1
|
de la Rosa S, Schol CR, Ramos Peregrina Á, Winter DJ, Hilgers AM, Maeda K, Iida Y, Tarallo M, Jia R, Beenen HG, Rocafort M, de Wit PJGM, Bowen JK, Bradshaw RE, Joosten MHAJ, Bai Y, Mesarich CH. Sequential breakdown of the Cf-9 leaf mould resistance locus in tomato by Fulvia fulva. THE NEW PHYTOLOGIST 2024; 243:1522-1538. [PMID: 38922927 DOI: 10.1111/nph.19925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Leaf mould, caused by Fulvia fulva, is a devastating disease of tomato plants. In many commercial tomato cultivars, resistance to this disease is governed by the Cf-9 locus, which encodes five paralogous receptor-like proteins. Two of these proteins confer resistance: Cf-9C recognises the previously identified F. fulva effector Avr9 and provides resistance during all plant growth stages, while Cf-9B recognises the yet-unidentified F. fulva effector Avr9B and provides mature plant resistance only. In recent years, F. fulva strains have emerged that can overcome the Cf-9 locus, with Cf-9C circumvented through Avr9 deletion. To understand how Cf-9B is circumvented, we set out to identify Avr9B. Comparative genomics, transient expression assays and gene complementation experiments were used to identify Avr9B, while gene sequencing was used to assess Avr9B allelic variation across a world-wide strain collection. A strict correlation between Avr9 deletion and resistance-breaking mutations in Avr9B was observed in strains recently collected from Cf-9 cultivars, whereas Avr9 deletion but no mutations in Avr9B were observed in older strains. This research showcases how F. fulva has evolved to sequentially break down the Cf-9 locus and stresses the urgent need for commercial tomato cultivars that carry novel, stacked resistance genes active against this pathogen.
Collapse
Affiliation(s)
- Silvia de la Rosa
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, 4410, New Zealand
| | - Christiaan R Schol
- Plant Breeding, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Ángeles Ramos Peregrina
- Plant Breeding, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - David J Winter
- Bioinformatics Group, School of Food Technology and Natural Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Anne M Hilgers
- Plant Breeding, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Kazuya Maeda
- Laboratory of Plant Pathology, Faculty of Agriculture, Setsunan University, Hirakata, Osaka, 573-0101, Japan
| | - Yuichiro Iida
- Laboratory of Plant Pathology, Faculty of Agriculture, Setsunan University, Hirakata, Osaka, 573-0101, Japan
| | - Mariana Tarallo
- Laboratory of Molecular Plant Pathology, School of Food Technology and Natural Sciences, Massey University, Palmerston North, 4410, New Zealand
- Bioprotection Aotearoa, Massey University, Palmerston North, 4410, New Zealand
| | - Ruifang Jia
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Henriek G Beenen
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Mercedes Rocafort
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, 4410, New Zealand
| | - Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Joanna K Bowen
- The New Zealand Institute for Plant and Food Research Ltd, Mount Albert Research Centre, Auckland, 1025, New Zealand
| | - Rosie E Bradshaw
- Laboratory of Molecular Plant Pathology, School of Food Technology and Natural Sciences, Massey University, Palmerston North, 4410, New Zealand
- Bioprotection Aotearoa, Massey University, Palmerston North, 4410, New Zealand
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Carl H Mesarich
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, 4410, New Zealand
- Bioprotection Aotearoa, Massey University, Palmerston North, 4410, New Zealand
| |
Collapse
|
2
|
Wang W, Duan J, Wang X, Feng X, Chen L, Clark CB, Swarm SA, Wang J, Lin S, Nelson RL, Meyers BC, Feng X, Ma J. Long noncoding RNAs underlie multiple domestication traits and leafhopper resistance in soybean. Nat Genet 2024; 56:1270-1277. [PMID: 38684899 DOI: 10.1038/s41588-024-01738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
The origin and functionality of long noncoding RNA (lncRNA) remain poorly understood. Here, we show that multiple quantitative trait loci modulating distinct domestication traits in soybeans are pleiotropic effects of a locus composed of two tandem lncRNA genes. These lncRNA genes, each containing two inverted repeats, originating from coding sequences of the MYB genes, function in wild soybeans by generating clusters of small RNA (sRNA) species that inhibit the expression of their MYB gene relatives through post-transcriptional regulation. By contrast, the expression of lncRNA genes in cultivated soybeans is severely repressed, and, consequently, the corresponding MYB genes are highly expressed, shaping multiple distinct domestication traits as well as leafhopper resistance. The inverted repeats were formed before the divergence of the Glycine genus from the Phaseolus-Vigna lineage and exhibit strong structure-function constraints. This study exemplifies a type of target for selection during plant domestication and identifies mechanisms of lncRNA formation and action.
Collapse
Affiliation(s)
- Weidong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jingbo Duan
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xingxing Feng
- Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Liyang Chen
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Chancelor B Clark
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Stephen A Swarm
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beck's Hybrids, Atlanta, IN, USA
| | - Jinbin Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Sen Lin
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Randall L Nelson
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Blake C Meyers
- Genome Center and Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Xianzhong Feng
- Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Zhang JH, Wei HB, Hong YH, Yang RR, Meng J, Luan YS. The lncRNA20718-miR6022-RLPs module regulates tomato resistance to Phytophthora infestans. PLANT CELL REPORTS 2024; 43:57. [PMID: 38319523 DOI: 10.1007/s00299-024-03161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
KEY MESSAGE Sl-lncRNA20718 acts as an eTM of Sl-miR6022 regulating its expression thereby affecting SlRLP6/10 expression. SlRLP6/10 regulate PRs expression, ROS accumulation, and JA/ET content thereby affecting tomato resistance to P. infestans. Tomato (Solanum lycopersicum) is an important horticultural and cash crop whose yield and quality can be severely affected by Phytophthora infestans (P. infestans). Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are widely involved in plant defense responses against pathogens. The involvement of Sl-lncRNA20718 and Sl-miR6022 in tomato resistance to P. infestans as well as the targeting of Sl-miR6022 to receptor-like protein genes (RLPs) were predicted in our previous study. However, uncertainty exists regarding their potential interaction as well as the molecular processes regulating tomato resistance. Here, we found that Sl-lncRNA20718 and Sl-miR6022 are positive and negative regulators of tomato resistance to P. infestans by gain- and loss-of-function experiments, respectively. Overexpression of Sl-lncRNA20718 decreased the expression of Sl-miR6022, induced the expression of PRs, reduced the diameter of lesions (DOLs), thereby enhanced disease resistance. A six-point mutation in the binding region of Sl-lncRNA20718 to Sl-miR6022 disabled the interaction, indicating that Sl-lncRNA20718 acts as an endogenous target mimic (eTM) of Sl-miR6022. We demonstrated that Sl-miR6022 cleaves SlRLP6/10. Overexpression of Sl-miR6022 decreases the expression levels of SlRLP6/10, induces the accumulation of reactive oxygen species (ROS) and reduces the content of JA and ET, thus inhibiting tomato resistance to P. infestans. In conclusion, our study provides detailed information on the lncRNA20718-miR6022-RLPs module regulating tomato resistance to P. infestans by affecting the expression of disease resistance-related genes, the accumulation of ROS and the phytohormone levels, providing a new reference for tomato disease resistance breeding.
Collapse
Affiliation(s)
- Jia-Hui Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Hong-Bo Wei
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yu-Hui Hong
- Key Laboratory of Biotechnology and Bioresources Utilization-Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China
| | - Rui-Rui Yang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yu-Shi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
4
|
Şahin ES, Talapov T, Ateş D, Can C, Tanyolaç MB. Genome wide association study of genes controlling resistance to Didymella rabiei Pathotype IV through genotyping by sequencing in chickpeas (Cicer arietinum). Genomics 2023; 115:110699. [PMID: 37597791 DOI: 10.1016/j.ygeno.2023.110699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Ascochyta blight (AB) is a major disease in chickpeas (Cicer arietinum L.) that can cause a yield loss of up to 100%. Chickpea germplasm collections at the center of origin offer great potential to discover novel sources of resistance to pests and diseases. Herein, 189 Cicer arietinum samples were genotyped via genotyping by sequencing. This chickpea collection was phenotyped for resistance to an aggressive Turkish Didymella rabiei Pathotype IV isolate. Genome-wide association studies based on different models revealed 19 single nucleotide polymorphism (SNP) associations on chromosomes 1, 2, 3, 4, 7, and 8. Although eight of these SNPs have been previously reported, to the best of our knowledge, the remaining ten were associated with AB resistance for the first time. The regions identified in this study can be addressed in future studies to reveal the genetic mechanism underlying AB resistance and can also be utilized in chickpea breeding programs to improve AB resistance in new chickpea varieties.
Collapse
Affiliation(s)
- Erdem Sefa Şahin
- Republic of Turkey, Ministry of Agriculture and Forestry, Aegean Agricultural Research Institute, Izmir, Turkey; Department of Bioengineering, Molecular Genetic Laboratory, Ege University, Izmir, Turkey
| | - Talap Talapov
- Department of Biology, Gaziantep University, Gaziantep, Turkey
| | - Duygu Ateş
- Department of Bioengineering, Molecular Genetic Laboratory, Ege University, Izmir, Turkey
| | - Canan Can
- Department of Biology, Gaziantep University, Gaziantep, Turkey
| | | |
Collapse
|
5
|
Zhang X, Li J, Cao Y, Huang J, Duan Q. Genome-Wide Identification and Expression Analysis under Abiotic Stress of BrAHL Genes in Brassica rapa. Int J Mol Sci 2023; 24:12447. [PMID: 37569822 PMCID: PMC10420281 DOI: 10.3390/ijms241512447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The AT-hook motif nuclear localized (AHL) gene family is a highly conserved transcription factor critical for the growth, development, and stress tolerance of plants. However, the function of the AHL gene family in Brassica rapa (B. rapa) remains unclear. In this study, 42 AHL family members were identified from the B. rapa genome and mapped to nine B. rapa chromosomes. Two clades have formed in the evolution of the AHL gene family. The results showed that most products encoded by AHL family genes are located in the nucleus. Gene duplication was common and expanded the BrAHL gene family. According to the analysis of cis-regulatory elements, the genes interact with stress responses (osmotic, cold, and heavy metal stress), major hormones (abscisic acid), and light responses. In addition, the expression profiles revealed that BrAHL genes are widely expressed in different tissues. BrAHL16 was upregulated at 4 h under drought stress, highly expressed under cadmium conditions, and downregulated in response to cold conditions. BrAHL02 and BrAHL24 were upregulated at the initial time point and peaked at 12 h under cold and cadmium stress, respectively. Notably, the interactions between AHL genes and proteins under drought, cold, and heavy metal stresses were observed when predicting the protein-protein interaction network.
Collapse
Affiliation(s)
| | | | | | - Jiabao Huang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (J.L.); (Y.C.)
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (J.L.); (Y.C.)
| |
Collapse
|
6
|
Joshi A, Song HG, Yang SY, Lee JH. Integrated Molecular and Bioinformatics Approaches for Disease-Related Genes in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2454. [PMID: 37447014 DOI: 10.3390/plants12132454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
Modern plant pathology relies on bioinformatics approaches to create novel plant disease diagnostic tools. In recent years, a significant amount of biological data has been generated due to rapid developments in genomics and molecular biology techniques. The progress in the sequencing of agriculturally important crops has made it possible to develop a better understanding of plant-pathogen interactions and plant resistance. The availability of host-pathogen genome data offers effective assistance in retrieving, annotating, analyzing, and identifying the functional aspects for characterization at the gene and genome levels. Physical mapping facilitates the identification and isolation of several candidate resistance (R) genes from diverse plant species. A large number of genetic variations, such as disease-causing mutations in the genome, have been identified and characterized using bioinformatics tools, and these desirable mutations were exploited to develop disease resistance. Moreover, crop genome editing tools, namely the CRISPR (clustered regulatory interspaced short palindromic repeats)/Cas9 (CRISPR-associated) system, offer novel and efficient strategies for developing durable resistance. This review paper describes some aspects concerning the databases, tools, and techniques used to characterize resistance (R) genes for plant disease management.
