1
|
Zhou D, Lee SH, Li XH, Kim JD, Lee GH, Sim JM, Cui XS. Decreased in Mitochondrial Complex I Subunit NDUFS2 Is Critical for Oocyte Quality During Postovulatory Aging in Pigs. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:953-961. [PMID: 39226079 DOI: 10.1093/mam/ozae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
The levels of nicotinamide adenine dinucleotide (NADH) dehydrogenase [ubiquinone] iron-sulfur protein 2 (NDUFS2, a subunit of NADH dehydrogenase) decrease in aged tissues, and these reductions may be partly associated with age-related conditions such as Parkinson's disease. Aging leads to many mitochondrial defects, such as biogenesis disruption, dysfunction, defects in the mitochondrial membrane potential, and production of reactive oxygen species, that may be highly related to NDUFS2 expression. The relationship between NDUFS2 and postovulatory oocyte aging in pigs remains unknown. In this study, we investigated changes in NDUFS2 expression during postovulatory aging (POA). Furthermore, NDUFS2 was knocked down via dsRNA microinjection at the MII stage to evaluate the effects on mitochondrial-related processes during POA. The mRNA expression of NDUFS2 decreased significantly after 48-h aging compared with that in fresh oocytes. NDUFS2 knockdown (KD) significantly impaired the maintenance of oocyte morphology and blastocyst development of embryos after POA. The levels of PGC1α (mitochondrial biogenesis-related proteins) decreased significantly after NDUFS2 KD, while the level of GSNOR, a protein denitrosylase, was reduced by NDUFS2 KD after 48 h of aging. These data suggest that NDUFS2 is vital for maintaining the oocyte quality during POA in pigs.
Collapse
Affiliation(s)
- Dongjie Zhou
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
- Centre for Embryology and Healthy Development, Department of Microbiology, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ji-Dam Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Gyu-Hyun Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jae-Min Sim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
2
|
Proliferating Astrocytes in Primary Culture Do Not Depend upon Mitochondrial Respiratory Complex I Activity or Oxidative Phosphorylation. Cells 2023; 12:cells12050683. [PMID: 36899819 PMCID: PMC10001222 DOI: 10.3390/cells12050683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Understanding the role of astrocytes in the development of the nervous system and neurodegenerative disorders implies a necessary knowledge of the oxidative metabolism of proliferating astrocytes. The electron flux through mitochondrial respiratory complexes and oxidative phosphorylation may impact the growth and viability of these astrocytes. Here, we aimed at assessing to which extent mitochondrial oxidative metabolism is required for astrocyte survival and proliferation. Primary astrocytes from the neonatal mouse cortex were cultured in a physiologically relevant medium with the addition of piericidin A or oligomycin at concentrations that fully inhibit complex I-linked respiration and ATP synthase, respectively. The presence of these mitochondrial inhibitors for up to 6 days in a culture medium elicited only minor effects on astrocyte growth. Moreover, neither the morphology nor the proportion of glial fibrillary acidic protein-positive astrocytes in culture was affected by piericidin A or oligomycin. Metabolic characterization of the astrocytes showed a relevant glycolytic metabolism under basal conditions, despite functional oxidative phosphorylation and large spare respiratory capacity. Our data suggest that astrocytes in primary culture can sustainably proliferate when their energy metabolism relies only on aerobic glycolysis since their growth and survival do not require electron flux through respiratory complex I or oxidative phosphorylation.
Collapse
|
3
|
Binding of Natural Inhibitors to Respiratory Complex I. Pharmaceuticals (Basel) 2022; 15:ph15091088. [PMID: 36145309 PMCID: PMC9503403 DOI: 10.3390/ph15091088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
NADH:ubiquinone oxidoreductase (respiratory complex I) is a redox-driven proton pump with a central role in mitochondrial oxidative phosphorylation. The ubiquinone reduction site of complex I is located in the matrix arm of this large protein complex and connected to the membrane via a tunnel. A variety of chemically diverse compounds are known to inhibit ubiquinone reduction by complex I. Rotenone, piericidin A, and annonaceous acetogenins are representatives of complex I inhibitors from biological sources. The structure of complex I is determined at high resolution, and inhibitor binding sites are described in detail. In this review, we summarize the state of knowledge of how natural inhibitors bind in the Q reduction site and the Q access pathway and how their inhibitory mechanisms compare with that of a synthetic anti-cancer agent.
Collapse
|
4
|
Ma X, Han Y, Liu K, Bai Y, Gao H, Hou Y, Bai G. Chemical proteomics combined with metabonomics reveals berberine targets NDUFV1 of complex I in the respiratory chain to regulate energy metabolism. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Vicente-Barrueco A, Román ÁC, Ruiz-Téllez T, Centeno F. In Silico Research of New Therapeutics Rotenoids Derivatives against Leishmania amazonensis Infection. BIOLOGY 2022; 11:biology11010133. [PMID: 35053132 PMCID: PMC8772715 DOI: 10.3390/biology11010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
Yearly, 1,500,000 cases of leishmaniasis are diagnosed, causing thousands of deaths. To advance in its therapy, we present an interdisciplinary protocol that unifies ethnobotanical knowledge of natural compounds and the latest bioinformatics advances to respond to an orphan disease such as leishmaniasis and specifically the one caused by Leishmania amazonensis. The use of ethnobotanical information serves as a basis for the development of new drugs, a field in which computer-aided drug design (CADD) has been a revolution. Taking this information from Amazonian communities, located in the area with a high prevalence of this disease, a protocol has been designed to verify new leads. Moreover, a method has been developed that allows the evaluation of lead molecules, and the improvement of their affinity and specificity against therapeutic targets. Through this approach, deguelin has been identified as a good lead to treat the infection due to its potential as an ornithine decarboxylase (ODC) inhibitor, a key enzyme in Leishmania development. Using an in silico-generated combinatorial library followed by docking approaches, we have found deguelin derivatives with better affinity and specificity against ODC than the original compound, suggesting that this approach could be adapted for developing new drugs against leishmaniasis.
Collapse
Affiliation(s)
- Adrián Vicente-Barrueco
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain;
| | - Ángel Carlos Román
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain;
- Correspondence: (Á.C.R.); (F.C.)
| | - Trinidad Ruiz-Téllez
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain;
| | - Francisco Centeno
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain;
- Correspondence: (Á.C.R.); (F.C.)
| |
Collapse
|
6
|
Dunham-Snary KJ, Surewaard BG, Mewburn JD, Bentley RE, Martin AY, Jones O, Al-Qazazi R, Lima PA, Kubes P, Archer SL. Mitochondria in human neutrophils mediate killing of Staphylococcus aureus. Redox Biol 2021; 49:102225. [PMID: 34959099 PMCID: PMC8758915 DOI: 10.1016/j.redox.2021.102225] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Background Neutrophils play a role in innate immunity and are critical for clearance of Staphylococcus aureus. Current understanding of neutrophil bactericidal effects is that NADPH oxidase produces reactive oxygen species (ROS), mediating bacterial killing. Neutrophils also contain numerous mitochondria; since these organelles lack oxidative metabolism, their function is unclear. We hypothesize that mitochondria in human neutrophils contribute to the bactericidal capacity of S. aureus. Methods and Findings: Using human neutrophils isolated from healthy volunteers (n = 13; 7 females, 6 males), we show that mitochondria are critical in the immune response to S. aureus. Using live-cell and fixed confocal, and transmission electron microscopy, we show mitochondrial tagging of bacteria prior to ingestion and surrounding of phagocytosed bacteria immediately upon engulfment. Further, we demonstrate that mitochondria are ejected from intact neutrophils and engage bacteria during vital NETosis. Inhibition of the mitochondrial electron transport chain at Complex III, but not Complex I, attenuates S. aureus killing by 50 ± 7%, comparable to the NADPH oxidase inhibitor apocynin. Similarly, mitochondrial ROS scavenging using MitoTEMPO attenuates bacterial killing 112 ± 60% versus vehicle control. Antimycin A treatment also reduces mitochondrial ROS production by 50 ± 12% and NETosis by 53 ± 5%. Conclusions We identify a previously unrecognized role for mitochondria in human neutrophils in the killing of S. aureus. Inhibition of electron transport chain Complex III significantly impairs antimicrobial activity. This is the first demonstration that vital NETosis, an early event in the antimicrobial response, occurring within 5 min of bacterial exposure, depends on the function of mitochondrial Complex III. Mitochondria join NADPH oxidase as bactericidal ROS generators that mediate the bactericidal activities of human neutrophils. This study evaluates the role of neutrophil mitochondria in the immune response to Staphylococcus aureus. Mitochondrial electron transport chain inhibition at Complex III significantly attenuates neutrophil bactericidal activity.
