1
|
Masri JE, Afyouni A, Ghazi M, Hamideh K, Moubayed I, Jurjus A, Haidar H, Petrosyan R, Salameh P, Hosseini H. Stem cell transplantation in cerebrovascular accidents: A global bibliometric analysis (2000-2023). World J Stem Cells 2024; 16:832-841. [PMID: 39351261 PMCID: PMC11438731 DOI: 10.4252/wjsc.v16.i9.832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 09/18/2024] [Indexed: 09/24/2024] Open
Abstract
BACKGROUND Cerebrovascular accident (CVA) is a major global contributor to death and disability. As part of its medical management, researchers have recognized the importance of promising neuroprotective strategies, where stem cell transplantation (SCT) is thought to confer advantages via trophic and neuroprotective effects. AIM To evaluate the current state of research on SCT in patients with CVA, assess key trends and highlight literature gaps. METHODS PubMed was screened for SCT in CVA-related articles in October 2023, for each country during the period between 2000 and 2023. Using the World Bank data, total population and gross domestic product were collected for comparison. VOSviewer_1.6.19 was used to create the VOS figure using the results of the same query. Graphs and tables were obtained using Microsoft Office Excel. RESULTS A total of 6923 studies were identified on SCT in CVA, making 0.03% of all published studies worldwide. Approximately, 68% were conducted in high-income countries, with a significant focus on mesenchymal stem cells. The journal "Stroke" featured the largest share of these articles, with mesenchymal SCT having the highest rate of inclusion, followed by hematopoietic SCT. Over time, there has been a noticeable shift from in vitro studies, which assess stem cell proliferation and neurogenesis, to in vivo studies aimed at evaluating efficacy and safety. Additionally, the number of reviews increased along this approach. CONCLUSION This bibliometric analysis provides a comprehensive guide for physicians and researchers in the field through an objective overview of research activity, and highlights both current trends and gaps. Having a potential therapeutic role in CVA, more research is needed in the future to focus on different aspects of SCT, aiming to reach a better treatment strategy and improve life quality in patients.
Collapse
Affiliation(s)
- Jad El Masri
- École Doctorale Sciences de la Vie et de la Santé, Université Paris-Est Créteil, Créteil 94010, France
- INSERM U955-E01, Institut Mondor de Recherche Biomédicale, Université Paris-Est Créteil, Créteil 94000, France
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Ahmad Afyouni
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon
| | - Maya Ghazi
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon
- Department of Neurology, Faculty of Medicine, Lebanese American University, Beirut 1102, Lebanon
| | - Karim Hamideh
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon
| | - Israe Moubayed
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon.
| | - Hanine Haidar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Ruzanna Petrosyan
- Department of Pathology, Faculty of Medicine, Lebanese American University, Beirut 1102, Lebanon
| | - Pascale Salameh
- Faculty of Pharmacy, Lebanese University, Beirut 1102, Lebanon
- Faculty of Medicine, Lebanese American University, Beirut 1102, Lebanon
- Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia 2408, Cyprus
- Institut National de Santé Publique d'Épidémiologie Clinique et de Toxicologie-Liban, Beirut 1103, Lebanon
| | - Hassan Hosseini
- INSERM U955-E01, Institut Mondor de Recherche Biomédicale, Université Paris-Est Créteil, Créteil 94000, France
- Department of Neurology, Henri Mondor Hospital, AP-HP, Créteil 94000, France
| |
Collapse
|
2
|
A combined cell and gene therapy approach for homotopic reconstruction of midbrain dopamine pathways using human pluripotent stem cells. Cell Stem Cell 2022; 29:434-448.e5. [PMID: 35180398 DOI: 10.1016/j.stem.2022.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/24/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022]
Abstract
Midbrain dopamine (mDA) neurons can be replaced in patients with Parkinson's disease (PD) in order to provide long-term improvement in motor functions. The limited capacity for long-distance axonal growth in the adult brain means that cells are transplanted ectopically, into the striatal target. As a consequence, several mDA pathways are not re-instated, which may underlie the incomplete restoration of motor function in patients. Here, we show that viral delivery of GDNF to the striatum, in conjunction with homotopic transplantation of human pluripotent stem-cell-derived mDA neurons, recapitulates brain-wide mDA target innervation. The grafts provided re-instatement of striatal dopamine levels and correction of motor function and also connectivity with additional mDA target nuclei not well innervated by ectopic grafts. These results demonstrate the remarkable capacity for achieving functional and anatomically precise reconstruction of long-distance circuitry in the adult brain by matching appropriate growth-factor signaling to grafting of specific cell types.
Collapse
|
3
|
Yoo JE, Lee DR, Park S, Shin HR, Lee KG, Kim DS, Jo MY, Eom JH, Cho MS, Hwang DY, Kim DW. Trophoblast glycoprotein is a marker for efficient sorting of ventral mesencephalic dopaminergic precursors derived from human pluripotent stem cells. NPJ PARKINSONS DISEASE 2021; 7:61. [PMID: 34282148 PMCID: PMC8289854 DOI: 10.1038/s41531-021-00204-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/22/2021] [Indexed: 11/10/2022]
Abstract
Successful cell therapy for Parkinson’s disease (PD) requires large numbers of homogeneous ventral mesencephalic dopaminergic (vmDA) precursors. Enrichment of vmDA precursors via cell sorting is required to ensure high safety and efficacy of the cell therapy. Here, using LMX1A-eGFP knock-in reporter human embryonic stem cells, we discovered a novel surface antigen, trophoblast glycoprotein (TPBG), which was preferentially expressed in vmDA precursors. TPBG-targeted cell sorting enriched FOXA2+LMX1A+ vmDA precursors and helped attain efficient behavioral recovery of rodent PD models with increased numbers of TH+, NURR1+, and PITX3+ vmDA neurons in the grafts. Additionally, fewer proliferating cells were detected in TPBG+ cell-derived grafts than in TPBG− cell-derived grafts. Our approach is an efficient way to obtain enriched bona fide vmDA precursors, which could open a new avenue for effective PD treatment.
Collapse
Affiliation(s)
- Jeong-Eun Yoo
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Dongjin R Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sanghyun Park
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye-Rim Shin
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kun Gu Lee
- Department of Biomedical Science, CHA University, Sungnam, Gyeonggi-do, South Korea
| | - Dae-Sung Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | | | | | | | - Dong-Youn Hwang
- Department of Biomedical Science, CHA University, Sungnam, Gyeonggi-do, South Korea.
| | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea. .,Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, South Korea. .,Brain Korea 21 PLUS Program for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
4
|
de Natale ER, Wilson H, Pagano G, Politis M. Imaging Transplantation in Movement Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 143:213-263. [PMID: 30473196 DOI: 10.1016/bs.irn.2018.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell replacement therapy with graft transplantation has been tested as a disease-modifying treatment in neurodegenerative diseases characterized by the damage of a predominant cell type, such as substantia nigra dopaminergic neurons in Parkinson's disease (PD) or striatal medium spiny projection neurons in Huntington's disease (HD). The results of these trials are mixed with success in preclinical and pilot open-label trials, which were not consistently reproduced in randomized controlled trials. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) molecular imaging and functional magnetic resonance imaging allow the graft survival, and its relationship with the host tissues to be studied in vivo. In PD, PET with [18F]DOPA showed that graft survival does not necessarily correlate with the clinical improvement and PD patients with worse outcome had lower binding in the ventral striatum and a high serotonin ([11C]DASB PET) to dopamine ([18F]DOPA PET) ratio in the grafted neurons. In HD, PET with [11C]PK11195 showed the graft survival and the clinical responses may be related to the reactive activation of the host inflammatory/immune system. Findings from these studies have been used to refine study protocols and patient selection in current clinical trials, which includes identifying suitable candidates for transplantation using imaging markers and employing multiple and/or novel PET tracers to better assess graft functions and inflammatory responses to grafts.
