1
|
Faraj KS, Oerline M, Kaufman SR, Dall C, Srivastava A, Caram MEV, Shahinian VB, Hollenbeck BK. Adverse events in men with advanced prostate cancer treated with androgen biosynthesis inhibitors and androgen receptor inhibitors. J Natl Cancer Inst 2024; 116:1817-1824. [PMID: 39049442 DOI: 10.1093/jnci/djae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND The use of androgen biosynthesis and second-generation androgen receptor inhibitors for advanced prostate cancer is increasing. Because these therapies alter the androgen pathway, they have been associated with cardiometabolic and neurocognitive toxicities. Although their safety profiles have been assessed in clinical trials, real-world data are limited. METHODS A 20% sample of national Medicare claims was used to perform a retrospective cohort study of Medicare beneficiaries with advanced prostate cancer treated with androgen biosynthesis (ie, abiraterone) and second-generation androgen receptor inhibitors between 2012 and 2019. Outcomes were assessed after the first fill of either class of drug for the 12-month period after starting therapy. The primary outcome was a hospital admission or emergency department visit for a cardiometabolic event. Secondary outcomes included neurocognitive events and fractures. Multivariable regression was used to assess the association between the class of drug and occurrence of an adverse event. RESULTS There were 3488 (60%) men started on an androgen biosynthesis inhibitor and 2361 (40%) started on an androgen receptor inhibitor for the first time. Cardiometabolic adverse events were more common in men managed with androgen biosynthesis inhibitor (9.2% vs 7.5%, P = .027). No difference between androgen biosynthesis and androgen receptor inhibitors was observed for neurocognitive events (3.3% vs 3.4%, respectively; P = .71) or fractures (4.2% vs 3.6%, respectively; P = .26). CONCLUSIONS Men with advanced prostate cancer initiating an androgen biosynthesis inhibitor for the first time more commonly had cardiometabolic events than those started on androgen receptor inhibitors. Neurocognitive events and fractures did not differ by drug class.
Collapse
Affiliation(s)
- Kassem S Faraj
- Dow Division of Health Services Research, Department of Urology, University of Michigan, MI, USA
| | - Mary Oerline
- Dow Division of Health Services Research, Department of Urology, University of Michigan, MI, USA
| | - Samuel R Kaufman
- Dow Division of Health Services Research, Department of Urology, University of Michigan, MI, USA
| | - Christopher Dall
- Department of Urology, Massachusetts General Hospital, Boston, MA, USA
| | - Arnav Srivastava
- Dow Division of Health Services Research, Department of Urology, University of Michigan, MI, USA
| | - Megan E V Caram
- VA Health Services Research & Development, Center for Clinical Management Research, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Vahakn B Shahinian
- Division of Nephrology, Department of Internal Medicine, University of Michigan, MI, USA
| | | |
Collapse
|
2
|
Miller CD, Likasitwatanakul P, Toye E, Hwang JH, Antonarakis ES. Current uses and resistance mechanisms of enzalutamide in prostate cancer treatment. Expert Rev Anticancer Ther 2024; 24:1085-1100. [PMID: 39275993 PMCID: PMC11499039 DOI: 10.1080/14737140.2024.2405103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
INTRODUCTION Prostate cancer continues to be a major cause of morbidity and mortality for men worldwide. Enzalutamide, a second-generation non-steroidal antiandrogen that blocks androgen receptor (AR) transcriptional activity, is a treatment for biochemically recurrent, metastatic, castration-sensitive, and castration-resistant tumors. Unfortunately, most patients ultimately develop resistance to enzalutamide, making long-term treatment with this agent challenging. AREAS COVERED We performed a literature search of PubMed without date restrictions to investigate the literature surrounding enzalutamide and discuss the current uses of enzalutamide, proposed mechanisms driving resistance, and summarize current efforts to mitigate this resistance. EXPERT OPINION Enzalutamide is an effective prostate cancer therapy that is currently used in biochemically recurrent and metastatic disease and for both castration-sensitive and castration-resistant tumors. Unfortunately, resistance to enzalutamide occurs in each of these scenarios. In the clinical setting, enzalutamide-resistant tumors are either AR-driven or AR-indifferent. AR-dependent resistance mechanisms include genomic or epigenomic events that result in enhanced AR signaling. Tumors that do not require AR signaling instead may depend on alternative oncogenic pathways. There are numerous strategies to mitigate enzalutamide resistance, including concurrent use of PARP inhibitors or immune therapies. Additional work is required to uncover novel approaches to treat patients in the enzalutamide-resistant setting.
Collapse
Affiliation(s)
- Carly D. Miller
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
| | - Pornlada Likasitwatanakul
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
- Department of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Eamon Toye
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Justin H. Hwang
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
| | | |
Collapse
|
3
|
Lin SC, Tsai YC, Chen YL, Lin HK, Huang YC, Lin YS, Cheng YS, Chen HY, Li CJ, Lin TY, Lin SC. Un-methylation of NUDT21 represses docosahexaenoic acid biosynthesis contributing to enzalutamide resistance in prostate cancer. Drug Resist Updat 2024; 77:101144. [PMID: 39208673 DOI: 10.1016/j.drup.2024.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
AIMS The recent approval of enzalutamide for metastatic castration-sensitive prostate cancer underscores its growing clinical significance, raising concerns about emerging resistance and limited treatment options. While the reactivation of the androgen receptor (AR) and other genes plays a role in enzalutamide resistance, identifications of novel underlying mechanism with therapeutic potential in enzalutamide-resistant (EnzaR) cells remain largely elusive. METHODS Drug-resistant prostate cancer cell lines, animal models, and organoids were utilized to examine NUDT21 function by transcriptomic and metabolomic analyses through loss-of-function and gain-of-function assays. Notably, a mono-methylation monoclonal antibody and conditional-knockin transgenic mouse model of NUDT21 were generated for evaluating its function. RESULTS NUDT21 overexpression acts as a crucial alternative polyadenylation (APA) mediator, supported by its oncogenic role in prostate cancer. PRMT7-mediated mono-methylation of NUDT21 induces a shift in 3'UTR usage, reducing oncogenicity. In contrast, its un-methylation promotes cancer growth and cuproptosis insensitivity in EnzaR cells by exporting toxic copper and suppressing docosahexaenoic acid (DHA) biosynthesis. Crucially, NUDT21 inhibition or DHA supplementation with copper ionophore holds therapeutic promise for EnzaR cells. CONCLUSIONS The un-methylation of NUDT21-mediated 3'UTR shortening unveils a novel mechanism for enzalutamide resistance, and our findings offer innovative strategies for advancing the treatment of prostate cancer patients experiencing enzalutamide resistance.
Collapse
Affiliation(s)
- Shin-Chih Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ya-Chuan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Lan Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan; University Center of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Hui-Kuan Lin
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Yun-Chen Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yi-Syuan Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yu-Sheng Cheng
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Hsing-Yi Chen
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
| | - Tsung-Yen Lin
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Shih-Chieh Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
4
|
Liu Y, He Y, Qi X, Li X, Zhou Y, Chen Y, Wang Z, Zheng L. Population Pharmacokinetics Modeling and Simulation of Deutenzalutamide, A Novel Androgen Receptor Antagonist, in Patients With Metastatic Castration-Resistant Prostate Cancer. Clin Pharmacol Drug Dev 2024. [PMID: 39365282 DOI: 10.1002/cpdd.1477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
Deutenzalutamide is a new molecular entity androgen receptor antagonist. The primary aim of this study was to develop a population pharmacokinetic model of deutenzalutamide and evaluate effects of intrinsic and extrinsic factors on pharmacokinetics. A nonlinear mixed-effects modeling approach was performed to develop the population pharmacokinetic of deutenzalutamide using data from 1 Phase I trial of deutenzalutamide. Goodness-of-fit plots, prediction-corrected visual predictive check, and bootstrap analysis were carried out to evaluate the final model. Simulation for the developed model was used to evaluate the covariate effects on the pharmacokinetics of deutenzalutamide. A 2-compartment model with first-order absorption and elimination from the central compartment was established for deutenzalutamide. The final covariate included body weight on peripheral compartment volume. This is the first research developing the population pharmacokinetic model of deutenzalutamide in patients with metastatic castration-resistant prostate cancer, and it is expected to support the future clinical administration of deutenzalutamide.