Collapse
Affiliation(s)
- Kimberly J Dunham-Snary
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada; Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Bas Gj Surewaard
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | | | - Ashley Y Martin
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Oliver Jones
- Queen's CardioPulmonary Unit, Queen's University, Kingston, ON, Canada
| | - Ruaa Al-Qazazi
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Patricia Ad Lima
- Queen's CardioPulmonary Unit, Queen's University, Kingston, ON, Canada
| | - Paul Kubes
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, ON, Canada; Queen's CardioPulmonary Unit, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
7
|
Bentley RET, Hindmarch CCT, Dunham-Snary KJ, Snetsinger B, Mewburn JD, Thébaud A, Lima PDA, Thébaud B, Archer SL. The molecular mechanisms of oxygen-sensing in human ductus arteriosus smooth muscle cells: A comprehensive transcriptome profile reveals a central role for mitochondria. Genomics 2021; 113:3128-3140. [PMID: 34245829 PMCID: PMC10659099 DOI: 10.1016/j.ygeno.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/23/2021] [Accepted: 07/04/2021] [Indexed: 01/22/2023]
Abstract
The ductus arteriosus (DA) connects the fetal pulmonary artery and aorta, diverting placentally oxygenated blood from the developing lungs to the systemic circulation. The DA constricts in response to increases in oxygen (O2) with the first breaths, resulting in functional DA closure, with anatomic closure occurring within the first days of life. Failure of DA closure results in persistent patent ductus arteriosus (PDA), a common complication of extreme preterm birth. The DA's response to O2, though modulated by the endothelium, is intrinsic to the DA smooth muscle cells (DASMC). DA constriction is mediated by mitochondrial-derived reactive oxygen species, which increase in proportion to arterial partial pressure of oxygen (PaO2). The resulting redox changes inhibit voltage-gated potassium channels (Kv) leading to cell depolarization, calcium influx and DASMC constriction. To date, there has not been an unbiased assessment of the human DA O2-sensors using transcriptomics, nor are there known molecular mechanisms which characterize DA closure. DASMCs were isolated from DAs obtained from 10 term infants at the time of congenital heart surgery. Cells were purified by flow cytometry, negatively sorting using CD90 and CD31 to eliminate fibroblasts or endothelial cells, respectively. The purity of the DASMC population was confirmed by positive staining for α-smooth muscle actin, smoothelin B and caldesmon. Cells were grown for 96 h in hypoxia (2.5% O2) or normoxia (19% O2) and confocal imaging with Cal-520 was used to determine oxygen responsiveness. An oxygen-induced increase in intracellular calcium of 18.1% ± 4.4% and SMC constriction (-27% ± 1.5% shortening) occurred in all cell lines within five minutes. RNA sequencing of the cells grown in hypoxia and normoxia revealed significant regulation of 1344 genes (corrected p < 0.05). We examined these genes using Gene Ontology (GO). This unbiased assessment of altered gene expression indicated significant enrichment of the following GOterms: mitochondria, cellular respiration and transcription. The top regulated biologic process was generation of precursor metabolites and energy. The top regulated cellular component was mitochondrial matrix. The top regulated molecular function was transcription coactivator activity. Multiple members of the NADH-ubiquinone oxidoreductase (NDUF) family are upregulated in human DASMC (hDASMC) following normoxia. Several of our differentially regulated transcripts are encoded by genes that have been associated with genetic syndromes that have an increased incidence of PDA (Crebb binding protein and Histone Acetyltransferase P300). This first examination of the effects of O2 on human DA transcriptomics supports a putative role for mitochondria as oxygen sensors.
Collapse
Affiliation(s)
| | - Charles C T Hindmarch
- Department of Medicine, Queen's University, Kingston, Ontario, Canada; QCPU, Queen's Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Canada
| | - Kimberly J Dunham-Snary
- Department of Medicine, Queen's University, Kingston, Ontario, Canada; Department of Biomedical and Molecular Science, Queen's University, Canada
| | - Brooke Snetsinger
- QCPU, Queen's Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Canada
| | - Jeffrey D Mewburn
- Department of Biomedical and Molecular Science, Queen's University, Canada
| | - Arthur Thébaud
- Department of Kinesiology and Health Studies, Queen's University, Canada
| | - Patricia D A Lima
- QCPU, Queen's Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Canada
| | - Bernard Thébaud
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada; Department of Pediatrics, Division of Neonatology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada; QCPU, Queen's Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Canada.
| |
Collapse
|
8
|
Galemou Yoga E, Schiller J, Zickermann V. Ubiquinone Binding and Reduction by Complex I-Open Questions and Mechanistic Implications. Front Chem 2021; 9:672851. [PMID: 33996767 PMCID: PMC8119997 DOI: 10.3389/fchem.2021.672851] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
NADH: ubiquinone oxidoreductase (complex I) is the first enzyme complex of the respiratory chain. Complex I is a redox-driven proton pump that contributes to the proton motive force that drives ATP synthase. The structure of complex I has been analyzed by x-ray crystallography and electron cryo-microscopy and is now well-described. The ubiquinone (Q) reduction site of complex I is buried in the peripheral arm and a tunnel-like structure is thought to provide access for the hydrophobic substrate from the membrane. Several intermediate binding positions for Q in the tunnel were identified in molecular simulations. Structural data showed the binding of native Q molecules and short chain analogs and inhibitors in the access pathway and in the Q reduction site, respectively. We here review the current knowledge on the interaction of complex I with Q and discuss recent hypothetical models for the coupling mechanism.
Collapse
Affiliation(s)
- Etienne Galemou Yoga
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Jonathan Schiller
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany
| |
Collapse
|
9
|
Peng J, Zhang Q, Jiang X, Ma L, Long T, Cheng Z, Zhang C, Zhu Y. New piericidin derivatives from the marine-derived streptomyces sp. SCSIO 40063 with cytotoxic activity. Nat Prod Res 2021; 36:2458-2464. [PMID: 33736548 DOI: 10.1080/14786419.2021.1901699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Two new piericidins A5 (1) and G1 (2), a previously synthesized piericidin G2 (3), and two known piericidins A1 (4) and A2 (5) were isolated from the marine-derived Streptomyces sp. SCSIO 40063. The structures of 1-5 were elucidated by HRESIMS, 1 D, 2 D NMR data analyses and comparisons with the known compounds. Compound 2 showed moderate cytotoxicities against four human tumor cell lines SF-268, MCF-7, HepG2 and A549 with IC50 values between 10.0 and 12.7 μM.
Collapse
Affiliation(s)
- Jing Peng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xiaodong Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Liang Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Ting Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Ziqian Cheng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
10
|
Baindara P, Mandal SM. Bacteria and bacterial anticancer agents as a promising alternative for cancer therapeutics. Biochimie 2020; 177:164-189. [PMID: 32827604 DOI: 10.1016/j.biochi.2020.07.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/04/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Cancer is the leading cause of deaths worldwide, though significant advances have occurred in its diagnosis and treatment. The development of resistance against chemotherapeutic agents, their side effects, and non-specific toxicity urge to screen for the novel anticancer agent. Hence, the development of novel anticancer agents with a new mechanism of action has become a major scientific challenge. Bacteria and bacterially produced bioactive compounds have recently emerged as a promising alternative for cancer therapeutics. Bacterial anticancer agents such as antibiotics, bacteriocins, non-ribosomal peptides, polyketides, toxins, etc. These are adopted different mechanisms of actions such as apoptosis, necrosis, reduced angiogenesis, inhibition of translation and splicing, and obstructing essential signaling pathways to kill cancer cells. Also, live tumor-targeting bacteria provided a unique therapeutic alternative for cancer treatment. This review summarizes the anticancer properties and mechanism of actions of the anticancer agents of bacterial origin and antitumor bacteria along with their possible future applications in cancer therapeutics.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65212, USA.
| | - Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India.
| |
Collapse
|
11
|
Liang T, Qian ZM, Mu MD, Yung WH, Ke Y. Brain Hepcidin Suppresses Major Pathologies in Experimental Parkinsonism. iScience 2020; 23:101284. [PMID: 32623334 PMCID: PMC7334576 DOI: 10.1016/j.isci.2020.101284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/26/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Despite intensive research on Parkinson disease (PD) for decades, this common neurodegenerative disease remains incurable. We hypothesize that abnormal iron accumulation is a common thread underlying the emergence of the hallmarks of PD, namely mitochondrial dysfunction and α-synuclein accumulation. We investigated the powerful action of the main iron regulator hepcidin in the brain. In both the rotenone and 6-hydroxydopamine models of PD, overexpression of hepcidin by means of a virus-based strategy prevented dopamine neuronal loss and suppressed major pathologies of Parkinsonism as well as motor deficits. Hepcidin protected rotenone-induced mitochondrial deficits by reducing cellular and mitochondrial iron accumulation. In addition, hepcidin decreased α-synuclein accumulation and promoted clearance of α-synuclein through decreasing iron content that leads to activation of autophagy. Our results not only pinpoint a critical role of iron-overload in the pathogenesis of PD but also demonstrate that targeting brain iron levels through hepcidin is a promising therapeutic direction.
Collapse
Affiliation(s)
- Tuo Liang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, Nantong 226001, China
| | - Ming-Dao Mu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Manenda MS, Picard MÈ, Zhang L, Cyr N, Zhu X, Barma J, Pascal JM, Couture M, Zhang C, Shi R. Structural analyses of the Group A flavin-dependent monooxygenase PieE reveal a sliding FAD cofactor conformation bridging OUT and IN conformations. J Biol Chem 2020; 295:4709-4722. [PMID: 32111738 DOI: 10.1074/jbc.ra119.011212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/26/2020] [Indexed: 02/02/2023] Open
Abstract
Group A flavin-dependent monooxygenases catalyze the cleavage of the oxygen-oxygen bond of dioxygen, followed by the incorporation of one oxygen atom into the substrate molecule with the aid of NADPH and FAD. These flavoenzymes play an important role in many biological processes, and their most distinct structural feature is the choreographed motions of flavin, which typically adopts two distinct conformations (OUT and IN) to fulfill its function. Notably, these enzymes seem to have evolved a delicate control system to avoid the futile cycle of NADPH oxidation and FAD reduction in the absence of substrate, but the molecular basis of this system remains elusive. Using protein crystallography, size-exclusion chromatography coupled to multi-angle light scattering (SEC-MALS), and small-angle X-ray scattering (SEC-SAXS) and activity assay, we report here a structural and biochemical characterization of PieE, a member of the Group A flavin-dependent monooxygenases involved in the biosynthesis of the antibiotic piericidin A1. This analysis revealed that PieE forms a unique hexamer. Moreover, we found, to the best of our knowledge for the first time, that in addition to the classical OUT and IN conformations, FAD possesses a "sliding" conformation that exists in between the OUT and IN conformations. This observation sheds light on the underlying mechanism of how the signal of substrate binding is transmitted to the FAD-binding site to efficiently initiate NADPH binding and FAD reduction. Our findings bridge a gap currently missing in the orchestrated order of chemical events catalyzed by this important class of enzymes.