Collapse
Affiliation(s)
- Edoardo Rosario de Natale
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Heather Wilson
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Gennaro Pagano
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Marios Politis
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom.
| |
Collapse
|
5
|
Niclis JC, Gantner CW, Hunt CPJ, Kauhausen JA, Durnall JC, Haynes JM, Pouton CW, Parish CL, Thompson LH. A PITX3-EGFP Reporter Line Reveals Connectivity of Dopamine and Non-dopamine Neuronal Subtypes in Grafts Generated from Human Embryonic Stem Cells. Stem Cell Reports 2017; 9:868-882. [PMID: 28867345 PMCID: PMC5599268 DOI: 10.1016/j.stemcr.2017.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/24/2022] Open
Abstract
Development of safe and effective stem cell-based therapies for brain repair requires an in-depth understanding of the in vivo properties of neural grafts generated from human stem cells. Replacing dopamine neurons in Parkinson's disease remains one of the most anticipated applications. Here, we have used a human PITX3-EGFP embryonic stem cell line to characterize the connectivity of stem cell-derived midbrain dopamine neurons in the dopamine-depleted host brain with an unprecedented level of specificity. The results show that the major A9 and A10 subclasses of implanted dopamine neurons innervate multiple, developmentally appropriate host targets but also that the majority of graft-derived connectivity is non-dopaminergic. These findings highlight the promise of stem cell-based procedures for anatomically correct reconstruction of specific neuronal pathways but also emphasize the scope for further refinement in order to limit the inclusion of uncharacterized and potentially unwanted cell types.
Collapse
Affiliation(s)
- Jonathan C Niclis
- Florey Institute of Neuroscience and Mental Health, Royal Parade, Parkville, VIC 3010, Australia
| | - Carlos W Gantner
- Florey Institute of Neuroscience and Mental Health, Royal Parade, Parkville, VIC 3010, Australia
| | - Cameron P J Hunt
- Florey Institute of Neuroscience and Mental Health, Royal Parade, Parkville, VIC 3010, Australia; Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jessica A Kauhausen
- Florey Institute of Neuroscience and Mental Health, Royal Parade, Parkville, VIC 3010, Australia
| | - Jennifer C Durnall
- Florey Institute of Neuroscience and Mental Health, Royal Parade, Parkville, VIC 3010, Australia
| | - John M Haynes
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Clare L Parish
- Florey Institute of Neuroscience and Mental Health, Royal Parade, Parkville, VIC 3010, Australia.
| | - Lachlan H Thompson
- Florey Institute of Neuroscience and Mental Health, Royal Parade, Parkville, VIC 3010, Australia.
| |
Collapse
|
6
|
Linazasoro G. Cell Therapy for Parkinson's Disease: Only Young Onset Patients Allowed? Reflections about the Results of Recent Clinical Trials with Cell Therapy and the Progression of Parkinson's Disease. Cell Transplant 2017; 15:463-73. [PMID: 17121157 DOI: 10.3727/000000006783981792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The selection of the best candidates for surgery among Parkinson's disease (PD) patients is a debated topic. This could be particularly important for transplantation studies in which patients with advanced PD and motor complications refractory to conventional pharmacological treatments are usually included. The development of lesions in nondopaminergic structures, which apparently are unaffected by the intervention, could eventually lead to the appearance of disabling, treatment-resistant symptoms. This has been considered as the crucial factor responsible for the outcome of any therapeutic procedure. However, other factors might be involved. It is suggested in this article that the rate of progression of PD and the effects of ageing are more important than the extradopaminergic involvement in the final outcome. Rate of progression of PD is critically related to the power of compensatory mechanisms, which are age related and under the control of still unknown genes. Thus, patients with young onset parkinsonism (YOP), either caused by gene mutations or not, could be the best candidates for surgery because they have a slower disease progression and more competent compensatory mechanisms. On the other hand, this can also explain the appearance of unexpected side effects such as the “runaway” dyskinesias reported following transplantation.
Collapse
Affiliation(s)
- Gurutz Linazasoro
- Centro de Investigación Parkinson (CIP), Policlínica Gipuzkoa, San Sebastiáin, Spain.
| |
Collapse
|
7
|
Sano N, Shimogawa T, Sakaguchi H, Ioroi Y, Miyawaki Y, Morizane A, Miyamoto S, Takahashi J. Enhanced Axonal Extension of Subcortical Projection Neurons Isolated from Murine Embryonic Cortex using Neuropilin-1. Front Cell Neurosci 2017; 11:123. [PMID: 28507510 PMCID: PMC5410565 DOI: 10.3389/fncel.2017.00123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022] Open
Abstract
The cerebral cortical tissue of murine embryo and pluripotent stem cell (PSC)-derived neurons can survive in the brain and extend axons to the spinal cord. For efficient cell integration to the corticospinal tract (CST) after transplantation, the induction or selection of cortical motor neurons is important. However, precise information about the appropriate cell population remains unclear. To address this issue, we isolated cells expressing Neuropilin-1 (NRP1), a major axon guidance molecule receptor during the early developmental stage, from E14.5 mouse embryonic frontal cortex by fluorescence-activated cell sorting. Aggregates of NRP1+ cells gradually expressed subcortical projection neuron markers, Ctip2 and VGluT1, and axon guidance molecule receptors, Robo1 and deleted in colorectal calcinoma (Dcc), in vitro, suggesting that they contained early-stage subcortical projection neurons. We transplanted NRP1+ cells into the frontal cortex of P2 neonatal mice. Compared with grafts derived from NRP1− or unsorted cells, those derived from NRP1+ cells extended a larger number of axons to the spinal cord along the CST. Our data suggest that sorting NRP1+ cells from the embryonic cerebral cortex enriches subcortical projection neurons to reconstruct the CST.
Collapse
Affiliation(s)
- Noritaka Sano
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto UniversityKyoto, Japan.,Department of Neurosurgery, Kyoto University School of MedicineKyoto, Japan
| | - Takafumi Shimogawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto UniversityKyoto, Japan.,Department of Neurosurgery, Graduate School of Medical sciences, Kyushu UniversityFukuoka, Japan
| | - Hideya Sakaguchi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto UniversityKyoto, Japan
| | - Yoshihiko Ioroi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto UniversityKyoto, Japan.,Department of Neurosurgery, National Hospital Organization Himeji Medical CenterHyogo, Japan
| | - Yoshifumi Miyawaki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto UniversityKyoto, Japan
| | - Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto UniversityKyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University School of MedicineKyoto, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto UniversityKyoto, Japan.,Department of Neurosurgery, Kyoto University School of MedicineKyoto, Japan
| |
Collapse
|
8
|
Björklund A, Lindvall O. Replacing Dopamine Neurons in Parkinson's Disease: How did it happen? JOURNAL OF PARKINSON'S DISEASE 2017; 7:S21-S31. [PMID: 28282811 PMCID: PMC5345652 DOI: 10.3233/jpd-179002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The efforts to develop a dopamine cell replacement therapy for Parkinson's disease have spanned over more than three decades. Based on almost 10 years of transplantation studies in animal models, the first patients receiving grafts of fetal-derived dopamine neuroblasts were operated in Lund in 1987. Over the following two decades, a total of 18 patients were transplanted and followed closely by our team with mixed but also very encouraging results. In this article we tell the story of how the preclinical and clinical transplantation program in Lund evolved. We recall the excitement when we obtained the first evidence for survival and function of transplanted neurons in the diseased human brain. We also remember the setbacks that we have experienced during these 30 years and discuss the very interesting developments that are now taking place in this exciting field.
