1
|
Marrow JP, Alshamali R, Edgett BA, Allwood MA, Cochrane KLS, Al-Sabbag S, Ayoub A, Ask K, Hare GMT, Brunt KR, Simpson JA. Cardiomyocyte crosstalk with endothelium modulates cardiac structure, function, and ischemia-reperfusion injury susceptibility through erythropoietin. Front Physiol 2024; 15:1397049. [PMID: 39011088 PMCID: PMC11246973 DOI: 10.3389/fphys.2024.1397049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Erythropoietin (EPO) exerts non-canonical roles beyond erythropoiesis that are developmentally, structurally, and physiologically relevant for the heart as a paracrine factor. The role for paracrine EPO signalling and cellular crosstalk in the adult is uncertain. Here, we provided novel evidence showing cardiomyocyte restricted loss of function in Epo in adult mice induced hyper-compensatory increases in Epo expression by adjacent cardiac endothelial cells via HIF-2α independent mechanisms. These hearts showed concentric cellular hypertrophy, elevated contractility and relaxation, and greater resistance to ischemia-reperfusion injury. Voluntary exercise capacity compared to control hearts was improved independent of any changes to whole-body metabolism or blood O2 content or delivery (i.e., hematocrit). Our findings suggest cardiac EPO had a localized effect within the normoxic heart, which was regulated by cell-specific EPO-reciprocity between cardiomyocytes and endothelium. Within the heart, hyper-compensated endothelial Epo expression was accompanied by elevated Vegfr1 and Vegfb RNA, that upon pharmacological pan-inhibition of VEGF-VEGFR signaling, resulted in a paradoxical upregulation in whole-heart Epo. Thus, we provide the first evidence that a novel EPO-EPOR/VEGF-VEGFR axis exists to carefully mediate cardiac homeostasis via cardiomyocyte-endothelial EPO crosstalk.
Collapse
Affiliation(s)
- Jade P Marrow
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
| | - Razan Alshamali
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
| | - Brittany A Edgett
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Melissa A Allwood
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
| | - Kyla L S Cochrane
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
| | - Sara Al-Sabbag
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Anmar Ayoub
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada
| | - Gregory M T Hare
- IMPART Investigator Team Canada, Guelph, ON, Canada
- Department of Anesthesiology and Pain Medicine, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Keith R Brunt
- IMPART Investigator Team Canada, Guelph, ON, Canada
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
| |
Collapse
|
2
|
Mitsutani M, Matsushita M, Yokoyama M, Morita A, Hano H, Fujikawa T, Tagami T, Moriyama K. Growth hormone directly stimulates GATA2 expression. Growth Horm IGF Res 2024; 74:101572. [PMID: 38281404 DOI: 10.1016/j.ghir.2024.101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/01/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
OBJECTIVE GATA2 is a key transcription factor involved in the differentiation and determination of thyrotrophs and gonadotrophs in pituitary and hematopoietic development. However, studies on the upstream ligands of the GATA2 signal transduction pathway have been limited. To identify upstream ligands, we examined growth hormone (GH) as a plausible stimulator. DESIGN We evaluated GH-induced GATA2 expression in murine TtT/GF thyrotrophic pituitary tumor cells and its direct impact on the GHR/JAK/STAT5 pathway using a combination of a reporter assay, real-time quantitative polymerase chain reaction, and western blotting. RESULTS GATA2 expression increased with activated STAT5B in a dose-dependent manner and was inhibited by a STAT5 specific inhibitor. Moreover, we found functional STAT5B binding site consensus sequences at -359 bp in the GATA2 promoter region. CONCLUSION These findings suggest that GH directly stimulates GATA2 via the GHR/JAK/STAT pathway and participates in various developmental phenomena mediated by GATA2.
Collapse
Affiliation(s)
- Mana Mitsutani
- Medicine & Clinical Science, Faculty of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Midori Matsushita
- Medicine & Clinical Science, Faculty of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Mei Yokoyama
- Medicine & Clinical Science, Faculty of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Ayumu Morita
- Medicine & Clinical Science, Faculty of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Hiromi Hano
- Medicine & Clinical Science, Faculty of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Tomomi Fujikawa
- Medicine & Clinical Science, Faculty of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Tetsuya Tagami
- Clinical Research Institute for Endocrine and Metabolic Diseases, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Kenji Moriyama
- Medicine & Clinical Science, Faculty of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan; Clinical Research Institute for Endocrine and Metabolic Diseases, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan; Institute of Biosciences, Mukogawa Women's University, Hyogo 663-8179, Japan.
| |
Collapse
|
3
|
Kowalski H, Hoivik D, Rabinowitz M. Assessing the Carcinogenicity of Vadadustat, an Oral Hypoxia-Inducible Factor Prolyl-4-Hydroxylase Inhibitor, in Rodents. Toxicol Pathol 2023; 51:56-60. [PMID: 37158494 PMCID: PMC10278385 DOI: 10.1177/01926233231168836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Vadadustat is an investigational oral hypoxia-inducible factor (HIF) prolyl-4-hydroxylase inhibitor to treat anemia due to chronic kidney disease (CKD). Some studies suggest that HIF activation promotes tumorigenesis by activating angiogenesis downstream of vascular endothelial growth factor, while other studies suggest that elevated HIF activity may produce an antitumor phenotype. To evaluate the potential carcinogenicity of vadadustat in mice and rats, we dosed CByB6F1/Tg.rasH2 hemizygous (transgenic) mice orally by gavage with 5 to 50 mg/kg/d of vadadustat for 6 months and dosed Sprague-Dawley rats orally by gavage with 2 to 20 mg/kg/d for approximately 85 weeks. Doses were selected based on the maximally tolerated dose established for each species in previous studies. The tumors that were identified in the studies were not considered to be treatment-related for statistical reasons or within the historical control range. There was no carcinogenic effect attributed to vadadustat in mice or rats.
Collapse
Affiliation(s)
| | - Debie Hoivik
- Akebia Therapeutics, Inc., Cambridge, Massachusetts, USA
| | | |
Collapse
|
4
|
Lam CKC, Truong K. Design of a synthesis-friendly hypoxia-responsive promoter for cell-based therapeutics. Eng Life Sci 2021; 21:848-856. [PMID: 34899121 PMCID: PMC8638314 DOI: 10.1002/elsc.202100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/11/2021] [Accepted: 10/16/2021] [Indexed: 11/24/2022] Open
Abstract
Towards the goal of making 'smart' cell therapies, one that recognizes disease conditions (e.g. hypoxia) and then produces mitigating biologics, it is important to develop suitable promoters. Currently, hypoxia responsive promoters are composed of strongly repeated sequences containing hypoxia response elements upstream of a minimal core promoter. Unfortunately, such repeated sequences have inherent genomic instability that may compromise the long-term consistency of cell-based therapeutics. Thus, we designed a synthesis-friendly hypoxia-inducible promoter (named SFHp) that has GC content between 25% and 75% and no repeats greater than 9 base pairs. In HEK293 cells stably integrated with genes regulated by synthetic SFHp, we demonstrated inducible reporter expression with fluorescent proteins, cell morphology rewiring with our previously engineered RhoA protein and intercellular cell signalling with secreted cytokines. These experiments exemplify the potential usage of SFHp in cell-based therapeutics with integrated genetic circuits that inducibly respond to the disease microenvironment.
Collapse
Affiliation(s)
| | - Kevin Truong
- Institute of Biomedical EngineeringUniversity of TorontoTorontoONCanada
- Edward S. RogersSr. Department of Electrical and Computer EngineeringUniversity of TorontoTorontoONCanada
| |
Collapse
|
5
|
Serum Inflammatory Factor Profiles in the Pathogenesis of High-Altitude Polycythemia and Mechanisms of Acclimation to High Altitudes. Mediators Inflamm 2021; 2021:8844438. [PMID: 34483727 PMCID: PMC8413029 DOI: 10.1155/2021/8844438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
High-altitude polycythemia (HAPC) is a common aspect of chronic mountain sickness (CMS) caused by hypoxia and is the main cause of other symptoms associated with CMS. However, its pathogenesis and the mechanisms of high-altitude acclimation have not been fully elucidated. Exposure to high altitude is associated with elevated inflammatory mediators. In this study, the subjects were recruited and placed into a plain control (PC) group, plateau control (PUC) group, early HAPC (eHAPC) group, or a confirmed HAPC (cHAPC) group. Serum samples were collected, and inflammatory factors were measured by a novel antibody array methodology. The serum levels of interleukin-2 (IL-2), interleukin-3 (IL-3), and macrophage chemoattractant protein-1 (MCP-1) in the eHAPC group and the levels of interleukin-1 beta (IL-1 beta), IL-2, IL-3, tumor necrosis factor-alpha (TNF-alpha), MCP-1, and interleukin-16 (IL-16) in the cHAPC group were higher than those in the PUC group. More interestingly, the expression of IL-1 beta, IL-2, IL-3, TNF-alpha, MCP-1, and IL-16 in the PUC group showed a remarkable lower value than that in the PC group. These results suggest that these six factors might be involved in the pathogenesis of HAPC as well as acclimation to high altitudes. Altered inflammatory factors might be new biomarkers for HAPC and for high-altitude acclimation.
