1
|
Chorpunkul A, Boonyuen U, Limkittikul K, Saengseesom W, Phongphaew W, Putchong I, Chankeeree P, Theerawatanasirikul S, Hajitou A, Benjathummarak S, Pitaksajjakul P, Lekcharoensuk P, Ramasoota P. Development of novel canine phage display-derived neutralizing monoclonal antibody fragments against rabies virus from immunized dogs. Sci Rep 2024; 14:22939. [PMID: 39358469 PMCID: PMC11447112 DOI: 10.1038/s41598-024-73339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Animal rabies is a potentially fatal infectious disease in mammals, especially dogs. Currently, the number of rabies cases in pet dogs is increasing in several regions of Thailand. However, no passive postexposure prophylaxis (PEP) has been developed to combat rabies infection in animals. As monoclonal antibodies (MAbs) are promising biological therapies for postinfection, we developed a canine-neutralizing MAb against rabies virus (RABV) via the single-chain variable fragment (scFv) platform. Immunized phage-displaying scFv libraries were constructed from PBMCs via the pComb3XSS system. Diverse canine VHVLκ and VHVLλ libraries containing 2.4 × 108 and 1.3 × 106 clones, respectively, were constructed. Five unique clones that show binding affinity with the RABV glycoprotein were then selected, of which K9RABVscFv1 and K9RABVscFv16 showed rapid fluorescent foci inhibition test (RFFIT) neutralizing titers above the human protective level of 0.5 IU/ml. Finally, in silico docking predictions revealed that the residues on the CDRs of these neutralizing clones interact mainly with similar antigenic sites II and III on the RABV glycoprotein. These candidates may be used to develop complete anti-RABV MAbs as a novel PEP protocol in pet dogs and other animals.
Collapse
Affiliation(s)
- Apidsada Chorpunkul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Kriengsak Limkittikul
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Wachiraporn Saengseesom
- Queen Saovabha Memorial Institute (WHO Collaborating Center for Research on Rabies), Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Wallaya Phongphaew
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Iyarath Putchong
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Penpitcha Chankeeree
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Sirin Theerawatanasirikul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Amin Hajitou
- Cancer Phage Therapy Group, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Surachet Benjathummarak
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Pannamthip Pitaksajjakul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Pongrama Ramasoota
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
2
|
Abstract
A phagemid is a plasmid that contains the origin of replication and packaging signal of a filamentous phage. Following bacterial transformation, a phagemid can be replicated and amplified as a plasmid, using a double-stranded DNA origin of replication, or it can be replicated as single-stranded DNA for packaging into filamentous phage particles. The use of phagemids enables phage display of large proteins, such as antibody fragments. Phagemid pComb3 was among the first phage display vectors used for the generation and selection of antibody libraries in the 50-kDa Fab format, a monovalent proxy of natural antibodies. Affording a robust and versatile tool for more than three decades, phage display vectors of the pComb3 phagemid family have been widely used for the discovery, affinity maturation, and humanization of antibodies in Fab, scFv, and single-domain formats from naive, immune, and synthetic antibody repertoires. In addition, they have been used for broadening phage display to the mining of nonimmunoglobulin repertoires. This review examines conceptual, functional, and molecular features of the first-generation phage display vector pComb3 and its successors, pComb3H, pComb3X, and pC3C.
Collapse
Affiliation(s)
- Christoph Rader
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida 33458, USA
| |
Collapse
|
3
|
Abstract
The most common application of phage-display technology is the discovery of peptides or proteins that specifically bind some molecule or other substance of interest-for example, antibodies that specifically bind an antigen. The discovery process starts with a library encompassing a very large array of proteins or peptides with a great diversity of binding specificities-for example, single-chain antibodies with a great diversity of antigen-binding sites. Each member of the array is displayed on the surface of hundreds to billions of identical virus particles (virions) belonging to a single-phage clone; the library as a whole comprises millions to billions of such clones, all mixed together in a single vessel. Affinity selection is the process by which a molecule or substance of interest-generically called the selector-is used to select very rare clones in the library displaying proteins or peptides that happen to bind the selector with high affinity and selectivity. Here, I explain general principles guiding a successful affinity-selection project-principles grounded in phage biology, kinetics of reversible binding, technological advances, and the practical experience of thousands of investigators around the globe.
Collapse
Affiliation(s)
- George P Smith
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
4
|
Zhao GX, Fang XY, Bu GL, Chen SJB, Sun C, Li T, Xie C, Wang Y, Li SX, Meng N, Feng GK, Zhong Q, Kong XW, Liu Z, Zeng MS. Potent human monoclonal antibodies targeting Epstein-Barr virus gp42 reveal vulnerable sites for virus infection. Cell Rep Med 2024; 5:101573. [PMID: 38776874 PMCID: PMC11148859 DOI: 10.1016/j.xcrm.2024.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/10/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Epstein-Barr virus (EBV) is linked to various malignancies and autoimmune diseases, posing a significant global health challenge due to the lack of specific treatments or vaccines. Despite its crucial role in EBV infection in B cells, the mechanisms of the glycoprotein gp42 remain elusive. In this study, we construct an antibody phage library from 100 EBV-positive individuals, leading to the identification of two human monoclonal antibodies, 2B7 and 2C1. These antibodies effectively neutralize EBV infection in vitro and in vivo while preserving gp42's interaction with the human leukocyte antigen class II (HLA-II) receptor. Structural analysis unveils their distinct binding epitopes on gp42, different from the HLA-II binding site. Furthermore, both 2B7 and 2C1 demonstrate potent neutralization of EBV infection in HLA-II-positive epithelial cells, expanding our understanding of gp42's role. Overall, this study introduces two human anti-gp42 antibodies with potential implications for developing EBV vaccines targeting gp42 epitopes, addressing a critical gap in EBV research.
Collapse
Affiliation(s)
- Ge-Xin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xin-Yan Fang
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Guo-Long Bu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shuai-Jia-Bin Chen
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ting Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yu Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shu-Xin Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ning Meng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Guo-Kai Feng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiang-Wei Kong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of Otorhinolaryngology, Sun Yat-sen Memorial Hospital, Guangzhou, China.
| | - Zheng Liu
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
5
|
Lee CH, Wu CJ, Yang YY, Wang WC, Leu SJ, Wu CT, Kao PS, Liu KJ, Tsai BY, Chiang YW, Mao YC, Benedict Dlamini N, Chang J. Characterization of chicken-derived antibody against Alpha-Enolase of Streptococcus pneumoniae. Int Immunopharmacol 2024; 128:111476. [PMID: 38185035 DOI: 10.1016/j.intimp.2023.111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
Streptococcus pneumoniae is a clinically relevant pathogen notorious for causing pneumonia, meningitis, and otitis media in immunocompromised patients. Currently, antibiotic therapy is the most efficient treatment for fighting pneumococcal infections. However, an arise in antimicrobial resistance in S. pneumoniae has become a serious health issue globally. To resolve the problem, alternative and cost-effective strategies, such as monoclonal antibody-based targeted therapy, are needed for combating bacterial infection. S. pneumoniae alpha-enolase (spEno1), which is thought to be a great target, is a surface protein that binds and converts human plasminogen to plasmin, leading to accelerated bacterial infections. We first purified recombinant spEno1 protein for chicken immunization to generate specific IgY antibodies. We next constructed two single-chain variable fragments (scFv) antibody libraries by phage display technology, containing 7.2 × 107 and 4.8 × 107 transformants. After bio-panning, ten scFv antibodies were obtained, and their binding activities to spEno1 were evaluated on ELISA, Western blot and IFA. The epitopes of spEno1 were identified by these scFv antibodies, which binding affinities were determined by competitive ELISA. Moreover, inhibition assay displayed that the scFv antibodies effectively inhibit the binding between spEno1 and human plasminogen. Overall, the results suggested that these scFv antibodies have the potential to serve as an immunotherapeutic drug against S. pneumoniae infections.
Collapse
Affiliation(s)
- Chi-Hsin Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Chao-Jung Wu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Yi-Yuan Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei 110301, Taiwan
| | - Wei-Chu Wang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Sy-Jye Leu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Cheng-Tsang Wu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Pei-Shih Kao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan
| | - Bor-Yu Tsai
- Navi Bio-Therapeutics Inc., Taipei 10351, Taiwan
| | - Yu-Wei Chiang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Nhlanhla Benedict Dlamini
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
6
|
Liu CH, Leu SJ, Lee CH, Lin CY, Wang WC, Tsai BY, Lee YC, Chen CL, Yang YY, Lin LT. Production and characterization of single-chain variable fragment antibodies targeting the breast cancer tumor marker nectin-4. Front Immunol 2024; 14:1292019. [PMID: 38288120 PMCID: PMC10822971 DOI: 10.3389/fimmu.2023.1292019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/11/2023] [Indexed: 01/31/2024] Open
Abstract
Background Nectin-4 is a novel biomarker overexpressed in various types of cancer, including breast cancer, in which it has been associated with poor prognosis. Current literature suggests that nectin-4 has a role in cancer progression and may have prognostic and therapeutic implications. The present study aims to produce nectin-4-specific single-chain variable fragment (scFv) antibodies and evaluate their applications in breast cancer cell lines and clinical specimens. Methods We generated recombinant nectin-4 ectodomain fragments as immunogens to immunize chickens and the chickens' immunoglobulin genes were amplified for construction of anti-nectin-4 scFv libraries using phage display. The binding capacities of the selected clones were evaluated with the recombinant nectin-4 fragments, breast cancer cell lines, and paraffin-embedded tissue sections using various laboratory approaches. The binding affinity and in silico docking profile were also characterized. Results We have selected two clones (S21 and L4) from the libraries with superior binding capacity. S21 yielded higher signals when used as the primry antibody for western blot analysis and flow cytometry, whereas clone L4 generated cleaner and stronger signals in immunofluorescence and immunohistochemistry staining. In addition, both scFvs could diminish attachment-free cell aggregation of nectin-4-positive breast cancer cells. As results from ELISA indicated that L4 bound more efficiently to fixed nectin-4 ectodomain, molecular docking analysis was further performed and demonstrated that L4 possesses multiple polar contacts with nectin-4 and diversity in interacting residues. Conclusion Overall, the nectin-4-specific scFvs could recognize nectin-4 expressed by breast cancer cells and have the merit of being further explored for potential diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Ching-Hsuan Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sy-Jye Leu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Hsin Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yuan Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chu Wang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | | | - Yu-Ching Lee
- The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University and Taipei Medical University Hospital, Taipei, Taiwan
| | - Yi-Yuan Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei, Taiwan
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
7
|
Georg Magalhães C, Ploeger Mansueli C, Manieri TM, Quintilio W, Garbuio A, de Jesus Marinho J, de Moraes JZ, Tsuruta LR, Moro AM. Impaired proliferation and migration of HUVEC and melanoma cells by human anti-FGF2 mAbs derived from a murine hybridoma by guided selection. Bioengineered 2023; 14:2252667. [PMID: 37661761 PMCID: PMC10478743 DOI: 10.1080/21655979.2023.2252667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 09/05/2023] Open
Abstract
Disadvantages of using murine monoclonal antibodies (mAb) in human therapy, such as immunogenicity response, led to the development of technologies to transform murine antibodies into human antibodies. The murine anti-FGF2 3F12E7 mAb was proposed as a promising agent to treat metastatic melanoma tumors; once it blocks the FGF2, responsible for playing a role in tumor growth, angiogenesis, and metastasis. Considering the therapeutic potential of anti-FGF2 3F12E7 mAb and its limited use in humans due to its origin, we used this antibody as the template for a guided selection humanization technique to obtain human anti-FGF2 mAbs. Three Fab libraries (murine, hybrid, and human) were constructed for humanization. The libraries were phage-displayed, and the panning was performed against recombinant human FGF2 (rFGF2). The selected human variable light and heavy chains were cloned into AbVec vectors for full-length IgG expression into HEK293-F cells. Surface plasmon resonance analyses showed binding to rFGF2 of seven mAbs out of 20 expressed. Assays performed with these mAbs resulted in two that showed proliferation reduction and cell migration attenuation of HUVEC and SK-Mel-28 melanoma cells. In-silico analyses predicted that these two human anti-FGF2 mAbs interact with FGF2 at a similar patch of residues than the chimeric anti-FGF2 antibody, comprehending a region within the heparin-binding domains of FGF2, essential for its function. These results are comparable to those achieved by the murine anti-FGF2 3F12E7 mAb and showed success in the humanization process and selection of two human mAbs with the potential to inhibit undesirable FGF2 roles.
