1
|
Novak CM, Sethuraman S, Luikart KL, Reader BF, Wheat JS, Whitson B, Ghadiali SN, Ballinger MN. Alveolar macrophages drive lung fibroblast function in cocultures of IPF and normal patient samples. Am J Physiol Lung Cell Mol Physiol 2023; 324:L507-L520. [PMID: 36791050 PMCID: PMC10259863 DOI: 10.1152/ajplung.00263.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by increased collagen accumulation that is progressive and nonresolving. Although fibrosis progression may be regulated by fibroblasts and alveolar macrophage (AM) interactions, this cellular interplay has not been fully elucidated. To study AM-fibroblast interactions, cells were isolated from IPF and normal human lung tissue and cultured independently or together in direct 2-D coculture, direct 3-D coculture, indirect transwell, and in 3-D hydrogels. AM influence on fibroblast function was assessed by gene expression, cytokine/chemokine secretion, and hydrogel contractility. Normal AMs cultured in direct contact with fibroblasts downregulated extracellular matrix (ECM) gene expression whereas IPF AMs had little to no effect. Fibroblast contractility was assessed by encapsulating cocultures in 3-D collagen hydrogels and monitoring gel diameter over time. Both normal and IPF AMs reduced baseline contractility of normal fibroblasts but had little to no effect on IPF fibroblasts. When stimulated with Toll-like receptor (TLR) agonists, IPF AMs increased production of pro-inflammatory cytokines TNFα and IL-1β, compared with normal AMs. TLR ligand stimulation did not alter fibroblast contraction, but stimulation with exogenous TNFα and TGFβ did alter contraction. To determine if the observed changes required cell-to-cell contact, AM-conditioned media and transwell systems were utilized. Transwell culture showed decreased ECM gene expression changes compared with direct coculture and conditioned media from AMs did not alter fibroblast contraction regardless of disease state. Taken together, these data indicate that normal fibroblasts are more responsive to AM crosstalk, and that AM influence on fibroblast behavior depends on cell proximity.
Collapse
Affiliation(s)
- Caymen M Novak
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Shruthi Sethuraman
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States
| | - Kristina L Luikart
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States
| | - Brenda F Reader
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States
| | - Jana S Wheat
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Bryan Whitson
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States
| | - Samir N Ghadiali
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States
| | - Megan N Ballinger
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| |
Collapse
|
2
|
Shi R, Xu M, Ye H, Gao S, Li J, Li H, Li C. Cycloheximide promotes type I collagen maturation mainly via collagen prolyl 4-hydroxylase subunit α2. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1832-1840. [PMID: 36789685 PMCID: PMC10157532 DOI: 10.3724/abbs.2022191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aberrant deposition of collagen is associated with cancer development and tissue fibrosis. Proline hydroxylation, catalyzed by collagen prolyl 4-hydroxylases (C-P4Hs), is necessary for collagen maturation and secretion. Here, we try to evaluate the mechanism of the regulation of CHX on collagen maturation. Using pepsin digestion, liquid chromatograph mass spectrometry and gene knockout, we find that treatment of mouse embryonic fibroblasts with cycloheximide (CHX) increases type I collagen proline hydroxylation partially via P4HA1 and mainly via P4HA2. Western blot analysis results show that CHX treatment reduces type I collagen but does not obviously impact the level of P4HA1/2 protein in the endoplasmic reticulum, which enhances the molar ratio of P4HA1/2 to type I collagen, and coimmunoprecipitation results confirm that more P4HA1/2 can bind to each type I collagen. Since C-P4Hs possess the capability to hydroxylate proline independent of ascorbate for a few cycles, this enhanced binding between P4HA1/2 and type I collagen can partially explain how CHX stimulates type I collagen maturation.
Collapse
|
3
|
Okuno D, Sakamoto N, Akiyama Y, Tokito T, Hara A, Kido T, Ishimoto H, Ishimatsu Y, Tagod MSO, Okamura H, Tanaka Y, Mukae H. Two Distinct Mechanisms Underlying γδ T Cell-Mediated Regulation of Collagen Type I in Lung Fibroblasts. Cells 2022; 11:cells11182816. [PMID: 36139391 PMCID: PMC9496746 DOI: 10.3390/cells11182816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a chronic intractable lung disease, leading to respiratory failure and death. Although anti-fibrotic agents delay disease progression, they are not considered curative treatments, and alternative modalities have attracted attention. We examined the effect of human γδ T cells on collagen type I in lung fibroblasts. Collagen type I was markedly reduced in a γδ T cell number-dependent manner following treatment with γδ T cells expanded with tetrakis-pivaloxymethyl 2-(thiazole-2-ylamino) ethylidene-1,1-bisphosphonate (PTA) and interleukin-2. Collagen type I levels remained unchanged on addition of γδ T cells to the culture system through a trans-well culture membrane, suggesting that cell–cell contact is essential for reducing its levels in lung fibroblasts. Re-stimulating γδ T cells with (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP) reduced collagen type I levels without cell–cell contact, indicating the existence of HMBPP-induced soluble anti-fibrotic factors in γδ T cells. Adding anti-interferon-γ (IFN-γ)-neutralizing mAb restored collagen type I levels, demonstrating that human γδ T cell-derived IFN-γ reduces collagen type I levels. Conversely, interleukin-18 augmented γδ T cell-induced suppression of collagen type I. Therefore, human γδ T cells reduce collagen levels in lung fibroblasts via two distinct mechanisms; adoptive γδ T cell transfer is potentially a new therapeutic candidate.
Collapse
Affiliation(s)
- Daisuke Okuno
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Noriho Sakamoto
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
- Correspondence: ; Tel.: +81-95-819-7273
| | - Yoshiko Akiyama
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Takatomo Tokito
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Atsuko Hara
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Takashi Kido
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Hiroshi Ishimoto
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Yuji Ishimatsu
- Department of Nursing, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8520, Japan
| | | | - Haruki Okamura
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki 852-8588, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| |
Collapse
|
4
|
LaChance AH, Goldman N, Kassamali B, Vleugels RA. Immunologic underpinnings and treatment of morphea. Expert Rev Clin Immunol 2022; 18:461-483. [DOI: 10.1080/1744666x.2022.2063841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Avery H. LaChance
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Nathaniel Goldman
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts
- New York Medical College School of Medicine, Valhalla, NY
| | - Bina Kassamali
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Ruth Ann Vleugels
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
5
|
Saad RE, Shobar R, Mutlu EA. Collagenous colitis development occurs after long standing mucosal healing in IBD with TNF-α inhibitors, and could be due to exaggerated healing response from excess TNF-α inhibition. Med Hypotheses 2019; 123:90-94. [PMID: 30696605 DOI: 10.1016/j.mehy.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/06/2019] [Indexed: 12/16/2022]
Abstract
Collagenous colitis is a relatively rare disorder affecting mainly middle-aged women where they present with chronic non-bloody diarrhea. Both with lymphocytic colitis they compose microscopic colitis. The exact cause of collagenous colitis is still unknown however; many potential pathophysiologic mechanisms have been proposed but no convincing mechanism has been identified. Collagenous colitis has been linked to medications mainly NSAIDs, SSRIs, and PPIs. It is also believed that collagenous colitis is autoimmune disease and there are weak believe it could have some genetic inheritance. We reported before two cases of collagenous colitis developed in patients with Crohn's disease and ulcerative colitis while they were in complete mucosal remission after being treated with tumor necrosis factors-α inhibitors. In this article we will try to explain how collagenous colitis can develop in patients with inflammatory bowel disease especially those on tumor necrosis factors-α inhibitors.
Collapse
Affiliation(s)
- Rahoma E Saad
- Section of Gastroenterology, Hepatology & Nutrition, Rush University Medical Center, Chicago, IL, United States
| | - Rima Shobar
- Section of Gastroenterology, Hepatology & Nutrition, Rush University Medical Center, Chicago, IL, United States
| | - Ece A Mutlu
- Section of Gastroenterology, Hepatology & Nutrition, Rush University Medical Center, Chicago, IL, United States.
| |
Collapse
|
6
|
Progranulin overproduction due to constitutively activated c-Abl/PKC-δ/Fli1 pathway contributes to the resistance of dermal fibroblasts to the anti-fibrotic effect of tumor necrosis factor-α in localized scleroderma. J Dermatol Sci 2018; 92:207-214. [DOI: 10.1016/j.jdermsci.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/02/2018] [Accepted: 09/11/2018] [Indexed: 11/21/2022]
|
7
|
The in vitro effects of macrophages on the osteogenic capabilities of MC3T3-E1 cells encapsulated in a biomimetic poly(ethylene glycol) hydrogel. Acta Biomater 2018; 71:37-48. [PMID: 29505890 DOI: 10.1016/j.actbio.2018.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/06/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
Abstract
Poly(ethylene glycol) PEG-based hydrogels are promising for cell encapsulation and tissue engineering, but are known to elicit a foreign body response (FBR) in vivo. The goal of this study was to investigate the impact of the FBR, and specifically the presence of inflammatory macrophages, on encapsulated cells and their ability to synthesize new extracellular matrix. This study employed an in vitro co-culture system with murine macrophages and MC3T3-E1 pre-osteoblasts encapsulated in a bone-mimetic hydrogel, which were cultured in transwell inserts, and exposed to an inflammatory stimulant, lipopolysaccharide (LPS). The co-culture was compared to mono-cultures of the cell-laden hydrogels alone and with LPS over 28 days. Two macrophage cell sources, RAW 264.7 and primary derived, were investigated. The presence of LPS-stimulated primary macrophages led to significant changes in the cell-laden hydrogel by a 5.3-fold increase in percent apoptotic osteoblasts at day 28, 4.2-fold decrease in alkaline phosphatase activity at day 10, and 7-fold decrease in collagen deposition. The presence of LPS-stimulated RAW macrophages led to significant changes in the cell-laden hydrogel by 5-fold decrease in alkaline phosphatase activity at day 10 and 4-fold decrease in collagen deposition. Mineralization, as measured by von Kossa stain or quantified by calcium content, was not sensitive to macrophages or LPS. Elevated interleukin-6 and tumor necrosis factor-α secretion were detected in mono-cultures with LPS and co-cultures. Overall, primary macrophages had a more severe inhibitory effect on osteoblast differentiation than the macrophage cell line, with greater apoptosis and collagen I reduction. In summary, this study highlights the detrimental effects of macrophages on encapsulated cells for bone tissue engineering. STATEMENT OF SIGNIFICANCE Poly(ethylene glycol) (PEG)-based hydrogels are promising for cell encapsulation and tissue engineering, but are known to elicit a foreign body response (FBR) in vivo. The impact of the FBR on encapsulated cells and their ability to synthesize tissue has not been well studied. This study utilizes thiol-ene click chemistry to create a biomimetic, enzymatically degradable hydrogel system with which to encapsulate MC3T3-E1 pre-osteoblasts. The osteogenic capabilities and differentiation of these cellswerestudied in co-culture with macrophages, known drivers of the FBR.This study demonstrates that macrophages reduce osteogenic capabilities of encapsulated cellsin vitroand suggestthat the FBR should be considered for in vivo tissue engineering.