Collapse
Affiliation(s)
- Anders Björklund
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund, Sweden
| | - Olle Lindvall
- Department of Clinical Sciences, and Lund Stem Cell Center, Division of Neurology, University Hospital, Lund, Sweden
| |
Collapse
|
9
|
Chen Y, Xiong M, Dong Y, Haberman A, Cao J, Liu H, Zhou W, Zhang SC. Chemical Control of Grafted Human PSC-Derived Neurons in a Mouse Model of Parkinson's Disease. Cell Stem Cell 2016; 18:817-826. [PMID: 27133795 DOI: 10.1016/j.stem.2016.03.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/16/2015] [Accepted: 03/23/2016] [Indexed: 01/21/2023]
Abstract
Transplantation of human pluripotent stem cell (hPSC)-derived neurons is a promising avenue for treating disorders including Parkinson's disease (PD). Precise control over engrafted cell activity is highly desired, as cells do not always integrate properly into host circuitry and can cause suboptimal graft function or undesired outcomes. Here, we show tunable rescue of motor function in a mouse model of PD, following transplantation of human midbrain dopaminergic (mDA) neurons differentiated from hPSCs engineered to express DREADDs (designer receptors exclusively activated by designer drug). Administering clozapine-N-oxide (CNO) enabled precise DREADD-dependent stimulation or inhibition of engrafted neurons, revealing D1 receptor-dependent regulation of host neuronal circuitry by engrafted cells. Transplanted cells rescued motor defects, which could be reversed or enhanced by CNO-based control of graft function, and activating engrafted cells drives behavioral changes in transplanted mice. These results highlight the ability to exogenously and noninvasively control and refine therapeutic outcomes following cell transplantation.
Collapse
Affiliation(s)
- Yuejun Chen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Man Xiong
- Institute of Pediatrics, Children's Hospital, Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Yi Dong
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Jingyuan Cao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Huisheng Liu
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wenhao Zhou
- Institute of Pediatrics, Children's Hospital, Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
10
|
Ali SA, Yin N, Rehman A, Justilien V. Parkinson Disease-Mediated Gastrointestinal Disorders and Rational for Combinatorial Therapies. Med Sci (Basel) 2016; 4:medsci4010001. [PMID: 29083365 PMCID: PMC5635767 DOI: 10.3390/medsci4010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 12/24/2015] [Accepted: 01/13/2016] [Indexed: 12/29/2022] Open
Abstract
A gradual loss of dopamine-producing nerve cells gives rise to a common neurodegenerative Parkinson’s disease (PD). This disease causes a neurotransmitter imbalance in the brain and initiates a cascade of complications in the rest of the body that appears as distressing symptoms which include gait problems, tremor, gastrointestinal (GI) disorders and cognitive decline. To aid dopamine deficiency, treatment in PD patients includes oral medications, in addition to other methods such as deep brain stimulation and surgical lesioning. Scientists are extensively studying molecular and signaling mechanisms, particularly those involving phenotypic transcription factors and their co-regulatory proteins that are associated with neuronal stem cell (SC) fate determination, maintenance and disease state, and their role in the pathogenesis of PD. Advancement in scientific research and “personalized medicine” to augment current therapeutic intervention and minimize the side effects of chemotherapy may lead to the development of more effective therapeutic strategies in the near future. This review focuses on PD and associated GI complications and summarizes the current therapeutic modalities that include stem cell studies and combinatorial drug treatment.
Collapse
Affiliation(s)
- Syed A Ali
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL 32224, USA.
| | - Ning Yin
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL 32224, USA.
| | - Arkam Rehman
- Department of Pain Medicine, Baptist Medical Center, Jacksonville, FL 32258, USA.
| | - Verline Justilien
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL 32224, USA.
| |
Collapse
|
11
|
Functionalized composite scaffolds improve the engraftment of transplanted dopaminergic progenitors in a mouse model of Parkinson's disease. Biomaterials 2016; 74:89-98. [DOI: 10.1016/j.biomaterials.2015.09.039] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 12/16/2022]
|
12
|
Fu MH, Li CL, Lin HL, Chen PC, Calkins MJ, Chang YF, Cheng PH, Yang SH. Stem cell transplantation therapy in Parkinson's disease. SPRINGERPLUS 2015; 4:597. [PMID: 26543732 PMCID: PMC4628010 DOI: 10.1186/s40064-015-1400-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/06/2015] [Indexed: 02/06/2023]
Abstract
Ineffective therapeutic treatments and inadequate repair ability in the central nervous system are disturbing problems for several neurological diseases. Fortunately, the development of clinically applicable populations of stem cells has provided an avenue to overcome the failure of endogenous repair systems and substitute new cells into the damaged brain. However, there are still several existing obstacles to translating into clinical application. Here we review the stem-cell based therapies for Parkinson’s disease and discuss the potential advantages and drawbacks. We hope this review may provide suggestions for viable strategies to overcome the current technical and biological issues associated with the application of stem cells in Parkinson’s disease.
Collapse
Affiliation(s)
- Mu-Hui Fu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301 Taiwan
| | - Chia-Ling Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Hsiu-Lien Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Division of Breeding and Genetics, Livestock Research Institute, Council of Agriculture, Tainan, 71246 Taiwan
| | - Pei-Chun Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Marcus J Calkins
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Yu-Fan Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Pei-Hsun Cheng
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Shang-Hsun Yang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| |
Collapse
|
13
|
Thompson LH, Björklund A. Reconstruction of brain circuitry by neural transplants generated from pluripotent stem cells. Neurobiol Dis 2015; 79:28-40. [PMID: 25913029 DOI: 10.1016/j.nbd.2015.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/09/2015] [Accepted: 04/15/2015] [Indexed: 12/15/2022] Open
Abstract
Pluripotent stem cells (embryonic stem cells, ESCs, and induced pluripotent stem cells, iPSCs) have the capacity to generate neural progenitors that are intrinsically patterned to undergo differentiation into specific neuronal subtypes and express in vivo properties that match the ones formed during normal embryonic development. Remarkable progress has been made in this field during recent years thanks to the development of more refined protocols for the generation of transplantable neuronal progenitors from pluripotent stem cells, and the access to new tools for tracing of neuronal connectivity and assessment of integration and function of grafted neurons. Recent studies in brains of neonatal mice or rats, as well as in rodent models of brain or spinal cord damage, have shown that ESC- or iPSC-derived neural progenitors can be made to survive and differentiate after transplantation, and that they possess a remarkable capacity to extend axons over long distances and become functionally integrated into host neural circuitry. Here, we summarize these recent developments in the perspective of earlier studies using intracerebral and intraspinal transplants of primary neurons derived from fetal brain, with special focus on the ability of human ESC- and iPSC-derived progenitors to reconstruct damaged neural circuitry in cortex, hippocampus, the nigrostriatal system and the spinal cord, and we discuss the intrinsic and extrinsic factors that determine the growth properties of the grafted neurons and their capacity to establish target-specific long-distance axonal connections in the damaged host brain.
Collapse
Affiliation(s)
- Lachlan H Thompson
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Anders Björklund
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, S-22184 Lund, Sweden.
| |
Collapse
|
14
|
Rumpel R, Hohmann M, Klein A, Wesemann M, Baumgärtner W, Ratzka A, Grothe C. Transplantation of fetal ventral mesencephalic progenitor cells overexpressing high molecular weight fibroblast growth factor 2 isoforms in 6-hydroxydopamine lesioned rats. Neuroscience 2015; 286:293-307. [DOI: 10.1016/j.neuroscience.2014.11.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/12/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
|
15
|
Jgamadze D, Liu L, Vogler S, Chu LY, Pautot S. Thermoswitching Microgel Carriers Improve Neuronal Cell Growth and Cell Release for Cell Transplantation. Tissue Eng Part C Methods 2015; 21:65-76. [DOI: 10.1089/ten.tec.2013.0752] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Dennis Jgamadze
- TUD- DFG-Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Li Liu
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Steffen Vogler
- TUD- DFG-Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Sophie Pautot
- TUD- DFG-Research Center for Regenerative Therapies Dresden, Dresden, Germany
| |
Collapse
|
16
|
Cisbani G, Cicchetti F. Review: The fate of cell grafts for the treatment of Huntington's disease: thepost-mortemevidence. Neuropathol Appl Neurobiol 2014; 40:71-90. [DOI: 10.1111/nan.12104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 12/03/2013] [Indexed: 12/13/2022]
Affiliation(s)
- G. Cisbani
- Centre de Recherche du CHU de Québec (CHUL); Québec QC Canada
| | - F. Cicchetti
- Centre de Recherche du CHU de Québec (CHUL); Québec QC Canada
- Département de Psychiatrie et Neurosciences; Université Laval; Québec QC Canada
| |
Collapse
|
17
|
Abstract
The aim of stem cell therapy for Parkinson's disease is to reconstruct nigro-striatal neuronal pathways using endogenous neural stem/precursor cells or grafted dopaminergic neurons. As an alternative, transplantation of stem cell-derived dopaminergic neurons into the striatum has been attempted, with the aim of stimulating local synapse formation and/or release of dopamine and cytokines from grafted cells. Candidate stem cells include neural stem/precursor cells, embryonic stem cells and other stem/precursor cells. Among these, embryonic stem cells are pluripotent cells that proliferate extensively, making them a good potential donor source for transplantation. However, tumor formation and ethical issues present major problems for embryonic stem cell therapy. This review describes the current status of stem cell therapy for Parkinson's disease, as well as future research approaches from a clinical perspective.