Collapse
Affiliation(s)
- Yixian Liu
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Clinical Trial Center, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug West China Hospital, Sichuan University, Chengdu, China
| | - Yongji He
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Clinical Trial Center, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Qi
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Xinghai Li
- Hinova Pharmaceuticals Inc., Chengdu, China
| | - Yi Zhou
- Hinova Pharmaceuticals Inc., Chengdu, China
| | | | - Zhenlei Wang
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Clinical Trial Center, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug West China Hospital, Sichuan University, Chengdu, China
| | - Li Zheng
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Clinical Trial Center, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Tanaka N, Izumi K, Nakai Y, Shima T, Kato Y, Mita K, Kamiyama M, Inoue S, Hoshi S, Okamura T, Yoshio Y, Enokida H, Chikazawa I, Kawai N, Hashimoto K, Fukagai T, Shigehara K, Takahara S, Mizokami A. Dose modification in enzalutamide and abiraterone plus prednisolone for castration-resistant prostate cancer: A subanalysis from the ENABLE study for PCa. Prostate 2024. [PMID: 39301921 DOI: 10.1002/pros.24796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND A head-to-head comparison between enzalutamide (ENZ) and abiraterone plus prednisolone (ABI) revealed similar survival benefits for castration-resistant prostate cancer (CRPC) in the ENABLE study for PCa. Considering that a dose reduction of ENZ and ABI has demonstrated sufficient inhibitory ability of androgen receptor (AR) signaling, we analyzed the efficacy of modified doses of these agents in the ENABLE study for PCa. METHODS This investigator-initiated, multicenter, randomized controlled trial that was conducted in Japan analyzed the prespecified survival endpoints, prostate-specific antigen (PSA) response rate ( ≥50% decline from baseline), and safety profile in patients treated with modified doses (ENZ ≤ 120 mg/day, ABI ≤ 750 mg/day) compared with those treated with a standard dose (ENZ 160 mg/day, ABI 1000 mg/day) as a starting dose. RESULTS In total, 92 patients in each arm were treated and analyzed; 16 patients were treated with a modified dose in both the ENZ and ABI arms, respectively. Moreover, 32 patients treated with modified doses showed a significantly better time to PSA progression (TTPP) and overall survival (OS) compared with the 152 patients treated with a standard dose (HR 0.47, 95%CI 0.27-0.83, p = 0.0379, and HR 0.35, 95%CI 0.19-0.63, p = 0.0162). Despite a significantly longer TTPP in the modified ABI group than in the standard ABI group (HR 0.29, 95%CI 0.14-0.62, p = 0.0248), no significant difference was observed in the TTPP between the modified and standard ENZ groups (p = 0.5366). Furthermore, similar adverse event rates and grades were observed in each treatment dose group. CONCLUSIONS The modified doses of ABI showed better TTPP than the standard dose of ABI and may be a potential treatment option for CRPC patients; however, its mechanism is still unclear, although its ability to suppress AR signaling is equivalent to that of a standard dose.
Collapse
Affiliation(s)
- Nobumichi Tanaka
- Department of Urology and Department of Prostate Brachytherapy, Nara Medical University, Kashihara, Japan
| | - Kouji Izumi
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yasushi Nakai
- Department of Urology and Department of Prostate Brachytherapy, Nara Medical University, Kashihara, Japan
| | - Takashi Shima
- Department of Urology, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Yuki Kato
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
- Department of Urology, Fukui-ken Saiseikai Hospital, Fukui, Japan
| | - Koji Mita
- Department of Urology, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, Japan
| | | | - Shogo Inoue
- Department of Urology, Shobara Red Cross Hospital, Shobara, Japan
| | - Seiji Hoshi
- Department of Urology, Fukushima Medical University, Fukushima, Japan
| | | | - Yuko Yoshio
- Mie University Graduate School of Medicine, Nephro-Urologic Surgery and Andrology, Tsu, Japan
| | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ippei Chikazawa
- Department of Urology, Kanazawa Medical University, Kahoku, Japan
| | - Noriyasu Kawai
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kohei Hashimoto
- Department of Urology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Takashi Fukagai
- Department of Urology, Showa University School of Medicine, Shinagawa-ku, Japan
| | - Kazuyoshi Shigehara
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
- Department of Urology, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Shizuko Takahara
- Innovative Clinical Research Center, Kanazawa University, Kanazawa, Japan
- Medical Research Support Center, University of Fukui Hospital, Fukui, Japan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
6
|
Ngo HX, Oh E, Li C, Yu J. Oncology Dose Selection in Subsequent Indications: What Can We Learn From FDA-approved Oncology Drugs? Clin Ther 2024:S0149-2918(24)00259-5. [PMID: 39304367 DOI: 10.1016/j.clinthera.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE The modern oncology drug development landscape has shifted away from traditional cytotoxic chemotherapies. Following their initial approvals, many oncology drugs have been approved in subsequent indications either as monotherapy or in combination to benefit a broader patient population. To date, dose selection strategies for subsequent indications have not been systematically reviewed. This review examines how approved dosing regimens were selected in subsequent indications for FDA-approved oncology drugs. METHODS The Drugs@FDA database was used to identify FDA-approved new molecular entities (NMEs) between 2010 and 2023. NMEs with more than 1 approved indication were included in the analysis. In total, the dosing regimens for 67 novel oncology drugs that obtained FDA approvals for multiple indications were evaluated. FINDINGS Overall, in subsequent indications, 72% of NMEs used the same or clinically equivalent alternative dosing regimens to those approved in the initial indications. Amongst the 28% of NMEs that used different dosing regimens, safety/tolerability was the leading cause of a dosing regimen changes in both monotherapy and combination therapy settings. Other factors leading to changes in dosing regimens include differences in tumor biology, disease burden, pharmacokinetics, and overall benefit-risk profiles obtained from dose-finding studies. IMPLICATIONS Our analysis highlighted the importance of selecting a safe, tolerable, and yet efficacious dosing regimen for the initial indication as a suboptimal initially approved regimen could lead to dosing regimen changes in later indications. Preclinical and clinical data could be leveraged to understand the pharmacology, pharmacokinetic, and pharmacodynamic differences between indications and thus support dose selection in subsequent indications.