Collapse
|
6
|
Philip M, Mathew B, Karatt TK, Perwad Z, Subhahar MB, Karakka Kal AK. Metabolic studies of hypoxia-inducible factor stabilisers IOX2, IOX3 and IOX4 (in vitro) for doping control. Drug Test Anal 2021; 13:794-816. [PMID: 33458935 DOI: 10.1002/dta.3000] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
The transcriptional activator hypoxia-inducible factor (HIF) is a vital arbitrator in the performance of cellular responses lacking oxygen supply in aerobic organisms. Because these compounds are capable of enhancing the organism's capacity for molecular oxygen transport, they possess great potential for abuse as a performance-enhancing agent in sports. A comprehensive study of the metabolic conversion of the most popular HIF stabilisers such as IOX2, IOX3 and IOX4 using equine liver microsomes (in vitro) is reported. The parents and their metabolites were identified and characterised by liquid chromatography-mass spectrometry in negative ionisation mode using a QExactive high-resolution mass spectrometer. Under the current experimental condition, a total of 10 metabolites for IOX2 (three phase I and seven phase II), nine metabolites for IOX3 (four phase I and five phase II) and five metabolites for IOX4 (three phase I and two phase II) were detected. The outcome of the present study is as follows: (1) all the three IOX candidates are prone to oxidation, results in subsequent monohydroxylated, and some dihydroxylated metabolites. (2) Besides oxidation, there is a possibility of hydrolysis and de-alkylation, which results in corresponding carboxylic acid and amide, respectively. (3) The glucuronide and sulphate conjugate of the parent drugs as well as the monohydroxylated analogues were observed in this study. The characterised in vitro metabolites can potentially serve as target analytes for doping control analysis.
Collapse
Affiliation(s)
- Moses Philip
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Binoy Mathew
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Tajudheen K Karatt
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Zubair Perwad
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | | | | |
Collapse
|
7
|
The Erythropoetin rs1617640 Gene Polymorphism Associates with Hemoglobin Levels, Hematocrit and Red Blood Cell Count in Patients with Peripheral Arterial Disease. Genes (Basel) 2020; 11:genes11111305. [PMID: 33158076 PMCID: PMC7694227 DOI: 10.3390/genes11111305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Erythropoietin has a pivotal role in erythropoiesis and angiogenesis. A common polymorphism (rs1617640, A > C) in the promoter of the erythropoietin gene (EPO) has been associated with erythropoietin expression and microvascular complications of diabetes. We aimed to analyze the potential role of this polymorphism in the pathogenesis of peripheral arterial disease (PAD). Methods: EPO genotypes and laboratory markers for erythropoiesis were determined in 945 patients with PAD. Results: The minor EPO rs1617640 C-allele was associated in an allele-dose-dependent manner with hemoglobin levels (p = 0.006), hematocrit (p = 0.029), and red blood cell count (p = 0.003). In a multivariate linear regression analysis including conventional risk factors diabetes, sex, and smoking, EPO genotypes were furthermore associated with age at onset of PAD symptoms (p = 0.009). Conclusions: The EPO rs1617640 gene polymorphism affects erythropoiesis, leads to an earlier onset of PAD, and is a potential biomarker for the pathogenesis of this disease.
Collapse
|
8
|
Warner MA, Shore-Lesserson L, Shander A, Patel SY, Perelman SI, Guinn NR. Perioperative Anemia. Anesth Analg 2020; 130:1364-1380. [DOI: 10.1213/ane.0000000000004727] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Anusornvongchai T, Nangaku M, Jao TM, Wu CH, Ishimoto Y, Maekawa H, Tanaka T, Shimizu A, Yamamoto M, Suzuki N, Sassa R, Inagi R. Palmitate deranges erythropoietin production via transcription factor ATF4 activation of unfolded protein response. Kidney Int 2018; 94:536-550. [PMID: 29887316 DOI: 10.1016/j.kint.2018.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 02/02/2018] [Accepted: 03/02/2018] [Indexed: 01/22/2023]
Abstract
Lipotoxicity plays an important role in the progression of chronic kidney damage via various mechanisms, such as endoplasmic reticulum stress. Several studies proposed renal lipotoxicity in glomerular and tubular cells but the effect of lipid on renal erythropoietin (EPO)-producing (REP) cells in the interstitium has not been elucidated. Since renal anemia is caused by derangement of EPO production in REP cells, we evaluated the effect of palmitate, a representative long-chain saturated fatty acid, on EPO production and the endoplasmic reticulum stress pathway. EPO production was suppressed by palmitate (palmitate-conjugated bovine serum albumin [BSA]) or a high palmitate diet, but not oleic acid-conjugated BSA or a high oleic acid diet, especially under cobalt-induced pseudo-hypoxia both in vitro and in vivo. Importantly, suppression of EPO production was not induced by a decrease in transcription factor HIF activity, while it was significantly associated with endoplasmic reticulum stress, particularly transcription factor ATF4 activation, which suppresses 3'-enhancer activity of the EPO gene. ATF4 knockdown by siRNA significantly attenuated the suppressive effect of palmitate on EPO production. Studies utilizing inherited super-anemic mice (ISAM) mated with EPO-Cre mice (ISAM-REC mice) for lineage-labeling of REP cells showed that ATF4 activation by palmitate suppressed EPO production in REP cells. Laser capture microdissection confirmed ATF4 activation in the interstitial area of ISAM-REC mice treated with palmitate-conjugated BSA. Thus, endoplasmic reticulum stress induced by palmitate suppressed EPO expression by REP cells in a manner independent of HIF activation. The link between endoplasmic reticulum stress, dyslipidemia, and hypoxia may contribute to development and progression of anemia in CKD.
