1
|
Pruchnik H, Włoch A, Gładkowski W, Grudniewska A, Chojnacka A, Krzemiński M, Rudzińska M. Effect of Distigmasterol-Modified Acylglycerols on the Fluidity and Phase Transition of Lipid Model Membranes. MEMBRANES 2022; 12:membranes12111054. [PMID: 36363609 PMCID: PMC9698068 DOI: 10.3390/membranes12111054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 05/10/2023]
Abstract
Plant sterols are known for their health-promoting effects, lowering blood cholesterol levels and alleviating cardiovascular disease. In this work, we continue our research on the asymmetric acylglycerols in which fatty acid residues are replaced by two stigmasterol residues in sn-1 and sn-2 or sn-2 and sn-3 positions as new thermostable carriers of phytosterols for their potential application in foods or as components of new liposomes in the pharmaceutical industry. The aim of this manuscript was to compare and analyze the effects of four distigmasterol-modified acylglycerols (dStigMAs) on the fluidity and the main phase transition temperature of the model phospholipid membrane. Their properties were determined using differential scanning calorimetry (DSC), steady-state fluorimetry and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). The determination of the effect of the tested compounds on the mentioned physicochemical parameters of the model membranes will allow for the determination of their properties and stability, which is essential for their practical application. The results indicated that all compounds effect on the physicochemical properties of the model membrane. The degree of these changes depends on the structure of the compound, especially the type of linker by which stigmasterol is attached to the glycerol backbone, as well as on the type of hydrocarbon chain.
Collapse
Affiliation(s)
- Hanna Pruchnik
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
- Correspondence:
| | - Witold Gładkowski
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Aleksandra Grudniewska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Anna Chojnacka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Mateusz Krzemiński
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Magdalena Rudzińska
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-637 Poznań, Poland
| |
Collapse
|
2
|
Altunayar-Unsalan C, Unsalan O, Mavromoustakos T. Molecular interactions of hesperidin with DMPC/cholesterol bilayers. Chem Biol Interact 2022; 366:110131. [PMID: 36037876 DOI: 10.1016/j.cbi.2022.110131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/05/2022] [Accepted: 08/20/2022] [Indexed: 11/03/2022]
Abstract
Since cell membranes are complex systems, the use of model lipid bilayers is quite important for the study of their interactions with bioactive molecules. Mammalian cell membranes require cholesterol (CHOL) for their structure and function. For this reason, the mixtures of phospholipid and cholesterol are necessary to use in model membrane studies to better simulate the real systems. In the present study, we investigated the effect of the incorporation of hesperidin in model membranes consisting of dimyristoylphosphatidylcholine (DMPC) and CHOL by using differential scanning calorimetry (DSC), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and atomic force microscopy (AFM). ATR-FTIR results demonstrated that hesperidin increases the fluidity of the DMPC/CHOL binary system. DSC findings indicated that the presence of 5 mol% hesperidin induces a broadening of the main phase transition consisting of three overlapping components. AFM experiments showed that hesperidin increases the thickness of DMPC/CHOL lipid bilayer model membranes. In addition to experimental results, molecular docking studies were conducted with hesperidin and human lanosterol synthase (LS), which is an enzyme found in the final step of cholesterol synthesis, to characterize hesperidin's interactions with its surrounding via its hydroxyl and oxygen groups. Then, hesperidin's ADME/Tox (absorption, distribution, metabolism, excretion and toxicity) profile was computed to see the potential impact on living system. In conclusion, considering the data obtained from experimental studies, this work ensures molecular insights in the interaction between a flavonoid, as an antioxidant drug model, and lipids mimicking those found in mammalian membranes. Moreover, computational studies demonstrated that hesperidin may be a great potential for use as a therapeutic agent for hypercholesterolemia due to its antioxidant property.
Collapse
Affiliation(s)
- Cisem Altunayar-Unsalan
- Ege University Central Research Testing and Analysis Laboratory Research and Application Center, 35100, Bornova, Izmir, Turkey.
| | - Ozan Unsalan
- Ege University, Faculty of Science, Department of Physics, 35100, Bornova, Izmir, Turkey.
| | - Thomas Mavromoustakos
- Section of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece.
| |
Collapse
|
3
|
Bin Sintang MD, Danthine S, Khalenkow D, Tavernier I, Tzompa Sosa DA, Julmohammad NB, Van de Walle D, Rimaux T, Skirtach A, Dewettinck K. Modulating the crystallization of phytosterols with monoglycerides in the binary mixture systems: mixing behavior and eutectic formation. Chem Phys Lipids 2020; 230:104912. [DOI: 10.1016/j.chemphyslip.2020.104912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 02/06/2023]
|
4
|
A comparison between laboratory and industrial fouling of reverse osmosis membranes used to concentrate milk. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2018.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Enhanced physical stability of positively charged catanionic vesicles: Role of cholesterol-adjusted molecular packing. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Kuo AT, Tu CL, Yang YM, Chang CH. Enhanced Physical Stability of Mixed Ion Pair Amphiphile/Double-chained Cationic Surfactant Vesicles in the Presence of Cholesterol. J Oleo Sci 2018; 67:727-735. [DOI: 10.5650/jos.ess18008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- An-Tsung Kuo
- Department of Chemical Engineering, National Cheng Kung University
| | - Cheng-Lin Tu
- Department of Chemical Engineering, National Cheng Kung University
| | - Yu-Min Yang
- Department of Chemical Engineering, National Cheng Kung University
| | | |
Collapse
|
7
|
Russo G, Witos J, Rantamäki AH, Wiedmer SK. Cholesterol affects the interaction between an ionic liquid and phospholipid vesicles. A study by differential scanning calorimetry and nanoplasmonic sensing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2361-2372. [PMID: 28912102 DOI: 10.1016/j.bbamem.2017.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/01/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
Abstract
The present work aims at studying the interactions between cholesterol-rich phosphatidylcholine-based lipid vesicles and trioctylmethylphosphonium acetate ([P8881][OAc]), a biomass dissolving ionic liquid (IL). The effect of cholesterol was assayed by using differential scanning calorimetry (DSC) and nanoplasmonic sensing (NPS) measurement techniques. Cholesterol-enriched dipalmitoyl-phosphatidylcholine vesicles were exposed to different concentrations of the IL, and the derived membrane perturbation was monitored by DSC. The calorimetric data could suggest that the binding and infiltration of the IL are delayed in the vesicles containing cholesterol. To clarify our findings, NPS was applied to quantitatively follow the resistance of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine incorporating 0, 10, and 50mol% of cholesterol toward the IL exposure over time. The membrane perturbation induced by different concentrations of IL was found to be a concentration dependent process on cholesterol-free lipid vesicles. Moreover, our results showed that lipid depletion in cholesterol-enriched lipid vesicles is inversely proportional to the increasing amount of cholesterol in the vesicles. These findings support that cholesterol-rich lipid bilayers are less susceptible toward membrane disrupting agents as compared to membranes that do not incorporate any sterols. This probably occurs because cholesterol tightens the phospholipid acyl chain packing of the plasma membranes, increasing their resistance and reducing their permeability.