Collapse
Affiliation(s)
- Huy X Ngo
- Department of Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA
| | - Elise Oh
- Department of Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA
| | - Chunze Li
- Department of Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA
| | - Jiajie Yu
- Department of Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA.
| |
Collapse
|
7
|
van der Kleij MBA, Guchelaar NAD, Meertens M, Westerdijk K, Giraud EL, Bleckman RF, Groenland SL, van Eerden RAG, Imholz ALT, Vulink AJE, Otten HM, Fiebrich-Westra HB, Lubberman FJE, Desar IME, Moes DJAR, Touw DJ, Koolen SLW, Gelderblom H, Reyners AKL, van Erp NP, Mathijssen RHJ, Huitema ADR, Steeghs N. Reasons for non-feasibility of therapeutic drug monitoring of oral targeted therapies in oncology - an analysis of the closed cohorts of a multicentre prospective study. Br J Cancer 2024; 131:843-851. [PMID: 38971952 PMCID: PMC11369282 DOI: 10.1038/s41416-024-02789-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) - performing dose adjustments based on measured drug levels and established pharmacokinetic (PK) targets - could optimise treatment with drugs that show large interpatient variability in exposure. We evaluated the feasibility of TDM for multiple oral targeted therapies. Here we report on drugs for which routine TDM is not feasible. METHODS We evaluated drug cohorts from the Dutch Pharmacology Oncology Group - TDM study. Based on PK levels taken at pre-specified time points, PK-guided interventions were performed. Feasibility of TDM was evaluated, and based on the success and practicability of TDM, cohorts could be closed. RESULTS For 10 out of 24 cohorts TDM was not feasible and inclusion was closed. A high incidence of adverse events resulted in closing the cabozantinib, dabrafenib/trametinib, everolimus, regorafenib and vismodegib cohort. The enzalutamide and erlotinib cohorts were closed because almost all PK levels were above target. Other, non-pharmacological reasons led to closing the palbociclib, olaparib and tamoxifen cohort. CONCLUSIONS Although TDM could help personalising treatment for many drugs, the above-mentioned reasons can influence its feasibility, usefulness and clinical applicability. Therefore, routine TDM is not advised for cabozantinib, dabrafenib/trametinib, enzalutamide, erlotinib, everolimus, regorafenib and vismodegib. Nonetheless, TDM remains valuable for individual clinical decisions.
Collapse
Affiliation(s)
- Maud B A van der Kleij
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands.
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Niels A D Guchelaar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Marinda Meertens
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Kim Westerdijk
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Eline L Giraud
- Department of Pharmacy and Clinical Pharmacology, Research Institute for Medical Innovation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Roos F Bleckman
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefanie L Groenland
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Ruben A G van Eerden
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Alex L T Imholz
- Department of Medical Oncology, Deventer Hospital, Deventer, The Netherlands
| | - Annelie J E Vulink
- Department of Medical Oncology, Reinier de Graaf Hospital, Delft, The Netherlands
| | - Hans-Martin Otten
- Department of Medical Oncology, Meander Medical Centre, Amersfoort, The Netherlands
| | | | | | - Ingrid M E Desar
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dirk-Jan A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Pharmacy, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| | - An K L Reyners
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Nielka P van Erp
- Department of Pharmacy and Clinical Pharmacology, Research Institute for Medical Innovation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, Utrecht University Medical Centre, Utrecht, The Netherlands
- Department of Pharmacology, Princess Máxima Centre for Paediatric Oncology, Utrecht, The Netherlands
| | - Neeltje Steeghs
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Medical Oncology, Utrecht University Medical Centre, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
NAGINI SIDDAVARAM, KALLAMADI PRATHAPREDDY, TANAGALA KRANTHIKIRANKISHORE, REDDY GEEREDDYBHANUPRAKASH. Aldo-keto reductases: Role in cancer development and theranostics. Oncol Res 2024; 32:1287-1308. [PMID: 39055885 PMCID: PMC11267078 DOI: 10.32604/or.2024.049918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/08/2024] [Indexed: 07/28/2024] Open
Abstract
Aldo-keto reductases (AKRs) are a superfamily of enzymes that play crucial roles in various cellular processes, including the metabolism of xenobiotics, steroids, and carbohydrates. A growing body of evidence has unveiled the involvement of AKRs in the development and progression of various cancers. AKRs are aberrantly expressed in a wide range of malignant tumors. Dysregulated expression of AKRs enables the acquisition of hallmark traits of cancer by activating oncogenic signaling pathways and contributing to chemoresistance. AKRs have emerged as promising oncotherapeutic targets given their pivotal role in cancer development and progression. Inhibition of aldose reductase (AR), either alone or in combination with chemotherapeutic drugs, has evolved as a pragmatic therapeutic option for cancer. Several classes of synthetic aldo-keto reductase (AKR) inhibitors have been developed as potential anticancer agents, some of which have shown promise in clinical trials. Many AKR inhibitors from natural sources also exhibit anticancer effects. Small molecule inhibitors targeting specific AKR isoforms have shown promise in preclinical studies. These inhibitors disrupt the activation of oncogenic signaling by modulating transcription factors and kinases and sensitizing cancer cells to chemotherapy. In this review, we discuss the physiological functions of human AKRs, the aberrant expression of AKRs in malignancies, the involvement of AKRs in the acquisition of cancer hallmarks, and the role of AKRs in oncogenic signaling, and drug resistance. Finally, the potential of aldose reductase inhibitors (ARIs) as anticancer drugs is summarized.
Collapse
|
9
|
Hofstad M, Woods A, Parra K, Sychev ZE, Mazzagatti A, Yu L, Gilbreath C, Ly P, Drake JM, Kittler R. Dual inhibition of ATR and DNA-PKcs radiosensitizes ATM-mutant prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602941. [PMID: 39026771 PMCID: PMC11257504 DOI: 10.1101/2024.07.10.602941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In advanced castration resistant prostate cancer (CRPC), mutations in the DNA damage response (DDR) gene ataxia telangiectasia mutated ( ATM ) are common. While poly(ADP-ribose) polymerase inhibitors are approved in this context, their clinical efficacy remains limited. Thus, there is a compelling need to identify alternative therapeutic avenues for ATM mutant prostate cancer patients. Here, we generated matched ATM-proficient and ATM-deficient CRPC lines to elucidate the impact of ATM loss on DDR in response to DNA damage via irradiation. Through unbiased phosphoproteomic screening, we unveiled that ATM-deficient CRPC lines maintain dependence on downstream ATM targets through activation of ATR and DNA-PKcs kinases. Dual inhibition of ATR and DNA-PKcs effectively inhibited downstream γH2AX foci formation in response to irradiation and radiosensitized ATM-deficient lines to a greater extent than either ATM-proficient controls or single drug treatment. Further, dual inhibition abrogated residual downstream ATM pathway signaling and impaired replication fork dynamics. To circumvent potential toxicity, we leveraged the RUVBL1/2 ATPase inhibitor Compound B, which leads to the degradation of both ATR and DNA-PKcs kinases. Compound B effectively radiosensitized ATM-deficient CRPC in vitro and in vivo , and impacted replication fork dynamics. Overall, dual targeting of both ATR and DNA-PKcs is necessary to block DDR in ATM-deficient CRPC, and Compound B could be utilized as a novel therapy in combination with irradiation in these patients.
Collapse
|
10
|
Lennep BW, Mack J, Poondru S, Hood E, Looney BD, Williams M, Bianco JJ, Morgans AK. Enzalutamide: Understanding and Managing Drug Interactions to Improve Patient Safety and Drug Efficacy. Drug Saf 2024; 47:617-641. [PMID: 38607520 PMCID: PMC11182822 DOI: 10.1007/s40264-024-01415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 04/13/2024]
Abstract
Enzalutamide is an oral androgen receptor signaling inhibitor utilized in the treatment of men with prostate cancer. It is a moderate inducer of the cytochrome P450 (CYP) enzymes CYP2C9 and CYP2C19, and a strong inducer of CYP3A4. It was also shown to be a mild inhibitor of the efflux transporter P-glycoprotein in patients with prostate cancer. Enzalutamide is primarily metabolized by CYP3A4 and CYP2C8. The risk of enzalutamide drug interactions arises primarily when it is coadministered with other drugs that interact with these CYPs, including CYP3A4. In this review, we begin by providing an overview of enzalutamide including its dosing, use in special populations, pharmacokinetics, changes to its prescribing information, and potential for interaction with coadministered drugs. Enzalutamide interactions with drugs from a wide range of medication classes commonly prescribed to patients with prostate cancer are described, including oral androgen deprivation therapy, agents used to treat a range of cardiovascular diseases, antidiabetic drugs, antidepressants, anti-seizure medications, common urology medications, analgesics, proton pump inhibitors, immunosuppressants, and antigout drugs. Enzalutamide interactions with common vitamins and supplements are also briefly discussed. This review provides a resource for healthcare practitioners and patients that will help provide a basis for the understanding and management of enzalutamide drug-drug interactions to inform decision making, improve patient safety, and optimize drug efficacy.