Collapse
Affiliation(s)
- Thitinun Anusornvongchai
- Division of CKD Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan; Department of Internal Medicine, Lerdsin General Hospital, Department of Medical Services, Bangkok, Thailand
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tzu-Ming Jao
- Division of CKD Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Chia-Hsien Wu
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yu Ishimoto
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Maekawa
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masayuki Yamamoto
- Division of Interdisciplinary Medical Science, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | | | - Reiko Inagi
- Division of CKD Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
10
|
Broadgate S, Kiire C, Halford S, Chong V. Diabetic macular oedema: under-represented in the genetic analysis of diabetic retinopathy. Acta Ophthalmol 2018; 96 Suppl A111:1-51. [PMID: 29682912 DOI: 10.1111/aos.13678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy, a complication of both type 1 and type 2 diabetes, is a complex disease and is one of the leading causes of blindness in adults worldwide. It can be divided into distinct subclasses, one of which is diabetic macular oedema. Diabetic macular oedema can occur at any time in diabetic retinopathy and is the most common cause of vision loss in patients with type 2 diabetes. The purpose of this review is to summarize the large number of genetic association studies that have been performed in cohorts of patients with type 2 diabetes and published in English-language journals up to February 2017. Many of these studies have produced positive associations with gene polymorphisms and diabetic retinopathy. However, this review highlights that within this large body of work, studies specifically addressing a genetic association with diabetic macular oedema, although present, are vastly under-represented. We also highlight that many of the studies have small patient numbers and that meta-analyses often inappropriately combine patient data sets. We conclude that there will continue to be conflicting results and no meaningful findings will be achieved if the historical approach of combining all diabetic retinopathy disease states within patient cohorts continues in future studies. This review also identifies several genes that would be interesting to analyse in large, well-defined cohorts of patients with diabetic macular oedema in future candidate gene association studies.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Christine Kiire
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
- Oxford Eye Hospital; John Radcliffe Hospital; Oxford University NHS Foundation Trust; Oxford UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Victor Chong
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| |
Collapse
|
11
|
Beck J, Henschel C, Chou J, Lin A, Del Balzo U. Evaluation of the Carcinogenic Potential of Roxadustat (FG-4592), a Small Molecule Inhibitor of Hypoxia-Inducible Factor Prolyl Hydroxylase in CD-1 Mice and Sprague Dawley Rats. Int J Toxicol 2017; 36:427-439. [PMID: 29153032 DOI: 10.1177/1091581817737232] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The carcinogenic potential of roxadustat (FG-4592), a novel orally active, heterocyclic small molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase (HIF-PH) enzymes in clinical development for treatment of anemia, was evaluated in CD-1 mice and Sprague Dawley rats. Inhibition of HIF-PH by roxadustat leads to a rapid increase in cytoplasmic HIF-α concentrations, followed by translocation of HIF-α to the nucleus and upregulation of HIF-responsive genes, including erythropoietin. Roxadustat was dosed by oral gavage 3 times weekly (TIW) for up to 104 weeks in mice at 0, 15, 30, and 60 mg/kg and in rats at 0, 2.5, 5, and 10 mg/kg. Treatment-associated changes in hematology parameters were consistent with the pharmacologic activity of roxadustat and included elevations in hematocrit in mice at 30 and 60 mg/kg TIW and elevations in erythrocyte count, hemoglobin, hematocrit, and red cell distribution width in rats at 10 mg/kg TIW. No increase in mortality or neoplastic effects compared with vehicle controls was observed after roxadustat treatment in either species. No treatment-related nonneoplastic findings were observed in mice, whereas nonneoplastic microscopic findings in rats were limited to atrial/aortic thromboses at 10 mg/kg TIW males and bone marrow hypercellularity in all treated male and female groups, consistent with the pharmacology of roxadustat. In conclusion, roxadustat administered by oral gavage to mice and rats TIW for up to 104 weeks resulted in dose-dependent exposure and hematologic effects with no effect on survival or development of neoplastic lesions at up to 60 mg/kg in mice and up to 10 mg/kg in rats.
Collapse
Affiliation(s)
| | | | | | - Al Lin
- 1 FibroGen, Inc, San Francisco, CA, USA
| | | |
Collapse
|
12
|
Lang E, Bissinger R, Qadri SM, Lang F. Suicidal death of erythrocytes in cancer and its chemotherapy: A potential target in the treatment of tumor-associated anemia. Int J Cancer 2017; 141:1522-1528. [DOI: 10.1002/ijc.30800] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/02/2017] [Accepted: 05/17/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Elisabeth Lang
- Department of Molecular Medicine II; Heinrich Heine University of Düsseldorf; Düsseldorf Germany
| | - Rosi Bissinger
- Department of Internal Medicine III; Eberhard-Karls-University of Tübingen; Tübingen Germany
| | - Syed M. Qadri
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
- Centre for Innovation, Canadian Blood Services; Hamilton ON Canada
| | - Florian Lang
- Department of Internal Medicine III; Eberhard-Karls-University of Tübingen; Tübingen Germany
| |
Collapse
|
13
|
Ke S, Chen S, Dong Z, Hong CS, Zhang Q, Tang L, Yang P, Zhai J, Yan H, Shen F, Zhuang Z, Wen W, Wang H. Erythrocytosis in hepatocellular carcinoma portends poor prognosis by respiratory dysfunction secondary to mitochondrial DNA mutations. Hepatology 2017; 65:134-151. [PMID: 27774607 PMCID: PMC7971278 DOI: 10.1002/hep.28889] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/26/2016] [Accepted: 09/22/2016] [Indexed: 12/07/2022]
Abstract
UNLABELLED Erythrocytosis is a common paraneoplastic syndrome associated with hepatocellular carcinoma. Although increased erythropoietin (EPO) is found in these patients, the clinical significance and molecular mechanisms underlying this observation are unclear. We demonstrate an inverse relationship between EPO production and overall prognosis in our cohort of 664 patients as well as in data from The Cancer Genome Atlas. In the subset of hepatocellular carcinoma patients with erythrocytosis, we identified somatic mutations of mitochondrial DNA, resulting in impairment of respiratory metabolism, which sequentially led to depletion of α-ketoglutarate, stabilization of hypoxia inducible factor-α, and expression of target genes such as EPO. Cell lines and patient-derived xenograft models were used to demonstrate that EPO promoted cancer stem cell self-renewal and expansion in an autocrine/paracrine manner through enhanced Janus kinase/signal transducer and activator of transcription signaling both in vitro and in vivo. Furthermore, to explore the therapeutic targeting of EPO-induced tumor changes, we found that blocking EPO signaling with soluble EPO receptor extracellular domain Fc fusion protein could inhibit tumor growth both in vitro and in vivo. CONCLUSION These findings suggest clinical and therapeutic implications for erythrocytosis in hepatocellular carcinoma. There is an underlying link between mitochondrial function and hypoxia inducible factor alpha signaling, revealing a mechanism of erythrocytosis in a subset of hepatocellular carcinoma patients who may benefit from treatment involving EPO signaling interference. (Hepatology 2017;65:134-151).
Collapse
Affiliation(s)
- Shizhong Ke
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuzhen Chen
- National Center for Liver Cancer Second Military Medical University, Shanghai, China,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zihui Dong
- National Center for Liver Cancer Second Military Medical University, Shanghai, China,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Christopher S. Hong
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD,Department of Neurosurgery, Yale School of Medicine, New Haven, CT
| | - Qi Zhang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Liang Tang
- National Center for Liver Cancer Second Military Medical University, Shanghai, China,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Pinghua Yang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital Second Military Medical University, Shanghai, China
| | - Jian Zhai
- Department of Interventional Radiology, Eastern Hepatobiliary Surgery Hospital Second Military Medical University, Shanghai, China
| | - Hexin Yan
- National Center for Liver Cancer Second Military Medical University, Shanghai, China,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Feng Shen
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital Second Military Medical University, Shanghai, China
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Wen Wen
- National Center for Liver Cancer Second Military Medical University, Shanghai, China,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hongyang Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,National Center for Liver Cancer Second Military Medical University, Shanghai, China,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China,Ministry of Education (MOE) Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, Shanghai, China
| |
Collapse
|
14
|
Siwaponanan P, Fucharoen S, Sirankapracha P, Winichagoon P, Umemura T, Svasti S. Elevated levels of miR-210 correlate with anemia in β-thalassemia/HbE patients. Int J Hematol 2016; 104:338-43. [DOI: 10.1007/s12185-016-2032-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 02/02/2023]
|
15
|
Schmid H, Jelkmann W. Investigational therapies for renal disease-induced anemia. Expert Opin Investig Drugs 2016; 25:901-16. [DOI: 10.1080/13543784.2016.1182981] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Lu H, Wang R, Xiong J, Xie H, Kayser B, Jia Z. In search for better pharmacological prophylaxis for acute mountain sickness: looking in other directions. Acta Physiol (Oxf) 2015; 214:51-62. [PMID: 25778288 DOI: 10.1111/apha.12490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 02/23/2015] [Accepted: 03/11/2015] [Indexed: 12/15/2022]
Abstract
Despite decades of research, the exact pathogenic mechanisms underlying acute mountain sickness (AMS) are still poorly understood. This fact frustrates the search for novel pharmacological prophylaxis for AMS. The prevailing view is that AMS results from an insufficient physiological response to hypoxia and that prophylaxis should aim at stimulating the response. Starting off from the opposite hypothesis that AMS may be caused by an initial excessive response to hypoxia, we suggest that directly or indirectly blunting-specific parts of the response might provide promising research alternatives. This reasoning is based on the observations that (i) humans, once acclimatized, can climb Mt Everest experiencing arterial partial oxygen pressures (PaO2) as low as 25 mmHg without AMS symptoms; (ii) paradoxically, AMS usually develops at much higher PaO2 levels; and (iii) several biomarkers, suggesting initial activation of specific pathways at such PaO2, are correlated with AMS. Apart from looking for substances that stimulate certain hypoxia triggered effects, such as the ventilatory response to hypoxia, we suggest to also investigate pharmacological means aiming at blunting certain other specific hypoxia-activated pathways, or stimulating their agonists, in the quest for better pharmacological prophylaxis for AMS.
