1
|
Pervushin NV, Nilov DK, Pushkarev SV, Shipunova VO, Badlaeva AS, Yapryntseva MA, Kopytova DV, Zhivotovsky B, Kopeina GS. BH3-mimetics or DNA-damaging agents in combination with RG7388 overcome p53 mutation-induced resistance to MDM2 inhibition. Apoptosis 2024; 29:2197-2213. [PMID: 39222276 DOI: 10.1007/s10495-024-02014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The development of drug resistance reduces the efficacy of cancer therapy. Tumor cells can acquire resistance to MDM2 inhibitors, which are currently under clinical evaluation. We generated RG7388-resistant neuroblastoma cells, which became more proliferative and metabolically active and were less sensitive to DNA-damaging agents in vitro and in vivo, compared with wild-type cells. The resistance was associated with a mutation of the p53 protein (His193Arg). This mutation abated its transcriptional activity via destabilization of the tetrameric p53-DNA complex and was observed in many cancer types. Finally, we found that Cisplatin and various BH3-mimetics could enhance RG7388-mediated apoptosis in RG7388-resistant neuroblastoma cells, thereby partially overcoming resistance to MDM2 inhibition.
Collapse
Affiliation(s)
- N V Pervushin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - D K Nilov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - S V Pushkarev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - V O Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Moscow Center for Advanced Studies, Moscow, 123592, Russia
| | - A S Badlaeva
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Russian Ministry of Health, Moscow, 117513, Russia
| | - M A Yapryntseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - D V Kopytova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - B Zhivotovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden.
| | - G S Kopeina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Chakrabarty S, Nandi S, Bandopadhyay P, Das A, Azaharuddin M, Pal A, Ghosh S, Sett U, Nandy S, Basu T. Synthesis of novel hydrophilic celastrol nanoformulation by entrapment within calcium phosphate nanoparticle and study of its antioxidant activity against neurotoxin-induced damage in human neuroblastoma cells. Biochem Biophys Res Commun 2024; 735:150480. [PMID: 39094229 DOI: 10.1016/j.bbrc.2024.150480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Celastrol, a pentacyclic triterpenoid found in Chinese herb Tripterygium wilfordii, is considered as one of the top-five natural medicinal compounds with high antioxidant property. However, celastrol has poor aqueous solubility and thereby low bioavailability, restricting its clinical application as drug. To overcome this problem, we nanonized celastrol by entrapping it within hydrophilic nanocarrier - calcium phosphate nanoparticle. The synthesized calcium phosphate celastrol nanoparticle (CPCN) had average size of 35 nm, spherical shape, significant stability with (-) 37 mV zeta potential, celastrol entrapment efficiency around 75 % and low celastrol release kinetics spanning over 7 days, as measured by different techniques like FESEM, AFM, DLS, and spectrophotometry. Studies on the antioxidant potency of CPCN by flow cytometry and fluorescence microscopy depicted that the toxicity developed in human neuroblastoma cells SH-SY5Y by treatment with the selective neurotoxin MPP+ iodide (N-Methyl-4-phenylpyridinium iodide) got reduced by pretreatment of the cells with CPCN. Determination of cellular ROS content, depolarization level of mitochondrial membrane potential, cell cycle analysis and nuclear damage in MPP+-exposed cells demonstrated that CPCN had about 65 % more antioxidant efficacy over that of bulk celastrol. Thus, the nanonization process transformed hydrophobic celastrol into hydrophilic CPCN, having high potentiality to be developed as an effective antioxidant drug.
Collapse
Affiliation(s)
- Soumajit Chakrabarty
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Susmita Nandi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Pathikrit Bandopadhyay
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Abhijit Das
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Md Azaharuddin
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Anabadya Pal
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Sourav Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Upasana Sett
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Sanchita Nandy
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Tarakdas Basu
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India.
| |
Collapse
|
3
|
Gupta P, Mallick B. miR-128-3p suppresses tumor growth and enhances chemosensitivity in tongue squamous cell carcinoma through MAP2K7 targeting. Mol Biol Rep 2024; 51:1107. [PMID: 39476205 DOI: 10.1007/s11033-024-10040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/21/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND MicroRNAs (miRNAs), which are key players in cancer cell resistance to chemotherapy, notably target genes associated with drug resistance. While miRNA-128-3p is recognized for its involvement in various cancers, its specific role in tumorigenesis and cisplatin (CIS) resistance in tongue cancer remains unclear. Therefore, in the present study, we endeavoured to elucidate the significance of miR-128-3p in tongue squamous cell carcinoma (TSCC), shedding light on its intricate functions and underlying mechanisms. METHODS AND RESULTS We quantified the expression of miR-128-3p and its target genes using qRT-PCR, followed by a series of functional assays in vitro, such as proliferation and migration assays, flow cytometry analysis, and western blotting to unravel the mechanisms underlying the functions of miR-128-3p. Additionally, we validated the ability of miR-128-3p to target MAP2K7 genes through luciferase reporter assays. We observed that increased expression of miR-128-3p significantly inhibited TSCC cell migration, proliferation, and epithelial-mesenchymal transition (EMT), possibly by regulating MAP2K7 in the JNK/MAP kinase pathway through miRNA target binding. Furthermore, we showed that increased miR-128-3p levels enhanced the sensitivity of TSCC cells to CIS through the JNK/c-Jun cascade. We observed that miR-128-3p reduces the expression of c-Jun and ABC transporter genes by targeting MAP2K7, affecting JNK1/2. This inhibition possibly decreases drug efflux and thus enhances the TSCC sensitivity to CIS treatment. CONCLUSIONS Our findings demonstrate oncosuppressive behaviour of miR-128-3p, which also potentially enhances the sensitivity of TSCC cells to CIS by suppressing MAP2K7 and JNK1/2, leading to evasion of apoptosis.
Collapse
Affiliation(s)
- Pooja Gupta
- RNAi and Functional Genomics Lab, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
4
|
Jankovic M, Poon WWL, Gonzales-Losada C, Vazquez GG, Sharif-Askari B, Ding Y, Craplet-Desombre C, Ilie A, Shi J, Wang Y, Jayavelu AK, Orthwein A, Mercier FÉ. The E3 ubiquitin ligase Herc1 modulates the response to nucleoside analogs in acute myeloid leukemia. Blood Adv 2024; 8:5315-5329. [PMID: 39093953 PMCID: PMC11497402 DOI: 10.1182/bloodadvances.2023011540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 08/04/2024] Open
Abstract
ABSTRACT For several decades, induction therapy with nucleoside analogs, in particular cytarabine (Ara-C) and, to a lesser extent, fludarabine, has been the standard of care for patients diagnosed with acute myeloid leukemia (AML). However, the antitumor efficacy of nucleoside analogs is often limited by intrinsic and acquired drug resistance, thereby leading to poor therapeutic response and suboptimal clinical outcomes. In this study, we used genome-wide CRISPR-based pharmacogenomic screening to map the genetic factors that modulate the response to nucleoside analogs in AML and identified the E3 ubiquitin ligase, Herc1, as a key modulator of Ara-C response in mouse AML models driven by the KMT2A/MLLT3 fusion or by the constitutive coexpression of Hoxa9 and Meis1, both in vitro and in vivo. Loss of HERC1 enhanced nucleoside analog-induced cell death in both murine and human AML cell lines by compromising cell cycle progression. In-depth proteomic analysis and subsequent validation identified deoxycytidine kinase as a novel target of Herc1 in both mouse AML models. We observed that HERC1 is overexpressed in AML when compared with other cancer types and that higher HERC1 expression was associated with shorter overall survival in patients with AML in the The Cancer Gene Atlas program (TCGA) and BEAT-AML cohorts. Collectively, this study highlights the importance of HERC1 in the response of AML cells to nucleoside analogs, thereby establishing this E3 ubiquitin ligase as a novel predictive biomarker and potential therapeutic target for the treatment of AML.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Line, Tumor
- Cytarabine/pharmacology
- Cytarabine/therapeutic use
- Disease Models, Animal
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Nucleosides/pharmacology
- Nucleosides/therapeutic use
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
Collapse
Affiliation(s)
- Maja Jankovic
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Canada
| | - William W. L. Poon
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Canada
| | - Cristobal Gonzales-Losada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Canada
| | | | - Bahram Sharif-Askari
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
| | - Yi Ding
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China
| | | | - Alexandru Ilie
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
| | - Jiantao Shi
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China
| | - Yongjie Wang
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Hopp Children’s Cancer Center, University of Heidelberg, Heidelberg, Germany
| | - Ashok Kumar Jayavelu
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Hopp Children’s Cancer Center, University of Heidelberg, Heidelberg, Germany
| | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Canada
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - François Émile Mercier
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Canada
- Division of Hematology, Department of Medicine, McGill University, Montréal, Canada
| |
Collapse
|
5
|
Lee H, Lim W, Kweon J, Park J, Kim J, Bazer FW, Song G, Ham J. Resmethrin induces implantation failure by disrupting calcium homeostasis and forcing mitochondrial defects in porcine trophectoderm and uterine luminal epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176441. [PMID: 39307359 DOI: 10.1016/j.scitotenv.2024.176441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Resmethrin, a type I pyrethroid insecticide, is frequently used globally in residential and farmland areas to control pests. Owing to the repeated administration of resmethrin, and particularly because of its lipophilic nature, residues have been detected in various environments, crops, and livestock. Previous studies have shown the adverse effects of resmethrin, including neurotoxicity and hepatotoxicity. However, the toxic effects of resmethrin on the female reproductive system have rarely been investigated. In the present study, we used two cell types, porcine trophectoderm (pTr) and porcine uterine luminal epithelial (pLE) cells, to examine the toxic effects of resmethrin on implantation and its mechanisms. Our study showed that resmethrin exposure induced apoptosis and inhibited cell cycle progression, thereby reducing the viability of both cell types. In addition, calcium homeostasis was disrupted following resmethrin treatment, and disrupted calcium homeostasis impaired the mitochondrial membrane potential and mitochondrial respiration. In addition to mitochondrial dysfunction, GRP75 and ER stress-related proteins were upregulated. Furthermore, the AKT and MAPK cascades were altered, and reactive oxygen species production and inflammation occurred after resmethrin treatment. Ultimately, through various mechanisms, resmethrin decreased the migratory abilities, and it could diminish the crosstalk between the two cell lines and lower the probability of successful implantation. Overall, we demonstrated that resmethrin interfered with the implantation process by triggering various toxic mechanisms. This study presents, for the first time, evidence regarding the mechanisms through which resmethrin exerts toxic effects on the female reproductive system, thereby raising awareness regarding the potential implications of its widespread use.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junhun Kweon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jinyoung Kim
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Jiyeon Ham
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
6
|
Wang Q, Bacon BA, Taveras M, Phillippi MA, Wu X, Broustas CG, Shuryak I, Turner HC. Biomarkers for Radiation Biodosimetry and Correlation with Hematopoietic Injury in a Humanized Mouse Model. Radiat Res 2024; 202:541-551. [PMID: 39034036 DOI: 10.1667/rade-24-00049.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/25/2024] [Indexed: 07/23/2024]
Abstract
After a large-scale radiological or nuclear event, hundreds of thousands of people may be exposed to ionizing radiation and require subsequent medical management. Acute exposure to moderate doses (2-6 Gy) of radiation can lead to the hematopoietic acute radiation syndrome, in which the bone marrow (BM) is severely compromised, and severe hemorrhage and infection are common. Previously, we have developed a panel of intracellular protein markers (FDXR, ACTN1, DDB2, BAX, p53 and TSPYL2), designed to reconstruct absorbed radiation dose from human peripheral blood (PB) leukocyte samples in humanized mice up to 3 days after exposure. The objective of this work was to continue to use the humanized mouse model to evaluate biomarker dose-/time- kinetics in human PB leukocytes in vivo, at an earlier (day 2) and later (day 7) time point, after exposure to total-body irradiation (TBI) doses of 0 to 2 Gy of X rays. In addition, to assess hematological sensitivity and radiation-induced injury, PB leukocyte cell counts, human BM hematopoietic stem cell (HSC) and progenitor cell [multipotent progenitor (MPP), common myeloid progenitor (CMP), granulocyte myeloid progenitor (GMP), megakaryocyte/erythrocyte progenitor (MEP) and multi-lymphoid progenitor (MLP)] levels were measured, and their correlation was also examined as the BM damages are difficult to assess by routine tests. Peripheral blood B-cells were significantly lower after TBI doses of 0.5 Gy on day 2 and 2 Gy on days 2 and 7; T-cells were significantly reduced only on day 2 after 2 Gy TBI. Bone marrow HSCs and MPP cells showed a dose-dependent depletion after irradiation with 0.5 Gy and 2 Gy on day 2, and after 1 Gy and 2 Gy on day 7. Circulating B cells correlated with HSCs, MPP and MLP cells on day 2, whereas T cells correlated with MPP, and myeloid cells correlated with MLP cells. On day 7, B cells correlated with MPP, CMP, GMP and MEP, while myeloid cells correlated with CMP, GMP and MEP. The intracellular leukocyte biomarkers were able to discriminate unirradiated and irradiated samples at different time points calculated by receiver operating characteristic (ROC) curve. Using machine learning algorithm methods, combining ACTN1, p53, TSPYL2 and PB-T cell and PB-B cell counts served as a strong predictor (area under the ROC >0.8) to distinguish unirradiated and irradiated samples independent of the days after TBI. The results further validated our biomarker-based triage assay and additionally evaluated the radiation sensitivity of the hematopoietic system after TBI exposures.
Collapse
Affiliation(s)
- Qi Wang
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Bezalel A Bacon
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Maria Taveras
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Michelle A Phillippi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Xuefeng Wu
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Constantinos G Broustas
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| |
Collapse
|
7
|
Yu KH, Wu IT, Yu CP, Wang WC, Chi CH, Tsai KC, Chou CH, Hung CC, Hung HY. Discovery of oral chemotherapeutic reversal agents for treating multidrug resistance cancer. Eur J Pharmacol 2024; 977:176682. [PMID: 38823759 DOI: 10.1016/j.ejphar.2024.176682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
The major limitation of cancer treatment is multidrug resistance (MDR), which leads to the inactivation of chemotherapeutic drugs and greater than 90% mortality. To solve this ordeal, we applied ligand-based drug design and bioiosteric replacement strategy from an indazole to a pyrazole ring to discover compounds 27 and 43 with good potential for reversing drug resistance in combination with paclitaxel, and their reversal fold values were 53.2 and 51.0 at 5 μM, respectively, against an MDR cancer cell line (KBvin). Based on the PK profile results, we selected compound 43 with a longer half-life for mechanistic and animal experiments. Combination treatment with compound 43 and paclitaxel-induced apoptosis and enhanced subG1 by decreasing mitochondrial membrane potential in KBvin cells. In addition, 43 also inhibited P-gp function by interfering with ATPase activity. Meanwhile, cotreatment with compound 43 and paclitaxel significantly suppressed tumor growth (TGI = 55.5%) at a dose of 200 mg/kg (PO) in a xenograft model and showed no obvious liver or kidney toxicity by H&E staining. Overall, compound 43 may serve as a safe and effective oral resistance reversal chemotherapeutic agent.