Collapse
Affiliation(s)
| | | | | | - Wagner Quintilio
- Laboratory of Biopharmaceuticals, Butantan Institute, São Paulo, Brazil
| | - Angélica Garbuio
- Laboratory of Biopharmaceuticals, Butantan Institute, São Paulo, Brazil
| | | | - Jane Zveiter de Moraes
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Ana Maria Moro
- Laboratory of Biopharmaceuticals, Butantan Institute, São Paulo, Brazil
- CeRDI, Center for Research and Development in Immunobiologicals, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
8
|
Chiang CW, Lin YS, Chang FL, Lin TY, Tsai KC, HuangFu WC, Lee YC. Single-chain fragment antibody disrupting the EphA4 function as a therapeutic drug for gastric cancer. Biochem Biophys Res Commun 2023; 680:161-170. [PMID: 37741263 DOI: 10.1016/j.bbrc.2023.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023]
Abstract
Studies have shown that the high expression of EphA4 in gastric cancer tissues may correlate with unfavorable clinical pathological characteristics. Therefore, EphA4 may be an effective target for treating gastric cancer in addition to HER-2/neu. In this study, generated scFv S3 can bind endogenous EphA4 of gastric cancer cells and has significant membrane staining. Additionally, scFv S3 binding to EphA4 inhibits the growth and migration of cancer cells and the growth induction that ephrinA1 generates in gastric cancer cells. We found that EphA4 molecules may degrade through antibody treatment of cells, and the increase in LAMP1 and LAMP2 indicates that lysosome is involved in the degradation. The scFv S3 administration leads to the signals pAKT, pERK, and pSTAT3 decrease in cancer cells. The xenograft model of HER-2/neu low expressing gastric cancer cell SNU-16 exhibits better therapeutic effects by scFv S3 than trastuzumab scFv. The scFv S3 administration in vivo can degrade EphA4 molecules in tumor tissues, decreasing Ki67 and increasing cleaved C3 molecule expression. Furthermore, we identified and validated that scFv S3 generates essential ionic bonding with R162 on EphA4. The antibody may provide effective treatment for patients with gastric cancer and abnormal activation or overexpression of EphA4 signaling.
Collapse
Affiliation(s)
- Chen-Wei Chiang
- Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yun-Shih Lin
- Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Fu-Ling Chang
- Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Yu Lin
- Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan; Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun HuangFu
- Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Ching Lee
- Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Chang FL, Tsai KC, Lin TY, Chiang CW, Pan SL, Lee YC. Effectiveness of anti-erythropoietin producing Hepatocellular receptor Type-A2 antibody in pancreatic cancer treatment. Heliyon 2023; 9:e21774. [PMID: 38034633 PMCID: PMC10682614 DOI: 10.1016/j.heliyon.2023.e21774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Erythropoietin-producing hepatocyte receptor type A2 (EphA2) is a tyrosine kinase that binds to ephrins (e.g., ephrin-A1) to initiate bidirectional signaling between cells. The binding of EphA2 and ephrin-A1 leads to the inhibition of Ras-MAPK activity and tumor growth. During tumorigenesis, the normal interaction between EphA2 and ephrin-A1 is hindered, which leads to the overexpression of EphA2 and induces cancer. The overexpression of EphA2 has been identified as a notable tumor marker in diagnosing and treating pancreatic cancer. In this study, we used phage display to isolate specific antibodies against the active site of EphA2 by using a discontinuous recombinant epitope for immunization. The therapeutic efficacy and inhibition mechanism of the generated antibody against pancreatic cancer was validated and clarified. The generated antibodies were bound to the conformational epitope of endogenous EphA2 on cancer cells, thus inducing cellular endocytosis and causing EphA2 degradation. Molecule signals pAKT, pERK, pFAK, and pSTAT3 were weakened, inhibiting the proliferation and migration of pancreatic cancer cells. The humanized antibody hSD5 could effectively inhibit the growth of the xenograft pancreatic cancer tumor cells BxPc-3 and Mia PaCa-2 in mice, respectively. When antibody hSD5 was administered with gemcitabine, significantly improved effects on tumor growth inhibition were observed. Based on the efficacy of the IgG hSD5 antibodies, clinical administration of the hSD5 antibodies is likely to suppress tumors in patients with pancreatic cancer and abnormal activation or overexpression of EphA2 signaling.
Collapse
Affiliation(s)
- Fu-Ling Chang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Yu Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chen-Wei Chiang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shiow-Lin Pan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
10
|
Petrosino A, Saporetti R, Starinieri F, Sarti E, Ulfo L, Boselli L, Cantelli A, Morini A, Zadran SK, Zuccheri G, Pasquini Z, Di Giosia M, Prodi L, Pompa PP, Costantini PE, Calvaresi M, Danielli A. A modular phage vector platform for targeted photodynamic therapy of Gram-negative bacterial pathogens. iScience 2023; 26:108032. [PMID: 37822492 PMCID: PMC10563061 DOI: 10.1016/j.isci.2023.108032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/04/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Growing antibiotic resistance has encouraged the revival of phage-inspired antimicrobial approaches. On the other hand, photodynamic therapy (PDT) is considered a very promising research domain for the protection against infectious diseases. Yet, very few efforts have been made to combine the advantages of both approaches in a modular, retargetable platform. Here, we foster the M13 bacteriophage as a multifunctional scaffold, enabling the selective photodynamic killing of bacteria. We took advantage of the well-defined molecular biology of M13 to functionalize its capsid with hundreds of photo-activable Rose Bengal sensitizers and contemporarily target this light-triggerable nanobot to specific bacterial species by phage display of peptide targeting moieties fused to the minor coat protein pIII of the phage. Upon light irradiation of the specimen, the targeted killing of diverse Gram(-) pathogens occurred at subnanomolar concentrations of the phage vector. Our findings contribute to the development of antimicrobials based on targeted and triggerable phage-based nanobiotherapeutics.
Collapse
Affiliation(s)
- Annapaola Petrosino
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Roberto Saporetti
- Dipartimento di Chimica “Giacomo Ciamician” – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Francesco Starinieri
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Edoardo Sarti
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Luca Boselli
- Nanobiointeractions and Nanodiagnostics Laboratory, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Andrea Cantelli
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Andrea Morini
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Suleman Khan Zadran
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Giampaolo Zuccheri
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
- CIRI SDV – Centro Interdipartimentale Scienze della Vita - Alma Mater Studiorum - Università di Bologna, Via Tolara di Sopra, 41/E - 40064 Ozzano dell'Emilia (BO), Italy
| | - Zeno Pasquini
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician” – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Luca Prodi
- Dipartimento di Chimica “Giacomo Ciamician” – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
- CIRI SDV – Centro Interdipartimentale Scienze della Vita - Alma Mater Studiorum - Università di Bologna, Via Tolara di Sopra, 41/E - 40064 Ozzano dell'Emilia (BO), Italy
| | - Pier Paolo Pompa
- Nanobiointeractions and Nanodiagnostics Laboratory, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician” – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
- CIRI SDV – Centro Interdipartimentale Scienze della Vita - Alma Mater Studiorum - Università di Bologna, Via Tolara di Sopra, 41/E - 40064 Ozzano dell'Emilia (BO), Italy
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
- CIRI SDV – Centro Interdipartimentale Scienze della Vita - Alma Mater Studiorum - Università di Bologna, Via Tolara di Sopra, 41/E - 40064 Ozzano dell'Emilia (BO), Italy
| |
Collapse
|
11
|
Zhang Y, Liao X, Yu G, Wei J, Wang P, Wang Y, Jing Y, Wang J, Chen P, Wang J, Wang H, Wang Y. Phage-Displayed Nanobody as a Sensitive Nanoprobe to Enhance Chemiluminescent Immunoassay for Cronobacter sakazakii Detection in Dairy Products. Anal Chem 2023; 95:13698-13707. [PMID: 37635301 DOI: 10.1021/acs.analchem.3c02990] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The exploitation of stable, high-affinity, and low-cost nanoprobes is essential to develop immunoassays for real-time monitoring of foodborne pathogens, so as to safeguard human health. The possible interaction of the Fc fragment of antibodies with spA protein on Staphylococcus aureus will result in unexpected interference. To address this consideration, we described herein for the first time the development of nanobodies that by definition are devoid of the Fc fraction. These nanobodies directed against Cronobacter sakazakii (C. sakazakii) were retrieved from a dedicated immune phage-displayed nanobody library. The binders showed superiority of low cost, strong stability, high binding affinity, and adequate load capacity. Thereafter, a phage-mediated sandwich enzyme-linked immunosorbent assay (ELISA) was constructed by using Cs-Nb2 as an antigen-capturing antibody and phage-displayed Cs-Nb1 as a detection probe. To further enhance the sensitivity, a chemiluminescent enzyme immunoassay (CISA) was established by replacing the substrate from 3,3',5,5'-tetramethylbenzidine (TMB) to luminol, providing a limit of detection of 1.04 × 104 CFU/mL, with a recovery of 98.15-114.63% for the detection of C. sakazakii in dairy products. The proposed nanobody-based phage-mediated sandwich CLISA shows various advantages, including high sensitivity, cost effectiveness, enhanced loading capacity of the enzyme, and high resistance to the matrix effect, providing a strategy for the design of immunoassays toward foodborne pathogens.
Collapse
Affiliation(s)
- Yao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xingrui Liao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Gege Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Juan Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peng Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yueqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yinnan Jing
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiamin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pengyu Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
12
|
Garcia-Calvo E, García-García A, Rodríguez Gómez S, Farrais S, Martín R, García T. Development of a new recombinant antibody, selected by phage-display technology from a celiac patient library, for detection of gluten in foods. Curr Res Food Sci 2023; 7:100578. [PMID: 37680694 PMCID: PMC10480589 DOI: 10.1016/j.crfs.2023.100578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Gluten, a group of ethanol-soluble proteins present in the endosperm of cereals, is extensively used in the food industry due to its ability to improve dough properties. However, gluten is also associated with a range of gluten-related diseases (GRDs), such as wheat allergies, celiac disease, and gluten intolerance. The recommended treatment for GRDs patients is a gluten-free diet. To monitor adherence to this diet, it is necessary to develop gluten-detection systems in food products. Among the available methods, immunodetection systems are the most popular due to their simplicity, reproducibility, and accuracy. The aim of this study was to generate novel high-affinity antibodies against gluten to be used as the primary reactant in an enzyme-linked immunosorbent assay (ELISA) test. These antibodies were developed by constructing an immune library from mRNA obtained from two celiac patients with a high humoral response to gluten-related proteins. The resulting library (composed by 1.1x107) was subjected to selection against gliadin using phage display technology. Following several rounds of selection, the Fab-C was selected, and demonstrated good functionality in ELISA tests, presenting a limit of detection of 15 mg/kg for detection of gluten in spiked mixtures and food products. The methodology can discriminate gluten-free products according to the current legislation.
Collapse
Affiliation(s)
- Eduardo Garcia-Calvo
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Aina García-García
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Santiago Rodríguez Gómez
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Sergio Farrais
- Servicio de Medicina Digestiva, Hospital Universitario Fundación Jiménez Díaz, 28040, Madrid, Spain
| | - Rosario Martín
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Teresa García
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
13
|
Quintero-Campos P, Gozalbo-Rovira R, Rodríguez-Díaz J, Maquieira Á, Morais S. Standardizing In Vitro β-Lactam Antibiotic Allergy Testing with Synthetic IgE. Anal Chem 2023; 95:12113-12121. [PMID: 37545056 PMCID: PMC10859892 DOI: 10.1021/acs.analchem.3c02284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
The global prevalence of β-lactam allergy poses a major challenge in administering first-line antibiotics, such as penicillins, to a significant portion of the population. The lack of β-lactam IgE antibody pools with defined selectivity hampers the standardization and validation of in vitro assays for β-lactam allergy testing. To address this limitation, this study introduces a synthetic IgE specific to β-lactam antibiotics as a valuable tool for drug allergy research and diagnostic tests. Using phage display technology, we constructed a library of human single-chain antibody fragments (scFv) to target the primary determinant of amoxicillin, a widely used β-lactam antibiotic. Subsequently, we produced a complete human synthetic IgE molecule using the highly efficient baculovirus expression vector system. This synthetic IgE molecule served as a standard in an in vitro chemiluminescence immunoassay for β-lactam antibiotic allergy testing. Our results demonstrated a detection limit of 0.05 IU/mL (0.63 pM), excellent specificity (100%), and a four-fold higher clinical sensitivity (73%) compared to the in vitro reference assay when testing a cohort of 150 serum samples. These findings have significant implications for reliable interlaboratory comparison studies, accurate labeling of allergic patients, and combating the global public health threat of antimicrobial resistance. Furthermore, by serving as a valuable trueness control material, the synthetic IgE facilitates the standardization of diagnostic tests for β-lactam allergy and demonstrates the potential of utilizing this synthetic strategy as a promising approach for generating reference materials in drug allergy research and diagnostics.
Collapse
Affiliation(s)
- Pedro Quintero-Campos
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València-Universitat de València, 46022 Valencia, Spain
| | - Roberto Gozalbo-Rovira
- Departamento
de Microbiología, Facultad de Medicina, Universidad de València, Av. Blasco Ibáñez 17, 46010 València, Spain
- Hospital
Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Departamento
de Microbiología, Facultad de Medicina, Universidad de València, Av. Blasco Ibáñez 17, 46010 València, Spain
- Hospital
Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain
| | - Ángel Maquieira
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València-Universitat de València, 46022 Valencia, Spain
- Unidad
Mixta UPV-La Fe, Nanomedicine and Sensors, IIS La Fe, Av. de Fernando Abril Martorell,
106, 46026 València, Spain
- Departamento
de Química, Universitat Politècnica
de València, Camino
de Vera s/n, 46022 Valencia, Spain
| | - Sergi Morais
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València-Universitat de València, 46022 Valencia, Spain
- Unidad
Mixta UPV-La Fe, Nanomedicine and Sensors, IIS La Fe, Av. de Fernando Abril Martorell,
106, 46026 València, Spain
- Departamento
de Química, Universitat Politècnica
de València, Camino
de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
14
|
Kim H, Han M, Kim M, Kim H, Im HJ, Kim N, Koh KN. CD19/CD22 bispecific chimeric antigen receptor‑NK‑92 cells are developed and evaluated. Oncol Lett 2023; 25:236. [PMID: 37153038 PMCID: PMC10161343 DOI: 10.3892/ol.2023.13822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/23/2023] [Indexed: 05/09/2023] Open
Abstract
Anti-CD19 chimeric antigen receptor (CAR)-T cells have improved the outcomes of patients with B cell leukemia and lymphoma. However, their applications and positive outcomes remain limited. CAR-T cells are currently restricted to autologous blood as their source and their use can lead to downregulation of CD19 expression along with complications such as graft-versus-host disease and cytokine release syndrome. The present study aimed to develop anti-CD19/CD22 bispecific CAR structures using an anti-CD22 monoclonal antibody clone from chickens and analyze them in natural killer (NK)-92 cells, a human NK cell line, in vitro and in vivo. Anti-CD19/CD22 CAR-NK-92 cell cytotoxicity was assessed by the survival of target cells and counted using flow cytometry. Anti-CD22/CD19 and loop-structured anti-CD19/CD22 bi-specific CAR-NK-92 cells showed improved efficacy against OCI-Ly7 cells, a human B cell lymphoma cell line, compared with other CAR structures. These results demonstrate the potential of anti-CD19/CD22 bispecific CAR-NK cells and suggested that optimizing CAR structures in NK cells can improve the efficacy of CAR therapy.