Collapse
Affiliation(s)
- H. Lu
- Key Laboratory of the Plateau of Environmental Damage Control; Lanzhou General Hospital of Lanzhou Military Command; Lanzhou China
| | - R. Wang
- Key Laboratory of the Plateau of Environmental Damage Control; Lanzhou General Hospital of Lanzhou Military Command; Lanzhou China
| | - J. Xiong
- Key Laboratory of the Plateau of Environmental Damage Control; Lanzhou General Hospital of Lanzhou Military Command; Lanzhou China
| | - H. Xie
- Key Laboratory of the Plateau of Environmental Damage Control; Lanzhou General Hospital of Lanzhou Military Command; Lanzhou China
| | - B. Kayser
- Institute of Sports Sciences and Department of Physiology; University of Lausanne; Lausanne Switzerland
| | - Z.P. Jia
- Key Laboratory of the Plateau of Environmental Damage Control; Lanzhou General Hospital of Lanzhou Military Command; Lanzhou China
| |
Collapse
|
17
|
Iron-hepcidin dysmetabolism, anemia and renal hypoxia, inflammation and fibrosis in the remnant kidney rat model. PLoS One 2015; 10:e0124048. [PMID: 25867633 PMCID: PMC4395008 DOI: 10.1371/journal.pone.0124048] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/27/2015] [Indexed: 12/15/2022] Open
Abstract
Anemia is a common complication of chronic kidney disease (CKD) that develops early and its severity increases as renal function declines. It is mainly due to a reduced production of erythropoietin (EPO) by the kidneys; however, there are evidences that iron metabolism disturbances increase as CKD progresses. Our aim was to study the mechanisms underlying the development of anemia of CKD, as well as renal damage, in the remnant kidney rat model of CKD induced by 5/6 nephrectomy. This model of CKD presented a sustained degree of renal dysfunction, with mild and advanced glomerular and tubulointerstitial lesions. Anemia developed 3 weeks after nephrectomy and persisted throughout the protocol. The remnant kidney was still able to produce EPO and the liver showed an increased EPO gene expression. In spite of the increased EPO blood levels, anemia persisted and was linked to low serum iron and transferrin levels, while serum interleukin (IL)-6 and high sensitivity C-reactive protein (hs-CRP) levels showed the absence of systemic inflammation. The increased expression of duodenal ferroportin favours iron absorption; however, serum iron is reduced which might be due to iron leakage through advanced kidney lesions, as showed by tubular iron accumulation. Our data suggest that the persistence of anemia may result from disturbances in iron metabolism and by an altered activity/function of EPO as a result of kidney cell damage and a local inflammatory milieu, as showed by the increased gene expression of different inflammatory proteins in the remnant kidney. In addition, this anemia and the associated kidney hypoxia favour the development of fibrosis, angiogenesis and inflammation that may underlie a resistance to EPO stimuli and reduced iron availability. These findings might contribute to open new windows to identify putative therapeutic targets for this condition, as well as for recombinant human EPO (rHuEPO) resistance, which occurs in a considerable percentage of CKD patients.
Collapse
|
18
|
Aguilera TA, Giaccia AJ. The End of the Hypoxic EPOch. Int J Radiat Oncol Biol Phys 2015; 91:895-7. [DOI: 10.1016/j.ijrobp.2015.01.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 01/27/2015] [Indexed: 10/23/2022]
|
19
|
Luo W, Hu L, Wang F. The Protective Effect of Erythropoietin on the Retina. Ophthalmic Res 2015; 53:74-81. [DOI: 10.1159/000369885] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/11/2014] [Indexed: 11/19/2022]
|
20
|
Salgado D, Fischer R, Schillberg S, Twyman RM, Rasche S. Comparative evaluation of heterologous production systems for recombinant pulmonary surfactant protein D. Front Immunol 2014; 5:623. [PMID: 25538707 PMCID: PMC4259113 DOI: 10.3389/fimmu.2014.00623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022] Open
Abstract
Commercial surfactant products derived from animal lungs are used for the treatment of respiratory diseases in premature neonates. These products contain lipids and the hydrophobic surfactant proteins B and C, which help to lower the surface tension in the lungs. Surfactant products are less effective when pulmonary diseases involve inflammatory complications because two hydrophilic surfactant proteins (A and D) are lost during the extraction process, yet surfactant protein D (SP-D) is a component of the innate immune system that helps to reduce lung inflammation. The performance of surfactant products could, therefore, be improved by supplementing them with an additional source of SP-D. Recombinant SP-D (rSP-D) is produced in mammalian cells and bacteria (Escherichia coli), and also experimentally in the yeast Pichia pastoris. Mammalian cells produce full-size SP-D, but the yields are low and the cost of production is high. In contrast, bacteria produce a truncated form of SP-D, which is active in vitro and in vivo, and higher yields can be achieved at a lower cost. We compare the efficiency of production of rSP-D in terms of the total yields achieved in each system and the amount of SP-D needed to meet the global demand for the treatment of pulmonary diseases, using respiratory distress syndrome as a case study.
Collapse
Affiliation(s)
- Daniela Salgado
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Aachen , Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Aachen , Germany ; Institute for Molecular Biotechnology, RWTH Aachen University , Aachen , Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Aachen , Germany
| | | | - Stefan Rasche
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Aachen , Germany
| |
Collapse
|
21
|
Abrams MT, Koser M, Burchard J, Strapps W, Mehmet H, Gindy M, Zaller D, Sepp-Lorenzino L, Stickens D. A Single Dose of EGLN1 siRNA Yields Increased Erythropoiesis in Nonhuman Primates. Nucleic Acid Ther 2014; 24:405-12. [PMID: 25272050 DOI: 10.1089/nat.2014.0495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
| | - Martin Koser
- Merck Research Laboratories, West Point, Pennsylvania
| | | | | | | | - Marian Gindy
- Merck Research Laboratories, West Point, Pennsylvania
| | | | | | | |
Collapse
|
22
|
Debeljak N, Solár P, Sytkowski AJ. Erythropoietin and cancer: the unintended consequences of anemia correction. Front Immunol 2014; 5:563. [PMID: 25426117 PMCID: PMC4227521 DOI: 10.3389/fimmu.2014.00563] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/22/2014] [Indexed: 01/12/2023] Open
Abstract
Until 1990, erythropoietin (EPO) was considered to have a single biological purpose and action, the stimulation of red blood cell growth and differentiation. Slowly, scientific and medical opinion evolved, beginning with the discovery of an effect on endothelial cell growth in vitro and the identification of EPO receptors (EPORs) on neuronal cells. We now know that EPO is a pleiotropic growth factor that exhibits an anti-apoptotic action on numerous cells and tissues, including malignant ones. In this article, we present a short discussion of EPO, receptors involved in EPO signal transduction, and their action on non-hematopoietic cells. This is followed by a more detailed presentation of both pre-clinical and clinical data that demonstrate EPO’s action on cancer cells, as well as tumor angiogenesis and lymphangiogenesis. Clinical trials with reported adverse effects of chronic erythropoiesis-stimulating agents (ESAs) treatment as well as clinical studies exploring the prognostic significance of EPO and EPOR expression in cancer patients are reviewed. Finally, we address the use of EPO and other ESAs in cancer patients.