Collapse
Affiliation(s)
- Mahder S Manenda
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Marie-Ève Picard
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Liping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Normand Cyr
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Xiaojun Zhu
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Julie Barma
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - John M Pascal
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Manon Couture
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Changsheng Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Rong Shi
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada .,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
13
|
Dunham-Snary KJ, Archer SL. Response by Dunham-Snary and Archer to Letter Regarding Article, "Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction". Circ Res 2019; 125:e35-e36. [PMID: 31557123 DOI: 10.1161/circresaha.119.315826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kimberly J Dunham-Snary
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., S.L.A.)
| | - Stephen L Archer
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., S.L.A.).,Queen's Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Kingston, ON, Canada (S.L.A.)
| |
Collapse
|
14
|
He B, Wang X, Zhu J, Kong B, Wei L, Jin Y, Fu Z. Autophagy protects murine macrophages from β-cypermethrin-induced mitochondrial dysfunction and cytotoxicity via the reduction of oxidation stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:416-425. [PMID: 31026688 DOI: 10.1016/j.envpol.2019.04.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
The immunotoxicity of synthetic pyrethroid (SPs) has garnered much attention, and our previous research demonstrated that β-CYP causes immunotoxicity and oxidative stress in macrophages. Nevertheless, the underlying mechanism remains largely unknown. In this study, the murine macrophage RAW 264.7 cells and murine peritoneal macrophages (PMs) were exposed to β-CYP. The results showed that β-CYP elevated intracellular ROS levels in both RAW 264.7 cells and PMs. Exposure to β-CYP also caused mitochondrial dysfunction with reduced mitochondrial membrane potential (MMP), intracellular ATP level and mitochondrial DNA (mtDNA) content in the two cell types. In addition, exposure of RAW 264.7 cells to β-CYP for 12 h and 24 h enhanced autophagy, with elevated Beclin1, Rab7, Lamp1 and LC3-II expression levels, while 48 h of exposure attenuated autophagy. In contrast, exposure of PMs to β-CYP for 12 h promoted autophagy, whereas exposure for 24 h and 48 h impaired autophagy. Cotreatment with an antioxidant, N-acetyl-L-cysteine (NAC), partially blocked the reduced MMP, intracellular ATP level and autophagy disturbance. Moreover, cotreatment with an autophagy agonist, rapamycin (RAPA), partially blocked mitochondrial dysfunction and oxidative stress in the two cell types, whereas cotreatment with an autophagy inhibitor, 3-methyladenine (3-MA), augmented the abovementioned toxic effects. Furthermore, mitochondrial ROS levels in both RAW 264.7 cells and PMs were elevated by exposure to β-CYP, and molecular docking showed that β-CYP docked with mouse respiratory chain complex I by binding to the ND2, ND4, and ND5 subunits of the protein complex. Taken together, the data obtained in the present study demonstrate that oxidative stress partially mediates mitochondrial dysfunction and autophagy disturbance upon exposure to β-CYP in macrophages, and autophagy plays a protective role against the toxic effects.
Collapse
Affiliation(s)
- Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Baida Kong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lai Wei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
15
|
Kazami S, Nishiyama S, Kimura Y, Itoh H, Tsukada H. BCPP compounds, PET probes for early therapeutic evaluations, specifically bind to mitochondrial complex I. Mitochondrion 2019; 46:97-102. [DOI: 10.1016/j.mito.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 11/16/2022]
|
16
|
Dunham-Snary KJ, Wu D, Potus F, Sykes EA, Mewburn JD, Charles RL, Eaton P, Sultanian RA, Archer SL. Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction. Circ Res 2019; 124:1727-1746. [PMID: 30922174 DOI: 10.1161/circresaha.118.314284] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RATIONALE Hypoxic pulmonary vasoconstriction (HPV) optimizes systemic oxygen delivery by matching ventilation to perfusion. HPV is intrinsic to pulmonary artery smooth muscle cells (PASMCs). Hypoxia dilates systemic arteries, including renal arteries. Hypoxia is sensed by changes in mitochondrial-derived reactive oxygen species, notably hydrogen peroxide (H2O2) ([H2O2]mito). Decreases in [H2O2]mito elevate pulmonary vascular tone by increasing intracellular calcium ([Ca2+]i) through reduction-oxidation regulation of ion channels. Although HPV is mimicked by the Complex I inhibitor, rotenone, the molecular identity of the O2 sensor is unknown. OBJECTIVE To determine the role of Ndufs2 (NADH [nicotinamide adenine dinucleotide] dehydrogenase [ubiquinone] iron-sulfur protein 2), Complex I's rotenone binding site, in pulmonary vascular oxygen-sensing. METHODS AND RESULTS Mitochondria-conditioned media from pulmonary and renal mitochondria isolated from normoxic and chronically hypoxic rats were infused into an isolated lung bioassay. Mitochondria-conditioned media from normoxic lungs contained more H2O2 than mitochondria-conditioned media from chronic hypoxic lungs or kidneys and uniquely attenuated HPV via a catalase-dependent mechanism. In PASMC, acute hypoxia decreased H2O2 within 112±7 seconds, followed, within 205±34 seconds, by increased intracellular calcium concentration, [Ca2+]i. Hypoxia had no effects on [Ca2+]i in renal artery SMC. Hypoxia decreases both cytosolic and mitochondrial H2O2 in PASMC while increasing cytosolic H2O2 in renal artery SMC. Ndufs2 expression was greater in PASMC versus renal artery SMC. Lung Ndufs2 cysteine residues became reduced during acute hypoxia and both hypoxia and reducing agents caused functional inhibition of Complex I. In PASMC, siNdufs2 (cells/tissue treated with Ndufs2 siRNA) decreased normoxic H2O2, prevented hypoxic increases in [Ca2+]i, and mimicked aspects of chronic hypoxia, including decreasing Complex I activity, elevating the nicotinamide adenine dinucleotide (NADH/NAD+) ratio and decreasing expression of the O2-sensitive ion channel, Kv1.5. Knocking down another Fe-S center within Complex I (Ndufs1, NADH [nicotinamide adenine dinucleotide] dehydrogenase [ubiquinone] iron-sulfur protein 1) or other mitochondrial subunits proposed as putative oxygen sensors (Complex III's Rieske Fe-S center and COX4i2 [cytochrome c oxidase subunit 4 isoform 2] in Complex IV) had no effect on hypoxic increases in [Ca2+]i. In vivo, siNdufs2 significantly decreased hypoxia- and rotenone-induced constriction while enhancing phenylephrine-induced constriction. CONCLUSIONS Ndufs2 is essential for oxygen-sensing and HPV.
Collapse
Affiliation(s)
- Kimberly J Dunham-Snary
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.)
| | - Danchen Wu
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.)
| | - François Potus
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.)
| | - Edward A Sykes
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.)
| | - Jeffrey D Mewburn
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.)
| | - Rebecca L Charles
- British Heart Foundation Centre of Excellence, King´s College London, The Rayne Institute, St Thomas' Hospital, London, United Kingdom (R.L.C., P.E.)
| | - Philip Eaton
- British Heart Foundation Centre of Excellence, King´s College London, The Rayne Institute, St Thomas' Hospital, London, United Kingdom (R.L.C., P.E.)
| | - Richard A Sultanian
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (R.A.S.)
| | - Stephen L Archer
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.).,Queen's Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Kingston, ON, Canada (S.L.A.)
| |
Collapse
|
17
|
Sex and Mitonuclear Adaptation in Experimental Caenorhabditis elegans Populations. Genetics 2019; 211:1045-1058. [PMID: 30670540 DOI: 10.1534/genetics.119.301935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/17/2019] [Indexed: 01/10/2023] Open
Abstract
To reveal phenotypic and functional genomic patterns of mitonuclear adaptation, a laboratory adaptation study with Caenorhabditis elegans nematodes was conducted in which independently evolving lines were initiated from a low-fitness mitochondrial electron transport chain (ETC) mutant, gas-1 Following 60 generations of evolution in large population sizes with competition for food resources, two distinct classes of lines representing different degrees of adaptive response emerged: a low-fitness class that exhibited minimal or no improvement compared to the gas-1 mutant ancestor, and a high-fitness class containing lines that exhibited partial recovery of wild-type fitness. Many lines that achieved higher reproductive and competitive fitness levels were also noted to evolve high frequencies of males during the experiment, consistent with adaptation in these lines having been facilitated by outcrossing. Whole-genome sequencing and analysis revealed an enrichment of mutations in loci that occur in a gas-1-centric region of the C. elegans interactome and could be classified into a small number of functional genomic categories. A highly nonrandom pattern of mitochondrial DNA mutation was observed within high-fitness gas-1 lines, with parallel fixations of nonsynonymous base substitutions within genes encoding NADH dehydrogenase subunits I and VI. These mitochondrial gene products reside within ETC complex I alongside the nuclear-encoded GAS-1 protein, suggesting that rapid adaptation of select gas-1 recovery lines was driven by fixation of compensatory mitochondrial mutations.