Collapse
Affiliation(s)
- Hyori Kim
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Mina Han
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Minsong Kim
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Hyeri Kim
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ho Joon Im
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Nayoung Kim
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Dr Nayoung Kim, Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic 43-gil, Songpa, Seoul 05505, Republic of Korea, E-mail:
| | - Kyung-Nam Koh
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- Correspondence to: Professor Kyung-Nam Koh, Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic 43-gil, Songpa, Seoul 05505, Republic of Korea, E-mail:
| |
Collapse
|
15
|
Lee CH, Tsai CH, Leu SJ, Liu KJ, Wang WC, Tsai BY, Chiang LC, Mao YC, Benedict Dlamini N, Tsai CH, Yang YY. Generation and characterization of avian single chain variable fragment against human Alpha-Enolase. Int Immunopharmacol 2023; 120:110277. [PMID: 37196558 DOI: 10.1016/j.intimp.2023.110277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023]
Abstract
Overexpression of human alpha-enolase (hEno1)has been reported in a wide range of cancers and is tightly associated with poor prognosis, making it a remarkable biomarker and therapeutic target. In this study, polyclonal yolk-immunoglobulin (IgY) antibodies purified from hEno1-immunized chickens showed a noticeable specific humoral response. Phage display technology was used to construct two antibody libraries of IgY gene-derived single-chain variable fragments (scFvs) containing 7.8 × 107 and 5.4 × 107 transformants, respectively. Phage-based ELISA indicated that specific anti-hEno1 clones were significantly enriched. The nucleotide sequences of scFv-expressing clones were determined and classified into seven groups either in the short linker or the long linker. Moreover, higher mutation rates were revealed in the CDR regions, especially in the CDR3. Three distinguish antigenic epitopes were identified on the hEno1 protein. The binding activities of selected anti-hEno1 scFv on hEno1-positive PE089 lung cancer cells were confirmed using Western blot, flow cytometry, and immunofluorescence assay. In particular, hEnS7 and hEnS8 scFv antibodies significantly suppressed the growth and migration of PE089 cells. Taken together, these chicken-derived anti-hEno1 IgY and scFv antibodies have great potential to develop diagnostic and therapeutic agents for the treatment of lung cancer patients with high expression levels of hEno1 protein.
Collapse
Affiliation(s)
- Chi-Hsin Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Chu-Hsuan Tsai
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Sy-Jye Leu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan
| | - Wei-Chu Wang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Bor-Yu Tsai
- Navi Bio-Therapeutics Inc., Taipei 10351, Taiwan
| | - Liao-Chun Chiang
- College of Life Sciences, National Tsing Hua University, Hsinchu 300040, Taiwan
| | - Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Nhlanhla Benedict Dlamini
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Chen-Hsin Tsai
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Yi-Yuan Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei 110301, Taiwan.
| |
Collapse
|
16
|
El-Kafrawy SA, Abbas AT, Oelkrug C, Tahoon M, Ezzat S, Zumla A, Azhar EI. IgY antibodies: The promising potential to overcome antibiotic resistance. Front Immunol 2023; 14:1065353. [PMID: 36742328 PMCID: PMC9896010 DOI: 10.3389/fimmu.2023.1065353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Antibiotic resistant bacteria are a growing threat to global health security. Whilst the emergence of antimicrobial resistance (AMR) is a natural phenomenon, it is also driven by antibiotic exposure in health care, agriculture, and the environment. Antibiotic pressure and inappropriate use of antibiotics are important factors which drive resistance. Apart from their use to treat bacterial infections in humans, antibiotics also play an important role in animal husbandry. With limited antibiotic options, alternate strategies are required to overcome AMR. Passive immunization through oral, nasal and topical administration of egg yolk-derived IgY antibodies from immunized chickens were recently shown to be effective for treating bacterial infections in animals and humans. Immunization of chickens with specific antigens offers the possibility of creating specific antibodies targeting a wide range of antibiotic-resistant bacteria. In this review, we describe the growing global problem of antimicrobial resistance and highlight the promising potential of the use of egg yolk IgY antibodies for the treatment of bacterial infections, particularly those listed in the World Health Organization priority list.
Collapse
Affiliation(s)
- Sherif A El-Kafrawy
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Clinical Pathology, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Aymn T Abbas
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Biotechnology Research Laboratories, Gastroenterology, Surgery Centre, Mansoura University, Mansoura, Egypt
| | | | - Marwa Tahoon
- Epidemiology and Preventive Medicine Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Sameera Ezzat
- Epidemiology and Preventive Medicine Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt.,MARC for Medical Services and Scientific Research, 6th of October City, Giza, Egypt
| | - Alimuddin Zumla
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Infection, Division of Infection and Immunity, Centre for Clinical Microbiology, University College London, London, United Kingdom.,National Institute for Health and Care Research (NIHR) Biomedical Research Centre, University College London Hospitals, London, United Kingdom
| | - Esam I Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Fehrsen J, Wemmer S, van Wyngaardt W. Construction of Chicken and Ostrich Antibody Libraries. Methods Mol Biol 2023; 2702:77-92. [PMID: 37679616 DOI: 10.1007/978-1-0716-3381-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Recombinant antibody libraries based on chicken immunoglobulin genes are potentially valuable sources of phage-displayed scFvs for use in veterinary diagnostics and research. To add diversity to the scFv repertoire, we expanded the library to include genes from the ostrich, indigenous to southern Africa. The libraries described in this chapter are based on the chicken and ostrich variable heavy and light chain immunoglobulin genes joined by a short flexible linker cloned in the phagemid vector pHEN1. The resulting phagemids produce either scFvs displayed on the surface of the fusion phage subsequent to co-infection with helper phage or soluble scFvs following IPTG induction. This chapter provides detailed and proven methods for the construction of such libraries.
Collapse
Affiliation(s)
- Jeanni Fehrsen
- ARC-Onderstepoort Veterinary Research, Pretoria, South Africa.
| | - Susan Wemmer
- ARC-Onderstepoort Veterinary Research, Pretoria, South Africa
| | | |
Collapse
|
18
|
Morgenstern TJ, Nirwan N, Hernández-Ochoa EO, Bibollet H, Choudhury P, Laloudakis YD, Ben Johny M, Bannister RA, Schneider MF, Minor DL, Colecraft HM. Selective posttranslational inhibition of Ca Vβ 1-associated voltage-dependent calcium channels with a functionalized nanobody. Nat Commun 2022; 13:7556. [PMID: 36494348 PMCID: PMC9734117 DOI: 10.1038/s41467-022-35025-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Ca2+ influx through high-voltage-activated calcium channels (HVACCs) controls diverse cellular functions. A critical feature enabling a singular signal, Ca2+ influx, to mediate disparate functions is diversity of HVACC pore-forming α1 and auxiliary CaVβ1-CaVβ4 subunits. Selective CaVα1 blockers have enabled deciphering their unique physiological roles. By contrast, the capacity to post-translationally inhibit HVACCs based on CaVβ isoform is non-existent. Conventional gene knockout/shRNA approaches do not adequately address this deficit owing to subunit reshuffling and partially overlapping functions of CaVβ isoforms. Here, we identify a nanobody (nb.E8) that selectively binds CaVβ1 SH3 domain and inhibits CaVβ1-associated HVACCs by reducing channel surface density, decreasing open probability, and speeding inactivation. Functionalizing nb.E8 with Nedd4L HECT domain yielded Chisel-1 which eliminated current through CaVβ1-reconstituted CaV1/CaV2 and native CaV1.1 channels in skeletal muscle, strongly suppressed depolarization-evoked Ca2+ influx and excitation-transcription coupling in hippocampal neurons, but was inert against CaVβ2-associated CaV1.2 in cardiomyocytes. The results introduce an original method for probing distinctive functions of ion channel auxiliary subunit isoforms, reveal additional dimensions of CaVβ1 signaling in neurons, and describe a genetically-encoded HVACC inhibitor with unique properties.
Collapse
Affiliation(s)
- Travis J. Morgenstern
- grid.239585.00000 0001 2285 2675Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY USA
| | - Neha Nirwan
- grid.266102.10000 0001 2297 6811Cardiovascular Research Institute, University of California, San Francisco, CA USA
| | - Erick O. Hernández-Ochoa
- grid.411024.20000 0001 2175 4264Department of Biochemistry and Biology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Hugo Bibollet
- grid.411024.20000 0001 2175 4264Department of Biochemistry and Biology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Papiya Choudhury
- grid.239585.00000 0001 2285 2675Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY USA
| | - Yianni D. Laloudakis
- grid.239585.00000 0001 2285 2675Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY USA
| | - Manu Ben Johny
- grid.239585.00000 0001 2285 2675Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY USA
| | - Roger A. Bannister
- grid.411024.20000 0001 2175 4264Department of Biochemistry and Biology, University of Maryland School of Medicine, Baltimore, MD USA ,grid.411024.20000 0001 2175 4264Department of Pathology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Martin F. Schneider
- grid.411024.20000 0001 2175 4264Department of Biochemistry and Biology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Daniel L. Minor
- grid.266102.10000 0001 2297 6811Cardiovascular Research Institute, University of California, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811Department of Biochemistry and Biophysics, University of California, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA USA ,grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Henry M. Colecraft
- grid.239585.00000 0001 2285 2675Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY USA ,grid.239585.00000 0001 2285 2675Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY USA
| |
Collapse
|
19
|
Screening and characterization of inhibitory vNAR targeting nanodisc-assembled influenza M2 proteins. iScience 2022; 26:105736. [PMID: 36570769 PMCID: PMC9771723 DOI: 10.1016/j.isci.2022.105736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/16/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Influenza A virus poses a constant challenge to human health. The highly conserved influenza matrix-2 (M2) protein is an attractive target for the development of a universal antibody-based drug. However, screening using antigens with subphysiological conformation in a nonmembrane environment significantly reduces the generation of efficient antibodies. Here, M2(1-46) was incorporated into nanodiscs (M2-nanodiscs) with M2 in a membrane-embedded tetrameric conformation, closely resembling its natural physiological state in the influenza viral envelope. M2-nanodisc generation, an antigen, was followed by Chiloscyllium plagiosum immunization. The functional vNARs were selected by phage display panning strategy from the shark immune library. One of the isolated vNARs, AM2H10, could specifically bind to tetrameric M2 instead of monomeric M2e (the ectodomain of M2 protein). Furthermore, AM2H10 blocked ion influx through amantadine-sensitive and resistant M2 channels. Our findings indicated the possibility of developing functional shark nanobodies against various influenza viruses by targeting the M2 protein.
Collapse
|
20
|
Lee CH, Huang PN, Mwale PF, Wang WC, Leu SJ, Tseng SN, Shih SR, Chiang LC, Mao YC, Tsai BY, Dlamini NB, Nguyen TC, Tsai CH, Yang YY. The Bottlenecks of Preparing Virus Particles by Size Exclusion for Antibody Generation. Int J Mol Sci 2022; 23:12967. [PMID: 36361757 PMCID: PMC9653933 DOI: 10.3390/ijms232112967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
Enterovirus 71 (EV71) is the major etiological agent contributing to the development of hand-foot-mouth disease (HFMD). There are not any global available vaccines or antibody drugs against EV71 released yet. In this study, we perform the virus immunization in a cost-effective and convenient approach by preparing virus particles from size exclusion and immunization of chicken. Polyclonal yolk-immunoglobulin (IgY) was simply purified from egg yolk and monoclonal single-chain variable fragments (scFv) were selected via phage display technology with two scFv libraries containing 6.0 × 106 and 1.3 × 107 transformants. Specific clones were enriched after 5 rounds of bio-panning and four identical genes were classified after the sequence analysis. Moreover, the higher mutation rates were revealed in the CDR regions, especially in the CDR3. IgY showed specific binding activities to both EV71-infected and Coxsackievirus 16-infected cell lysates and high infectivity inhibitory activity of EV71. However, while IgY detected a 37 kDa protein, the selected scFv seemingly detected higher size proteins which could be cell protein instead of EV71 proteins. Despite the highly effective chicken antibody generation, the purity of virus particles prepared by size exclusion is the limitation of this study, and further characterization should be carried out rigorously.