Collapse
Affiliation(s)
| | - Jesse Mack
- Astellas Pharma Inc., Greensboro, NC, USA
| | | | - Elizabeth Hood
- University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | | | - Alicia K Morgans
- Dana-Farber Cancer Institute, 850 Brookline Ave, Dana 09-930, Boston, MA, 02215, USA.
| |
Collapse
|
11
|
Huang Y, Yang G, Yao X, Fang Y, Lin Q, Zhou M, Yang Y, Meng Q, Zhang Q, Wang S. Proteomic profiling of prostate cancer reveals molecular signatures under antiandrogen treatment. Clin Proteomics 2024; 21:44. [PMID: 38918720 PMCID: PMC11202386 DOI: 10.1186/s12014-024-09490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Tumorigenesis and progression of prostate cancer (PCa) are indispensably dependent on androgen receptor (AR). Antiandrogen treatment is the principal preference for patients with advanced PCa. However, the molecular characteristics of PCa with antiandrogen intervention have not yet been fully uncovered. METHODS We first performed proteome analysis with 32 PCa tumor samples and 10 adjacent tissues using data-independent acquisition (DIA)- parallel accumulation serial fragmentation (PASEF) proteomics. Then label-free quantification (LFQ) mass spectrometry was employed to analyze protein profiles in LNCaP and PC3 cells. RESULTS M-type creatine kinase CKM and cartilage oligomeric matrix protein COMP were demonstrated to have the potential to be diagnostic biomarkers for PCa at both mRNA and protein levels. Several E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) were significantly altered in PCa and PCa cells under enzalutamide treatment, and these proteins might reprogram proteostasis at protein levels in PCa. Finally, we discovered 127 significantly varied proteins in PCa samples with antiandrogen therapy and further uncovered 4 proteins in LNCaP cells upon enzalutamide treatment. CONCLUSIONS Our research reveals new potential diagnostic biomarkers for prostate cancer and might help resensitize resistance to antiandrogen therapy.
Collapse
Affiliation(s)
- Yurun Huang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Guanglin Yang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Xinpeng Yao
- The First Clinical Medical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Yue Fang
- The First Clinical Medical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiliang Lin
- The First Clinical Medical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Menghan Zhou
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yiping Yang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Qinggui Meng
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Qingyun Zhang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.
| | - Shan Wang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.
| |
Collapse
|
12
|
Gerke MB, Jansen CS, Bilen MA. Circulating Tumor DNA in Genitourinary Cancers: Detection, Prognostics, and Therapeutic Implications. Cancers (Basel) 2024; 16:2280. [PMID: 38927984 PMCID: PMC11201475 DOI: 10.3390/cancers16122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
CtDNA is emerging as a non-invasive clinical detection method for several cancers, including genitourinary (GU) cancers such as prostate cancer, bladder cancer, and renal cell carcinoma (RCC). CtDNA assays have shown promise in early detection of GU cancers, providing prognostic information, assessing real-time treatment response, and detecting residual disease and relapse. The ease of obtaining a "liquid biopsy" from blood or urine in GU cancers enhances its potential to be used as a biomarker. Interrogating these "liquid biopsies" for ctDNA can then be used to detect common cancer mutations, novel genomic alterations, or epigenetic modifications. CtDNA has undergone investigation in numerous clinical trials, which could address clinical needs in GU cancers, for instance, earlier detection in RCC, therapeutic response prediction in castration-resistant prostate cancer, and monitoring for recurrence in bladder cancers. The utilization of liquid biopsy for ctDNA analysis provides a promising method of advancing precision medicine within the field of GU cancers.
Collapse
Affiliation(s)
- Margo B. Gerke
- Emory University School of Medicine, Atlanta, GA 30322, USA; (M.B.G.); (C.S.J.)
| | - Caroline S. Jansen
- Emory University School of Medicine, Atlanta, GA 30322, USA; (M.B.G.); (C.S.J.)
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Mehmet A. Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Liadi Y, Campbell T, Dike P, Harlemon M, Elliott B, Odero-Marah V. Prostate cancer metastasis and health disparities: a systematic review. Prostate Cancer Prostatic Dis 2024; 27:183-191. [PMID: 37046071 DOI: 10.1038/s41391-023-00667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Prostate cancer (PCa), one of the most prevalent malignancies affecting men, significantly contributes to increased mortality rates worldwide. While the causative death is due to advanced metastatic disease, this occurrence disproportionately impacts men of African descent compared to men of European descent. In this review, we describe potential mechanisms underlying PCa metastases disparities and current treatments for metastatic disease among these populations, differences in treatment outcomes, and survival rates, in hopes of highlighting a need to address disparities in PCa metastases. METHODS We reviewed existing literature using databases such as PubMed, Google Scholar, and Science Direct using the following keywords: "prostate cancer metastases", "metastatic prostate cancer disparity", "metastatic prostate cancer diagnosis and treatment", "prostate cancer genetic differences and mechanisms", "genetic differences and prostate tumor microenvironment", and "men of African descent and access to clinical treatments". The inclusion criteria for literature usage were original research articles and review articles. RESULTS Studies indicate unique genetic signatures and molecular mechanisms such as Epithelial-Mesenchymal Transition (EMT), inflammation, and growth hormone signaling involved in metastatic PCa disparities. Clinical studies also demonstrate differences in treatment outcomes that are race-specific, for example, patients of African descent have a better response to enzalutamide and immunotherapy yet have less access to these drugs as compared to patients of European descent. CONCLUSIONS Growing evidence suggests a connection between a patient's genetic profile, the prostate tumor microenvironment, and social determinants of health that contribute to the aggressiveness of metastatic disease and treatment outcomes. With several potential pathways highlighted, the limitations in current diagnostic and therapeutic applications that target disparity in PCa metastases warrant rigorous research attention.
Collapse
Affiliation(s)
- Yusuf Liadi
- Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - Taaliah Campbell
- Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Precious Dike
- Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - Maxine Harlemon
- Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Bethtrice Elliott
- Center for Urban Health Disparities Research and Innovation, Morgan State University, Baltimore, MD, 21251, USA
| | - Valerie Odero-Marah
- Department of Biology, Morgan State University, Baltimore, MD, 21251, USA.