Collapse
MESH Headings
- Humans
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Multiple/drug effects
- Animals
- Paclitaxel/pharmacology
- Paclitaxel/therapeutic use
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Cell Line, Tumor
- Administration, Oral
- Mice
- Xenograft Model Antitumor Assays
- Drug Discovery
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- Membrane Potential, Mitochondrial/drug effects
- Mice, Nude
Collapse
Affiliation(s)
- Ko-Hua Yu
- School of Pharmacy and Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - I-Ting Wu
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, 406, Taiwan
| | - Cheng-Ping Yu
- School of Pharmacy and Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei-Chun Wang
- School of Pharmacy and Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ching-Ho Chi
- School of Pharmacy and Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Keng-Chang Tsai
- Ministry of Health and Welfare, National Research Institute of Chinese Medicine, Taipei, 112, Taiwan
| | - Chen-Hsi Chou
- School of Pharmacy and Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Chin-Chuan Hung
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, 406, Taiwan; Department of Pharmacy, China Medical University Hospital, Taichung, 404, Taiwan; Department of Healthcare Administration, Asia University, Taichung, 500, Taiwan.
| | - Hsin-Yi Hung
- School of Pharmacy and Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
8
|
Hoch D, Majali-Martinez A, Bandres-Meriz J, Bachbauer M, Pöchlauer C, Kaudela T, Bankoglu EE, Stopper H, Glasner A, Hauguel-De Mouzon S, Gauster M, Tokic S, Desoye G. Obesity-associated non-oxidative genotoxic stress alters trophoblast turnover in human first-trimester placentas. Mol Hum Reprod 2024; 30:gaae027. [PMID: 39092995 PMCID: PMC11347397 DOI: 10.1093/molehr/gaae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Indexed: 08/04/2024] Open
Abstract
Placental growth is most rapid during the first trimester (FT) of pregnancy, making it vulnerable to metabolic and endocrine influences. Obesity, with its inflammatory and oxidative stress, can cause cellular damage. We hypothesized that maternal obesity increases DNA damage in the FT placenta, affecting DNA damage response and trophoblast turnover. Examining placental tissue from lean and obese non-smoking women (4-12 gestational weeks), we observed higher overall DNA damage in obesity (COMET assay). Specifically, DNA double-strand breaks were found in villous cytotrophoblasts (vCTB; semi-quantitative γH2AX immunostaining), while oxidative DNA modifications (8-hydroxydeoxyguanosine; FPG-COMET assay) were absent. Increased DNA damage in obese FT placentas did not correlate with enhanced DNA damage sensing and repair. Indeed, obesity led to reduced expression of multiple DNA repair genes (mRNA array), which were further shown to be influenced by inflammation through in vitro experiments using tumor necrosis factor-α treatment on FT chorionic villous explants. Tissue changes included elevated vCTB apoptosis (TUNEL assay; caspase-cleaved cytokeratin 18), but unchanged senescence (p16) and reduced proliferation (Ki67) of vCTB, the main driver of FT placental growth. Overall, obesity is linked to heightened non-oxidative DNA damage in FT placentas, negatively affecting trophoblast growth and potentially leading to temporary reduction in early fetal growth.
Collapse
Affiliation(s)
- Denise Hoch
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Alejandro Majali-Martinez
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
- Departamento de Medicina, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, Madrid, Spain
| | - Julia Bandres-Meriz
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Martina Bachbauer
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Caroline Pöchlauer
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Theresa Kaudela
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | | | | | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Silvija Tokic
- Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Medical University of Graz, Graz, Austria
| | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
9
|
Phongsuwichetsak C, Suksrichavalit T, Chatupheeraphat C, Eiamphungporn W, Yainoy S, Yamkamon V. Diospyros rhodocalyx Kurz induces mitochondrial-mediated apoptosis via BAX, Bcl-2, and caspase-3 pathways in LNCaP human prostate cancer cell line. PeerJ 2024; 12:e17637. [PMID: 38966207 PMCID: PMC11223595 DOI: 10.7717/peerj.17637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Background Prostate cancer (PCa) is one of the causes of death in men worldwide. Although treatment strategies have been developed, the recurrence of the disease and consequential side effects remain an essential concern. Diospyros rhodocalyx Kurz, a traditional Thai medicine, exhibits diverse therapeutic properties, including anti-cancer activity. However, its anti-cancer activity against prostate cancer has not been thoroughly explored. This study aims to evaluate the anti-cancer activity and underlying mechanisms of the ethyl acetate extract of D. rhodocalyx Kurz (EADR) related to apoptosis induction in the LNCaP human prostate cancer cell line. Methods Ethyl acetate was employed to extract the dried bark of D. rhodocalyx Kurz. The cytotoxicity of EADR on both LNCaP and WPMY-1 cells (normal human prostatic myofibroblast cell line) was evaluated using MTS assay. The effect of EADR on the cell cycle, apoptosis induction, and alteration in mitochondrial membrane potential (MMP) was assessed by the staining with propidium iodide (PI), Annexin V-FITC/PI, and JC-1 dye, respectively. Subsequent analysis was conducted using flow cytometry. The expression of cleaved caspase-3, BAX, and Bcl-2 was examined by Western blotting. The phytochemical profiling of the EADR was performed using gas chromatography-mass spectrometry (GC-MS). Results EADR exhibited a dose-dependent manner cytotoxic effect on LNCaP cells, with IC50 values of 15.43 and 12.35 µg/mL after 24 and 48 h, respectively. Although it also exhibited a cytotoxic effect on WPMY-1 cells, the effect was comparatively lower, with the IC50 values of 34.61 and 19.93 µg/mL after 24 and 48 h of exposure, respectively. Cell cycle analysis demonstrated that EADR did not induce cell cycle arrest in either LNCaP or WPMY-1 cells. However, it significantly increased the sub-G1 population in LNCaP cells, indicating a potential induction of apoptosis. The Annexin V-FITC/PI staining indicated that EADR significantly induced apoptosis in LNCaP cells. Subsequent investigation into the underlying mechanism of EADR-induced apoptosis revealed a reduction in MMP as evidenced by JC-1 staining. Moreover, Western blotting demonstrated that EADR treatment resulted in the upregulation of BAX, downregulation of BCL-2, and elevation of caspase-3 cleavage in LNCaP cells. Notably, the epilupeol was a prominent compound in EADR as identified by GC-MS. Conclusion The EADR exhibits anti-cancer activity against the LNCaP human prostate cancer cell line by inducing cytotoxicity and apoptosis. Our findings suggest that EADR promotes apoptosis by upregulating pro-apoptotic BAX, whereas downregulation of anti-apoptotic Bcl-2 results in the reduction of MMP and the activation of caspase-3. Of particular interest is the presence of epilupeol, a major compound identified in EADR, which may hold promise as a candidate for the development of therapeutic agents for prostate cancer.
Collapse
Affiliation(s)
- Chayisara Phongsuwichetsak
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Thummaruk Suksrichavalit
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Chawalit Chatupheeraphat
- Center for Research Innovation and Biomedical Information, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Vichanan Yamkamon
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
10
|
Yamaguchi T. Atrial structural remodeling and atrial fibrillation substrate: A histopathological perspective. J Cardiol 2024:S0914-5087(24)00096-0. [PMID: 38810728 DOI: 10.1016/j.jjcc.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Atrial fibrillation (AF) substrate progresses with the advancement of atrial structural remodeling, resulting in AF perpetuation and recurrence. Although fibrosis is considered a hallmark of atrial structural remodeling, the histological background has not been fully elucidated because obtaining atrial specimens is difficult, especially in patients not undergoing open-heart surgery. Bipolar voltage reduction evaluated using electroanatomic mapping during AF ablation is considered a surrogate marker for the progression of structural remodeling; however, histological validation is lacking. We developed an intracardiac echocardiography-guided endomyocardial atrial biopsy technique to evaluate atrial structural remodeling in patients undergoing catheter ablation for nonvalvular AF. The histological factors associated with a decrease in bipolar voltage were interstitial fibrosis, as well as an increase in myocardial intercellular space preceding fibrosis, myofibrillar loss, and a decrease in cardiomyocyte nuclear density, which is a surrogate marker for cardiomyocyte density. Cardiomyocyte hypertrophy is closely associated with a decrease in cardiomyocyte nuclear density, suggesting that hypertrophic changes compensate for cardiomyocyte loss. Electron microscopy also revealed that increased intercellular spaces indicated the leakage of plasma components owing to increased vascular permeability. Additionally, amyloid deposition was observed in 4 % of biopsy cases. Only increased intercellular space and interstitial fibrosis were significantly higher for long-standing persistent AF than for paroxysmal AF and associated with recurrence after AF ablation, suggesting that this interstitial remodeling is the AF substrate. An increase in intercellular space that occurs early in AF formation is a therapeutic target for the AF substrate, which prevents irreversible interstitial degeneration due to collagen accumulation. This endomyocardial atrial biopsy technique will allow the collection of atrial tissue from a wide variety of patients and significantly facilitate the elucidation of the mechanisms of atrial cardiomyopathy, structural remodeling, and AF substrates.
Collapse
|
11
|
León NY, Le TNU, Garvie A, Wong LH, Bagheri-Fam S, Harley VR. Y chromosome damage underlies testicular abnormalities in ATR-X syndrome. iScience 2024; 27:109629. [PMID: 38616920 PMCID: PMC11015497 DOI: 10.1016/j.isci.2024.109629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/27/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
ATR-X (alpha thalassemia, mental retardation, X-linked) syndrome features genital and testicular abnormalities including atypical genitalia and small testes with few seminiferous tubules. Our mouse model recapitulated the testicular defects when Atrx was deleted in Sertoli cells (ScAtrxKO) which displayed G2/M arrest and apoptosis. Here, we investigated the mechanisms underlying these defects. In control mice, Sertoli cells contain a single novel "GATA4 PML nuclear body (NB)" that contained the transcription factor GATA4, ATRX, DAXX, HP1α, and PH3 and co-localized with the Y chromosome short arm (Yp). ScAtrxKO mice contain single giant GATA4 PML-NBs with frequent DNA double-strand breaks (DSBs) in G2/M-arrested apoptotic Sertoli cells. HP1α and PH3 were absent from giant GATA4 PML-NBs indicating a failure in heterochromatin formation and chromosome condensation. Our data suggest that ATRX protects a Yp region from DNA damage, thereby preventing Sertoli cell death. We discuss Y chromosome damage/decondensation as a mechanism for testicular failure.
Collapse
Affiliation(s)
- Nayla Y. León
- Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Melbourne, VIC 3168, Australia
| | - Thanh Nha Uyen Le
- Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Melbourne, VIC 3168, Australia
| | - Andrew Garvie
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Lee H. Wong
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Stefan Bagheri-Fam
- Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Melbourne, VIC 3168, Australia
| | - Vincent R. Harley
- Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Melbourne, VIC 3168, Australia
| |
Collapse
|
12
|
Chien TM, Yang CW, Yen CH, Yeh BW, Wu WJ, Sheu JH, Chang HW. Excavatolide C/cisplatin combination induces antiproliferation and drives apoptosis and DNA damage in bladder cancer cells. Arch Toxicol 2024; 98:1543-1560. [PMID: 38424264 DOI: 10.1007/s00204-024-03699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Excavatolide C (EXCC), a marine coral-derived compound, exhibits an antiproliferation effect on bladder cancer cells. The present study evaluated the improvement in the antiproliferation ability of EXCC by co-treatment with cisplatin in bladder cancer cells. EXCC/cisplatin (12.5 and 1 μg/mL) showed higher antiproliferation effects on bladder cancer cells than single treatments (EXCC or cisplatin alone) in the 48 h ATP assay. EXCC/cisplatin also enhanced the increase in subG1, annexin V-mediated apoptosis, and activation of poly (ADP-ribose) polymerase (PARP) and several caspases (caspases 3, 8, and 9) compared to the single treatments. Cellular and mitochondrial oxidative stress was enhanced with EXCC/cisplatin compared to the single treatments according to analyses of reactive oxygen species (ROS), mitochondrial superoxide, and mitochondrial membrane potential; in addition, cellular antioxidants, such as glutathione (GSH), and the mRNA expressions of antioxidant signaling genes (catalase and NFE2-like bZIP transcription factor 2) were downregulated. EXCC/cisplatin treatment produced more DNA damage than the single treatments, as indicated by γH2AX and 8-hydroxy-2'-deoxyguanosine levels. Moreover, several DNA repair genes for homologous recombination (HR) and non-homologous end joining (NHEJ) were downregulated in EXCC/cisplatin compared to others. The addition of the GSH precursor N-acetylcysteine, which has ROS scavenging activity, attenuated all EXCC/cisplatin-induced changes. Notably, EXCC/cisplatin showed lower antiproliferation, apoptosis, ROS induction, GSH depletion, and γH2AX DNA damage in normal cells than in bladder cancer cells. Therefore, the co-treatment of EXCC/cisplatin reduces the proliferation of bladder cancer cells via oxidative stress-mediated mechanisms with normal cell safety.