Collapse
Affiliation(s)
- Giacomo Russo
- Department of Chemistry, P. O. Box 55, FIN-00014, University of Helsinki, Helsinki, Finland.
| | - Joanna Witos
- Department of Chemistry, P. O. Box 55, FIN-00014, University of Helsinki, Helsinki, Finland.
| | - Antti H Rantamäki
- Department of Chemistry, P. O. Box 55, FIN-00014, University of Helsinki, Helsinki, Finland.
| | - Susanne K Wiedmer
- Department of Chemistry, P. O. Box 55, FIN-00014, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Epand RM, Bach D, Wachtel E. In vitro determination of the solubility limit of cholesterol in phospholipid bilayers. Chem Phys Lipids 2016; 199:3-10. [DOI: 10.1016/j.chemphyslip.2016.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
In vitro determination of the solubility limit of cholesterol in phospholipid bilayers. Chem Phys Lipids 2016. [DOI: 10.1016/j.chemphyslip.2016.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Hasan IY, Mechler A. Cholesterol Rich Domains Identified in Unilamellar Supported Biomimetic Membranes via Nano-Viscosity Measurements. Anal Chem 2016; 88:5037-41. [PMID: 27137411 DOI: 10.1021/acs.analchem.6b01045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the distribution of cholesterol in phospholipid membranes is of key importance in membrane biophysics, primarily since cholesterol enriched regions, rafts, are known to play a special role in protein function. In this work, quartz crystal microbalance with dissipation (QCM)-based viscosity measurements were used to study cholesterol-induced domain formation in partially suspended single bilayer membranes. 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and its mixtures with different amounts of cholesterol were studied. QCM temperature ramping experiments identified domains of different phase transition temperatures in the mixed membranes. The phase transition of DMPC shifted from 23.4 °C toward lower temperatures with increasing cholesterol content. A second, continuous but much broader, transition peak has been observed for the DMPC: cholesterol mixtures suggest that a separate cholesterol rich domain coexists with the DMPC rich domain. Importantly, the sharp DMC phase transition peak gradually diminished and eventually disappeared over 15% cholesterol content, suggesting that the cholesterol rich domain has a definite stoichiometry and once this cholesterol concentration is reached the DMPC-rich domain disappears. DSC control experiments do not show the second domain, suggesting that the phase separation only happens in nontensioned (flat) membranes.
Collapse
Affiliation(s)
- Imad Younus Hasan
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| |
Collapse
|
11
|
A calorimetric and spectroscopic comparison of the effects of cholesterol and its sulfur-containing analogs thiocholesterol and cholesterol sulfate on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:168-80. [DOI: 10.1016/j.bbamem.2015.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/26/2015] [Accepted: 11/12/2015] [Indexed: 11/20/2022]
|
12
|
Nicastro MC, Spigolon D, Librizzi F, Moran O, Ortore MG, Bulone D, Biagio PLS, Carrotta R. Amyloid β-peptide insertion in liposomes containing GM1-cholesterol domains. Biophys Chem 2016; 208:9-16. [DOI: 10.1016/j.bpc.2015.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/17/2015] [Accepted: 07/30/2015] [Indexed: 11/17/2022]
|
13
|
Benesch MGK, McElhaney RN. A comparative differential scanning calorimetry study of the effects of cholesterol and various oxysterols on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes. Chem Phys Lipids 2015; 195:21-33. [PMID: 26620814 DOI: 10.1016/j.chemphyslip.2015.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/12/2015] [Accepted: 11/14/2015] [Indexed: 01/19/2023]
Abstract
We have carried out a comparative differential scanning calorimetric (DSC) study of the effects of cholesterol (C) and the eight most physiologically relevant oxysterols on the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayer membranes. The structures of these oxysterols differ from that of C by the presence of additional hydroxyl, keto or epoxy groups on the steroid ring system or by the presence of a hydroxyl group in the alkyl side chain. In general, the progressive incorporation of these oxysterols reduces the temperature, cooperativity and enthalpy of the pretransition of DPPC to a greater extent than C, indicating that their presence thermally destabilizes and disorders the gel states of DPPC bilayers to a greater extent than C. Similarly, the incorporation of these oxysterols either increases the temperature of the broad component of the main phase transition to a smaller extent than C or actually decreases it. Again, this indicates that the presence of these compounds is less effective at thermally stabilizing and ordering the sterol-rich domains of DPPC bilayers than is C itself. Moreover, the incorporation of these oxysterols decrease the cooperativity and enthalpy of the main phase transition of DPPC to a smaller extent than C, indicating that they are somewhat less miscible in fluid DPPC bilayers than is C. Particularly notable in this regard is 25-hydroxycholesterol, which exhibits a markedly reduced miscibility in both gel and fluid DPPC bilayers compared to C itself. In general, the effectiveness of these oxysterols in stabilizing and ordering DPPC bilayers decreases as their rate of interbilayer exchange and the polarity of the oxysterol increases. We close by providing a tentative molecular explanation for the results of our DSC studies and of those of previous biophysical studies of the effects of various oxysterol on lipid bilayer model membranes.