Collapse
|
8
|
Liu J, Kang SG, Wang P, Wang Y, Lv X, Liu Y, Wang F, Gu Z, Yang Z, Weber JK, Tao N, Qin Z, Miao Q, Chen C, Zhou R, Zhao Y. Molecular mechanism of Gd@C 82(OH) 22 increasing collagen expression: Implication for encaging tumor. Biomaterials 2017; 152:24-36. [PMID: 29080421 DOI: 10.1016/j.biomaterials.2017.10.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/14/2017] [Accepted: 10/15/2017] [Indexed: 10/18/2022]
Abstract
Gadolinium-containing fullerenol Gd@C82(OH)22 has demonstrated low-toxicity and highly therapeutic efficacy in inhibiting tumor growth and metastasis through new strategy of encaging cancer, however, little is known about the mechanisms how this nanoparticle regulates fibroblast cells to prison (instead of poison) cancer cells. Here, we report that Gd@C82(OH)22 promote the binding activity of tumor necrosis factor (TNFα) to tumor necrosis factor receptors 2 (TNFR2), activate TNFR2/p38 MAPK signaling pathway to increase cellular collagen expression in fibrosarcoma cells and human primary lung cancer associated fibroblasts isolated from patients. We also employ molecular dynamics simulations to study the atomic-scale mechanisms that dictate how Gd@C82(OH)22 mediates interactions between TNFα and TNFRs. Our data suggest that Gd@C82(OH)22 might enhance the association between TNFα and TNFR2 through a "bridge-like" mode of interaction; by contrast, the fullerenol appears to inhibit TNFα-TNFR1 association by binding to two of the receptor's cysteine-rich domains. In concert, our results uncover a sequential, systemic process by which Gd@C82(OH)22 acts to prison tumor cells, providing new insights into principles of designs of cancer therapeutics.
Collapse
Affiliation(s)
- Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Seung-Gu Kang
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - Peng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yue Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiaonan Lv
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Fei Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zonglin Gu
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Zaixing Yang
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Jeffrey K Weber
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - Ning Tao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhihai Qin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Miao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Ruhong Zhou
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA; Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
9
|
In Situ Cytokine Expression and Morphometric Evaluation of Total Collagen and Collagens Type I and Type III in Keloid Scars. Mediators Inflamm 2017. [PMID: 28638180 PMCID: PMC5468593 DOI: 10.1155/2017/6573802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Keloids are characterized by excessive collagen deposition and growth beyond the edges of the initial injury, and cytokines may be related to their formation. The objective of this study was to evaluate the collagen fibers, analyze in situ expression of cytokines in keloid lesions, and compare to the control group. Results showed that there was a predominance of women and nonwhite and direct black ancestry. Keloid showed a significant increase in total and type III collagen. Significantly, the expression of mRNA for TGF-β in keloid was increased, the expressions of IFN-γ, IFN-γR1, and IL-10 were lower, and IFN-γR1 and TNF-α had no statistical difference. Correlations between collagen type III and TGF-β mRNA expression were positive and significant, IFN-γ, IFN-γR1, and IL-10 were negative and significant, and TNF-α showed no statistical difference. We conclude that there was a significant increase of total collagen in keloid and predominance of collagen type III compared to the controls, showing keloid as an immature lesion. There is a significant increase in TGF-β mRNA in keloid lesions, and a significant decrease in IFN-γ and IL-10, suggesting that these cytokines are related to keloid lesions.
Collapse
|
10
|
Jian J, Li G, Hettinghouse A, Liu C. Progranulin: A key player in autoimmune diseases. Cytokine 2016; 101:48-55. [PMID: 27527809 DOI: 10.1016/j.cyto.2016.08.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/03/2016] [Accepted: 08/06/2016] [Indexed: 12/28/2022]
Abstract
Autoimmune disease encompasses an array of conditions with a variety of presentations and the involvement of multiple organs. Though the etiologies of many autoimmune conditions are unclear, uncontrolled inflammatory immune response is believed to be a major cause of disease development and progression. Progranulin (PGRN), an anti-inflammatory molecule with therapeutic effect in inflammatory arthritis, was identified as an endogenous antagonist of TNFα by competitively binding to TNFR. PGRN exerts its anti-inflammatory activity through multiple pathways, including induction of Treg differentiation and IL-10 expression and inhibition of chemokine release from macrophages. In addition, the protective role of PGRN has also been demonstrated in osteoarthritis, inflammatory bowel disease, and psoriasis. Intriguingly, PGRN was reported to contribute to development of insulin resistance in high-fat diet induced diabetes. Emerging evidences indicate that PGRN may also be associated with various autoimmune diseases, including systemic lupus erythematous, systemic sclerosis, multiple sclerosis and Sjogren's syndrome. This review summarizes recent studies of PGRN as a novel target molecule in the field of autoimmune disease, and provides updated information to inspire future studies.
Collapse
Affiliation(s)
- Jinlong Jian
- Department of Orthopedics Surgery, New York University School of Medicine, New York, NY 10003, United States
| | - Guangfei Li
- Department of Orthopedics Surgery, New York University School of Medicine, New York, NY 10003, United States; Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Aubryanna Hettinghouse
- Department of Orthopedics Surgery, New York University School of Medicine, New York, NY 10003, United States
| | - Chuanju Liu
- Department of Orthopedics Surgery, New York University School of Medicine, New York, NY 10003, United States; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
11
|
Ichimura Y, Asano Y, Akamata K, Noda S, Taniguchi T, Takahashi T, Toyama T, Tada Y, Sugaya M, Sato S, Kadono T. Progranulin Overproduction Due to Fli-1 Deficiency Contributes to the Resistance of Dermal Fibroblasts to Tumor Necrosis Factor in Systemic Sclerosis. Arthritis Rheumatol 2016; 67:3245-55. [PMID: 26245842 DOI: 10.1002/art.39312] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 07/30/2015] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Progranulin is a growth factor that is active in wound repair and is an antagonist of tumor necrosis factor (TNF) receptors, regulating fibroblast activation, angiogenesis, and inflammation. Because long-standing activation of gene programs related to wound healing is a hallmark of systemic sclerosis (SSc), we sought to investigate the role of progranulin in SSc. METHODS Progranulin expression levels in human and murine skin samples were determined by immunohistochemical analysis and quantitative reverse transcription-polymerase chain reaction. The role of progranulin in fibroblast activation was examined using a gene-silencing technique. Progranulin levels in serum obtained from 60 patients with SSc and 16 healthy control subjects were determined by enzyme-linked immunosorbent assay. RESULTS Progranulin expression was increased in SSc dermal fibroblasts compared with normal dermal fibroblasts, both in vivo and in vitro. Transcription factor Fli-1, a deficiency of which is involved in the activation of SSc dermal fibroblasts, served as a potent repressor of the progranulin gene, and Fli-1(+/-) mice and bleomycin-treated wild-type mice exhibited up-regulated expression of progranulin in dermal fibroblasts. SSc dermal fibroblasts were resistant to the antifibrotic effect of TNF, but this resistance was reversed by gene silencing of progranulin. Serum progranulin levels were elevated in patients with early diffuse cutaneous SSc (dcSSc), especially in those with inflammatory skin symptoms, and were positively correlated with the C-reactive protein level. CONCLUSION Progranulin overproduction due to Fli-1 deficiency may contribute to the constitutive activation of SSc dermal fibroblasts by antagonizing the antifibrotic effect of TNF. Progranulin may also be involved in the inflammatory process associated with progressive skin sclerosis in early dcSSc.