Collapse
Affiliation(s)
- Tsu-Ming Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Che-Wei Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Bi-Wen Yeh
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Wen-Jeng Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| | - Hsueh-Wei Chang
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
13
|
Sedky NK, Mahdy NK, Abdel-Kader NM, Abdelhady MMM, Maged M, Allam AL, Alfaifi MY, Shamma SN, Hassan HAFM, Fahmy SA. Facile sonochemically-assisted bioengineering of titanium dioxide nanoparticles and deciphering their potential in treating breast and lung cancers: biological, molecular, and computational-based investigations. RSC Adv 2024; 14:8583-8601. [PMID: 38487521 PMCID: PMC10938292 DOI: 10.1039/d3ra08908h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/07/2024] [Indexed: 03/17/2024] Open
Abstract
Combining sonochemistry with phytochemistry is a modern trend in the biosynthesis of metallic nanoparticles (NPs), which contributes to the sustainability of chemical processes and minimizes hazardous effects. Herein, titanium dioxide (TiO2) NPs were bioengineered using a novel and facile ultrasound-assisted approach utilizing the greenly extracted essential oil of Ocimum basilicum. FTIR and UV-Vis spectrophotometry were used to confirm the formation of TiO2 NPs. The X-ray diffraction (XRD) analysis showed the crystalline nature of TiO2 NPs. TEM analysis revealed the spherical morphology of the NPs with sizes ranging from 5.55 to 13.89 nm. Energy-dispersive X-ray (EDX) confirmed the purity of the greenly synthesized NPs. TiO2 NPs demonstrated outstanding antitumor activity against breast (MCF-7) and lung (A-549) cancer cells with estimated IC50 values of 1.73 and 4.79 μg mL-1. The TiO2 NPs were cytocompatible to normal cells (MCF-10A) with a selectivity index (SI) of 8.77 for breast and 3.17 for lung cancer. Biological assays revealed a promising potential for TiO2 NPs to induce apoptosis and arrest cells at the sub-G1 phase of the cell cycle phase in both cancer cell lines. Molecular investigations showed the ability of TiO2 NPs to increase apoptotic genes' expression (Bak and Bax) and their profound ability to elevate the expression of apoptotic proteins (caspases 3 and 7). Molecular docking demonstrated strong binding interactions for TiO2 NPs with caspase 3 and EGFR-TK targets. In conclusion, the greenly synthesized TiO2 NPs exhibited potent antitumor activity and mitochondrion-based cell death against breast and lung cancer cell lines while maintaining cytocompatibility against normal cells.
Collapse
Affiliation(s)
- Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo 11835 Egypt
| | - Noha Khalil Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Nour M Abdel-Kader
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo 11835 Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| | - Manal M M Abdelhady
- Clinical Pharmacy Department, Faculty of Pharmacy, Badr University Cairo 11829 Egypt
| | - Mohamad Maged
- Faculty of Biotechnology, Nile University Giza Egypt
| | - Aya L Allam
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation New Administrative Capital Egypt
| | - Mohammad Y Alfaifi
- King Khalid University, Faculty of Science, Biology Department Abha 9004 Saudi Arabia
| | - Samir N Shamma
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P.O. Box 74 New Cairo 11835 Egypt
| | - Hatem A F M Hassan
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation New Administrative Capital Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University 11562 Cairo Egypt
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt +20-1222613344
| |
Collapse
|
14
|
Hong T, Park S, An G, Bazer FW, Song G, Lim W. Norflurazon causes cell death and inhibits implantation-related genes in porcine trophectoderm and uterine luminal epithelial cells. Food Chem Toxicol 2024; 186:114559. [PMID: 38432436 DOI: 10.1016/j.fct.2024.114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Norflurazon, an inhibitor of carotenoid synthesis, is a pre-emergent herbicide that prevents growth of weeds. The norflurazon is known to hamper embryo development in non-mammals. However, specific toxic effects of norflurazon on mammalian maternal and fetal cells have not been elucidated. Thus, the hypothesis of this study is that norflurazon may influence the toxic effects between maternal and fetal cells during early pregnancy in pigs. We aimed to examine the toxic effects of norflurazon in porcine trophectoderm (Tr) and uterine luminal epithelium (LE) cells. Norflurazon, administered at 0, 20, 50 or 100 μM for 48 h was used to determine its effects on cell proliferation and cell-cycle arrest. For both uterine LE and Tr cell lines, norflurazone caused mitochondrial dysfunction by inhibiting mitochondrial respiration and ATP production, and down-regulated expression of mRNAs of mitochondrial complex genes. Norflurazon increased cell death by increasing intracellular calcium and regulating PI3K and MAPK cell signaling pathways, as well as endoplasmic reticulum (ER) stress, ER-mitochondrial contact, and autophagy-related target proteins. Norflurazone also inhibited expression of genes required for implantation of blastocysts, including SMAD2, SMAD4, and SPP1. These findings indicate that norflurazon may induce implantation failure in pigs and other mammals through adverse effects on both Tr and uterine LE cells.
Collapse
Affiliation(s)
- Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju-si, Gyeongnam, 52725, Republic of Korea
| | - Garam An
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
15
|
Yadav AK, Wang S, Shin YM, Jang BC. PHA-665752's Antigrowth and Proapoptotic Effects on HSC-3 Human Oral Cancer Cells. Int J Mol Sci 2024; 25:2871. [PMID: 38474118 DOI: 10.3390/ijms25052871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
c-Met is a tyrosine-kinase receptor, and its aberrant activation plays critical roles in tumorigenesis, invasion, and metastatic spread in many human tumors. PHA-665752 (PHA) is an inhibitor of c-Met and has antitumor effects on many hematological malignancies and solid cancers. However, the activation and expression of c-Met and its role and the antitumor effect of PHA on human oral squamous cell carcinoma (OSCC) cells remain unclear. Here, we investigated the activation and expression of c-Met and the effects of PHA on the growth of a highly tumorigenic HSC-3 human OSCC cell line with high c-Met phosphorylation and expression. Of note, c-Met was highly expressed and phosphorylated on Y1234/1235 in HSC-3 cells, and PHA treatment significantly suppressed the growth and induced apoptosis of these cells. Moreover, PHA that inhibited the phosphorylation (activation) of c-Met further caused the reduced phosphorylation and expression levels of Src, protein kinase B (PKB), mammalian target of rapamycin (mTtor), and myeloid cell leukemia-1 (Mcl-1) in HSC-3 cells. In addition, the antiangiogenic property of PHA in HSC-3 cells was shown, as evidenced by the drug's suppressive effect on the expression of hypoxia-inducible factor-1α (HIF-1α), a critical tumor angiogenic transcription factor. Importantly, genetic ablation of c-Met caused the reduced growth of HSC-3 cells and decreased Src phosphorylation and HIF-1α expression. Together, these results demonstrate that c-Met is highly activated in HSC-3 human oral cancer cells, and PHA exhibits strong antigrowth, proapoptotic, and antiangiogenic effects on these cells, which are mediated through regulation of the phosphorylation and expression of multiple targets, including c-Met, Src, PKB, mTOR, Mcl-1, and HIF-1α.
Collapse
Affiliation(s)
- Anil Kumar Yadav
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
- The Hormel Institute, University of Minnesota, Austin, MN 55455, USA
| | - Saini Wang
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Young-Min Shin
- Department of Dentistry, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
| |
Collapse
|
16
|
Chelladurai M, Xu D, Izraely S, Ben-Menachem S, Bengaiev R, Sagi-Assif O, Yuan W, Pasmanik Chor M, Hoon DS, Lu W, Witz IP. A heterodimer of α and β hemoglobin chains functions as an innate anticancer agent. Int J Cancer 2024; 154:561-572. [PMID: 37675956 DOI: 10.1002/ijc.34702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 09/08/2023]
Abstract
Metastatic (as well as tumor) microenvironments contain both cancer-promoting and cancer-restraining factors. The balance between these opposing forces determines the fate of cancer cells that disseminate to secondary organ sites. In search for microenvironmental drivers or inhibitors of metastasis, we identified, in a previous study, the beta subunit of hemoglobin (HBB) as a lung-derived antimetastatic factor. In the present study, exploring mechanisms regulating melanoma brain metastasis, we discovered that brain-derived factors restrain proliferation and induce apoptosis and necrosis of brain-metastasizing melanoma cells. Employing various purification procedures, we identified a heterodimer composed of hemoglobin alpha and beta chains that perform these antimetastatic functions. Neither the alpha nor the beta subunit alone was inhibitory. An alpha/beta chain dimer chemically purified from human hemoglobin inhibited the cell viability of primary melanomas, melanoma brain metastasis (MBM), and breast cancer cell lines. The dimer-induced DNA damage, cell cycle arrest at the SubG1 phase, apoptosis, and significant necrosis in four MBM cell lines. Proteomic analysis of dimer-treated MBM cells revealed that the dimer downregulates the expression of BRD4, GAB2, and IRS2 proteins, playing crucial roles in cancer cell sustainability and progression. Thus, we hypothesize that the hemoglobin dimer functions as a resistance factor against brain-metastasizing cancer cells.
Collapse
Affiliation(s)
- Maharrish Chelladurai
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Dan Xu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Ben-Menachem
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Roman Bengaiev
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Orit Sagi-Assif
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Weirong Yuan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Metsada Pasmanik Chor
- Bioinformatics Unit, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel-Aviv, Israel
| | - Dave S Hoon
- Department of Translational Molecular Medicine and Sequencing Center, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, California, USA
| | - Wuyuan Lu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Isaac P Witz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Park HJ, Park SH. The Ethanolic Extract of Dictyopteris Divaricata Induces Apoptosis in Non-Small Cell Lung Cancer Cells by Inhibiting STAT3 Activity. Nutr Cancer 2024; 76:305-315. [PMID: 38185896 DOI: 10.1080/01635581.2024.2301795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
Dictyopteris divaricata (DD) has been reported to exert diverse pharmacological activities, including anti-inflammatory, antioxidant, and anticancer effects. In this study, we aimed to investigate the anticancer potential of the ethanolic extract of DD (EDD) in non-small cell lung cancer (NSCLC) cells and to explore the underlying mechanism. EDD significantly suppressed cell proliferation in H1299, PC9, and H1975 NSCLC cells. EDD treatment increased the proportion of Annexin V-positive cells and cells in sub-G1 phase, indicating the induction of apoptosis. This observation was further supported by the presence of fragmented nuclei and increased expression of cleaved PARP and cleaved caspase-3 in NSCLC cells following EDD treatment. Mechanistically, EDD decreased the phosphorylation levels of signal transducer and activator of transcription 3 (STAT3) and Src. Transfection of constitutively activated STAT3 into H1975 cells partially attenuated EDD-induced apoptosis, highlighting the contribution of STAT3 inhibition to the anticancer activity of EDD. In addition, we identified fucosterol as a major constituent of EDD that exhibited similar anticancer potential in NSCLC cells. Taken together, our results demonstrate that EDD induces apoptosis in NSCLC cells by inhibiting STAT3 activity. We propose EDD as a potential candidate for the development of therapies targeting NSCLC.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| |
Collapse
|
18
|
Baz J, Khoury A, Elias MG, Mansour N, Mehanna S, Hammoud O, Gordon CP, Taleb RI, Aldrich-Wright JR, Daher CF. Enhanced potency of a chloro-substituted polyaromatic platinum(II) complex and its platinum(IV) prodrug against lung cancer. Chem Biol Interact 2024; 388:110834. [PMID: 38103879 DOI: 10.1016/j.cbi.2023.110834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The present study investigates the anti-neoplastic activity of a platinum (II) complex, Pt(II)5ClSS, and its platinum (IV) di-hydroxido analogue, Pt(IV)5ClSS, against mesenchymal cells (MCs), lung (A549), melanoma (A375) and breast (MDA-MB-231) cancer cells. Both complexes exhibited up to 14-fold improved cytotoxicity compared to cisplatin. NMR was used to determine that ∼25 % of Pt(IV)5ClSS was reduced to Pt(II)5ClSS in the presence of GSH (Glutathione) after 72 h. The complex 1H NMR spectra acquired for Pt(II)5ClSS with GSH shows evidence of degradation and environmental effects (∼30 %). The prominence of the 195Pt peak at ∼ -2800 ppm suggests that a significant amount of Pt(II)5ClSS remained in the mixture. Pt(II)5ClSS and Pt(IV)5ClSS have shown exceptional selectivity to cancer cells in comparison to MCs (IC50 > 150 μM). Western blot analysis of Pt(II)5ClSS and Pt(IV)5ClSS on A549 cells revealed significant upregulation of cleaved PARP-1, BAX/Bcl2 ratio, cleaved caspase 3 and cytochrome thus suggesting apoptosis was induced through the intrinsic pathway. Flow cytometry also revealed significant cell death by apoptosis. Treatment with Pt(II)5ClSS and Pt(IV)5ClSS also showed significant amounts of free radical production while the COMET assay showed that both complexes cause minimal DNA damage. Cellular uptake results via ICP-MS suggest a time-dependent active mode of transport for both complexes with Pt(II)5ClSS being transported at a higher rate compared to Pt(IV)5ClSS. A Dose Escalation Study carried out on BALB/c mice showed that Pt(II)5ClSS and Pt(IV)5ClSS were approximately 8- folds and 12.5-folds, respectively, more tolerated than cisplatin. The present study provides evidence that both complexes may have the characteristics of an efficient and potentially safe anti-tumor drug that could support NSCLC treatment.
Collapse
Affiliation(s)
- Joy Baz
- School of Arts and Sciences, Natural Sciences Department, Lebanese American University, Byblos, Mount Lebanon, Lebanon
| | - Aleen Khoury
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South, 2751, NSW, Australia
| | - Maria George Elias
- School of Arts and Sciences, Natural Sciences Department, Lebanese American University, Byblos, Mount Lebanon, Lebanon; School of Science, Western Sydney University, Locked Bag 1797, Penrith South, 2751, NSW, Australia
| | - Najwa Mansour
- School of Arts and Sciences, Natural Sciences Department, Lebanese American University, Byblos, Mount Lebanon, Lebanon
| | - Stephanie Mehanna
- School of Arts and Sciences, Natural Sciences Department, Lebanese American University, Byblos, Mount Lebanon, Lebanon
| | - Omar Hammoud
- School of Arts and Sciences, Natural Sciences Department, Lebanese American University, Byblos, Mount Lebanon, Lebanon
| | - Christopher P Gordon
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South, 2751, NSW, Australia
| | - Robin I Taleb
- School of Arts and Sciences, Natural Sciences Department, Lebanese American University, Byblos, Mount Lebanon, Lebanon
| | - Janice R Aldrich-Wright
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South, 2751, NSW, Australia.
| | - Costantine F Daher
- School of Arts and Sciences, Natural Sciences Department, Lebanese American University, Byblos, Mount Lebanon, Lebanon.
| |
Collapse
|
19
|
Novitasari D, Nakamae I, Istighfari Jenie R, Yoneda-Kato N, Kato JY, Meiyanto E. Pentagamavunone-1 inhibits aggressive breast cancer cell proliferation through mitotic catastrophe and ROS-mediated activities: in vitro and in vivo studies. Saudi Pharm J 2024; 32:101892. [PMID: 38146327 PMCID: PMC10749286 DOI: 10.1016/j.jsps.2023.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023] Open
Abstract
Pentagamavunone-1 (PGV-1), an analog of curcumin, has been studied for its cytotoxic effects in 4T1, MCF7, MCF7/HER2, and T47D breast cancer cells. Its antiproliferative effect is partly mediated through G2/M arrest; however, its molecular mechanism during cell cycle progression remains unknown. In this study, we aimed to determine whether PGV-1 has any anticancer effects on highly aggressive breast cancer cells, with a focus on cell cycle regulatory activity, reactive oxygen species (ROS) generation, and their mediated effects on cancer cells. MDA-MB-231 (triple-negative) and HCC1954 (overexpressed HER2) immortalized human breast cancer cells were used in the study. PGV-1 exhibited cytotoxic activity with an irreversible antiproliferative impact on treated cells and had good selectivity when tested in fibroblast cells. Oral PGV-1 administration suppressed tumor growth in a cell-derived xenograft mouse model. PGV-1 induced the phosphorylation of Aurora A kinase and PLK1 in MDA-MB-231 cells, while PLK1 and cyclin B1 phosphorylation were enhanced in the PGV-1-treated HCC1954 cells during prometaphase arrest. Intracellular ROS production was substantially higher upon PGV-1 treatment following mitotic arrest, and this activity caused impairment of mitochondrial respiration, induced senescence, and subsequently triggered early-to-late apoptosis. Collectively, these results suggest that the molecular mechanism of PGV-1 involves the regulation of mitotic kinases to cause cell cycle arrest and the enhancement of ROS production to impair mitochondrial activity and induce cellular senescence. The therapeutic activities demonstrated by PGV-1 in this study show its potential as an appealing candidate for chemotherapy in breast cancer treatment.