Collapse
Affiliation(s)
- Matthew G K Benesch
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Ronald N McElhaney
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
14
|
Benesch MG, Lewis RN, McElhaney RN. A calorimetric and spectroscopic comparison of the effects of cholesterol and its immediate biosynthetic precursors 7-dehydrocholesterol and desmosterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Chem Phys Lipids 2015; 191:123-35. [DOI: 10.1016/j.chemphyslip.2015.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
|
15
|
Mannock DA, Benesch MG, Lewis RN, McElhaney RN. A comparative calorimetric and spectroscopic study of the effects of cholesterol and of the plant sterols β-sitosterol and stigmasterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1629-38. [DOI: 10.1016/j.bbamem.2015.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/08/2015] [Accepted: 04/15/2015] [Indexed: 12/31/2022]
|
16
|
A DSC and FTIR spectroscopic study of the effects of the epimeric coprostan-3-ols and coprostan-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogues. Chem Phys Lipids 2015; 188:10-26. [DOI: 10.1016/j.chemphyslip.2015.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/19/2022]
|
17
|
A DSC and FTIR spectroscopic study of the effects of the epimeric cholestan-3-ols and cholestan-3-one on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogs. Chem Phys Lipids 2015; 187:34-49. [DOI: 10.1016/j.chemphyslip.2015.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 11/23/2022]
|
18
|
Kuo AT, Chang CH. Elucidating the Effects of Cholesterol on the Molecular Packing of Double-chained Cationic Lipid Langmuir Monolayers by Infrared Reflection-absorption Spectroscopy. J Oleo Sci 2015; 64:455-65. [DOI: 10.5650/jos.ess14266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- An-Tsung Kuo
- Department of Chemical Engineering, National Cheng Kung University
| | | |
Collapse
|
19
|
Benesch MG, Lewis RN, Mannock DA, McElhaney RN. A DSC and FTIR spectroscopic study of the effects of the epimeric 4,6-cholestadien-3-ols and 4,6-cholestadien-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes. Chem Phys Lipids 2014; 183:142-58. [DOI: 10.1016/j.chemphyslip.2014.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/27/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
|
20
|
A comparative calorimetric study of the effects of cholesterol and the plant sterols campesterol and brassicasterol on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1941-9. [PMID: 24704414 DOI: 10.1016/j.bbamem.2014.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 11/20/2022]
Abstract
We present a comparative differential scanning calorimetric study of the effects of the animal sterol cholesterol (Chol) and the plant sterols campesterol (Camp) and brassicasterol (Bras) on the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayers. Camp and Bras differ from Chol in having a C24 methyl group and, additionally for Bras, a C22 trans-double bond. Camp and especially Bras decrease the temperature, cooperativity and enthalpy of the DPPC pretransition more than Chol, although these effects are attenuated at higher sterol levels. This indicates that they destabilize gel-state DPPC bilayers to a greater extent, but are less soluble, than Chol. Not surprisingly, all three sterols have similar effects on the sterol-poor sharp component of the DPPC main phase transition. However, Camp and especially Bras less effectively increase the temperature and decrease the cooperativity and enthalpy of the broad component of the main transition than Chol. This indicates that at higher sterol concentrations, Camp and Bras are less miscible and less effective than Chol at ordering the hydrocarbon chains of the sterol-enriched fluid DPPC bilayers. Overall, these alkyl side chain modifications generally reduce the ability of Chol to produce its characteristic effects on DPPC bilayer physical properties. These differences are likely due to the less extended and more bent conformations of the alkyl side chains of Camp and Bras, producing sterols with a greater effective cross-sectional area and reduced length than Chol. Hence, the structure of Chol is likely optimized for maximum solubility in, as opposed to maximum ordering of, phospholipid bilayers.
Collapse
|
21
|
A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogues. Chem Phys Lipids 2014; 177:71-90. [DOI: 10.1016/j.chemphyslip.2013.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 01/08/2023]
|
22
|
Oldenhof H, Friedel K, Akhoondi M, Gojowsky M, Wolkers WF, Sieme H. Membrane phase behavior during cooling of stallion sperm and its correlation with freezability. Mol Membr Biol 2012; 29:95-106. [DOI: 10.3109/09687688.2012.674161] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
23
|
Smith EA, Wang W, Dea PK. Effects of cholesterol on phospholipid membranes: inhibition of the interdigitated gel phase of F-DPPC and F-DPPC/DPPC. Chem Phys Lipids 2011; 165:151-9. [PMID: 22200532 DOI: 10.1016/j.chemphyslip.2011.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 12/09/2011] [Accepted: 12/10/2011] [Indexed: 11/18/2022]
Abstract
Unlike the parent phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), the monofluorinated analog, 1-palmitoyl-2-(16-fluoropalmitoyl)sn-glycero-3-phosphocholine (F-DPPC), spontaneously forms an interdigitated gel phase (L(β)I) below the main transition temperature (T(m)). We have examined the effects of introducing cholesterol to F-DPPC and 1:1 F-DPPC/DPPC membranes using a combination of DSC, optical density, fluorescence intensity and polarization, (31)P NMR, and X-ray diffraction techniques. Cholesterol increases the fluidity of the gel phase, broadens the main transition, and decreases the main transition enthalpy. However, these results also reveal that there is an unusually large degree of phase coexistence between the L(β)I and non-interdigitated gel phases when cholesterol is added. Cholesterol encourages this phase segregation by partitioning into the thicker non-interdigitated domains. At higher cholesterol concentrations, the majority or all of the L(β)I phase of F-DPPC and 1:1 F-DPPC/DPPC is eliminated and is replaced by a non-interdigitated liquid-ordered (l(o)) phase with properties similar to DPPC/cholesterol. Consequently, cholesterol mitigates the influence the CF moiety has on the thermodynamic phase behavior of F-DPPC. Our findings demonstrate that there are multiple characteristics of cholesterol-rich membranes that disfavor interdigitation.