- Center for Urban Health Disparities Research and Innovation, Morgan State University, Baltimore, MD, 21251, USA.
| |
Collapse
|
14
|
Mahmoud AM, Moustafa A, Day C, Ahmed ME, Zeina W, Marzouk UM, Basourakos S, Haloi R, Mahon M, Muniz M, Childs DS, Orme JJ, Riaz IB, Kendi AT, Stish BJ, Davis BJ, Kwon ED, Andrews JR. Prostate Cancer Lung Metastasis: Clinical Insights and Therapeutic Strategies. Cancers (Basel) 2024; 16:2080. [PMID: 38893199 PMCID: PMC11171228 DOI: 10.3390/cancers16112080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Prostate cancer lung metastasis represents a clinical conundrum due to its implications for advanced disease progression and the complexities it introduces in treatment planning. As the disease progresses to distant sites such as the lung, the clinical management becomes increasingly intricate, requiring tailored therapeutic strategies to address the unique characteristics of metastatic lesions. This review seeks to synthesize the current state of knowledge surrounding prostate cancer metastasis to the lung, shedding light on the diverse array of clinical presentations encountered, ranging from subtle radiological findings to overt symptomatic manifestations. By examining the diagnostic modalities utilized in identifying this metastasis, including advanced imaging techniques and histopathological analyses, this review aims to provide insights into the diagnostic landscape and the challenges associated with accurately characterizing lung metastatic lesions in prostate cancer patients. Moreover, this review delves into the nuances of therapeutic interventions employed in managing prostate cancer lung metastasis, encompassing systemic treatments such as hormonal therapies and chemotherapy, as well as metastasis-directed therapies including surgery and radiotherapy.
Collapse
Affiliation(s)
- Ahmed M. Mahmoud
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA; (A.M.M.)
| | - Amr Moustafa
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, NY 11201, USA
| | - Carter Day
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA; (A.M.M.)
| | - Mohamed E. Ahmed
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA; (A.M.M.)
| | - Wael Zeina
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA; (A.M.M.)
| | - Usama M. Marzouk
- Department of Internal Medicine, Ain Shams University, Cairo 11566, Egypt
| | | | - Rimki Haloi
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA; (A.M.M.)
| | - Mindie Mahon
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA; (A.M.M.)
| | - Miguel Muniz
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel S. Childs
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jacob J. Orme
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Irbaz Bin Riaz
- Department of Medical Oncology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - A. Tuba Kendi
- Department of Radiology, Division of Nuclear Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Bradley J. Stish
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian J. Davis
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eugene D. Kwon
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA; (A.M.M.)
| | | |
Collapse
|
15
|
Zhang W, Fan Y, Zhang Y, Feng Y, Luo Y, Zhou X, Chen Z, Wang C, Lu T, Tang F, Chen Y, Li H, Jiao Y. Discovery of novel biphenyl derivatives as androgen receptor degraders for the treatment of enzalutamide-resistant prostate cancer. Bioorg Chem 2024; 148:107433. [PMID: 38754311 DOI: 10.1016/j.bioorg.2024.107433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Second-generation AR antagonists, such as enzalutamide, are the primary therapeutic agents for advanced prostate cancer. However, the development of both primary and secondary drug resistance leads to treatment failures and patient mortality. Bifunctional agents that simultaneously antagonize and degrade AR block the AR signaling pathway more completely and exhibit excellent antiproliferative activity against wild-type and drug-resistant prostate cancer cells. Here, we reported the discovery and optimization of a series of biphenyl derivatives as androgen receptor antagonists and degraders. These biphenyl derivatives exhibited potent antiproliferative activity against LNCaP and 22Rv1 cells. Our discoveries enrich the diversity of small molecule AR degraders and offer insights for the development of novel AR degraders for the treatment of enzalutamide-resistant prostate cancer.
Collapse
Affiliation(s)
- Wenqiang Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yawen Fan
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yan Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd, 699-18 Xuan Wu Avenue, Nanjing 210042, PR China; Jiangsu Simcere Pharmaceutical Co, Ltd, 699-18 Xuan Wu Avenue, Nanjing 210042, PR China
| | - Yunrui Feng
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yi Luo
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Xiaoyu Zhou
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Zhuolin Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Chenxiao Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Feng Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd, 699-18 Xuan Wu Avenue, Nanjing 210042, PR China; Jiangsu Simcere Pharmaceutical Co, Ltd, 699-18 Xuan Wu Avenue, Nanjing 210042, PR China.
| | - Yadong Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| | - Hongmei Li
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| | - Yu Jiao
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| |
Collapse
|
16
|
Fan Z, Yu Q, Deng J, Wang K, Yu H, Fan X, Xie J. Unveiling hormone-stimulated gene mechanisms in prostate cancer: A prognostic model, immune infiltration analysis, and drug sensitivity study. ENVIRONMENTAL TOXICOLOGY 2024; 39:3238-3252. [PMID: 38361268 DOI: 10.1002/tox.24118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 02/17/2024]
Abstract
Hormones promote the progression of prostate cancer (PRCA) through the activation of a complex regulatory network. Inhibition of hormones or modulation of specific network nodes alone is insufficient to suppress the entire oncogenic network. Therefore, it is imperative to elucidate the mechanisms underlying the occurrence and development of PRCA in order to identify reliable diagnostic markers and therapeutic targets. To this end, we used publicly available data to analyze the potential mechanisms of hormone-stimulated genes in PRCA, construct a prognostic model, and assess immune infiltration and drug sensitivity. The single-cell RNA-sequencing data of PRCA were subjected to dimensionality reduction clustering and annotation, and the cells were categorized into two groups based on hormone stimulus-related scores. The differentially expressed genes between the two groups were screened and incorporated into the least absolute shrinkage and selection operator machine learning algorithm, and a prognostic model comprising six genes (ZNF862, YIF1A, USP22, TAF7, SRSF3, and SPARC) was constructed. The robustness of the model was validation through multiple methods. Immune infiltration scores in the two risk groups were calculated using three different algorithms. In addition, the relationship between the model genes and immune cell infiltration, and that between risk score and immune cell infiltration were analyzed. Drug sensitivity analysis was performed for the model genes and risk score using public databases to identify potential candidate drugs. Our findings provide novel insights into the mechanisms of hormone-stimulated genes in PRCA progression, prognosis, and drug screening.
Collapse
Affiliation(s)
- Zhongru Fan
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Qianqian Yu
- National Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, The First Hospital of China Medical University, Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| | - Junpeng Deng
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ke Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hongqi Yu
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xin Fan
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jianjun Xie
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
17
|
Chen DC, Huang S, Buteau JP, Kashyap R, Hofman MS. Clinical Positron Emission Tomography/Computed Tomography: Quarter-Century Transformation of Prostate Cancer Molecular Imaging. PET Clin 2024; 19:261-279. [PMID: 38199918 DOI: 10.1016/j.cpet.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Although positron emission tomography/computed tomography (PET/CT) underwent rapid growth during the last quarter-century, becoming a new standard-of-care for imaging most cancer types, CT and bone scan remained the gold standard for patients with prostate cancer. This occurred as 2-fluorine-18-fluoro-2-deoxy-d-glucose was perceived to have a limited role owing to low sensitivity in many patients. A resurgence of interest occurred with the use of fluorine-18-sodium-fluoride PET/CT as a replacement for bone scintigraphy, and then choline, fluciclovine, and dihydrotestosterone (DHT) PET/CT as prostate "specific" radiotracers. The last decade, however, has seen a true revolution with the meteoric rise of prostate-specific membrane antigen PET/CT.