Collapse
Affiliation(s)
- Alpana Joshi
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agriculture Technology & Agri-Informatics, Shobhit Institute of Engineering & Technology, Meerut 250110, India
| | - Hyung-Geun Song
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Seo-Yeon Yang
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
7
|
Mesarich CH, Barnes I, Bradley EL, de la Rosa S, de Wit PJGM, Guo Y, Griffiths SA, Hamelin RC, Joosten MHAJ, Lu M, McCarthy HM, Schol CR, Stergiopoulos I, Tarallo M, Zaccaron AZ, Bradshaw RE. Beyond the genomes of Fulvia fulva (syn. Cladosporium fulvum) and Dothistroma septosporum: New insights into how these fungal pathogens interact with their host plants. MOLECULAR PLANT PATHOLOGY 2023; 24:474-494. [PMID: 36790136 PMCID: PMC10098069 DOI: 10.1111/mpp.13309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 05/03/2023]
Abstract
Fulvia fulva and Dothistroma septosporum are closely related apoplastic pathogens with similar lifestyles but different hosts: F. fulva is a pathogen of tomato, whilst D. septosporum is a pathogen of pine trees. In 2012, the first genome sequences of these pathogens were published, with F. fulva and D. septosporum having highly fragmented and near-complete assemblies, respectively. Since then, significant advances have been made in unravelling their genome architectures. For instance, the genome of F. fulva has now been assembled into 14 chromosomes, 13 of which have synteny with the 14 chromosomes of D. septosporum, suggesting these pathogens are even more closely related than originally thought. Considerable advances have also been made in the identification and functional characterization of virulence factors (e.g., effector proteins and secondary metabolites) from these pathogens, thereby providing new insights into how they promote host colonization or activate plant defence responses. For example, it has now been established that effector proteins from both F. fulva and D. septosporum interact with cell-surface immune receptors and co-receptors to activate the plant immune system. Progress has also been made in understanding how F. fulva and D. septosporum have evolved with their host plants, whilst intensive research into pandemics of Dothistroma needle blight in the Northern Hemisphere has shed light on the origins, migration, and genetic diversity of the global D. septosporum population. In this review, we specifically summarize advances made in our understanding of the F. fulva-tomato and D. septosporum-pine pathosystems over the last 10 years.
Collapse
Affiliation(s)
- Carl H Mesarich
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Ellie L Bradley
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Silvia de la Rosa
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Yanan Guo
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, Québec, Canada
| | | | - Mengmeng Lu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Hannah M McCarthy
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Christiaan R Schol
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis, Davis, California, USA
| | - Mariana Tarallo
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis, Davis, California, USA
| | - Rosie E Bradshaw
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
8
|
Evolution of resistance (R) gene specificity. Essays Biochem 2022; 66:551-560. [PMID: 35612398 DOI: 10.1042/ebc20210077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022]
Abstract
Plant resistance (R) genes are members of large gene families with significant within and between species variation. It has been hypothesised that a variety of processes have shaped R gene evolution and the evolution of R gene specificity. In this review, we illustrate the main mechanisms that generate R gene diversity and provide examples of how they can change R gene specificity. Next, we explain which evolutionary mechanisms are at play and how they determine the fate of new R gene alleles and R genes. Finally, we place this in a larger context by comparing the diversity and evolution of R gene specificity within and between species scales.
Collapse
|
9
|
Kalischuk M, Müller B, Fusaro AF, Wijekoon CP, Waterhouse PM, Prüfer D, Kawchuk L. Amplification of cell signaling and disease resistance by an immunity receptor Ve1Ve2 heterocomplex in plants. Commun Biol 2022; 5:497. [PMID: 35614138 PMCID: PMC9132969 DOI: 10.1038/s42003-022-03439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/03/2022] [Indexed: 11/26/2022] Open
Abstract
Immunity cell-surface receptors Ve1 and Ve2 protect against fungi of the genus Verticillium causing early dying, a worldwide disease in many crops. Characterization of microbe-associated molecular pattern immunity receptors has advanced our understanding of disease resistance but signal amplification remains elusive. Here, we report that transgenic plants expressing Ve1 and Ve2 together, reduced pathogen titres by a further 90% compared to plants expressing only Ve1 or Ve2. Confocal and immunoprecipitation confirm that the two receptors associate to form heteromeric complexes in the absence of the ligand and positively regulate signaling. Bioassays show that the Ve1Ve2 complex activates race-specific amplified immunity to the pathogen through a rapid burst of reactive oxygen species (ROS). These results indicate a mechanism by which the composition of a cell-surface receptor heterocomplex may be optimized to increase immunity against devastating plant diseases. Transgenic plants expressing both Ve1 and Ve2 conferred enhanced signaling and disease resistance in susceptible potato in a race-specific manner, a step forward in generating disease resistant plants against Verticillium.
Collapse
Affiliation(s)
- Melanie Kalischuk
- Department of Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada.,School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.,Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Boje Müller
- Department of Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143, Münster, Germany
| | - Adriana F Fusaro
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.,Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-590, Brazil
| | - Champa P Wijekoon
- Department of Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, 351 Taché Avenue, R2020, Winnipeg, MB, R2H 2A6, Canada
| | - Peter M Waterhouse
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.,School of Earth, Environmental and Biological sciences, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143, Münster, Germany. .,Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143, Münster, Germany.
| | - Lawrence Kawchuk
- Department of Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada. .,School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
10
|
Meng G, Xiao Y, Li A, Qian Z, Xie Y, Yang L, Lin H, Yang W. Mapping and characterization of the Rx3 gene for resistance to Xanthomonas euvesicatoria pv. euvesicatoria race T1 in tomato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1637-1656. [PMID: 35217878 DOI: 10.1007/s00122-022-04059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
KEY MESSAGE Rx3 encodes a typical CC-NBS-LRR resistance protein and confers the resistance to Xanthomonas euvesicatoria pv. euvesicatoria race T1 causing bacterial spot in tomato. Bacterial spot caused by at least four species of Xanthomonas is an epidemic disease severely affecting tomato production worldwide. The use of resistant cultivars is an economical and effective approach to control the disease. An unimproved tomato breeding line Hawaii 7988 has been considered as the most reliable source for resistance to X. euvesicatoria pv. euvesicatoria race T1, and the Rx3 locus located at a 4.53-Mb region on chromosome 5 (SL4.0) is the major locus for resistance to race T1 in this line. In the current study, the Rx3 locus was firstly located to a 1.05-Mb region based on comparisons of marker polymorphisms between the susceptible line Ohio 88119 and resistant lines Hawaii 7998, Ohio 9834 and FG02-7530. Using recombinant inbred lines (F5:6, F6:7, and F7:8) derived from a cross between Ohio 88119 and Ohio 9834, the Rx3 locus was finally mapped to a 64.3-kb interval between markers MG-Rx3-4 and MG-Rx3-A6. The Solyc05g053980 gene, designated as Rx3, encoding a coiled-coil nucleotide-binding leucine-rich repeat protein was considered as the candidate for the Rx3 locus. Expression of the gene could be induced by the infection of race T1 strain. Knockout of the Solyc05g053980 gene through CRISPR/Cas9 editing system in the resistant line FG02-7530 decreased resistance to race T1 strain. These results provide a close step for understanding the resistance mechanism to race T1 in Hawaii 7998 and guide tomato breeders accordingly to improve bacterial spot disease resistance in tomato.
Collapse
Affiliation(s)
- Ge Meng
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, Beijing, 100193, China
| | - Yao Xiao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, Beijing, 100193, China
- Jiangxi Province Key Laboratory of Tuberous Plant Biology, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Aitong Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, Beijing, 100193, China
| | - Zilin Qian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, Beijing, 100193, China
| | - Yinge Xie
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, Beijing, 100193, China
| | - Luyao Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, Beijing, 100193, China
| | - Huabing Lin
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, Beijing, 100193, China
| | - Wencai Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China.
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
11
|
Maruta N, Burdett H, Lim BYJ, Hu X, Desa S, Manik MK, Kobe B. Structural basis of NLR activation and innate immune signalling in plants. Immunogenetics 2022; 74:5-26. [PMID: 34981187 PMCID: PMC8813719 DOI: 10.1007/s00251-021-01242-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
Animals and plants have NLRs (nucleotide-binding leucine-rich repeat receptors) that recognize the presence of pathogens and initiate innate immune responses. In plants, there are three types of NLRs distinguished by their N-terminal domain: the CC (coiled-coil) domain NLRs, the TIR (Toll/interleukin-1 receptor) domain NLRs and the RPW8 (resistance to powdery mildew 8)-like coiled-coil domain NLRs. CC-NLRs (CNLs) and TIR-NLRs (TNLs) generally act as sensors of effectors secreted by pathogens, while RPW8-NLRs (RNLs) signal downstream of many sensor NLRs and are called helper NLRs. Recent studies have revealed three dimensional structures of a CNL (ZAR1) including its inactive, intermediate and active oligomeric state, as well as TNLs (RPP1 and ROQ1) in their active oligomeric states. Furthermore, accumulating evidence suggests that members of the family of lipase-like EDS1 (enhanced disease susceptibility 1) proteins, which are uniquely found in seed plants, play a key role in providing a link between sensor NLRs and helper NLRs during innate immune responses. Here, we summarize the implications of the plant NLR structures that provide insights into distinct mechanisms of action by the different sensor NLRs and discuss plant NLR-mediated innate immune signalling pathways involving the EDS1 family proteins and RNLs.
Collapse
Affiliation(s)
- Natsumi Maruta
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Hayden Burdett
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, UK
| | - Bryan Y J Lim
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xiahao Hu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sneha Desa
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mohammad Kawsar Manik
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
12
|
Zhong Y, Chen Z, Cheng ZM. Different scales of gene duplications occurring at different times have jointly shaped the NBS-LRR genes in Prunus species. Mol Genet Genomics 2022; 297:263-276. [PMID: 35031863 PMCID: PMC8803762 DOI: 10.1007/s00438-021-01849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022]
Abstract
In this study, genome-wide identification, phylogenetic relationships, duplication time and selective pressure of the NBS-LRR genes, an important group of plant disease-resistance genes (R genes), were performed to uncover their genetic evolutionary patterns in the six Prunus species. A total of 1946 NBS-LRR genes were identified; specifically, 589, 361, 284, 281, 318, and 113 were identified in Prunus yedoensis, P. domestica, P. avium, P. dulcis, P. persica and P. yedoensis var. nudiflora, respectively. Two NBS-LRR gene subclasses, TIR-NBS-LRR (TNL) and non-TIR-NBS-LRR (non-TNL), were also discovered. In total, 435 TNL and 1511 non-TNL genes were identified and could be classified into 30/55/75 and 103/158/191 multi-gene families, respectively, according to three different criteria. Higher Ks and Ka/Ks values were detected in TNL gene families than in non-TNL gene families. These results indicated that the TNL genes had more members involved in relatively ancient duplications and were affected by stronger selection pressure than the non-TNL genes. In general, the NBS-LRR genes were shaped by species-specific duplications, and lineage-specific duplications occurred at recent and relatively ancient periods among the six Prunus species. Therefore, different duplicated copies of NBS-LRRs can resist specific pathogens and will provide an R-gene library for resistance breeding in Prunus species.
Collapse
Affiliation(s)
- Yan Zhong
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhao Chen
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zong-Ming Cheng
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
13
|
Qi LL, Talukder ZI, Ma GJ, Li XH. Discovery and mapping of two new rust resistance genes, R 17 and R 18, in sunflower using genotyping by sequencing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2291-2301. [PMID: 33837443 DOI: 10.1007/s00122-021-03826-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Discovery of two rust resistance genes, R17 and R18, from the sunflower lines introduced from South Africa and genetic mapping of them to sunflower chromosome 13. Rust, caused by the fungus Puccinia helianthi Schw., is one of the most serious diseases of sunflower in the world. The rapid changes that occur in the virulence characteristics of pathogen populations present a continuous threat to the effectiveness of existing rust-resistant hybrids. Thus, there is a continued need for the characterization of genetically diverse sources of rust resistance. In this study, we report to identify two new rust resistance genes, R17 and R18, from the sunflower lines, KP193 and KP199, introduced from South Africa. The inheritance of rust resistance was investigated in both lines using two mapping populations developed by crossing the resistant plants selected from KP193 and KP199 with a common susceptible parent HA 89. The F2 populations were first genotyped using genotyping by sequencing for mapping of the rust genes and further saturated with markers in the target region. Molecular mapping positioned the two genes at the lower end of sunflower chromosome 13 within a large gene cluster. Two co-segregating SNP markers, SFW01497 and SFW08875, were distal to R17 at a 1.9 cM genetic distance, and a cluster of five co-segregating SNPs was proximal to R17 at 0.7 cM. R18 co-segregated with the SNP marker SFW04317 and was proximal to two cosegregating SNPs, SFW01497 and SFW05453, at 1.9 cM. These maps provide markers for stacking R17 or R18 with other broadly effective rust resistance genes to extend the durability of rust resistance. The relationship of the six rust resistance genes in the cluster was discussed.