Collapse
Affiliation(s)
- Eric A Smith
- Department of Chemistry, Occidental College, Los Angeles, CA 90041, USA
| | | | | |
Collapse
|
24
|
Benesch MGK, Mannock DA, Lewis RNAH, McElhaney RN. A Calorimetric and Spectroscopic Comparison of the Effects of Lathosterol and Cholesterol on the Thermotropic Phase Behavior and Organization of Dipalmitoylphosphatidylcholine Bilayer Membranes. Biochemistry 2011; 50:9982-97. [DOI: 10.1021/bi200721j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthew G. K. Benesch
- Department of Biochemistry, School of Translational
Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - David A. Mannock
- Department of Biochemistry, School of Translational
Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Ruthven N. A. H. Lewis
- Department of Biochemistry, School of Translational
Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Ronald N. McElhaney
- Department of Biochemistry, School of Translational
Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
25
|
Benesch MG, Mannock DA, McElhaney RN. Sterol chemical configuration influences the thermotropic phase behaviour of dipalmitoylphosphatidylcholine bilayers containing 5α-cholestan-3β- and 3α-ol. Chem Phys Lipids 2011; 164:62-9. [DOI: 10.1016/j.chemphyslip.2010.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/20/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
|
26
|
Sterol chemical configuration and conformation influence the thermotropic phase behaviour of dipalmitoylphosphatidylcholine mixtures containing 5β-cholestan-3β- and -3α-ol. Chem Phys Lipids 2011; 164:70-7. [DOI: 10.1016/j.chemphyslip.2010.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 10/20/2010] [Accepted: 10/27/2010] [Indexed: 01/27/2023]
|
27
|
Wan CPL, Chiu MH, Wu X, Lee SK, Prenner EJ, Weers PMM. Apolipoprotein-induced conversion of phosphatidylcholine bilayer vesicles into nanodisks. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:606-13. [PMID: 21111706 DOI: 10.1016/j.bbamem.2010.11.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/03/2010] [Accepted: 11/15/2010] [Indexed: 11/27/2022]
Abstract
Apolipoprotein mediated formation of nanodisks was studied in detail using apolipophorin III (apoLp-III), thereby providing insight in apolipoprotein-lipid binding interactions. The spontaneous solubilization of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) vesicles occured only in a very narrow temperature range at the gel-liquid-crystalline phase transition temperature, exhibiting a net exothermic interaction based on isothermal titration calorimetry analysis. The resulting nanodisks were protected from proteolysis by trypsin, endoproteinase Glu-C, chymotrypsin and elastase. DMPC solubilization and the simultaneous formation of nanodisks were promoted by increasing the vesicle diameter, protein to lipid ratio and concentration. Inclusion of cholesterol in DMPC dramatically enhanced the rate of nanodisk formation, presumably by stabilization of lattice defects which form the main insertion sites for apolipoprotein α-helices. The presence of fully saturated acyl chains with a length of 13 or 14 carbons in phosphatidylcholine allowed the spontaneous vesicle solubilization upon apolipoprotein addition. Nanodisks with C13:0-phosphatidylcholine were significantly smaller with a diameter of 11.7 ± 3.1nm compared to 18.5 ± 5.6 nm for DMPC nanodisks determined by transmission electron microscopy. Nanodisk formation was not observed when the phosphatidylcholine vesicles contained acyl chains of 15 or 16 carbons. However, using very high concentrations of lipid and protein (>10mg/ml), 1,2,-dipalmitoyl-sn-glycero-3-phosphocholine nanodisks could be produced spontaneously although the efficiency remained low.
Collapse
Affiliation(s)
- Chung-Ping Leon Wan
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA
| | | | | | | | | | | |
Collapse
|
28
|
Effect of sodium bicarbonate as a pharmaceutical formulation excipient on the interaction of fluvastatin with membrane phospholipids. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 39:1637-47. [DOI: 10.1007/s00249-010-0622-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/04/2010] [Accepted: 08/06/2010] [Indexed: 01/17/2023]
|
29
|
Mannock DA, Lewis RN, McMullen TP, McElhaney RN. The effect of variations in phospholipid and sterol structure on the nature of lipid–sterol interactions in lipid bilayer model membranes. Chem Phys Lipids 2010; 163:403-48. [DOI: 10.1016/j.chemphyslip.2010.03.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 03/13/2010] [Accepted: 03/27/2010] [Indexed: 01/30/2023]
|
30
|
Mannock DA, Lewis RN, McElhaney RN. A calorimetric and spectroscopic comparison of the effects of ergosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:376-88. [DOI: 10.1016/j.bbamem.2009.09.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 08/06/2009] [Accepted: 09/06/2009] [Indexed: 11/16/2022]
|
31
|
Ca2+ adsorption to lipid membranes and the effect of cholesterol in their composition. Colloids Surf B Biointerfaces 2010; 76:215-20. [DOI: 10.1016/j.colsurfb.2009.10.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 10/20/2009] [Accepted: 10/22/2009] [Indexed: 11/21/2022]
|
32
|
Seemann H, Winter R. Volumetric Properties, Compressibilities and Volume Fluctuations in Phospholipid-Cholesterol Bilayers. ACTA ACUST UNITED AC 2009. [DOI: 10.1524/zpch.217.7.831.20388] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
We conducted detailed measurements of the apparent specific volume of dipalmitoylphosphatidylcholine (DPPC)–cholesterol mixtures in excess water as a function of pressure up to 70MPa (700bar) at 20, 38 and 50°C. The volumetric properties and the isothermal compressibility κ
T of the lipid vesicles were determined at cholesterol concentrations, χchol, ranging up to 50 mol. The thermodynamic data are compared with other physico-chemical properties of phospholipid–cholesterol mixtures. Furthermore, the thermodynamic properties of the system are discussed in the light of the various T, χchol–phase diagrams and computer simulation studies published in the literature.
Collapse
|
33
|
Li N, Zhuang C, Wang M, Sun X, Nie S, Pan W. Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery. Int J Pharm 2009; 379:131-8. [DOI: 10.1016/j.ijpharm.2009.06.020] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/25/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
|
34
|
Ghimire H, Inbaraj JJ, Lorigan GA. A comparative study of the effect of cholesterol on bicelle model membranes using X-band and Q-band EPR spectroscopy. Chem Phys Lipids 2009; 160:98-104. [PMID: 19501076 PMCID: PMC2719848 DOI: 10.1016/j.chemphyslip.2009.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 11/16/2022]
Abstract
X-band and Q-band electron paramagnetic resonance (EPR) spectroscopic techniques were used to investigate the structure and dynamics of cholesterol containing phospholipid bicelles based upon molecular order parameters (S(mol)), orientational dependent hyperfine splittings and line shape analysis of the corresponding EPR spectra. The nitroxide spin-label 3-beta-doxyl-5-alpha-cholestane (cholestane) was incorporated into DMPC/DHPC bicelles to report the alignment of bicelles in the static magnetic field. The influence of cholesterol on aligned phospholipid bicelles in terms of ordering, the ease of alignment, phase transition temperature have been studied comparatively at X-band and Q-band. At a magnetic field of 1.25 T (Q-band), bicelles with 20 mol% cholesterol aligned at a much lower temperature (313 K), when compared to 318 K at a 0.35 T field strength for X-band, showed better hyperfine splitting values (18.29 G at X-band vs. 18.55 G at Q-band for perpendicular alignment and 8.25 G at X-band vs. 7.83 G at Q-band for the parallel alignment at 318 K) and have greater molecular order parameters (0.76 at X-band vs. 0.86 at Q-band at 318 K). Increasing cholesterol content increased the bicelle ordering, the bicelle-alignment temperature and the gel to liquid crystalline phase transition temperature. We observed that Q-band is more effective than X-band for studying aligned bicelles, because it yielded a higher ordered bicelle system for EPR spectroscopic studies.
