposition were measured at days 3, 6 and 9 after skin injury. The biological phenotypes of fibroblasts, the expression of target proteins and relevant signaling pathways were examined both in vitro and in vivo. Results P311 could promote the proliferation and differentiation of fibroblasts, enhance the ability of myofibroblasts to secrete extracellular matrix and promote cell contraction, and then facilitate the formation of granulation tissue and eventually accelerate skin wound closure. Importantly, we discovered that P311 acts via up-regulating the expression of type II transforming growth factor-β receptor (TGF-βRII) in fibroblasts and promoting the activation of the TGF-βRII-Smad signaling pathway. Mechanistically, the mammalian target of rapamycin signaling pathway is closely implicated in the regulation of the TGF-βRII-Smad pathway in fibroblasts mediated by P311. Conclusions P311 plays a critical role in activation of the TGF-βRII-Smad pathway to promote fibroblast proliferation and differentiation as well as granulation tissue formation in the process of skin wound repair.
Collapse
Affiliation(s)
| | | | - Jiacai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics,
Chongqing 400038, China
| | - Zhihui Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics,
Chongqing 400038, China
| | - Yunxia Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics,
Chongqing 400038, China
| | - Cheng Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics,
Chongqing 400038, China
| | - Wenxia Zheng
- Department of Technical Support, Chengdu Zhijing Technology Co.,
Ltd, Chengdu 610041, China
| | - Yuanyang Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Academy of Biological Engineering, Chongqing University,
Chongqing 400038, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics,
Chongqing 400038, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics,
Chongqing 400038, China
| | - Yong Huang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics,
Chongqing 400038, China
| | - Han-Ming Shen
- Correspondence. Weifeng He, ;
Gaoxing Luo, ; Han-ming Shen,
| | - Gaoxing Luo
- Correspondence. Weifeng He, ;
Gaoxing Luo, ; Han-ming Shen,
| | - Weifeng He
- Correspondence. Weifeng He, ;
Gaoxing Luo, ; Han-ming Shen,
| |
Collapse
|
39
|
Mao Y, Zhao K, Li P, Sheng Y. The emerging role of leptin in obesity-associated cardiac fibrosis: evidence and mechanism. Mol Cell Biochem 2022; 478:991-1011. [PMID: 36214893 DOI: 10.1007/s11010-022-04562-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022]
Abstract
Cardiac fibrosis is a hallmark of various cardiovascular diseases, which is quite commonly found in obesity, and may contribute to the increased incidence of heart failure arrhythmias, and sudden cardiac death in obese populations. As an endogenous regulator of adiposity metabolism, body mass, and energy balance, obesity, characterized by increased circulating levels of the adipocyte-derived hormone leptin, is a critical contributor to the pathogenesis of cardiac fibrosis. Although there are some gaps in our knowledge linking leptin and cardiac fibrosis, this review will focus on the interplay between leptin and major effectors involved in the pathogenesis underlying cardiac fibrosis at both cellular and molecular levels based on the current reports. The profibrotic effect of leptin is predominantly mediated by activated cardiac fibroblasts but may also involve cardiomyocytes, endothelial cells, and immune cells. Moreover, a series of molecular signals with a known profibrotic property is closely involved in leptin-induced fibrotic events. A more comprehensive understanding of the underlying mechanisms through which leptin contributes to the pathogenesis of cardiac fibrosis may open up a new avenue for the rapid emergence of a novel therapy for preventing or even reversing obesity-associated cardiac fibrosis.
Collapse
Affiliation(s)
- Yukang Mao
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China.,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| | - Yanhui Sheng
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China. .,Department of Cardiology, Jiangsu Province Hospital, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
40
|
Karimi-Sales E, Jeddi S, Alipour MR. trans-Chalcone inhibits transforming growth factor-β1 and connective tissue growth factor-dependent collagen expression in the heart of high-fat diet-fed rats. Arch Physiol Biochem 2022; 128:1221-1224. [PMID: 32407146 DOI: 10.1080/13813455.2020.1764045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Objective: Non-alcoholic fatty liver disease (NAFLD) is one of the main risk factors for cardiovascular mortality and morbidity. This study, for the first time, explored the effects of trans-chalcone on cardiac expressions of myocardial fibrosis-related genes, including transforming growth factor -β1 (TGF-β1), connective tissue growth factor (CTGF/CCN2), and collagen type I.Materials and methods: Twenty-eight rats were randomly divided into four groups: control, received 10% tween 80; chalcone, received trans-chalcone; HFD, received high-fat diet (HFD) and 10% tween 80; HFD + chalcone, received HFD and trans-chalcone, by once-daily gavage for 6 weeks. Finally, cardiac expression levels of TGF-β1, CTGF, and collagen type I were determined.Results: HFD feeding increased mRNA levels of collagen type I, TGF-β1, and CTGF in the heart of rats. However, trans-chalcone inhibited HFD-induced changes.Conclusions: trans-Chalcone can act as a cardioprotective compound by inhibiting TGF-β1 and CTGF-dependent stimulation of collagen type I synthesis in the heart of HFD-fed rats.