Collapse
Affiliation(s)
- Jun Takahashi
- Kyoto University, Department of Biological Repair, Institute for Frontier Medical Sciences, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
18
|
Fargen KM, Mocco J, Hoh BL. Can We Rebuild the Human Brain? The Exciting Promise and Early Evidence That Stem Cells May Provide a Real Clinical Cure for Stroke in Humans. World Neurosurg 2013; 80:e69-72. [DOI: 10.1016/j.wneu.2012.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/20/2012] [Indexed: 01/29/2023]
|
19
|
Abstract
Transplants of cells and tissues to the central nervous system of adult mammals can, under appropriate conditions, survive, integrate, and function. In particular, the grafted cells can sustain functional recovery in animal models of a range of neurodegenerative conditions including genetic and idiopathic neurodegenerative diseases of adulthood and aging, ischemic stroke, and brain and spinal cord trauma. In a restricted subset of such conditions, cell transplantation has progressed to application in humans in early-stage clinical trials. At the present stage of play, there is clear evidence of clinical efficacy of fetal cell transplants in Parkinson disease (notwithstanding a range of technical difficulties still to be fully resolved), and preliminary claims of promising outcomes in several other severe neurodegenerative conditions, including Huntington disease and stroke. Moreover, the experimental literature is increasingly suggesting that the experience and training of the graft recipient materially affects the functional outcome. For example, environmental enrichment, behavioral activity, and specific training can enhance the recovery process to maximize functional recovery. There are even circumstances where the grafted cells have been demonstrated to restore the neural substrate for new learning. Consequently, it is not sufficient to replace lost cells anatomically; rather, for the grafts to be effective, they need to be integrated functionally into the host circuitry, and the host animal requires training and rehabilitation to maximize function of the reconstructed graft-host circuitry. Such observations require reconsideration of the design of the next generation of clinical trials and subsequent service delivery, to include physiotherapists, cognitive therapists, and rehabilitation experts as core members of the transplant team, along with the neurologists and neurosurgeons that have conventionally led the field.
Collapse
Affiliation(s)
- Stephen B Dunnett
- Department of Biosciences, The Brain Repair Group, Cardiff University, Cardiff, Wales, UK.
| |
Collapse
|
20
|
Transplantation of fetal midbrain dopamine progenitors into a rodent model of Parkinson's disease. Methods Mol Biol 2013; 1059:169-80. [PMID: 23934843 DOI: 10.1007/978-1-62703-574-3_15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell therapy is a promising experimental treatment for Parkinson's disease (PD). It is based on the idea that new dopamine neurons transplanted directly into the forebrain of the patient can structurally and functionally compensate for those lost to the disease in order to restore motor function. While there is a highly active field of research focused on the development of stem cell-based procedures, fetal tissue remains the "gold standard" as a safe and reliable source of dopamine neuron progenitors capable of structural and functional integration with existing motor circuitry following transplantation. This chapter describes the basic procedures for preparation of dopamine progenitor rich cell suspensions of ventral mesencephalon as well as implantation into the unilateral 6-hydroxydopamine model of PD and assessment of functional impact according to drug-induced rotational behavior. The description assumes a basic knowledge of animal handling and stereotaxic surgical procedures in rodents.
Collapse
|
21
|
Alwin Prem Anand A, Gowri Sankar S, Kokila Vani V. Immortalization of neuronal progenitors using SV40 large T antigen and differentiation towards dopaminergic neurons. J Cell Mol Med 2012; 16:2592-610. [PMID: 22863662 PMCID: PMC4118228 DOI: 10.1111/j.1582-4934.2012.01607.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 07/16/2012] [Indexed: 01/19/2023] Open
Abstract
Transplantation is common in clinical practice where there is availability of the tissue and organ. In the case of neurodegenerative disease such as Parkinson's disease (PD), transplantation is not possible as a result of the non-availability of tissue or organ and therefore, cell therapy is an innovation in clinical practice. However, the availability of neuronal cells for transplantation is very limited. Alternatively, immortalized neuronal progenitors could be used in treating PD. The neuronal progenitor cells can be differentiated into dopaminergic phenotype. Here in this article, the current understanding of the molecular mechanisms involved in the differentiation of dopaminergic phenotype from the neuronal progenitors immortalized with SV40 LT antigen is discussed. In addition, the methods of generating dopaminergic neurons from progenitor cells and the factors that govern their differentiation are elaborated. Recent advances in cell-therapy based transplantation in PD patients and future prospects are discussed.
Collapse
|
22
|
Fan HC, Chen SJ, Harn HJ, Lin SZ. Parkinson's disease: from genetics to treatments. Cell Transplant 2012; 22:639-52. [PMID: 23127617 DOI: 10.3727/096368912x655082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease and typically presents with tremor, rigidity, bradykinesia, and postural instability. The hallmark pathological features of PD are loss of dopaminergic neurons in the substantia nigra (SN) and the presence of neuronal intracellular Lewy body (LB) inclusions. In general, PD is sporadic; however, familial PD, while uncommon, can be inherited in an autosomal dominant (AD) or autosomal recessive (AR) manner. The molecular investigations of proteins encoded by PD-linked genes have clarified that ADPD is associated with α-synuclein and LRRK2, while ARPD is linked to Parkin, PINK1, DJ1, and ATP13A2. Understanding these genes can bring insights into this disease and create possible genetic tests for early diagnosis. Long-term pharmacological treatment is so far disappointing, probably due to unwanted complications and decreasing drug efficacy. Several strategies have been proposed and tested as alternatives for PD. Cellular transplantation of dopamine-secreting stem cells opens the door to new therapeutic avenues for restoration of the functions of degenerative and/or damaged neurons in PD.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
23
|
López-Bendito G, Arlotta P. Cell replacement therapies for nervous system regeneration. Dev Neurobiol 2012; 72:145-52. [PMID: 21557508 DOI: 10.1002/dneu.20897] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The adult brain was thought to be a slowly decaying organ, a sophisticated but flawed machine condemned to inevitable decline. Today we know that the brain is more plastic than previously assumed, as most prominently demonstrated by the constitutive birth of new neurons that occurs in selected regions of the adult brain, even in humans. However, the overall modest capacity for endogenous repair of the central nervous system (CNS) has sparked interest in understanding the barriers to neuronal regeneration and in developing novel approaches to enable neuronal and circuit repair for therapeutic benefit in neurodegenerative disorders and traumatic injuries. Scientists recently assembled in Baeza, a picturesque town in the south of Spain, to discuss aspects of CNS regeneration. The picture that emerged shows how an integrated view of developmental and adult neurogenesis may inform the manipulation of neural progenitors, differentiated cells, and pluripotent stem cells for therapeutic benefit and foster new understanding of the inner limits of brain plasticity.