Collapse
Affiliation(s)
| | - Johnson J. Inbaraj
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056,
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056,
| |
Collapse
|
35
|
Lee SM, Chen H, O'Halloran TV, Nguyen ST. "Clickable" polymer-caged nanobins as a modular drug delivery platform. J Am Chem Soc 2009; 131:9311-20. [PMID: 19527027 PMCID: PMC3650134 DOI: 10.1021/ja9017336] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Modularly clickable polymer-caged nanobins (PCNs) were prepared from liposome templates using a drop-in cholesterol-modified poly(acrylic acid) reagent followed by cross-linking with alkyne-functionalized diamine linker that allows for the conjugation of azide-modified targeting ligands via click ligation. These PCNs possess pH-responsive characteristics that can be used to trigger the release of encapsulated doxorubicin (DXR) payload inside the liposomal core under mild acidic conditions. After click-conjugation with azide-modified folate as an active targeting ligand, the resulting folate-conjugated, DXR-loaded PCNs (f-PCN(DXR)) demonstrated enhanced potency to folate receptor (FR)-positive tumor cells such as KB and OvCa432 over FR-negative MCF7 cells. f-PCN(DXR) can readily discriminate FR-positive tumor cells as a function of the level of cellular FR-expression, showing different degrees of potentiation in each cell. With both targeting functionalities and pH-sensitive drug-releasing triggers, f-PCN(DXR) was fifty-times more potent than the untargeted agent toward cancer cells that overexpress the folate target receptors.
Collapse
Affiliation(s)
- Sang-Min Lee
- Department of Chemistry, Department of Biochemistry, Molecular Biology and Cell Biology and the Center of Cancer Nanotechnology Excellence, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Haimei Chen
- Department of Chemistry, Department of Biochemistry, Molecular Biology and Cell Biology and the Center of Cancer Nanotechnology Excellence, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Thomas V. O'Halloran
- Department of Chemistry, Department of Biochemistry, Molecular Biology and Cell Biology and the Center of Cancer Nanotechnology Excellence, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - SonBinh T. Nguyen
- Department of Chemistry, Department of Biochemistry, Molecular Biology and Cell Biology and the Center of Cancer Nanotechnology Excellence, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| |
Collapse
|
36
|
Effect of acetylsalicylic acid on the current–voltage characteristics of planar lipid membranes. Biophys Chem 2009; 142:27-33. [DOI: 10.1016/j.bpc.2009.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/27/2009] [Accepted: 03/01/2009] [Indexed: 10/21/2022]
|
37
|
Liu J, Conboy JC. Phase Behavior of Planar Supported Lipid Membranes Composed of Cholesterol and 1,2-Distearoyl-sn-Glycerol-3-Phosphocholine Examined by Sum-Frequency Vibrational Spectroscopy. VIBRATIONAL SPECTROSCOPY 2009; 50:106-115. [PMID: 20361007 PMCID: PMC2846528 DOI: 10.1016/j.vibspec.2008.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The influence of cholesterol (CHO) on the phase behavior of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) planar supported lipid bilayers (PSLBs) was investigated by sum-frequency vibrational spectroscopy (SFVS). The intrinsic symmetry constraints of SFVS were exploited to measure the asymmetric distribution of phase segregated phospholipid domains in the proximal and distal layers of DSPC + CHO binary mixtures as a function of CHO content and temperature. The SFVS results suggest that cholesterol significantly affects the phase segregation and domain distribution in PSLBs of DSPC in a concentration dependent manner, similar to that found in bulk suspensions. The SFVS spectroscopic measurements of phase segregation and structure change in the binary mixture indicate that membrane asymmetry must be present in order for the changes in SFVS signal to be observed. These results therefore provide important evidence for the delocalization and segregation of different phase domain structures in PSLBs due to the interaction of cholesterol and phospholipids.
Collapse
|
38
|
Macroscopic domain formation during cooling in the platelet plasma membrane: an issue of low cholesterol content. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1229-37. [PMID: 19341703 DOI: 10.1016/j.bbamem.2009.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 02/24/2009] [Accepted: 03/17/2009] [Indexed: 11/24/2022]
Abstract
There has been ample debate on whether cell membranes can present macroscopic lipid domains as predicted by three-component phase diagrams obtained by fluorescence microscopy. Several groups have argued that membrane proteins and interactions with the cytoskeleton inhibit the formation of large domains. In contrast, some polarizable cells do show large regions with qualitative differences in lipid fluidity. It is important to ask more precisely, based on the current phase diagrams, under what conditions would large domains be expected to form in cells. In this work we study the thermotropic phase behavior of the platelet plasma membrane by FTIR, and compare it to a POPC/Sphingomyelin/Cholesterol model representing the outer leaflet composition. We find that this model closely reflects the platelet phase behavior. Previous work has shown that the platelet plasma membrane presents inhomogeneous distribution of DiI18:0 at 24 degrees C, but not at 37 degrees C, which suggests the formation of macroscopic lipid domains at low temperatures. We show by fluorescence microscopy, and by comparison with published phase diagrams, that the outer leaflet model system enters the macroscopic domain region only at the lower temperature. In addition, the low cholesterol content in platelets ( approximately 15 mol%), appears to be crucial for the formation of large domains during cooling.