Collapse
Affiliation(s)
- L L Qi
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N, Fargo, ND, 58102-2765, USA.
| | - Z I Talukder
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - G J Ma
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - X H Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| |
Collapse
|
14
|
Kahlon PS, Seta SM, Zander G, Scheikl D, Hückelhoven R, Joosten MHAJ, Stam R. Population studies of the wild tomato species Solanum chilense reveal geographically structured major gene-mediated pathogen resistance. Proc Biol Sci 2020; 287:20202723. [PMID: 33352079 DOI: 10.1098/rspb.2020.2723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Natural plant populations encounter strong pathogen pressure and defence-associated genes are known to be under selection dependent on the pressure by the pathogens. Here, we use populations of the wild tomato Solanum chilense to investigate natural resistance against Cladosporium fulvum, a well-known ascomycete pathogen of domesticated tomatoes. Host populations used are from distinct geographical origins and share a defined evolutionary history. We show that distinct populations of S. chilense differ in resistance against the pathogen. Screening for major resistance gene-mediated pathogen recognition throughout the whole species showed clear geographical differences between populations and complete loss of pathogen recognition in the south of the species range. In addition, we observed high complexity in a homologues of Cladosporium resistance (Hcr) locus, underlying the recognition of C. fulvum, in central and northern populations. Our findings show that major gene-mediated recognition specificity is diverse in a natural plant-pathosystem. We place major gene resistance in a geographical context that also defined the evolutionary history of that species. Data suggest that the underlying loci are more complex than previously anticipated, with small-scale gene recombination being possibly responsible for maintaining balanced polymorphisms in the populations that experience pathogen pressure.
Collapse
Affiliation(s)
- Parvinderdeep S Kahlon
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| | - Shallet Mindih Seta
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| | - Gesche Zander
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| | - Daniela Scheikl
- Section of Population Genetics, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann Str. 2, 85354 Freising, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Remco Stam
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| |
Collapse
|
15
|
Md Hatta MA, Ghosh S, Athiyannan N, Richardson T, Steuernagel B, Yu G, Rouse MN, Ayliffe M, Lagudah ES, Radhakrishnan GV, Periyannan SK, Wulff BBH. Extensive Genetic Variation at the Sr22 Wheat Stem Rust Resistance Gene Locus in the Grasses Revealed Through Evolutionary Genomics and Functional Analyses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1286-1298. [PMID: 32779520 DOI: 10.1094/mpmi-01-20-0018-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In the last 20 years, severe wheat stem rust outbreaks have been recorded in Africa, Europe, and Central Asia. This previously well controlled disease, caused by the fungus Puccinia graminis f. sp. tritici, has reemerged as a major threat to wheat cultivation. The stem rust (Sr) resistance gene Sr22 encodes a nucleotide-binding and leucine-rich repeat receptor which confers resistance to the highly virulent African stem rust isolate Ug99. Here, we show that the Sr22 gene is conserved among grasses in the Triticeae and Poeae lineages. Triticeae species contain syntenic loci with single-copy orthologs of Sr22 on chromosome 7, except Hordeum vulgare, which has experienced major expansions and rearrangements at the locus. We also describe 14 Sr22 sequence variants obtained from both Triticum boeoticum and the domesticated form of this species, T. monococcum, which have been postulated to encode both functional and nonfunctional Sr22 alleles. The nucleotide sequence analysis of these alleles identified historical sequence exchange resulting from recombination or gene conversion, including breakpoints within codons, which expanded the coding potential at these positions by introduction of nonsynonymous substitutions. Three Sr22 alleles were transformed into wheat cultivar Fielder and two postulated resistant alleles from Schomburgk (hexaploid wheat introgressed with T. boeoticum segment carrying Sr22) and T. monococcum accession PI190945, respectively, conferred resistance to P. graminis f. sp. tritici race TTKSK, thereby unequivocally confirming Sr22 effectiveness against Ug99. The third allele from accession PI573523, previously believed to confer susceptibility, was confirmed as nonfunctional against Australian P. graminis f. sp. tritici race 98-1,2,3,5,6.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- M Asyraf Md Hatta
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sreya Ghosh
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Naveenkumar Athiyannan
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, General Post Office Box 1700, Canberra, ACT 2601, Australia
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia
| | - Terese Richardson
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, General Post Office Box 1700, Canberra, ACT 2601, Australia
| | | | - Guotai Yu
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Matthew N Rouse
- United States Department of Agriculture-Agricultural Research Service Cereal Disease Laboratory, St. Paul, MN 55108, U.S.A
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Michael Ayliffe
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, General Post Office Box 1700, Canberra, ACT 2601, Australia
| | - Evans S Lagudah
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, General Post Office Box 1700, Canberra, ACT 2601, Australia
| | | | - Sambasivam K Periyannan
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, General Post Office Box 1700, Canberra, ACT 2601, Australia
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia
| | - Brande B H Wulff
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
16
|
Xie J, Guo G, Wang Y, Hu T, Wang L, Li J, Qiu D, Li Y, Wu Q, Lu P, Chen Y, Dong L, Li M, Zhang H, Zhang P, Zhu K, Li B, Deal KR, Huo N, Zhang Y, Luo MC, Liu S, Gu YQ, Li H, Liu Z. A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. THE NEW PHYTOLOGIST 2020; 228:1011-1026. [PMID: 32569398 DOI: 10.1111/nph.16762] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/02/2020] [Indexed: 05/18/2023]
Abstract
Powdery mildew poses severe threats to wheat production. The most sustainable way to control this disease is through planting resistant cultivars. We report the map-based cloning of the powdery mildew resistance allele Pm5e from a Chinese wheat landrace. We applied a two-step bulked segregant RNA sequencing (BSR-Seq) approach in developing tightly linked or co-segregating markers to Pm5e. The first BSR-Seq used phenotypically contrasting bulks of recombinant inbred lines (RILs) to identify Pm5e-linked markers. The second BSR-Seq utilized bulks of genetic recombinants screened from a fine-mapping population to precisely quantify the associated genomic variation in the mapping interval, and identified the Pm5e candidate genes. The function of Pm5e was validated by transgenic assay, loss-of-function mutants and haplotype association analysis. Pm5e encodes a nucleotide-binding domain leucine-rich-repeat-containing (NLR) protein. A rare nonsynonymous single nucleotide variant (SNV) within the C-terminal leucine rich repeat (LRR) domain is responsible for the gain of powdery mildew resistance function of Pm5e, an allele endemic to wheat landraces of Shaanxi province of China. Results from this study demonstrate the value of landraces in discovering useful genes for modern wheat breeding. The key SNV associated with powdery mildew resistance will be useful for marker-assisted selection of Pm5e in wheat breeding programs.
Collapse
Affiliation(s)
- Jingzhong Xie
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanghao Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tiezhu Hu
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, 4530003, China
| | - Lili Wang
- China Agricultural University, Beijing, 100193, China
| | - Jingting Li
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, 467000, China
| | - Dan Qiu
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yahui Li
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiuhong Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ping Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Miaomiao Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huaizhi Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Panpan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keyu Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Beibei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Karin R Deal
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Naxin Huo
- USDA-ARS West Regional Research Center, Albany, CA, 94710, USA
| | - Yan Zhang
- China Agricultural University, Beijing, 100193, China
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yong Qiang Gu
- USDA-ARS West Regional Research Center, Albany, CA, 94710, USA
| | - Hongjie Li
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Steinbrenner AD. The evolving landscape of cell surface pattern recognition across plant immune networks. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:135-146. [PMID: 32615401 DOI: 10.1016/j.pbi.2020.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
To recognize diverse threats, plants monitor extracellular molecular patterns and transduce intracellular immune signaling through receptor complexes at the plasma membrane. Pattern recognition occurs through a prototypical network of interacting proteins, comprising A) receptors that recognize inputs associated with a growing number of pest and pathogen classes (bacteria, fungi, oomycetes, caterpillars), B) co-receptor kinases that participate in binding and signaling, and C) cytoplasmic kinases that mediate first stages of immune output. While this framework has been elucidated in reference accessions of model organisms, network components are part of gene families with widespread variation, potentially tuning immunocompetence for specific contexts. Most dramatically, variation in receptor repertoires determines the range of ligands acting as immunogenic inputs for a given plant. Diversification of receptor kinase (RK) and related receptor-like protein (RLP) repertoires may tune responses even within a species. Comparative genomics at pangenome scale will reveal patterns and features of immune network variation.
Collapse
Affiliation(s)
- Adam D Steinbrenner
- Department of Biology, University of Washington, Seattle WA 98195, USA; Washington Research Foundation, Seattle, WA 98102, USA.
| |
Collapse
|
18
|
Gratias A, Geffroy V. Deciphering the Impact of a Bacterial Infection on Meiotic Recombination in Arabidopsis with Fluorescence Tagged Lines. Genes (Basel) 2020; 11:genes11070832. [PMID: 32708324 PMCID: PMC7397157 DOI: 10.3390/genes11070832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Plants are under strong evolutionary pressure to maintain surveillance against pathogens. One major disease resistance mechanism is based on NB-LRR (NLR) proteins that specifically recognize pathogen effectors. The cluster organization of the NLR gene family could favor sequence exchange between NLR genes via recombination, favoring their evolutionary dynamics. Increasing data, based on progeny analysis, suggest the existence of a link between the perception of biotic stress and the production of genetic diversity in the offspring. This could be driven by an increased rate of meiotic recombination in infected plants, but this has never been strictly demonstrated. In order to test if pathogen infection can increase DNA recombination in pollen meiotic cells, we infected Arabidopsis Fluorescent Tagged Lines (FTL) with the virulent bacteria Pseudomonas syringae. We measured the meiotic recombination rate in two regions of chromosome 5, containing or not an NLR gene cluster. In all tested intervals, no significant difference in genetic recombination frequency between infected and control plants was observed. Although it has been reported that pathogen exposure can sometimes increase the frequency of recombinant progeny in plants, our findings suggest that meiotic recombination rate in Arabidopsis may be resilient to at least some pathogen attack. Alternative mechanisms are discussed.
Collapse
Affiliation(s)
- Ariane Gratias
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France;
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
| | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France;
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
- Correspondence: ; Tel.: +33-1-69-15-33-65
| |
Collapse
|
19
|
Iakovidis M, Soumpourou E, Anderson E, Etherington G, Yourstone S, Thomas C. Genes Encoding Recognition of the Cladosporium fulvum Effector Protein Ecp5 Are Encoded at Several Loci in the Tomato Genome. G3 (BETHESDA, MD.) 2020; 10:1753-1763. [PMID: 32209596 PMCID: PMC7202015 DOI: 10.1534/g3.120.401119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022]
Abstract
The molecular interactions between tomato and Cladosporium fulvum have been an important model for molecular plant pathology. Complex genetic loci on tomato chromosomes 1 and 6 harbor genes for resistance to Cladosporium fulvum, encoding receptor like-proteins that perceive distinct Cladosporium fulvum effectors and trigger plant defenses. Here, we report classical mapping strategies for loci in tomato accessions that respond to Cladosporium fulvum effector Ecp5, which is very sequence-monomorphic. We screened 139 wild tomato accessions for an Ecp5-induced hypersensitive response, and in five accessions, the Ecp5-induced hypersensitive response segregated as a monogenic trait, mapping to distinct loci in the tomato genome. We identified at least three loci on chromosomes 1, 7 and 12 that harbor distinct Cf-Ecp5 genes in four different accessions. Our mapping showed that the Cf-Ecp5 in Solanum pimpinellifolium G1.1161 is located at the Milky Way locus. The Cf-Ecp5 in Solanum pimpinellifolium LA0722 was mapped to the bottom arm of chromosome 7, while the Cf-Ecp5 genes in Solanum lycopersicum Ontario 7522 and Solanum pimpinellifolium LA2852 were mapped to the same locus on the top arm of chromosome 12. Bi-parental crosses between accessions carrying distinct Cf-Ecp5 genes revealed putative genetically unlinked suppressors of the Ecp5-induced hypersensitive response. Our mapping also showed that Cf-11 is located on chromosome 11, close to the Cf-3 locus. The Ecp5-induced hypersensitive response is widely distributed within tomato species and is variable in strength. This novel example of convergent evolution could be used for choosing different functional Cf-Ecp5 genes according to individual plant breeding needs.