Collapse
Affiliation(s)
- Yohei Ichimura
- University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshihide Asano
- University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kaname Akamata
- University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinji Noda
- University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | | - Tetsuo Toyama
- University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yayoi Tada
- University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Makoto Sugaya
- University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takafumi Kadono
- University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Peng Y, Kim JM, Park HS, Yang A, Islam C, Lakatta EG, Lin L. AGE-RAGE signal generates a specific NF-κB RelA "barcode" that directs collagen I expression. Sci Rep 2016; 6:18822. [PMID: 26729520 PMCID: PMC4700418 DOI: 10.1038/srep18822] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/26/2015] [Indexed: 01/10/2023] Open
Abstract
Advanced glycation end products (AGEs) are sugar-modified biomolecules that accumulate in the body with advancing age, and are implicated in the development of multiple age-associated structural and functional abnormities and diseases. It has been well documented that AGEs signal via their receptor RAGE to activate several cellular programs including NF-κB, leading to inflammation. A large number of stimuli can activate NF-κB; yet different stimuli, or the same stimulus for NF-κB in different cellular settings, produce a very different transcriptional landscape and physiological outcome. The NF-κB barcode hypothesis posits that cellular network dynamics generate signal-specific post-translational modifications, or a “barcode” to NF-κB, and that a signature “barcode” mediates a specific gene expression pattern. In the current study, we established that AGE-RAGE signaling results in NF-κB activation that directs collagen Ia1 and Ia2 expression. We further demonstrated that AGE-RAGE signal induces phosphorylation of RelA at three specific residues, T254, S311, and S536. These modifications are required for transcription of collagen I genes and are a consequence of cellular network dynamics. The increase of collagen content is a hallmark of arterial aging, and our work provides a potential mechanistic link between RAGE signaling, NF-κB activation, and aging-associated arterial alterations in structure and function.
Collapse
Affiliation(s)
- Yunqian Peng
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institute of Health, Baltimore, MD 21224
| | - Ji-Min Kim
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institute of Health, Baltimore, MD 21224
| | - Hal-Sol Park
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institute of Health, Baltimore, MD 21224
| | - Annie Yang
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institute of Health, Baltimore, MD 21224
| | - Celia Islam
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institute of Health, Baltimore, MD 21224
| | - Edward G Lakatta
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institute of Health, Baltimore, MD 21224
| | - Li Lin
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institute of Health, Baltimore, MD 21224
| |
Collapse
|
13
|
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a lung limited, progressive fibrotic disease with a poor prognosis. The cause is unknown, and currently there is no treatment that reverses the disease or stops progression. This combination of a poor prognosis and the absence of curative therapy has prompted a sustained investigative effort to identify beneficial treatments. Recently released trial results suggest progress. AREAS COVERED Although the mechanism of disease is poorly understood, a number of compounds that influence pathways thought to play a mechanistic role have been studied for use in IPF. This article discusses a number of these landmark trials. EXPERT OPINION From these studies we conclude that the future treatment of IPF will include expanding pharmacological options. Recent studies have identified two agents that appear to slow disease progression and may offer a window into pathogenesis and future drug targets.
Collapse
Affiliation(s)
- Amen Sergew
- a Department of Medicine , National Jewish Health , 1400 Jackson St, M336, Denver , CO 80206 , USA
| | - Kevin K Brown
- a Department of Medicine , National Jewish Health , 1400 Jackson St, M336, Denver , CO 80206 , USA
| |
Collapse
|
14
|
Matsuura-Hachiya Y, Nakai Y, Abe K, Nishiyama T, Arai KY. Recovery of extracellular matrix components by enalapril maleate during the repair process of ultraviolet B-induced wrinkles in mouse skin. Biochem Biophys Rep 2015; 4:180-186. [PMID: 29124203 PMCID: PMC5668924 DOI: 10.1016/j.bbrep.2015.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/10/2015] [Accepted: 09/15/2015] [Indexed: 01/07/2023] Open
Abstract
The renin–angiotensin system is known to be involved in skin remodeling and inflammation. Previously, we reported that ultraviolet B (UVB) irradiation enhanced angiotensin-converting enzyme (ACE) expression and angiotensin II levels in hairless mouse skin, and an ACE inhibitor, enalapril maleate (EM), accelerated repair of UVB-induced wrinkles. In this study, we analyzed gene expression profiles by DNA microarray and protein distribution patterns using an immunofluorescence method to clarify the process of EM-accelerated wrinkle repair in UVB-irradiated hairless mouse skin. In the microarray analysis, we detected EM-induced up-regulation of various extracellular matrix (ECM)-related genes in the UVB-irradiated skin. In the immunofluorescence, we confirmed that type I collagen α1 chain, fibrillin 1, elastin and dystroglycan 1 in the skin decreased after repeated UVB irradiation but staining for these proteins was improved by EM treatment. In addition, ADAMTS2 and MMP-14 also increased in the EM-treated skin. Although the relationship between these molecules and wrinkle formation is not clear yet, our present data suggest that the molecules are involved in the repair of UVB-induced wrinkles. Effects of an ACE inhibitor enalapril maleate (EM) on skin were examined. Extracellular matrix (ECM) expression decreased in UVB-irradiated mouse skin. EM up-regulated ECM gene expression in the UVB-irradiated skin. EM accelerated recovery of ECM protein localization in the UVB-irradiated skin.
Collapse
Affiliation(s)
- Yuko Matsuura-Hachiya
- Scleroprotein Research Institute, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yuji Nakai
- Institute for Food Sciences, Hirosaki University, 2-1-1 Yanagawa, Aomori, 038-0012, Japan
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Project on Health and Anti-aging, Kanagawa Academy of Science and Technology, Life Science and Environment Research Center (LiSE) 4 FC-4, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Toshio Nishiyama
- Scleroprotein Research Institute, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Koji Y. Arai
- Scleroprotein Research Institute, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Corresponding author. Fax: +81 42 367 5791.
| |
Collapse
|
15
|
Optimal Timing of Whole-Brain Radiation Therapy Following Craniotomy for Cerebral Malignancies. World Neurosurg 2015; 84:412-9. [PMID: 25839399 DOI: 10.1016/j.wneu.2015.03.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND For patients with cerebral metastases that are limited in number, surgical resection followed by whole-brain radiation therapy is the standard of care. In addition, for high-grade gliomas, maximal surgical resection followed by local radiotherapy is considered the optimal treatment. Radiation is known to impair wound healing, including healing of surgical incisions. Radiotherapy shortly after surgical resection would be expected to minimize the opportunity for tumor regrowth or progression. Owing to these competing interests, the purpose of this study was to shed light on the optimal timing of radiotherapy after surgical resection of brain metastasis or high-grade gliomas. METHODS A review of the literature was conducted on the following topics: radiation and wound healing, corticosteroid use and wound healing, radiotherapy for tumor control for cerebral metastases and high-grade gliomas, and whole-brain radiation therapy or focal radiotherapy after craniotomy with focus on the timing of radiotherapy after surgery. RESULTS In animal models, wound integrity and healing was less impaired by radiotherapy administered 1 week after surgery. In humans, this timing would be expected to be significantly longer, on the order of several weeks. CONCLUSIONS Given the limited literature, insufficient conclusions can be drawn. However, animal data suggest a period of at least 1 week (but it is likely several weeks in humans) is necessary for reconstitution of wound strength before initiation of radiation therapy. A randomized prospective study is recommended to understand better the effect of the timing of radiation therapy following surgical intervention for brain metastasis or high-grade gliomas.
Collapse
|
16
|
Williamson JD, Sadofsky LR, Hart SP. The pathogenesis of bleomycin-induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis. Exp Lung Res 2014; 41:57-73. [PMID: 25514507 DOI: 10.3109/01902148.2014.979516] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown etiology, for which there is no curative pharmacological therapy. Bleomycin, an anti-neoplastic agent that causes lung fibrosis in human patients has been used extensively in rodent models to mimic IPF. In this review, we compare the pathogenesis and histological features of human IPF and bleomycin-induced pulmonary fibrosis (BPF) induced in rodents by intratracheal delivery. We discuss the current understanding of IPF and BPF disease development, from the contribution of alveolar epithelial cells and inflammation to the role of fibroblasts and cytokines, and draw conclusions about what we have learned from the intratracheal bleomycin model of lung fibrosis.
Collapse
Affiliation(s)
- James D Williamson
- Hull York Medical School, Centre for Cardiovascular and Metabolic Research, Academic Respiratory Medicine , Castle Hill Hospital, Hull , United Kingdom
| | | | | |
Collapse
|
17
|
Abstract
Among the pathogenesis and risk factors of alcoholic liver disease (ALD) are the source of dietary fat, obesity, insulin resistance, adipokines and acetaldehyde. Translocation of Gram-negative bacteria from the gut, the subsequent effects mediated by endotoxin, and the increased production of matricellular proteins, cytokines, chemokines and growth factors, actively participate in the progression of liver injury. In addition, generation of reactive oxygen and nitrogen species and the activation of non-parenchymal cells also contribute to the pathophysiology of ALD. A key event leading to liver damage is the transition of quiescent hepatic stellate cells into activated myofibroblasts, with the consequent deposition of fibrillar collagen I resulting in significant scarring. Thus, it is becoming clearer that matricellular proteins are critical players in the pathophysiology of liver disease; however, additional mechanistic insight is needed to understand the signalling pathways involved in the up-regulation of collagen I protein. At present, systems biology approaches are helping to answer the many unresolved questions in this field and are allowing to more comprehensively identify protein networks regulating pathological collagen I deposition in hopes of determining how to prevent the onset of liver fibrosis and/or to slow disease progression. Thus, this review article provides a snapshot on current efforts for identifying pathological protein regulatory networks in the liver using systems biology tools. These approaches hold great promise for future research in liver disease.