Collapse
|
18
|
|
19
|
Francisco A, Ronchi JA, Navarro CDC, Figueira TR, Castilho RF. Nicotinamide nucleotide transhydrogenase is required for brain mitochondrial redox balance under hampered energy substrate metabolism and high-fat diet. J Neurochem 2018; 147:663-677. [PMID: 30281804 DOI: 10.1111/jnc.14602] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/13/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Among mitochondrial NADP-reducing enzymes, nicotinamide nucleotide transhydrogenase (NNT) establishes an elevated matrix NADPH/NADP+ by catalyzing the reduction of NADP+ at the expense of NADH oxidation coupled to inward proton translocation across the inner mitochondrial membrane. Here, we characterize NNT activity and mitochondrial redox balance in the brain using a congenic mouse model carrying the mutated Nnt gene from the C57BL/6J strain. The absence of NNT activity resulted in lower total NADPH sources activity in the brain mitochondria of young mice, an effect that was partially compensated in aged mice. Nonsynaptic mitochondria showed higher NNT activity than synaptic mitochondria. In the absence of NNT, an increased release of H2 O2 from mitochondria was observed when the metabolism of respiratory substrates occurred with restricted flux through relevant mitochondrial NADPH sources or when respiratory complex I was inhibited. In accordance, mitochondria from Nnt-/- brains were unable to sustain NADP in its reduced state when energized in the absence of carbon substrates, an effect aggravated after H2 O2 bolus metabolism. These data indicate that the lack of NNT in brain mitochondria impairs peroxide detoxification, but peroxide detoxification can be partially counterbalanced by concurrent NADPH sources depending on substrate availability. Notably, only brain mitochondria from Nnt-/- mice chronically fed a high-fat diet exhibited lower activity of the redox-sensitive aconitase, suggesting that brain mitochondrial redox balance requires NNT under the metabolic stress of a high-fat diet. Overall, the role of NNT in the brain mitochondria redox balance especially comes into play under mitochondrial respiratory defects or high-fat diet.
Collapse
Affiliation(s)
- Annelise Francisco
- Faculty of Medical Sciences, Department of Clinical Pathology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Juliana A Ronchi
- Faculty of Medical Sciences, Department of Clinical Pathology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Claudia D C Navarro
- Faculty of Medical Sciences, Department of Clinical Pathology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Tiago R Figueira
- Faculty of Medical Sciences, Department of Clinical Pathology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Roger F Castilho
- Faculty of Medical Sciences, Department of Clinical Pathology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
20
|
Morgan JM, Duncan MC, Johnson KS, Diepold A, Lam H, Dupzyk AJ, Martin LR, Wong WR, Armitage JP, Linington RG, Auerbuch V. Piericidin A1 Blocks Yersinia Ysc Type III Secretion System Needle Assembly. mSphere 2017; 2:e00030-17. [PMID: 28217742 PMCID: PMC5311113 DOI: 10.1128/msphere.00030-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/23/2017] [Indexed: 11/20/2022] Open
Abstract
The type III secretion system (T3SS) is a bacterial virulence factor expressed by dozens of Gram-negative pathogens but largely absent from commensals. The T3SS is an attractive target for antimicrobial agents that may disarm pathogenic bacteria while leaving commensal populations intact. We previously identified piericidin A1 as an inhibitor of the Ysc T3SS in Yersinia pseudotuberculosis. Piericidins were first discovered as inhibitors of complex I of the electron transport chain in mitochondria and some bacteria. However, we found that piericidin A1 did not alter Yersinia membrane potential or inhibit flagellar motility powered by the proton motive force, indicating that the piericidin mode of action against Yersinia type III secretion is independent of complex I. Instead, piericidin A1 reduced the number of T3SS needle complexes visible by fluorescence microscopy at the bacterial surface, preventing T3SS translocator and effector protein secretion. Furthermore, piericidin A1 decreased the abundance of higher-order YscF needle subunit complexes, suggesting that piericidin A1 blocks YscF needle assembly. While expression of T3SS components in Yersinia are positively regulated by active type III secretion, the block in secretion by piericidin A1 was not accompanied by a decrease in T3SS gene expression, indicating that piericidin A1 may target a T3SS regulatory circuit. However, piericidin A1 still inhibited effector protein secretion in the absence of the T3SS regulator YopK, YopD, or YopN. Surprisingly, while piericidin A1 also inhibited the Y. enterocolitica Ysc T3SS, it did not inhibit the SPI-1 family Ysa T3SS in Y. enterocolitica or the Ysc family T3SS in Pseudomonas aeruginosa. Together, these data indicate that piericidin A1 specifically inhibits Yersinia Ysc T3SS needle assembly. IMPORTANCE The bacterial type III secretion system (T3SS) is widely used by both human and animal pathogens to cause disease yet remains incompletely understood. Deciphering how some natural products, such as the microbial metabolite piericidin, inhibit type III secretion can provide important insight into how the T3SS functions or is regulated. Taking this approach, we investigated the ability of piericidin to block T3SS function in several human pathogens. Surprisingly, piericidin selectively inhibited the Ysc family T3SS in enteropathogenic Yersinia but did not affect the function of a different T3SS within the same species. Furthermore, piericidin specifically blocked the formation of T3SS needles on the bacterial surface without altering the localization of several other T3SS components or regulation of T3SS gene expression. These data show that piericidin targets a mechanism important for needle assembly that is unique to the Yersinia Ysc T3SS.
Collapse
Affiliation(s)
- Jessica M. Morgan
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | - Miles C. Duncan
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Kevin S. Johnson
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Andreas Diepold
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Hanh Lam
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | - Allison J. Dupzyk
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Lexi R. Martin
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Weng Ruh Wong
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | - Judith P. Armitage
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Roger G. Linington
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
21
|
Wirth C, Brandt U, Hunte C, Zickermann V. Structure and function of mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:902-14. [PMID: 26921811 DOI: 10.1016/j.bbabio.2016.02.013] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/13/2022]
Abstract
Proton-pumping NADH:ubiquinone oxidoreductase (complex I) is the largest and most complicated enzyme of the respiratory chain. Fourteen central subunits represent the minimal form of complex I and can be assigned to functional modules for NADH oxidation, ubiquinone reduction, and proton pumping. In addition, the mitochondrial enzyme comprises some 30 accessory subunits surrounding the central subunits that are not directly associated with energy conservation. Complex I is known to release deleterious oxygen radicals (ROS) and its dysfunction has been linked to a number of hereditary and degenerative diseases. We here review recent progress in structure determination, and in understanding the role of accessory subunits and functional analysis of mitochondrial complex I. For the central subunits, structures provide insight into the arrangement of functional modules including the substrate binding sites, redox-centers and putative proton channels and pump sites. Only for two of the accessory subunits, detailed structures are available. Nevertheless, many of them could be localized in the overall structure of complex I, but most of these assignments have to be considered tentative. Strikingly, redox reactions and proton pumping machinery are spatially completely separated and the site of reduction for the hydrophobic substrate ubiquinone is found deeply buried in the hydrophilic domain of the complex. The X-ray structure of complex I from Yarrowia lipolytica provides clues supporting the previously proposed two-state stabilization change mechanism, in which ubiquinone redox chemistry induces conformational states and thereby drives proton pumping. The same structural rearrangements may explain the active/deactive transition of complex I implying an integrated mechanistic model for energy conversion and regulation. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Christophe Wirth
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Ulrich Brandt
- Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, Nijmegen, The Netherlands; Cluster of Excellence Frankfurt "Macromolecular Complexes, Goethe-University, Germany
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany.
| | - Volker Zickermann
- Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University, Frankfurt am Main, Germany; Cluster of Excellence Frankfurt "Macromolecular Complexes, Goethe-University, Germany.
| |
Collapse
|
22
|
Beemelmanns C, Guo H, Rischer M, Poulsen M. Natural products from microbes associated with insects. Beilstein J Org Chem 2016; 12:314-27. [PMID: 26977191 PMCID: PMC4778507 DOI: 10.3762/bjoc.12.34] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/02/2016] [Indexed: 12/11/2022] Open
Abstract
Here we review discoveries of secondary metabolites from microbes associated with insects. We mainly focus on natural products, where the ecological role has been at least partially elucidated, and/or the pharmaceutical properties evaluated, and on compounds with unique structural features. We demonstrate that the exploration of specific microbial–host interactions, in combination with multidisciplinary dereplication processes, has emerged as a successful strategy to identify novel chemical entities and to shed light on the ecology and evolution of defensive associations.