Collapse
Affiliation(s)
- Michail Iakovidis
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Eleni Soumpourou
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Elisabeth Anderson
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | - Scott Yourstone
- Department of Biological Sciences, University of North Carolina at Chapel Hill, NC, 27510
| | - Colwyn Thomas
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
20
|
Rommel Fuentes R, Hesselink T, Nieuwenhuis R, Bakker L, Schijlen E, van Dooijeweert W, Diaz Trivino S, de Haan JR, Sanchez Perez G, Zhang X, Fransz P, de Jong H, van Dijk ADJ, de Ridder D, Peters SA. Meiotic recombination profiling of interspecific hybrid F1 tomato pollen by linked read sequencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:480-492. [PMID: 31820490 DOI: 10.1111/tpj.14640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Genome wide screening of pooled pollen samples from a single interspecific F1 hybrid obtained from a cross between tomato, Solanum lycopersicum and its wild relative, Solanum pimpinellifolium using linked read sequencing of the haploid nuclei, allowed profiling of the crossover (CO) and gene conversion (GC) landscape. We observed a striking overlap between cold regions of CO in the male gametes and our previously established F6 recombinant inbred lines (RILs) population. COs were overrepresented in non-coding regions in the gene promoter and 5'UTR regions of genes. Poly-A/T and AT rich motifs were found enriched in 1 kb promoter regions flanking the CO sites. Non-crossover associated allelic and ectopic GCs were detected in most chromosomes, confirming that besides CO, GC represents also a source for genetic diversity and genome plasticity in tomato. Furthermore, we identified processed break junctions pointing at the involvement of both homology directed and non-homology directed repair pathways, suggesting a recombination machinery in tomato that is more complex than currently anticipated.
Collapse
Affiliation(s)
- Roven Rommel Fuentes
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Thamara Hesselink
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Ronald Nieuwenhuis
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Linda Bakker
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Elio Schijlen
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Willem van Dooijeweert
- Centre for Genetic Resources, Wageningen University and Research, Wageningen, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sara Diaz Trivino
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Jorn R de Haan
- Genetwister Technologies B.V., Nieuwe Kanaal 7b, 6709 PA, Wageningen, The Netherlands
| | - Gabino Sanchez Perez
- Genetwister Technologies B.V., Nieuwe Kanaal 7b, 6709 PA, Wageningen, The Netherlands
| | - Xinyue Zhang
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Paul Fransz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Hans de Jong
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sander A Peters
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
21
|
Rody HVS, Bombardelli RGH, Creste S, Camargo LEA, Van Sluys MA, Monteiro-Vitorello CB. Genome survey of resistance gene analogs in sugarcane: genomic features and differential expression of the innate immune system from a smut-resistant genotype. BMC Genomics 2019; 20:809. [PMID: 31694536 PMCID: PMC6836459 DOI: 10.1186/s12864-019-6207-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Resistance genes composing the two-layer immune system of plants are thought as important markers for breeding pathogen-resistant crops. Many have been the attempts to establish relationships between the genomic content of Resistance Gene Analogs (RGAs) of modern sugarcane cultivars to its degrees of resistance to diseases such as smut. However, due to the highly polyploid and heterozygous nature of sugarcane genome, large scale RGA predictions is challenging. RESULTS We predicted, searched for orthologs, and investigated the genomic features of RGAs within a recently released sugarcane elite cultivar genome, alongside the genomes of sorghum, one sugarcane ancestor (Saccharum spontaneum), and a collection of de novo transcripts generated for six modern cultivars. In addition, transcriptomes from two sugarcane genotypes were obtained to investigate the roles of RGAs differentially expressed (RGADE) in their distinct degrees of resistance to smut. Sugarcane references lack RGAs from the TNL class (Toll-Interleukin receptor (TIR) domain associated to nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains) and harbor elevated content of membrane-associated RGAs. Up to 39% of RGAs were organized in clusters, and 40% of those clusters shared synteny. Basically, 79% of predicted NBS-encoding genes are located in a few chromosomes. S. spontaneum chromosome 5 harbors most RGADE orthologs responsive to smut in modern sugarcane. Resistant sugarcane had an increased number of RGAs differentially expressed from both classes of RLK (receptor-like kinase) and RLP (receptor-like protein) as compared to the smut-susceptible. Tandem duplications have largely contributed to the expansion of both RGA clusters and the predicted clades of RGADEs. CONCLUSIONS Most of smut-responsive RGAs in modern sugarcane were potentially originated in chromosome 5 of the ancestral S. spontaneum genotype. Smut resistant and susceptible genotypes of sugarcane have a distinct pattern of RGADE. TM-LRR (transmembrane domains followed by LRR) family was the most responsive to the early moment of pathogen infection in the resistant genotype, suggesting the relevance of an innate immune system. This work can help to outline strategies for further understanding of allele and paralog expression of RGAs in sugarcane, and the results should help to develop a more applied procedure for the selection of resistant plants in sugarcane.
Collapse
Affiliation(s)
- Hugo V S Rody
- Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Genética, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Renato G H Bombardelli
- Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Genética, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Silvana Creste
- Centro de Cana, IAC-Apta, Ribeirão Preto, Av. Pádua Dias n11, CEP 13418-900, Piracicaba, São Paulo, Brazil
| | - Luís E A Camargo
- Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Genética, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Marie-Anne Van Sluys
- Departamento de Botânia, Universidade de São Paulo, Instituto de Biociências, São Paulo, Brazil
| | - Claudia B Monteiro-Vitorello
- Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Genética, Universidade de São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
22
|
Rowan BA, Heavens D, Feuerborn TR, Tock AJ, Henderson IR, Weigel D. An Ultra High-Density Arabidopsis thaliana Crossover Map That Refines the Influences of Structural Variation and Epigenetic Features. Genetics 2019; 213:771-787. [PMID: 31527048 PMCID: PMC6827372 DOI: 10.1534/genetics.119.302406] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/28/2019] [Indexed: 11/18/2022] Open
Abstract
Many environmental, genetic, and epigenetic factors are known to affect the frequency and positioning of meiotic crossovers (COs). Suppression of COs by large, cytologically visible inversions and translocations has long been recognized, but relatively little is known about how smaller structural variants (SVs) affect COs. To examine fine-scale determinants of the CO landscape, including SVs, we used a rapid, cost-effective method for high-throughput sequencing to generate a precise map of >17,000 COs between the Col-0 and Ler-0 accessions of Arabidopsis thaliana COs were generally suppressed in regions with SVs, but this effect did not depend on the size of the variant region, and was only marginally affected by the variant type. CO suppression did not extend far beyond the SV borders and CO rates were slightly elevated in the flanking regions. Disease resistance gene clusters, which often exist as SVs, exhibited high CO rates at some loci, but there was a tendency toward depressed CO rates at loci where large structural differences exist between the two parents. Our high-density map also revealed in fine detail how CO positioning relates to genetic (DNA motifs) and epigenetic (chromatin structure) features of the genome. We conclude that suppression of COs occurs over a narrow region spanning large- and small-scale SVs, representing an influence on the CO landscape in addition to sequence and epigenetic variation along chromosomes.
Collapse
Affiliation(s)
- Beth A Rowan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | | - Tatiana R Feuerborn
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, CB2 3EA, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, CB2 3EA, United Kingdom
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
23
|
MacQueen A, Tian D, Chang W, Holub E, Kreitman M, Bergelson J. Population Genetics of the Highly Polymorphic RPP8 Gene Family. Genes (Basel) 2019; 10:E691. [PMID: 31500388 PMCID: PMC6771003 DOI: 10.3390/genes10090691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
Plant nucleotide-binding domain and leucine-rich repeat containing (NLR) genes provide some of the most extreme examples of polymorphism in eukaryotic genomes, rivalling even the vertebrate major histocompatibility complex. Surprisingly, this is also true in Arabidopsis thaliana, a predominantly selfing species with low heterozygosity. Here, we investigate how gene duplication and intergenic exchange contribute to this extraordinary variation. RPP8 is a three-locus system that is configured chromosomally as either a direct-repeat tandem duplication or as a single copy locus, plus a locus 2 Mb distant. We sequenced 48 RPP8 alleles from 37 accessions of A. thaliana and 12 RPP8 alleles from Arabidopsis lyrata to investigate the patterns of interlocus shared variation. The tandem duplicates display fixed differences and share less variation with each other than either shares with the distant paralog. A high level of shared polymorphism among alleles at one of the tandem duplicates, the single-copy locus and the distal locus, must involve both classical crossing over and intergenic gene conversion. Despite these polymorphism-enhancing mechanisms, the observed nucleotide diversity could not be replicated under neutral forward-in-time simulations. Only by adding balancing selection to the simulations do they approach the level of polymorphism observed at RPP8. In this NLR gene triad, genetic architecture, gene function and selection all combine to generate diversity.
Collapse
Affiliation(s)
- Alice MacQueen
- Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210008, China.
| | - Wenhan Chang
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL 60637, USA.
| | - Eric Holub
- School of Life Sciences, Wellesbourne Innovation Campus, University of Warwick, Wellesbourne CV359EF, UK.
| | - Martin Kreitman
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL 60637, USA.
| | - Joy Bergelson
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
24
|
Fernandes JB, Wlodzimierz P, Henderson IR. Meiotic recombination within plant centromeres. CURRENT OPINION IN PLANT BIOLOGY 2019; 48:26-35. [PMID: 30954771 DOI: 10.1016/j.pbi.2019.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/21/2019] [Accepted: 02/28/2019] [Indexed: 05/18/2023]
Abstract
Meiosis is a conserved eukaryotic cell division that increases genetic diversity in sexual populations. During meiosis homologous chromosomes pair and undergo recombination that can result in reciprocal genetic exchange, termed crossover. The frequency of crossover is highly variable along chromosomes, with hot spots and cold spots. For example, the centromeres that contain the kinetochore, which attach chromosomes to the microtubular spindle, are crossover cold spots. Plant centromeres typically consist of large tandemly repeated arrays of satellite sequences and retrotransposons, a subset of which assemble CENH3-variant nucleosomes, which bind to kinetochore proteins. Although crossovers are suppressed in centromeres, there is abundant evidence for gene conversion and homologous recombination between repeats, which plays a role in satellite array change. We review the evidence for recombination within plant centromeres and the implications for satellite sequence evolution. We speculate on the genetic and epigenetic features of centromeres that may influence meiotic recombination in these regions. We also highlight unresolved questions relating to centromere function and sequence change and how the advent of new technologies promises to provide insights.
Collapse
Affiliation(s)
- Joiselle B Fernandes
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Piotr Wlodzimierz
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
25
|
Seo E, Kim T, Park JH, Yeom SI, Kim S, Seo MK, Shin C, Choi D. Genome-wide comparative analysis in Solanaceous species reveals evolution of microRNAs targeting defense genes in Capsicum spp. DNA Res 2019; 25:561-575. [PMID: 30060137 PMCID: PMC6289781 DOI: 10.1093/dnares/dsy025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/12/2018] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) play roles in various biological processes in plants including growth, development, and disease resistance. Previous studies revealed that some plant miRNAs produce secondary small interfering RNAs (siRNAs) such as phased, secondary siRNAs (phasiRNAs), and they regulate a cascade of gene expression. We performed a genome-wide comparative analysis of miRNAs in Solanaceous species (pepper, tomato, and potato), from an evolutionary perspective. Microsynteny of miRNAs was analysed based on the genomic loci and their flanking genes and most of the well-conserved miRNA genes maintained microsynteny in Solanaceae. We identified target genes of the miRNAs via degradome analysis and found that several miRNAs target many genes encoding nucleotide-binding leucine-rich repeat (NLR) or receptor-like proteins (RLPs), which are known to be major players in defense responses. In addition, disease-resistance-associated miRNAs trigger phasiRNA production in pepper, indicating amplification of the regulation of disease-resistance gene families. Among these, miR-n033a-3p, whose target NLRs have been duplicated in pepper, targets more NLRs belonging to specific subgroup in pepper than those in potato. miRNAs targeting resistance genes might have evolved to regulate numerous targets in Solanaceae, following expansion of target resistance genes. This study provides an insight into evolutionary relationship between miRNAs and their target defense genes in plants.