Collapse
Affiliation(s)
- Natalia Nieto
- Department of Medicine, Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
18
|
Beauchef G, Bigot N, Kypriotou M, Renard E, Porée B, Widom R, Dompmartin-Blanchere A, Oddos T, Maquart FX, Demoor M, Boumediene K, Galera P. The p65 Subunit of NF-κB Inhibits COL1A1 Gene Transcription in Human Dermal and Scleroderma Fibroblasts through Its Recruitment on Promoter by Protein Interaction with Transcriptional Activators (c-Krox, Sp1, and Sp3). J Biol Chem 2012; 287:3462-78. [DOI: 10.1074/jbc.m111.286443] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
19
|
VENUGOPAL J, JAYARAMAN V, BABU MARY, RAMAKRISHNA S. ROLE OF PHENERGAN IN ABNORMAL SCARS AND KELOIDS. J BIOL SYST 2011. [DOI: 10.1142/s0218339004001300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hypertrophic scar and keloids have affected patients and frustrated physicians for centuries. Hypertrophic scar (HSc) and keloids are a major problem for patients who survive extensive thermal and traumatic skin injuries. HSc and other fibroproliferative disorders are associated with excessive accumulation of collagen and extracellular matrix proteins due to an imbalance between synthesis and degradation. The therapeutic management of hypertrophic scars and keloids include occlusive dressings, compression therapy, intralesional corticosteroid injections, cryosurgery, excision, radiation therapy, laser therapy, interferon therapy and other promising lesser known therapies directed at collagen synthesis. In this study we investigated the effect of phenergan (promethazine hydrochloride) as one of the most potent histamine antagonists on cell proliferation, DNA synthesis and collagen production in fibroblast isolated from human post burn hypertrophic scar, keloids and normal skin. The proliferation of normal skin fibroblast was slightly decreased but hypertrophic scar and keloids showed significant (p<0.001) level of decrease after 72 hours of phenergan (750 μM) treatment. The results of DNA synthesis also significantly (p<0.001) decreased in hypertrophic scar and keloid fibroblasts. Phenergan (1.5 mM) decreased the collagen synthesis upto 61% and 66% in HSc and keloids in comparison to normal skin fibroblast, which showed reduction of 38% after 72 hours. Improved understanding of such regulatory mechanisms may eventually be of therapeutic significance in the control of hypertrophic scar and keloids.
Collapse
Affiliation(s)
- J. VENUGOPAL
- Department of Biochemistry, NUSNNI, 9 Engineering Drive 1, Block E3, 05-14, National University of Singapore, Singapore 117576, Singapore
| | - V. JAYARAMAN
- Department of Biomaterials, Central Leather Research Institute, Chennai-20, India
| | - MARY BABU
- Child's Trust Hospital, Nungampakkam, Chennai-600 034, India
| | - S. RAMAKRISHNA
- Department of Biochemistry, NUSNNI, 9 Engineering Drive 1, Block E3, 05-14, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
20
|
Transforming Growth Factor-β1 (TGF-β1) Driven Epithelial to Mesenchymal Transition (EMT) is Accentuated by Tumour Necrosis Factor α (TNFα) via Crosstalk Between the SMAD and NF-κB Pathways. CANCER MICROENVIRONMENT 2011; 5:45-57. [PMID: 21792635 DOI: 10.1007/s12307-011-0080-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/18/2011] [Indexed: 12/15/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is a process by which an epithelial cell alters its phenotype to that of a mesenchymal cell and plays a critical role in embryonic development, tumour invasion and metastasis and tissue fibrosis. Transforming growth factor-β1 (TGF-β1) continues to be regarded as the key growth factor involved in driving EMT however recently tumour necrosis factor α (TNFα) has been demonstrated to accentuate TGF-β1 driven EMT. In this study we investigate how various signalling pathways contribute to this accentuated effect. A549 cells were treated with TGF-β1 (10 ng/ml), TNFα (20 ng/ml) or a combination of both for 72 h and EMT assessed. The effect of selective inhibition of the SMAD, MAPK and NF-κB pathways on EMT was assessed. A549 cells treated with TGF-β1 downregulate the expression of epithelial markers, increase the expression of mesenchymal markers, secrete matrix-metalloproteinases and become invasive. Significantly, TGF-β1 driven EMT is accentuated by co-treatment with TNFα. SMAD 3 inhibition attenuated TGF-β1 driven EMT but has no effect on the accentuation effect of TNFα. However, inhibiting IKKβ blocked both TGF-β1 driven EMT and the accentuating action of TNFα. Inhibiting p38 and ERK signalling had no effect on EMT. TNFα accentuates TGF-β1 driven EMT in A549 cells via a SMAD 2/3 independent mechanism involving the NF-κB pathway independent of p38 and ERK 1/2 activation.
Collapse
|
21
|
Breous E, Somanathan S, Bell P, Wilson JM. Inflammation promotes the loss of adeno-associated virus-mediated transgene expression in mouse liver. Gastroenterology 2011; 141:348-57, 357.e1-3. [PMID: 21640112 PMCID: PMC3269906 DOI: 10.1053/j.gastro.2011.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 03/07/2011] [Accepted: 04/01/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Non-self transgenes delivered to mouse liver via adeno-associated virus (AAV) are expressed stably due to the induction of immune tolerance. However, such transgene expression has been reported to be lost in higher-order primates. We investigated whether inflammatory processes, which likely differ between species, impact the stability of transgene expression. METHODS We developed a mouse model that mimics a scenario in which a subject that has received hepatic AAV-mediated gene transfer develops subsequent, vector-unrelated, systemic inflammation. RESULTS Inflammation eliminated previously stable expression of transgenes delivered by AAV; the limited tissue destruction and persistence of AAV genomes implicated pathways besides the cytotoxic T-cell response. Tumor necrosis factor-a down-regulated expression of the transgene from the AAV, indicating a role for similar inflammatory cytokines in such loss of transgene expression. CONCLUSIONS Inflammation can block AAV-mediated expression of transgenes in mouse liver. The presence of inflammation might therefore affect hepatic expression of transgenes from viral vectors in humans.
Collapse
|
22
|
Tarrats N, Moles A, Morales A, García-Ruiz C, Fernández-Checa JC, Marí M. Critical role of tumor necrosis factor receptor 1, but not 2, in hepatic stellate cell proliferation, extracellular matrix remodeling, and liver fibrogenesis. Hepatology 2011; 54:319-27. [PMID: 21523796 PMCID: PMC3125435 DOI: 10.1002/hep.24388] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Tumor necrosis factor (TNF) has been implicated in the progression of many chronic liver diseases leading to fibrosis; however, the role of TNF in fibrogenesis is controversial and the specific contribution of TNF receptors to hepatic stellate cell (HSC) activation remains to be established. Using HSCs from wild-type, TNF-receptor-1 (TNFR1) knockout, TNF-receptor-2 (TNFR2) knockout, or TNFR1/R2 double-knockout (TNFR-DKO) mice, we show that loss of both TNF receptors reduced procollagen-α1(I) expression, slowed down HSC proliferation, and impaired platelet-derived growth factor (PDGF)-induced promitogenic signaling in HSCs. TNFR-DKO HSCs exhibited decreased AKT phosphorylation and in vitro proliferation in response to PDGF. These effects were reproduced in TNFR1 knockout, but not TNFR2 knockout, HSCs. In addition, matrix metalloproteinase 9 (MMP-9) expression was dependent on TNF binding to TNFR1 in primary mouse HSCs. These results were validated in the human HSC cell line, LX2, using neutralizing antibodies against TNFR1 and TNFR2. Moreover, in vivo liver damage and fibrogenesis after bile-duct ligation were reduced in TNFR-DKO and TNFR1 knockout mice, compared to wild-type or TNFR2 knockout mice. CONCLUSION TNF regulates HSC biology through its binding to TNFR1, which is required for HSC proliferation and MMP-9 expression. These data indicate a regulatory role for TNF in extracellular matrix remodeling and liver fibrosis, suggesting that targeting TNFR1 may be of benefit to attenuate liver fibrogenesis.
Collapse
Affiliation(s)
- Núria Tarrats
- IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, and Department of Cell Death and Proliferation, IIBB-CSIC, 08036-Barcelona, Spain
| | - Anna Moles
- IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, and Department of Cell Death and Proliferation, IIBB-CSIC, 08036-Barcelona, Spain
| | - Albert Morales
- IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, and Department of Cell Death and Proliferation, IIBB-CSIC, 08036-Barcelona, Spain
| | - Carmen García-Ruiz
- IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, and Department of Cell Death and Proliferation, IIBB-CSIC, 08036-Barcelona, Spain
| | - José C. Fernández-Checa
- IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, and Department of Cell Death and Proliferation, IIBB-CSIC, 08036-Barcelona, Spain,Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Montserrat Marí
- IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, and Department of Cell Death and Proliferation, IIBB-CSIC, 08036-Barcelona, Spain
| |
Collapse
|
23
|
Anumolu SS, Menjoge AR, Deshmukh M, Gerecke D, Stein S, Laskin J, Sinko PJ. Doxycycline hydrogels with reversible disulfide crosslinks for dermal wound healing of mustard injuries. Biomaterials 2011; 32:1204-17. [PMID: 20950853 PMCID: PMC2995374 DOI: 10.1016/j.biomaterials.2010.08.117] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 08/25/2010] [Indexed: 02/09/2023]
Abstract
Doxycycline hydrogels containing reversible disulfide crosslinks were investigated for a dermal wound healing application. Nitrogen mustard (NM) was used as a surrogate to mimic the vesicant effects of the chemical warfare agent sulfur mustard. An 8-arm-poly(ethylene glycol) (PEG) polymer containing multiple thiol (-SH) groups was crosslinked using hydrogen peroxide (H(2)O(2) hydrogel) or 8-arm-S-thiopyridyl (S-TP hydrogel) to form a hydrogel in situ. Formulation additives (glycerin, PVP and PEG 600) were found to promote dermal hydrogel retention for up to 24 h. Hydrogels demonstrated high mechanical strength and a low degree of swelling (< 1.5%). Doxycycline release from the hydrogels was biphasic and sustained for up to 10-days in vitro. Doxycycline (8.5 mg/cm(3)) permeability through NM-exposed skin was elevated as compared to non vesicant-treated controls at 24, 72 and 168 h post-exposure with peak permeability at 72 h. The decrease in doxycycline permeability at 168 h correlates to epidermal re-epithelialization and wound healing. Histology studies of skin showed that doxycycline loaded (0.25% w/v) hydrogels provided improved wound healing response on NM-exposed skin as compared to untreated skin and skin treated with placebo hydrogels in an SKH-1 mouse model. In conclusion, PEG-based doxycycline hydrogels are promising for dermal wound healing application of mustard injuries.