Collapse
|
39
|
Ausili A, Torrecillas A, Aranda FJ, Mollinedo F, Gajate C, Corbalán-García S, de Godos A, Gómez-Fernández JC. Edelfosine is incorporated into rafts and alters their organization. J Phys Chem B 2008; 112:11643-54. [PMID: 18712919 DOI: 10.1021/jp802165n] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effect of edelfosine (1- O-octadecyl-2- O-methyl-rac-glycero-3-phosphocholine or ET-18-OCH3) on model membranes containing 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine/sphingomyelin/cholesterol (POPC/SM/cholesterol) was studied by several physical techniques. The sample POPC/SM (1:1 molar ratio) showed a broad phase transition as seen by DSC, X-ray diffraction, and 2H NMR. The addition of edelfosine to this sample produced isotropic structures at temperatures above the phase transition, as seen by 2H NMR and by 31P NMR. When cholesterol was added to give a POPC/SM/cholesterol (at a molar ratio 1:1:1), no transition was observed by DSC nor X-ray diffraction, and 2H NMR indicated the presence of a liquid ordered phase. The addition of 10 mol % edelfosine increased the thickness of the membrane as seen by X-ray diffraction and led to bigger differences in the values of the molecular order of the membrane detected at high and low temperatures, as detected through the M 1 first spectral moment from 2H NMR. These differences were even greater when 20 mol % edelfosine was added, and a transition was now clearly visible by DSC. In addition, a gel phase was clearly indicated by X-ray diffraction at low temperatures. The same technique pointed to greater membrane thickness in this mixture and to the appearance of a second membrane structure, indicating the formation of two separated phases in the presence of edelfosine. All of these data strongly suggest that edelfosine associating with cholesterol alter the phase status present in a POPC/SM/cholesterol (1:1:1 molar ratio) mixture, which is reputed to be a model of a raft structure. However, cell experiments showed that edelfosine colocalizes in vivo with rafts and that it may reach concentrations higher than 20 mol % of total lipid, indicating that the concentrations used in the biophysical experiments were within what can be expected in a cell membrane. The conclusion is that molecular ways of action of edelfosine in cells may involve the modification of the structure of rafts.
Collapse
Affiliation(s)
- Alessio Ausili
- Departamento de Bioquimica y Biologia Molecular A, Facultad de Veterinaria, Universidad de Murcia, Apartado de Correos 4021, Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Gao W, Chen L, Wu R, Yu Z, Quinn PJ. Phase Diagram of Androsterol−Dipalmitoylphosphatidylcholine Mixtures Dispersed in Excess Water. J Phys Chem B 2008; 112:8375-82. [DOI: 10.1021/jp712032v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenying Gao
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China, and Department of Biochemistry, King’s College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Lin Chen
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China, and Department of Biochemistry, King’s College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Ruiguang Wu
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China, and Department of Biochemistry, King’s College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Zhiwu Yu
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China, and Department of Biochemistry, King’s College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Peter J. Quinn
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China, and Department of Biochemistry, King’s College London, 150 Stamford Street, London SE1 9NH, U.K
| |
Collapse
|
41
|
Mannock DA, Lee MYT, Lewis RNAH, McElhaney RN. Comparative calorimetric and spectroscopic studies of the effects of cholesterol and epicholesterol on the thermotropic phase behaviour of dipalmitoylphosphatidylcholine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2191-202. [PMID: 18539134 DOI: 10.1016/j.bbamem.2008.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 04/26/2008] [Accepted: 05/08/2008] [Indexed: 11/28/2022]
Abstract
We carried out comparative differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol (Chol) and epicholesterol (EChol) on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine (DPPC) bilayers. EChol is an epimer of Chol in which the axially oriented hydroxyl group of C3 of Chol is replaced by an equatorially oriented hydroxyl group, resulting in a different orientation of the hydroxyl group relative to sterol fused ring system. Our calorimetric studies indicate that the incorporation of EChol is more effective than Chol is in reducing the enthalpy of the pretransition of DPPC. EChol is also initially more effective than Chol in reducing the enthalpies of both the sharp and broad components of the main phase transition of DPPC. However, at higher EChol concentrations (~30-50 mol%), EChol becomes less effective than Chol in reducing the enthalpy and cooperativity of the main phase transition, such that at sterol concentrations of 50 mol%, EChol does not completely abolish the cooperative hydrocarbon chain-melting phase transition of DPPC, while Chol does. However, EChol does not appear to form a calorimetrically detectable crystallite phase at higher sterol concentrations, suggesting that EChol, unlike Chol, may form dimers or lower order aggregates at higher sterol concentrations. Our spectroscopic studies demonstrate that EChol incorporation produces more ordered gel and comparably ordered liquid-crystalline bilayers compared to Chol, which are characterized by increased hydrogen bonding in the glycerol backbone region of the DPPC bilayer. These and other results indicate that monomeric EChol is less miscible in DPPC bilayers than is Chol at higher sterol concentrations, but perturbs their organization to a greater extent at lower sterol concentrations, probably due primarily to the larger effective cross-sectional area of the EChol molecule. Nevertheless, EChol does appear to produce a lamellar liquid-ordered phase in DPPC bilayers.
Collapse
Affiliation(s)
- David A Mannock
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | |
Collapse
|
42
|
Fournier I, Barwicz J, Auger M, Tancrède P. The chain conformational order of ergosterol- or cholesterol-containing DPPC bilayers as modulated by Amphotericin B: a FTIR study. Chem Phys Lipids 2008; 151:41-50. [DOI: 10.1016/j.chemphyslip.2007.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/08/2007] [Accepted: 09/20/2007] [Indexed: 11/30/2022]
|
43
|
Popova AV, Hincha DK. Effects of cholesterol on dry bilayers: interactions between phosphatidylcholine unsaturation and glycolipid or free sugar. Biophys J 2007; 93:1204-14. [PMID: 17526577 PMCID: PMC1929023 DOI: 10.1529/biophysj.107.108886] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cholesterol and other sterols are important components of biological membranes and are known to strongly influence the physical characteristics of lipid bilayers. Although this has been studied extensively in fully hydrated membranes, little is known about the effects of cholesterol on the stability of membranes in the dry state. Here, we present a Fourier transform infrared spectroscopy study on the effects of cholesterol on the phase behavior of dry liposomes composed of phosphatidylcholines with different degrees of fatty acid unsaturation or of mixtures of phosphatidylcholine with a plant galactolipid. In addition, we have analyzed the H-bonding of cholesterol, galactose, and a combination of the two additives to the P=O and C=O groups in dry phosphatidylcholine bilayers. The data indicate a complex balance of interactions between the different components in the dry state and a strong influence of fatty acid unsaturation on the interactions of the diacyl lipids with both cholesterol and galactose.