Collapse
Affiliation(s)
- Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Joan d'Alacant, 03550, Spain.
| | | |
Collapse
|
24
|
Denham M, Parish CL, Leaw B, Wright J, Reid CA, Petrou S, Dottori M, Thompson LH. Neurons derived from human embryonic stem cells extend long-distance axonal projections through growth along host white matter tracts after intra-cerebral transplantation. Front Cell Neurosci 2012; 6:11. [PMID: 22470319 PMCID: PMC3311135 DOI: 10.3389/fncel.2012.00011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/01/2012] [Indexed: 12/17/2022] Open
Abstract
Human pluripotent stem cells have the capacity for directed differentiation into a wide variety of neuronal subtypes that may be useful for brain repair. While a substantial body of research has lead to a detailed understanding of the ability of neurons in fetal tissue grafts to structurally and functionally integrate after intra-cerebral transplantation, we are only just beginning to understand the in vivo properties of neurons derived from human pluripotent stem cells. Here we have utilized the human embryonic stem (ES) cell line Envy, which constitutively expresses green fluorescent protein (GFP), in order to study the in vivo properties of neurons derived from human ES cells. Rapid and efficient neural induction, followed by differentiation as neurospheres resulted in a GFP+ neural precursor population with traits of neuroepithelial and dorsal forebrain identity. Ten weeks after transplantation into neonatal rats, GFP+ fiber patterns revealed extensive axonal growth in the host brain, particularly along host white matter tracts, although innervation of adjacent nuclei was limited. The grafts were composed of a mix of neural cell types including differentiated neurons and glia, but also dividing neural progenitors and migrating neuroblasts, indicating an incomplete state of maturation at 10 weeks. This was reflected in patch-clamp recordings showing stereotypical properties appropriate for mature functional neurons, including the ability to generate action potentials, as well profiles consistent for more immature neurons. These findings illustrate the intrinsic capacity for neurons derived from human ES cells to integrate at a structural and functional level following transplantation.
Collapse
Affiliation(s)
- Mark Denham
- Centre for Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Jgamadze D, Bergen J, Stone D, Jang JH, Schaffer DV, Isacoff EY, Pautot S. Colloids as mobile substrates for the implantation and integration of differentiated neurons into the mammalian brain. PLoS One 2012; 7:e30293. [PMID: 22295079 PMCID: PMC3266246 DOI: 10.1371/journal.pone.0030293] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/13/2011] [Indexed: 01/19/2023] Open
Abstract
Neuronal degeneration and the deterioration of neuronal communication lie at the origin of many neuronal disorders, and there have been major efforts to develop cell replacement therapies for treating such diseases. One challenge, however, is that differentiated cells are challenging to transplant due to their sensitivity both to being uprooted from their cell culture growth support and to shear forces inherent in the implantation process. Here, we describe an approach to address these problems. We demonstrate that rat hippocampal neurons can be grown on colloidal particles or beads, matured and even transfected in vitro, and subsequently transplanted while adhered to the beads into the young adult rat hippocampus. The transplanted cells have a 76% cell survival rate one week post-surgery. At this time, most transplanted neurons have left their beads and elaborated long processes, similar to the host neurons. Additionally, the transplanted cells distribute uniformly across the host hippocampus. Expression of a fluorescent protein and the light-gated glutamate receptor in the transplanted neurons enabled them to be driven to fire by remote optical control. At 1-2 weeks after transplantation, calcium imaging of host brain slice shows that optical excitation of the transplanted neurons elicits activity in nearby host neurons, indicating the formation of functional transplant-host synaptic connections. After 6 months, the transplanted cell survival and overall cell distribution remained unchanged, suggesting that cells are functionally integrated. This approach, which could be extended to other cell classes such as neural stem cells and other regions of the brain, offers promising prospects for neuronal circuit repair via transplantation of in vitro differentiated, genetically engineered neurons.
Collapse
Affiliation(s)
| | - Jamie Bergen
- Department of Chemical Engineering, University of California, Berkeley, California, United States of America
| | - Daniel Stone
- Department of Chemical Engineering, University of California, Berkeley, California, United States of America
| | - Jae-Hyung Jang
- Department of Chemical Engineering, University of California, Berkeley, California, United States of America
| | - David V. Schaffer
- Department of Chemical Engineering, University of California, Berkeley, California, United States of America
| | - Ehud Y. Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail: (EYI); (SP)
| | - Sophie Pautot
- Center for Regenerative Therapies Dresden, Dresden, Germany
- * E-mail: (EYI); (SP)
| |
Collapse
|
26
|
Evans JR, Mason SL, Barker RA. Current status of clinical trials of neural transplantation in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2012. [DOI: 10.1016/b978-0-444-59575-1.00008-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Survival, differentiation, and connectivity of ventral mesencephalic dopamine neurons following transplantation. PROGRESS IN BRAIN RESEARCH 2012. [DOI: 10.1016/b978-0-444-59575-1.00004-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Thompson JA, Ziman M. Pax genes during neural development and their potential role in neuroregeneration. Prog Neurobiol 2011; 95:334-51. [DOI: 10.1016/j.pneurobio.2011.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 12/18/2022]
|
29
|
Abstract
The main pathology underlying motor symptoms in Parkinson's disease (PD) is a rather selective degeneration of nigrostriatal dopamine (DA) neurons. Intrastriatal transplantation of immature DA neurons, which replace those neurons that have died, leads to functional restoration in animal models of PD. Here we describe how far the clinical translation of the DA neuron replacement strategy has advanced. We briefly summarize the lessons learned from the early clinical trials with grafts of human fetal mesencephalic tissue, and discuss recent findings suggesting susceptibility of these grafts to the disease process long-term after implantation. Mechanisms underlying graft-induced dyskinesias, which constitute the only significant adverse event observed after neural transplantation, and how they should be prevented and treated are described. We summarize the attempts to generate DA neurons from stem cells of various sources and patient-specific DA neurons from fully differentiated somatic cells, with particular emphasis on the requirements of these cells to be useful in the clinical setting. The rationale for the new clinical trial with transplantation of fetal mesencephalic tissue is described. Finally, we discuss the scientific and clinical advancements that will be necessary to develop a competitive cell therapy for PD patients.
Collapse
Affiliation(s)
- Olle Lindvall
- Laboratory of Neurogenesis and Cell Therapy, Wallenberg Neuroscience Center, University Hospital, SE-22184 Lund, Sweden.
| | | |
Collapse
|
30
|
Wakeman DR, Dodiya HB, Kordower JH. Cell transplantation and gene therapy in Parkinson's disease. ACTA ACUST UNITED AC 2011; 78:126-58. [PMID: 21259269 DOI: 10.1002/msj.20233] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder affecting, in part, dopaminergic motor neurons of the ventral midbrain and their terminal projections that course to the striatum. Symptomatic strategies focused on dopamine replacement have proven effective at remediating some motor symptoms during the course of disease but ultimately fail to deliver long-term disease modification and lose effectiveness due to the emergence of side effects. Several strategies have been experimentally tested as alternatives for Parkinson's disease, including direct cell replacement and gene transfer through viral vectors. Cellular transplantation of dopamine-secreting cells was hypothesized as a substitute for pharmacotherapy to directly provide dopamine, whereas gene therapy has primarily focused on restoration of dopamine synthesis or neuroprotection and restoration of spared host dopaminergic circuitry through trophic factors as a means to enhance sustained controlled dopamine transmission. This seems now to have been verified in numerous studies in rodents and nonhuman primates, which have shown that grafts of fetal dopamine neurons or gene transfer through viral vector delivery can lead to improvements in biochemical and behavioral indices of dopamine deficiency. However, in clinical studies, the improvements in parkinsonism have been rather modest and variable and have been plagued by graft-induced dyskinesias. New developments in stem-cell transplantation and induced patient-derived cells have opened the doors for the advancement of cell-based therapeutics. In addition, viral-vector-derived therapies have been developed preclinically with excellent safety and efficacy profiles, showing promise in clinical trials thus far. Further progress and optimization of these therapies will be necessary to ensure safety and efficacy before widespread clinical use is deemed appropriate.