Collapse
Affiliation(s)
- Chi-Hsin Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Peng-Nien Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 333423, Taiwan
- Division of Infectious Diseases, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Pharaoh Fellow Mwale
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Wei-Chu Wang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Sy-Jye Leu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Sung-Nien Tseng
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 333423, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 333423, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Liao-Chun Chiang
- College of Life Sciences, National Tsing Hua University, Hsinchu 300040, Taiwan
| | - Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Bor-Yu Tsai
- Navi Bio-Therapeutics Inc., Taipei 10351, Taiwan
| | - Nhlanhla Benedict Dlamini
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Tien-Cuong Nguyen
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Chen-Hsin Tsai
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Yi-Yuan Yang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
21
|
Yakhkeshi S, Wu R, Chelliappan B, Zhang X. Trends in industrialization and commercialization of IgY technology. Front Immunol 2022; 13:991931. [PMID: 36341353 PMCID: PMC9630564 DOI: 10.3389/fimmu.2022.991931] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/07/2022] [Indexed: 11/21/2022] Open
Abstract
IgY technology refers to the strategic production process involved in generating avian immunoglobulin (IgY) against target antigens in a much more cost-effective manner with broad applications in the fields of diagnostics, prophylaxis, and therapeutics for both human and veterinary medicine. Over the past decade, promising progress in this research area has been evident from the steep increase in the number of registered manufacturing companies involved in the production of IgY products, the number of patents, and the notable number of clinical trials underway. Hence, it is crucial to conduct a prospective analysis of the commercialization and marketing potential of IgY-based commercial products for large-scale applications. This review revealed that the number of IgY patent applications increased steeply after 2010, with the highest of 77 patents filed in 2021. In addition, 73 industries are reportedly involved in marketing IgY products, out of which 27 were promoting biotherapeutics for human and veterinary medicine and 46 were in the diagnostic field. IgY antibodies are being used as primary and secondary antibodies, with approximately 3729 and 846 products, respectively. Biotherapeutic product consumption has notably increased as a food supplement and as a topical application in human and veterinary medicine, which are under different clinical phases of development to reach the market with around 80 and 56 products, respectively. In contrast, the number of IgY products as parenteral administrations and licensed drugs is not well developed given the lack of technical standards established for IgY registration and industrialization, as well as the restriction of the nature of polyclonal antibodies. However, recent ongoing research on functional IgY fragments indicates a promising area for IgY applications in the near future. Therefore, retrospective analysis with speculations is mandatory for IgY technology maturation toward industrialization and commercialization.
Collapse
Affiliation(s)
- Saeed Yakhkeshi
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Rao Wu
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Brindha Chelliappan
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Xiaoying Zhang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre of Molecular & Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
- *Correspondence: Xiaoying Zhang,
| |
Collapse
|
22
|
Choi YS, Kim MJ, Choi EA, Kim S, Lee EJ, Park MJ, Kim MJ, Kim YW, Ahn HS, Jung JY, Jang G, Kim Y, Kim H, Kim K, Kim JY, Hong SM, Kim SC, Chang S. Antibody-mediated blockade for galectin-3 binding protein in tumor secretome abrogates PDAC metastasis. Proc Natl Acad Sci U S A 2022; 119:e2119048119. [PMID: 35858411 PMCID: PMC9335190 DOI: 10.1073/pnas.2119048119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/27/2022] [Indexed: 01/21/2023] Open
Abstract
The major challenges in pancreatic ductal adenocarcinoma (PDAC) management are local or distant metastasis and limited targeted therapeutics to prevent it. To identify a druggable target in tumor secretome and to explore its therapeutic intervention, we performed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic analysis of tumors obtained from a patient-derived xenograft model of PDAC. Galectin-3 binding protein (Gal-3BP) is identified as a highly secreted protein, and its overexpression is further validated in multiple PDAC tumors and primary cells. Knockdown and exogenous treatment of Gal-3BP showed that it is required for PDAC cell proliferation, migration, and invasion. Mechanistically, we revealed that Gal-3BP enhances galectin-3-mediated epidermal growth factor receptor signaling, leading to increased cMyc and epithelial-mesenchymal transition. To explore the clinical impact of these findings, two antibody clones were developed, and they profoundly abrogated the metastasis of PDAC cells in vivo. Altogether, our data demonstrate that Gal-3BP is an important therapeutic target in PDAC, and we propose its blockade by antibody as a therapeutic option for suppressing PDAC metastasis.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/immunology
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/secondary
- Carcinoma, Pancreatic Ductal/therapy
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Chromatography, Liquid
- Epithelial-Mesenchymal Transition
- Gene Knockdown Techniques
- Humans
- Mice
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Proteomics
- Secretome
- Tandem Mass Spectrometry
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yeon-Sook Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Myung Ji Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Eun A. Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Sinae Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Eun ji Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Min Ji Park
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Mi-Ju Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Yeon Wook Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Hee-Sung Ahn
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Jae Yun Jung
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Gayoung Jang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Yongsub Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Hyori Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, South Korea
| | - Seung-Mo Hong
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Song Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| |
Collapse
|
23
|
Liu CC, Wu CJ, Chou TY, Liaw GW, Hsiao YC, Chu LJ, Lee CH, Wang PJ, Hsieh CH, Chen CK, Yu JS. Development of a Monoclonal scFv against Cytotoxin to Neutralize Cytolytic Activity Induced by Naja atra Venom on Myoblast C2C12 Cells. Toxins (Basel) 2022; 14:toxins14070459. [PMID: 35878197 PMCID: PMC9320128 DOI: 10.3390/toxins14070459] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
The Taiwanese cobra, Naja atra, is a clinically significant species of snake observed in the wild in Taiwan. Victims bitten by N. atra usually experience severe pain and local tissue necrosis. Although antivenom is available for treatment of cobra envenomation, its neutralization potency against cobra-induced necrosis is weak, with more than 60% of cobra envenoming patients developing tissue necrosis after antivenom administration. The present study found that cytotoxin (CTX) is a key component of N. atra venom responsible for cytotoxicity against myoblast cells. Anti-CTX IgY was generated in hens, and the spleens of these hens were used to construct libraries for the development of single chain variable fragments (scFv). Two anti-CTX scFv, S1 and 2S7, were selected using phage display technology and biopanning. Both polyclonal IgY and monoclonal scFv S1 reacted specifically with CTX in cobra venom. In a cell model assay, the CTX-induced cytolytic effect was inhibited only by monoclonal scFv S1, not by polyclonal IgY. Moreover, the neutralization potency of scFv S1 was about 3.8 mg/mg, approximately three times higher than that of conventional freeze-dried neurotoxic antivenom (FNAV). Collectively, these results suggest that scFv S1 can effectively neutralize CTX-induced cytotoxicity and, when combined with currently available antivenom, can improve the potency of the latter, thereby preventing tissue damage induced by cobra envenoming.
Collapse
Affiliation(s)
- Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (C.-C.L.); (Y.-C.H.); (L.-J.C.); (P.-J.W.)
| | - Cho-Ju Wu
- Department of Emergency Medicine, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
| | - Tsai-Ying Chou
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Geng-Wang Liaw
- Department of Emergency Medicine, Yeezen General Hospital, Taoyuan 32645, Taiwan;
| | - Yung-Chin Hsiao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (C.-C.L.); (Y.-C.H.); (L.-J.C.); (P.-J.W.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Lichieh-Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (C.-C.L.); (Y.-C.H.); (L.-J.C.); (P.-J.W.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Chi-Hsin Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11042, Taiwan;
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11042, Taiwan
| | - Po-Jung Wang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (C.-C.L.); (Y.-C.H.); (L.-J.C.); (P.-J.W.)
| | - Cheng-Hsien Hsieh
- Department of Emergency Medicine, En Chu Kong Hospital, New Taipei City 23741, Taiwan;
| | - Chun-Kuei Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
- Correspondence: (C.-K.C.); (J.-S.Y.); Tel.: +88-63-2118800 (ext. 5171) (J.-S.Y.); Fax: +88-63-2118891 (J.-S.Y.)
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (C.-C.L.); (Y.-C.H.); (L.-J.C.); (P.-J.W.)
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Correspondence: (C.-K.C.); (J.-S.Y.); Tel.: +88-63-2118800 (ext. 5171) (J.-S.Y.); Fax: +88-63-2118891 (J.-S.Y.)
| |
Collapse
|
24
|
Development of an Enzyme-Linked Immunosorbent Assay for Detection of the Native Conformation of Enterovirus A71. mSphere 2022; 7:e0008822. [PMID: 35642505 PMCID: PMC9241546 DOI: 10.1128/msphere.00088-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Enterovirus A71 (EVA71) is a medically important virus that is commonly associated with hand, foot, and mouth disease (HFMD). It is responsible for periodic outbreaks, resulting in significant economic impact and loss of life. Vaccination offers the potential to control future outbreaks, and vaccine development has been increasingly the focus of global research efforts. However, antigenic characterization of vaccine candidates is challenging because there are few tools to characterize the different antigenic forms of the virus. As with other picornaviruses, EVA71 virions exist in two antigenic states, native (NAg) and expanded (HAg). It is likely that the composition of vaccines, in terms of the proportions of NAg and HAg, will be important for vaccine efficacy and batch-to-batch consistency. This paper describes the development of a single-chain fused variable (scFv) domain fragment and the optimization of a sandwich enzyme-linked immunosorbent assay (ELISA) for the specific detection of the NAg conformation of EVA71. NAg specificity of the scFv was demonstrated using purified EVA71, and conversion of NAg to HAg by heating resulted in a loss of binding. We have thus developed an effective tool for characterization of the specific antigenic state of EVA71. IMPORTANCE EVA71 is a medically important virus that is commonly associated with HFMD, resulting in periodic outbreaks, significant economic impact, and loss of life. Vaccination offers the potential to curtail future outbreaks, and vaccine development has been increasingly the focus of global research efforts. However, antigenic characterization of vaccine candidates is challenging because there are very limited effective tools to characterize the different antigenic forms of EV71. As with other picornaviruses, EVA71 virions exist in two antigenic states, native and expanded. This paper describes the development of an scFv and the optimization of a sandwich ELISA for the specific detection of the native conformation of EVA71 as an effective tool for characterization of the specific antigenic state of EVA71.
Collapse
|
25
|
Heeb SR, Schaller M, Kremer Hovinga JA. Naturally Occurring Anti-Idiotypic Antibodies Portray a Largely Private Repertoire in Immune-Mediated Thrombotic Thrombocytopenic Purpura. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2497-2507. [PMID: 35589126 DOI: 10.4049/jimmunol.2100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/29/2022] [Indexed: 12/30/2022]
Abstract
Rare immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a life-threatening disease resulting from a severe autoantibody-mediated ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 motifs, member 13) deficiency. Acute iTTP episodes are medical emergencies, but when treated appropriately &gt;95% of patients survive. However, at least half of survivors will eventually experience a relapse. How remission of an initial episode is achieved and factors contributing to reemergence of anti-ADAMTS13 Abs and a relapsing course are poorly understood. In acquired hemophilia and systemic lupus erythematosus, anti-idiotypic Abs counteracting and neutralizing pathogenic autoantibodies contribute to remission. We selected and amplified the splenic anti-idiotypic IgG<sub>1</sub> Fab κ/λ repertoire of two relapsing iTTP patients on previously generated monoclonal inhibitory anti-ADAMTS13 Fabs by phage display to explore whether anti-idiotypic Abs have a role in iTTP. We obtained 27 single anti-idiotypic Fab clones, half of which had unique sequences, although both patients shared four H chain V region genes (V<sub>H</sub>1-69*01, V<sub>H</sub>3-15*01, V<sub>H</sub>3-23*01, and V<sub>H</sub>3-49*03). Anti-idiotypic Fab pools of both patients fully neutralized the inhibitor capacity of the monoclonal anti-ADAMTS13 Abs used for their selection. Preincubation of plasma samples of 22 unrelated iTTP patients stratified according to functional ADAMTS13 inhibitor titers (&gt;2 Bethesda units/ml, or 1-2 Bethesda units/ml), with anti-idiotypic Fab pools neutralized functional ADAMTS13 inhibitors and restored ADAMTS13 activity in 18-45% of those cases. Taken together, we present evidence for the presence of an anti-idiotypic immune response in iTTP patients. The interindividual generalizability of this response is limited despite relatively uniform pathogenic anti-ADAMTS13 Abs recognizing a dominant epitope in the ADAMTS13 spacer domain.
Collapse
Affiliation(s)
- Silvan R Heeb
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; and Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Monica Schaller
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; and Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Johanna A Kremer Hovinga
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; and Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
26
|
Lin YS, Hsieh SJ, Tsai KC, Cheng MH, Yang TW, Lin TY, Chang FL, Chiang CW, Chen WC, Huang HT, Lee YC. Blockade effect of avian-derived anti-VISTA antibodies on immunosuppressive responses. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2063951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yun-Shih Lin
- Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Shang-Ju Hsieh
- Division of Urology, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Hui Cheng
- Department of Laboratory Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Tz-Wen Yang
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Yu Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Fu-Ling Chang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Chen-Wei Chiang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Wang-Chuan Chen
- The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Department of Chinese Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Hsien-Te Huang
- Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Yu-Ching Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
27
|
González-Mora A, Calvillo-Rodríguez KM, Hernández-Pérez J, Rito-Palomares M, Martínez-Torres AC, Benavides J. Evaluation of the Immune Response of a Candidate Phage-Based Vaccine against Rhipicephalus microplus (Cattle Tick). Pharmaceutics 2021; 13:pharmaceutics13122018. [PMID: 34959300 PMCID: PMC8706106 DOI: 10.3390/pharmaceutics13122018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Cattle tick (Rhipicephalus microplus) represents a severe problem causing substantial economic losses, estimated in billions of dollars annually. Currently, chemical acaricides represent the most widely used control method. However, several problems such as resistance have been described. Phage-based vaccines represent a fast and low-cost tool for antigen delivery. In this regard, the objective of the present work was to develop a candidate phage-based vaccine displaying a cattle tick antigen (Bm86-derived Sbm7462 antigen) on the surface of bacteriophage M13. Phage ELISA and dot blotting analysis confirmed the display of the antigen. Vaccine immunogenicity was evaluated using a bovine monocyte-derived dendritic cell-based ex vivo assay and a murine in vivo assay. The ex vivo model showed the maturation of dendritic cells after being pulsed with the phage-based vaccine. The humoral response was confirmed in the in vivo assay. These results demonstrated the capacity of the phage-based vaccine to induce both humoral and cellular immune-specific responses. Importantly, this is the first report describing a control method for cattle ticks using a candidate phage-based vaccine. Further studies to evaluate the immunogenicity in a bovine model are needed. The current approach represents a promising alternative to control cattle tick infestations.