Collapse
Affiliation(s)
- Elham Karimi-Sales
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Alipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Cardiac fibrosis in oncologic therapies. CURRENT OPINION IN PHYSIOLOGY 2022; 29. [DOI: 10.1016/j.cophys.2022.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Landry DA, Yakubovich E, Cook DP, Fasih S, Upham J, Vanderhyden BC. Metformin prevents age-associated ovarian fibrosis by modulating the immune landscape in female mice. SCIENCE ADVANCES 2022; 8:eabq1475. [PMID: 36054356 PMCID: PMC10848964 DOI: 10.1126/sciadv.abq1475] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/20/2022] [Indexed: 05/20/2023]
Abstract
Ovarian fibrosis is a pathological condition associated with aging and is responsible for a variety of ovarian dysfunctions. Given the known contributions of tissue fibrosis to tumorigenesis, it is anticipated that ovarian fibrosis may contribute to ovarian cancer risk. We recently reported that diabetic postmenopausal women using metformin had ovarian collagen abundance and organization that were similar to premenopausal ovaries from nondiabetic women. In this study, we investigated the effects of aging and metformin on mouse ovarian fibrosis at a single-cell level. We discovered that metformin treatment prevented age-associated ovarian fibrosis by modulating the proportion of fibroblasts, myofibroblasts, and immune cells. Senescence-associated secretory phenotype (SASP)-producing fibroblasts increased in aged ovaries, and a unique metformin-responsive subpopulation of macrophages emerged in aged mice treated with metformin. The results demonstrate that metformin can modulate specific populations of immune cells and fibroblasts to prevent age-associated ovarian fibrosis and offers a new strategy to prevent ovarian fibrosis.
Collapse
Affiliation(s)
- David A. Landry
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Edward Yakubovich
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - David P. Cook
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Sijyl Fasih
- Department of Physics and School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, Canada
| | - Jeremy Upham
- Department of Physics and School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, Canada
| | - Barbara C. Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
43
|
Jones KM, Poveda C, Versteeg L, Bottazzi ME, Hotez PJ. Preclinical advances and the immunophysiology of a new therapeutic chagas disease vaccine. Expert Rev Vaccines 2022; 21:1185-1203. [PMID: 35735065 DOI: 10.1080/14760584.2022.2093721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Chronic infection with the protozoal parasite Trypanosoma cruzi leads to a progressive cardiac disease, known as chronic Chagasic cardiomyopathy (CCC). A new therapeutic Chagas disease vaccine is in development to augment existing antiparasitic chemotherapy drugs. AREAS COVERED We report on our current understanding of the underlying immunologic and physiologic mechanisms that lead to CCC, including parasite immune escape mechanisms that allow persistence and the subsequent inflammatory and fibrotic processes that lead to clinical disease. We report on vaccine design and the observed immunotherapeutic effects including induction of a balanced TH1/TH2/TH17 immune response that leads to reduced parasite burdens and tissue pathology. Further, we report vaccine-linked chemotherapy, a dose sparing strategy to further reduce parasite burdens and tissue pathology. EXPERT OPINION Our vaccine-linked chemotherapeutic approach is a multimodal treatment strategy, addressing both the parasite persistence and the underlying deleterious host inflammatory and fibrotic responses that lead to cardiac dysfunction. In targeting treatment towards patients with chronic indeterminate or early determinate Chagas disease, this vaccine-linked chemotherapeutic approach will be highly economical and will reduce the global disease burden and deaths due to CCC.