Collapse
Affiliation(s)
| | | | - Manjeet Deshmukh
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA. UMDNJ-Rutgers CounterACT Research Center of Excellence, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Donald Gerecke
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA. UMDNJ-Rutgers CounterACT Research Center of Excellence, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Stanley Stein
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA. UMDNJ-Rutgers CounterACT Research Center of Excellence, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Jeffrey Laskin
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA. UMDNJ-Rutgers CounterACT Research Center of Excellence, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Patrick J. Sinko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA. UMDNJ-Rutgers CounterACT Research Center of Excellence, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
24
|
Chizzolini C, Brembilla NC, Montanari E, Truchetet ME. Fibrosis and immune dysregulation in systemic sclerosis. Autoimmun Rev 2010; 10:276-81. [PMID: 20863906 DOI: 10.1016/j.autrev.2010.09.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autoimmune and inflammatory phenomena are characteristically present in systemic sclerosis (SSc) and impact on dysregulated fibroblast extracellular matrix deposition, hallmark of the disease in conjunction with fibroproliferative vasculopathy. Oligoclonal T helper 2-like cells are present in the skin and peripheral blood in early diffuse disease. Type 2 cytokines synergize with profibrotic cytokines including transforming growth factor beta, favoring collagen deposition and metalloproteinase inhibition by fibroblasts. Furthermore, chemokine with pro-fibrotic and pro-angiogenic properties are preferentially produced by fibroblasts under the influence of Th2-like cells. The profibrotic monocyte chemotactic protein 1 is also produced by fibroblasts, partially in response to Toll-like receptor 4 (TLR4) recognition, when autoantibodies (autoAb) bind to fibroblast surface. In addition, immune-complex formed by autoAb and ubiquitous antigens including topoisomerase-1 favor the production of interferon-alpha (IFN-α) possibly by interacting with intravesicular TLRs. Consistent with this findings, unbiased gene screening has revealed that SSc peripheral blood cells express genes induced by IFN-α, a characteristic shared with systemic lupus erythematosus and other autoimmune disorders. These findings highlight the complex relationship between adaptive and acquired immune responses, which may participate to the pathogenesis of SSc in manners until now unsuspected, which may help in identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Carlo Chizzolini
- Immunology and Allergy, University Hospital and School of Medicine, 1211 Geneva 14, Switzerland.
| | | | | | | |
Collapse
|
25
|
Weinstein DA, Kirsner RS. Refractory ulcers: the role of tumor necrosis factor-alpha. J Am Acad Dermatol 2010; 63:146-54. [PMID: 20542177 DOI: 10.1016/j.jaad.2009.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/30/2009] [Accepted: 08/03/2009] [Indexed: 12/22/2022]
Affiliation(s)
- David A Weinstein
- College of Medicine, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
26
|
Yiu WH, Yeung TL, Poon JWM, Tsui SKW, Fung KP, Waye MMY. Transcriptional regulation of IER3IP1 gene by tumor necrosis factor-alpha and Sp family proteins. Cell Biochem Funct 2010; 28:31-7. [PMID: 19885854 DOI: 10.1002/cbf.1613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Immediate early response 3 interacting protein 1 (IER3IP1) is an endoplasmic reticulum protein with its potential cellular function involved in cell differentiation and cell death processes. In this report, we investigated the molecular mechanism by which the expression of IER3IP1 gene is regulated by cloning the 5' flanking region of the human IER3IP1 gene for various promoter studies. Deletion analysis was used to identify the basal promoter activity retained at -298/-59 region and mutation analysis proved that Sp1 is a transcriptional activator of this gene expression. As an early response gene, IER3IP1 showed an increase in transcription in response to tumor necrosis factor alpha (TNF-alpha) in a time- and dose-dependent manner. This inducible response to TNF-alpha is mediated by the demonstration of nuclear factor kappaB (NF-kappaB) responsive element on IER3IP1 promoter sequence. From our results, we suggest that IER3IP1 gene is involved in TNF-alpha-mediated cellular response to stressful conditions.
Collapse
Affiliation(s)
- Wai Han Yiu
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, N.T., China
| | | | | | | | | | | |
Collapse
|
27
|
Igata T, Jinnin M, Makino T, Moriya C, Muchemwa FC, Ishihara T, Ihn H. Up-regulated type I collagen expression by the inhibition of Rac1 signaling pathway in human dermal fibroblasts. Biochem Biophys Res Commun 2010; 393:101-5. [DOI: 10.1016/j.bbrc.2010.01.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 01/21/2010] [Indexed: 10/19/2022]
|
28
|
Kothapalli CR, Ramamurthi A. Induced elastin regeneration by chronically activated smooth muscle cells for targeted aneurysm repair. Acta Biomater 2010; 6:170-8. [PMID: 19505598 DOI: 10.1016/j.actbio.2009.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 05/06/2009] [Accepted: 06/02/2009] [Indexed: 11/26/2022]
Abstract
Elastin breakdown in vascular aneurysms is mediated by cytokines such as tumor necrosis factor alpha (TNF-alpha, which induces vascular smooth muscle cell (SMC) activation and regulates their deposition of matrix. We previously demonstrated that exogenous supplementation with TGF-beta1 (1 ng ml(-1)) and hyaluronan oligomers (0.786 kDa, 0.2 microg ml(-1)) cues the upregulation of elastin matrix synthesis by healthy cultured SMCs. Here, we determine whether these cues likewise enhance elastin matrix synthesis and assembly by TNF-alpha-stimulated SMCs, while restoring their healthy phenotype. Adult rat aortic SMCs were treated with TNF-alpha alone or together with TGF-beta1/hyaluronan oligomeric cues and the release of inflammatory markers were monitored during over a 21 day culture. Biochemical analysis was used to quantify cell proliferation, matrix protein synthesis and cross-linking efficiency, while immunofluorescence and electron microscopy were used to analyze the elastin matrix quality. It was observed that SMC activation with TNF-alpha (10 ng ml(-1)) induced matrix calcification and promoted production of elastolytic MMP-2 and MMP-9. However, these effects were attenuated by the addition of TGF-beta1 and HA oligomer cues to TNF-alpha-stimulated cultures, which also enhanced tropoelastin and collagen production, improved elastin matrix yield and cross-linking, promoted elastin fiber formation and suppressed elastase activity, although the release of MMP-2 and MMP-9 was not affected. Overall, the results suggest that TGF-beta1 and HA oligomers are potentially useful in suppressing SMC activation and inducing regenerative elastin repair within aneurysms.
Collapse
|
29
|
Fokin AA, Steuerwald NM, Ahrens WA, Allen KE. Anatomical, histologic, and genetic characteristics of congenital chest wall deformities. Semin Thorac Cardiovasc Surg 2009; 21:44-57. [PMID: 19632563 DOI: 10.1053/j.semtcvs.2009.03.001] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2009] [Indexed: 11/11/2022]
Abstract
There is a large and diverse group of congenital abnormalities of the thorax that manifest as deformities and/or defects of the anterior chest wall and, depending on the severity and concomitant anomalies, may have cardiopulmonary implications. Pectus excavatum, the most common anterior chest deformity, is characterized by sternal depression with corresponding leftward displacement and rotation of the heart. Pectus carinatum, the second most common, exhibits a variety of chest wall protrusions and very diverse clinical manifestations. The cause of these conditions is thought to be abnormal elongation of the costal cartilages. Collagen, as a major structural component of rib cartilage, is implicated by genetic and histologic analysis. Poland syndrome is a unique unilateral chest/hand deficiency that may include rib defects, pectoral muscle deficit, and syndactyly. Cleft sternum is a rare congenital defect resulting from nonfusion of the sternal halves, which leaves the heart unprotected and requires early surgical intervention.
Collapse
Affiliation(s)
- Alexander A Fokin
- Heineman Medical Research Laboratories, Carolinas Medical Center, Charlotte, NC 28203, USA.
| | | | | | | |
Collapse
|
30
|
Schäffer M, Bongartz M, Hoffmann W, Viebahn R. Regulation of Nitric Oxide Synthesis in Wounds by IFN-γ Depends on TNF-α. J INVEST SURG 2009; 19:371-9. [PMID: 17101606 DOI: 10.1080/08941930600985710] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Macrophage-derived nitric oxide is a critical mediator in wound healing. Its regulation in vivo, however, remains unclear. We hypothesized that interferon (IFN)-gamma plays an important role in the regulation of nitric oxide in wounds. Groups of 12 male IFN-gamma -knockout mice and wild-type controls underwent dorsal skin incision and polyvinyl alcohol sponges were inserted subcutaneously. Mice were sacrificed 10 days later to determine wound breaking strength and reparative collagen deposition. Synthesis of nitric oxide (NO), tumor necrosis factor (TNF)-alpha, and IFN-gamma was measured in the wound. Wound-derived macrophages were tested for NO synthesis in the presence or absence of IFN-gamma, TNF-alpha, and anti-TNF-alpha antibody. In a separate experiment, IFN-gamma -knockout mice and wild-type controls were treated with molsidomine, a nitric oxide donor. It was found that wound collagen deposition and wound breaking strength were impaired in IFN-gamma-knockout mice (p < .05). Impaired healing was reflected in diminished synthesis of TNF-alpha and NO in wounds (p < .05). In vivo treatment with molsidomine reversed impaired healing in IFN-gamma-deficient mice. Ex vivo, addition of IFN-gamma stimulated the synthesis of TNF-alpha and NO in wound-derived macrophages. IFN-gamma -induced NO synthesis by wound-derived macrophages was abolished by anti-TNF-alpha-antibody-treatment, which could be fully reversed by exogenous TNF-alpha. Thus we conclude that IFN-gamma-deficiency impairs wound healing and diminishes NO synthesis in wound-derived macrophages. The stimulatory effect of IFN-gamma on macrophage NO production depends on endogenous TNF-alpha synthesis.