Collapse
Affiliation(s)
- Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology e.V., Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Huijuan Guo
- Leibniz Institute for Natural Product Research and Infection Biology e.V., Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Maja Rischer
- Leibniz Institute for Natural Product Research and Infection Biology e.V., Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Michael Poulsen
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, Building 3, 1st floor, 2100 Copenhagen East, Denmark
| |
Collapse
|
23
|
Degli Esposti M. Genome Analysis of Structure-Function Relationships in Respiratory Complex I, an Ancient Bioenergetic Enzyme. Genome Biol Evol 2015; 8:126-47. [PMID: 26615219 PMCID: PMC4758237 DOI: 10.1093/gbe/evv239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Respiratory complex I (NADH:ubiquinone oxidoreductase) is a ubiquitous bioenergetic enzyme formed by over 40 subunits in eukaryotes and a minimum of 11 subunits in bacteria. Recently, crystal structures have greatly advanced our knowledge of complex I but have not clarified the details of its reaction with ubiquinone (Q). This reaction is essential for bioenergy production and takes place in a large cavity embedded within a conserved module that is homologous to the catalytic core of Ni-Fe hydrogenases. However, how a hydrogenase core has evolved into the protonmotive Q reductase module of complex I has remained unclear. This work has exploited the abundant genomic information that is currently available to deduce structure-function relationships in complex I that indicate the evolutionary steps of Q reactivity and its adaptation to natural Q substrates. The results provide answers to fundamental questions regarding various aspects of complex I reaction with Q and help re-defining the old concept that this reaction may involve two Q or inhibitor sites. The re-definition leads to a simplified classification of the plethora of complex I inhibitors while throwing a new light on the evolution of the enzyme function.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Italian Institute of Technology, Genova, Italy Center for Genomic Sciences, UNAM, Cuernavaca, Mexico
| |
Collapse
|
24
|
Ji M, Liang Y, Gu Z, Li X. Inhibitory Effects of Amorphigenin on the Mitochondrial Complex I of Culex pipiens pallens Coquillett (Diptera: Culicidae). Int J Mol Sci 2015; 16:19713-27. [PMID: 26307964 PMCID: PMC4581321 DOI: 10.3390/ijms160819713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/25/2015] [Accepted: 08/11/2015] [Indexed: 11/16/2022] Open
Abstract
Previous studies in our laboratory found that the extract from seeds of Amorpha fruticosa in the Leguminosae family had lethal effects against mosquito larvae, and an insecticidal compound amorphigenin was isolated. In this study, the inhibitory effects of amorphigenin against the mitochondrial complex I of Culex pipiens pallens (Diptera: Culicidae) were investigated and compared with that of rotenone. The results showed that amorphigenin and rotenone can decrease the mitochondrial complex I activity both in vivo and in vitro as the in vivo IC50 values (the inhibitor concentrations leading to 50% of the enzyme activity lost) were determined to be 2.4329 and 2.5232 μmol/L, respectively, while the in vitro IC50 values were 2.8592 and 3.1375 μmol/L, respectively. Both amorphigenin and rotenone were shown to be reversible and mixed-I type inhibitors of the mitochondrial complex I of Cx. pipiens pallens, indicating that amorphigenin and rotenone inhibited the enzyme activity not only by binding with the free enzyme but also with the enzyme-substrate complex, and the values of KI and KIS for amorphigenin were determined to be 20.58 and 87.55 μM, respectively, while the values for rotenone were 14.04 and 69.23 μM, respectively.
Collapse
Affiliation(s)
- Mingshan Ji
- Department of Pesticide Science, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yaping Liang
- Department of Pesticide Science, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Zumin Gu
- Department of Pesticide Science, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xiuwei Li
- Department of Pesticide Science, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
25
|
Modulation of mitochondrial complex I activity averts cognitive decline in multiple animal models of familial Alzheimer's Disease. EBioMedicine 2015; 2:294-305. [PMID: 26086035 PMCID: PMC4465115 DOI: 10.1016/j.ebiom.2015.03.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Development of therapeutic strategies to prevent Alzheimer's Disease (AD) is of great importance. We show that mild inhibition of mitochondrial complex I with small molecule CP2 reduces levels of amyloid beta and phospho-Tau and averts cognitive decline in three animal models of familial AD. Low-mass molecular dynamics simulations and biochemical studies confirmed that CP2 competes with flavin mononucleotide for binding to the redox center of complex I leading to elevated AMP/ATP ratio and activation of AMP-activated protein kinase in neurons and mouse brain without inducing oxidative damage or inflammation. Furthermore, modulation of complex I activity augmented mitochondrial bioenergetics increasing coupling efficiency of respiratory chain and neuronal resistance to stress. Concomitant reduction of glycogen synthase kinase 3β activity and restoration of axonal trafficking resulted in elevated levels of neurotrophic factors and synaptic proteins in adult AD mice. Our results suggest metabolic reprogramming induced by modulation of mitochondrial complex I activity represents promising therapeutic strategy for AD.
Collapse
|
26
|
Liang Y, Li X, Gu Z, Qin P, Ji M. Toxicity of amorphigenin from the seeds of Amorpha fruticosa against the larvae of Culex pipiens pallens (Diptera: Culicidae). Molecules 2015; 20:3238-54. [PMID: 25690287 PMCID: PMC6272459 DOI: 10.3390/molecules20023238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/05/2015] [Accepted: 02/10/2015] [Indexed: 11/16/2022] Open
Abstract
The larvicidal activity of the crude petroleum ether, ethyl acetate, acetone, chloroform and ethanol extracts of Amorpha fruticosa seeds was individually assayed for toxicity against the early fourth-instar larva of the mosquito, Culex pipiens pallens after 24 h exposure. Of the tested extracts, the ethanol one exhibited the highest larvicidal activity (LC50 = 22.69 mg/L). Amorphigenin (8'-hydroxyrotenone), a rotenoid compound which exhibits a strong larvicidal activity with LC50 and LC90 values of 4.29 and 11.27 mg/L, respectively, was isolated from the ethanol extract by column chromatograpy. Its structure was elucidated by 1H-NMR, UV and IR spectral data. Furthermore, investigation of amorphigenin's effects on mitochondrial complex I activity and protein synthesis in C. pipiens pallens larvae reveals that amorphigenin decreases mitochondrial complex I activities to 65.73% at 10.45 μmol/L, compared to the control, when NADH were used as the substrate. Meanwhile, amorphigenin at 10.45 μmol/L also caused a 1.98-fold decrease in protein content, compared to the control larvae treated with acetone only.
Collapse
Affiliation(s)
- Yaping Liang
- Department of Pesticide Science, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xiuwei Li
- Department of Pesticide Science, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Zumin Gu
- Department of Pesticide Science, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Peiwen Qin
- Department of Pesticide Science, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Mingshan Ji
- Department of Pesticide Science, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
- Biopesticide Engineering Research Center of Liaoning Province, Shenyang 110866, China.
| |
Collapse
|
27
|
Sinha PK, Castro-Guerrero N, Patki G, Sato M, Torres-Bacete J, Sinha S, Miyoshi H, Matsuno-Yagi A, Yagi T. Conserved amino acid residues of the NuoD segment important for structure and function of Escherichia coli NDH-1 (complex I). Biochemistry 2015; 54:753-64. [PMID: 25545070 PMCID: PMC4310626 DOI: 10.1021/bi501403t] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
The NuoD segment (homologue of mitochondrial
49 kDa subunit) of
the proton-translocating NADH:quinone oxidoreductase (complex I/NDH-1)
from Escherichia coli is in the hydrophilic domain
and bears many highly conserved amino acid residues. The three-dimensional
structural model of NDH-1 suggests that the NuoD segment, together
with the neighboring subunits, constitutes a putative quinone binding
cavity. We used the homologous DNA recombination technique to clarify
the role of selected key amino acid residues of the NuoD segment.
Among them, residues Tyr273 and His224 were considered candidates
for having important interactions with the quinone headgroup. Mutant
Y273F retained partial activity but lost sensitivity to capsaicin-40.
Mutant H224R scarcely affected the activity, suggesting that this
residue may not be essential. His224 is located in a loop near the
N-terminus of the NuoD segment (Gly217–Phe227) which is considered
to form part of the quinone binding cavity. In contrast to the His224
mutation, mutants G217V, P218A, and G225V almost completely lost the
activity. One region of this loop is positioned close to a cytosolic
loop of the NuoA subunit in the membrane domain, and together they
seem to be important in keeping the quinone binding cavity intact.
The structural role of the longest helix in the NuoD segment located
behind the quinone binding cavity was also investigated. Possible
roles of other highly conserved residues of the NuoD segment are discussed.
Collapse
Affiliation(s)
- Prem Kumar Sinha
- Deparment of Molecular and Experimental Medicine, and ‡Department of Cell and Molecular Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, MEM256, La Jolla, California 92037, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Garvin MR, Bielawski JP, Sazanov LA, Gharrett AJ. Review and meta-analysis of natural selection in mitochondrial complex I in metazoans. J ZOOL SYST EVOL RES 2014. [DOI: 10.1111/jzs.12079] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael R. Garvin
- Fisheries Division; School of Fisheries and Ocean Sciences; University of Alaska Fairbanks; Juneau AK USA
| | - Joseph P. Bielawski
- Department of Biology; Dalhousie University; Halifax NS Canada
- Department of Mathematics & Statistics; Dalhousie University; Halifax NS Canada
| | | | - Anthony J. Gharrett
- Fisheries Division; School of Fisheries and Ocean Sciences; University of Alaska Fairbanks; Juneau AK USA
| |
Collapse
|
29
|
Meesters C, Mönig T, Oeljeklaus J, Krahn D, Westfall CS, Hause B, Jez JM, Kaiser M, Kombrink E. A chemical inhibitor of jasmonate signaling targets JAR1 in Arabidopsis thaliana. Nat Chem Biol 2014; 10:830-6. [PMID: 25129030 DOI: 10.1038/nchembio.1591] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/12/2014] [Indexed: 12/11/2022]
Abstract
Jasmonates are lipid-derived plant hormones that regulate plant defenses and numerous developmental processes. Although the biosynthesis and molecular function of the most active form of the hormone, (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile), have been unraveled, it remains poorly understood how the diversity of bioactive jasmonates regulates such a multitude of plant responses. Bioactive analogs have been used as chemical tools to interrogate the diverse and dynamic processes of jasmonate action. By contrast, small molecules impairing jasmonate functions are currently unknown. Here, we report on jarin-1 as what is to our knowledge the first small-molecule inhibitor of jasmonate responses that was identified in a chemical screen using Arabidopsis thaliana. Jarin-1 impairs the activity of JA-Ile synthetase, thereby preventing the synthesis of the active hormone, JA-Ile, whereas closely related enzymes are not affected. Thus, jarin-1 may serve as a useful chemical tool in search for missing regulatory components and further dissection of the complex jasmonate signaling networks.