Collapse
Affiliation(s)
- Nataša Debeljak
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana , Ljubljana , Slovenia
| | - Peter Solár
- Department of Cell and Molecular Biology, Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Šafárik University , Košice , Slovakia
| | - Arthur J Sytkowski
- Oncology Therapeutic Area, Quintiles Transnational , Arlington, MA , USA
| |
Collapse
|
23
|
Kim YC, Mungunsukh O, McCart EA, Roehrich PJ, Yee DK, Day RM. Mechanism of erythropoietin regulation by angiotensin II. Mol Pharmacol 2014; 85:898-908. [PMID: 24695083 DOI: 10.1124/mol.113.091157] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Erythropoietin (EPO) is the primary regulator of red blood cell development. Although hypoxic regulation of EPO has been extensively studied, the mechanism(s) for basal regulation of EPO are not well understood. In vivo studies in healthy human volunteers and animal models indicated that angiotensin II (Ang II) and angiotensin converting enzyme inhibitors regulated blood EPO levels. In the current study, we found that Ang II induced EPO expression in situ in murine kidney slices and in 786-O kidney cells in culture as determined by reverse transcription polymerase chain reaction. We further investigated the signaling mechanism of Ang II regulation of EPO in 786-O cells. Pharmacological inhibitors of Ang II type 1 receptor (AT1R) and extracellular signal-regulated kinase 1/2 (ERK1/2) suppressed Ang II transcriptional activation of EPO. Inhibitors of AT2R or Src homology 2 domain-containing tyrosine phosphatase had no effect. Coimmunoprecipiation experiments demonstrated that p21Ras was constitutively bound to the AT1R; this association was increased by Ang II but was reduced by the AT1R inhibitor telmisartan. Transmembrane domain (TM) 2 of AT1R is important for G protein-dependent ERK1/2 activation, and mutant D74E in TM2 blocked Ang II activation of ERK1/2. Ang II signaling induced the nuclear translocation of the Egr-1 transcription factor, and overexpression of dominant-negative Egr-1 blocked EPO promoter activation by Ang II. These data identify a novel pathway for basal regulation of EPO via AT1R-mediated Egr-1 activation by p21Ras-mitogen-activated protein kinase/ERK kinase-ERK1/2. Our current data suggest that Ang II, in addition to regulating blood volume and pressure, may be a master regulator of erythropoiesis.
Collapse
Affiliation(s)
- Yong-Chul Kim
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (Y.-C.K., O.M., E.A.M., P.J.R., R.M.D.); and Department of Animal Biology, University of Pennsylvania, Philadelphia, Pennsylvania (D.K.Y.)
| | | | | | | | | | | |
Collapse
|
24
|
Dhamne H, Chande AG, Mukhopadhyaya R. Lentiviral vector platform for improved erythropoietin expression concomitant with shRNA mediated host cell elastase down regulation. Plasmid 2014; 71:1-7. [DOI: 10.1016/j.plasmid.2013.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/27/2013] [Accepted: 11/30/2013] [Indexed: 01/28/2023]
|
25
|
Dewi FRP, Fatchiyah F. Methylation impact analysis of erythropoietin (EPO) Gene to hypoxia inducible factor-1α (HIF-1α) activity. Bioinformation 2013; 9:782-7. [PMID: 24023421 PMCID: PMC3766311 DOI: 10.6026/97320630009782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 12/23/2022] Open
Abstract
Erythropoietin (EPO) is a glycoprotein hormone that play a role as key regulator in the production of red blood cells. The promoter
region of EPO is methylated in normoxic (non-hypoxia) condition, but not in hypoxic condition. Methylation of the EPO enhancer
region decline the transcription activity of EPO gene. The aim of this study is to investigate how different methylation percentage
affected on the regulation and transcriptional activity of EPO gene. The DNA sequence of erythropoietin gene and protein
sequence was retrieved from the sequence database of NCBI. DNA structure was constructed using 3D-DART web server and
modeling structure of HIF1 predicted using SWISS-MODEL web server. Methylated DNA sequence of EPO gene using performed
with YASARA View software and docking of EPO gene and transcription factor HIF1 analyzed by using HADDOCK webserver.
Our result showed that binding energy in 46% methylated DNA was higher (-161,45 kcal/mol) than in unmethylated DNA (-194,16
kcal/mol) and 8% methylated DNA (-175,94 kcal/mol). So, we presume that a silencing mechanism of the Epo gene by methylation
is correlated with the binding energy, which is required for interaction. A higher methylation percentage correlates with a higher
binding energy which can cause an unstable interaction between DNA and transcription factor. In conclution, methylation of
promoter and enhancer region of Epo gene leads to silencing.
Collapse
Affiliation(s)
- Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, East Java, Indonesia
| | | |
Collapse
|
26
|
Teixeira M, Rodrigues-Santos P, Garrido P, Costa E, Parada B, Sereno J, Alves R, Belo L, Teixeira F, Santos-Silva A, Reis F. Cardiac antiapoptotic and proproliferative effect of recombinant human erythropoietin in a moderate stage of chronic renal failure in the rat. J Pharm Bioallied Sci 2013; 4:76-83. [PMID: 22368404 PMCID: PMC3283962 DOI: 10.4103/0975-7406.92743] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/08/2011] [Accepted: 07/17/2011] [Indexed: 12/29/2022] Open
Abstract
Objective: Recombinant human erythropoietin (rhEPO) therapy under circumstances of moderate chronic renal failure (CRF), with yet lower kidney and heart lesion, may have a protective cardiac effect beyond the correction of anemia, whose mechanism deserves better elucidation, namely by clarifying the impact on gene expression profile of markers of apoptosis, inflammation, proliferation, angiogenesis, and lesion/stress in the heart. Materials and Methods: Four groups of rats were studied over a period of 15 weeks (n=7 each): control—without surgery and without drug treatment; rhEPO—treated with 50 IU/kg/week of rhEPO—beta; CRF—submitted to partial nephrectomy (3/4); CRF + rhEPO—CRF with rhEPO treatment after the 3rd week of surgery. The heart was collected in order to evaluate the gene expression, by real-time qPCR, of markers of apoptotic machinery, inflammation/immunology, proliferation/angiogenesis, and lesion/stress. Results: The main findings obtained were (a) CRF rats have demonstrated overexpression of EPO-R in the heart without changes on EPO expression, together with overexpression of Bax/Bcl2 ratio, PCNA, and IL-2; (b) rhEPO therapy on the heart of the rats with CRF induced by partial 3/4 nephrectomy promoted nonhematopoietic protection, demonstrated by the apoptosis prevention, viewed by the Bax/Bcl2 balance, by the promotion of proliferation, due to PCNA increment, and by the immunomodulatory action, expressed by a trend to prevent the IL-2 increment. Conclusion: In this model of moderate CRF, rhEPO treatment showed important cardiac nonhematopoietic effects, expressed mainly by the antiapoptotic and the proproliferative action, suggesting that early rhEPO therapy in moderate stages of CRF might have further therapeutic benefits.
Collapse
Affiliation(s)
- M Teixeira
- Laboratory of Pharmacology and Experimental Therapeutics, IBILI, Medicine Faculty, Coimbra University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Guo L, Luo T, Fang Y, Yang L, Wang L, Liu J, Shi B. Effects of erythropoietin on osteoblast proliferation and function. Clin Exp Med 2012; 14:69-76. [DOI: 10.1007/s10238-012-0220-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
|
28
|
|
29
|
Schuler B, Vogel J, Grenacher B, Jacobs RA, Arras M, Gassmann M. Acute and chronic elevation of erythropoietin in the brain improves exercise performance in mice without inducing erythropoiesis. FASEB J 2012; 26:3884-90. [PMID: 22683849 DOI: 10.1096/fj.11-191197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Application of recombinant human erythropoietin (rhEpo) improves exercise capacity by stimulating red blood cell production that, in turn, enhances oxygen delivery and utilization. Apart from this, when applied at high doses, rhEpo crosses the blood-brain barrier, triggering protective neuronal effects. Here we show a fundamental new role by which the presence of Epo in the brain augments exercise performance without altering red blood cell production. Two different animal models, the transgenic mouse line Tg21, which constitutively overexpresses human Epo exclusively in the brain without affecting erythropoiesis, and wild-type mice treated with a single high dose of rhEpo, demonstrate an unexpected improvement in maximal exercise performance independent of changes in total hemoglobin mass, as well as in whole blood volume and cardiovascular parameters. This novel finding builds a more complete understanding regarding the central effects of endogenously produced and exogenously applied Epo on exercise performance.