Collapse
Affiliation(s)
- Kathryn M Jones
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cristina Poveda
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Leroy Versteeg
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.,Cell Biology and Immunology Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Biology, Baylor University, Waco, Texas, United States of America.,James A. Baker III Institute for Public Policy, Rice University, Houston, Texas, United States of America.,Hagler Institute for Advanced Study at Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
44
|
Song MH, Jo Y, Kim YK, Kook H, Jeong D, Park WJ. The TSP-1 domain of the matricellular protein CCN5 is essential for its nuclear localization and anti-fibrotic function. PLoS One 2022; 17:e0267629. [PMID: 35476850 PMCID: PMC9045603 DOI: 10.1371/journal.pone.0267629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
The matricellular protein CCN5 exerts anti-fibrotic activity in hearts partly by inducing reverse trans-differentiation of myofibroblasts (MyoFBs) to fibroblasts (FBs). CCN5 consists of three structural domains: an insulin-like growth factor binding protein (IGFBP), a von Willebrand factor type C (VWC), and a thrombospondin type 1 (TSP-1). In this study, we set out to elucidate the roles of these domains in the context of the reverse trans-differentiation of MyoFBs to FBs. First, human cardiac FBs were trans-differentiated to MyoFBs by treatment with TGF-β; this was then reversed by treatment with recombinant human CCN5 protein or various recombinant proteins comprising individual or paired CCN5 domains. Subcellular localization of these recombinant proteins was analyzed by immunocytochemistry, cellular fractionation, and western blotting. Anti-fibrotic activity was also evaluated by examining expression of MyoFB-specific markers, α-SMA and fibronectin. Our data show that CCN5 is taken up by FBs and MyoFBs mainly via clathrin-mediated endocytosis, which is essential for the function of CCN5 during the reverse trans-differentiation of MyoFBs. Furthermore, we showed that the TSP-1 domain is essential and sufficient for endocytosis and nuclear localization of CCN5. However, the TSP-1 domain alone is not sufficient for the anti-fibrotic function of CCN5; either the IGFBP or VWC domain is needed in addition to the TSP-1 domain.
Collapse
Affiliation(s)
- Min Ho Song
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Yongjoon Jo
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea
| | - Dongtak Jeong
- Department of Molecular & Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan, Gyeonggi-do, Republic of Korea
- * E-mail: (WJP); (DJ)
| | - Woo Jin Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
- * E-mail: (WJP); (DJ)
| |
Collapse
|
45
|
Liu CF, Ni Y, Thachil V, Morley M, Moravec CS, Tang WHW. Differential expression of members of SOX family of transcription factors in failing human hearts. Transl Res 2022; 242:66-78. [PMID: 34695607 PMCID: PMC8891044 DOI: 10.1016/j.trsl.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
The Sry-related high-mobility-group box (SOX) gene family, with 20 known transcription factors in humans, plays an essential role during development and disease processes. Several SOX proteins (SOX4, 11, and 9) are required for normal heart morphogenesis. SOX9 was shown to contribute to cardiac fibrosis. However, differential expression of other SOXs and their roles in the failing human myocardium have not been explored. Here, we used the whole-transcriptome sequencing (RNA-seq), gene co-expression, and meta-analysis to examine whether any SOX factors might play a role in the failing human myocardium. RNA-seq analysis was performed for cardiac tissue samples from heart failure (HF) patients due to dilated cardiomyopathy (DCM), or hypertrophic cardiomyopathy (HCM) and healthy donors (NF). The RNA levels of 20 SOX genes from RNA-seq data were extracted and compared to the 3 groups. Four SOX genes whose RNA levels were significantly upregulated in DCM or HCM compared to NF. However, only SOX4 and SOX8 proteins were markedly increased in the HF groups. A moderate to strong correlation was observed between the RNA level of SOX4/8 and fibrotic genes among each individual. Gene co-expression network analysis identified genes associated and respond similarly to perturbations with SOX4 in cardiac tissues. Using a meta-analysis combining epigenetics and genome-wide association data, we reported several genomic variants associated with HF phenotype linked to SOX4 or SOX8. In summary, our results implicate that SOX4 and SOX8 have a role in cardiomyopathy, leading to HF in humans. The molecular mechanism associated with them in HF warrants further investigation.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ying Ni
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Varun Thachil
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio
| | - Michael Morley
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christine S Moravec
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Wai Hong Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
46
|