Collapse
Affiliation(s)
- Dhania Novitasari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Ikuko Nakamae
- Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Riris Istighfari Jenie
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Noriko Yoneda-Kato
- Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Jun-ya Kato
- Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
20
|
Nakao IA, Almeida TC, Cardoso Reis AC, Coutinho GG, Hermenegildo AM, Cordeiro CF, da Silva GN, Dias DF, Brandão GC, Pinto Braga SF, de Souza TB. Discovery of a new dihydroeugenol-chalcone hybrid with cytotoxic and anti-migratory potential: A dual-action hit for cancer therapeutics. Bioorg Med Chem 2023; 96:117516. [PMID: 37944413 DOI: 10.1016/j.bmc.2023.117516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Cancer still represents a serious public health problem and one of the main problems related to the worsening of this disease is the ability of some tumors to develop metastasis. In this work, we synthesized a new series of chalcones and isoxazoles derived from eugenol and analogues as molecular hybrids and these compounds were evaluated against different tumor cell lines. This structural pattern was designed considering the cytotoxic potential already known for eugenol, chalcones and isoxazoles. Notably, chalcones 7, 9, 10, and 11 displayed significant activity (4.2-14.5 µM) against two cancer cell lines, surpassing the potency of the control drug doxorubicin. The reaction of chalcones with hydroxylamine hydrochloride provided the corresponding isoxazoles that were inactive against these cancer cells. The dihydroeugenol chalcone 7 showed the most promising results, demonstrating higher potency against HepG2 (CC50: 4.2 µM) and TOV-21G (CC50: 7.2 µM). Chalcone 7 was also three times less toxic than doxorubicin considering HepG2 cells, with a selectivity index greater than 11. Further investigations including clonogenic survival, cell cycle progression and cell migration assays confirmed the compelling antitumoral potential of chalcone 7, as it reduced long-term survival due to DNA fragmentation, inducing cell death and inhibiting HepG2 cells migration. Moreover, in silico studies involving docking and molecular dynamics revealed a consistent binding mode of chalcone 7 with metalloproteinases, particularly MMP-9, shedding light on its potential mechanism of action related to anti-migratory effects. These significant findings suggest the inclusion of compound 7 as a promising candidate for future studies in the field of cancer therapeutics.
Collapse
Affiliation(s)
- Izadora Amaral Nakao
- School of Pharmacy - Federal University of Ouro Preto, 35400-000 Ouro Preto, MG, Brazil
| | - Tamires Cunha Almeida
- School of Pharmacy - Federal University of Ouro Preto, 35400-000 Ouro Preto, MG, Brazil
| | | | | | | | | | | | | | - Geraldo Célio Brandão
- School of Pharmacy - Federal University of Ouro Preto, 35400-000 Ouro Preto, MG, Brazil
| | | | | |
Collapse
|
21
|
Jones MA, Borun A, Greensmith DJ. Boswellia carterii oleoresin extracts induce caspase-mediated apoptosis and G 1 cell cycle arrest in human leukaemia subtypes. Front Pharmacol 2023; 14:1282239. [PMID: 38155908 PMCID: PMC10752984 DOI: 10.3389/fphar.2023.1282239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
Background: Leukemias are a common cancer in adults and children. While existing treatments are effective, they are associated with severe side-effects compounded by the emergence of drug resistance. This necessitates the need to develop new drugs and phytopharmaceuticals offer a largely untapped source. Oleoresins produced by plants in the genus Boswellia have been used for centuries in traditional medicine and recent work suggests they may exhibit anti-cancer activity. However, the underlying mechanisms remain unclear and most existing research focusses on Boswellia serrata; just one of many species in the Boswellia genus. To address these limitations, we elucidated the anti-cancer potential and associated mechanisms of action of Boswellia carterii. Methods: A methanolic solvent extraction method was optimised. The effect of methanolic extracts of B. carterii on leukaemia (K562, MOLT-4 and CCRF-CEM) and normal (PBMC) cell line viability was assessed using MTT assay and flow cytometry. Cell morphology, apoptosis (Annexin-V/propidium iodide), mitochondrial membrane potential (Rhodamine-123) and the cell cycle (propidium iodide) were evaluated using flow cytometry. Regulatory protein expression was quantified using Western Blot. Results: Methanolic extracts of B. carterii oleoresin reduced the viability of K562, MOLT-4 and CCRF-CEM cell lines with selectivity indexes of between 1.75 and 2.68. Extracts increased the proportion of cells in late apoptosis by 285.4% ± 51.6%. Mitochondrial membrane potential was decreased by 41% ± 2% and the expression of cleaved caspase-3, -7, and -9 was increased by 5.7, 3.3, and 1.5-fold respectively. Extracts increased the proportion of cells in subG1 and G1 phase by 867.8% ± 122.9% and 14.0 ± 5.5 and decreased those in S phase and G2/M by 63.4% ± 2.0% and 57.6% ± 5.3%. Expression of CDK2, CDK6, cyclin D1, and cyclin D3 were decreased by 2.8, 4.9, 3.9, and 2.5-fold. Conclusion: We are the first to report that methanolic extracts of B. carterii are selectively cytotoxic against three leukemia cell lines. Cytotoxic mechanisms likely include activation of the intrinsic apoptotic pathway and cell cycle arrest through downregulation of CDK2, CDK6, cyclin D1, and cyclin D3. Our findings suggest that B. carterii may be an important source of novel chemotherapeutic drugs and justifies further investigation.
Collapse
Affiliation(s)
| | | | - David James Greensmith
- Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| |
Collapse
|
22
|
Sarkar S, Kar A, Shaw P, DasGupta B, Keithellakpam OS, Mukherjee PK, Bhardwaj PK, Sharma N, Haldar PK, Sinha S. Hydroalcoholic root extracts of Houttuynia cordata (Thunb.) standardized by UPLC-Q-TOF-MS/MS promotes apoptosis in human hepatocarcinoma cell HepG2 via GSK-3β/β-catenin/PDL-1 axis. Fitoterapia 2023; 171:105684. [PMID: 37751799 DOI: 10.1016/j.fitote.2023.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
Houttuynia cordata (Thunb.), an important medicinal plant of Northeast India, Korea, and China, is used to treat various ailments and for anticancer research. Knowing its traditional practices, we are interested in the mode-of-action of HCT on HepG2 to co-relate the traditional practice with modern drug therapeutics. UPLC-Q-ToF-Ms analysis of HCT reveals identification of 14 metabolites. Network pharmacology analysis of the 14 compounds showed interaction with 232 different targets with their potential involvement in hepatocellular carcinoma. Whole extracts impart cytotoxicity on variety of cell lines including HepG2. There was a significant morphological alteration in treated HepG2 cells due to impairment of cytoskeletal components like β and γ- tubulin. Arrest at G1-S checkpoint was clearly indicated downregulation of Cyclin D1. The root extracts actuated apoptosis in HepG2 as evident from altered mitochondrial membrane potential, Annexin V- FITC, BrdU-PI, AO/EtBr assays, and modulations of apoptotic protein expression but without ROS generation. Whole extracts caused abrogation of epithelial to mesenchymal transition with repression of Snail, N-Cadherin, Vimentin, MMP-9, and upregulation of Pan-Cadherin. Pathway analysis found GSK-3β in Wnt/β-Catenin signaling cascade to be involved through Hepatocellular carcinoma (hsa05225) pathway. The GSK-3β/β-Catenin/PDL-1 signaling was found to be inhibited with the downregulation of pathway components. This was further confirmed by application of EGF, an inducer of the GSK-3β/β-Catenin pathway that neutralized the effect of Houttuynia cordata (Thunb.) root extract on the said pathway. Network pharmacology analysis also confirms the synergy network with botanical-bioactive-target-disease which showed Kaempferol to have the highest degree of association with the said pathway.
Collapse
Affiliation(s)
- Sudipta Sarkar
- Indian Association for the Cultivation of Science, School of Applied and Interdisciplinary Sciences, Kolkata 700032, India
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India
| | - Pallab Shaw
- Indian Association for the Cultivation of Science, School of Applied and Interdisciplinary Sciences, Kolkata 700032, India
| | - Barun DasGupta
- School of Natural Product Studies, Jadavpur University, Kolkata 700032, INDIA
| | - Ojit Singh Keithellakpam
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India
| | - Pulok Kumar Mukherjee
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India.
| | - Pardeep K Bhardwaj
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India
| | - Pallab K Haldar
- School of Natural Product Studies, Jadavpur University, Kolkata 700032, INDIA
| | - Surajit Sinha
- Indian Association for the Cultivation of Science, School of Applied and Interdisciplinary Sciences, Kolkata 700032, India.
| |
Collapse
|
23
|
Sung E, Park J, Lee H, Song G, Lim W. Bifenthrin induces cell death in bovine mammary epithelial cells via ROS generation, calcium ion homeostasis disruption, and MAPK signaling cascade alteration. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105637. [PMID: 37945236 DOI: 10.1016/j.pestbp.2023.105637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023]
Abstract
Bifenthrin is one of the widely used synthetic pyrethroid insecticides, employed for various purposes worldwide. As lipophilic pyrethroids can easily bind to soil particles, which is why their residues are detected in various environments. Consequently, the toxicity of bifenthrin to non-target organisms can be regarded as an environmental concern. The toxic effects of bifenthrin have been studied in various animal models and cell lines; however, its toxic effects on cattle remain unclear. In particular, gaining insights into the toxic effects of bifenthrin on the mammary lactation system is crucial for the dairy industry. Therefore, we proceeded to investigate the toxic effects of bifenthrin on the bovine mammary epithelial cells (MAC-T cells). We established that bifenthrin inhibited cell proliferation and triggered apoptosis in MAC-T cells. Additionally, bifenthrin induced mitochondrial dysfunction and altered inflammatory gene expression by disrupting mitochondrial membrane potential (MMP) and generating excessive reactive oxygen species (ROS). We also demonstrated that bifenthrin disrupted both cytosolic and mitochondrial calcium ion homeostasis. Furthermore, bifenthrin altered mitogen-activated protein kinase (MAPK) signaling cascades and downregulated casein-related genes. Collectively, we confirmed the multiple toxic effects of bifenthrin on MAC-T cells, which could potentially reduce milk yield and quality.
Collapse
Affiliation(s)
- Eunho Sung
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hojun Lee
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
24
|
Tang H, Zhang Y, Wang Q, Zeng Z, Wang X, Li Y, Wang Z, Ma N, Xu G, Zhong X, Guo L, Yuan X, Wang X. Astaxanthin attenuated cigarette smoke extract-induced apoptosis via decreasing oxidative DNA damage in airway epithelium. Biomed Pharmacother 2023; 167:115471. [PMID: 37699317 DOI: 10.1016/j.biopha.2023.115471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a lung inflammatory disease that is associated with environmental allergic component exposure. Cigarette smoke is an environmental toxicant that induces lung malfunction leading to various pulmonary diseases. Astaxanthin (AST) is a carotenoid that shows antioxidant and anti-inflammatory activities which might be a promising candidate for COPD therapy. In this study, we released that AST could attenuate cigarette smoke-induced DNA damage and apoptosis in vivo and in vitro. AST administration ameliorated cigarette smoke extract (CSE)-induced activation of Caspase-3 and apoptosis. Pretreated mice with AST significantly decrease CSE-induced DNA damage which shows lower nuclear γ-H2AX level. AST treatment also dramatically reduces the production of intracellular reactive oxygen species (ROS) by suppressing the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase enzyme 4 (NOX4) and dual oxidase 1 (DUOX1). Taken together, this study suggested that AST can decrease CSE-induced DNA damage and apoptosis by inhibiting NOX4/DUOX1 expression that promotes ROS generation. AST may be a potential protective agent against CSE-associated lung disease that is worth in-depth investigation.
Collapse
Affiliation(s)
- Hongmei Tang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yun Zhang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qiao Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ziling Zeng
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaoyun Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yuejiao Li
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhibin Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ning Ma
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaolin Zhong
- Department of Gastroenterology Organization: The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Linlin Guo
- Department of Microbiology and Immunology, The Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| | - Xiefang Yuan
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Xing Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
25
|
Chattopadhyay T, Mallick B. FDFT1 repression by piR-39980 prevents oncogenesis by regulating proliferation and apoptosis through hypoxia in tongue squamous cell carcinoma. Life Sci 2023; 329:121954. [PMID: 37473805 DOI: 10.1016/j.lfs.2023.121954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
AIM Tongue squamous cell carcinoma (TSCC) is one of the most aggressive tumors whose underlying molecular mechanism remains elusive. Previous studies have identified piR-39980, a non-coding RNA, as a tumour suppressor or oncogene in different malignancies and the cholesterogenic protein, Farnesyl-Diphosphate Farnesyltransferase 1 (FDFT1) playing critical roles in cancer. The present study investigates the role of piR-39980, and its target FDFT1, in regulating the malignancy of TSCC. MAIN METHODS We performed qRT-PCR to determine the expression of FDFT1, piR-39980 and validated FDFT1 as a target of piR-39980 by dual luciferase assay. Then, to investigate the role of FDFT1 overexpression and piR-39980's inhibitory effect on FDFT1 in TSCC oncogenesis, we carried out MTT, migration, ROS estimation, and flow cytometric cell cycle assays. In addition to the above experiments, we also carried out flow cytometric apoptosis assay, chromatin condensation, γ-H2AX accumulation, and phalloidin staining assays upon overexpression and silencing of piRNA to unveil its mechanism of actions in TSCC malignancy. KEY FINDINGS FDFT1 promotes the oncogenesis of TSCC cells. Further, transient overexpression of piR-39980 significantly inhibited proliferation, migration, ROS generation, and colony formation and increased DNA damage and chromatin condensation causing cell death by repressing FDFT1. We conjectured that FDFT1 repression induces hypoxia, which slows DNA repair and accumulates damaged DNA, causing death of TSCC cells. SIGNIFICANCE Our study showed FDFT1 acts as an oncogene in TSCC, unlike other cancers, whose repression by a piRNA could prevent oncogenesis by regulating proliferation and apoptosis through hypoxia. This study reveals novel gene-regulatory mechanistic insights into TSCC oncogenesis.