Collapse
Affiliation(s)
- Beat Schuler
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Debeljak N, Sytkowski AJ. Erythropoietin and erythropoiesis stimulating agents. Drug Test Anal 2012; 4:805-12. [PMID: 22508651 DOI: 10.1002/dta.1341] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/15/2012] [Accepted: 02/19/2012] [Indexed: 11/08/2022]
Abstract
Erythropoietin (EPO) is the main hormonal regulator of red blood cell production. Recombinant EPO has become the leading drug for treatment of anaemia from a variety of causes; however, it is sometimes misused in sport with the aim of improving performance and endurance. This paper presents an introductory overview of EPO, its receptor, and a variety of recombinant human EPOs/erythropoiesis stimulating agents (ESAs) available on the market (e.g. epoetins and their long acting analogs--darbepoetin alfa and continuous erythropoiesis receptor activator). Recent efforts to improve on EPO's pharmaceutical properties and to develop novel replacement products are also presented. In most cases, these efforts have emphasized a reduction in frequency of injections or complete elimination of intravenous or subcutaneous injections of the hormone (biosimilars, EPO mimetic peptides, fusion proteins, endogenous EPO gene activators and gene doping). Isoelectric focusing (IEF) combined with double immunoblotting can detect the subtle differences in glycosylation/sialylation, enabling differentiation among endogenous and recombinant EPO analogues. This method, using the highly sensitive anti-EPO monoclonal antibody AE7A5, has been accepted internationally as one of the methods for detecting misuse of ESAs in sport.
Collapse
Affiliation(s)
- Nataša Debeljak
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | | |
Collapse
|
31
|
Hernández C, Simó R. Erythropoietin produced by the retina: its role in physiology and diabetic retinopathy. Endocrine 2012; 41:220-6. [PMID: 22167324 DOI: 10.1007/s12020-011-9579-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 12/01/2011] [Indexed: 12/22/2022]
Abstract
Erythropoietin (Epo) is the principal regulator of erythropoiesis by inhibiting apoptosis and by stimulating the proliferation and differentiation of erythroid precursor cells. However, Epo also performs extra-erythropoietic actions of which the neuroprotective effects are among the most relevant. Apart from kidney and liver, Epo is also produced by the brain and the retina. In addition, Epo receptor (Epo-R) expression has also been found in the brain and in the retina, thus suggesting an autocrine/paracrine action which seems essential for the physiological homeostasis of both brain and retina. In this review, we will give an overview of the current concepts of the physiology of Epo and will focus on its role in the retina in both normal conditions and in the setting of diabetic retinopathy. Finally, the reasons as to why Epo could be contemplated as a potential new treatment for the early stages of diabetic retinopathy will be given.
Collapse
Affiliation(s)
- Cristina Hernández
- CIBERDEM, Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|
32
|
Colgan SP, Eltzschig HK. Adenosine and hypoxia-inducible factor signaling in intestinal injury and recovery. Annu Rev Physiol 2011; 74:153-75. [PMID: 21942704 DOI: 10.1146/annurev-physiol-020911-153230] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The gastrointestinal mucosa has proven to be an interesting tissue in which to investigate disease-related metabolism. In this review, we outline some of the evidence that implicates hypoxia-mediated adenosine signaling as an important signature within both healthy and diseased mucosa. Studies derived from cultured cell systems, animal models, and human patients have revealed that hypoxia is a significant component of the inflammatory microenvironment. These studies have revealed a prominent role for hypoxia-induced factor (HIF) and hypoxia signaling at several steps along the adenine nucleotide metabolism and adenosine receptor signaling pathways. Likewise, studies to date in animal models of intestinal inflammation have demonstrated an almost uniformly beneficial influence of HIF stabilization on disease outcomes. Ongoing studies to define potential similarities with and differences between innate and adaptive immune responses will continue to teach us important lessons about the complexity of the gastrointestinal tract. Such information has provided new insights into disease pathogenesis and, importantly, will provide insights into new therapeutic targets.
Collapse
Affiliation(s)
- Sean P Colgan
- Departments of Medicine and Anesthesiology and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
33
|
Steinmann K, Richter AM, Dammann RH. Epigenetic silencing of erythropoietin in human cancers. Genes Cancer 2011; 2:65-73. [PMID: 21779481 DOI: 10.1177/1947601911405043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/15/2011] [Accepted: 02/27/2011] [Indexed: 12/24/2022] Open
Abstract
The glycoprotein hormone erythropoietin (EPO) is a key regulator in the production of red blood cells. EPO is produced mainly in the embryonic liver and kidney of adults. Other organs are also known to express varying amounts of EPO. In our study, we have analyzed the epigenetic regulation of EPO in human cancer cell lines by DNA methylation assays, chromatin immunoprecipitation, RT-PCR, and promoter analysis under different growth conditions. Moreover, the growth-related effects of ectopic EPO expression were analyzed in a head and neck cancer cell line. We found frequent DNA hypermethylation of the CpG island promoter and enhancer of EPO in different cancer cell lines. Aberrant methylation of EPO promoter was observed in primary lung, head and neck, breast, and liver cancers. Hypermethylation of EPO was associated with a decreased expression of EPO in cancer cells. Treatment of cancer cell lines with 5-aza-2'-deoxycytidine (Aza), an inhibitor of DNA methylation, reactivated EPO expression under hypoxia. In contrast, in the liver cancer cell line HepB3, the EPO promoter was unmethylated, and a high EPO expression was observed independently of Aza treatment. Moreover, in vitro hypermethylation of the EPO promoter and enhancer reduced expression of a reporter gene under normoxia and hypoxia. Induction of EPO under hypoxia was accompanied by increased histone H3 acetylation and reduced histone H3 lysine 9 trimethylation. In a head and neck cancer cell line, which exhibited low EPO levels, ectopic expression of EPO significantly enhanced proliferation under normoxia and hypoxia. In summary, we show that hypermethylation of regulatory sequences of EPO is frequently observed in tumors and that this aberrant methylation induces epigenetic silencing of EPO in cancer cells.
Collapse
Affiliation(s)
- Katrin Steinmann
- Institute for Genetics, Justus-Liebig University Giessen, Giessen, Germany
| | | | | |
Collapse
|
34
|
Nachbauer W, Wanschitz J, Steinkellner H, Eigentler A, Sturm B, Hufler K, Scheiber-Mojdehkar B, Poewe W, Reindl M, Boesch S. Correlation of frataxin content in blood and skeletal muscle endorses frataxin as a biomarker in Friedreich ataxia. Mov Disord 2011; 26:1935-8. [PMID: 21692115 DOI: 10.1002/mds.23789] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 04/01/2011] [Accepted: 04/17/2011] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Friedreich ataxia is an autosomal recessive disorder caused by mutations in the frataxin gene, leading to reduced levels of the mitochondrial protein frataxin. Assays to quantitatively measure frataxin in peripheral blood have been established. To determine the validity of frataxin as a biomarker for clinical trials, we assessed frataxin in clinically affected tissue. METHODS In 7 patients with Friedreich ataxia, frataxin content was measured in blood and skeletal muscle before and after treatment with recombinant human erythropoietin, applying the electrochemiluminescence immunoassay. RESULTS We found frataxin content to be correlated in peripheral blood mononuclear cells and skeletal muscle in drug-naive patients with Friedreich ataxia. The correlation of frataxin content in both compartments remained significant after 8 weeks of treatment. Skeletal-muscle frataxin values correlated with ataxia using the Scale for the Assessment and Rating of Ataxia score. CONCLUSIONS Our results endorse frataxin measurements in peripheral blood cells as a valid biomarker in Friedreich ataxia.
Collapse
Affiliation(s)
- Wolfgang Nachbauer
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Foley RN. Treatment of anemia in chronic kidney disease: known, unknown, and both. J Blood Med 2011; 2:103-12. [PMID: 22287869 PMCID: PMC3262350 DOI: 10.2147/jbm.s13066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Indexed: 12/18/2022] Open
Abstract
Erythropoiesis is a rapidly evolving research arena and several mechanistic insights show therapeutic promise. In contrast with the rapid advance of mechanistic science, optimal management of anemia in patients with chronic kidney disease remains a difficult and polarizing issue. Although several large hemoglobin target trials have been performed, optimal treatment targets remain elusive, because none of the large trials to date have unequivocally identified differences in primary outcome rates or death rates, and because other reported outcomes indicate the potential for harm (rates of stroke, early requirement for dialysis, and vascular access thrombosis) and benefit (reductions in transfusion requirements and fatigue).