Collapse
Affiliation(s)
- David C Chen
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Siyu Huang
- Department of Surgery, The University of Melbourne
| | - James P Buteau
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Raghava Kashyap
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
18
|
Xu L, Xiao S, Chai Z, Li T, Joon Lee J, Su G, Zhao Y. Study of novel ginsenoside metabolites targeting HSP70 as anti-prostate cancer drugs. Bioorg Chem 2024; 144:107131. [PMID: 38271824 DOI: 10.1016/j.bioorg.2024.107131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Ginsenoside 20 (R)-25-methoxy-dammarane-3 β, twelve β, 20 triol (AD-1) is a promising new drug for the treatment of prostate cancer, but its bioavailability is low. This study investigated the effects of the main metabolites PD and M6 of AD-1 on prostate cancer cell PC3. The in vitro experimental results showed that the IC50 values of PC3 cells treated with PD and M6 were 65.61 and 11.72, respectively. Both PD and M6 inhibited the migration of PC3 cells, and the cell cycle was blocked in the G1 phase. The apoptosis rates of cells following M6 treatment at concentrations of 7.5, 15, and 30 μM were 13.4 %, 17.5 %, and 41.4 %, respectively, which stimulated the expression of apoptosis protein and significantly increased intracellular ROS levels. In xenograft models, PD and M6 have been reported to significantly inhibit tumor growth. We used a genome-wide mRNA expression profile to study the effects of PD and M6 on gene expression in PC3 cancer cells. PD and M6 induced downregulation of HSP70 subtypes HSPA1A and HSPA1B. RT-PCR confirmed that the significant down-regulation of HSP70 subtype expressions was consistent with the results of Transcriptome analysis. Moreover, M6 significantly downregulated the expression of AR, which was further proved by Western blot analysis. In summary, our research findings provide a scientific basis for interpreting the significant activity of AD-1 in prostate cancer, and for the research and development of PD and M6 as novel HSP70 inhibitors.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China; Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Shengnan Xiao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China; Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Zhi Chai
- Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Tao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Jung Joon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Guangyue Su
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
19
|
Sepe P, Procopio G, Pircher CC, Basso U, Caffo O, Cappelletti V, Claps M, De Giorgi U, Fratino L, Guadalupi V, Miodini P, De Marco C, Perrucci B, Mennitto A, Santini D, Spina F, Stellato M, de Braud F, Verzoni E. A phase II study evaluating the efficacy of enzalutamide and the role of liquid biopsy for evaluation of ARv7 in mCRPC patients with measurable metastases including visceral disease (Excalibur study). Ther Adv Med Oncol 2024; 16:17588359231217958. [PMID: 38264520 PMCID: PMC10804904 DOI: 10.1177/17588359231217958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/15/2023] [Indexed: 01/25/2024] Open
Abstract
Background Up to 30% of patients with metastatic castration-resistant prostate cancer (mCRPC) develop visceral metastases, which are associated with a poor prognosis. Objectives Efficacy of enzalutamide in mCRPC patients with measurable metastases, including visceral and/or extra-regional lymph nodes. Methods In this phase II multicenter study, patients with mCRPC and measurable metastases received enzalutamide as the first line. Primary endpoint: 3-month (mo) disease control rate (DCR) defined as the proportion of patients with complete (CR) or partial response (PR) or stable disease (SD) as per Response Evaluation Criteria in Solid Tumors 1.1. Secondary endpoint: safety. Exploratory endpoint: the association between ARv7 splicing variants in basal circulating tumor cell (CTC)-enriched blood samples and treatment response/resistance using the AdnaTest ProstateCancerSelect kit and the AdnaTest ProstateCancer Panel AR-V7. Results From March 2017 to January 2021, 68 patients were enrolled. One patient never started treatment. Median age: 72 years. A total of 52 patients (78%) received enzalutamide as a first line for mCRPC. The median follow-up was 32 months. At the 3-month assessment, 24 patients presented an SD, 1 patient achieved a CR, and 23 patients had a PR (3-mo-DCR of 72%). Discontinuations due to adverse events (AEs), disease-related death, or disease progression occurred in 9%, 6%, and 48% of patients. All patients reported at least one grade (G) 1-2 AE: the most common were fatigue (49%) and hypertension (33%). Six G3 AEs were reported: two hypertension, one seizure, one fatigue, one diarrhea, and one headache. Basal detection of ARv7 was significantly associated with poor treatment response (p = 0.034) and a nonsignificant association (p = 0.15) was observed between ARv7 detection and response assessments. At month 3, ARv7 was detected in 57%, 25%, and 15% of patients undergoing progressive disease, SD, and PR, respectively. Conclusion The study met its primary endpoint, showing the efficacy of enzalutamide in men with mCRPC and measurable metastatic lesions in visceral and/or lymph node sites. Trial registration ClinicalTrials.gov Identifier: NCT03103724. First Posted: 6 April 2017. First patient enrollment: 19 April 2017.
Collapse
Affiliation(s)
- Pierangela Sepe
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Giacomo Venezian 1, Milan 20133, Italy
| | - Giuseppe Procopio
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
- Programma Prostata, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Chiara Carlotta Pircher
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Umberto Basso
- Oncology Unit 1, Department of Medical Oncology, Istituto Oncologico Veneto IOV IRCCS, Padova, Italy
| | - Orazio Caffo
- Department of Medical Oncology, Santa Chiara Hospital, Trento, Italy
| | - Vera Cappelletti
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale Tumori di Milano, Milan, Italy
| | - Melanie Claps
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, Italy
| | - Lucia Fratino
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano, Italy
| | - Valentina Guadalupi
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Patrizia Miodini
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale Tumori di Milano, Milan, Italy
| | - Cinzia De Marco
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale Tumori di Milano, Milan, Italy
| | - Bruno Perrucci
- Oncology Department, ASST Istituti Ospitalieri, Cremona, Italy
| | - Alessia Mennitto
- Department of Medical Oncology, University Hospital Maggiore della Carità, Novara, Italy
- Medical Oncology, Department of Translational Medicine (DIMET), University of Eastern Piedmont (UPO), Novara, Italy
| | - Daniele Santini
- Oncologia Medica, Campus Bio-Medico University of Rome, Rome, Italy
- University of Rome La Sapienza, Roma, Italy
| | - Francesco Spina
- Department of Hematology and Oncology, Niguarda Cancer Center, Ospedale Niguarda Ca’ Granda, Milan, Italy
| | - Marco Stellato
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Filippo de Braud
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Elena Verzoni
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
20
|
Zhang W, Zhao S, Luo Y, Zhang Y, Feng Y, Tang F, Zhou X, Peng S, Fan Y, Xie S, Li H, Lai Q, Fu L, Luo Y, Pei S, Chen Z, Lu T, Tang R, Chen Y, Jiao Y. Discovery of (2 S)- N-(6-Cyano-5-(trifluoromethyl)pyridin-3-yl)-3-(6-(4-cyanophenyl)-3,6-diazabicyclo[3.1.1]heptan-3-yl)-2-hydroxy-2-methylpropanamide as a Highly Potent and Selective Topical Androgen Receptor Antagonist for Androgenetic Alopecia Treatment. J Med Chem 2024; 67:322-348. [PMID: 38128906 DOI: 10.1021/acs.jmedchem.3c01417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Androgenetic alopecia (AGA) is the most prevalent form of progressive hair loss disorder in both men and women, significantly impacting their appearance and overall quality of life. Overactivation of the AR signaling pathway in dermal papilla cells (DPCs) plays a crucial role in the development and progression of AGA. Considering the severe systemic side effects associated with oral AR antagonists, the idea of developing of topical AR antagonists with rapid metabolic deactivation properties emerged as a promising approach. Herein, through systematic structural optimization, we successfully identified compound 30a as a potent and selective AR antagonist with favorable pharmacokinetic properties, resulting in high skin exposure and low plasma exposure following topical administration. Importantly, in both hair-growth and AGA mouse models, compound 30a showed potent hair-growth-promoting effects without any noticeable toxicity. These findings suggest that compound 30a holds significant potential as a topical AR antagonist for treating AGA patients.