Collapse
Affiliation(s)
- Alejandro González-Mora
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L. CP, Mexico; (A.G.-M.); (J.H.-P.)
| | - Kenny Misael Calvillo-Rodríguez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, N.L. CP, Mexico;
| | - Jesús Hernández-Pérez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L. CP, Mexico; (A.G.-M.); (J.H.-P.)
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000 Pte, Monterrey 64710, N.L. CP, Mexico;
| | - Ana Carolina Martínez-Torres
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, N.L. CP, Mexico;
- Correspondence: (A.C.M.-T.); (J.B.); Tel.: +52-(81)-835294000 (ext. 6424) (A.C.M.-T.); +52-(81)-83582000 (ext. 4821) (J.B.)
| | - Jorge Benavides
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L. CP, Mexico; (A.G.-M.); (J.H.-P.)
- Correspondence: (A.C.M.-T.); (J.B.); Tel.: +52-(81)-835294000 (ext. 6424) (A.C.M.-T.); +52-(81)-83582000 (ext. 4821) (J.B.)
| |
Collapse
|
28
|
Elter A, Bogen JP, Habermann J, Kolmar H. Vom Huhn abgeleitete Antikörper für Diagnostik und Immuntherapie. BIOSPEKTRUM 2021; 27:500-504. [PMID: 34511735 PMCID: PMC8417631 DOI: 10.1007/s12268-021-1623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractDue to the large evolutionary distance between birds (Aves) und humans, immunization of chickens with human proteins results in a strong response of the bird’s adaptive immune system to proteins of mammalian origin. Additionally, chicken-derived antibodies display less undesired cross-reactivity in analytical setups than conventional rodent-derived antibodies. Due to these features as well as the facile amplification of antibody-coding genes, chicken-derived antibodies emerged as promising molecules for the immunotherapy and various biotechnological applications.
Collapse
|
29
|
Schladetsch MA, Wiemer AJ. Generation of Single-Chain Variable Fragment (scFv) Libraries for Use in Phage Display. Curr Protoc 2021; 1:e182. [PMID: 34232564 DOI: 10.1002/cpz1.182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phage display is a powerful platform for the discovery of novel biologics with high binding affinities to a specific target protein. Here, we describe methods to construct a phage display library containing diverse single-chain variable antibody fragments (scFvs). Specifically, updated methods for polymerase chain reaction (PCR) amplification and fusion of human antibody genes, their ligation into the pComb3X vector for transformation into 5αF'Iq competent bacterial cells, and their expression in M13KO7 helper phage are presented. Additionally, we describe how to amplify and quantify the phage library and to prepare it in various formats for short- and long-term storage. © 2021 Wiley Periodicals LLC. Basic Protocol 1: First-round polymerase chain reaction (PCR) for isolation of antibody fragments Basic Protocol 2: Ethanol precipitation and pooling of fragment DNA Basic Protocol 3: Second-round polymerase chain reaction with splicing by overlap extension (SOE) for antibody fragment fusion Basic Protocol 4: Restriction digestion of individual scFv constructs and pComb3XSS vector Basic Protocol 5: Directional ligation of the scFv constructs and pComb3X backbone Basic Protocol 6: Transformation of pComb-scFv plasmids into 5αF'Iq competent cells Basic Protocol 7: Collection of bacteria containing the scFv library Basic Protocol 8: Preparation of bacterial glycerol stock Basic Protocol 9: Preparation of phage library glycerol stock Basic Protocol 10: Preparation of plasmid DNA stock Basic Protocol 11: Amplification of M13KO7 helper phage Basic Protocol 12: Phage titer by plate assay Alternate Protocol: One-plate phage plaque assay.
Collapse
Affiliation(s)
- Megan A Schladetsch
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
30
|
Sung TY, Huang HL, Cheng CC, Chang FL, Wei PL, Cheng YW, Huang CC, Lee YC, HuangFu WC, Pan SL. EGFL6 promotes colorectal cancer cell growth and mobility and the anti-cancer property of anti-EGFL6 antibody. Cell Biosci 2021; 11:53. [PMID: 33726836 PMCID: PMC7962215 DOI: 10.1186/s13578-021-00561-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The availability of a reliable tumor target for advanced colorectal cancer (CRC) therapeutic approaches is critical since current treatments are limited. Epidermal growth factor-like domain 6 (EGFL6) has been reported to be associated with cancer development. Here, we focused on the role of EGFL6 in CRC progression and its clinical relevance. In addition, an anti-EGFL6 antibody was generated by phage display technology to investigate its potential therapeutic efficacy in CRC. RESULTS EGFL6 expression significantly increased in the colon tissues from CRC patients and mice showing spontaneous tumorigenesis, but not in normal tissue. Under hypoxic condition, EGFL6 expression was enhanced at both protein and transcript levels. Moreover, EGFL6 could promote cancer cell migration invasion, and proliferation of CRC cells via up-regulation of the ERK/ AKT pathway. EGFL6 also regulated cell migration, invasion, proliferation, and self-renewal through EGFR/αvβ3 integrin receptors. Treatment with the anti-EGFL6 antibody EGFL6-E5-IgG showed tumor-inhibition and anti-metastasis abilities in the xenograft and syngeneic mouse models, respectively. Moreover, EGFL6-E5-IgG treatment had no adverse effect on angiogenesis and wound healing CONCLUSIONS: We demonstrated that EGFL6 plays a role in CRC tumorigenesis and tumor progression, indicating that EGFL6 is a potential therapeutic target worth further investigation.
Collapse
Affiliation(s)
- Ting-Yi Sung
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 11031, Taipei, Taiwan
| | - Han-Li Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 11031, Taipei, Taiwan.,TMU Biomedical Commercialization Center, Taipei Medical University, 11031, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan
| | - Chun-Chun Cheng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan
| | - Fu-Ling Chang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan
| | - Po-Li Wei
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan.,Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, 11031, Taipei, Taiwan.,Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, 11031, Taipei, Taiwan.,Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Wen Cheng
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chiao Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, No. 252, Wuxing St., 11031, Taipei, Taiwan.
| | - Yu-Ching Lee
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 11031, Taipei, Taiwan. .,TMU Biomedical Commercialization Center, Taipei Medical University, 11031, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan.
| | - Wei-Chun HuangFu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 11031, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| | - Shiow-Lin Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 11031, Taipei, Taiwan. .,TMU Biomedical Commercialization Center, Taipei Medical University, 11031, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
31
|
Lin TY, Tsai TH, Chen CT, Yang TW, Chang FL, Lo YN, Chung TS, Cheng MH, Chen WC, Tsai KC, Lee YC. Generation of avian-derived anti-B7-H4 antibodies exerts a blockade effect on the immunosuppressive response. Exp Anim 2021; 70:333-343. [PMID: 33716253 PMCID: PMC8390317 DOI: 10.1538/expanim.20-0178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
For highly conserved mammalian protein, chicken is a suitable immune host to generate antibodies. Monoclonal antibodies have been successfully targeted with
immunity checkpoint proteins as a means of cancer treatment; this treatment enhances tumor-specific immunity responses through immunoregulation. Studies have
identified the importance of B7-H4 in immunoregulation and its use as a potential target for cancer treatment. High levels of B7-H4 expression are found in
tumor tissues and are associated with adverse clinical and pathological characteristics. Using the phage display technique, this study isolated specific
single-chain antibody fragments (scFvs) against B7-H4 from chickens. Our experiment proved that B7-H4 clearly induced the inhibition of T-cell activation.
Therefore, use of anti-B7-H4 scFvs can effectively block the exhaustion of immunity cells and also stimulate and activate T-cells in peripheral blood
mononuclear cells. Sequence analysis revealed that two isolated scFv S2 and S4 have the same VH complementarity-determining regions (CDRs) sequence. Molecule
docking was employed to simulate the complex structures of scFv with B7-H4 to analyze the interaction. Our findings revealed that both scFvs employed CDR-H1 and
CDR-H3 as main driving forces and had strong binding effects with the B7-H4. The affinity of scFv S2 was better because the CDR-L2 loop of the scFv S2 had three
more hydrogen bond interactions with B7-H4. The results of this experiment suggest the usefulness of B7-H4 as a target for immunity checkpoints; the isolated
B7-H4-specific chicken antibodies have the potential for use in future cancer immunotherapy applications.
Collapse
Affiliation(s)
- Tsai-Yu Lin
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing Street, Taipei 11031, Taiwan
| | - Tsung-Hsun Tsai
- Department of Psychiatry, Kaohsiung Armed Forces General Hospital, No.2, Zhongzheng 1st Rd., Lingya Dist., Kaohsiung 80284, Taiwan
| | - Chih-Tien Chen
- Institute of Medicine, Chung Shan Medical University, No.110, Sec.1, Jianguo N. Rd., Taichung 40201, Taiwan.,Department of Surgery, Taichung Veterans General Hospital, No.1650, Taiwan Boulevard Sect. 4, Taichung 40705, Taiwan
| | - Tz-Wen Yang
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing Street, Taipei 11031, Taiwan
| | - Fu-Ling Chang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, No. 250, Wuxing Street, Taipei 11031, Taiwan
| | - Yan-Ni Lo
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing Street, Taipei 11031, Taiwan
| | - Ting-Sheng Chung
- Department of Psychiatry, Kaohsiung Armed Forces General Hospital, No.2, Zhongzheng 1st Rd., Lingya Dist., Kaohsiung 80284, Taiwan
| | - Ming-Hui Cheng
- Department of Laboratory Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, No. 83, Nanchang St., Luodong Township, Yilan 26546, Taiwan
| | - Wang-Chuan Chen
- The School of Chinese Medicine for Post Baccalaureate, I-Shou University, No.1, Sec. 1, Syuecheng Rd., Dashu District, Kaohsiung 84001, Taiwan.,Department of Chinese Medicine, E-Da Hospital, No.8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung 82445, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No. 155-1, Sec. 2, Linong St., Beitou District, Taipei 11221, Taiwan.,Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing Street, Taipei 11031, Taiwan
| | - Yu-Ching Lee
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing Street, Taipei 11031, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing Street, Taipei 11031, Taiwan.,Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing Street, Taipei 11031, Taiwan.,Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, No. 250, Wuxing Street, Taipei 11031, Taiwan.,Biomedical Commercialization Center, Taipei Medical University, No. 250, Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
32
|
Ishii M, Nakakido M, Caaveiro JMM, Kuroda D, Okumura CJ, Maruyama T, Entzminger K, Tsumoto K. Structural basis for antigen recognition by methylated lysine-specific antibodies. J Biol Chem 2020; 296:100176. [PMID: 33303630 PMCID: PMC7948472 DOI: 10.1074/jbc.ra120.015996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/05/2022] Open
Abstract
Proteins are modulated by a variety of posttranslational modifications including methylation. Despite its importance, the majority of protein methylation modifications discovered by mass spectrometric analyses are functionally uncharacterized, partly owing to the difficulty in obtaining reliable methylsite-specific antibodies. To elucidate how functional methylsite-specific antibodies recognize the antigens and lead to the development of a novel method to create such antibodies, we use an immunized library paired with phage display to create rabbit monoclonal antibodies recognizing trimethylated Lys260 of MAP3K2 as a representative substrate. We isolated several methylsite-specific antibodies that contained unique complementarity determining region sequence. We characterized the mode of antigen recognition by each of these antibodies using structural and biophysical analyses, revealing the molecular details, such as binding affinity toward methylated/nonmethylated antigens and structural motif that is responsible for recognition of the methylated lysine residue, by which each antibody recognized the target antigen. In addition, the comparison with the results of Western blotting analysis suggests a critical antigen recognition mode to generate cross-reactivity to protein and peptide antigen of the antibodies. Computational simulations effectively recapitulated our biophysical data, capturing the antibodies of differing affinity and specificity. Our exhaustive characterization provides molecular architectures of functional methylsite-specific antibodies and thus should contribute to the development of a general method to generate functional methylsite-specific antibodies by de novo design.