Activation of the ATX/LPA/LPARs axis induces a fibrotic response in skeletal muscle. Matrix Biol 2022; 109:121-139. [DOI: 10.1016/j.matbio.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/29/2022]
|
47
|
Hettinger ZR, Wen Y, Peck BD, Hamagata K, Confides AL, Van Pelt DW, Harrison DA, Miller BF, Butterfield TA, Dupont-Versteegden EE. Mechanotherapy Reprograms Aged Muscle Stromal Cells to Remodel the Extracellular Matrix during Recovery from Disuse. FUNCTION 2022; 3:zqac015. [PMID: 35434632 PMCID: PMC9009398 DOI: 10.1093/function/zqac015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/07/2023] Open
Abstract
Aging is accompanied by reduced remodeling of skeletal muscle extracellular matrix (ECM), which is exacerbated during recovery following periods of disuse atrophy. Mechanotherapy has been shown to promote ECM remodeling through immunomodulation in adult muscle recovery, but not during the aged recovery from disuse. In order to determine if mechanotherapy promotes ECM remodeling in aged muscle, we performed single cell RNA sequencing (scRNA-seq) of all mononucleated cells in adult and aged rat gastrocnemius muscle recovering from disuse, with (REM) and without mechanotherapy (RE). We show that fibroadipogenic progenitor cells (FAPs) in aged RE muscle are highly enriched in chemotaxis genes (Csf1), but absent in ECM remodeling genes compared to adult RE muscle (Col1a1). Receptor-ligand (RL) network analysis of all mononucleated cell populations in aged RE muscle identified chemotaxis-enriched gene expression in numerous stromal cell populations (FAPs, endothelial cells, pericytes), despite reduced enrichment of genes related to phagocytic activity in myeloid cell populations (macrophages, monocytes, antigen presenting cells). Following mechanotherapy, aged REM mononuclear cell gene expression resembled adult RE muscle as evidenced by RL network analyses and KEGG pathway activity scoring. To validate our transcriptional findings, ECM turnover was measured in an independent cohort of animals using in vivo isotope tracing of intramuscular collagen and histological scoring of the ECM, which confirmed mechanotherapy-mediated ECM remodeling in aged RE muscle. Our results highlight age-related cellular mechanisms underpinning the impairment to complete recovery from disuse, and also promote mechanotherapy as an intervention to enhance ECM turnover in aged muscle recovering from disuse.
Collapse
Affiliation(s)
- Zachary R Hettinger
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Yuan Wen
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Bailey D Peck
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Kyoko Hamagata
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Amy L Confides
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Douglas W Van Pelt
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Douglas A Harrison
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Timothy A Butterfield
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky; Lexington, KY 40536, USA
| | - Esther E Dupont-Versteegden
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
48
|
Petrosino JM, Longenecker JZ, Angell CD, Hinger SA, Martens CR, Accornero F. CCN2 participates in overload-induced skeletal muscle hypertrophy. Matrix Biol 2022; 106:1-11. [PMID: 35045313 PMCID: PMC8854352 DOI: 10.1016/j.matbio.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/02/2022] [Accepted: 01/10/2022] [Indexed: 02/03/2023]
Abstract
The regulation of skeletal muscle growth following pro-hypertrophic stimuli requires a coordinated response by different cell types that leads to extracellular matrix (ECM) remodeling and increases in muscle cross-sectional area. Indeed, matricellular proteins serve a key role as communication vehicles that facilitate the propagation of signaling stimuli required for muscle adaptation to environmental challenges. We found that the matricellular protein cellular communication network factor 2 (CCN2), also known as connective tissue growth factor (CTGF), is induced during a time course of overload-driven skeletal muscle hypertrophy in mice. To elucidate the role of CCN2 in mediating the hypertrophic response, we utilized genetically engineered mouse models for myofiber-specific CCN2 gain- and loss-of-function and then examined their response to mechanical stimuli through muscle overload. Interestingly, myofiber-specific deletion of CCN2 blunted muscle's hypertrophic response to overload without interfering with ECM deposition. On the other hand, when in excess through transgenic CCN2 overexpression, CCN2 was efficient in promoting overload-induced aberrant ECM accumulation without affecting myofiber growth. Altogether, our genetic approaches highlighted independent ECM and myofiber stress adaptation responses, and positioned CCN2 as a central mediator of both. Mechanistically, CCN2 acts by regulating focal adhesion kinase (FAK) mediated transduction of overload-induced extracellular signals, including interleukin 6 (IL6), and their regulatory impact on global protein synthesis in skeletal muscle. Overall, our study highlights the contribution of muscle-derived extracellular matrix factor CCN2 for proper hypertrophic muscle growth.