Collapse
Affiliation(s)
- Christian Meesters
- 1] Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany. [2] Center for Medical Biotechnology, Department of Chemical Biology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Timon Mönig
- Center for Medical Biotechnology, Department of Chemical Biology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Julian Oeljeklaus
- Center for Medical Biotechnology, Department of Chemical Biology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Daniel Krahn
- Center for Medical Biotechnology, Department of Chemical Biology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Corey S Westfall
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Joseph M Jez
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Markus Kaiser
- Center for Medical Biotechnology, Department of Chemical Biology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Erich Kombrink
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
30
|
Friedrich T. On the mechanism of respiratory complex I. J Bioenerg Biomembr 2014; 46:255-68. [PMID: 25022766 DOI: 10.1007/s10863-014-9566-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/03/2014] [Indexed: 02/08/2023]
Abstract
The energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Electron microscopy and X-ray crystallography revealed the two-part structure of the enzyme complex. A peripheral arm extending into the aqueous phase catalyzes the electron transfer reaction. Accordingly, this arm contains the redox-active cofactors, namely one flavin mononucleotide (FMN) and up to ten iron-sulfur (Fe/S) clusters. A membrane arm embedded in the lipid bilayer catalyzes proton translocation by a yet unknown mechanism. The binding site of the substrate (ubi) quinone is located at the interface of the two arms. The oxidation of one NADH is coupled with the translocation of four protons across the membrane. In this review, the binding of the substrates, the intramolecular electron transfer, the role of individual Fe/S clusters and the mechanism of proton translocation are discussed in the light of recent data obtained from our laboratory.
Collapse
Affiliation(s)
- Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität, Albertstr. 21, 79104, Freiburg, Germany,
| |
Collapse
|
31
|
Actinopyrone D, a new downregulator of the molecular chaperone GRP78 from Streptomyces sp. J Antibiot (Tokyo) 2014; 67:831-4. [PMID: 24938168 DOI: 10.1038/ja.2014.76] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/09/2014] [Accepted: 05/19/2014] [Indexed: 01/18/2023]
Abstract
A new downregulator of the molecular chaperone GRP78, actinopyrone D, was isolated together with a known related compound, PM050463, from Streptomyces sp. RAG92. The molecular formula of actinopyrone D was established as C25H36O4 by high-resolution FAB-MS. NMR spectroscopic analysis revealed the structure of actinopyrone D, which consists of an α-methoxy-γ-pyrone ring and a C17 side chain containing a cis olefin moiety. Actinopyrone D and PM050463 dose-dependently inhibited 2-deoxyglucose-induced luciferase expression in HT1080 human fibrosarcoma cells transfected with a luciferase reporter plasmid containing the GRP78 promoter. Actinopyrone D inhibited GRP78 protein expression and induced cell death under endoplasmic reticulum stress.
Collapse
|
32
|
Chen WW, Birsoy K, Mihaylova MM, Snitkin H, Stasinski I, Yucel B, Bayraktar EC, Carette JE, Clish CB, Brummelkamp TR, Sabatini DD, Sabatini DM. Inhibition of ATPIF1 ameliorates severe mitochondrial respiratory chain dysfunction in mammalian cells. Cell Rep 2014; 7:27-34. [PMID: 24685140 PMCID: PMC4040975 DOI: 10.1016/j.celrep.2014.02.046] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/07/2014] [Accepted: 02/28/2014] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial respiratory chain disorders are characterized by loss of electron transport chain (ETC) activity. Although the causes of many such diseases are known, there is a lack of effective therapies. To identify genes that confer resistance to severe ETC dysfunction when inactivated, we performed a genome-wide genetic screen in haploid human cells with the mitochondrial complex III inhibitor antimycin. This screen revealed that loss of ATPIF1 strongly protects against antimycin-induced ETC dysfunction and cell death by allowing for the maintenance of mitochondrial membrane potential. ATPIF1 loss protects against other forms of ETC dysfunction and is even essential for the viability of human ρ° cells lacking mitochondrial DNA, a system commonly used for studying ETC dysfunction. Importantly, inhibition of ATPIF1 ameliorates complex III blockade in primary hepatocytes, a cell type afflicted in severe mitochondrial disease. Altogether, these results suggest that inhibition of ATPIF1 can ameliorate severe ETC dysfunction in mitochondrial pathology.
Collapse
Affiliation(s)
- Walter W Chen
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Kivanc Birsoy
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Maria M Mihaylova
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Harriet Snitkin
- Department of Cell Biology, New York University School of Medicine, New York, New York, 10016, USA
| | - Iwona Stasinski
- Department of Cell Biology, New York University School of Medicine, New York, New York, 10016, USA
| | - Burcu Yucel
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Erol C Bayraktar
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Clary B Clish
- Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA
| | - Thijn R Brummelkamp
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121 1066 CX, Amsterdam, The Netherlands
| | - David D Sabatini
- Department of Cell Biology, New York University School of Medicine, New York, New York, 10016, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| |
Collapse
|
33
|
Russell MJ, Barge LM, Bhartia R, Bocanegra D, Bracher PJ, Branscomb E, Kidd R, McGlynn S, Meier DH, Nitschke W, Shibuya T, Vance S, White L, Kanik I. The drive to life on wet and icy worlds. ASTROBIOLOGY 2014; 14:308-43. [PMID: 24697642 PMCID: PMC3995032 DOI: 10.1089/ast.2013.1110] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/02/2014] [Indexed: 05/22/2023]
Abstract
This paper presents a reformulation of the submarine alkaline hydrothermal theory for the emergence of life in response to recent experimental findings. The theory views life, like other self-organizing systems in the Universe, as an inevitable outcome of particular disequilibria. In this case, the disequilibria were two: (1) in redox potential, between hydrogen plus methane with the circuit-completing electron acceptors such as nitrite, nitrate, ferric iron, and carbon dioxide, and (2) in pH gradient between an acidulous external ocean and an alkaline hydrothermal fluid. Both CO2 and CH4 were equally the ultimate sources of organic carbon, and the metal sulfides and oxyhydroxides acted as protoenzymatic catalysts. The realization, now 50 years old, that membrane-spanning gradients, rather than organic intermediates, play a vital role in life's operations calls into question the idea of "prebiotic chemistry." It informs our own suggestion that experimentation should look to the kind of nanoengines that must have been the precursors to molecular motors-such as pyrophosphate synthetase and the like driven by these gradients-that make life work. It is these putative free energy or disequilibria converters, presumably constructed from minerals comprising the earliest inorganic membranes, that, as obstacles to vectorial ionic flows, present themselves as the candidates for future experiments. Key Words: Methanotrophy-Origin of life. Astrobiology 14, 308-343. The fixation of inorganic carbon into organic material (autotrophy) is a prerequisite for life and sets the starting point of biological evolution. (Fuchs, 2011 ) Further significant progress with the tightly membrane-bound H(+)-PPase family should lead to an increased insight into basic requirements for the biological transport of protons through membranes and its coupling to phosphorylation. (Baltscheffsky et al., 1999 ).
Collapse
|
34
|
Chen Y, Zhang W, Zhu Y, Zhang Q, Tian X, Zhang S, Zhang C. Elucidating hydroxylation and methylation steps tailoring piericidin A1 biosynthesis. Org Lett 2014; 16:736-9. [PMID: 24409990 DOI: 10.1021/ol4034176] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The piericidin A1 (1) gene cluster was identified from the deep-sea derived Streptomyces sp. SCSIO 03032. Our in vivo and in vitro experiments verified PieE as a 4'-hydroxylase and PieB2 as a 4'-O-methyltransferase, allowing the elucidation of the post-PKS modification steps involved in 1 biosynthesis. In addition, the shunt metabolite piericidin E1 (7) was identified as a novel analogue featuring a C-2/C-3 epoxy ring.
Collapse
Affiliation(s)
- Yaolong Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Rotenone induces reductive stress and triacylglycerol deposition in C2C12 cells. Int J Biochem Cell Biol 2013; 45:2749-55. [PMID: 24104397 DOI: 10.1016/j.biocel.2013.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/10/2013] [Accepted: 09/27/2013] [Indexed: 01/06/2023]
Abstract
Environmental rotenone is associated with Parkinson's disease due to its inhibitory property to the complex I of mitochondrial respiration chain. Although environmental pollution has been postulated as a causal factor for the increasing prevalence of obesity, the role of rotenone in the pathogenesis of obesity has not been studied. We employed muscle-derived cell C2C12 as a model and shotgun lipidomics as a tool for lipid analysis and found that treatment with rotenone led to the profound deposition of intracellular triacylglycerol (TAG) in a time- and dose-dependent fashion. The TAG deposition resulted from complex I inhibition. Further studies revealed that rotenone induced mitochondrial stress as shown by decreased mitochondrial oxygen consumption rate, increased NADH/NAD+ ratio (i.e., reductive stress) and mitochondrial metabolites. We demonstrated that rotenone activated fatty acid de novo synthesis and TAG synthesis and ultimately resulted in intracellular TAG deposition. These studies suggested that increased mitochondrial stresses might be an underlying mechanism responsible for TAG accumulation manifest in obesity.