Collapse
Affiliation(s)
- Misaki Ishii
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Jose M M Caaveiro
- Laboratory of Global Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | | | | | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan; Laboratory of Medical Proteomics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
33
|
Gavira-O’Neill CE, Dong JX, Trimmer JS. Development, Screening, and Validation of Camelid-Derived Nanobodies for Neuroscience Research. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 94:e107. [PMID: 33185319 PMCID: PMC7673645 DOI: 10.1002/cpns.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nanobodies (nAbs) are recombinant antigen-binding variable domain fragments obtained from heavy-chain-only immunoglobulins. Among mammals, these are unique to camelids (camels, llamas, alpacas, etc.). Nanobodies are of great use in biomedical research due to their efficient folding and stability under a variety of conditions, as well as their small size. The latter characteristic is particularly important for nAbs used as immunolabeling reagents, since this can improve penetration of cell and tissue samples compared to conventional antibodies, and also reduce the gap distance between signal and target, thereby improving imaging resolution. In addition, their recombinant nature allows for unambiguous definition and permanent archiving in the form of DNA sequence, enhanced distribution in the form of sequences or plasmids, and easy and inexpensive production using well-established bacterial expression systems, such as the IPTG induction method described here. This article will review the basic workflow and process for developing, screening, and validating novel nAbs against neuronal target proteins. The protocols described make use of the most common nAb development method, wherein an immune repertoire from an immunized llama is screened via phage display technology. Selected nAbs can then be taken through validation assays for use as immunolabels or as intrabodies in neurons. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Total RNA isolation from camelid leukocytes Basic Protocol 2: First-strand cDNA synthesis; VH H and VH repertoire PCR Basic Protocol 3: Preparation of the phage display library Basic Protocol 4: Panning of the phage display library Basic Protocol 5: Small-scale nAb expression Basic Protocol 6: Sequence analysis of selected nAb clones Basic Protocol 7: Nanobody validation as immunolabels Basic Protocol 8: Generation of nAb-pEGFP mammalian expression constructs Basic Protocol 9: Nanobody validation as intrabodies Support Protocol 1: ELISA for llama serum testing, phage titer, and screening of selected clones Support Protocol 2: Amplification of helper phage stock Support Protocol 3: nAb expression in amber suppressor E. coli bacterial strains.
Collapse
Affiliation(s)
- Clara E. Gavira-O’Neill
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA 95616
| | | | - James S. Trimmer
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA 95616
| |
Collapse
|
34
|
Lee CH, Liu CI, Leu SJ, Lee YC, Chiang JR, Chiang LC, Mao YC, Tsai BY, Hung CS, Chen CC, Yang YY. Chicken antibodies against venom proteins of Trimeresurus stejnegeri in Taiwan. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200056. [PMID: 33281887 PMCID: PMC7682652 DOI: 10.1590/1678-9199-jvatitd-2020-0056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/06/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The venom of bamboo vipers (Trimeresurus stejnegeri - TS), commonly found in Taiwan, contains deadly hemotoxins that cause severe envenomation. Equine-derived antivenom is a specific treatment against snakebites, but its production costs are high and there are some inevitable side effects. The aim of the present work is to help in the development of an affordable and more endurable therapeutic strategy for snakebites. METHODS T. stejnegeri venom proteins were inactivated by glutaraldehyde in order to immunize hens for polyclonal immunoglobulin (IgY) antibodies production. After IgY binding assays, two antibody libraries were constructed expressing single-chain variable fragment (scFv) antibodies joined by the short or long linker for use in phage display antibody technology. Four rounds of biopanning were carried out. The selected scFv antibodies were then further tested for their binding activities and neutralization assays to TS proteins. RESULTS Purified IgY from egg yolk showed the specific binding ability to TS proteins. The dimensions of these two libraries contain 2.4 × 107 and 6.8 × 107 antibody clones, respectively. An increase in the titers of eluted phage indicated anti-TS clones remarkably enriched after 2nd panning. The analysis based on the nucleotide sequences of selected scFv clones indicated that seven groups of short linkers and four groups of long linkers were identified. The recombinant scFvs showed significant reactivity to TS venom proteins and a cross-reaction to Trimeresurus mucrosquamatus venom proteins. In in vivo studies, the data demonstrated that anti-TS IgY provided 100% protective effects while combined scFvs augmented partial survival time of mice injected with a lethal amount of TS proteins. CONCLUSION Chickens were excellent hosts for the production of neutralization antibodies at low cost. Phage display technology is available for generation of monoclonal antibodies against snake venom proteins. These antibodies could be applied in the development of diagnostic kits or as an alternative for snakebite envenomation treatment in the near future.
Collapse
Affiliation(s)
- Chi-Hsin Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-I Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sy-Jye Leu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Lee
- The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jen-Ron Chiang
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taiwan
| | - Liao-Chun Chiang
- College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ching-Sheng Hung
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chi-Ching Chen
- Department of Pathology and Laboratory Medicine, Landseed Hospital, Taoyuan, Taiwan
| | - Yi-Yuan Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
35
|
Elter A, Bogen JP, Hinz SC, Fiebig D, Macarrón Palacios A, Grzeschik J, Hock B, Kolmar H. Humanization of Chicken-Derived scFv Using Yeast Surface Display and NGS Data Mining. Biotechnol J 2020; 16:e2000231. [PMID: 33078896 DOI: 10.1002/biot.202000231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/06/2020] [Indexed: 01/17/2023]
Abstract
Generation of high-affinity monoclonal antibodies by immunization of chickens is a valuable strategy, particularly for obtaining antibodies directed against epitopes that are conserved in mammals. A generic procedure is established for the humanization of chicken-derived antibodies. To this end, high-affinity binders of the epidermal growth factor receptor extracellular domain are isolated from immunized chickens using yeast surface display. Complementarity determining regions (CDRs) of two high-affinity binders are grafted onto a human acceptor framework. Simultaneously, Vernier zone residues, responsible for spatial CDR arrangement, are partially randomized. A yeast surface display library comprising ≈300 000 variants is screened for high-affinity binders in the scFv and Fab formats. Next-generation sequencing discloses humanized antibody variants with restored affinity and improved protein characteristics compared to the parental chicken antibodies. Furthermore, the sequencing data give new insights into the importance of antibody format, used during the humanization process. Starting from the antibody repertoire of immunized chickens, this work features an effective and fast high-throughput approach for the generation of multiple humanized antibodies with potential therapeutic relevance.
Collapse
Affiliation(s)
- Adrian Elter
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany.,Merck Lab @ Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - Steffen C Hinz
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany.,Merck Lab @ Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - David Fiebig
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - Arturo Macarrón Palacios
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - Björn Hock
- Ferring International Center S.A., Chemin de la Vergognausaz 50, Saint-Prex, 1162, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany.,Merck Lab @ Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| |
Collapse
|
36
|
Vílchez S. Making 3D-Cry Toxin Mutants: Much More Than a Tool of Understanding Toxins Mechanism of Action. Toxins (Basel) 2020; 12:toxins12090600. [PMID: 32948025 PMCID: PMC7551160 DOI: 10.3390/toxins12090600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
3D-Cry toxins, produced by the entomopathogenic bacterium Bacillus thuringiensis, have been extensively mutated in order to elucidate their elegant and complex mechanism of action necessary to kill susceptible insects. Together with the study of the resistant insects, 3D-Cry toxin mutants represent one of the pillars to understanding how these toxins exert their activity on their host. The principle is simple, if an amino acid is involved and essential in the mechanism of action, when substituted, the activity of the toxin will be diminished. However, some of the constructed 3D-Cry toxin mutants have shown an enhanced activity against their target insects compared to the parental toxins, suggesting that it is possible to produce novel versions of the natural toxins with an improved performance in the laboratory. In this report, all mutants with an enhanced activity obtained by accident in mutagenesis studies, together with all the variants obtained by rational design or by directed mutagenesis, were compiled. A description of the improved mutants was made considering their historical context and the parallel development of the protein engineering techniques that have been used to obtain them. This report demonstrates that artificial 3D-Cry toxins made in laboratories are a real alternative to natural toxins.
Collapse
Affiliation(s)
- Susana Vílchez
- Institute of Biotechnology, Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain
| |
Collapse
|
37
|
Convergent Evolution of Neutralizing Antibodies to Staphylococcus aureus γ-Hemolysin C That Recognize an Immunodominant Primary Sequence-Dependent B-Cell Epitope. mBio 2020; 11:mBio.00460-20. [PMID: 32546616 PMCID: PMC7298706 DOI: 10.1128/mbio.00460-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus infection is a major public health threat in part due to the spread of antibiotic resistance and repeated failures to develop a protective vaccine. Infection is associated with production of virulence factors that include exotoxins that attack host barriers and cellular defenses, such as the leukocidin (Luk) family of bicomponent pore-forming toxins. To investigate the structural basis of antibody-mediated functional inactivation of Luk toxins, we generated a panel of murine monoclonal antibodies (MAbs) that neutralize host cell killing by the γ-hemolysin HlgCB. Staphylococcus aureus infection is a major public health threat in part due to the spread of antibiotic resistance and repeated failures to develop a protective vaccine. Infection is associated with production of virulence factors that include exotoxins that attack host barriers and cellular defenses, such as the leukocidin (Luk) family of bicomponent pore-forming toxins. To investigate the structural basis of antibody-mediated functional inactivation of Luk toxins, we generated a panel of murine monoclonal antibodies (MAbs) that neutralize host cell killing by the γ-hemolysin HlgCB. By biopanning these MAbs against a phage-display library of random Luk peptide fragments, we identified a small subregion within the rim domain of HlgC as the epitope for all the MAbs. Within the native holotoxin, this subregion folds into a conserved β-hairpin structure, with exposed key residues, His252 and Tyr253, required for antibody binding. On the basis of the phage-display results and molecular modeling, a 15-amino-acid synthetic peptide representing the minimal epitope on HlgC (HlgC241-255) was designed, and preincubation with this peptide blocked antibody-mediated HIgCB neutralization. Immunization of mice with HlgC241-255 or the homologous LukS246-260 subregion peptide elicited serum antibodies that specifically recognized the native holotoxin subunits. Furthermore, serum IgG from patients who were convalescent for invasive S. aureus infection showed neutralization of HlgCB toxin activity ex vivo, which recognized the immunodominant HlgC241-255 peptide and was dependent on His252 and Tyr253 residues. We have thus validated an efficient, rapid, and scalable experimental workflow for identification of immunodominant and immunogenic leukotoxin-neutralizing B-cell epitopes that can be exploited for new S. aureus-protective vaccines and immunotherapies.
Collapse
|
38
|
Unbiased Identification of Immunogenic Staphylococcus aureus Leukotoxin B-Cell Epitopes. Infect Immun 2020; 88:IAI.00785-19. [PMID: 32014894 DOI: 10.1128/iai.00785-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/26/2020] [Indexed: 12/26/2022] Open
Abstract
Unbiased identification of individual immunogenic B-cell epitopes in major antigens of a pathogen remains a technology challenge for vaccine discovery. We therefore developed a platform for rapid phage display screening of deep recombinant libraries consisting of as few as one major pathogen antigen. Using the bicomponent pore-forming leukocidin (Luk) exotoxins of the major pathogen Staphylococcus aureus as a prototype, we randomly fragmented and separately ligated the hemolysin gamma A (HlgA) and LukS genes into a custom-built phage display system, termed pComb-Opti8. Deep sequence analysis of barcoded amplimers of the HlgA and LukS gene fragment libraries demonstrated that biopannng against a cross-reactive anti-Luk monoclonal antibody (MAb) recovered convergent molecular clones with short overlapping homologous sequences. We thereby identified an 11-amino-acid sequence that is highly conserved in four Luk toxin subunits and is ubiquitous in representation within S. aureus clinical isolates. The isolated 11-amino-acid peptide probe was predicted to retain the native three-dimensional (3D) conformation seen within the Luk holotoxin. Indeed, this peptide was recognized by the selecting anti-Luk MAb, and, using mutated peptides, we showed that a particular amino acid side chain was essential for these interactions. Furthermore, murine immunization with this peptide elicited IgG responses that were highly reactive with both the autologous synthetic peptide and the full-length Luk toxin homologues. Thus, using a gene fragment- and phage display-based pipeline, we have identified and validated immunogenic B-cell epitopes that are cross-reactive between members of the pore-forming leukocidin family. This approach could be harnessed to identify novel epitopes for a much-needed S. aureus-protective subunit vaccine.
Collapse
|
39
|
Assessment of an scFv Antibody Fragment Against ELTD1 in a G55 Glioblastoma Xenograft Model. Transl Oncol 2020; 13:100737. [PMID: 32208341 PMCID: PMC7090355 DOI: 10.1016/j.tranon.2019.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma (GBM), the most common primary brain tumor found in adults, is extremely aggressive. These high-grade gliomas, which are very diffuse, highly vascular, and invasive, undergo unregulated vascular angiogenesis. Despite available treatments, the median survival for patients is dismal. ELTD1 (EGF, latrophilin, and 7 transmembrane domain containing protein 1) is an angiogenic biomarker highly expressed in human high-grade gliomas. Recent studies have demonstrated that the blood-brain barrier, as well as the blood-tumor barrier, is not equally disrupted in GBM patients. This study therefore aimed to optimize an antibody treatment against ELTD1 using a smaller scFv fragment of a monoclonal antibody that binds against the external region of ELTD1 in a G55 glioma xenograft glioma preclinical model. Morphological magnetic resonance imaging (MRI) was used to determine tumor volumes and quantify perfusion rates. We also assessed percent survival following tumor postdetection. Tumor tissue was also assessed to confirm and quantify the presence of the ELTD1 scFv molecular targeted MRI probe, as well as microvessel density and Notch1 levels. In addition, we used molecular-targeted MRI to localize our antibodies in vivo. This approach showed that our scFv antibody attached-molecular MRI probe was effective in targeting and localizing diffuse tumor regions. Through this analysis, we determined that our anti-ELTD1 scFv antibody treatments were successful in increasing survival, decreasing tumor volumes, and normalizing vascular perfusion and Notch1 levels within tumor regions. This study demonstrates that our scFv fragment antibody against ELTD1 may be useful and potential antiangiogenic treatments against GBM.