Collapse
Affiliation(s)
- Eunyoung Seo
- Department of Plant Science, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Taewook Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - June Hyun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Seon-In Yeom
- Division of Applied Life Science (BK21 Plus Program), Department of Agricultural Plant Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seungill Kim
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Min-Ki Seo
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Chanseok Shin
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Doil Choi
- Department of Plant Science, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Liu X, Yang M, Liu X, Wei K, Cao X, Wang X, Wang X, Guo Y, Du Y, Li J, Liu L, Shu J, Qin Y, Huang Z. A putative bHLH transcription factor is a candidate gene for male sterile 32, a locus affecting pollen and tapetum development in tomato. HORTICULTURE RESEARCH 2019; 6:88. [PMID: 31666957 PMCID: PMC6804878 DOI: 10.1038/s41438-019-0170-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/23/2019] [Accepted: 05/15/2019] [Indexed: 05/19/2023]
Abstract
The tomato (Solanum lycopersicum) male sterile 32 (ms32) mutant has been used in hybrid seed breeding programs largely because it produces no pollen and has exserted stigmas. In this study, histological examination of anthers revealed dysfunctional pollen and tapetum development in the ms32 mutant. The ms32 locus was fine mapped to a 28.5 kb interval that encoded four putative genes. Solyc01g081100, a homolog of Arabidopsis bHLH10/89/90 and rice EAT1, was proposed to be the candidate gene of MS32 because it contained a single nucleotide polymorphism (SNP) that led to the formation of a premature stop codon. A codominant derived cleaved amplified polymorphic sequence (dCAPS) marker, MS32D, was developed based on the SNP. Real-time quantitative reverse-transcription PCR showed that most of the genes, which were proposed to be involved in pollen and tapetum development in tomato, were downregulated in the ms32 mutant. These findings may aid in marker-assisted selection of ms32 in hybrid breeding programs and facilitate studies on the regulatory mechanisms of pollen and tapetum development in tomato.
Collapse
Affiliation(s)
- Xiaoyan Liu
- College of Forestry and Horticulture, Xinjiang Agricultural University, 830052 Urumqi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Mengxia Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Xiaolin Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Kai Wei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Xue Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Xiaotian Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Xiaoxuan Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Yanmei Guo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Yongchen Du
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Junming Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Lei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Jinshuai Shu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| | - Yong Qin
- College of Forestry and Horticulture, Xinjiang Agricultural University, 830052 Urumqi, China
| | - Zejun Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100086 Beijing, China
| |
Collapse
|
27
|
Chen X, Jia Y, Wu BM. Evaluation of Rice Responses to the Blast Fungus Magnaporthe oryzae at Different Growth Stages. PLANT DISEASE 2019; 103:132-136. [PMID: 30444467 DOI: 10.1094/pdis-12-17-1873-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Rice blast, caused by the fungus Magnaporthe oryzae, is the most damaging disease for rice worldwide. However, the reactions of rice to M. oryzae at different growth stages are largely unknown. In the present study, two temperate japonica rice cultivars, M-202 and Nipponbare, were inoculated synchronously at different vegetative growth stages, V1 to V10. Plants of M-202 at each stage from V1 to reproductive stage R8 were inoculated with M. oryzae race (isolate) IB-49 (ZN61) under controlled conditions. Disease reactions were recorded 7 days postinoculation by measuring the percentage of diseased area of all leaves, excluding the youngest leaf. The results showed that the plants were significantly susceptible at the V1 to V4 stages with a disease severity of 26.7 to 46.8% and disease index of 18.62 to 37.76 for M-202. At the V1 to V2 stages, the plants were significantly susceptible with a disease a severity of 28.6 to 39.3% and disease index of 23.65 to 29.82 for Nipponbare. Similar results were observed when plants of M-202 were inoculated at each growth stage with a disease severity of 29.7 to 60.6% and disease index of 21.93 to 59.25 from V1 to V4. Susceptibility decreased after the V5 stage (severity 4.6% and index 2.17) and became completely resistant at the V9 to V10 stages and after the reproductive stages, suggesting that plants have enhanced disease resistance at later growth stages. These findings are useful for managing rice blast disease in commercial rice production worldwide.
Collapse
Affiliation(s)
- Xinglong Chen
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Yulin Jia
- USDA-ARS, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, U.S.A
| | - Bo Ming Wu
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
28
|
Interhomolog polymorphism shapes meiotic crossover within the Arabidopsis RAC1 and RPP13 disease resistance genes. PLoS Genet 2018; 14:e1007843. [PMID: 30543623 PMCID: PMC6307820 DOI: 10.1371/journal.pgen.1007843] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/27/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022] Open
Abstract
During meiosis, chromosomes undergo DNA double-strand breaks (DSBs), which can be repaired using a homologous chromosome to produce crossovers. Meiotic recombination frequency is variable along chromosomes and tends to concentrate in narrow hotspots. We mapped crossover hotspots located in the Arabidopsis thaliana RAC1 and RPP13 disease resistance genes, using varying haplotypic combinations. We observed a negative non-linear relationship between interhomolog divergence and crossover frequency within the hotspots, consistent with polymorphism locally suppressing crossover repair of DSBs. The fancm, recq4a recq4b, figl1 and msh2 mutants, or lines with increased HEI10 dosage, are known to show increased crossovers throughout the genome. Surprisingly, RAC1 crossovers were either unchanged or decreased in these genetic backgrounds, showing that chromosome location and local chromatin environment are important for regulation of crossover activity. We employed deep sequencing of crossovers to examine recombination topology within RAC1, in wild type, fancm, recq4a recq4b and fancm recq4a recq4b backgrounds. The RAC1 recombination landscape was broadly conserved in the anti-crossover mutants and showed a negative relationship with interhomolog divergence. However, crossovers at the RAC1 5'-end were relatively suppressed in recq4a recq4b backgrounds, further indicating that local context may influence recombination outcomes. Our results demonstrate the importance of interhomolog divergence in shaping recombination within plant disease resistance genes and crossover hotspots.
Collapse
|
29
|
Bai JF, Wang YK, Wang P, Yuan SH, Gao JG, Duan WJ, Wang N, Zhang FT, Zhang WJ, Qin MY, Zhao CP, Zhang LP. Genome-wide identification and analysis of the COI gene family in wheat (Triticum aestivum L.). BMC Genomics 2018; 19:754. [PMID: 30332983 PMCID: PMC6192174 DOI: 10.1186/s12864-018-5116-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 09/26/2018] [Indexed: 12/18/2022] Open
Abstract
Background COI (CORONATINE INSENSITIVE), an F-box component of the Skp1-Cullin-F-box protein (SCFCOI1) ubiquitin E3 ligase, plays important roles in the regulation of plant growth and development. Recent studies have shown that COIs are involved in pollen fertility. In this study, we identified and characterized COI genes in the wheat genome and analyzed expression patterns under abiotic stress. Results A total of 18 COI candidate sequences for 8 members of COI gene family were isolated in wheat (Triticum aestivum L.). Phylogenetic and structural analyses showed that these COI genes could be divided into seven distinct subfamilies. The COI genes showed high expression in stamens and glumes. The qRT-PCR results revealed that wheat COIs were involved in several abiotic stress responses and anther/glume dehiscence in the photoperiod-temperature sensitive genic male sterile (PTGMS) wheat line BS366. Conclusions The structural characteristics and expression patterns of the COI gene family in wheat as well as the stress-responsive and differential tissue-specific expression profiles of each TaCOI gene were examined in PTGMS wheat line BS366. In addition, we examined SA- and MeJA-induced gene expression in the wheat anther and glume to investigate the role of COI in the JA signaling pathway, involved in the regulation of abnormal anther dehiscence in the PTGMS wheat line. The results of this study contribute novel and detailed information about the TaCOI gene family in wheat and could be used as a benchmark for future studies of the molecular mechanisms of PTGMS in other crops. Electronic supplementary material The online version of this article (10.1186/s12864-018-5116-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian-Fang Bai
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Yu-Kun Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China.,Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Peng Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Shao-Hua Yuan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Jian-Gang Gao
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Wen-Jing Duan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Na Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Feng-Ting Zhang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Wen-Jie Zhang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Meng-Ying Qin
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Chang-Ping Zhao
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China. .,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China.
| | - Li-Ping Zhang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China. .,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China.
| |
Collapse
|
30
|
Profile of Jonathan D. G. Jones. Proc Natl Acad Sci U S A 2018; 115:10191-10194. [DOI: 10.1073/pnas.1815072115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Marla SR, Chu K, Chintamanani S, Multani DS, Klempien A, DeLeon A, Bong-suk K, Dunkle LD, Dilkes BP, Johal GS. Adult plant resistance in maize to northern leaf spot is a feature of partial loss-of-function alleles of Hm1. PLoS Pathog 2018; 14:e1007356. [PMID: 30332488 PMCID: PMC6205646 DOI: 10.1371/journal.ppat.1007356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/29/2018] [Accepted: 09/26/2018] [Indexed: 01/06/2023] Open
Abstract
Adult plant resistance (APR) is an enigmatic phenomenon in which resistance genes are ineffective in protecting seedlings from disease but confer robust resistance at maturity. Maize has multiple cases in which genes confer APR to northern leaf spot, a lethal disease caused by Cochliobolus carbonum race 1 (CCR1). The first identified case of APR in maize is encoded by a hypomorphic allele, Hm1A, at the hm1 locus. In contrast, wild-type alleles of hm1 provide complete protection at all developmental stages and in every part of the maize plant. Hm1 encodes an NADPH-dependent reductase, which inactivates HC-toxin, a key virulence effector of CCR1. Cloning and characterization of Hm1A ruled out differential transcription or translation for its APR phenotype and identified an amino acid substitution that reduced HC-toxin reductase (HCTR) activity. The possibility of a causal relationship between the weak nature of Hm1A and its APR phenotype was confirmed by the generation of two new APR alleles of Hm1 by mutagenesis. The HCTRs encoded by these new APR alleles had undergone relatively conservative missense changes that partially reduced their enzymatic activity similar to HM1A. No difference in accumulation of HCTR was observed between adult and juvenile plants, suggesting that the susceptibility of seedlings derives from a greater need for HCTR activity, not reduced accumulation of the gene product. Conditions and treatments that altered the photosynthetic output of the host had a dramatic effect on resistance imparted by the APR alleles, demonstrating a link between the energetic or metabolic status of the host and disease resistance affected by HC-toxin catabolism by the APR alleles of HCTR.
Collapse
Affiliation(s)
- Sandeep R. Marla
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Kevin Chu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Satya Chintamanani
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | | | - Antje Klempien
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Alyssa DeLeon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Kim Bong-suk
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Larry D. Dunkle
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Brian P. Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Gurmukh S. Johal
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
32
|
Deng Y, Chen H, Zhang C, Cai T, Zhang B, Zhou S, Fountain JC, Pan RL, Guo B, Zhuang WJ. Evolution and characterisation of the AhRAF4 NB-ARC gene family induced by Aspergillus flavus inoculation and abiotic stresses in peanut. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:737-750. [PMID: 29603544 DOI: 10.1111/plb.12726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Aflatoxin contamination in peanut is a serious food safety issue to human health around the world. Finding disease resistance genes is a key strategy for genetic improvement in breeding to deal with this issue. We identified an Aspergillus flavus-induced NBS-LRR gene, AhRAF4, using a microarray-based approach. By comparison of 23 sequences from three species using phytogenetics, protein secondary structure and three-dimensional structural analyses, AhRAF4 was revealed to be derived from Arachis duranensis by recombination, and has newly evolved into a family of several members, characterised by duplications and point mutations. However, the members of the family descended from A. ipaensis were lost following tetraploidisation. AhRAF4 was slightly up-regulated by low temperature, drought, salicylic acid and ethylene, but down-regulated by methyl jasmonate. The distinct responses upon As. flavus inoculation and the differential reactions between resistant and susceptible varieties indicate that AhRAF4 might play a role in defence responses. Temporal and spatial expression and the phenotype of transformed protoplasts suggest that AhRAF4 may also be associated with pericarp development. Because tetraploid cultivated peanuts are vulnerable to many pathogens, an exploration of R-genes may provide an effective method for genetic improvement of peanut cultivars.