Collapse
Affiliation(s)
- Antoaneta V Popova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14424 Potsdam, Germany
| | | |
Collapse
|
44
|
Mannock DA, Lewis RNAH, McElhaney RN. Comparative calorimetric and spectroscopic studies of the effects of lanosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Biophys J 2006; 91:3327-40. [PMID: 16905603 PMCID: PMC1614484 DOI: 10.1529/biophysj.106.084368] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We carried out comparative DSC and Fourier transform infrared spectroscopic studies of the effects of cholesterol and lanosterol on the thermotropic phase behavior and organization of DPPC bilayers. Lanosterol is the biosynthetic precursor of cholesterol and differs in having three rather than two axial methyl groups projecting from the beta-face of the planar steroid ring system and one axial methyl group projecting from the alpha-face, whereas cholesterol has none. Our DSC studies indicate that the incorporation of lanosterol is more effective than cholesterol is in reducing the enthalpy of the pretransition. Lanosterol is also initially more effective than cholesterol in reducing the enthalpies of both the sharp and broad components of the main phase transition. However, at sterol concentrations of 50 mol %, lanosterol does not abolish the cooperative hydrocarbon chain-melting phase transition as does cholesterol. Moreover, at higher lanosterol concentrations ( approximately 30-50 mol %), both sharp and broad low-temperature endotherms appear in the DSC heating scans, suggestive of the formation of lanosterol crystallites, and of the lateral phase separation of lanosterol-enriched phospholipid domains, respectively, at low temperatures, whereas such behavior is not observed with cholesterol at comparable concentrations. Our Fourier transform infrared spectroscopic studies demonstrate that lanosterol incorporation produces a less tightly packed bilayer than does cholesterol, which is characterized by increased hydration in the glycerol backbone region of the DPPC bilayer. These and other results indicate that lanosterol is less miscible in DPPC bilayers than is cholesterol, but perturbs their organization to a greater extent, probably due primarily to the rougher faces and larger cross-sectional area of the lanosterol molecule and perhaps secondarily to its decreased ability to form hydrogen bonds with adjacent DPPC molecules. Nevertheless, lanosterol does appear to produce a lamellar liquid-ordered phase in DPPC bilayers, although this phase is not as tightly packed as comparable cholesterol/DPPC mixtures.
Collapse
Affiliation(s)
- David A Mannock
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
45
|
Clarke JA, Heron AJ, Seddon JM, Law RV. The diversity of the liquid ordered (Lo) phase of phosphatidylcholine/cholesterol membranes: a variable temperature multinuclear solid-state NMR and x-ray diffraction study. Biophys J 2006; 90:2383-93. [PMID: 16537550 PMCID: PMC1403185 DOI: 10.1529/biophysj.104.056499] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate the properties of a pure liquid ordered (Lo) phase in a model membrane system, a series of saturated phosphatidylcholines combined with cholesterol were examined by variable temperature multinuclear (1H, 2H, 13C, 31P) solid-state NMR spectroscopy and x-ray scattering. Compositions with cholesterol concentrations>or=40 mol %, well within the Lo phase region, are shown to exhibit changes in properties as a function of temperature and cholesterol content. The 2H-NMR data of both cholesterol and phospholipids were used to more accurately map the Lo phase boundary. It has been established that the gel-Lo phase coexistence extends to 60 mol % cholesterol and a modified phase diagram is presented. Combined 1H-, 2H-, 13C-NMR, and x-ray scattering data indicate that there are large changes within the Lo phase region, in particular, 1H-magic angle spinning NMR and wide-angle x-ray scattering were used to examine the in-plane intermolecular spacing, which approaches that of a fluid Lalpha phase at high temperature and high cholesterol concentrations. Although it is well known for cholesterol to broaden the gel-to-fluid transition temperature, we have observed, from the 13C magic angle spinning NMR data, that the glycerol region can still undergo a "melting", though this is broadened with increasing cholesterol content and changes with phospholipid chain length. Also from 2H-NMR order parameter data it was observed that the effect of temperature on chain length became smaller with increasing cholesterol content. Finally, from the cholesterol order parameter, it has been previously suggested that it is possible to determine the degree to which cholesterol associates with different phospholipids. However, we have found that by taking into account the relative temperature above the phase boundary this relationship may not be correct.
Collapse
Affiliation(s)
- James A Clarke
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
46
|
Ouellet M, Bernard G, Voyer N, Auger M. Insights on the interactions of synthetic amphipathic peptides with model membranes as revealed by 31P and 2H solid-state NMR and infrared spectroscopies. Biophys J 2006; 90:4071-84. [PMID: 16533836 PMCID: PMC1459497 DOI: 10.1529/biophysj.105.077339] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We studied the interaction between synthetic amphipathic peptides and model membranes by solid-state NMR and infrared spectroscopies. Peptides with 14 and 21 amino acids composed of leucines and phenylalanines modified by the addition of crown ethers were synthesized. The 14-mer and 21-mer peptides both possess a helical amphipathic structure. To shed light on their membrane interaction, (31)P and (2)H solid-state NMR experiments were performed on both peptides in interaction with dimyristoylphosphatidylcholine vesicles in the absence and presence of cholesterol, dimyristoylphosphatidylglycerol vesicles, and oriented bicelles. (31)P NMR experiments on multilamellar vesicles reveal that the dynamics and/or orientation of the polar headgroups are weakly yet markedly affected by the presence of the peptides, whereas (31)P NMR experiments on bicelles indicate no significant changes in the morphology and orientation of the bicelles. On the other hand, (2)H NMR experiments on vesicles reveal that the acyl chain order is affected differently depending on the membrane lipidic composition and on the peptide hydrophobic length. Finally, infrared spectroscopy was used to study the interfacial region of the bilayer. Based on these studies, mechanisms of membrane perturbation are proposed for the 14-mer and 21-mer peptides in interaction with model membranes depending on the bilayer composition and peptide length.