Collapse
|
36
|
Larosa V, Coosemans N, Motte P, Bonnefoy N, Remacle C. Reconstruction of a human mitochondrial complex I mutation in the unicellular green alga Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:759-768. [PMID: 22268373 DOI: 10.1111/j.1365-313x.2012.04912.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Defects in complex I (NADH:ubiquinone oxidoreductase (EC 1.6.5.3)) are the most frequent cause of human respiratory disorders. The pathogenicity of a given human mitochondrial mutation can be difficult to demonstrate because the mitochondrial genome harbors large numbers of polymorphic base changes that have no pathogenic significance. In addition, mitochondrial mutations are usually found in the heteroplasmic state, which may hide the biochemical effect of the mutation. We propose that the unicellular green alga Chlamydomonas could be used to study such mutations because (i) respiratory complex-deficient mutants are viable and mitochondrial mutations are found in the homoplasmic state, (ii) transformation of the mitochondrial genome is feasible, and (iii) Chlamydomonas complex I is similar to that of humans. To illustrate this proposal, we introduced a Leu157Pro substitution into the Chlamydomonas ND4 subunit of complex I in two recipient strains by biolistic transformation, demonstrating that site-directed mutagenesis of the Chlamydomonas mitochondrial genome is possible. This substitution did not lead to any respiratory enzyme defects when present in the heteroplasmic state in a patient with chronic progressive external ophthalmoplegia. When present in the homoplasmic state in the alga, the mutation does not prevent assembly of whole complex I (950 kDa) and the NADH dehydrogenase activity of the peripheral arm of the complex is mildly affected. However, the NADH:duroquinone oxidoreductase activity is strongly reduced, suggesting that the substitution could affect binding of ubiquinone to the membrane domain. The in vitro defects correlate with a decrease in dark respiration and growth rate in vivo.
Collapse
Affiliation(s)
- Véronique Larosa
- Genetics of Microorganisms, Department of Life Sciences, Institute of Botany, University of Liege, B-4000 Liege, Belgium
| | | | | | | | | |
Collapse
|
37
|
The evolution of respiratory chain complex I from a smaller last common ancestor consisting of 11 protein subunits. J Mol Evol 2011; 72:484-97. [PMID: 21597881 PMCID: PMC3144371 DOI: 10.1007/s00239-011-9447-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/04/2011] [Indexed: 11/04/2022]
Abstract
The NADH:quinone oxidoreductase (complex I) has evolved from a combination of smaller functional building blocks. Chloroplasts and cyanobacteria contain a complex I-like enzyme having only 11 subunits. This enzyme lacks the N-module which harbors the NADH binding site and the flavin and iron–sulfur cluster prosthetic groups. A complex I-homologous enzyme found in some archaea contains an F420 dehydrogenase subunit denoted as FpoF rather than the N-module. In the present study, all currently available whole genome sequences were used to survey the occurrence of the different types of complex I in the different kingdoms of life. Notably, the 11-subunit version of complex I was found to be widely distributed, both in the archaeal and in the eubacterial kingdoms, whereas the 14-subunit classical complex I was found only in certain eubacterial phyla. The FpoF-containing complex I was present in Euryarchaeota but not in Crenarchaeota, which contained the 11-subunit complex I. The 11-subunit enzymes showed a primary sequence variability as great or greater than the full-size 14-subunit complex I, but differed distinctly from the membrane-bound hydrogenases. We conclude that this type of compact 11-subunit complex I is ancestral to all present-day complex I enzymes. No designated partner protein, acting as an electron delivery device, could be found for the compact version of complex I. We propose that the primordial complex I, and many of the present-day 11-subunit versions of it, operate without a designated partner protein but are capable of interaction with several different electron donor or acceptor proteins.
Collapse
|
38
|
Tocilescu MA, Zickermann V, Zwicker K, Brandt U. Quinone binding and reduction by respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1883-90. [DOI: 10.1016/j.bbabio.2010.05.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/08/2010] [Accepted: 05/10/2010] [Indexed: 12/12/2022]
|
39
|
Castro-Guerrero N, Sinha PK, Torres-Bacete J, Matsuno-Yagi A, Yagi T. Pivotal roles of three conserved carboxyl residues of the NuoC (30k) segment in the structural integrity of proton-translocating NADH-quinone oxidoreductase from Escherichia coli. Biochemistry 2010; 49:10072-80. [PMID: 20979355 DOI: 10.1021/bi100885v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The prokaryotic proton-translocating NADH-quinone oxidoreductase (NDH-1) is an L-shaped membrane-bound enzyme that contains 14 subunits (NuoA-NuoN or Nqo1-Nqo14). All subunits have their counterparts in the eukaryotic enzyme (complex I). NDH-1 consists of two domains: the peripheral arm (NuoB, -C, -D, -E, -F, -G, and -I) and the membrane arm (NuoA, -H, -J, -K, -L, -M, and -N). In Escherichia coli NDH-1, the hydrophilic subunits NuoC/Nqo5/30k and NuoD/Nqo4/49k are fused together in a single polypeptide as the NuoCD subunit. The NuoCD subunit is the only subunit that does not bear a cofactor in the peripheral arm. While some roles for inhibitor and quinone association have been reported for the NuoD segment, structural and functional roles of the NuoC segment remain mostly elusive. In this work, 14 highly conserved residues of the NuoC segment were mutated and 21 mutants were constructed using the chromosomal gene manipulation technique. From the enzymatic assays and immunochemical and blue-native gel analyses, it was found that residues Glu-138, Glu-140, and Asp-143 that are thought to be in the third α-helix are absolutely required for the energy-transducing NDH-1 activities and the assembly of the whole enzyme. Together with available information for the hydrophobic subunits, we propose that Glu-138, Glu-140, and Asp-143 of the NuoC segment may have a pivotal role in the structural stability of NDH-1.
Collapse
Affiliation(s)
- Norma Castro-Guerrero
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | |
Collapse
|
40
|
The reaction of NADPH with bovine mitochondrial NADH:ubiquinone oxidoreductase revisited: I. Proposed consequences for electron transfer in the enzyme. J Bioenerg Biomembr 2010; 42:261-78. [PMID: 20628895 DOI: 10.1007/s10863-010-9301-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
Bovine NADH:ubiquinone oxidoreductase (Complex I) is the first complex in the mitochondrial respiratory chain. It has long been assumed that it contained only one FMN group. However, as demonstrated in 2003, the intact enzyme contains two FMN groups. The second FMN was proposed to be located in a conserved flavodoxin fold predicted to be present in the PSST subunit. The long-known reaction of Complex I with NADPH differs in many aspects from that with NADH. It was proposed that the second flavin group was specifically involved in the reaction with NADPH. The X-ray structure of the hydrophilic domain of Complex I from Thermus thermophilus (Sazanov and Hinchliffe 2006, Science 311, 1430-1436) disclosed the positions of all redox groups of that enzyme and of the subunits holding them. The PSST subunit indeed contains the predicted flavodoxin fold although it did not contain FMN. Inspired by this structure, the present paper describes a re-evaluation of the enigmatic reactions of the bovine enzyme with NADPH. Published data, as well as new freeze-quench kinetic data presented here, are incompatible with the general opinion that NADPH and NADH react at the same site. Instead, it is proposed that these pyridine nucleotides react at opposite ends of the 90 A long chain of prosthetic groups in Complex I. Ubiquinone is proposed to react with the Fe-S clusters in the TYKY subunit deep inside the hydrophilic domain. A new model for electron transfer in Complex I is proposed. In the accompanying paper this model is compared with the one advocated in current literature.
Collapse
|
41
|
Tocilescu MA, Fendel U, Zwicker K, Dröse S, Kerscher S, Brandt U. The role of a conserved tyrosine in the 49-kDa subunit of complex I for ubiquinone binding and reduction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:625-32. [DOI: 10.1016/j.bbabio.2010.01.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/07/2010] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
|
42
|
Maliniemi P, Kervinen M, Hassinen IE. Modeling of human pathogenic mutations in Escherichia coli complex I reveals a sensitive region in the fourth inside loop of NuoH. Mitochondrion 2009; 9:394-401. [DOI: 10.1016/j.mito.2009.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/22/2009] [Accepted: 07/13/2009] [Indexed: 11/17/2022]
|
43
|
King MS, Sharpley MS, Hirst J. Reduction of hydrophilic ubiquinones by the flavin in mitochondrial NADH:ubiquinone oxidoreductase (Complex I) and production of reactive oxygen species. Biochemistry 2009; 48:2053-62. [PMID: 19220002 PMCID: PMC2651670 DOI: 10.1021/bi802282h] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria is a complicated, energy-transducing, membrane-bound enzyme that contains 45 different subunits, a non-covalently bound flavin mononucleotide, and eight iron−sulfur clusters. The mechanisms of NADH oxidation and intramolecular electron transfer by complex I are gradually being defined, but the mechanism linking ubiquinone reduction to proton translocation remains unknown. Studies of ubiquinone reduction by isolated complex I are problematic because the extremely hydrophobic natural substrate, ubiquinone-10, must be substituted with a relatively hydrophilic analogue (such as ubiquinone-1). Hydrophilic ubiquinones are reduced by an additional, non-energy-transducing pathway (which is insensitive to inhibitors such as rotenone and piericidin A). Here, we show that inhibitor-insensitive ubiquinone reduction occurs by a ping-pong type mechanism, catalyzed by the flavin mononucleotide cofactor in the active site for NADH oxidation. Moreover, semiquinones produced at the flavin site initiate redox cycling reactions with molecular oxygen, producing superoxide radicals and hydrogen peroxide. The ubiquinone reactant is regenerated, so the NADH:Q reaction becomes superstoichiometric. Idebenone, an artificial ubiquinone showing promise in the treatment of Friedreich’s Ataxia, reacts at the flavin site. The factors which determine the balance of reactivity between the two sites of ubiquinone reduction (the energy-transducing site and the flavin site) and the implications for mechanistic studies of ubiquinone reduction by complex I are discussed. Finally, the possibility that the flavin site in complex I catalyzes redox cycling reactions with a wide range of compounds, some of which are important in pharmacology and toxicology, is discussed.