Collapse
Affiliation(s)
- Y Deng
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - H Chen
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - C Zhang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - T Cai
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - B Zhang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - S Zhou
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - J C Fountain
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - R-L Pan
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, Taiwan, China
| | - B Guo
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA
- Crop Protection and Management Research Unit, US Department of Agriculture, Agricultural Research Service, Tifton, GA, USA
| | - W-J Zhuang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
33
|
Michel V, Julio E, Candresse T, Cotucheau J, Decorps C, Volpatti R, Moury B, Glais L, Dorlhac de Borne F, Decroocq V, German-Retana S. NtTPN1: a RPP8-like R gene required for Potato virus Y-induced veinal necrosis in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:700-714. [PMID: 29863810 DOI: 10.1111/tpj.13980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 04/19/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Potato virus Y (PVY) is one of the most damaging viruses of tobacco. In particular, aggressive necrotic strains (PVYN ) lead to considerable losses in yield. The main source of resistance against PVY is linked to the va locus. However, va-overcoming PVY isolates inducing necrotic symptoms were observed in several countries. In this context, it is important to find va-independent protection strategies. In a previous study, the phenotyping of 162 tobacco varieties revealed 10 accessions that do not carry the va allele and do not exhibit typical PVYN -induced veinal necrosis. Despite the absence of necrotic symptoms, normal viral accumulation in these plants suggests a va-independent mechanism of tolerance to PVYN -induced systemic veinal necrosis. Fine mapping of the genetic determinant(s) was performed in a segregating F2 population. The tolerance trait is inherited as a single recessive gene, and allelism tests demonstrated that eight of the 10 tolerant varieties carry the same determinant. Anchoring the linkage map to the tobacco genome physical map allowed the identification of a RPP8-like R gene, called NtTPN1 (for Nicotiana tabacum Tolerance to PVY-induced Necrosis1), with the same single-nucleotide polymorphism in the eight tolerant accessions. Functional assays using homozygous NtTPN1 EMS mutants confirmed the role of NtTPN1 in the tolerance phenotype. PVYN -induced systemic veinal necrosis in tobacco likely represents an inefficient defense response with hypersensitive response-like characteristics. The identification of NtTPN1 opens breeding options to minimize the impact of emerging and so far uncontrolled va-breaking necrotic PVY isolates.
Collapse
Affiliation(s)
- Vincent Michel
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, 71 Av. E. Bourlaux, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | - Emilie Julio
- Imperial Tobacco, La Tour, 24100, Bergerac, France
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, 71 Av. E. Bourlaux, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | | | | | | | - Benoît Moury
- Pathologie Végétale, INRA, 84140, Montfavet, France
| | - Laurent Glais
- FN3PT/RD3PT, 75008, Paris, France
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, 35650, Le Rheu, France
| | | | - Véronique Decroocq
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, 71 Av. E. Bourlaux, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | - Sylvie German-Retana
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, 71 Av. E. Bourlaux, CS 20032, 33882, Villenave d'Ornon Cedex, France
| |
Collapse
|
34
|
Stotz HU, Harvey PJ, Haddadi P, Mashanova A, Kukol A, Larkan NJ, Borhan MH, Fitt BDL. Genomic evidence for genes encoding leucine-rich repeat receptors linked to resistance against the eukaryotic extra- and intracellular Brassica napus pathogens Leptosphaeria maculans and Plasmodiophora brassicae. PLoS One 2018; 13:e0198201. [PMID: 29856883 PMCID: PMC5983482 DOI: 10.1371/journal.pone.0198201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/15/2018] [Indexed: 01/17/2023] Open
Abstract
Genes coding for nucleotide-binding leucine-rich repeat (LRR) receptors (NLRs) control resistance against intracellular (cell-penetrating) pathogens. However, evidence for a role of genes coding for proteins with LRR domains in resistance against extracellular (apoplastic) fungal pathogens is limited. Here, the distribution of genes coding for proteins with eLRR domains but lacking kinase domains was determined for the Brassica napus genome. Predictions of signal peptide and transmembrane regions divided these genes into 184 coding for receptor-like proteins (RLPs) and 121 coding for secreted proteins (SPs). Together with previously annotated NLRs, a total of 720 LRR genes were found. Leptosphaeria maculans-induced expression during a compatible interaction with cultivar Topas differed between RLP, SP and NLR gene families; NLR genes were induced relatively late, during the necrotrophic phase of pathogen colonization. Seven RLP, one SP and two NLR genes were found in Rlm1 and Rlm3/Rlm4/Rlm7/Rlm9 loci for resistance against L. maculans on chromosome A07 of B. napus. One NLR gene at the Rlm9 locus was positively selected, as was the RLP gene on chromosome A10 with LepR3 and Rlm2 alleles conferring resistance against L. maculans races with corresponding effectors AvrLm1 and AvrLm2, respectively. Known loci for resistance against L. maculans (extracellular hemi-biotrophic fungus), Sclerotinia sclerotiorum (necrotrophic fungus) and Plasmodiophora brassicae (intracellular, obligate biotrophic protist) were examined for presence of RLPs, SPs and NLRs in these regions. Whereas loci for resistance against P. brassicae were enriched for NLRs, no such signature was observed for the other pathogens. These findings demonstrate involvement of (i) NLR genes in resistance against the intracellular pathogen P. brassicae and a putative NLR gene in Rlm9-mediated resistance against the extracellular pathogen L. maculans.
Collapse
Affiliation(s)
- Henrik U. Stotz
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
- * E-mail:
| | - Pascoe J. Harvey
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Parham Haddadi
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Alla Mashanova
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Andreas Kukol
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | | | - M. Hossein Borhan
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Bruce D. L. Fitt
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
35
|
Kim B, Hwang IS, Lee HJ, Lee JM, Seo E, Choi D, Oh CS. Identification of a molecular marker tightly linked to bacterial wilt resistance in tomato by genome-wide SNP analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1017-1030. [PMID: 29352323 DOI: 10.1007/s00122-018-3054-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/12/2018] [Indexed: 06/07/2023]
Abstract
Genotyping of disease resistance to bacterial wilt in tomato by a genome-wide SNP analysis Bacterial wilt caused by Ralstonia pseudosolanacearum is one of the destructive diseases in tomato. The previous studies have identified Bwr-6 (chromosome 6) and Bwr-12 (chromosome 12) loci as the major quantitative trait loci (QTLs) contributing to resistance against bacterial wilt in tomato cultivar 'Hawaii7996'. However, the genetic identities of two QTLs have not been uncovered yet. In this study, using whole-genome resequencing, we analyzed genome-wide single-nucleotide polymorphisms (SNPs) that can distinguish a resistant group, including seven tomato varieties resistant to bacterial wilt, from a susceptible group, including two susceptible to the same disease. In total, 5259 non-synonymous SNPs were found between the two groups. Among them, only 265 SNPs were located in the coding DNA sequences, and the majority of these SNPs were located on chromosomes 6 and 12. The genes that both carry SNP(s) and are near Bwr-6 and Bwr-12 were selected. In particular, four genes in chromosome 12 encode putative leucine-rich repeat (LRR) receptor-like proteins. SNPs within these four genes were used to develop SNP markers, and each SNP marker was validated by a high-resolution melting method. Consequently, one SNP marker, including a functional SNP in a gene, Solyc12g009690.1, could efficiently distinguish tomato varieties resistant to bacterial wilt from susceptible varieties. These results indicate that Solyc12g009690.1, the gene encoding a putative LRR receptor-like protein, might be tightly linked to Bwr-12, and the SNP marker developed in this study will be useful for selection of tomato cultivars resistant to bacterial wilt.
Collapse
Affiliation(s)
- Boyoung Kim
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin, 17104, South Korea
| | - In Sun Hwang
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin, 17104, South Korea
| | - Hyung Jin Lee
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin, 17104, South Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Eunyoung Seo
- Department of Plant Science, Seoul National University, Seoul, 08826, South Korea
| | - Doil Choi
- Department of Plant Science, Seoul National University, Seoul, 08826, South Korea
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin, 17104, South Korea.
| |
Collapse
|
36
|
Liu G, Liu J, Zhang C, You X, Zhao T, Jiang J, Chen X, Zhang H, Yang H, Zhang D, Du C, Li J, Xu X. Physiological and RNA-seq analyses provide insights into the response mechanism of the Cf-10-mediated resistance to Cladosporium fulvum infection in tomato. PLANT MOLECULAR BIOLOGY 2018; 96:403-416. [PMID: 29383477 DOI: 10.1007/s11103-018-0706-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/20/2018] [Indexed: 05/22/2023]
Abstract
Based on the physiological and RNA-seq analysis, some progress has been made in elucidating the Cf-10-mediated resistance responses to C. fulvum infection in tomato. GO and KEGG enrichment analysis revealed that the DEGs were significantly associated with defense-signaling pathways like oxidation-reduction processes, oxidoreductase activity and plant hormone signal transduction. Leaf mold, caused by the fungus Cladosporium fulvum, is one of the most common diseases affecting tomatoes worldwide. Cf series genes including Cf-2, Cf-4, Cf-5, Cf-9 and Cf-10 play very important roles in resisting tomato leaf mold. Understanding the molecular mechanism of Cf gene-mediated resistance is thus the key to facilitating genetic engineering of resistance to C. fulvum infection. Progress has been made in elucidating two Cf genes, Cf -19 and Cf -12, and how they mediate resistance responses to C. fulvum infection in tomato. However, the mechanism of the Cf-10- mediated resistance response is still unclear. In the present study, RNA-seq was used to analyze changes in the transcriptome at different stages of C. fulvum infection. A total of 2,242 differentially expressed genes (DEGs) responsive to C. fulvum between 0 and 16 days post infection (dpi) were identified, including 1,501 upregulated and 741 downregulated genes. The majority of DEGs were associated with defense-signaling pathways including oxidation-reduction processes, oxidoreductase activity and plant hormone signal transduction. Four DEGs associated with plant-pathogen interaction were uniquely activated in Cf-10 tomato and validated by qRT-PCR. In addition, physiological indicators including reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were measured at 0-21 dpi, and hormone expression [Jasmonic acid (JA) and salicylic acid (SA)] was estimated at 0 and 16 dpi to elucidate the mechanism of the Cf-10-mediated resistance response. C. fulvum infection induced the activities of POD, CAT and SOD, and decreased ROS levels. JA was determined to participate in the resistance response to C. fulvum during the initial infection period. The results of this study provide accountable evidence for the physiological and transcriptional regulation of the Cf-10-mediated resistance response to C. fulvum infection, facilitating further understanding of the molecular mechanism of Cf-10-mediated resistance to C. fulvum infection.
Collapse
Affiliation(s)
- Guan Liu
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - Junfang Liu
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - Chunli Zhang
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoqing You
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - Tingting Zhao
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - Jingbin Jiang
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - Xiuling Chen
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - He Zhang
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - Huanhuan Yang
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - Dongye Zhang
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - Chong Du
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - Jingfu Li
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - Xiangyang Xu
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
37
|
McCorkle KL, Drake-Stowe K, Lewis RS, Shew D. Characterization of Phytophthora nicotianae Resistance Conferred by the Introgressed Nicotiana rustica Region, Wz, in Flue-Cured Tobacco. PLANT DISEASE 2018; 102:309-317. [PMID: 30673528 DOI: 10.1094/pdis-03-17-0339-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Black shank, caused by Phytophthora nicotianae, is one of the most important diseases affecting tobacco worldwide and is primarily managed through use of host resistance. An additional source of resistance to P. nicotianae, designated as Wz, has been introgressed into Nicotiana tabacum from N. rustica. The Wz gene region confers high levels of resistance to all races, but has not been characterized. Our study found Wz-mediated resistance is most highly expressed in the roots, with only a slight reduction in stem-lesion size in Wz genotypes compared with susceptible controls. No substantial relationships were observed between initial inoculum levels and disease development on Wz genotypes, which is generally consistent with qualitative or complete resistance. Isolates of P. nicotianae adapted for five host generations on plants with the Wz gene caused higher disease severity than isolates adapted on Wz plants for only one host generation. Wz-adapted isolates did not exhibit increased aggressiveness on genotypes with other sources of partial resistance, suggesting pathogen adaptation was specific to the Wz gene. To reduce potential for pathogen population shifts with virulence on Wz genotypes, Wz should be combined with other resistance sources and rotation of varying black shank resistance mechanisms is also recommended.