Collapse
Affiliation(s)
- Trisha Chattopadhyay
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
26
|
Stefàno E, Cossa LG, De Castro F, De Luca E, Vergaro V, My G, Rovito G, Migoni D, Muscella A, Marsigliante S, Benedetti M, Fanizzi FP. Evaluation of the Antitumor Effects of Platinum-Based [Pt( η1-C 2H 4-OR)(DMSO)(phen)] + (R = Me, Et) Cationic Organometallic Complexes on Chemoresistant Pancreatic Cancer Cell Lines. Bioinorg Chem Appl 2023; 2023:5564624. [PMID: 37727647 PMCID: PMC10506884 DOI: 10.1155/2023/5564624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
Pancreatic cancer is one of the most lethal malignancies with an increasing incidence and a high mortality rate, due to its rapid progression, invasiveness, and resistance to anticancer therapies. In this work, we evaluated the antiproliferative and antimigratory activities of the two organometallic compounds, [Pt(η1-C2H4-OMe)(DMSO)(phen)]Cl (1) and [Pt(η1-C2H4-OEt)(DMSO)(phen)]Cl (2), on three human pancreatic ductal adenocarcinoma cell lines with different sensitivity to cisplatin (Mia PaCa-2, PANC-1, and YAPC). The two cationic analogues showed superimposable antiproliferative effects on the tested cells, without significant differences depending on alkyl chain length (Me or Et). On the other hand, they demonstrated to be more effective than cisplatin, especially on YAPC cancer cells. For the interesting cytotoxic activity observed on YAPC, further biological assays were performed, on this cancer cell line, to evaluate the apoptotic and antimetastatic properties of the considered platinum compounds (1 and 2). The cytotoxicity of 1 and 2 compounds appeared to be related to their intracellular accumulation, which was much faster than that of cisplatin. Both 1 and 2 compounds significantly induced apoptosis and cell cycle arrest, with a high accumulation of sub-G1 phase cells, compared to cisplatin. Moreover, phenanthroline-containing complexes caused a rapid loss of mitochondria membrane potential, ΔΨM, if compared to cisplatin, probably due to their cationic and lipophilic properties. On 3D tumor spheroids, 1 and 2 significantly reduced migrated area more than cisplatin, confirming an antimetastatic ability.
Collapse
Affiliation(s)
- Erika Stefàno
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Luca Giulio Cossa
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Federica De Castro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Erik De Luca
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Viviana Vergaro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Giulia My
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Gianluca Rovito
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Danilo Migoni
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Antonella Muscella
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Santo Marsigliante
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| |
Collapse
|
27
|
Anggraeni IG, Ei ZZ, Hotta D, Yokoya M, Chanvorachote P. Renieramycin T Derivative DH_22 Induces p53-dependent Apoptosis in Lung Cancer Cells. In Vivo 2023; 37:1960-1966. [PMID: 37652479 PMCID: PMC10500526 DOI: 10.21873/invivo.13292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM Targeting apoptotic pathways has been identified as a promising strategy for the treatment of lung cancer. We synthesized a new derivative of renieramycin T (RT), named DH_22, and examined its anticancer activities in human lung cancer cells. MATERIALS AND METHODS The RT derivative DH_22 was chemically modified from RT. The apoptosis-inducing effect was evaluated in A549 cells by annexin V-FITC/PI staining and nuclear staining assay (Hoechst/PI). In addition, the molecular pathway was analyzed by western blot analysis. RESULTS In the cell viability and nuclear staining tests, DH_22 was discovered to be cytotoxic with an IC50 of 13.27 μM; it induced apoptosis of lung cancer cells. Regarding the mechanism, DH_22 contributed to the activation of p53-dependent apoptosis and decreased the cellular level of c-Myc. The p53-dependent mechanism was indicated by an increase in p53, an induction of the pro-apoptotic Bax protein, and a decrease in the anti-apoptotic B-cell lymphoma 2 (Bcl-2) protein. CONCLUSION DH_22 has great potential for further development as a new anticancer drug.
Collapse
Affiliation(s)
- Indiana Gita Anggraeni
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Zin Zin Ei
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Daiki Hotta
- Graduate Program of Pharmaceutical Sciences, Meiji Pharmaceutical University, Tokyo, Japan
| | - Masashi Yokoya
- Graduate Program of Pharmaceutical Sciences, Meiji Pharmaceutical University, Tokyo, Japan
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand;
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
28
|
Luo S, Chen M. Systematic Investigation of the Effect of Lactobacillus acidophilus TW01 on Potential Prevention of Particulate Matter (PM)2.5-Induced Damage Using a Novel In Vitro Platform. Foods 2023; 12:3278. [PMID: 37685213 PMCID: PMC10486722 DOI: 10.3390/foods12173278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Exposure to ambient particulate matter (PM) and cigarette smoking (CS) is a risk factor for respiratory/lung infections and metabolic disorders. Lung-gut axis disruption involving the upregulation of oxidative stress, systemic inflammation, and gut barrier dysfunction by PM is one of the potential mechanisms. Thus, we designed a novel in vitro platform for pre-selecting probiotics with potentially protective effects against PM-induced lung damage through the lung-gut axis to reduce animal usage. The results showed that a high dose of Lactobacillus acidophilus TW01 (1 × 108 CFU/mL) inhibited reactive oxygen species (ROS) production. This strain could also reduce respiratory epithelial cell death induced by cigarette smoke extraction (CSE), as well as promoting Caco-2 cell migration in 1 × 106 CFU/mL. Although further animal experiments are needed to validate the in vitro findings, L. acidophilus TW01 is a promising probiotic strain for the potential prevention of PM2.5-induced damage.
Collapse
Affiliation(s)
| | - Mingju Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan, China;
| |
Collapse
|
29
|
Nemzow L, Boehringer T, Bacon B, Turner HC. Development of a human peripheral blood ex vivo model for rapid protein biomarker detection and applications to radiation biodosimetry. PLoS One 2023; 18:e0289634. [PMID: 37561730 PMCID: PMC10414586 DOI: 10.1371/journal.pone.0289634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
In the event of a widespread radiological incident, thousands of people may be exposed to a wide range of ionizing radiation. In this unfortunate scenario, there will be a need to quickly screen a large number of people to assess the amount of radiation exposure and triage for medical treatment. In our earlier work, we previously identified and validated a panel of radiosensitive protein biomarkers in blood leukocytes, using the humanized-mouse and non-human primate (NHP) models. The objective of this work was to develop a high-throughput imaging flow-cytometry (IFC) based assay for the rapid measurement of protein biomarker expression in human peripheral blood samples irradiated ex vivo. In this assay design, peripheral human blood samples from healthy adult donors were exposed to 0-5 Gy X-irradiation ex vivo and cultured for up to 2 days. Samples were stained with a cocktail of surface antigens (CD66b, CD20, and CD3), fixed and permeabilized, and intracellularly stained for BAX (Bcl-2-associated X) protein, used here as a representative biomarker. Samples were interrogated by IFC, and a uniform analysis template was created to measure biomarker expression in heterogeneous and specific leukocyte subtype populations at each time point. In this human blood ex vivo model, we show that within gated populations of leukocyte subtypes, B-cells are highly radiosensitive with the smallest surviving fraction, followed by T-cells and granulocytes. Dose-dependent biomarker responses were measured in the lymphocytes, B-, and T-cell populations, but not in the granulocytes, with dose-response curves showing increasing fold changes in BAX protein expression up to Day 2 in lymphocyte populations. We present here the successful use of this ex vivo model for the development of radiation dose-response curves of a candidate protein biomarker towards future applications of dose reconstruction and biodosimetry.
Collapse
Affiliation(s)
- Leah Nemzow
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Thomas Boehringer
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Bezalel Bacon
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Helen C. Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
30
|
Bahrani HMH, Ghobeh M, Homayouni Tabrizi M. The anticancer, anti-oxidant, and antibacterial activities of chitosan-lecithin-coated parthenolide/tyrosol hybrid nanoparticles. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1603-1617. [PMID: 36755525 DOI: 10.1080/09205063.2023.2177473] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Tyrosol (TYR) and parthenolide (PLT) have been used as synthetic antioxidant and natural anticancer compounds. In the current study, we aimed to synthesize an encapsulated complex of both PLT and TYR in a hybrid coating layer consisting of lecithin and chitosan molecules, a proper biocompatible drug delivery system to evaluate its antibacterial and anticancer potentials on human liver HepG2 and pancreatic Panc cancer cell lines. The chitosan-lecithin-coated PLT/TYR nanoparticles (clPT-NPs) were synthesized applying an auto-self-assembling method. The clPT-NPs were characterized utilizing DLS, FTIR, zeta potential, and TEM analysis. The clPT-NPs' antioxidant activity was measured by running ABTS and DPPH antioxidant assays. Moreover, the antibacterial potential of clPT-NPs was evaluated by applying disk diffusion, MIC, and MBC assays. Finally, the nanoparticles' cytotoxicity and apoptotic activity were studied by conducting MTT, Flow cytometry, AO/PI cell staining, and real-time PCR techniques. The clPT-NPs (38 nm) exhibited significant antioxidant activity by inhibiting ABTS and DPPH radicals at 187 and 290 μg/mL IC50 concentrations, respectively. Also, the nanoparticles induced a notable antibacterial activity against Staphylococcus aureus at 0.0625 mg/mL MIC and 0.125 mg/mL MBC concentrations. The clPT-NPs selectively decreased the cancer cells' survival and increased the apoptotic dead cells by up-regulating apoptotic gene expression (BAX and Cas-8) and down-regulating BCL-2 anti-apoptotic gene expression. The PLT toxicity has been merged with improved TYR antioxidant activity, which has been functionalized in a safe, biocompatible hybrid nano-delivery system.
Collapse
Affiliation(s)
| | - Maryam Ghobeh
- Department of Biology, Science and Research branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
31
|
Klotz DM, Schwarz FM, Dubrovska A, Schuster K, Theis M, Krüger A, Kutz O, Link T, Wimberger P, Drukewitz S, Buchholz F, Thomale J, Kuhlmann JD. Establishment and Molecular Characterization of an In Vitro Model for PARPi-Resistant Ovarian Cancer. Cancers (Basel) 2023; 15:3774. [PMID: 37568590 PMCID: PMC10417418 DOI: 10.3390/cancers15153774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Overcoming PARPi resistance is a high clinical priority. We established and characterized comparative in vitro models of acquired PARPi resistance, derived from either a BRCA1-proficient or BRCA1-deficient isogenic background by long-term exposure to olaparib. While parental cell lines already exhibited a certain level of intrinsic activity of multidrug resistance (MDR) proteins, resulting PARPi-resistant cells from both models further converted toward MDR. In both models, the PARPi-resistant phenotype was shaped by (i) cross-resistance to other PARPis (ii) impaired susceptibility toward the formation of DNA-platinum adducts upon exposure to cisplatin, which could be reverted by the drug efflux inhibitors verapamil or diphenhydramine, and (iii) reduced PARP-trapping activity. However, the signature and activity of ABC-transporter expression and the cross-resistance spectra to other chemotherapeutic drugs considerably diverged between the BRCA1-proficient vs. BRCA1-deficient models. Using dual-fluorescence co-culture experiments, we observed that PARPi-resistant cells had a competitive disadvantage over PARPi-sensitive cells in a drug-free medium. However, they rapidly gained clonal dominance under olaparib selection pressure, which could be mitigated by the MRP1 inhibitor MK-751. Conclusively, we present a well-characterized in vitro model, which could be instrumental in dissecting mechanisms of PARPi resistance from HR-proficient vs. HR-deficient background and in studying clonal dynamics of PARPi-resistant cells in response to experimental drugs, such as novel olaparib-sensitizers.
Collapse
Affiliation(s)
- Daniel Martin Klotz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Franziska Maria Schwarz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anna Dubrovska
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
| | - Kati Schuster
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mirko Theis
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- UCC Section Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alexander Krüger
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Oliver Kutz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Theresa Link
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stephan Drukewitz
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Frank Buchholz
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- UCC Section Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jürgen Thomale
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen Medical School, 45147 Essen, Germany;
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Findlay S, Nair R, Merrill RA, Kaiser Z, Cajelot A, Aryanpour Z, Heath J, St-Louis C, Papadopoli D, Topisirovic I, St-Pierre J, Sebag M, Kesarwala AH, Hulea L, Taylor EB, Shanmugam M, Orthwein A. The mitochondrial pyruvate carrier complex potentiates the efficacy of proteasome inhibitors in multiple myeloma. Blood Adv 2023; 7:3485-3500. [PMID: 36920785 PMCID: PMC10362273 DOI: 10.1182/bloodadvances.2022008345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy that emerges from antibody-producing plasma B cells. Proteasome inhibitors, including the US Food and Drug Administration-approved bortezomib (BTZ) and carfilzomib (CFZ), are frequently used for the treatment of patients with MM. Nevertheless, a significant proportion of patients with MM are refractory or develop resistance to this class of inhibitors, which represents a significant challenge in the clinic. Thus, identifying factors that determine the potency of proteasome inhibitors in MM is of paramount importance to bolster their efficacy in the clinic. Using genome-wide CRISPR-based screening, we identified a subunit of the mitochondrial pyruvate carrier (MPC) complex, MPC1, as a common modulator of BTZ response in 2 distinct human MM cell lines in vitro. We noticed that CRISPR-mediated deletion or pharmacological inhibition of the MPC complex enhanced BTZ/CFZ-induced MM cell death with minimal impact on cell cycle progression. In fact, targeting the MPC complex compromised the bioenergetic capacity of MM cells, which is accompanied by reduced proteasomal activity, thereby exacerbating BTZ-induced cytotoxicity in vitro. Importantly, we observed that the RNA expression levels of several regulators of pyruvate metabolism were altered in advanced stages of MM for which they correlated with poor patient prognosis. Collectively, this study highlights the importance of the MPC complex for the survival of MM cells and their responses to proteasome inhibitors. These findings establish mitochondrial pyruvate metabolism as a potential target for the treatment of MM and an unappreciated strategy to increase the efficacy of proteasome inhibitors in the clinic.