Collapse
Affiliation(s)
- Wenqiang Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Siqi Zhao
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
- Jiangsu Simcere Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
| | - Yi Luo
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yan Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
- Jiangsu Simcere Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
| | - Yunrui Feng
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Feng Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
- Jiangsu Simcere Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
| | - Xiaoyu Zhou
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Shaoping Peng
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
- Jiangsu Simcere Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
| | - Yawen Fan
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Shaofei Xie
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
- Jiangsu Simcere Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
| | - Hongmei Li
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Qianlong Lai
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Lingsheng Fu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yi Luo
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Sheng Pei
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Zhuolin Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Renhong Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
- Simcere Zaiming Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
| | - Yadong Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yu Jiao
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| |
Collapse
|
21
|
M. Swamynathan M, Mathew G, Aziz A, Gordon C, Hillowe A, Wang H, Jhaveri A, Kendall J, Cox H, Giarrizzo M, Azabdaftari G, Rizzo RC, Diermeier SD, Ojima I, Bialkowska AB, Kaczocha M, Trotman LC. FABP5 Inhibition against PTEN-Mutant Therapy Resistant Prostate Cancer. Cancers (Basel) 2023; 16:60. [PMID: 38201488 PMCID: PMC10871093 DOI: 10.3390/cancers16010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Resistance to standard of care taxane and androgen deprivation therapy (ADT) causes the vast majority of prostate cancer (PC) deaths worldwide. We have developed RapidCaP, an autochthonous genetically engineered mouse model of PC. It is driven by the loss of PTEN and p53, the most common driver events in PC patients with life-threatening diseases. As in human ADT, surgical castration of RapidCaP animals invariably results in disease relapse and death from the metastatic disease burden. Fatty Acid Binding Proteins (FABPs) are a large family of signaling lipid carriers. They have been suggested as drivers of multiple cancer types. Here we combine analysis of primary cancer cells from RapidCaP (RCaP cells) with large-scale patient datasets to show that among the 10 FABP paralogs, FABP5 is the PC-relevant target. Next, we show that RCaP cells are uniquely insensitive to both ADT and taxane treatment compared to a panel of human PC cell lines. Yet, they share an exquisite sensitivity to the small-molecule FABP5 inhibitor SBFI-103. We show that SBFI-103 is well tolerated and can strongly eliminate RCaP tumor cells in vivo. This provides a pre-clinical platform to fight incurable PC and suggests an important role for FABP5 in PTEN-deficient PC.
Collapse
Affiliation(s)
- Manojit M. Swamynathan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA (A.J.)
- Department of Molecular and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Grinu Mathew
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA (A.J.)
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrei Aziz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA (A.J.)
| | - Chris Gordon
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA; (C.G.); (A.H.)
| | - Andrew Hillowe
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA; (C.G.); (A.H.)
| | - Hehe Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA (I.O.)
| | - Aashna Jhaveri
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA (A.J.)
| | - Jude Kendall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA (A.J.)
| | - Hilary Cox
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA (A.J.)
| | - Michael Giarrizzo
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (M.G.); (A.B.B.)
| | - Gissou Azabdaftari
- Department of Anatomic Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Robert C. Rizzo
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA (I.O.)
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B. Bialkowska
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (M.G.); (A.B.B.)
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA; (C.G.); (A.H.)
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lloyd C. Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA (A.J.)
- Department of Molecular and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
22
|
Xia QD, Zhang SH, Zeng N, Lu YC, Qin BL, Wang SG. Novel androgen receptor inhibitors for metastatic hormone-sensitive prostate cancer: Current application and future perspectives. Biomed Pharmacother 2023; 168:115806. [PMID: 37925933 DOI: 10.1016/j.biopha.2023.115806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Androgen receptor (AR) signaling is essential in prostate cancer treatment. For many years, androgen deprivation therapy (ADT) has been primarily applied to manage advanced prostate cancer. However, most individuals with metastatic hormone-sensitive prostate cancer (mHSPC) administered ADT alone are at risk of developing metastatic castration-resistant prostate cancer (mCRPC) in less than two years. New approaches employing novel AR inhibitors (ARi) as intensified upfront systemic treatment in mHSPC have recently demonstrated substantial benefits in delaying disease progression and prolonging overall survival. Administration of novel ARi has become the new standard of care in mHSPC. The new landscape simultaneously makes treatment choice more challenging. This review provides comprehensive data on molecular structure, pharmaceutical properties, and efficacy and safety profiles reported by pivotal clinical trials. We also discuss future directions with ongoing Phase III trials of novel ARi in mHSPC. Considering these biological and clinical insights, this review aimed to provide a comprehensive understanding of differences in the development and applications of novel ARi for mHSPC, which may be helpful in designing strategies for first-line treatment choices.
Collapse
Affiliation(s)
- Qi-Dong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Si-Han Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Na Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Yu-Chao Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Bao-Long Qin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
23
|
Waseem M, Gujrati H, Wang BD. Tumor suppressive miR-99b-5p as an epigenomic regulator mediating mTOR/AR/SMARCD1 signaling axis in aggressive prostate cancer. Front Oncol 2023; 13:1184186. [PMID: 38023145 PMCID: PMC10661933 DOI: 10.3389/fonc.2023.1184186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction African American (AA) men exhibited 2.3-fold higher PCa incidence and 1.7-fold higher PCa mortality rates when compared to the European American (EA) men. Besides the socioeconomic factors, emerging evidence has highlighted that biological risk factors may play critical roles in the AA PCa disparities. Previously, we have shown that downregulated miR-99b-5p and upregulated mTOR cooperatively promotes the AA PCa aggressiveness and drug resistance. Methods In this study, we aimed to explore the miR-99b-5p/mTOR/AR/SMARCD1 signaling axis in AA PCa aggressiveness. The analyses used in the study included immunofluorescence, western blot, in-vitro functional assays (TUNEL, colony forming, and MTT), and chromatin immunoprecipitation (ChIP)-qPCR assays in 2D and/or 3D culture model of EA PCa and AA PCa cell lines. Results Specifically, the immunofluorescence staining, and western blot analysis has revealed that nuclear mTOR, AR, and SMARCD1 were highly expressed in AA PCa (MDA PCa 2b) compared to EA PCa (LNCaP) cell line. Western blot analysis further revealed that miR-99b-5p inhibited protein levels of mTOR, AR/AR-V7 and SMARCD1 in cytoplasm and nuclei of EA and AA PCa. The in-vitro functional (MTT, TUNEL, and clonogenic) assays have demonstrated that miR-99b-5p effectively inhibited cell proliferation/survival and induced cell apoptosis in EA and AA PCa cells. Moreover, combination of miR-99b-5p and enzalutamide (Enz) synergistically enhances the cytotoxicity against aggressive AA PCa and castration-resistant prostate cancer (CRPC). mTOR ChIP-qPCR assays further demonstrated that miR-99b-5p or miR-99b-5p/Enz significantly reduces the recruitment of mTOR to the genes involved in the metabolic reprogramming in CRPC. Discussion Taken together, miR-99b-5p may function as an epigenomic driver to modulate the mTOR/AR/SMARCD1 signaling axis in AA PCa and resistant CRPC.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy and Health Professions, Princess Anne, MD, United States
| | - Himali Gujrati
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy and Health Professions, Princess Anne, MD, United States
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy and Health Professions, Princess Anne, MD, United States
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
24
|
Zedan AH, Nederby L, Volmer LM, Madsen CV, Sørensen BE, Hansen TF. Natural killer cell activity in metastatic castration resistant prostate cancer patients treated with enzalutamide. Sci Rep 2023; 13:17144. [PMID: 37816781 PMCID: PMC10564750 DOI: 10.1038/s41598-023-43937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/30/2023] [Indexed: 10/12/2023] Open
Abstract
Metastatic castration resistant prostate cancer (mCRPC) is still the lethal stage for the whole spectrum of prostate cancer disease. Even though different treatment options have been introduced in the last decade with a significant survival improvement for this population, a lack of more reliable prognostic and predictive markers is still one of the main clinical challenges in management of mCRPC. The aim of this study was to investigate the correlation between Natural Killer cell activity (NKA) and both treatment effect and outcomes in patients with mCRPC treated with enzalutamide. A total of 87 patients with mCRPC treated with enzalutamide as the first line treatment were enrolled. NKA was estimated at baseline and prior to each treatment cycle. Endpoints included both treatment effect with biochemical response (BR), biochemical progression (BP) and radiological progression (RP), as well as outcome data with overall survival (OS), radiologic progression free survival (rPFS), and time to next treatment (TTT). At the time of BR, interferon-gamma (IFNγ) decreased significantly compared to levels detected at baseline (z-score = 2.33, p = 0.019). Regarding outcome data, the whole cohort was divided into four groups according to the change of IFNγ level during the first 3 cycles of enzalutamide treatment. In group 1 (n = 42) the IFNγ level remained within a normal range (≥ 250 pg/mL),while in group 2 (n = 7) it increased from an abnormal (< 250 pg/mL) to a normal level. In group 3 (n = 13) it dropped to an abnormal level, and it remained at an abnormal level during treatment in group 4 (n = 17). Patients in group 2 showed the worst prognosis with shorter both rPFS and TTT (HR 4.30, p = 0.037; and HR 6.82, p = 0.011, respectively). In this study inverse correlations between NKA and both treatment response and outcomes was observed in mCRPC patients receiving enzalutamide, suggesting an unfavourable role of NK cells in the late stage of PCa.