Collapse
Affiliation(s)
- Jennifer M Petrosino
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH 43210, USA
| | - Jacob Z Longenecker
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH 43210, USA
| | - Colin D Angell
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH 43210, USA
| | - Scott A Hinger
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH 43210, USA
| | - Colton R Martens
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH 43210, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH 43210, USA.
| |
Collapse
|
49
|
Wang L, Wei X, Duan C, Yang J, Xiao S, Liu H, Sun J. Bone marrow mesenchymal stem cell sheets with high expression of hBD3 and CTGF promote periodontal regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112657. [PMID: 35034825 DOI: 10.1016/j.msec.2022.112657] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/12/2021] [Accepted: 01/06/2022] [Indexed: 12/31/2022]
Abstract
The multi-bacterial environment of the oral cavity makes it hard for periodontal regeneration. As a class of antimicrobial peptide, beta defensin has been found to show broad-spectrum antibacterial ability. In addition, connective tissue growth factor (CTGF) is demonstrated to play a great role in multi-physiological events such as angiogenesis, wound healing and, more importantly, fibrogenesis. In this study, human β defensin 3 (hBD3) and CTGF were co-transfected into bone marrow derived mesenchymal stem cells (BMSCs) for preparing cell sheets. The transfection efficiency was detected through fluorescence of eGFP and western blot assay. Our results showed that the hBD3 and CTGF proteins were highly and stably expressed in the BMSCs after transfection. The results of RT-PCR and induced differentiation indicated that hBD3 promoted osteogenic differentiation of BMSCs, while CTGF significantly increased fibrogenic differentiation even in the presence of hBD3. The BMSCs acquired stronger capacity in terms of promoting M2 polarization of RAW 264.7 macrophages fulfilled by the transfection and secretion of hBD3 and CTGF. To further evaluate the periodontal remodeling performance of cell sheets, a coralline hydroxyapatite (CHA)-chitosan based hydrogel-human tooth system was designed to simulate the natural periodontal environment. The results showed that dense extracellular matrix, oriented fiber arrangement, and abundant collagen deposition appeared in the area of BMSCs sheets after subcutaneous transplantation. Altogether, our data showed that the lentivirus transfected BMSCs sheets had a promising application prospect for periodontal repair.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, PR China
| | - Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, PR China
| | - Cuimi Duan
- Tissue Engineering Research Center, Beijing Institute of Basic Medical Sciences, PR China
| | - Jinjin Yang
- Department of Stomatology, The Fifth Medical Center, Chinese PLA General Hospital, Xisihuan Middle Road 100, Fengtai District, Beijing 100036, PR China
| | - Shengzhao Xiao
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, PR China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, PR China.
| | - Jie Sun
- Department of Stomatology, The Fifth Medical Center, Chinese PLA General Hospital, Xisihuan Middle Road 100, Fengtai District, Beijing 100036, PR China.
| |
Collapse
|
50
|
Metabolic Effects of CCN5/WISP2 Gene Deficiency and Transgenic Overexpression in Mice. Int J Mol Sci 2021; 22:ijms222413418. [PMID: 34948212 PMCID: PMC8709456 DOI: 10.3390/ijms222413418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 11/17/2022] Open
Abstract
CCN5/WISP2 is a matricellular protein, the expression of which is under the regulation of Wnt signaling and IGF-1. Our initial characterization supports the notion that CCN5 might promote the proliferation and survival of pancreatic β-cells and thus improve the metabolic profile of the animals. More recently, the roles of endogenous expression of CCN5 and its ectopic, transgenic overexpression on metabolic regulation have been revealed through two reports. Here, we attempt to compare the experimental findings from those studies, side-by-side, in order to further establish its roles in metabolic regulation. Prominent among the discoveries was that a systemic deficiency of CCN5 gene expression caused adipocyte hypertrophy, increased adipogenesis, and lipid accumulation, resulting in insulin resistance and glucose intolerance, which were further exacerbated upon high-fat diet feeding. On the other hand, the adipocyte-specific and systemic overexpression of CCN5 caused an increase in lean body mass, improved insulin sensitivity, hyperplasia of cardiomyocytes, and increased heart mass, but decreased fasting glucose levels. CCN5 is clearly a regulator of adipocyte proliferation and maturation, affecting lean/fat mass ratio and insulin sensitivity. Not all results from these models are consistent; moreover, several important aspects of CCN5 physiology are yet to be explored.
Collapse
|