Collapse
Affiliation(s)
- Kestrel L McCorkle
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Katherine Drake-Stowe
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC 27695
| | - Ramsey S Lewis
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC 27695
| | - David Shew
- Department of Plant Pathology, North Carolina State University, Raleigh, NC
| |
Collapse
|
38
|
Bennewitz S, Bergau N, Tissier A. QTL Mapping of the Shape of Type VI Glandular Trichomes in Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:1421. [PMID: 30319679 PMCID: PMC6168718 DOI: 10.3389/fpls.2018.01421] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/06/2018] [Indexed: 05/17/2023]
Abstract
Glandular trichomes contribute to the high resistance of wild tomato species against insect pests not only thanks to the metabolites they produce but also because of morphological and developmental features which support the high production of these defense compounds. In Solanum habrochaites, type VI trichomes have a distinct spherical shape and a large intercellular storage cavity where metabolites can accumulate and are released upon breaking off of the glandular cells. In contrast, the type VI trichomes of S. lycopersicum have a four-leaf clover shape corresponding to the four glandular cells and a small internal cavity with limited capacity for storage of compounds. To better characterize the genetic factors underlying these trichome morphological differences we created a back-cross population of 116 individuals between S. habrochaites LA1777 and S. lycopersicum var. cerasiforme WVa106. A trichome score that reflects the shape of the type VI trichomes allowing the quantification of this trait was designed. The scores were distributed normally across the population, which was mapped with a total of 192 markers. This resulted in the identification of six quantitative trait locus (QTLs) on chromosomes I, VII, VII, and XI. The QTL on chromosome I with the highest LOD score was confirmed and narrowed down to a 500 gene interval in an advanced population derived from one of the back-cross lines. Our results provide the foundation for the genetic dissection of type VI trichome morphology and the introgression of these trichome traits into cultivated tomato lines for increased insect resistance. Key Message: This work shows that the shape of type VI glandular trichomes in tomato is a genetically defined trait controlled by multiple QTLs with one on chromosome I being the major contributor.
Collapse
Affiliation(s)
| | | | - Alain Tissier
- *Correspondence: Alain Tissier, orcid.org/0000-0002-9406-4245
| |
Collapse
|
39
|
Lawrence EJ, Griffin CH, Henderson IR. Modification of meiotic recombination by natural variation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5471-5483. [PMID: 28992351 DOI: 10.1093/jxb/erx306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is a specialized cell division that produces haploid gametes required for sexual reproduction. During the first meiotic division, homologous chromosomes pair and undergo reciprocal crossing over, which recombines linked sequence variation. Meiotic recombination frequency varies extensively both within and between species. In this review, we will examine the molecular basis of meiotic recombination rate variation, with an emphasis on plant genomes. We first consider cis modification caused by polymorphisms at the site of recombination, or elsewhere on the same chromosome. We review cis effects caused by mismatches within recombining joint molecules, the effect of structural hemizygosity, and the role of specific DNA sequence motifs. In contrast, trans modification of recombination is exerted by polymorphic loci encoding diffusible molecules, which are able to modulate recombination on the same and/or other chromosomes. We consider trans modifiers that act to change total recombination levels, hotspot locations, or interactions between homologous and homeologous chromosomes in polyploid species. Finally, we consider the significance of genetic variation that modifies meiotic recombination for adaptation and evolution of plant species.
Collapse
Affiliation(s)
- Emma J Lawrence
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Catherine H Griffin
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
40
|
Ziolkowski PA, Henderson IR. Interconnections between meiotic recombination and sequence polymorphism in plant genomes. THE NEW PHYTOLOGIST 2017; 213:1022-1029. [PMID: 27861941 DOI: 10.1111/nph.14265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
1022 I. 1022 II. 1023 III. 1023 IV. 1025 V. 1026 1027 References 1027 SUMMARY: Meiosis is fundamental to sexual reproduction and creates genetic variation in progeny. During meiosis paired homologous chromosomes undergo recombination, which can result in reciprocal crossovers. This process can recombine independently arising mutations onto the same chromosome. Recombination locations are highly variable between meioses, although total crossover numbers are tightly regulated. In addition to the effect of meiosis on genetic variation, sequence polymorphisms between homologous chromosomes can feedback onto the recombination pathways. Here we review the major crossover pathways in plants and some of the known homeostatic mechanisms that act during meiotic recombination. We then examine how sequence polymorphisms between homologous chromosomes, that is, heterozygosity, can influence meiotic recombination pathways in cis and trans. Finally, we provide a brief perspective on the relevance of these interconnections for natural selection and adaptation in plants.
Collapse
Affiliation(s)
- Piotr A Ziolkowski
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
- Department of Biotechnology, Adam Mickiewicz University, Umultowska 89, Poznan, 61-614, Poland
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
41
|
The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events. Proc Natl Acad Sci U S A 2017; 114:1063-1068. [PMID: 28096345 PMCID: PMC5293065 DOI: 10.1073/pnas.1619730114] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There are intriguing parallels between plants and animals, with respect to the structures of their innate immune receptors, that suggest universal principles of innate immunity. The cytosolic nucleotide binding site-leucine rich repeat (NBS-LRR) resistance proteins of plants (R-proteins) and the so-called NOD-like receptors of animals (NLRs) share a domain architecture that includes a STAND (signal transduction ATPases with numerous domains) family NTPase followed by a series of LRRs, suggesting inheritance from a common ancestor with that architecture. Focusing on the STAND NTPases of plant R-proteins, animal NLRs, and their homologs that represent the NB-ARC (nucleotide-binding adaptor shared by APAF-1, certain R gene products and CED-4) and NACHT (named for NAIP, CIIA, HET-E, and TEP1) subfamilies of the STAND NTPases, we analyzed the phylogenetic distribution of the NBS-LRR domain architecture, used maximum-likelihood methods to infer a phylogeny of the NTPase domains of R-proteins, and reconstructed the domain structure of the protein containing the common ancestor of the STAND NTPase domain of R-proteins and NLRs. Our analyses reject monophyly of plant R-proteins and NLRs and suggest that the protein containing the last common ancestor of the STAND NTPases of plant R-proteins and animal NLRs (and, by extension, all NB-ARC and NACHT domains) possessed a domain structure that included a STAND NTPase paired with a series of tetratricopeptide repeats. These analyses reject the hypothesis that the domain architecture of R-proteins and NLRs was inherited from a common ancestor and instead suggest the domain architecture evolved at least twice. It remains unclear whether the NBS-LRR architectures were innovations of plants and animals themselves or were acquired by one or both lineages through horizontal gene transfer.
Collapse
|
42
|
Chen J, Li N, Ma X, Gupta VK, Zhang D, Li T, Dai X. The Ectopic Overexpression of the Cotton Ve1 and Ve2-Homolog Sequences Leads to Resistance Response to Verticillium Wilt in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:844. [PMID: 28611793 PMCID: PMC5447073 DOI: 10.3389/fpls.2017.00844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/05/2017] [Indexed: 05/07/2023]
Abstract
Verticillium wilt, caused by the Verticillium dahliae phytopathogen, is a devastating disease affecting many economically important crops. A receptor-like protein (RLP) gene, Ve1, has been reported to confer resistance to V. dahliae in tomato plants, but few genes have been found to be involved in cotton Verticillium wilt resistance. Here, we cloned two RLP gene homologs, Gossypium barbadense resistance gene to Verticillium dahliae 1 (GbaVd1) and GbaVd2, from the Verticillium wilt-resistant cultivar G. barbadense cv. Hai7124. GbaVd1 and GbaVd2 display sequence divergence, but both encode typical RLPs. Virus-induced gene silencing of GbaVd1 or GbaVd2 compromised the resistance of cotton to V. dahliae, and both genes conferred Verticillium wilt resistance after interfamily transfer into Arabidopsis. Microarray analysis revealed that GbaVd1 and GbaVd2 participate in Verticillium wilt resistance in Arabidopsis through activation of defense responses, including the endocytosis process, signaling factors, transcription factors and reinforcement of the cell wall, as demonstrated by lignification in Arabidopsis transgenic plants. In addition, microarray analysis showed that GbaVd1 and GbaVd2 differentially mediate resistance signaling and activation of defense responses after overexpression in Arabidopsis. Thus, GbaVd1 and GbaVd2 encode RLPs and act as disease resistance genes that mediate the defense response against V. dahliae in cotton.
Collapse
Affiliation(s)
- Jieyin Chen
- Laboratory of Cotton Diseases, The Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijing, China
| | - Nanyang Li
- Laboratory of Cotton Diseases, The Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xuefeng Ma
- Laboratory of Cotton Diseases, The Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijing, China
| | - Vijai K. Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of TechnologyTallinn, Estonia
| | - Dandan Zhang
- Laboratory of Cotton Diseases, The Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijing, China
| | - Tinggang Li
- Laboratory of Cotton Diseases, The Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xiaofeng Dai
- Laboratory of Cotton Diseases, The Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijing, China
- *Correspondence: Xiaofeng Dai
| |
Collapse
|
43
|
Oren M, Barela Hudgell MA, D'Allura B, Agronin J, Gross A, Podini D, Smith LC. Short tandem repeats, segmental duplications, gene deletion, and genomic instability in a rapidly diversified immune gene family. BMC Genomics 2016; 17:900. [PMID: 27829352 PMCID: PMC5103432 DOI: 10.1186/s12864-016-3241-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/01/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Genomic regions with repetitive sequences are considered unstable and prone to swift DNA diversification processes. A highly diverse immune gene family of the sea urchin (Strongylocentrotus purpuratus), called Sp185/333, is composed of clustered genes with similar sequence as well as several types of repeats ranging in size from short tandem repeats (STRs) to large segmental duplications. This repetitive structure may have been the basis for the incorrect assembly of this gene family in the sea urchin genome sequence. Consequently, we have resolved the structure of the family and profiled the members by sequencing selected BAC clones using Illumina and PacBio approaches. RESULTS BAC insert assemblies identified 15 predicted genes that are organized into three clusters. Two of the gene clusters have almost identical flanking regions, suggesting that they may be non-matching allelic clusters residing at the same genomic locus. GA STRs surround all genes and appear in large stretches at locations of putatively deleted genes. GAT STRs are positioned at the edges of segmental duplications that include a subset of the genes. The unique locations of the STRs suggest their involvement in gene deletions and segmental duplications. Genomic profiling of the Sp185/333 gene diversity in 10 sea urchins shows that no gene repertoires are shared among individuals indicating a very high gene diversification rate for this family. CONCLUSIONS The repetitive genomic structure of the Sp185/333 family that includes STRs in strategic locations may serve as platform for a controlled mechanism which regulates the processes of gene recombination, gene conversion, duplication and deletion. The outcome is genomic instability and allelic mismatches, which may further drive the swift diversification of the Sp185/333 gene family that may improve the immune fitness of the species.
Collapse
Affiliation(s)
- Matan Oren
- The Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Megan A Barela Hudgell
- The Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Brian D'Allura
- The Department of Biological Sciences, George Washington University, Washington, DC, USA
- Present Address: Pennsylvania College of Optometry, Salus University, Elkins Park, PA, USA
| | - Jacob Agronin
- The Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Alexandra Gross
- The Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Daniele Podini
- Department of Forensic Sciences, George Washington University, Washington, DC, USA
| | - L Courtney Smith
- The Department of Biological Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
44
|
Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation. Proc Natl Acad Sci U S A 2016; 113:12850-12855. [PMID: 27791169 DOI: 10.1073/pnas.1614862113] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Brown planthopper (BPH), Nilaparvata lugens Stål, is one of the most devastating insect pests of rice (Oryza sativa L.). Currently, 30 BPH-resistance genes have been genetically defined, most of which are clustered on specific chromosome regions. Here, we describe molecular cloning and characterization of a BPH-resistance gene, BPH9, mapped on the long arm of rice chromosome 12 (12L). BPH9 encodes a rare type of nucleotide-binding and leucine-rich repeat (NLR)-containing protein that localizes to the endomembrane system and causes a cell death phenotype. BPH9 activates salicylic acid- and jasmonic acid-signaling pathways in rice plants and confers both antixenosis and antibiosis to BPH. We further demonstrated that the eight BPH-resistance genes that are clustered on chromosome 12L, including the widely used BPH1, are allelic with each other. To honor the priority in the literature, we thus designated this locus as BPH1/9 These eight genes can be classified into four allelotypes, BPH1/9-1, -2, -7, and -9 These allelotypes confer varying levels of resistance to different biotypes of BPH. The coding region of BPH1/9 shows a high level of diversity in rice germplasm. Homologous fragments of the nucleotide-binding (NB) and leucine-rich repeat (LRR) domains exist, which might have served as a repository for generating allele diversity. Our findings reveal a rice plant strategy for modifying the genetic information to gain the upper hand in the struggle against insect herbivores. Further exploration of natural allelic variation and artificial shuffling within this gene may allow breeding to be tailored to control emerging biotypes of BPH.
Collapse
|
45
|
Choi K, Reinhard C, Serra H, Ziolkowski PA, Underwood CJ, Zhao X, Hardcastle TJ, Yelina NE, Griffin C, Jackson M, Mézard C, McVean G, Copenhaver GP, Henderson IR. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes. PLoS Genet 2016; 12:e1006179. [PMID: 27415776 PMCID: PMC4945094 DOI: 10.1371/journal.pgen.1006179] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/15/2016] [Indexed: 12/31/2022] Open
Abstract
Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.