Collapse
|
31
|
Politis M. Optimizing functional imaging protocols for assessing the outcome of fetal cell transplantation in Parkinson's disease. BMC Med 2011; 9:50. [PMID: 21569273 PMCID: PMC3098794 DOI: 10.1186/1741-7015-9-50] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/10/2011] [Indexed: 11/30/2022] Open
Abstract
Clinical trials aiming to assess the safety and efficacy of fetal cell transplantation in Parkinson's disease rely on the hypothesis that the grafted tissue will survive and grow, restore striatal dopaminergic neurotransmission, improve the connectivity between striatum, thalamus and cortex and, thereby, produce long-lasting clinical improvement while avoiding the development of adverse effects. Although transplantation of human fetal ventral mesencephalic tissue has been reported as one of the most effective reparative therapies in Parkinson's disease patients to date, different studies have shown inconsistent results causing a paucity of new trials over the last decade. However, during this period, functional imaging alongside other scientific developments from clinical observations and animal work has significantly aided in understanding the mechanisms responsible for the success or failure of grafting human fetal tissue. Recent advances in functional imaging including both positron emission tomography and functional magnetic resonance imaging could be proven useful in vivo tools for the development and assessment of new clinically competitive trials. In this commentary we discuss how an optimized functional imaging protocol could assist new clinical trials using fetal cell transplantation in Parkinson's disease.
Collapse
Affiliation(s)
- Marios Politis
- Centre for Neuroscience, Department of Medicine, Hammersmith Hospital, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
32
|
Chen YC, Tsai KL, Hung CW, Ding DC, Chen LH, Chang YL, Chen LK, Chiou SH. Induced pluripotent stem cells and regenerative medicine. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.jcgg.2010.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Lonardo E, Parish CL, Ponticelli S, Marasco D, Ribeiro D, Ruvo M, De Falco S, Arenas E, Minchiotti G. A small synthetic cripto blocking Peptide improves neural induction, dopaminergic differentiation, and functional integration of mouse embryonic stem cells in a rat model of Parkinson's disease. Stem Cells 2011; 28:1326-37. [PMID: 20641036 DOI: 10.1002/stem.458] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cripto is a glycosylphosphatidylinositol-anchored coreceptor that binds Nodal and the activin type I (ALK)-4 receptor, and is involved in cardiac differentiation of mouse embryonic stem cells (mESCs). Interestingly, genetic ablation of cripto results in increased neuralization and midbrain dopaminergic (DA) differentiation of mESCs, as well as improved DA cell replacement therapy (CRT) in a model of Parkinson's disease (PD). In this study, we developed a Cripto specific blocking tool that would mimic the deletion of cripto, but could be easily applied to embryonic stem cell (ESC) lines without the need of genetic manipulation. We thus screened a combinatorial peptide library and identified a tetrameric tripeptide, Cripto blocking peptide (BP), which prevents Cripto/ALK-4 receptor interaction and interferes with Cripto signaling. Cripto BP treatment favored neuroectoderm formation and promoted midbrain DA neuron differentiation of mESCs in vitro and in vivo. Remarkably, Cripto BP-treated ESCs, when transplanted into the striatum of PD rats, enhanced functional recovery and reduced tumor formation, mimicking the effect of genetic ablation of cripto. We therefore suggest that specific blockers such as Cripto BP may be used to improve the differentiation of ESC-derived DA neurons in vitro and their engraftment in vivo, bringing us closer towards an application of ESCs in CRT.
Collapse
Affiliation(s)
- Enza Lonardo
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The history of cell transplantation in the nervous system is reviewed in four main sections. The "early era" spans the period from 1890 to 1940, during which the first attempts at cell transplantation in the brain were undertaken. Many contemporary themes were first addressed such as surgical factors to achieve survival of grafted cells and how that should be assessed, immunological factors, use of tumors as a readily viable cell source; and use of the anterior eye chamber as a model transplantation site. However, such studies generally exhibited only low levels of viability or successful implantation. The "middle era" from 1940 to 1970 spans the period when the techniques for viable and reliable cell transplantation using embryonic donor tissues implanted into sites with effective vascularization were first established in brain and neuroendocrine systems in a limited number of specialist centers. However, although sometimes impressive, these results were at variance with the prevailing view that the adult mammalian brain is immutable and resistant to plasticity, growth or regeneration, and were largely ignored. The "modern era," since 1970, began with the pioneering studies that combined cell transplantation with the use of improved histochemical and ultrastructural anatomical techniques to demonstrate selectivity, specificity and regenerative capacity of implanted cells, and the slow acceptance that the adult brain does exhibit considerable potential for plasticity and repair. The last three decades have witnessed the identification of reliable and efficient transplantation technologies combined with progressively refined methods of molecular, cellular, biochemical, physiological and functional analysis. This now enables the ready use of cell transplantation as a powerful novel method within the neuroscience tool-kit, which is being used: to analyze normal organization and function of the nervous system; to reveal the biological mechanisms and principles of neuronal development, regeneration and plasticity; and to study the principles of surgically directed cell therapies for promoting plasticity, replacement and repair in response to injury and disease. The final section reviews recent progress in translating cell transplantation to the clinic for application in Parkinson's and other central nervous system diseases.
Collapse
|
35
|
Hung CW, Chen YC, Hsieh WL, Chiou SH, Kao CL. Ageing and neurodegenerative diseases. Ageing Res Rev 2010; 9 Suppl 1:S36-46. [PMID: 20732460 DOI: 10.1016/j.arr.2010.08.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 08/04/2010] [Indexed: 02/06/2023]
Abstract
Ageing, which all creatures must encounter, is a challenge to every living organism. In the human body, it is estimated that cell division and metabolism occurs exuberantly until about 25 years of age. Beyond this age, subsidiary products of metabolism and cell damage accumulate, and the phenotypes of ageing appear, causing disease formation. Among these age-related diseases, neurodegenerative diseases have drawn a lot of attention due to their irreversibility, lack of effective treatment, and accompanied social and economical burdens. In seeking to ameliorate ageing and age-related diseases, the search for anti-ageing drugs has been of much interest. Numerous studies have shown that the plant polyphenol, resveratrol (3,5,4'-trihydroxystilbene), extends the lifespan of several species, prevents age-related diseases, and possesses anti-inflammatory, and anti-cancer properties. The beneficial effects of resveratrol are believed to be associated with the activation of a longevity gene, SirT1. In this review, we discuss the pathogenesis of age-related neurodegenerative diseases including Alzheimer's disease, Parkinson's disease and cerebrovascular disease. The therapeutic potential of resveratrol, diet and the roles of stem cell therapy are discussed to provide a better understanding of the ageing mystery.
Collapse
|
36
|
Döbrössy M, Busse M, Piroth T, Rosser A, Dunnett S, Nikkhah G. Neurorehabilitation with neural transplantation. Neurorehabil Neural Repair 2010; 24:692-701. [PMID: 20647502 DOI: 10.1177/1545968310363586] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cell replacement therapy has been tested clinically in Parkinson's disease (PD) and Huntington's disease (HD), epilepsy, spinal cord injury, and stroke. The clinical outcomes have been variable, perhaps partly because of the differing levels of preclinical, basic experimental evidence that was available prior to the trials. The most promising results have been seen in PD trials, with encouraging ones in HD. A common feature of most trials is that they have concentrated on the biological and technical aspects of transplantation without presupposing that the outcomes might be influenced by events after the surgery. The growing evidence of plasticity demonstrated by the brain and grafts in response to environmental and training stimuli such as rehabilitation interventions has been mostly neglected throughout the clinical application of cell therapy. This review suggests that a different approach may be required to maximize recovery: postoperative experiences, including rehabilitation with explicit behavioral retraining, could have marked direct as well as positive secondary effects on the integration and function of grafted cells in the host neural system. The knowledge gained about brain plasticity following brain damage needs to be linked with what we know about promoting intrinsic recovery processes and how this can boost neurobiological and surgical strategies for repair at the clinical level. With proof of principle now established, a rich area for innovative research with profound therapeutic application is open for investigation.