Collapse
Affiliation(s)
- Martin S King
- Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | | | |
Collapse
|
44
|
Zickermann V, Kerscher S, Zwicker K, Tocilescu MA, Radermacher M, Brandt U. Architecture of complex I and its implications for electron transfer and proton pumping. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:574-83. [PMID: 19366614 DOI: 10.1016/j.bbabio.2009.01.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 01/15/2009] [Accepted: 01/15/2009] [Indexed: 11/27/2022]
Abstract
Proton pumping NADH:ubiquinone oxidoreductase (complex I) is the largest and remains by far the least understood enzyme complex of the respiratory chain. It consists of a peripheral arm harbouring all known redox active prosthetic groups and a membrane arm with a yet unknown number of proton translocation sites. The ubiquinone reduction site close to iron-sulfur cluster N2 at the interface of the 49-kDa and PSST subunits has been mapped by extensive site directed mutagenesis. Independent lines of evidence identified electron transfer events during reduction of ubiquinone to be associated with the potential drop that generates the full driving force for proton translocation with a 4H(+)/2e(-) stoichiometry. Electron microscopic analysis of immuno-labelled native enzyme and of a subcomplex lacking the electron input module indicated a distance of 35-60 A of cluster N2 to the membrane surface. Resolution of the membrane arm into subcomplexes showed that even the distal part harbours subunits that are prime candidates to participate in proton translocation because they are homologous to sodium/proton antiporters and contain conserved charged residues in predicted transmembrane helices. The mechanism of redox linked proton translocation by complex I is largely unknown but has to include steps where energy is transmitted over extremely long distances. In this review we compile the available structural information on complex I and discuss implications for complex I function.
Collapse
Affiliation(s)
- Volker Zickermann
- Goethe-Universität, Fachbereich Medizin, Molekulare Bioenergetik, ZBC, Theodor-Stern-Kai 7, Haus 26, D-60590 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Challenges in elucidating structure and mechanism of proton pumping NADH:ubiquinone oxidoreductase (complex I). J Bioenerg Biomembr 2008; 40:475-83. [PMID: 18982432 DOI: 10.1007/s10863-008-9171-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 08/01/2008] [Indexed: 12/11/2022]
Abstract
Proton pumping NADH:ubiquinone oxidoreductase (complex I) is the most complicated and least understood enzyme of the respiratory chain. All redox prosthetic groups reside in the peripheral arm of the L-shaped structure. The NADH oxidation domain harbouring the FMN cofactor is connected via a chain of iron-sulfur clusters to the ubiquinone reduction site that is located in a large pocket formed by the PSST- and 49-kDa subunits of complex I. An access path for ubiquinone and different partially overlapping inhibitor binding regions were defined within this pocket by site directed mutagenesis. A combination of biochemical and single particle analysis studies suggests that the ubiquinone reduction site is located well above the membrane domain. Therefore, direct coupling mechanisms seem unlikely and the redox energy must be converted into a conformational change that drives proton pumping across the membrane arm. It is not known which of the subunits and how many are involved in proton translocation. Complex I is a major source of reactive oxygen species (ROS) that are predominantly formed by electron transfer from FMNH(2). Mitochondrial complex I can cycle between active and deactive forms that can be distinguished by the reactivity towards divalent cations and thiol-reactive agents. The physiological role of this phenomenon is yet unclear but it could contribute to the regulation of complex I activity in-vivo.
Collapse
|
46
|
Ichimaru N, Murai M, Kakutani N, Kako J, Ishihara A, Nakagawa Y, Nishioka T, Yagi T, Miyoshi H. Synthesis and characterization of new piperazine-type inhibitors for mitochondrial NADH-ubiquinone oxidoreductase (complex I). Biochemistry 2008; 47:10816-26. [PMID: 18781777 DOI: 10.1021/bi8010362] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mode of action of Deltalac-acetogenins, strong inhibitors of bovine heart mitochondrial complex I, is different from that of traditional inhibitors such as rotenone and piericidin A [Murai, M., et al. (2007) Biochemistry 46 , 6409-6416]. As further exploration of these unique inhibitors might provide new insights into the terminal electron transfer step of complex I, we drastically modified the structure of Deltalac-acetogenins and characterized their inhibitory action. In particular, on the basis of structural similarity between the bis-THF and the piperazine rings, we here synthesized a series of piperazine derivatives. Some of the derivatives exhibited very potent inhibition at nanomolar levels. The hydrophobicity of the side chains and their balance were important structural factors for the inhibition, as is the case for the original Deltalac-acetogenins. However, unlike in the case of the original Deltalac-acetogenins, (i) the presence of two hydroxy groups is not crucial for the activity, (ii) the level of superoxide production induced by the piperazines is relatively high, (iii) the inhibitory potency for the reverse electron transfer is remarkably weaker than that for the forward event, and (iv) the piperazines efficiently suppressed the specific binding of a photoaffinity probe of natural-type acetogenins ([ (125)I]TDA) to the ND1 subunit. We therefore conclude that the action mechanism of the piperazine series differs from that of the original Deltalac-acetogenins. The photoaffinity labeling study using a newly synthesized photoreactive piperazine ([ (125)I]AFP) revealed that this compound binds to the 49 kDa subunit and an unidentified subunit, not ND1, with a frequency of approximately 1:3. A variety of traditional complex I inhibitors as well as Deltalac-acetogenins suppressed the specific binding of [ (125)I]AFP to the subunits. The apparent competitive behavior of inhibitors that seem to bind to different sites may be due to structural changes at the binding site, rather than occupying the same site. The meaning of the occurrence of diverse inhibitors exhibiting different mechanisms of action is discussed in light of the functionality of the membrane arm of complex I.
Collapse
Affiliation(s)
- Naoya Ichimaru
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Exploring the inhibitor binding pocket of respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:660-5. [DOI: 10.1016/j.bbabio.2008.04.033] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/10/2008] [Accepted: 04/22/2008] [Indexed: 11/17/2022]
|
48
|
Tocilescu MA, Fendel U, Zwicker K, Kerscher S, Brandt U. Exploring the Ubiquinone Binding Cavity of Respiratory Complex I. J Biol Chem 2007; 282:29514-20. [PMID: 17681940 DOI: 10.1074/jbc.m704519200] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proton pumping respiratory complex I is a major player in mitochondrial energy conversion. Yet little is known about the molecular mechanism of this large membrane protein complex. Understanding the details of ubiquinone reduction will be prerequisite for elucidating this mechanism. Based on a recently published partial structure of the bacterial enzyme, we scanned the proposed ubiquinone binding cavity of complex I by site-directed mutagenesis in the strictly aerobic yeast Yarrowia lipolytica. The observed changes in catalytic activity and inhibitor sensitivity followed a consistent pattern and allowed us to define three functionally important regions near the ubiquinone-reducing iron-sulfur cluster N2. We identified a likely entry path for the substrate ubiquinone and defined a region involved in inhibitor binding within the cavity. Finally, we were able to highlight a functionally critical structural motif in the active site that consisted of Tyr-144 in the 49-kDa subunit, surrounded by three conserved hydrophobic residues.
Collapse
Affiliation(s)
- Maja A Tocilescu
- Johann Wolfgang Goethe-Universität, Fachbereich Medizin, Zentrum der Biologischen Chemie, Molekulare Bioenergetik, Centre of Excellence Frankfurt Macromolecular Complexes, D-60590 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
49
|
Abstract
The number of NADH dehydrogenases and their role in energy transduction in
Escherchia coli
have been under debate for a long time. Now it is evident that
E. coli
possesses two respiratory NADH dehydrogenases, or NADH:ubiquinone oxidoreductases, that have traditionally been called NDH-I and NDH-II. This review describes the properties of these two NADH dehydrogenases, focusing on the mechanism of the energy converting NADH dehydrogenase as derived from the high resolution structure of the soluble part of the enzyme. In
E. coli
, complex I operates in aerobic and anaerobic respiration, while NDH-II is repressed under anaerobic growth conditions. The insufficient recycling of NADH most likely resulted in excess NADH inhibiting tricarboxylic acid cycle enzymes and the glyoxylate shunt.
Salmonella enterica
serovar Typhimurium complex I mutants are unable to activate ATP-dependent proteolysis under starvation conditions. NDH-II is a single subunit enzyme with a molecular mass of 47 kDa facing the cytosol. Despite the absence of any predicted transmembrane segment it has to be purified in the presence of detergents, and the activity of the preparation is stimulated by an addition of lipids.
Collapse
|
50
|
Kerscher S, Dröse S, Zickermann V, Brandt U. The three families of respiratory NADH dehydrogenases. Results Probl Cell Differ 2007; 45:185-222. [PMID: 17514372 DOI: 10.1007/400_2007_028] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Most reducing equivalents extracted from foodstuffs during oxidative metabolism are fed into the respiratory chains of aerobic bacteria and mitochondria by NADH:quinone oxidoreductases. Three families of enzymes can perform this task and differ remarkably in their complexity and role in energy conversion. Alternative or NDH-2-type NADH dehydrogenases are simple one subunit flavoenzymes that completely dissipate the redox energy of the NADH/quinone couple. Sodium-pumping NADH dehydrogenases (Nqr) that are only found in procaryotes contain several flavins and are integral membrane protein complexes composed of six different subunits. Proton-pumping NADH dehydrogenases (NDH-1 or complex I) are highly complicated membrane protein complexes, composed of up to 45 different subunits, that are found in bacteria and mitochondria. This review gives an overview of the origin, structural and functional properties and physiological significance of these three types of NADH dehydrogenase.
Collapse
Affiliation(s)
- Stefan Kerscher
- Molecular Bioenergetics Group, Centre of Excellence Macromolecular Complexes, Johann Wolfgang Goethe-Universität, 60590, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|