Collapse
Affiliation(s)
- Steven Findlay
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Remya Nair
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Ronald A. Merrill
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Zafir Kaiser
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Alexandre Cajelot
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Polytech Nice-Sophia, Université Côte d’Azur, Sophia Antipolis, Nice, France
| | - Zahra Aryanpour
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
| | - John Heath
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Catherine St-Louis
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - David Papadopoli
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Julie St-Pierre
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Michael Sebag
- The Research Institute of the McGill University Health Center, Montreal, Canada
| | - Aparna H. Kesarwala
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Laura Hulea
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada
- Département de Biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
- Département de Médecine, Université de Montréal, Montreal, Canada
| | - Eric B. Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
33
|
Grawe GF, Oliveira KM, Leite CM, de Oliveira TD, Costa AR, Moraes CA, Honorato J, Cominetti MR, Castellano EE, Correa RS, Machado SP, Batista AA. Cytotoxic activity of Ru(II)/DPEPhos/N,S-mercapto complexes (DPEPhos -[(2-diphenylphosphino)phenyl]ether). J Inorg Biochem 2023; 244:112204. [PMID: 37004320 DOI: 10.1016/j.jinorgbio.2023.112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
We report here on three new ruthenium(II) complexes, [Ru(DPEPhos)(mtz)(bipy)]PF6 (Ru1), [Ru(DPEPhos)(mmi)(bipy)]PF6 (Ru2) and [Ru(DPEPhos)(dmp)(bipy)]PF6 (Ru3). DPEPhos = bis-[(2-diphenylphosphino)phenyl]ether, mtz = 2-mercapto-2-thiazoline, mmi = 2-mercapto-1-methylimidazole, dmp = 4,6-diamino-2-mercaptopyrimidine and bipy = 2,2'-bipyridine. The compounds were characterized by several spectroscopic techniques, and the molecular structure of Ru1 complex was determined by single-crystal X-ray diffraction. The cytotoxicity of Ru1 - Ru3 complexes were tested against the A549 (human lung) and the MDA-MB-231 (human breast) cancer cell lines and against MRC-5 (non-tumor lung) and MCF-10A (non-tumor breast) cell lines through the MTT assay. All three complexes are cytotoxic against the cell lines studied, with IC50 values lower than those found for the cisplatin. Among them, the Ru2 complex has shown the best selectivity against MDA-MB-231 cancer cell lines, with an IC50 value 12 times lower than that on MCF-10A. The complex Ru2 was capable to induce changes in MDA-MB-231 cells morphology, with loss of cellular adhesion, inhibited colony formation and induce an accumulation of cells at the sub-G1 phase, with an increase in S-phase and decrease of cells at G2 phase. Viscosity, electrochemical and Hoechst 33258 displacement experiments for Ru1 - Ru3 complexes with calf thymus DNA (CT-DNA) showed an electrostatic and groove binding mode of interaction. Additionally, the complexes interact with the protein Human Serum Albumin (HSA) by static mechanism. The negative values for ΔH and ΔS indicate that van der Waals forces and hydrogen bonding may occurs between the complexes and HSA. Therefore, this class of complexes are promising anticancer candidates and may be selected to further detailed studies.
Collapse
|
34
|
Novitasari D, Jenie RI, Kato JY, Meiyanto E. Chemoprevention curcumin analog 1.1 promotes metaphase arrest and enhances intracellular reactive oxygen species levels on TNBC MDA-MB-231 and HER2-positive HCC1954 cells. Res Pharm Sci 2023; 18:358-370. [PMID: 37614620 PMCID: PMC10443663 DOI: 10.4103/1735-5362.378083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/12/2022] [Accepted: 05/23/2023] [Indexed: 08/25/2023] Open
Abstract
Background and purpose Previous studies highlighted that chemoprevention curcumin analog-1.1 (CCA-1.1) demonstrated an antitumor effect on breast, leukemia, and colorectal cancer cells. By utilizing immortalized MDA-MB-231 and HCC1954 cells, we evaluated the anticancer properties of CCA-1.1 and its mediated activity to promote cellular death. Experimental approach Cytotoxicity and anti-proliferation were assayed using trypan blue exclusion. The cell cycle profile after CCA-1.1 treatment was established through flow cytometry. May-Grünwald-Giemsa and Hoechst staining were performed to determine the cell cycle arrest upon CCA-1.1 treatment. The involvement of CCA-1.1 in mitotic kinases (aurora A, p-aurora A, p-PLK1, and p-cyclin B1) expression was investigated by immunoblotting. CCA-1.1-treated cells were stained with the X-gal solution to examine the effect on senescence. ROS level and mitochondrial respiration were assessed by DCFDA assay and mitochondrial oxygen consumption rate, respectively. Findings/Results CCA-1.1 exerted cytotoxic activity and inhibited cell proliferation with an irreversible effect, and the flow cytometry analysis demonstrated that CCA-1.1 significantly halted during the G2/M phase, and further assessment revealed that CCA-1.1 caused metaphase arrest. Immunoblot assays confirmed CCA-1.1 suppressed aurora A kinase in MDA-MB-231 cells. The ROS level was elevated after treatment with CCA-1.1, which might promote cellular senescence and suppress basal mitochondrial respiration in MDA-MB-231 cells. Conclusion and implications Our data suggested the in vitro proof-of-concept that supports the involvement in cell cycle regulation and ROS generation as contributors to the effectiveness of CCA-1.1 in suppressing breast cancer cell growth.
Collapse
Affiliation(s)
- Dhania Novitasari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Riris Istighfari Jenie
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jun-ya Kato
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
35
|
Ayoub AJ, El-Achkar GA, Ghayad SE, Hariss L, Haidar RH, Antar LM, Mallah ZI, Badran B, Grée R, Hachem A, Hamade E, Habib A. Fluorinated Benzofuran and Dihydrobenzofuran as Anti-Inflammatory and Potential Anticancer Agents. Int J Mol Sci 2023; 24:10399. [PMID: 37373544 DOI: 10.3390/ijms241210399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Benzofuran and 2,3-dihydrobenzofuran scaffolds are heterocycles of high value in medicinal chemistry and drug synthesis. Targeting inflammation in cancer associated with chronic inflammation is a promising therapy. In the present study, we investigated the anti-inflammatory effects of fluorinated benzofuran and dihydrobenzofuran derivatives in macrophages and in the air pouch model of inflammation, as well as their anticancer effects in the human colorectal adenocarcinoma cell line HCT116. Six of the nine compounds suppressed lipopolysaccharide-stimulated inflammation by inhibiting the expression of cyclooxygenase-2 and nitric oxide synthase 2 and decreased the secretion of the tested inflammatory mediators. Their IC50 values ranged from 1.2 to 9.04 µM for interleukin-6; from 1.5 to 19.3 µM for Chemokine (C-C) Ligand 2; from 2.4 to 5.2 µM for nitric oxide; and from 1.1 to 20.5 µM for prostaglandin E2. Three novel synthesized benzofuran compounds significantly inhibited cyclooxygenase activity. Most of these compounds showed anti-inflammatory effects in the zymosan-induced air pouch model. Because inflammation may lead to tumorigenesis, we tested the effects of these compounds on the proliferation and apoptosis of HCT116. Two compounds with difluorine, bromine, and ester or carboxylic acid groups inhibited the proliferation by approximately 70%. Inhibition of the expression of the antiapoptotic protein Bcl-2 and concentration-dependent cleavage of PARP-1, as well as DNA fragmentation by approximately 80%, were described. Analysis of the structure-activity relationship suggested that the biological effects of benzofuran derivatives are enhanced in the presence of fluorine, bromine, hydroxyl, and/or carboxyl groups. In conclusion, the designed fluorinated benzofuran and dihydrobenzofuran derivatives are efficient anti-inflammatory agents, with a promising anticancer effect and a combinatory treatment in inflammation and tumorigenesis in cancer microenvironments.
Collapse
Affiliation(s)
- Abeer J Ayoub
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath 1104, Lebanon
- Department of Biological Sciences, School of Arts and Sciences, Lebanese International University, Bekaa Campus, Bekaa 146404, Lebanon
| | - Ghewa A El-Achkar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Faculty of Medicine, Saint George University of Beirut, Achrafieh, Beirut 1100-2807, Lebanon
| | - Sandra E Ghayad
- Department of Biology, Faculty of Sciences II, EDST, Lebanese University, Fanar 90656, Lebanon
- Center for CardioVascular and Nutrition Research (C2VN), INSERM 1263, INRAE 1260, Aix-Marseille University, 13385 Marseille, France
| | - Layal Hariss
- Laboratory for Medicinal Chemistry and Natural Products, Faculty of Sciences I, PRASE-EDST, Lebanese University, Hadath 1104, Lebanon
| | - Razan H Haidar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath 1104, Lebanon
| | - Leen M Antar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath 1104, Lebanon
| | - Zahraa I Mallah
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath 1104, Lebanon
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath 1104, Lebanon
| | - René Grée
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000 Rennes, France
| | - Ali Hachem
- Laboratory for Medicinal Chemistry and Natural Products, Faculty of Sciences I, PRASE-EDST, Lebanese University, Hadath 1104, Lebanon
| | - Eva Hamade
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath 1104, Lebanon
| | - Aida Habib
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| |
Collapse
|
36
|
Ghafaripour H, Homayouni Tabrizi M, Karimi E, Barati Naeeni N. Lawsone encapsulated polylactic-co-glycolic acid nanoparticles modified with chitosan-folic acid successfully inhibited cell growth and triggered apoptosis in Panc-1 cancer cells. IET Nanobiotechnol 2023. [PMID: 37191102 PMCID: PMC10374556 DOI: 10.1049/nbt2.12139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
The present research aims to encapsulate lawsone in polylactic-co-glycolic acid (PLGA) nanoparticles modified with folic acid (FA) and chitosan (CS) to study its anticancer effects against Panc-1 cells. The nanoparticles were analysed in means of shape/size and zeta potential index using scanning electron microscope and dynamic light scattering. High-performance liquid chromatography was applied to evaluate the lawsone entrapment efficacy. The authors performed acridine orange/propidium iodide staining and flow cytometry to monitor apoptosis induction and cell cycle arrest. The expressions of apoptosis-related genes (BAX and BCL-2) were assessed by real time PCR. Nanoparticle antioxidative and antibacterial activities were examined by DPPH/ABTS scavenging assay, disk diffusion method, and minimum inhibitory concentration and minimum bactericidal concentration evaluation. The NPs were 229.65 nm, the encapsulation efficiency was 81%. The concentration of lawsone that exerts 50% cell growth inhibition (IC50 ) against Panc-1 cells was calculated 118.4 μL. Apoptosis induction was evidenced by the increased number of orange cells and increased proportion of cells in G1-Sub phase respectively. Moreover, lawsone-loaded nanoparticle upregulated BAX gene expression, while downregulated BCL2expression, suggesting the activation of apoptotic pathway. The observed cytotoxic/apoptotic properties suggest that Lawson-loaded PLGA-FA-CS-NPs hold a great potential in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Helia Ghafaripour
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
37
|
Piteša N, Kurtović M, Bartoniček N, Gkotsi DS, Čonkaš J, Petrić T, Musani V, Ozretić P, Riobo-Del Galdo NA, Sabol M. Signaling Switching from Hedgehog-GLI to MAPK Signaling Potentially Serves as a Compensatory Mechanism in Melanoma Cell Lines Resistant to GANT-61. Biomedicines 2023; 11:biomedicines11051353. [DOI: 10.3390/biomedicines11051353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023] Open
Abstract
Background: Melanoma represents the deadliest skin cancer due to its cell plasticity which results in high metastatic potential and chemoresistance. Melanomas frequently develop resistance to targeted therapy; therefore, new combination therapy strategies are required. Non-canonical signaling interactions between HH-GLI and RAS/RAF/ERK signaling were identified as one of the drivers of melanoma pathogenesis. Therefore, we decided to investigate the importance of these non-canonical interactions in chemoresistance, and examine the potential for HH-GLI and RAS/RAF/ERK combined therapy. Methods: We established two melanoma cell lines resistant to the GLI inhibitor, GANT-61, and characterized their response to other HH-GLI and RAS/RAF/ERK inhibitors. Results: We successfully established two melanoma cell lines resistant to GANT-61. Both cell lines showed HH-GLI signaling downregulation and increased invasive cell properties like migration potential, colony forming capacity, and EMT. However, they differed in MAPK signaling activity, cell cycle regulation, and primary cilia formation, suggesting different potential mechanisms responsible for resistance occurrence. Conclusions: Our study provides the first ever insights into cell lines resistant to GANT-61 and shows potential mechanisms connected to HH-GLI and MAPK signaling which may represent new hot spots for noncanonical signaling interactions.