Collapse
Affiliation(s)
- Robert N Foley
- Chronic Disease Research Group, Minneapolis Medical Research Foundation, Minneapolis, MN, USA
| |
Collapse
|
36
|
Cohan RA, Madadkar-Sobhani A, Khanahmad H, Roohvand F, Aghasadeghi MR, Hedayati MH, Barghi Z, Ardestani MS, Inanlou DN, Norouzian D. Design, modeling, expression, and chemoselective PEGylation of a new nanosize cysteine analog of erythropoietin. Int J Nanomedicine 2011; 6:1217-27. [PMID: 21753873 PMCID: PMC3131188 DOI: 10.2147/ijn.s19081] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Indexed: 12/14/2022] Open
Abstract
Background: Recombinant human erythropoietin (rhEPO) is considered to be one of the most pivotal pharmaceutical drugs in the market because of its clinical application in the treatment of anemia-associated disorders worldwide. However, like other therapeutic proteins, it does not have suitable pharmacokinetic properties for it to be administrated at least two to three times per week. Chemoselective cysteine PEGylation, employing molecular dynamics and graphics in in silico studies, can be considered to overcome such a problem. Methods: A special kind of EPO analog was elicited based on a literature review, homology modeling, molecular dynamic simulation, and factors affecting the PEGylation reaction. Then, cDNA of the selected analog was generated by site-directed mutagenesis and subsequently cloned into the expression vector. The construct was transfected to Chinese hamster ovary/dhfr− cells, and highly expressed clones were selected via methotrexate amplification. Ion-immobilized affinity and size exclusion (SE) chromatography techniques were used to purify the expressed analog. Thereafter, chemoselective PEGylation was performed and a nanosize PEGylated EPO was obtained through dialysis. The in vitro biologic assay and in vivo pharmacokinetic parameters were studied. Finally, E31C analog Fourier transform infrared, analytical SE-high-performance liquid chromatography, zeta potential, and size before and after PEGylation were characterized. Results: The findings indicate that a novel nanosize EPO31-PEG has a five-fold longer terminal half-life in rats with similar biologic activity compared with unmodified rhEPO in proliferation cell assay. The results also show that EPO31-PEG size and charge versus unmodified protein was increased in a nanospectrum, and this may be one criterion of EPO biologic potency enhancement. Discussion: This kind of novel engineered nanosize PEGylated EPO has remarkable advantages over rhEPO.
Collapse
Affiliation(s)
- Reza Ahangari Cohan
- Research and Development Department, Production and Research Complex, Pasteur Institute of Iran, Tehran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Glover LE, Colgan SP. Hypoxia and metabolic factors that influence inflammatory bowel disease pathogenesis. Gastroenterology 2011; 140:1748-55. [PMID: 21530741 PMCID: PMC3093411 DOI: 10.1053/j.gastro.2011.01.056] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/14/2010] [Accepted: 01/03/2011] [Indexed: 12/17/2022]
Abstract
The gastrointestinal epithelium is anatomically positioned to provide a selective barrier between the anaerobic lumen and lamina propria, which has a high rate of metabolism. Supported by a complex vasculature, this important barrier is affected by reduced blood flow and resultant tissue hypoxia, particularly during the severe metabolic shifts associated with active inflammation in individuals with inflammatory bowel disease. Activation of hypoxia-inducible factor (HIF) under these conditions promotes resolution of inflammation in mouse models of disease. Protective influences of HIF are attributed, in part, to the complex regulation of barrier protection with the intestinal mucosa. Reagents that activate HIF, via inhibition of the prolyl hydroxylase enzymes, might be developed to induce hypoxia-mediated resolution in patients with intestinal mucosal inflammatory disease.
Collapse
|
38
|
Presnell SC, Bruce AT, Wallace SM, Choudhury S, Genheimer CW, Cox B, Guthrie K, Werdin ES, Tatsumi-Ficht P, Ilagan RM, Kelley RW, Rivera EA, Ludlow JW, Wagner BJ, Jayo MJ, Bertram TA. Isolation, Characterization, and Expansion Methods for Defined Primary Renal Cell Populations from Rodent, Canine, and Human Normal and Diseased Kidneys. Tissue Eng Part C Methods 2011; 17:261-73. [DOI: 10.1089/ten.tec.2010.0399] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sharon C. Presnell
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Andrew T. Bruce
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Shay M. Wallace
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Sumana Choudhury
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | | | - Bryan Cox
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Kelly Guthrie
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Eric S. Werdin
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Patricia Tatsumi-Ficht
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Roger M. Ilagan
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Russell W. Kelley
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Elias A. Rivera
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - John W. Ludlow
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Belinda J. Wagner
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Manuel J. Jayo
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Timothy A. Bertram
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| |
Collapse
|
39
|
Abstract
This is a Minireview covering landmarks or milestones in the development of erythropoietin (EPO). Thirty-nine landmark advances have been identified, which cover the period 1863-2003. Several reports are included that directly support these original landmark advances. This Minireview also updates some of the advances in EPO research since my last Minireview update on EPO published in this journal in 2003. The areas of EPO research updated are: sites of production; purification, assay and standardization; regulation; action; use in anemias; extraerythropoietic actions; adverse effects; and blood doping. The new reports on the use of EPO in the therapy of myocardial infarction; stroke and other neurological diseases; diabetic retinopathy and other retinal diseases are also covered.
Collapse
Affiliation(s)
- James W Fisher
- Department of Pharmacology, Tulane University, School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
40
|
|
41
|
Abstract
The kidney is the main physiologic source of erythropoietin (EPO) in the adult and responds to decreases in tissue oxygenation with increased EPO production. Although studies in mice with liver-specific or global gene inactivation have shown that hypoxia-inducible factor 2 (Hif-2) plays a major role in the regulation of Epo during infancy and in the adult, respectively, the contribution of renal HIF-2 signaling to systemic EPO homeostasis and the role of extrarenal HIF-2 in erythropoiesis, in the absence of kidney EPO, have not been examined directly. Here, we used Cre-loxP recombination to ablate Hif-2α in the kidney, whereas Hif-2-mediated hypoxia responses in the liver and other Epo-producing tissues remained intact. We found that the hypoxic induction of renal Epo is completely Hif-2 dependent and that, in the absence of renal Hif-2, hepatic Hif-2 takes over as the main regulator of serum Epo levels. Furthermore, we provide evidence that hepatocyte-derived Hif-2 is involved in the regulation of iron metabolism genes, supporting a role for HIF-2 in the coordination of EPO synthesis with iron homeostasis.
Collapse
|
42
|
Abstract
Intestinal epithelial cells that line the mucosal surface of the gastrointestinal tract are positioned between an anaerobic lumen and a highly metabolic lamina propria. As a result of this unique anatomy, intestinal epithelial cells function within a steep physiologic oxygen gradient relative to other cell types. Furthermore, during active inflammatory disease such as IBD, metabolic shifts towards hypoxia are severe. Studies in vitro and in vivo have shown that the activation of hypoxia-inducible factor (HIF) serves as an alarm signal to promote the resolution of inflammation in various mouse models of disease. Amelioration of disease occurs, at least in part, through transcriptional upregulation of nonclassic epithelial barrier genes. There is much interest in harnessing hypoxia-inducible pathways, including stabilizing HIF directly or via inhibition of prolyl hydroxylase enzymes, for therapy of IBD. In this Review, we discuss the signaling pathways involved in the regulation of hypoxia and discuss how hypoxia may serve as an endogenous alarm signal for the presence of mucosal inflammatory disease. We also discuss the pros and cons of targeting these pathways to treat patients with IBD.
Collapse
Affiliation(s)
- Sean P. Colgan
- Mucosal Inflammation Program, Division of Gastroenterology, Mucosal Inflammation Program, University of Colorado Denver, 12700 E. 19th Ave MS B146, Aurora, CO 80045, USA
| | - Cormac T. Taylor
- UCD Conway Institute, School of Medicine and Medical Science, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
43
|
|
44
|
Abstract
Erythropoietin (EPO), a glycoprotein hormone, stimulates the growth of red blood cells and as a consequence it increases tissue oxygenation. This performance enhancing effect is responsible for the ban of erythropioetin in sports since 1990. Especially its recombinant synthesis led to the abuse of this hormone, predominatly in endurance sports. The analytical differentiation of endogenously produced erythropoietin from its recombinant counterpart by using isoelectric focusing and double blotting is a milestone in the detection of doping with recombinant erythropoietin. However, various analogous of the initial recombinant products, not always easily detectable by the standard IEF-method, necessitate the development of analytical alternatives for the detection of EPO doping. The following chapter summarizes its mode of action, the various forms of recombinant erythropoietin, the main analytical procedures and strategies for the detection of EPO doping as well as a typical case report.