Collapse
|
40
|
Yoo DK, Lee SR, Jung Y, Han H, Lee HK, Han J, Kim S, Chae J, Ryu T, Chung J. Machine Learning-Guided Prediction of Antigen-Reactive In Silico Clonotypes Based on Changes in Clonal Abundance through Bio-Panning. Biomolecules 2020; 10:E421. [PMID: 32182714 PMCID: PMC7175295 DOI: 10.3390/biom10030421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
c-Met is a promising target in cancer therapy for its intrinsic oncogenic properties. However, there are currently no c-Met-specific inhibitors available in the clinic. Antibodies blocking the interaction with its only known ligand, hepatocyte growth factor, and/or inducing receptor internalization have been clinically tested. To explore other therapeutic antibody mechanisms like Fc-mediated effector function, bispecific T cell engagement, and chimeric antigen T cell receptors, a diverse panel of antibodies is essential. We prepared a chicken immune scFv library, performed four rounds of bio-panning, obtained 641 clones using a high-throughput clonal retrieval system (TrueRepertoireTM, TR), and found 149 antigen-reactive scFv clones. We also prepared phagemid DNA before the start of bio-panning (round 0) and, after each round of bio-panning (round 1-4), performed next-generation sequencing of these five sets of phagemid DNA, and identified 860,207 HCDR3 clonotypes and 443,292 LCDR3 clonotypes along with their clonal abundance data. We then established a TR data set consisting of antigen reactivity for scFv clones found in TR analysis and the clonal abundance of their HCDR3 and LCDR3 clonotypes in five sets of phagemid DNA. Using the TR data set, a random forest machine learning algorithm was trained to predict the binding properties of in silico HCDR3 and LCDR3 clonotypes. Subsequently, we synthesized 40 HCDR3 and 40 LCDR3 clonotypes predicted to be antigen reactive (AR) and constructed a phage-displayed scFv library called the AR library. In parallel, we also prepared an antigen non-reactive (NR) library using 10 HCDR3 and 10 LCDR3 clonotypes predicted to be NR. After a single round of bio-panning, we screened 96 randomly-selected phage clones from the AR library and found out 14 AR scFv clones consisting of 5 HCDR3 and 11 LCDR3 AR clonotypes. We also screened 96 randomly-selected phage clones from the NR library, but did not identify any AR clones. In summary, machine learning algorithms can provide a method for identifying AR antibodies, which allows for the characterization of diverse antibody libraries inaccessible by traditional methods.
Collapse
Affiliation(s)
- Duck Kyun Yoo
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seung Ryul Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yushin Jung
- Celemics, Inc., 131 Gasandigital 1-ro, Geumcheon-gu, Seoul 08506, Korea
| | - Haejun Han
- Celemics, Inc., 131 Gasandigital 1-ro, Geumcheon-gu, Seoul 08506, Korea
| | - Hwa Kyoung Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jerome Han
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Soohyun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jisu Chae
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Taehoon Ryu
- Celemics, Inc., 131 Gasandigital 1-ro, Geumcheon-gu, Seoul 08506, Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
41
|
Chockalingam K, Peng Z, Vuong CN, Berghman LR, Chen Z. Golden Gate assembly with a bi-directional promoter (GBid): A simple, scalable method for phage display Fab library creation. Sci Rep 2020; 10:2888. [PMID: 32076016 PMCID: PMC7031318 DOI: 10.1038/s41598-020-59745-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/03/2020] [Indexed: 11/09/2022] Open
Abstract
Fabs offer an attractive platform for monoclonal antibody discovery/engineering, but library construction can be cumbersome. We report a simple method – Golden Gate assembly with a bi-directional promoter (GBid) – for constructing phage display Fab libraries. In GBid, the constant domains of the Fabs are located in the backbone of the phagemid vector and the library insert comprises only the variable regions of the antibodies and a central bi-directional promoter. This vector design reduces the process of Fab library construction to “scFv-like” simplicity and the double promoter ensures robust expression of both constituent chains. To maximize the library size, the 3 fragments comprising the insert – two variable chains and one bi-directional promoter – are assembled via a 3-fragment overlap extension PCR and the insert is incorporated into the vector via a high-efficiency one-fragment, one-pot Golden Gate assembly. The reaction setup requires minimal preparatory work and enzyme quantities, making GBid highly scalable. Using GBid, we constructed a chimeric chicken-human Fab phage display library comprising 1010 variants targeting the multi-transmembrane protein human CD20 (hCD20). Selection/counter-selection on transfected whole cells yielded hCD20-specific antibodies in four rounds of panning. The simplicity and scalability of GBid makes it a powerful tool for the discovery/engineering of Fabs and IgGs.
Collapse
Affiliation(s)
- Karuppiah Chockalingam
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, 77843, USA
| | - Zeyu Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, 77843, USA.,Biosion, Inc., Nanjing, 210061, China
| | - Christine N Vuong
- Department of Poultry Science, Texas A&M University, College Station, Texas, 77843, USA.,Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, 72703, USA
| | - Luc R Berghman
- Department of Poultry Science, Texas A&M University, College Station, Texas, 77843, USA
| | - Zhilei Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, 77843, USA.
| |
Collapse
|
42
|
Ching KH, Berg K, Morales J, Pedersen D, Harriman WD, Abdiche YN, Leighton PA. Expression of human lambda expands the repertoire of OmniChickens. PLoS One 2020; 15:e0228164. [PMID: 31995598 PMCID: PMC6988971 DOI: 10.1371/journal.pone.0228164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
Most of the approved monoclonal antibodies used in the clinic were initially discovered in mice. However, many targets of therapeutic interest are highly conserved proteins that do not elicit a robust immune response in mice. There is a need for non-mammalian antibody discovery platforms which would allow researchers to access epitopes that are not recognized in mammalian hosts. Recently, we introduced the OmniChicken®, a transgenic animal carrying human VH3-23 and VK3-15 at its immunoglobulin loci. Here, we describe a new version of the OmniChicken which carries VH3-23 and either VL1-44 or VL3-19 at its heavy and light chain loci, respectively. The Vλ-expressing birds showed normal B and T populations in the periphery. A panel of monoclonal antibodies demonstrated comparable epitope coverage of a model antigen compared to both wild-type and Vκ-expressing OmniChickens. Kinetic analysis identified binders in the picomolar range. The Vλ-expressing bird increases the antibody diversity available in the OmniChicken platform, further enabling discovery of therapeutic leads.
Collapse
Affiliation(s)
- Kathryn H. Ching
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| | - Kimberley Berg
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| | - Jacqueline Morales
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| | - Darlene Pedersen
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| | - William D. Harriman
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| | | | - Philip A. Leighton
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| |
Collapse
|
43
|
Mwale PF, Lee CH, Lin LT, Leu SJ, Huang YJ, Chiang LC, Mao YC, Yang YY. Expression, Purification, and Characterization of Anti- Zika virus Envelope Protein: Polyclonal and Chicken-Derived Single Chain Variable Fragment Antibodies. Int J Mol Sci 2020; 21:ijms21020492. [PMID: 31940993 PMCID: PMC7014089 DOI: 10.3390/ijms21020492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Zika virus (ZIKV) is a new and emerging virus that has caused outbreaks worldwide. The virus has been linked to congenital neurological malformations in neonates and Guillain-Barré syndrome in adults. Currently there are no effective vaccines available. As a result, there is a great need for ZIKV treatment. In this study, we developed single chain variable fragment (scFv) antibodies that target the ZIKV envelope protein using phage display technology. We first induced an immune response in white leghorn laying hens against the ZIKV envelope (E) protein. Chickens were immunized and polyclonal immunoglobulin yolk (IgY) antibodies were extracted from egg yolks. A high-level titer of anti-ZIKV_E IgY antibodies was detected using enzyme-linked immunosorbent assay (ELISA) after the third immunization. The titer persisted for at least 9 weeks. We constructed two antibody libraries that contained 5.3 × 106 and 4.5 × 106 transformants. After biopanning, an ELISA phage assay confirmed the enrichment of specific clones. We randomly selected 26 clones that expressed ZIKV scFv antibodies and classified them into two groups, short-linker and long-linker. Of these, four showed specific binding activities toward ZIKV_E proteins. These data suggest that the polyclonal and monoclonal scFv antibodies have the diagnostic or therapeutic potential for ZIKV.
Collapse
Affiliation(s)
- Pharaoh Fellow Mwale
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (P.F.M.); (C.-H.L.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chi-Hsin Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (P.F.M.); (C.-H.L.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Liang-Tzung Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (L.-T.L.); (S.-J.L.)
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Sy-Jye Leu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (L.-T.L.); (S.-J.L.)
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yun-Ju Huang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Liao-Chun Chiang
- College of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Yi-Yuan Yang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (P.F.M.); (C.-H.L.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-273-616-61 (ext. 3325); Fax: +886-2-273-245-10
| |
Collapse
|
44
|
Leyton-Castro NF, Brigido MM, Maranhão AQ. Selection of Antibody Fragments for CAR-T Cell Therapy from Phage Display Libraries. Methods Mol Biol 2020; 2086:13-26. [PMID: 31707665 DOI: 10.1007/978-1-0716-0146-4_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CAR-T cell therapy emerged in the last years as a great promise to cancer treatment. Nowadays, there is a run to improve the breadth of its use, and thus, new chimeric antigen receptors (CAR) are being proposed. The antigen-binding counterpart of CAR is an antibody fragment, scFv (single chain variable fragment), that recognizes a membrane protein associated to a cancer cell. In this chapter, the use of human scFv phage display libraries as a source of new mAbs against surface antigen is discussed. Protocols focusing in the use of extracellular domains of surface protein in biotinylated format are proposed as selection antigen. Elution with unlabeled peptide and selection in solution is described. The analysis of enriched scFvs throughout the selection using NGS is also outlined. Taken together these protocols allow for the isolation of new scFvs able to be useful in the construction of new chimeric antigen receptors for application in cancer therapy.
Collapse
Affiliation(s)
- Nestor F Leyton-Castro
- Molecular Pathology Graduation Programme, School of Medicine, University of Brasilia, Brasilia, Brazil
| | - Marcelo M Brigido
- Molecular Pathology Graduation Programme, School of Medicine, University of Brasilia, Brasilia, Brazil
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Andrea Q Maranhão
- Molecular Pathology Graduation Programme, School of Medicine, University of Brasilia, Brasilia, Brazil.
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
45
|
Zalles M, Smith N, Ziegler J, Saunders D, Remerowski S, Thomas L, Gulej R, Mamedova N, Lerner M, Fung K, Chung J, Hwang K, Jin J, Wiley G, Brown C, Battiste J, Wren JD, Towner RA. Optimized monoclonal antibody treatment against ELTD1 for GBM in a G55 xenograft mouse model. J Cell Mol Med 2020; 24:1738-1749. [PMID: 31863639 PMCID: PMC6991683 DOI: 10.1111/jcmm.14867] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma is an aggressive brain tumour found in adults, and the therapeutic approaches available have not significantly increased patient survival. Recently, we discovered that ELTD1, an angiogenic biomarker, is highly expressed in human gliomas. Polyclonal anti-ELTD1 treatments were effective in glioma pre-clinical models, however, pAb binding is potentially promiscuous. Therefore, the aim of this study was to determine the effects of an optimized monoclonal anti-ELTD1 treatment in G55 xenograft glioma models. MRI was used to assess the effects of the treatments on animal survival, tumour volumes, perfusion rates and binding specificity. Immunohistochemistry and histology were conducted to confirm and characterize microvessel density and Notch1 levels, and to locate the molecular probes. RNA-sequencing was used to analyse the effects of the mAb treatment. Our monoclonal anti-ELTD1 treatment significantly increased animal survival, reduced tumour volumes, normalized the vasculature and showed higher binding specificity within the tumour compared with both control- and polyclonal-treated mice. Notch1 positivity staining and RNA-seq results suggested that ELTD1 has the ability to interact with and interrupt Notch1 signalling. Although little is known about ELTD1, particularly about its ligand and pathways, our data suggest that our monoclonal anti-ELTD1 antibody is a promising anti-angiogenic therapeutic in glioblastomas.