Collapse
Affiliation(s)
- Marise Ouellet
- Département de Chimie, Centre de Recherche sur la Fonction, la Structure et l'Ingénierie des Protéines, Centre de Recherche en Sciences et Ingénierie des Macromolécules, Université Laval, Québec, Québec, Canada G1K 7P4
| | | | | | | |
Collapse
|
47
|
Bin X, Horswell SL, Lipkowski J. Electrochemical and PM-IRRAS studies of the effect of cholesterol on the structure of a DMPC bilayer supported at an Au (111) electrode surface, part 1: properties of the acyl chains. Biophys J 2005; 89:592-604. [PMID: 15849259 PMCID: PMC1366559 DOI: 10.1529/biophysj.104.058347] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Charge density measurements and polarization modulation infrared reflection absorption spectroscopy were employed to investigate the spreading of small unilamellar vesicles of a dimyristoylphosphatidylcholine (DMPC)/cholesterol (7:3 molar ratio) mixture onto an Au (111) electrode surface. The electrochemical experiments demonstrated that vesicles fuse and spread onto the Au (111) electrode surface, forming a bilayer, at rational potentials -0.4 V < (E - Epzc) < 0.4 V or field strength <6 x 10(7) V m(-1). Polarization modulation infrared reflection absorption spectroscopy experiments provided information concerning the conformation and orientation of the acyl chains of DMPC molecules. Deuterated DMPC was used to subtract the contribution of C-H stretching bands of cholesterol and of the polar head region of DMPC from spectra in the C-H stretching region. The absorption spectra of the C-H stretch bands in the acyl chains were determined in this way. The properties of the DMPC/cholesterol bilayer have been compared with the properties of a pure DMPC bilayer. The presence of 30% cholesterol gives a thicker and more fluid bilayer characterized by a lower capacity and lower tilt angle of the acyl chains.
Collapse
Affiliation(s)
- Xiaomin Bin
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
48
|
McWhirter JL, Ayton G, Voth GA. Coupling field theory with mesoscopic dynamical simulations of multicomponent lipid bilayers. Biophys J 2004; 87:3242-63. [PMID: 15347594 PMCID: PMC1304794 DOI: 10.1529/biophysj.104.045716] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A method for simulating a two-component lipid bilayer membrane in the mesoscopic regime is presented. The membrane is modeled as an elastic network of bonded points; the spring constants of these bonds are parameterized by the microscopic bulk modulus estimated from earlier atomistic nonequilibrium molecular dynamics simulations for several bilayer mixtures of DMPC and cholesterol. The modulus depends on the composition of a point in the elastic membrane model. The dynamics of the composition field is governed by the Cahn-Hilliard equation where a free energy functional models the coupling between the composition and curvature fields. The strength of the bonds in the elastic network are then modulated noting local changes in the composition and using a fit to the nonequilibrium molecular dynamics simulation data. Estimates for the magnitude and sign of the coupling parameter in the free energy model are made treating the bending modulus as a function of composition. A procedure for assigning the remaining parameters in the free energy model is also outlined. It is found that the square of the mean curvature averaged over the entire simulation box is enhanced if the strength of the bonds in the elastic network are modulated in response to local changes in the composition field. We suggest that this simulation method could also be used to determine if phase coexistence affects the stress response of the membrane to uniform dilations in area. This response, measured in the mesoscopic regime, is already known to be conditioned or renormalized by thermal undulations.
Collapse
Affiliation(s)
- J Liam McWhirter
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, USA
| | | | | |
Collapse
|
49
|
Halling KK, Slotte JP. Membrane properties of plant sterols in phospholipid bilayers as determined by differential scanning calorimetry, resonance energy transfer and detergent-induced solubilization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1664:161-71. [PMID: 15328048 DOI: 10.1016/j.bbamem.2004.05.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Accepted: 05/11/2004] [Indexed: 10/26/2022]
Abstract
The increased use of plant sterols as cholesterol-lowering agents warrants further research on the possible effects of plant sterols in membranes. In this study, the effects of the incorporation of cholesterol, campesterol, beta-sitosterol and stigmasterol in phospholipid bilayers were investigated by differential scanning calorimetry (DSC), resonance energy transfer (RET) between trans parinaric acid (tPA) and 2-(6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBD-PC), and Triton X-100-induced solubilization. The phospholipids used were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), D-erythro-N-palmitoyl-sphingomyelin (PSM), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). In DSC experiments, it was demonstrated that the sterols differed in their effect on the melting temperatures of both the sterol-poor and the sterol-rich domains in DPPC and PSM bilayers. The plant sterols gave rise to lower temperatures of both transitions, when compared with cholesterol. The plant sterols also resulted in lower transition temperatures, in comparison with cholesterol, when sterol-containing DPPC and PSM bilayers were investigated by RET. In the detergent solubilization experiments, the total molar ratio between Triton X-100 and POPC at the onset of solubilization (R(t,sat)) was higher for bilayers containing plant sterols, in comparison with membranes containing cholesterol. Taken together, the observations presented in this study indicate that campesterol, beta-sitosterol and stigmasterol interacted less favorably than cholesterol with the phospholipids, leading to measurable differences in their domain properties.
Collapse
Affiliation(s)
- Katrin K Halling
- Department of Biochemistry and Pharmacy, Abo Akademi University, PO Box 66, FIN 20521 Turku, Finland.
| | | |
Collapse
|
50
|
El Maghraby GMM, Williams AC, Barry BW. Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes. Int J Pharm 2004; 276:143-61. [PMID: 15113622 DOI: 10.1016/j.ijpharm.2004.02.024] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Revised: 02/19/2004] [Accepted: 02/21/2004] [Indexed: 11/21/2022]
Abstract
Incorporating edge activators (surfactants) into liposomes was shown previously to improve estradiol vesicular skin delivery; this phenomenon was concentration dependent with low or high concentrations being less effective. Replacing surfactants with limonene produced similar behaviour, but oleic acid effects were linear with concentration up to 16% (w/w), beyond which it was incompatible with the phospholipid. This present study thus employed high sensitivity differential scanning calorimetry to probe interactions of additives with dipalmitoylphosphatidylcholine (DPPC) membranes to explain such results. Cholesterol was included as an example of a membrane stabiliser that removed the DPPC pre-transition and produced vesicles with a higher transition temperature (T(m)). Surfactants also removed the lipid pre-transition but reduced T(m) and co-operativity of the main peak. At higher concentrations, surfactants also formed new species, possibly mixed micelles with a lower T(m). The formation of mixed micelles may explain reduced skin delivery from liposomes containing high concentrations of surfactants. Limonene did not remove the pre-transition but reduced T(m) and co-operativity of the main peak, apparently forming new species at high concentrations, again correlating with vesicular delivery of estradiol. Oleic acid obliterated the pre-transition. The T(m) and the co-operativity of the main peak were reduced with oleic acid concentrations up to 33.2mol%, above which there was no further change. At higher concentrations, phase separation was evident, confirming previous skin transport findings.
Collapse
Affiliation(s)
- G M M El Maghraby
- Drug Delivery Group, The School of Pharmacy, University of Bradford, Bradford BD7 1DP, UK
| | | | | |
Collapse
|