Collapse
Affiliation(s)
- Christian Reichel
- Austrian Research Centers GmbH - ARC, Doping Control Laboratory, A-2444, Seibersdorf, Austria.
| | | |
Collapse
|
45
|
Impaired synthesis of erythropoietin, glutamine synthetase and metallothionein in the skin of NOD/SCID/gamma(c)(null) and Foxn1 nu/nu mice with misbalanced production of MHC class II complex. Neurochem Res 2009; 35:899-908. [PMID: 19826948 DOI: 10.1007/s11064-009-0074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2009] [Indexed: 10/20/2022]
Abstract
Most skin pathologies are characterized by unbalanced synthesis of major histocompatability complex II (MHC-II) proteins. Healthy skin keratinocytes simultaneously produce large amounts of MHC-II and regeneration-supporting proteins, e.g. erythropoietin (EPO), EPO receptor (EPOR), glutamine synthetase (GS) and metallothionein (MT). To investigate the level of regeneration-supporting proteins in the skin during misbalanced production of MHC-II, skin sections from nonobese diabetic/severe combined immunodeficient (NOD/SCID)/gamma (c) (null) and or Foxn1 nu/nu mice which are a priory known to under- and over-express MHC II, respectively, were used. Double immunofluorescence analysis of NOD/SCID/gamma (c) (null) skin sections showed striking decrease in expression of MHC-II, EPO, GS and MT. In Foxn1 nu/nu mouse skin, GS was strongly expressed in epidermis and in hair follicles (HF), which lacked EPO. In nude mouse skin EPO and MHC-II were over-expressed in dermal fibroblasts and they were completely absent from cortex, channel, medulla and keratinocytes surrounding the HF, suggest a role for EPO in health and pathology of hair follicle. The level of expression of EPO and GS in both mutant mice was confirmed by results of Western blot analyses. Strong immunoresponsiveness of EPOR in the hair channels of NOD/SCID/gamma (c) (null) mouse skin suggests increased requirements of skin cells for EPO and possible benefits of exogenous EPO application during disorders of immune system accompanied by loss MHC-II in skin cells.
Collapse
|
46
|
Abstract
Red blood cells deliver O(2) from the lungs to every cell in the human body. Reduced tissue oxygenation triggers increased production of erythropoietin by hypoxia-inducible factor 1 (HIF-1), which is a transcriptional activator composed of an O(2)-regulated alpha subunit and a constitutively expressed beta subunit. Hydroxylation of HIF-1alpha or HIF-2alpha by the asparaginyl hydroxylase FIH-1 blocks coactivator binding and transactivation. Hydroxylation of HIF-1alpha or HIF-2alpha by the prolyl hydroxylase PHD2 is required for binding of the von Hippel-Lindau protein (VHL), leading to ubiquitination and proteasomal degradation. Mutations in the genes encoding VHL, PHD2, and HIF-2alpha have been identified in patients with familial erythrocytosis. Patients with Chuvash polycythemia, who are homozygous for a missense mutation in the VHL gene, have multisystem pathology attributable to dysregulated oxygen homeostasis. Intense efforts are under way to identify small molecule hydroxylase inhibitors that can be administered chronically to selectively induce erythropoiesis without undesirable side effects.
Collapse
|
47
|
Abstract
Metazoan organisms are dependent on a continuous supply of O(2) for survival. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that regulates oxygen homeostasis and plays key roles in development, physiology, and disease. HIF-1 activity is induced in response to continuous hypoxia, intermittent hypoxia, growth factor stimulation, and Ca(2+) signaling. HIF-1 mediates adaptive responses to hypoxia, including erythropoiesis, angiogenesis, and metabolic reprogramming. In each case, HIF-1 regulates the expression of multiple genes encoding key components of the response pathway. HIF-1 also mediates maladaptive responses to chronic continuous and intermittent hypoxia, which underlie the development of pulmonary and systemic hypertension, respectively.
Collapse
Affiliation(s)
- Gregg L Semenza
- Vascular Program, Institute for Cell Engineering, McKusick-Nathans Institute of Genetic Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
48
|
Linking anemia to inflammation and cancer: the crucial role of TNFalpha. Biochem Pharmacol 2009; 77:1572-9. [PMID: 19174153 DOI: 10.1016/j.bcp.2008.12.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/03/2008] [Accepted: 12/16/2008] [Indexed: 12/18/2022]
Abstract
Erythropoiesis is considered as a multistep and tightly regulated process under the control of a series of cytokines including erythropoietin (Epo). Epo activates specific signaling pathways and leads to activation of key transcription factors such as GATA-1, in order to ensure erythroid differentiation. Deregulation leads to a decreased number of red blood cells, a hemoglobin deficiency, thus a limited oxygen-carrying capacity in the blood. Anemia represents a frequent complication in various diseases such as cancer or inflammatory diseases. It reduces both quality of life and prognosis in patients. Tumor necrosis factor alpha (TNFalpha) was described to be involved in the pathogenesis of inflammation and cancer related anemia. Blood transfusions and erythroid stimulating agents (ESAs) including human recombinant Epo (rhuEpo) are currently used as efficient treatments. Moreover, the recently described conflicting effects of ESAs in distinct studies require further investigations on the molecular mechanisms involved in TNFalpha-caused anemia. The present study aims to evaluate the current knowledge and the importance of the effect of the proinflammatory cytokine TNFalpha on erythropoiesis in inflammatory and malignant conditions.
Collapse
|
49
|
Casals-Pascual C, Idro R, Picot S, Roberts DJ, Newton CRJC. Can erythropoietin be used to prevent brain damage in cerebral malaria? Trends Parasitol 2008; 25:30-6. [PMID: 19008152 DOI: 10.1016/j.pt.2008.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 09/12/2008] [Accepted: 10/02/2008] [Indexed: 11/26/2022]
Abstract
Erythropoietin (Epo) modulates the survival of developing erythroid cells and the production of new erythrocytes in the bone marrow and is a key molecule in the adaptation to hypoxia and anaemia. Epo receptors have been found to be widely expressed on non-haematopoietic cells, and Epo has been shown to have diverse actions (in particular, preventing ischaemic damage to tissues of the central nervous system). Recently, Epo has been shown to improve the outcome in a murine model of malaria, and high plasma levels of Epo in children with cerebral malaria were associated with a better outcome. Here, we review the biological importance of Epo, its mechanisms of action and the rationale for the proposed use of Epo as an adjunct treatment in cerebral malaria.
Collapse
|
50
|
Llop E, Gutiérrez-Gallego R, Segura J, Mallorquí J, Pascual JA. Structural analysis of the glycosylation of gene-activated erythropoietin (epoetin delta, Dynepo). Anal Biochem 2008; 383:243-54. [PMID: 18804089 DOI: 10.1016/j.ab.2008.08.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/18/2008] [Accepted: 08/26/2008] [Indexed: 12/13/2022]
Abstract
Recently, a novel recombinant human erythropoietin (epoetin delta, Dynepo) has been marketed in the European Union for the treatment of chronic kidney disease, cancer patients receiving chemotherapy, and so forth. Epoetin delta is engineered in cultures of the human fibrosarcoma cell line HT-1080 by homologous recombination and "gene activation." Unlike recombinant erythropoietins produced in other mammalian cells, epoetin delta is supposed to have a human-type glycosylation profile. However, the isoelectric focusing profile of epoetin delta differs from that of endogenous erythropoietin (both urinary and plasmatic). In this work, structural and quantitative analysis of the O- and N-glycans of epoetin delta was performed and compared with glycosylation from recombinant erythropoietin produced in Chinese hamster ovary (CHO) cells. From the comparison, significant differences in the sialylation of O-glycans were found. Furthermore, the N-glycan analysis indicated a lower heterogeneity from epoetin delta when compared with its CHO homologue, being predominantly tetraantennary without N-acetyllactosamine repeats in the former. The sialic acid characterization revealed the absence of N-glycolylneuraminic acid. The overall sugar profiles of both glycoproteins appeared to be significantly different and could be useful for maintaining pharmaceutical quality control, detecting the misuse of erythropoietin in sports, and establishing new avenues to link glycosylation with biological activity of glycoproteins.
Collapse
Affiliation(s)
- Esther Llop
- Bioanalysis Research Group, Neuropsycho-pharmacology Program, IMIM-Hospital del Mar, Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|