Collapse
Affiliation(s)
- Michelle Zalles
- Advanced Magnetic Resonance CenterOklahoma Medical Research FoundationOklahoma CityOKUSA
- Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Nataliya Smith
- Advanced Magnetic Resonance CenterOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Jadith Ziegler
- Advanced Magnetic Resonance CenterOklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of PathologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
- Dean McGee Eye InstituteUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Debra Saunders
- Advanced Magnetic Resonance CenterOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Shannon Remerowski
- Advanced Magnetic Resonance CenterOklahoma Medical Research FoundationOklahoma CityOKUSA
- Center for Veterinary SciencesOklahoma State UniversityStillwaterOKUSA
| | - Lincy Thomas
- Advanced Magnetic Resonance CenterOklahoma Medical Research FoundationOklahoma CityOKUSA
- The Jimmy Everest Center for Cancer and Blood Disorders in ChildrenUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Rafal Gulej
- Advanced Magnetic Resonance CenterOklahoma Medical Research FoundationOklahoma CityOKUSA
- Pharmaceutical DepartmentMedical University of LodzLodzPoland
| | - Nadya Mamedova
- Advanced Magnetic Resonance CenterOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Megan Lerner
- Surgery Research LaboratoryUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Kar‐Ming Fung
- Department of PathologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
- Cardiovascular BiologyOklahoma Medical Research FoundationOklahoma CityOKUSA
- Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Junho Chung
- Department of Biochemistry and Molecular BiologySeoul National University College of MedicineSeoulKorea
| | - Kyusang Hwang
- Department of Biochemistry and Molecular BiologySeoul National University College of MedicineSeoulKorea
| | - Junyeong Jin
- Department of Biochemistry and Molecular BiologySeoul National University College of MedicineSeoulKorea
| | - Graham Wiley
- Clinical Genomics CenterOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Chase Brown
- Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
- Genes & Human DiseaseOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - James Battiste
- Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
- Department of NeurologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Jonathan D. Wren
- Genes & Human DiseaseOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Rheal A. Towner
- Advanced Magnetic Resonance CenterOklahoma Medical Research FoundationOklahoma CityOKUSA
- Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
- Department of PathologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
- Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| |
Collapse
|
46
|
Dong JX, Lee Y, Kirmiz M, Palacio S, Dumitras C, Moreno CM, Sando R, Santana LF, Südhof TC, Gong B, Murray KD, Trimmer JS. A toolbox of nanobodies developed and validated for use as intrabodies and nanoscale immunolabels in mammalian brain neurons. eLife 2019; 8:48750. [PMID: 31566565 PMCID: PMC6785268 DOI: 10.7554/elife.48750] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/18/2019] [Indexed: 12/30/2022] Open
Abstract
Nanobodies (nAbs) are small, minimal antibodies that have distinct attributes that make them uniquely suited for certain biomedical research, diagnostic and therapeutic applications. Prominent uses include as intracellular antibodies or intrabodies to bind and deliver cargo to specific proteins and/or subcellular sites within cells, and as nanoscale immunolabels for enhanced tissue penetration and improved spatial imaging resolution. Here, we report the generation and validation of nAbs against a set of proteins prominently expressed at specific subcellular sites in mammalian brain neurons. We describe a novel hierarchical validation pipeline to systematically evaluate nAbs isolated by phage display for effective and specific use as intrabodies and immunolabels in mammalian cells including brain neurons. These nAbs form part of a robust toolbox for targeting proteins with distinct and highly spatially-restricted subcellular localization in mammalian brain neurons, allowing for visualization and/or modulation of structure and function at those sites.
Collapse
Affiliation(s)
- Jie-Xian Dong
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Yongam Lee
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Michael Kirmiz
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Stephanie Palacio
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Camelia Dumitras
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Claudia M Moreno
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States.,Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Richard Sando
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford School of Medicine, Stanford, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford School of Medicine, Stanford, United States
| | - Belvin Gong
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Karl D Murray
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States.,Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
| |
Collapse
|
47
|
Morgenstern TJ, Park J, Fan QR, Colecraft HM. A potent voltage-gated calcium channel inhibitor engineered from a nanobody targeted to auxiliary Ca Vβ subunits. eLife 2019; 8:49253. [PMID: 31403402 PMCID: PMC6701945 DOI: 10.7554/elife.49253] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/10/2019] [Indexed: 12/15/2022] Open
Abstract
Inhibiting high-voltage-activated calcium channels (HVACCs; CaV1/CaV2) is therapeutic for myriad cardiovascular and neurological diseases. For particular applications, genetically-encoded HVACC blockers may enable channel inhibition with greater tissue-specificity and versatility than is achievable with small molecules. Here, we engineered a genetically-encoded HVACC inhibitor by first isolating an immunized llama nanobody (nb.F3) that binds auxiliary HVACC CaVβ subunits. Nb.F3 by itself is functionally inert, providing a convenient vehicle to target active moieties to CaVβ-associated channels. Nb.F3 fused to the catalytic HECT domain of Nedd4L (CaV-aβlator), an E3 ubiquitin ligase, ablated currents from diverse HVACCs reconstituted in HEK293 cells, and from endogenous CaV1/CaV2 channels in mammalian cardiomyocytes, dorsal root ganglion neurons, and pancreatic β cells. In cardiomyocytes, CaV-aβlator redistributed CaV1.2 channels from dyads to Rab-7-positive late endosomes. This work introduces CaV-aβlator as a potent genetically-encoded HVACC inhibitor, and describes a general approach that can be broadly adapted to generate versatile modulators for macro-molecular membrane protein complexes.
Collapse
Affiliation(s)
- Travis J Morgenstern
- Department of Pharmacology, Columbia University, Vagelos College of Physicians and Surgeons, New York, United States
| | - Jinseo Park
- Department of Pharmacology, Columbia University, Vagelos College of Physicians and Surgeons, New York, United States
| | - Qing R Fan
- Department of Pharmacology, Columbia University, Vagelos College of Physicians and Surgeons, New York, United States
| | - Henry M Colecraft
- Department of Pharmacology, Columbia University, Vagelos College of Physicians and Surgeons, New York, United States.,Department of Physiology and Cellular Biophysics, Columbia University, Vagelos College of Physicians and Surgeons, New York, United States
| |
Collapse
|
48
|
Gjetting T, Gad M, Fröhlich C, Lindsted T, Melander MC, Bhatia VK, Grandal MM, Dietrich N, Uhlenbrock F, Galler GR, Strandh M, Lantto J, Bouquin T, Horak ID, Kragh M, Pedersen MW, Koefoed K. Sym021, a promising anti-PD1 clinical candidate antibody derived from a new chicken antibody discovery platform. MAbs 2019; 11:666-680. [PMID: 31046547 PMCID: PMC6601539 DOI: 10.1080/19420862.2019.1596514] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Discovery of therapeutic antibodies is a field of intense development, where immunization of rodents remains a major source of antibody candidates. However, high orthologue protein sequence homology between human and rodent species disfavors generation of antibodies against functionally conserved binding epitopes. Chickens are phylogenetically distant from mammals. Since chickens generate antibodies from a restricted set of germline genes, the possibility of adapting the Symplex antibody discovery platform to chicken immunoglobulin genes and combining it with high-throughput humanization of antibody frameworks by “mass complementarity-determining region grafting” was explored. Hence, wild type chickens were immunized with an immune checkpoint inhibitor programmed cell death 1 (PD1) antigen, and a repertoire of 144 antibodies was generated. The PD1 antibody repertoire was successfully humanized, and we found that most humanized antibodies retained affinity largely similar to that of the parental chicken antibodies. The lead antibody Sym021 blocked PD-L1 and PD-L2 ligand binding, resulting in elevated T-cell cytokine production in vitro. Detailed epitope mapping showed that the epitope recognized by Sym021 was unique compared to the clinically approved PD1 antibodies pembrolizumab and nivolumab. Moreover, Sym021 bound human PD1 with a stronger affinity (30 pM) compared to nivolumab and pembrolizumab, while also cross-reacting with cynomolgus and mouse PD1. This enabled direct testing of Sym021 in the syngeneic mouse in vivo cancer models and evaluation of preclinical toxicology in cynomolgus monkeys. Preclinical in vivo evaluation in various murine and human tumor models demonstrated a pronounced anti-tumor effect of Sym021, supporting its current evaluation in a Phase 1 clinical trial. Abbreviations: ADCC, antibody-dependent cellular cytotoxicity; CD, cluster of differentiation; CDC, complement-dependent cytotoxicity; CDR, complementarity determining region; DC, dendritic cell; ELISA, enzyme-linked immunosorbent assay; FACS, fluorescence activated cell sorting; FR, framework region; GM-CSF, granulocyte-macrophage colony-stimulating factor; HRP, horseradish peroxidase; IgG, immunoglobulin G; IL, interleukin; IFN, interferon; mAb, monoclonal antibody; MLR, mixed lymphocyte reaction; NK, natural killer; PBMC, peripheral blood mono-nuclear cell; PD1, programmed cell death 1; PDL1, programmed cell death ligand 1; RT-PCR, reverse transcription polymerase chain reaction; SEB, Staphylococcus Enterotoxin B; SPR, surface Plasmon Resonance; VL, variable part of light chain; VH, variable part of heavy chain
Collapse
Affiliation(s)
- Torben Gjetting
- a Antibody Discovery, Antibody Discovery , Ballerup , Denmark
| | - Monika Gad
- b Cancer Biology and Immunology, Symphogen A/S , Ballerup , Denmark
| | | | - Trine Lindsted
- b Cancer Biology and Immunology, Symphogen A/S , Ballerup , Denmark
| | | | - Vikram K Bhatia
- a Antibody Discovery, Antibody Discovery , Ballerup , Denmark
| | | | | | | | | | - Magnus Strandh
- a Antibody Discovery, Antibody Discovery , Ballerup , Denmark
| | - Johan Lantto
- d Global Research and Development, Symphogen A/S , Ballerup , Denmark
| | - Thomas Bouquin
- a Antibody Discovery, Antibody Discovery , Ballerup , Denmark
| | - Ivan D Horak
- d Global Research and Development, Symphogen A/S , Ballerup , Denmark
| | - Michael Kragh
- c Antibody Pharmacology, Symphogen A/S , Ballerup , Denmark
| | | | - Klaus Koefoed
- a Antibody Discovery, Antibody Discovery , Ballerup , Denmark
| |
Collapse
|
49
|
Mwale PF, Lee CH, Leu SJ, Lee YC, Wu HH, Lin LT, Lin TE, Huang YJ, Yang YY. Antigenic epitopes on the outer membrane protein A of Escherichia coli identified with single-chain variable fragment (scFv) antibodies. Appl Microbiol Biotechnol 2019; 103:5285-5299. [PMID: 31028439 DOI: 10.1007/s00253-019-09761-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 10/26/2022]
Abstract
Bacterial meningitis is a severe disease that is fatal to one-third of patients. The major cause of meningitis in neonates is Escherichia coli (E. coli) K1. This bacterium synthesizes an outer membrane protein A (OmpA) that is responsible for the adhesion to (and invasion of) endothelial cells. Thus, the OmpA protein represents a potential target for developing diagnostic and therapeutic agents for meningitis. In this study, we expressed recombinant OmpA proteins with various molecular weights in E. coli. The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was performed to check the molecular size of OmpA's full length (FL) and truncated proteins. OmpA-FL protein was purified for immunizing chickens to produce immunoglobulin yolk (IgY) antibodies. We applied phage display technology to construct antibody libraries (OmpA-FL scFv-S 1.1 × 107 and OmpA-FL scFv-L 5.01 × 106) to select specific anti-OmpA-FL scFv antibodies; these were characterized by their binding ability to recombinant or endogenous OmpA using ELISA, immunofluorescent staining, and confirmed with immunoblotting. We found 12 monoclonal antibodies that react to OmpA fragments; seven scFvs recognize fragments spanning amino acid (aa) residues 1-346, aa 1-287, aa 1-167, and aa 60-192, while five scFvs recognize fragments spanning aa 1-346 and aa 1-287 only. Two fragments (aa 246-346 and aa 287-346) were not recognized with any of the 12 scFvs. Together, the data suggest three antigenic epitopes (60 aa-160 aa, 161 aa-167 aa, 193 aa-245 aa) recognized by monoclonal antibodies. These scFv antibodies show strong reactivity against OmpA proteins. We believe that antibodies show promising diagnostic agents for E. coli K1 meningitis.
Collapse
Affiliation(s)
- Pharaoh Fellow Mwale
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, #250 Wu-Hsing Street, Taipei, Taiwan, 110
| | - Chi-Hsin Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, #250 Wu-Hsing Street, Taipei, Taiwan, 110
| | - Sy-Jye Leu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Lee
- The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsueh-Hsia Wu
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, #250 Wu-Hsing Street, Taipei, Taiwan, 110
| | - Liang-Tzung Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yun-Ju Huang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, #250 Wu-Hsing Street, Taipei, Taiwan, 110
| | - Yi-Yuan Yang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, #250 Wu-Hsing Street, Taipei, Taiwan, 110. .,Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
50
|
Leishmania infantum β-Tubulin Identified by Reverse Engineering Technology through Phage Display Applied as Theranostic Marker for Human Visceral Leishmaniasis. Int J Mol Sci 2019; 20:ijms20081812. [PMID: 31013713 PMCID: PMC6514782 DOI: 10.3390/ijms20081812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/30/2019] [Accepted: 04/04/2019] [Indexed: 12/27/2022] Open
Abstract
Two Leishmania infantum mimotopes (B10 and C01) identified by phage display showed to be antigenic and immunogenic for visceral (VL) and tegumentary (TL) leishmaniasis; however, their biological targets in the parasites have not been identified. The aim of the present study was to investigate the native antigens expressing both mimotopes, and to use them in distinct immunological assays. For this, a subtractive phage display technology was used, where a combinatorial library of single-chain variable fragments (scFv) was employed and the most reactive monoclonal antibodies for each target were captured, being the target antigens identified by mass spectrometry. Results in immunoblotting and immunoprecipitation assays showed that both monoclonal scFvs antibodies identified the β-tubulin protein as the target antigen in L. infantum. To validate these findings, the recombinant protein was cloned, purified and tested for the serodiagnosis of human leishmaniasis, and its immunogenicity was evaluated in PBMC derived from healthy subjects and treated or untreated VL patients. Results showed high diagnostic efficacy, as well as the development of a specific Th1 immune response in the cell cultures, since higher IFN-γ and lower IL-10 production was found.
Collapse
|