Collapse
Affiliation(s)
- Kyuha Choi
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Carsten Reinhard
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Heïdi Serra
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Piotr A. Ziolkowski
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
- Department of Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Charles J. Underwood
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Xiaohui Zhao
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Thomas J. Hardcastle
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Nataliya E. Yelina
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Catherine Griffin
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Jackson
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Christine Mézard
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles, France
| | - Gil McVean
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Gregory P. Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ian R. Henderson
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
46
|
Sun XQ, Li DH, Xue JY, Yang SH, Zhang YM, Li MM, Hang YY. Insertion DNA Accelerates Meiotic Interchromosomal Recombination in Arabidopsis thaliana. Mol Biol Evol 2016; 33:2044-53. [PMID: 27189569 DOI: 10.1093/molbev/msw087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nucleotide insertions/deletions are ubiquitous in eukaryotic genomes, and the resulting hemizygous (unpaired) DNA has significant, heritable effects on adjacent DNA. However, little is known about the genetic behavior of insertion DNA. Here, we describe a binary transgenic system to study the behavior of insertion DNA during meiosis. Transgenic Arabidopsis lines were generated to carry two different defective reporter genes on nonhomologous chromosomes, designated as "recipient" and "donor" lines. Double hemizygous plants (harboring unpaired DNA) were produced by crossing between the recipient and the donor, and double homozygous lines (harboring paired DNA) via self-pollination. The transfer of the donor's unmutated sequence to the recipient generated a functional β-glucuronidase gene, which could be visualized by histochemical staining and corroborated by polymerase chain reaction amplification and sequencing. More than 673 million seedlings were screened, and the results showed that meiotic ectopic recombination in the hemizygous lines occurred at a frequency >6.49-fold higher than that in the homozygous lines. Gene conversion might have been exclusively or predominantly responsible for the gene correction events. The direct measurement of ectopic recombination events provided evidence that an insertion, in the absence of an allelic counterpart, could scan the entire genome for homologous counterparts with which to pair. Furthermore, the unpaired (hemizygous) architectures could accelerate ectopic recombination between itself and interchromosomal counterparts. We suggest that the ectopic recombination accelerated by hemizygous architectures may be a general mechanism for interchromosomal recombination through ubiquitously dispersed repeat sequences in plants, ultimately contributing to genetic renovation and eukaryotic evolution.
Collapse
Affiliation(s)
- Xiao-Qin Sun
- Jiangsu Key Laboratory for the Research and Uti1ization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Ding-Hong Li
- Jiangsu Key Laboratory for the Research and Uti1ization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jia-Yu Xue
- Jiangsu Key Laboratory for the Research and Uti1ization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Si-Hai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan-Mei Zhang
- Jiangsu Key Laboratory for the Research and Uti1ization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Mi-Mi Li
- Jiangsu Key Laboratory for the Research and Uti1ization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yue-Yu Hang
- Jiangsu Key Laboratory for the Research and Uti1ization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
47
|
Chakrabarti A, Velusamy T, Tee CY, Jones DA. A mutational analysis of the cytosolic domain of the tomato Cf-9 disease-resistance protein shows that membrane-proximal residues are important for Avr9-dependent necrosis. MOLECULAR PLANT PATHOLOGY 2016; 17:565-76. [PMID: 26315781 PMCID: PMC6638541 DOI: 10.1111/mpp.12315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The tomato Cf-9 gene encodes a membrane-anchored glycoprotein that imparts race-specific resistance against the tomato leaf mould fungus Cladosporium fulvum in response to the avirulence protein Avr9. Although the N-terminal half of the extracellular leucine-rich repeat (eLRR) domain of the Cf-9 protein determines its specificity for Avr9, the C-terminal half, including its small cytosolic domain, is postulated to be involved in signalling. The cytosolic domain of Cf-9 carries several residues that are potential sites for ubiquitinylation or phosphorylation, or signals for endocytic uptake. A targeted mutagenesis approach was employed to investigate the roles of these residues and cellular processes in Avr9-dependent necrosis triggered by Cf-9. Our results indicate that the membrane-proximal region of the cytosolic domain of Cf-9 plays an important role in Cf-9-mediated necrosis, and two amino acids within this region, a threonine (T835) and a proline (P838), are particularly important for Cf-9 function. An alanine mutation of T835 had no effect on Cf-9 function, but an aspartic acid mutation, which mimics phosphorylation, reduced Cf-9 function. We therefore postulate that phosphorylation/de-phosphorylation of T835 could act as a molecular switch to determine whether Cf-9 is in a primed or inactive state. Yeast two-hybrid analysis was used to show that the cytosolic domain of Cf-9 interacts with the cytosolic domain of tomato VAP27. This interaction could be disrupted by an alanine mutation of P838, whereas interaction with CITRX remained unaffected. We therefore postulate that a proline-induced kink in the membrane-proximal region of the cytosolic domain of Cf-9 may be important for interaction with VAP27, which may, in turn, be important for Cf-9 function.
Collapse
Affiliation(s)
- Apratim Chakrabarti
- Division of Plant Sciences, Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT, 2601, Australia
| | - Thilaga Velusamy
- Division of Plant Sciences, Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT, 2601, Australia
| | - Choon Yang Tee
- Division of Plant Sciences, Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT, 2601, Australia
| | - David A Jones
- Division of Plant Sciences, Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT, 2601, Australia
| |
Collapse
|
48
|
Goritschnig S, Steinbrenner AD, Grunwald DJ, Staskawicz BJ. Structurally distinct Arabidopsis thaliana NLR immune receptors recognize tandem WY domains of an oomycete effector. THE NEW PHYTOLOGIST 2016; 210:984-96. [PMID: 26725254 DOI: 10.1111/nph.13823] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/18/2015] [Indexed: 05/27/2023]
Abstract
Nucleotide-binding leucine-rich repeat (NB-LRR, or NLR) receptors mediate pathogen recognition. The Arabidopsis thaliana NLR RPP1 recognizes the tandem WY-domain effector ATR1 from the oomycete Hyaloperonospora arabidopsidis through direct association with C-terminal LRRs. We isolated and characterized homologous NLR genes RPP1-EstA and RPP1-ZdrA from two Arabidopsis ecotypes, Estland (Est-1) and Zdarec (Zdr-1), responsible for recognizing a novel spectrum of ATR1 alleles. RPP1-EstA and -ZdrA encode nearly identical NLRs that are phylogenetically distinct from known immunity-activating RPP1 homologs and possess greatly expanded LRR domains. Site-directed mutagenesis and truncation analysis of ATR1 suggests that these homologs recognize a novel surface of the 2(nd) WY domain of ATR1, partially specified by a C-terminal region of the LRR domain. Synteny comparison with RPP1 loci involved in hybrid incompatibility suggests that these functions evolved independently. Closely related RPP1 homologs have diversified their recognition spectra through LRR expansion and sequence variation, allowing them to detect multiple surfaces of the same pathogen effector. Engineering NLR receptor specificity may require a similar combination of repeat expansion and tailored amino acid variation.
Collapse
Affiliation(s)
- Sandra Goritschnig
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Adam D Steinbrenner
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Derrick J Grunwald
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Brian J Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
49
|
Zhao T, Jiang J, Liu G, He S, Zhang H, Chen X, Li J, Xu X. Mapping and candidate gene screening of tomato Cladosporium fulvum-resistant gene Cf-19, based on high-throughput sequencing technology. BMC PLANT BIOLOGY 2016; 16:51. [PMID: 26912238 PMCID: PMC4766677 DOI: 10.1186/s12870-016-0737-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/17/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Tomato leaf mold is a common disease in tomato cultivation. This disease is caused by Cladosporium fulvum, which has many physiological races and differentiates rapidly. Cf genes confer resistance to C. fulvum, and the C. fulvum-tomato pathosystem is a model for the study of gene-for-gene interactions. Plants carrying the Cf-19 gene show effective resistance to C. fulvum in the field, and can be used in breeding and resistance mechanism studies as new resistant materials. In this study, we used F2 bulk specific-locus amplified fragment sequencing (SLAF-seq) and parental resequencing methods to locate and characterize the Cf-19 gene. RESULTS A total of 4108 Diff_markers and three association regions were found in association analysis. A 2.14-Mb region containing seven Cf-type genes was identified in further analysis based on data from SLAF-seq and parental resequencing. Two candidate genes, Solyc01g006550.2.1 and Solyc01g005870.1.1, were screened out by quantitative real-time PCR (qRT-PCR) analysis. Sequence analysis showed that Solyc01g006550.2.1 (an allelic locus of Cf-0) in CGN18423 was a novel homologue of the Cladosporium resistance gene Cf-9 (Hcr9s) in the Cf-4/9 locus. The marker P7, which cosegregated with the resistant trait, was developed based on sequence mutation of the Solyc01g006550.2.1 locus in CGN18423. CONCLUSIONS The Cf-19 gene was mapped to the short arm of chromosome 1. The candidate genes Solyc01g006550.2.1 and Solyc01g005870.1.1 showed related amino acid sequence structures and expression patterns. Solyc01g006550.2.1 had a close evolutionary relationship with the functional Hcr9 members Cf-4 and Cf-9, and was very different from non-functional members. The results from this study will facilitate the breeding of cultivars carrying the Cf-19 gene and provide a basis for further gene cloning, resistance gene evolution and plant resistance mechanism studies.
Collapse
Affiliation(s)
- Tingting Zhao
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China.
| | - Jingbin Jiang
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China.
| | - Guan Liu
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China.
| | - Shanshan He
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China.
| | - He Zhang
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiuling Chen
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China.
| | - Jingfu Li
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiangyang Xu
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
50
|
Chen T, Xiao J, Xu J, Wan W, Qin B, Cao A, Chen W, Xing L, Du C, Gao X, Zhang S, Zhang R, Shen W, Wang H, Wang X. Two members of TaRLK family confer powdery mildew resistance in common wheat. BMC PLANT BIOLOGY 2016; 16:27. [PMID: 26810982 PMCID: PMC4727334 DOI: 10.1186/s12870-016-0713-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/11/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Powdery mildew, caused by Blumeria graminearum f.sp. tritici (Bgt), is one of the most severe fungal diseases of wheat. The exploration and utilization of new gene resources is the most effective approach for the powdery mildew control. RESULTS We report the cloning and functional analysis of two wheat LRR-RLKs from T. aestivum c.v. Prins- T. timopheevii introgression line IGV1-465, named TaRLK1 and TaRLK2, which play positive roles in regulating powdery mildew resistance in wheat. The two LRR-RLKs contain an ORF of 3,045 nucleotides, encoding a peptide of 1014 amino acids, with seven amino acids difference. Their predicted proteins possess a signal peptide, several LRRs, a trans-membrane domain, and a Ser/Thr protein kinase domain. In response to Bgt infection, the TaRLK1/2 expression is up-regulated in a developmental-stage-dependent manner. Single-cell transient over-expression and gene-silencing assays indicate that both genes positively regulate the resistance to mixed Bgt inoculums. Transgenic lines over-expressing TaRLK1 or TaRLK2 in a moderate powdery mildew susceptible wheat variety Yangmai 158 led to significantly enhanced powdery mildew resistance. Exogenous applied salicylic acid (SA) or hydrogen peroxide (H2O2) induced the expression of both genes, and H2O2 had a higher accumulation at the Bgt penetration sites in RLK over-expression transgenic plants, suggesting a possible involvement of SA and altered ROS homeostasis in the defense response to Bgt infection. The two LRR-RLKs are located in the long arm of wheat chromosome 2B, in which the powdery mildew resistance gene Pm6 is located, but in different regions. CONCLUSIONS Two members of TaRLK family were cloned from IGV1-465. TaRLK1 and TaRLK2 contribute to powdery mildew resistance of wheat, providing new resistance gene resources for wheat breeding.
Collapse
Affiliation(s)
- Tingting Chen
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, 210095, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.
| | - Jin Xiao
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, 210095, China.
| | - Jun Xu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, 210095, China.
| | - Wentao Wan
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, 210095, China.
| | - Bi Qin
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, 210095, China.
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China.
| | - Aizhong Cao
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, 210095, China.
| | - Wei Chen
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, 210095, China.
| | - Liping Xing
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, 210095, China.
| | - Chen Du
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, 210095, China.
| | - Xiquan Gao
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, 210095, China.
| | - Shouzhong Zhang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, 210095, China.
| | - Ruiqi Zhang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, 210095, China.
| | - Wenbiao Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Haiyan Wang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, 210095, China.
| | - Xiue Wang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|