Collapse
Affiliation(s)
- Nikolina Piteša
- Ruđer Bošković Institute, Division of Molecular Medicine, 10 000 Zagreb, Croatia
| | - Matea Kurtović
- Ruđer Bošković Institute, Division of Molecular Medicine, 10 000 Zagreb, Croatia
| | - Nenad Bartoniček
- The Garvan Institute of Medical Research, Genome Informatics, Genomics & Epigenetics Division, 384 Victoria St., Darlinghurst, NSW 2010, Australia
- The Kinghorn Centre for Clinical Genomics, 370 Victoria St., Darlinghurst, NSW 2010, Australia
| | - Danai S. Gkotsi
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Molecular Structural Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Josipa Čonkaš
- Ruđer Bošković Institute, Division of Molecular Medicine, 10 000 Zagreb, Croatia
| | - Tina Petrić
- Ruđer Bošković Institute, Division of Molecular Medicine, 10 000 Zagreb, Croatia
| | - Vesna Musani
- Ruđer Bošković Institute, Division of Molecular Medicine, 10 000 Zagreb, Croatia
| | - Petar Ozretić
- Ruđer Bošković Institute, Division of Molecular Medicine, 10 000 Zagreb, Croatia
| | - Natalia A. Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Molecular Structural Biology, University of Leeds, Leeds LS2 9JT, UK
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
- Leeds Cancer Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Maja Sabol
- Ruđer Bošković Institute, Division of Molecular Medicine, 10 000 Zagreb, Croatia
| |
Collapse
|
38
|
Lin MY, Damron TA, Horton JA. Cell cycle arrest and apoptosis are early events in radiosensitization of EWS::FLI1 + Ewing sarcoma cells by Mithramycin A. Int J Radiat Biol 2023; 99:1570-1583. [PMID: 36913323 DOI: 10.1080/09553002.2023.2188930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/23/2023] [Indexed: 03/14/2023]
Abstract
PURPOSE The oncogenic fusion protein EWS::FLI1 is an attractive therapeutic target in Ewing sarcoma (ES). Mithramycin A (MithA) is a potent and specific inhibitor of EWS::FLI1 that can selectively radiosensitize ES cells through transcriptional inhibition of DNA double-strand break (DSB) repair. Here, we evaluate temporal changes in cell cycle progression and apoptosis in ES cells treated with MithA and/or ionizing radiation (RTx), testing the hypothesis that combining MithA with ionizing radiation would synergistically impair cell cycle progression and enhance apoptotic elimination to a greater extent than either agent alone. MATERIALS AND METHODS Four EWS::FLI1+ ES cell lines TC-71, RD-ES, SK-ES-1, and A673, and one EWS::ERG cell line (CHLA-25) were exposed to 10nM MithA or vehicle and followed 24 h later by exposure to 2 Gy x-radiation or sham irradiation. Reactive oxygen species (ROS) activity was evaluated by cytometric assay, and assay of antioxidant gene expression by RT-qPCR. Cell cycle changes were evaluated by flow cytometry of nuclei stained with propidium iodide. Apoptosis was assessed by cytometric assessment of Caspase-3/7 activity and by immunoblotting of PARP-1 cleavage. Radiosensitization was evaluated by clonogenic survival assay. Proliferation (EdU) and apoptosis (TUNEL) were evaluated in SK-ES-1 xenograft tumors following pretreatment with 1 mg/kg MithA, followed 24 h later by a single 4 Gy fraction of x-radiation. RESULTS MithA-treated cells showed reduced levels of ROS, and were associated with increased expression of antioxidant genes SOD1, SOD2, and CAT. It nonetheless induced persistent G0/G1 arrest and a progressive increase of the sub-G1 fraction, suggesting apoptotic degeneration. In vitro assays of Caspase-3/7 activity and immunoblotting of Caspase-3/7 dependent cleavage of PARP-1 indicated that apoptosis began as early as 24 h after MithA exposure, reducing clonogenic survival. Tumors from xenograft mice treated with either radiation alone, or in combination with MithA showed a significant reduction of tumor cell proliferation, while apoptosis was significantly increased in the group receiving the combination of MithA and RTx. CONCLUSIONS Taken together, our data show that the anti-proliferative and cytotoxic effects of MithA are the prominent components of radiosensitization of EWS::FLI1+ ES, rather than the result of acutely enhanced ROS levels.
Collapse
Affiliation(s)
- Mei Yun Lin
- Department of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
- Cell & Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Timothy A Damron
- Department of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
- Cell & Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jason A Horton
- Department of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
- Cell & Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
39
|
Hu S, Zhang X, Melzer A, Landgraf L. Ultrasound-induced cavitation renders prostate cancer cells susceptible to hyperthermia: Analysis of potential cellular and molecular mechanisms. Front Genet 2023; 14:1122758. [PMID: 37152995 PMCID: PMC10154534 DOI: 10.3389/fgene.2023.1122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/21/2023] [Indexed: 05/09/2023] Open
Abstract
Background: Focused ultrasound (FUS) has become an important non-invasive therapy for prostate tumor ablation via thermal effects in the clinic. The cavitation effect induced by FUS is applied for histotripsy, support drug delivery, and the induction of blood vessel destruction for cancer therapy. Numerous studies report that cavitation-induced sonoporation could provoke multiple anti-proliferative effects on cancer cells. Therefore, cavitation alone or in combination with thermal treatment is of great interest but research in this field is inadequate. Methods: Human prostate cancer cells (LNCap and PC-3) were exposed to 40 s cavitation using a FUS system, followed by water bath hyperthermia (HT). The clonogenic assay, WST-1 assay, and Transwell® invasion assay, respectively, were used to assess cancer cell clonogenic survival, metabolic activity, and invasion potential. Fluorescence microscopy using propidium iodide (PI) as a probe of cell membrane integrity was used to identify sonoporation. The H2A.X assay and Nicoletti test were conducted in the mechanism investigation to detect DNA double-strand breaks (DSBs) and cell cycle arrest. Immunofluorescence microscopy and flow cytometry were performed to determine the distribution and expression of 5α-reductase (SRD5A). Results: Short FUS shots with cavitation (FUS-Cav) in combination with HT resulted in, respectively, a 2.2, 2.3, and 2.8-fold decrease (LNCap) and a 2.0, 1.5, and 1.6-fold decrease (PC-3) in the clonogenic survival, cell invasiveness and metabolic activity of prostate cancer cells when compared to HT alone. FUS-Cav immediately induced sonoporation in 61.7% of LNCap cells, and the combination treatment led to a 1.4 (LNCap) and 1.6-fold (PC-3) increase in the number of DSBs compared to HT alone. Meanwhile, the combination therapy resulted in 26.68% of LNCap and 31.70% of PC-3 with cell cycle arrest in the Sub-G1 phase and 35.37% of PC-3 with cell cycle arrest in the G2/M phase. Additionally, the treatment of FUS-Cav combined with HT block the androgen receptor (AR) signal pathway by reducing the relative Type I 5α-reductase (SRD5A1) level to 38.28 ± 3.76% in LNCap cells, and decreasing the relative Type III 5α-reductase 3 (SRD5A3) level to 22.87 ± 4.88% in PC-3 cells, in contrast, the relative SRD5A level in untreated groups was set to 100%. Conclusion: FUS-induced cavitation increases the effects of HT by interrupting cancer cell membranes, inducing the DSBs and cell cycle arrest, and blocking the AR signal pathway of the prostate cancer cells, with the potential to be a promising adjuvant therapy in prostate cancer treatment.
Collapse
Affiliation(s)
- Shaonan Hu
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
| | - Xinrui Zhang
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
| | - Andreas Melzer
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
- Institute for Medical Science and Technology (IMSaT), University of Dundee, Dundee, United Kingdom
| | - Lisa Landgraf
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
| |
Collapse
|
40
|
Jiang X, Li G, Zhu B, Zang J, Lan T, Jiang R, Wang B. p20BAP31 induces cell apoptosis via both AIF caspase-independent and the ROS/JNK mitochondrial pathway in colorectal cancer. Cell Mol Biol Lett 2023; 28:25. [PMID: 36977989 PMCID: PMC10052827 DOI: 10.1186/s11658-023-00434-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
During cell apoptosis, the C-terminus of BAP31 is cleaved by caspase-8 and generates p20BAP31, which has been shown to induce an apoptotic pathway between the endoplasmic reticulum (ER) and mitochondria. However, the underlying mechanisms of p20BAP31 in cell apoptosis remains unclear.
Methods
We compared the effects of p20BAP31 on cell apoptosis in six cell lines and selected the most sensitive cells. Functional experiments were conducted, including Cell Counting Kit 8 (CCK-8), reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) assay. Then, cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. Next, NOX inhibitors (ML171 and apocynin), ROS scavenger (NAC), JNK inhibitor (SP600125), and caspase inhibitor (Z-VAD-FMK) were used to further investigate the underlying mechanisms of p20BAP31 on cell apoptosis. Finally, apoptosis-inducing factor (AIF) translocation from the mitochondria to the nuclei was verified by immunoblotting and immunofluorescence assay.
Results
We found that overexpression of p20BAP31 indeed induced apoptosis and had a much greater sensitivity in HCT116 cells. Furthermore, the overexpression of p20BAP31 inhibited cell proliferation by causing S phase arrest. Further study revealed that p20BAP31 reduced MMP, with a significant increase in ROS levels, accompanied by the activation of the MAPK signaling pathway. Importantly, the mechanistic investigation indicated that p20BAP31 induces mitochondrial-dependent apoptosis by activating the ROS/JNK signaling pathway and induces caspase-independent apoptosis by promoting the nuclear translocation of AIF.
Conclusions
p20BAP31 induced cell apoptosis via both the ROS/JNK mitochondrial pathway and AIF caspase-independent pathway. Compared with antitumor drugs that are susceptible to drug resistance, p20BAP31 has unique advantages for tumor therapy.
Collapse
|
41
|
Nabih HK, Hamed AR, Yahya SMM. Anti-proliferative effect of melatonin in human hepatoma HepG2 cells occurs mainly through cell cycle arrest and inflammation inhibition. Sci Rep 2023; 13:4396. [PMID: 36928762 PMCID: PMC10020432 DOI: 10.1038/s41598-023-31443-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the major lethal primary liver malignant worldwide. Although, melatonin has various antitumor bioactivities; there is a requirement for more investigations to elucidate the not discussed effects, and the controversial responses of the treatment with melatonin on targets mediated in HCC. To achieve the aim of the present study, HCC-HepG2 cells were treated with different concentrations of melatonin at various time intervals. The selected minimal proliferation inhibition doses of melatonin were then incubated with cells to examine the arresting effect of melatonin on dividing cells using flow cytometry. Furthermore, the molecular patterns of genes that contributed to apoptosis, drug resistance development, antioxidation, and melatonin crossing were quantified by qRT-PCR. Additionally, the Human inflammation antibody array membrane (40 targets) was used to check the anti-inflammatory effect of melatonin. Our results validated that, melatonin shows anti-proliferative action through preserving cells in G0/G1 phase (P < 0.001) that is associated with a highly significant increase in the expression level of the P53 gene (P < 0.01). On contrary, as a novelty, our data recorded decreases in expression levels of genes involved in the pro-apoptotic pathway; with a significant increase (P < 0.05) in the expression level of an anti-apoptotic gene, Bcl2. Interestingly, we detected observed increases in the expression levels of genes responsible for conferring drug resistance including ABCB1, ABCC1, and ABCC5. Our study proved the anti-inflammatory activity of 1 mM melatonin in HCC-HepG2 cells. Accordingly, we can conclude that melatonin facilitates the anti-proliferation of cells at doses of 1 mM, and 2.5 mM after 24 h. This action is initiated through cell cycle arrest at G0/G1 phase via increasing the expression of P53, but independently on apoptosis. Collectively, melatonin is an effective anti-inflammatory and anti-proliferative promising therapy for the treatment of HCC. However, its consumption should be cautious to avoid the development of drug resistance and provide a better treatment strategy.
Collapse
Affiliation(s)
- Heba K Nabih
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt.
| | - Ahmed R Hamed
- Chemistry of Medicinal Plants Department, and Biology Unit, Central Laboratory for Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Shaymaa M M Yahya
- Hormones Department, Medicine and Clinical Studies Research Institute, and Stem Cell Lab, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
42
|
Rossner P, Cervena T, Echalar B, Palacka K, Milcova A, Novakova Z, Sima M, Simova Z, Vankova J, Holan V. Metal Nanoparticles with Antimicrobial Properties: The Toxicity Response in Mouse Mesenchymal Stem Cells. TOXICS 2023; 11:253. [PMID: 36977018 PMCID: PMC10057305 DOI: 10.3390/toxics11030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Some metal nanoparticles (NP) are characterized by antimicrobial properties with the potential to be used as alternative antibiotics. However, NP may negatively impact human organism, including mesenchymal stem cells (MSC), a cell population contributing to tissue growth and regeneration. To address these issues, we investigated the toxic effects of selected NP (Ag, ZnO, and CuO) in mouse MSC. MSC were treated with various doses of NP for 4 h, 24 h, and 48 h and multiple endpoints were analyzed. Reactive oxygen species were generated after 48 h CuO NP exposure. Lipid peroxidation was induced after 4 h and 24 h treatment, regardless of NP and/or tested dose. DNA fragmentation and oxidation induced by Ag NP showed dose responses for all the periods. For other NP, the effects were observed for shorter exposure times. The impact on the frequency of micronuclei was weak. All the tested NP increased the sensitivity of MSC to apoptosis. The cell cycle was most affected after 24 h, particularly for Ag NP treatment. In summary, the tested NP induced numerous adverse changes in MSC. These results should be taken into consideration when planning the use of NP in medical applications where MSC are involved.
Collapse
Affiliation(s)
- Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, 142 00 Prague, Czech Republic
| | - Tereza Cervena
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, 142 00 Prague, Czech Republic
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, 142 00 Prague, Czech Republic
| | - Barbora Echalar
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, 142 00 Prague, Czech Republic
| | - Katerina Palacka
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, 142 00 Prague, Czech Republic
| | - Alena Milcova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, 142 00 Prague, Czech Republic
| | - Zuzana Novakova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, 142 00 Prague, Czech Republic
| | - Michal Sima
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, 142 00 Prague, Czech Republic
| | - Zuzana Simova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, 142 00 Prague, Czech Republic
| | - Jolana Vankova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, 142 00 Prague, Czech Republic
| | - Vladimir Holan
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, 142 00 Prague, Czech Republic
| |
Collapse
|
43
|
Vélez-Vargas LC, Santa-González GA, Uribe D, Henao-Castañeda IC, Pedroza-Díaz J. In Vitro and In Silico Study on the Impact of Chlorogenic Acid in Colorectal Cancer Cells: Proliferation, Apoptosis, and Interaction with β-Catenin and LRP6. Pharmaceuticals (Basel) 2023; 16:276. [PMID: 37259421 PMCID: PMC9960681 DOI: 10.3390/ph16020276] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 09/12/2023] Open
Abstract
Colorectal cancer mortality rate and highly altered proteins from the Wnt/β-catenin pathway increase the scientific community's interest in finding alternatives for prevention and treatment. This study aims to determine the biological effect of chlorogenic acid (CGA) on two colorectal cancer cell lines, HT-29 and SW480, and its interactions with β-catenin and LRP6 to elucidate a possible modulatory mechanism on the Wnt/β-catenin pathway. These effects were determined by propidium iodide and DiOC6 for mitochondrial membrane permeability, MitoTracker Red for mitochondrial ROS production, DNA content for cell distribution on cell cycle phases, and molecular docking for protein-ligand interactions and binding affinity. Here, it was found that CGA at 2000 µM significantly affects cell viability and causes DNA fragmentation in SW480 cells rather than in HT-29 cells, but in both cell lines, it induces ROS production. Additionally, CGA has similar affinity and interactions for LRP6 as niclosamide but has a higher affinity for both β-catenin sites than C2 and iCRT14. These results suggest a possible modulatory role of CGA over the Wnt/β-catenin pathway in colorectal cancer.