Collapse
|
37
|
Differentiation of non-mesencephalic neural stem cells towards dopaminergic neurons. Neuroscience 2010; 170:417-28. [PMID: 20643196 DOI: 10.1016/j.neuroscience.2010.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 12/22/2022]
Abstract
Neural stem cells (NSCs), either isolated from fetal or adult human brain or derived from induced pluripotent stem cells, are now considered major candidates for in vitro generation of transplantable dopaminergic (DA) neurons and modeling of Parkinson's disease. It is generally thought that in vitro differentiation of neural stem cells into meso-diencephalic dopaminergic neurons, requires recapitulation of dopaminergic differentiation pathway normally occurring in the ventral mesencephalon during embryogenesis. This dopaminergic pathway is partially activated by a combination of the extracellular induction factors Sonic Hedgehog (Shh), Fibroblast Growth Factor 8 (FGF8) and Wnt1 that trigger specific intracellular transcription cascades. In vitro mimicking of these embryonic ventral mesencephalic conditions has been successful for dopaminergic differentiation of embryonic stem cells and ventral mesencephalic NSCs. Dopaminergic differentiation of non-mesencephalic NSCs (nmNSCs), however, is considered arduous. Here we examine whether Shh, FGF8 and Wnt1 can activate typical dopaminergic transcription factors, such as Lmx1a, Msx1 and Otx2 in nmNSCs. We found that Shh, FGF8 and Wnt1 induced the expression of Lmx1a and Otx2 in nmNSCs resulting in the differentiation of up to 39% of the nmNSCs into neurons expressing Pitx3. However, only a low number ( approximately 13%) of these cells became more DA-like neurons also expressing tyrosine hydroxylase (TH). The histone deacetylase (HDAC)-inhibitor trichostatin A combined with Shh, FGF8 and Wnt1 caused orchestrated induction of Lmx1a, Otx2, Msx1 plus the early DA transcription factor En1. Now significantly increased numbers of TH ( approximately 22%) and Pitx3 ( approximately 33%) neurons were observed. Most of these cells coexpressed the DA markers DAT and Vmat2. Taken together, we demonstrate that nmNSCs indeed can be differentiated towards DA-like neurons, but this differentiation is far from complete in comparison to ventral mesencephalic NSCs and embryonic stem cells; most likely, the nmNSCs lack the proper "primed" epigenetic state of these cells for DA differentiation facilitating the induction of DA specific transcription factors.
Collapse
|
38
|
Anisimov SV. Cell-based therapeutic approaches for Parkinson's disease: progress and perspectives. Rev Neurosci 2010; 20:347-81. [PMID: 20397620 DOI: 10.1515/revneuro.2009.20.5-6.347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Motor dysfunctions in Parkinson's disease are believed to be primarily due to the degeneration of dopaminergic neurons located in the substantia nigra pars compacta. Because a single-type cell population is depleted, Parkinson's disease is considered a primary target for cell replacement-based therapeutic strategies. Extensive studies have confirmed transplantation of donor neurons could be beneficial, yet identifying an alternative cell source is clearly essential. Human embryonic stem cells (hESCs) have been proposed as a renewable source of dopaminergic neurons for transplantation in Parkinson's disease; other potential sources could include neural stem cells (hNSCs) and adult mesenchymal stem cells (hMSCs). However, numerous difficulties avert practical application of stem cell-based therapeutic approaches for the treatment of Parkinson's disease. Among the latter, ethical, safety (including xeno- and tumor formation-associated risks) and technical issues stand out. This review aims to provide a balanced and updated outlook on various issues associated with stem cells in regard to their potential in the treatment of Parkinson's disease. Essential features of the individual stem cell subtypes, principles of available differentiation protocols, transplantation, and safety issues are discussed extensively.
Collapse
Affiliation(s)
- Sergey V Anisimov
- Department of Intracellular Signalling and Transport, Institute of Cytology, Russian Academy of Sciences and Research, Saint-Petersburg, Russia.
| |
Collapse
|
39
|
Stem cell-based neuroprotective and neurorestorative strategies. Int J Mol Sci 2010; 11:2039-55. [PMID: 20559500 PMCID: PMC2885092 DOI: 10.3390/ijms11052039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/08/2010] [Accepted: 04/18/2010] [Indexed: 01/11/2023] Open
Abstract
Stem cells, a special subset of cells derived from embryo or adult tissues, are known to present the characteristics of self-renewal, multiple lineages of differentiation, high plastic capability, and long-term maintenance. Recent reports have further suggested that neural stem cells (NSCs) derived from the adult hippocampal and subventricular regions possess the utilizing potential to develop the transplantation strategies and to screen the candidate agents for neurogenesis, neuroprotection, and neuroplasticity in neurodegenerative diseases. In this article, we review the roles of NSCs and other stem cells in neuroprotective and neurorestorative therapies for neurological and psychiatric diseases. We show the evidences that NSCs play the key roles involved in the pathogenesis of several neurodegenerative disorders, including depression, stroke and Parkinson’s disease. Moreover, the potential and possible utilities of induced pluripotent stem cells (iPS), reprogramming from adult fibroblasts with ectopic expression of four embryonic genes, are also reviewed and further discussed. An understanding of the biophysiology of stem cells could help us elucidate the pathogenicity and develop new treatments for neurodegenerative disorders. In contrast to cell transplantation therapies, the application of stem cells can further provide a platform for drug discovery and small molecular testing, including Chinese herbal medicines. In addition, the high-throughput stem cell-based systems can be used to elucidate the mechanisms of neuroprotective candidates in translation medical research for neurodegenerative diseases.
Collapse
|
40
|
O’Sullivan DB, Harrison PT, Sullivan AM. Effects of GDF5 overexpression on embryonic rat dopaminergic neurones in vitro and in vivo. J Neural Transm (Vienna) 2010; 117:559-72. [DOI: 10.1007/s00702-010-0392-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 03/07/2010] [Indexed: 12/26/2022]
|
41
|
Konstantoulas CJ, Parmar M, Li M. FoxP1 promotes midbrain identity in embryonic stem cell-derived dopamine neurons by regulating Pitx3. J Neurochem 2010; 113:836-47. [PMID: 20175877 DOI: 10.1111/j.1471-4159.2010.06650.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The robust generation of midbrain dopamine neurons from embryonic stem cells and patient-specific induced pluripotent stem cells is a prospective tool for the development of new drugs and cell based therapies, and investigations into the aetiology of Parkinson's disease. To achieve this, it is crucial to identify the fate-determining regulatory factors that influence dopamine cell fate decision and the underlying molecular machinery. We identified FoxP1 as a novel marker for midbrain dopamine neurons. Enforced expression of FoxP1 in embryonic stem cells actuates the expression of Pitx3, a homeobox protein that is exclusively expressed in midbrain dopaminergic neurons and is required for their differentiation and survival during development and from embryonic stem cells in vitro. We show that FoxP1 can be recruited to the Pitx3 locus in embryonic stem cells and regulate Pitx3 promoter activity in a dual-luciferase assay. This transcriptional regulation of Pitx3 by FoxP1 depends on the presence of two high affinity binding sites in the distal Pitx3 promoter, through which FoxP1 directly binds as demonstrated by chromatin immunoprecipitation and electrophoretic mobility shift assay. Thus, this study demonstrates for the first time a transcription regulatory role for FoxP1 on the Pitx3 gene in mammalian stem cells.
Collapse
|
42
|
Manzanedo A, Rodriguez F, Obeso JA, Rodriguez M. In Vivo Growing of New Cell Colonies in a Portion of Bone Marrow: Potential Use for Indirect Cell Therapy. CELL MEDICINE 2010; 1:93-103. [PMID: 26966633 DOI: 10.3727/215517910x528969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ability of bone marrow cells (BMCs) to migrate to different organs can be used for indirect cell therapy, a procedure based on the engraftment of therapeutic cells in a different place from where they will finally move to and perform their action and which could be particularly useful for chronic illness where a persistent and long-lasting therapeutic action is required. Thus, establishing a stable colony of engineered BMCs is a requisite for the chronic provision of damaged tissues with engineered cells. Reported here is a procedure for creating such a cell colony in a portion of the bone marrow (BM). The study was performed in C57BL/6j mice and consisted of developing a focal niche in a portion of the bone marrow with focal irradiation so that it could be selectively colonized by BM cells (C57BL/6-FG-VC-GFP mice) injected in the blood stream. Both the arrival of cells coming from the nonirradiated BM (week 1 after irradiation) and the proliferation of cells in the irradiated BM (week 2) prevented the homing of injected cells in the BM niche. However, when BMCs were injected in a time window about 48 h after irradiation they migrated to the BM niche where they established a cell colony able to: 1) survive for a long period of time [the percentage of injected cells increased in the BM from day 30 postinjection (15%) to day 110 postinjection 28%)]; 2) express cell differentiation markers (90% of them were lineage committed 4 weeks after engraftment); and 3) colonize to the blood stream (with 5% and 9% of all blood cells being computed 1 and 3 months after engraftment, respectively). The intravenous injection of BMCs in combination with a previous transitory focal myeloablation is a safe and easy method for creating the long-lasting colony of modified BMCs needed for treating chronic and progressive illness with indirect cell therapy.