Collapse
Affiliation(s)
- Michael Schäffer
- Department of Surgery, Chirurgische Universitätsklinik, Bochum-Langendreer, Germany.
| | | | | | | |
Collapse
|
31
|
Namikawa H, Sunazuka T, Kitamura Y, Suzuki T, Hamasaki Y, Yamazaki S, Omura S, Hatamochi A. Effect of erythromycin A and its new derivative EM201 on type I collagen production by cultured dermal fibroblasts. Arch Dermatol Res 2009; 302:341-8. [PMID: 19578864 DOI: 10.1007/s00403-009-0977-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 06/15/2009] [Accepted: 06/19/2009] [Indexed: 11/30/2022]
Abstract
Thinning of the dermis is the principal histological change in atrophic skin disorders and aged skin. It is caused due to a decreased amount of collagen in the dermis. Macrolides have been reported to exert various pharmacological activities, including anti-inflammatory activity, tumor angiogenesis inhibition and growth inhibition of fibroblasts, in addition to antimicrobial activity. In this study, we investigated the effects of erythromycin A (EMA) and its new derivative EM201 on type I collagen production by cultured dermal fibroblasts. Dermal fibroblasts were cultured with 10(-9) M-10(-5) M EMA or EM201, and collagen production was measured by incubation with radioactive proline, SDS-polyacrylamide gel electrophoresis and fluorography. mRNA levels were measured by Northern blots analysis, and to investigate transcriptional levels luciferase assays were also performed. The results showed that both EMA and EM201 increased collagen production and type I collagen mRNA level (to a maximum of 200% with EMA and 250% with EM201) in a dose-dependent manner in cultured dermal fibroblasts. Transcription of the type I collagen gene was also increased by both macrolides. These results suggest that EMA and EM201 have the potential to improve the thinning of the dermis in atrophic skin disorders and aged skin.
Collapse
Affiliation(s)
- Hiromi Namikawa
- Department of Dermatology, Dokkyo Medical University, Mibu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yu F, Chou CW, Chen CC. TNF-α suppressed TGF-β-induced CTGF expression by switching the binding preference of p300 from Smad4 to p65. Cell Signal 2009; 21:867-72. [DOI: 10.1016/j.cellsig.2009.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Ferreira MC, Gameiro J, Nagib PRA, Brito VN, Vasconcellos EDCC, Verinaud L. Effect of Low Intensity Helium-Neon (HeNe) Laser Irradiation on Experimental Paracoccidioidomycotic Wound Healing Dynamics. Photochem Photobiol 2009; 85:227-33. [DOI: 10.1111/j.1751-1097.2008.00423.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Abstract
Uncontrolled production of collagen I is the main feature of liver fibrosis. Following a fibrogenic stimulus such as alcohol, hepatic stellate cells (HSC) transform into an activated collagen-producing cell. In alcoholic liver disease, numerous changes in gene expression are associated with HSC activation, including the induction of several intracellular signaling cascades, which help maintain the activated phenotype and control the fibrogenic and proliferative state of the cell. Detailed analyses for understanding the molecular basis of the collagen I gene regulation have revealed a complex process involving reactive oxygen species (ROS) as key mediators. Less is known, however, about the contribution of reactive nitrogen species (RNS). In addition, a series of cytokines, growth factors, and chemokines, which activate extracellular matrix (ECM)-producing cells through paracrine and autocrine loops, contribute to the fibrogenic response.
Collapse
Affiliation(s)
- R. Urtasun
- Mount Sinai School of Medicine, Box 1123, Department of Medicine/Division of Liver Diseases, 1425 Madison Avenue, Room 11-76, New York, NY 10029, USA
| | - L. Conde de la Rosa
- Mount Sinai School of Medicine, Box 1123, Department of Medicine/Division of Liver Diseases, 1425 Madison Avenue, Room 11-76, New York, NY 10029, USA
| | - N. Nieto
- Mount Sinai School of Medicine, Box 1123, Department of Medicine/Division of Liver Diseases, 1425 Madison Avenue, Room 11-76, New York, NY 10029, USA
| |
Collapse
|
35
|
Diao H, Li X, Chen J, Luo Y, Chen X, Dong L, Wang C, Zhang C, Zhang J. Bletilla striata Polysaccharide Stimulates Inducible Nitric Oxide Synthase and Proinflammatory Cytokine Expression in Macrophages. J Biosci Bioeng 2008; 105:85-9. [DOI: 10.1263/jbb.105.85] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 10/30/2007] [Indexed: 11/17/2022]
|
36
|
Abstract
Scleroderma or systemic sclerosis (SSc) is a complex disease in which the vasculopathy and the activation of the immune system with production of inflammatory mediators lead to dysregulated fibroblast activation. The resulting excessive deposition of collagens and other extracellular matrix proteins ends in fibrosis and organ dysfunction. The cause is unknown, but environmental factors are thought to play a role by triggering abnormal responses in genetically susceptible hosts. The recent past has witnessed important advances in the definition of mechanisms that underlie the persistent activation in fibroblasts of genes involved in uncontrolled fibrosis, a hallmark of SSc. These include the preferential production of type 2 T cell cytokines in target organs, the presence of autoantibodies with fibroblast-activating capacities, the production of vasoconstrictive mediators that impact on fibroblast biosynthetic properties, the transforming growth factor-beta-related metabolic signature, and the presence of altered signaling pathways in fibroblasts. Furthermore, while no animal models recapitulate all the features of SSc, they have been instrumental for assessing the relevance of specific processes to the development of fibrosis. More importantly, some of the research findings are leading to therapies that target altered processes with the potential of changing the prognosis of some dismal aspects of the disease.
Collapse
Affiliation(s)
- Carlo Chizzolini
- Immunology and Allergy, University Hospital, School of Medicine, Geneva, Switzerland.
| |
Collapse
|
37
|
Kato T, Okahashi N, Ohno T, Inaba H, Kawai S, Amano A. Effect of phenytoin on collagen accumulation by human gingival fibroblasts exposed to TNF-alphain vitro. Oral Dis 2006; 12:156-62. [PMID: 16476037 DOI: 10.1111/j.1601-0825.2005.01175.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Tumor necrosis factor (TNF)-alpha is associated with chronic gingival inflammation and reported to induce gingival overgrowth (GO), while phenytoin (PHT) is also known to be a causative agent of GO. We examined the synergistic effect of PHT and TNF-alpha on collagen metabolism in human gingival fibroblasts (HGFs). MATERIALS AND METHODS HGFs were cultured with TNF-alpha and PHT. Quantitative real-time RT-PCR was employed to determine the mRNA levels for collagen, matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs) and integrin subunits. Cellular collagen endocytosis was determined using a flow-cytometry. RESULTS The proliferation of HGFs was not affected by TNF-alpha or PHT individually, whereas both synergistically increased collagen accumulation in HGFs. Further, collagen mRNA expression was not increased by TNF-alpha or PHT, although together they markedly prevented cellular collagen endocytosis, associated with the suppression of alpha2beta1-integrin mRNA expression. The mRNA expression of MMP-1 and-2 was suppressed by PHT, while TIMP-1 mRNA expression was enhanced by both TNF-alpha and PHT. CONCLUSION Our results suggest that TNF-alpha and PHT together cause impaired collagen metabolism by suppression of enzymatic degradation with MMPs/TIMP-1 and integrin-mediated endocytosis. These synergistic effects may also be involved in TNF-alpha- and PHT-induced collagen accumulation, leading to GO.
Collapse
Affiliation(s)
- T Kato
- Department of Oral Frontier Biology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and usually fatal pulmonary disease for which there are no proven drug therapies. Anti-inflammatory and immunosuppressive agents have been largely ineffective. The precise relationship of IPF to other idiopathic interstitial pneumonias (IIPs) is not known, despite the observation that different histopathologic patterns of IIP may coexist in the same patient. We propose that these different histopathologic 'reaction' patterns may be determined by complex interactions between host and environmental factors that alter the local alveolar milieu. Recent paradigms in IPF pathogenesis have focused on dysregulated epithelial-mesenchymal interactions, an imbalance in T(H)1/T(H)2 cytokine profile and potential roles for aberrant angiogenesis. In this review, we discuss these evolving concepts in disease pathogenesis and emerging therapies designed to target pro-fibrogenic pathways in IPF.
Collapse
Affiliation(s)
| | - Victor J. Thannickal
- Address correspondence to: Victor J. Thannickal, M.D. Division of Pulmonary and Critical Care Medicine University of Michigan Medical Center 6301 MSRB III 1150 W. Medical Center Dr. Ann Arbor, Michigan 48109 United States of America Phone: 734−936−9371 Fax: 734−764−4556 e-mail:
| |
Collapse
|
39
|
Thannickal VJ, Flaherty KR, Hyzy RC, Lynch JP. Emerging drugs for idiopathic pulmonary fibrosis. Expert Opin Emerg Drugs 2005; 10:707-27. [PMID: 16262559 DOI: 10.1517/14728214.10.4.707] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pulmonary fibrosis is often the end stage of chronic, persistent, low-level lung injury, either of known or unknown cause. The most severe form of pulmonary fibrosis is idiopathic pulmonary fibrosis (IPF), a disease process of unknown aetiology and one that often leads to respiratory failure and death. At present there are no proven or effective drug therapies for IPF. Recent advances in understanding of disease pathogenesis have focused attention on drug targeting of fibrogenic pathways, as opposed to traditional anti-inflammatory approaches. In this report, the present status of drug development of a number of emerging antifibrotic strategies and agents that may prove more effective in the therapy of this progressive, debilitating and fatal disease are reviewed.