Collapse
Affiliation(s)
- Laura Catalina Vélez-Vargas
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellin 050012, Colombia
- Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 050010, Colombia
| | - Gloria A. Santa-González
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellin 050012, Colombia
| | - Diego Uribe
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellin 050012, Colombia
| | - Isabel C. Henao-Castañeda
- Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 050010, Colombia
| | - Johanna Pedroza-Díaz
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellin 050012, Colombia
| |
Collapse
|
44
|
Toni T, Viswanathan R, Robbins Y, Gunti S, Yang X, Huynh A, Cheng H, Sowers AL, Mitchell JB, Allen CT, Morgan EL, Van Waes C. Combined Inhibition of IAPs and WEE1 Enhances TNFα- and Radiation-Induced Cell Death in Head and Neck Squamous Carcinoma. Cancers (Basel) 2023; 15:1029. [PMID: 36831373 PMCID: PMC9954698 DOI: 10.3390/cancers15041029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a prevalent diagnosis with current treatment options that include radiotherapy and immune-mediated therapies, in which tumor necrosis factor-α (TNFα) is a key mediator of cytotoxicity. However, HNSCC and other cancers often display TNFα resistance due to activation of the canonical IKK-NFκB/RELA pathway, which is activated by, and induces expression of, cellular inhibitors of apoptosis proteins (cIAPs). Our previous studies have demonstrated that the IAP inhibitor birinapant sensitized HNSCC to TNFα-dependent cell death in vitro and radiotherapy in vivo. Furthermore, we recently demonstrated that the inhibition of the G2/M checkpoint kinase WEE1 also sensitized HNSCC cells to TNFα-dependent cell death, due to the inhibition of the pro-survival IKK-NFκB/RELA complex. Given these observations, we hypothesized that dual-antagonist therapy targeting both IAP and WEE1 proteins may have the potential to synergistically sensitize HNSCC to TNFα-dependent cell death. Using the IAP inhibitor birinapant and the WEE1 inhibitor AZD1775, we show that combination treatment reduced cell viability, proliferation and survival when compared with individual treatment. Furthermore, combination treatment enhanced the sensitivity of HNSCC cells to TNFα-induced cytotoxicity via the induction of apoptosis and DNA damage. Additionally, birinapant and AZD1775 combination treatment decreased cell proliferation and survival in combination with radiotherapy, a critical source of TNFα. These results support further investigation of IAP and WEE1 inhibitor combinations in preclinical and clinical studies in HNSCC.
Collapse
Affiliation(s)
- Tiffany Toni
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Ramya Viswanathan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yvette Robbins
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD 20892, USA
| | - Sreenivasulu Gunti
- Sinonasal and Skull Base Tumor Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angel Huynh
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD 20892, USA
| | - Hui Cheng
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anastasia L. Sowers
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clint T. Allen
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD 20892, USA
| | - Ethan L. Morgan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
Tozaki Y, Aoki H, Kato R, Toriuchi K, Arame S, Inoue Y, Hayashi H, Kubota E, Kataoka H, Aoyama M. The Combination of ATM and Chk1 Inhibitors Induces Synthetic Lethality in Colorectal Cancer Cells. Cancers (Basel) 2023; 15:cancers15030735. [PMID: 36765693 PMCID: PMC9913148 DOI: 10.3390/cancers15030735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Genetic abnormalities induce the DNA damage response (DDR), which enables DNA repair at cell cycle checkpoints. Although the DDR is thought to function in preventing the onset and progression of cancer, DDR-related proteins are also thought to contribute to tumorigenesis, tumor progression, and drug resistance by preventing irreparable genomic abnormalities from inducing cell death. In the present study, the combination of ataxia telangiectasia-mutated serine/threonine kinase (ATM) and checkpoint kinase 1 (Chk1) inhibition exhibited synergistic antitumor effects and induced synergistic lethality in colorectal cancer cells at a low dose. The ATM and Chk1 inhibitors synergistically promoted the activation of cyclin-dependent kinase 1 by decreasing the phosphorylation levels of T14 and Y15. Furthermore, the combined treatment increased the number of sub-G1-stage cells, phospho-histone H2A.X-positive cells, and TdT-mediated dUTP nick-end labeling-positive cells among colon cancer cells, suggesting that the therapy induces apoptosis. Finally, the combined treatment exhibited a robust antitumor activity in syngeneic tumor model mice. These findings should contribute to the development of new treatments for colorectal cancer that directly exploit the genomic instability of cancer cells.
Collapse
Affiliation(s)
- Yuri Tozaki
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Rina Kato
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kohki Toriuchi
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Saki Arame
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Eiji Kubota
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
- Correspondence: ; Tel.: +81-52-836-3451
| |
Collapse
|
46
|
Zhang X, Wang L, Chen S, Huang P, Ma L, Ding H, Basappa B, Zhu T, Lobie PE, Pandey V. Combined inhibition of BADSer99 phosphorylation and PARP ablates models of recurrent ovarian carcinoma. COMMUNICATIONS MEDICINE 2022; 2:82. [PMID: 35791346 PMCID: PMC9250505 DOI: 10.1038/s43856-022-00142-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
Background Poly (ADP-ribose) polymerase inhibitors (PARPis) have been approved for the treatment of recurrent epithelial ovarian cancer (EOC), regardless of BRCA status or homologous recombination repair deficiency. However, the low response of platinum-resistant EOC, the emergence of resistance in BRCA-deficient cancer, and therapy-associated toxicities in patients limit the clinical utility of PARPis in recurrent EOC. Methods The association of phosphorylated (p) BADS99 with clinicopathological parameters and survival outcomes in an EOC cohort was assessed by immunohistochemistry. The therapeutic synergy, and mechanisms thereof, between a pBADS99 inhibitor and PARPis in EOC was determined in vitro and in vivo using cell line and patient-derived models. Results A positive correlation between pBADS99 in EOC with higher disease stage and poorer survival is observed. Increased pBADS99 in EOC cells is significantly associated with BRCA-deficiency and decreased Cisplatin or Olaparib sensitivity. Pharmacological inhibition of pBADS99 synergizes with PARPis to enhance PARPi IC50 and decreases survival, foci formation, and growth in ex vivo culture of EOC cells and patient-derived organoids (PDOs). Combined inhibition of pBADS99 and PARP in EOC cells or PDOs enhances DNA damage but impairs PARPi stimulated DNA repair with a consequent increase in apoptosis. Inhibition of BADS99 phosphorylation synergizes with Olaparib to suppress the xenograft growth of platinum-sensitive and resistant EOC. Combined pBADS99-PARP inhibition produces a complete response in a PDX derived from a patient with metastatic and chemoresistant EOC. Conclusions A rational and efficacious combination strategy involving combined inhibition of pBADS99 and PARP for the treatment of recurrent EOC is presented. Ovarian cancer is difficult to successfully treat because it often recurs as the cancer becomes resistant to drugs used to treat it. As such, new drugs or combinations of drugs are needed to treat patients with recurrent ovarian cancer. Here, a drug combination is reported that is effective in experimental models of ovarian cancer, including those derived from patients. The combination approach uses drugs that have previously been approved for use in patients, known as PARP inhibitors, and another drug to inhibit cancer cell survival by targeting activation of a specific protein involved in cancer cell survival. The net effect of this drug combination in ovarian cancer models is greater than the sum of the drugs used individually. With further testing, this combination may offer a potential strategy to treat patients with recurrent ovarian cancer. Zhang et al. test the therapeutic potential of an inhibitor of BAD phosphorylation, NPB, in epithelial ovarian cancer. The authors show that the small molecule synergises with PARP inhibition to kill patient-derived ovarian cancer organoids and suppress the growth of xenograft tumours, including a cisplatin-resistant model.
Collapse
|
47
|
Jamal A, Asseri AH, Ali EMM, El-Gowily AH, Khan MI, Hosawi S, Alsolami R, Ahmed TA. Preparation of 6-Mercaptopurine Loaded Liposomal Formulation for Enhanced Cytotoxic Response in Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4029. [PMID: 36432314 PMCID: PMC9695241 DOI: 10.3390/nano12224029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
6-Mercaptopurine (6-MP) is a well-known immunosuppressive medication with proven anti-proliferative activities. 6-MP possesses incomplete and highly variable oral absorption due to its poor water solubility, which might reduce its anti-cancer properties. To overcome these negative effects, we developed neutral and positively charged drug-loaded liposomal formulations utilizing the thin-film hydration technique. The prepared liposomal formulations were characterized for their size, polydispersity index (PDI), zeta potential, and entrapment efficiency. The average size of the prepared liposomes was between 574.67 ± 37.29 and 660.47 ± 44.32 nm. Positively charged liposomes (F1 and F3) exhibited a lower PDI than the corresponding neutrally charged ones (F2 and F4). Entrapment efficiency was higher in the neutral liposomes when compared to the charged formulation. F1 showed the lowest IC50 against HepG2, HCT116, and MCF-7 cancer cells. HepG2 cells treated with F1 showed the highest level of inhibition of cell proliferation with no evidence of apoptosis. Cell cycle analysis showed an increase in the G1/G0 and S phases, along with a decrease in the G2/M phases in the cell lines treated with drug loaded positively charged liposomes when compared to free positive liposomes, indicating arrest of cells in the S phase due to the stoppage of priming and DNA synthesis outside the mitotic phase. As a result, liposomes could be considered as an effective drug delivery system for treatment of a variety of cancers; they provide a chance that a nanoformulation of 6-MP will boost the cytotoxicity of the drug in a small pharmacological dose which provides a dosage advantage.
Collapse
Affiliation(s)
- Alam Jamal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amer H. Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ehab M. M. Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Division of Biochemistry Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Afnan H. El-Gowily
- Division of Biochemistry Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reem Alsolami
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tarek A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
48
|
Multichannel nerve conduit based on chitosan derivates for peripheral nerve regeneration and Schwann cell survival. Carbohydr Polym 2022; 301:120327. [DOI: 10.1016/j.carbpol.2022.120327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
49
|
Acetylation Enhances the Anticancer Activity and Oral Bioavailability of 5-Demethyltangeretin. Int J Mol Sci 2022; 23:ijms232113284. [PMID: 36362072 PMCID: PMC9658984 DOI: 10.3390/ijms232113284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
A kind of hydroxylated polymethoxyflavone (PMFs) existing in the citrus genus, 5-Demethyltangeretin (5-DTAN), has been reported to possess several bioactivities in vitro and in vivo. The aim of this study was to investigate whether acetylation could enhance the anticancer activity and oral bioavailability of 5-DTAN. PC-3 human prostate cancer cells were treated with tangeretin (TAN), 5-DTAN, and 5-acetylated TAN (5-ATAN), and the results showed that the cytotoxic effect 5-ATAN (IC50 value of 5.1 µM) on the cell viability of PC-3 cells was stronger than that of TAN (IC50 value of 17.2 µM) and 5-DTAN (IC50 value of 11.8 µM). Compared to 5-DTAN, 5-ATAN treatment caused a more pronounced DNA ladder, increased the sub-G1 phase population, and induced G2/M phase arrest in the cell cycle of PC-3 cells. We also found that 5-ATAN triggered the activation of caspase-3 and the progression of the intrinsic mitochondrial pathway in PC-3 cells, suggesting the induction of apoptosis. In a cell wound healing test, 5-ATAN dose-dependently reduced the cell migration, and the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) was decreased after 48 h of 5-ATAN treatment. Moreover, oral administration of 5-ATAN showed a significantly stronger inhibitory effect on tumor size and tumor weight in tumor-bearing nude mice than those of vehicle or the 5-DTAN group (p < 0.05). Furthermore, pharmacokinetic results showed that single-dose oral administration of 5-ATAN exhibited a higher maximum concentration (Cmax) and area under the curve (AUC) of 5-DTAN in plasma than that of 5-DTAN. More extensive distribution of 5-DTAN to most tissues of mice was also observed in mice treated with 5-ATAN for 7 days. In conclusion, acetylation strongly enhances the anticancer activity and oral bioavailability of 5-DTAN and could be a promising strategy to promote the potential bioactivities of natural products.
Collapse
|
50
|
Magalhães M, Domínguez-Martín EM, Jorge J, Gonçalves AC, Díaz-Lanza AM, Manadas B, Efferth T, Rijo P, Cabral C. Parvifloron D-based potential therapy for glioblastoma: Inducing apoptosis via the mitochondria dependent pathway. Front Pharmacol 2022; 13:1006832. [PMID: 36313298 PMCID: PMC9605735 DOI: 10.3389/fphar.2022.1006832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022] Open
Abstract
Glioblastoma (GB) is the most malignant and frequent primary tumor of the central nervous system. The lack of diagnostic tools and the poor prognosis associated with this tumor type leads to restricted and limited options of treatment, namely surgical resection and radio-chemotherapy. However, despite these treatments, in almost all cases, patients experience relapse, leading to survival rates shorter than 5 years (∼15-18 months after diagnosis). Novel therapeutic approaches are urgently required (either by discovering new medicines or by repurposing drugs) to surpass the limitations of conventional treatments and improve patients' survival rate and quality of life. In the present work, we investigated the antitumor potential of parvifloron D (ParvD), a drug lead of natural origin, in a GB cell line panel. This natural drug lead induced G2/M cell cycle arrest and apoptosis via activation of the intrinsic mitochondria-dependent pathway. Moreover, the necessary doses of ParvD to induce pronounced inhibitory effects were substantially lower than that of temozolomide (TMZ, first-line treatment) required to promote comparable effects. Therefore, ParvD may have the potential to overcome the resistance related to TMZ and contribute to the pursuit of hopeful treatments based on ParvD as a drug lead for future chemotherapeutics.
Collapse
Affiliation(s)
- Mariana Magalhães
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Eva María Domínguez-Martín
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Lisbon, Portugal
- Departamento de Ciencias Biomédicas, Facultad de Farmacia, Universidad de Alcalá de Henares, Madrid, Spain
| | - Joana Jorge
- Laboratory of Oncobiology and Hematology, University Clinic of Hematology and Applied Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- iCBR, Group of Environment Genetics and Oncobiology (CIMAGO)—Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology, University Clinic of Hematology and Applied Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- iCBR, Group of Environment Genetics and Oncobiology (CIMAGO)—Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana María Díaz-Lanza
- Departamento de Ciencias Biomédicas, Facultad de Farmacia, Universidad de Alcalá de Henares, Madrid, Spain
| | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Patrícia Rijo
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Lisbon, Portugal
- Faculty of Pharmacy, Instituto de Investigação do Medicamento (iMed.ULisboa), University of Lisbon, Lisbon, Portugal
| | - Célia Cabral
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|