Collapse
Affiliation(s)
- Ana Manzanedo
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna , La Laguna, Tenerife, Canary Islands , Spain
| | - Fidel Rodriguez
- † Department of Pharmacology and Physical Medicine, Faculty of Medicine, University of La Laguna , La Laguna, Tenerife, Canary Islands , Spain
| | - Jose A Obeso
- ‡Department of Neurology and Neurosurgery, Clinica Universitaria and Medical School, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, La Laguna, Tenerife, Canary Islands, Spain; §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
43
|
|
44
|
Thompson LH, Grealish S, Kirik D, Björklund A. Reconstruction of the nigrostriatal dopamine pathway in the adult mouse brain. Eur J Neurosci 2009; 30:625-38. [DOI: 10.1111/j.1460-9568.2009.06878.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
|
46
|
Lindvall O, Kokaia Z. Prospects of stem cell therapy for replacing dopamine neurons in Parkinson's disease. Trends Pharmacol Sci 2009; 30:260-7. [PMID: 19362379 DOI: 10.1016/j.tips.2009.03.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/02/2009] [Accepted: 03/02/2009] [Indexed: 01/08/2023]
Abstract
In Parkinson's disease (PD), the main pathology is a loss of nigrostriatal dopamine (DA) neurons. Clinical trials with intrastriatal transplantation of human embryonic mesencephalic tissue have shown that grafted DA neurons reinnervate the striatum, restore striatal DA release and, in some patients, induce major clinical benefit. Stem cells could provide an unlimited source of DA neurons for transplantation. Recent studies demonstrate that cells with properties of mesencephalic DA neurons can be produced from stem cells of different sources including reprogrammed somatic cells. However, as we discuss here, it remains to be shown that these cells can provide efficient functional reinnervation and behavioral recovery in animal PD models. Moreover, a clinically competitive cell therapy for PD will require better criteria for patient selection, improved functional efficacy of grafts by a tailor-made transplantation procedure providing optimum repair of the patient's DA system and strategies to prevent dyskinesias and tumor formation.
Collapse
Affiliation(s)
- Olle Lindvall
- Laboratory of Neurogenesis and Cell Therapy, Section of Restorative Neurology, Wallenberg Neuroscience Center, University Hospital, SE-221 84 Lund, Sweden.
| | | |
Collapse
|
47
|
Fu L, Zhu L, Huang Y, Lee TD, Forman SJ, Shih CC. Derivation of neural stem cells from mesenchymal stemcells: evidence for a bipotential stem cell population. Stem Cells Dev 2009; 17:1109-21. [PMID: 18426339 DOI: 10.1089/scd.2008.0068] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neural stem cell (NSC) transplantation has been proposed as a future therapy for neurodegenerative disorders. However, NSC transplantation will be hampered by the limited number of brain donors and the toxicity of immunosuppressive regimens that might be needed with allogeneic transplantation. These limitations may be avoided if NSCs can be generated from clinically accessible sources, such as bone marrow (BM) and peripheral blood samples, that are suitable for autologous transplantation. We report here that NSCs can be generated from human BM-derived mesenchymal stem cells (MSCs). When cultured in NSC culture conditions, 8% of MSCs were able to generate neurospheres. These MSC-derived neurospheres expressed characteristic NSC antigens, such as nestin and musashi-1, and were capable of self-renewal and multilineage differentiation into neurons, astrocytes, and oligodendrocytes. Furthermore, when these MSC-derived neurospheres were cocultured with primary astrocytes, they differentiate into neurons that possess both dendritic and axonal processes, form synapses, and are able to fire tetrodotoxin-sensitive action potentials. When these MSC-derived NSCs were switched back to MSC culture conditions, a small fraction of NSCs (averaging 4-5%) adhered to the culture flasks, proliferated, and displayed the morphology of MSCs. Those adherent cells expressed the characteristic MSC antigens and regained the ability to differentiate into multiple mesodermal lineages. Data presented in this study suggest that MSCs contain a small fraction (averaging 4-5%) of a bipotential stem cell population that is able to generate either MSCs or NSCs depending on the culture conditions.
Collapse
Affiliation(s)
- Lijuan Fu
- Division of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California 91010-3000, USA
| | | | | | | | | | | |
Collapse
|
48
|
Lelan F, Damier P. Les neurones dopaminergiques greffés dans la maladie de Parkinson sont-il à leur tour atteints par le processus dégénératif ? Med Sci (Paris) 2009; 25:15-6. [DOI: 10.1051/medsci/200925115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
49
|
Thompson LH, Björklund A. Transgenic reporter mice as tools for studies of transplantability and connectivity of dopamine neuron precursors in fetal tissue grafts. PROGRESS IN BRAIN RESEARCH 2009; 175:53-79. [PMID: 19660649 DOI: 10.1016/s0079-6123(09)17505-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Cell therapy for Parkinson's disease (PD) is based on the idea that new midbrain dopamine (mDA) neurons, implanted directly into the brain of the patient, can structurally and functionally replace those lost to the disease. Clinical trials have provided proof-of-principle that the grafted mDA neurons can survive and function after implantation in order to provide sustained improvement in motor function for some patients. Nonetheless, there are a number of issues limiting the application of this approach as mainstream therapy, including: the use of human fetal tissue as the only safe and reliable source of transplantable mDA neurons, and variability in the therapeutic outcome. Here we review recent progress in this area from investigations using rodent models of PD, paying particular attention to the use of transgenic reporter mice as tools for neural transplantation studies. Cell type-specific expression of reporter genes, such as green fluorescent protein, affords valuable technical advantages in transplantation experiments, such as the ability to selectively isolate specific cell fractions from mixed populations prior to grafting, and the unambiguous visualization of graft-derived dopamine neuron fiber patterns after transplantation. The results from these investigations have given new insights into the transplantability of mDA precursors as well as their connectivity after grafting and have interesting implications for the development of stem cell based approaches for the treatment of PD.
Collapse
Affiliation(s)
- Lachlan H Thompson
- Florey Neuroscience Institutes, University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|
50
|
Di Giovanni G, Esposito E, Di Matteo V. In vivo microdialysis in Parkinson's research. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2009:223-43. [PMID: 20411781 DOI: 10.1007/978-3-211-92660-4_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is primarily characterized by the degeneration of dopamine (DA) neurons in the nigrostriatal system, which in turn produces profound neurochemical changes within the basal ganglia, representing the neural substrate for parkinsonian motor symptoms. The pathogenesis of the disease is still not completely understood, but environmental and genetic factors are thought to play important roles. Research into the pathogenesis and the development of new therapeutic intervention strategies that will slow or stop the progression of the disease in human has rapidly advanced by the use of neurotoxins that specifically target DA neurons. Over the years, a broad variety of experimental models of the disease has been developed and applied in diverse animal species. The two most common toxin models used employ 6-hydroxydopamine (6-OHDA) and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenilpyridinium ion (MPTP/MPP+), either given systemically or locally applied into the nigrostriatal pathway, to resemble PD features in animals. Both neurotoxins selectively and rapidly destroy catecolaminergic neurons, although with different mechanisms. Since in vivo microdialysis coupled to high-performance liquid chromatography is an established technique for studying physiological, pharmacological, and pathological changes of a wide range of low molecular weight substances in the brain extracellular fluid, here we review the most prominent animal and human data obtained by the use of this technique in PD research.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana, G. Pagano, Universitá degli Studi di Palermo, 90134, Palermo, Italy
| | | | | |
Collapse
|