Collapse
Affiliation(s)
- Victor J Thannickal
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical Center, 6301 MSRB III1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
40
|
Theiss AL, Simmons JG, Jobin C, Lund PK. Tumor necrosis factor (TNF) alpha increases collagen accumulation and proliferation in intestinal myofibroblasts via TNF receptor 2. J Biol Chem 2005; 280:36099-109. [PMID: 16141211 DOI: 10.1074/jbc.m505291200] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intestinal fibrosis is an incurable complication of Crohn's disease involving increased numbers of collagen-producing myofibroblasts. Tumor necrosis factor (TNF) alpha has defined proinflammatory roles in Crohn's disease but its role in fibrosis is unclear. We tested the hypothesis that TNFalpha increases collagen accumulation and proliferation in intestinal myofibroblasts and has additive effects in combination with insulin-like growth factor (IGF) I. The mechanisms, TNF receptor isoform, and downstream signaling pathways were examined. Intestinal myofibroblasts from wild-type (WT) mice or mice homozygous for disruption of genes encoding TNFR1 (TNFR1-/-), TNFR2 (TNFR2-/-), or both (TNFR1/2-/-), were treated with TNFalpha, IGF-I, or both. In WT cells, TNFalpha and IGF-I stimulated type I collagen accumulation and DNA synthesis in an additive manner. IGF-I, but not TNFalpha, stimulated type I collagen gene activation. TNFalpha, but not IGF-I, induced tissue inhibitor of metalloproteinase-1 (TIMP-1) expression and reduced matrix metalloproteinases-2 activity and collagen degradation. TNFalpha also activated ERK1/2. These responses to TNFalpha were absent in TNFR2-/- and TNFR1/2-/- myofibroblasts, whereas TNFR1-/- cells showed similar responses to WT. Inhibition of ERK1/2 diminished TNFalpha induced DNA synthesis in WT and TNFR1-/- cells. Differences in TNFalpha-induced STAT3/DNA binding activity and not NFkappaB and AP-1 transcriptional activation correlated with impaired collagen accumulation/TIMP-1 induction in TNFR2(-/-) cells. Constitutively active STAT3 rescued TIMP-1 expression in TNFR2-/- cells. We conclude that TNFalpha and IGF-I may additively contribute to fibrosis during intestinal inflammation. TNFR2 is a primary mediator of fibrogenic actions of TNFalpha acting through ERK1/2 to stimulate proliferation and through STAT3 to stimulate TIMP-1 and inhibit collagen degradation.
Collapse
Affiliation(s)
- Arianne L Theiss
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
41
|
Schäffer M, Fuchs N, Völker J, Schulz T, Kapischke M, Viebahn R. Differential effect of tacrolimus on dermal and intestinal wound healing. J INVEST SURG 2005; 18:71-9. [PMID: 16036775 DOI: 10.1080/08941930590926294] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tacrolimus, used in organ transplantation, inhibits cellular immune function. Little is known about the effect on dermal and colonic healing. Groups of 10 rats underwent dorsal skin incision, and polyvinyl alcohol sponges were implanted subcutaneously. Beginning at the day of wounding, rats were treated intraperitoneal with 1.0 or 2.0 mg tacrolimus/kg/day. Animals were sacrificed 10 d later to determine wound breaking strength and reparative collagen deposition. Expression of transforming growth factor (TGF)-beta, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma was studied in wounds. Groups of 8 rats underwent laparotomy and left colonic anastomosis. These rats were treated by subcutaneous injections with 2.0 or 5.0 mg tacrolimus/kg. Animals were sacrificed 5 d later to test colonic bursting pressure and reparative collagen deposition. Expression of TGF-beta, TNF-alpha, IFN-gamma, and CD4 and CD8 in the anastomosis was investigated. Tacrolimus impaired dermal healing (p < .05). This was paralleled by decreased expression of TGF-beta (stimulates healing) and increased expression of IFN-gamma and TNF-alpha (both inhibit healing) (p < .05). In contrast, tacrolimus did not inhibit healing of colonic anastomoses. No effect was seen on the expression of TGF-beta, TNF-alpha, IFN-gamma, and CD4 and CD8 in colonic anastomoses. We concluded that tacrolimus differentially effects tissue healing and expression of cellular mediators in dermal and intestinal wounds.
Collapse
Affiliation(s)
- Michael Schäffer
- Department of Surgery, Chirurgische Universitätsklinik, Bochum-Langendreer, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Verrecchia F, Mauviel A. TGF-beta and TNF-alpha: antagonistic cytokines controlling type I collagen gene expression. Cell Signal 2005; 16:873-80. [PMID: 15157666 DOI: 10.1016/j.cellsig.2004.02.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Accepted: 02/18/2004] [Indexed: 02/07/2023]
Abstract
The balance between production and degradation of type I collagen plays a critical role in the development and maintenance of organ and tissue integrity. It also represents the most crucial element governing the process of tissue repair. The synthesis of type I collagen gene is highly regulated by different cytokines at the transcriptional level. Especially, transforming growth factor beta (TGF-beta), a key player in the physiopathology of tissue repair, enhances type I collagen gene expression. In contrast, tumor necrosis factor alpha (TNF-alpha), whose matrix-remodelling function is opposite to that of TGF-beta, reduces type I collagen gene expression. This review focuses on transcriptional regulation of type I collagen by TGF-beta and TNF-alpha and on the molecular mechanisms that control the antagonistic activity of TNF-alpha against TGF-beta-driven type I collagen gene expression.
Collapse
Affiliation(s)
- Franck Verrecchia
- INSERM U532, Institut de Recherche sur la Peau, Pavillon Bazin, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | | |
Collapse
|
43
|
Alaseirlis DA, Li Y, Cilli F, Fu FH, Wang JHC. Decreasing inflammatory response of injured patellar tendons results in increased collagen fibril diameters. Connect Tissue Res 2005; 46:12-7. [PMID: 16019409 DOI: 10.1080/03008200590935501] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tissue inflammation is essential in the healing process, but its effect on the quality of the healing tissue is not clear. This study determines the effect of decreasing early inflammation during wound healing in genetic deficient mice on collagen fibril diameter. Two strains of mice were used: three C3H/HeJ mice and three C3H/HeN mice for each of two time points (7 and 14 days postinjury). C3H/HeJ mice have a genetic deficiency in the production of tumor necrosis factor by macrophages and other cytokines in response to endotoxin, and C3H/HeN mice have no genetic deficiency. The right patellar tendon of both mouse strains was transversely transected, whereas the left patellar tendon was left intact for control. After 7 and 14 days, both right and left patellar tendons were harvested, and tendon samples were examined with transmission electron microscopy. We found that at 7 days, transected tendons of C3H/HeJ mice exhibited on average 1.6 times larger collagen fibril diameters than transected C3H/HeN tendons, whereas at 14 days, collagen fibril diameters of the C3H/HeJ mice were 1.3 times that of C3H/HeN mice. Also, at both 7 days and 14 days, collagen fibrils in C3H/HeJ mice appeared more organized than C3H/HeN mice. In addition, control tendons in both mouse strains showed no significant differences in collagen fibril diameter and organization. Therefore, these results suggest that decreasing the inflammatory response in the early stages of tendon wound healing enhances the quality of the healing tendon through increased collagen fiber diameter and better organization.
Collapse
Affiliation(s)
- Dimosthenis A Alaseirlis
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
44
|
Riekki R, Harvima IT, Jukkola A, Risteli J, Oikarinen A. The production of collagen and the activity of mast-cell chymase increase in human skin after irradiation therapy. Exp Dermatol 2004; 13:364-71. [PMID: 15186323 DOI: 10.1111/j.0906-6705.2004.00164.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fibrosis is a common complication of radiotherapy. The pathogenesis of radiation-induced fibrosis is not known in detail. There is increasing evidence to suggest that mast cells contribute to various fibrotic conditions. Several mast-cell mediators have been proposed to have a role in fibrogenesis. Tryptase and chymase, the predominant proteins in mast cells, have been shown to induce fibroblast proliferation and collagen synthesis in vitro. In order to explore the role of mast cells in irradiation-induced fibrosis, we analyzed skin biopsies and suction blister fluid (SBF) samples from the lesional and healthy-looking skin of 10 patients who had been treated for breast cancer with surgery and radiotherapy. The biopsies were analyzed histochemically for mast-cell tryptase, chymase, kit receptor, and tumor necrosis factor-alpha. Skin collagen synthesis was assessed by determining the levels of type I and III procollagen amino-terminal propeptides (PINP and PIIINP) in SBF and using immunohistochemical staining for PINP. Immunohistochemical stainings for prolyl-4-hydroxylase reflecting collagen synthesis and chymase immunoreactivity in irradiated and control skin were also performed. The mean level of procollagen propeptides in SBF, which reflects actual skin collagen synthesis in vivo, was markedly increased in irradiated skin compared to corresponding healthy control skin areas. The mean number of PINP-positive fibroblasts was also significantly increased in the upper dermis of radiotherapy-treated skin. The number of cells positive for tryptase, chymase and kit receptor was markedly increased in irradiated skin. In addition, using double-staining techniques, it was possible to demonstrate that in some areas of the dermis, tryptase-positive mast cells and fibroblasts are closely associated. These findings suggest a possible role of mast cells in enhanced skin collagen synthesis and fibrosis induced by radiotherapy.
Collapse
Affiliation(s)
- Riitta Riekki
- Department of Dermatology, University of Oulu, Oulu, Finland
| | | | | | | | | |
Collapse
|
45
|
Büttner C, Skupin A, Rieber EP. Transcriptional activation of the type I collagen genes COL1A1 and COL1A2 in fibroblasts by interleukin-4: analysis of the functional collagen promoter sequences. J Cell Physiol 2004; 198:248-58. [PMID: 14603527 DOI: 10.1002/jcp.10395] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pneumonitis followed by lung fibrosis is a frequent complication of radiation therapy of chest tumors. A hallmark of these fibrotic lesions is the excessive production and accumulation of extracellular matrix proteins such as type I collagen. In addition to TGF-beta1, IL-4 has been recognized as a potent inducer of collagen gene synthesis in fibroblasts. In this study, we analyzed the regulation of the alpha1(I) procollagen (COL1A1) promoter and the alpha2(I) procollagen (COL1A2) promoter by IL-4 in normal human lung fibroblasts. We provide evidence that the IL-4-induced transcriptional activator STAT6 binds to various sequences within the COL1A1 and COL1A2 promoter. The regulatory function of these regions was tested by reporter gene analysis using 5' deletions of the COL1A1 and COL1A2 promoter fused to the luciferase gene. Interleukin-4 treatment of human fibroblasts transiently transfected with COL1A1 promoter deletion constructs resulted in luciferase activity exceeding that of untreated fibroblasts by 25%, while luciferase activity driven by the COL1A2 promoter was enhanced by about 70% upon IL-4 treatment. A combined action of SP1, NFkappaB, and STAT6 essentially contributes to the IL-4 mediated COL1A2 gene activation. An AP2 site adjacent to the reverse orientated STAT6 consensus motif TTC N(3/4) GCT is located within 205 bases from the transcription start site and seems to support the moderate IL-4-induced COL1A1 gene activation. Interferon-gamma downregulation of transcription is mainly seen with the COL1A1 promoter.
Collapse
Affiliation(s)
- Cordula Büttner
- Institute of Immunology, Medical Faculty, Technical University Dresden, Dresden, Germany.
| | | | | |
Collapse
|
46
|
Yamane K, Ihn H, Asano Y, Jinnin M, Tamaki K. Antagonistic effects of TNF-alpha on TGF-beta signaling through down-regulation of TGF-beta receptor type II in human dermal fibroblasts. THE JOURNAL OF IMMUNOLOGY 2004; 171:3855-62. [PMID: 14500687 DOI: 10.4049/jimmunol.171.7.3855] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transforming growth factor-beta stimulates the production of the extracellular matrix, whereas TNF-alpha has antifibrotic activity. Understanding the molecular mechanism underlying the antagonistic activities of TNF-alpha against TGF-beta is critical in the context of tissue repair and maintenance of tissue homeostasis. In the present study, we demonstrated a novel mechanism by which TNF-alpha blocks TGF-beta-induced gene and signaling pathways in human dermal fibroblasts. We showed that TNF-alpha prevents TGF-beta-induced gene trans activation, such as alpha2(I) collagen or tissue inhibitor of metalloproteinases 1, and TGF-beta signaling pathways, such as Smad3, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinases, without inducing levels of inhibitory Smad7 in human dermal fibroblasts. TNF-alpha down-regulates the expression of type II TGF-beta receptor (TbetaRII) proteins, but not type I TGF-beta receptor (TbetaRI), in human dermal fibroblasts. However, neither TbetaRII mRNA nor TbetaRII promoter activity was decreased by TNF-alpha. TNF-alpha-mediated decrease of TbetaRII protein expression was not inhibited by the treatment of fibroblasts with either a selective inhibitor of I-kappaB-alpha phosphorylation, BAY 11-7082, or a mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor, PD98059. Calpain inhibitor I (ALLN), a protease inhibitor, inhibits TNF-alpha-mediated down-regulation of TbetaRII. We found that TNF-alpha triggered down-regulation of TbetaRII, leading to desensitization of human dermal fibroblasts toward TGF-beta. Furthermore, these events seemed to cause a dramatic down-regulation of alpha2(I) collagen and tissue inhibitor of metalloproteinases 1 in systemic sclerosis fibroblasts. These results indicated that TNF-alpha impaired the response of the cells to TGF-beta by regulating the turnover of TbetaRII.
Collapse
Affiliation(s)
- Kenichi Yamane
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
47
|
Chizzolini C, Parel Y, De Luca C, Tyndall A, Akesson A, Scheja A, Dayer JM. Systemic sclerosis Th2 cells inhibit collagen production by dermal fibroblasts via membrane-associated tumor necrosis factor alpha. ARTHRITIS AND RHEUMATISM 2003; 48:2593-604. [PMID: 13130479 DOI: 10.1002/art.11129] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE In systemic sclerosis (SSc; scleroderma), T cells infiltrate organs undergoing fibrotic changes and may participate in dysregulated production of collagen by fibroblasts. The objective of this study was to functionally characterize T cells infiltrating skin lesions in early SSc and investigate their capacity to affect production of type I collagen and interstitial collagenase (matrix metalloproteinase 1 [MMP-1]) by dermal fibroblasts. METHODS Four-color cytometric analysis was used to characterize subset distribution and production of interferon-gamma (IFN gamma) and interleukin-4 (IL-4) in T cell lines generated from the skin of patients with SSc. T cell clones were generated, and their capacity to modulate collagen and MMP-1 production by fibroblasts derived from patients with SSc and from normal individuals was assessed. Neutralizing reagents were used to identify T cell mediators involved in fibroblast modulation. RESULTS The skin of individuals with early-stage SSc contained T cells preferentially producing high levels of IL-4. Cloned CD4+ Th2-like cells inhibited collagen production by normal fibroblasts. Th2 cell-dependent inhibition was, at least in part, contact-dependent, was essentially mediated by tumor necrosis factor alpha (TNF alpha), and was dominant over the enhancement induced by profibrotic IL-4 and transforming growth factor beta cytokines. The simultaneous induction of MMP-1 production confirmed the specificity of these observations. To be inhibitory, Th2 cells required activation by CD3 ligation. Th2 cells were less potent than were Th1 cells in inhibiting collagen production by normal fibroblasts via cell-to-cell interaction, and SSc fibroblasts were resistant to inhibition. CONCLUSION These findings indicate that, despite their production of IL-4, Th2 cells reduce type I collagen synthesis by dermal fibroblasts because of the dominant effect of TNF alpha, and suggest that strategies based on TNF alpha blockade aimed at controlling fibrosis in SSc may be unwise.
Collapse
Affiliation(s)
- Carlo Chizzolini
- Division of Immunologya and Allergy, Geneva University Hospital, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
48
|
Johnson RB. Synergistic enhancement of collagenous protein synthesis by human gingival fibroblasts exposed to nifedipine and TNF-alpha in vitro. J Oral Pathol Med 2003; 32:408-13. [PMID: 12846787 DOI: 10.1034/j.1600-0714.2003.00113.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Gingival overgrowth occurs in patients receiving nifedipine. Gingival inflammation may be an etiologic factor. METHODS Gingival fibroblasts were either exposed to (i) 0-500 ng/ml TNF-alpha or 10(-7) M nifedipine or (ii) 0-500 ng/ml TNF-alpha + 10(-7) M nifedipine for 7 days. 3H-proline was used to quantify collagenous protein synthesis. RESULTS Both TNF-alpha and 10(-7) M nifedipine significantly decreased cell proliferation, and 10(-7) M nifedipine + 500 ng/ml TNF-alpha reversed these effects. Collagenous protein synthesis was significantly reduced by TNF-alpha and was significantly enhanced by either 10(-7) M nifedipine or 5-500 ng/ml TNF-alpha + 10(-7) M nifedipine. CONCLUSIONS Our data report that nifedipine reverses the primary effects of TNF-alpha on collagenous protein synthesis. Patients with gingivitis could be susceptible to gingival overgrowth during nifedipine therapy as a result of synergistic effects of these agents on fibroblast metabolism, which occurs irrespective of reduced cell numbers.
Collapse
Affiliation(s)
- Roger B Johnson
- Department of Periodontics, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.
| |
Collapse
|
49
|
|
50
|
García-Ruiz I, de la Torre P, Díaz T, Esteban E, Fernández I, Muñoz-Yagüe T, Solís-Herruzo JA. Sp1 and Sp3 transcription factors mediate malondialdehyde-induced collagen alpha 1(I) gene expression in cultured hepatic stellate cells. J Biol Chem 2002; 277:30551-8. [PMID: 12055194 DOI: 10.1074/jbc.m203368200] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Malondialdehyde, the end product of lipid peroxidation, has been shown to stimulate collagen alpha1(I) (Col1a1) gene expression. However, mechanisms of this effect are unclear. The purpose of this study was to clarify these mechanisms. Rat hepatic stellate cells were cultured in the presence of 200 microm malondialdehyde, and the effects on collagen gene expression and the binding of nuclear proteins to the col1a1 promoter were analyzed. Malondialdehyde treatment induced an increase in the cellular levels of col1a1 mRNA that was abrogated by pretreating cells with cycloheximide, p-hydroxymercuribenzoate, pyridoxal 5'-phosphate, and mithramycin. Transient transfections showed that malondialdehyde exerted its effect through regulatory elements located between -220 and -110 bp of the col1a1 promoter. Gel retardation assays demonstrated that malondialdehyde increased the binding of nuclear proteins to two elements located between -161 and -110 bp of the col1a1 promoter. These bindings were supershifted with Sp1 and Sp3 antibodies. Finally, malondialdehyde increased cellular levels of the Sp1 and Sp3 proteins and Sp1 mRNA. Our data indicated that treatment of hepatic stellate cells with malondialdehyde stimulated col1a1 gene expression by inducing the synthesis of Sp1 and Sp3 and their binding to two regulatory elements located between -161 and -110 bp of the col1a1 promoter.
Collapse
Affiliation(s)
- Inmaculada García-Ruiz
- Department of Gastroenterology, Research Center, Universidad Complutense Hospital Universitario 12 de Octubre, 28041-Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|