Collapse
Affiliation(s)
- A H Zedan
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark.
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| | - L Nederby
- Department of Biochemistry and Immunology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - L M Volmer
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - C V Madsen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - B E Sørensen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - T F Hansen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
25
|
Shin WS, Han SH, Jo KW, Cho Y, Kim KT. Pinostilbene inhibits full-length and splice variant of androgen receptor in prostate cancer. Sci Rep 2023; 13:16663. [PMID: 37794090 PMCID: PMC10550987 DOI: 10.1038/s41598-023-43561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
Prostate cancer is the most prevalent cancer in men worldwide and is promoted by the sex hormone androgen. Expression of androgen from the testis can be significantly reduced through castration. However, as most prostate cancer patients acquire castration resistance, additional therapeutic solutions are necessary. Although anti-androgens, such as enzalutamide, have been used to treat castration-resistant prostate cancer (CRPC), enzalutamide-resistant CRPC (Enz-resistant CRPC) has emerged. Therefore, development of novel treatments for Enz-resistant CRPC is urgent. In this study, we found a novel anti-androgen called pinostilbene through screening with a GAL4-transactivation assay. We confirmed that pinostilbene directly binds to androgen receptor (AR) and inhibits its activation and translocalization. Pinostilbene treatment also reduced the protein level and downstream gene expression of AR. Furthermore, pinostilbene reduced the protein level of AR variant 7 in the Enz-resistant prostate cancer cell line 22Rv1 and inhibited cell viability and proliferation. Our results suggest that pinostilbene has the potential to treat Enz-resistant CRPC.
Collapse
Affiliation(s)
- Won Sik Shin
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - Kyung Won Jo
- Hesed Bio Corporation, Pohang, 37563, Republic of Korea
| | - Yunje Cho
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kyong-Tai Kim
- Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, 37554, Republic of Korea.
| |
Collapse
|
26
|
Macaulay VM, Lord S, Hussain S, Maroto JP, Jones RH, Climent MÁ, Cook N, Lin CC, Wang SS, Bianchini D, Bailey M, Schlieker L, Bogenrieder T, de Bono J. A Phase Ib/II study of IGF-neutralising antibody xentuzumab with enzalutamide in metastatic castration-resistant prostate cancer. Br J Cancer 2023; 129:965-973. [PMID: 37537253 PMCID: PMC10491782 DOI: 10.1038/s41416-023-02380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND This multicentre, open-label, Phase Ib/II trial evaluated the insulin-like growth factor (IGF) 1/2 neutralising antibody xentuzumab plus enzalutamide in metastatic castrate-resistant prostate cancer (mCRPC). METHODS The trial included Phase Ib escalation and expansion parts and a randomised Phase II part versus enzalutamide alone. Primary endpoints in the Phase Ib escalation, Phase Ib expansion and Phase II parts were maximum tolerated dose (MTD), prostate-specific antigen response and investigator-assessed progression-free survival (PFS), respectively. Patients in the Phase Ib escalation and Phase II parts had progressed on/after docetaxel/abiraterone. RESULTS In the Phase Ib escalation (n = 10), no dose-limiting toxicities were reported, and xentuzumab 1000 mg weekly plus enzalutamide 160 mg daily (Xe1000 + En160) was defined as the MTD and recommended Phase 2 dose. In the Phase Ib expansion (n = 24), median PFS was 8.2 months, and one patient had a confirmed, long-term response. In Phase II (n = 86), median PFS for the Xe1000 + En160 and En160 arms was 7.4 and 6.2 months, respectively. Subgroup analysis suggested trends towards benefit with Xe1000 + En160 in patients whose tumours had high levels of IGF1 mRNA or PTEN protein. Overall, the combination was well tolerated. CONCLUSIONS Xentuzumab plus enzalutamide was tolerable but lacked antitumour activity in unselected patients with mCRPC. CLINICAL TRIAL REGISTRATION EudraCT number 2013-004011-41.
Collapse
Affiliation(s)
| | - Simon Lord
- Department of Oncology, University of Oxford, Oxford, UK
| | - Syed Hussain
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | | | | | | | - Natalie Cook
- The Christie NHS Foundation Trust and the University of Manchester, Manchester, UK
| | - Chia-Chi Lin
- National Taiwan University Hospital, Taipei, Taiwan
| | | | - Diletta Bianchini
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, Sutton, London, UK
| | - Mark Bailey
- Boehringer Ingelheim Ltd, Bracknell, Berkshire, UK
| | - Laura Schlieker
- External Statistician on behalf of Boehringer Ingelheim GmbH & Co. KG, Staburo GmbH & Co. KG, Munich, Germany
| | - Thomas Bogenrieder
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany
| | - Johann de Bono
- The Institute of Cancer Research, London, UK.
- The Royal Marsden NHS Foundation Trust, Sutton, London, UK.
| |
Collapse
|
27
|
Chang CH, Cheng TY, Yeh WW, Luo YL, Campbell M, Kuo TC, Shen TW, Hong YC, Tsai CH, Peng YC, Pan CC, Yang MH, Shih JC, Kung HJ, Huang WJ, Chang PC, Lin TP. REST-repressed lncRNA LINC01801 induces neuroendocrine differentiation in prostate cancer via transcriptional activation of autophagy. Am J Cancer Res 2023; 13:3983-4002. [PMID: 37818052 PMCID: PMC10560947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/03/2023] [Indexed: 10/12/2023] Open
Abstract
The association between REST reduction and the development of neuroendocrine prostate cancer (NEPC), a novel drug-resistant and lethal variant of castration-resistant prostate cancer (CRPC), is well established. To better understand the mechanisms underlying this process, we aimed to identify REST-repressed long noncoding RNAs (lncRNAs) that promote neuroendocrine differentiation (NED), thus facilitating targeted therapy-induced resistance. In this study, we used data from REST knockdown RNA sequencing combined with siRNA screening to determine that LINC01801 was upregulated and played a crucial role in NED in prostate cancer (PCa). Using The Cancer Genome Atlas (TCGA) prostate adenocarcinoma database and CRPC samples collected in our laboratory, we demonstrated that LINC01801 expression is upregulated in NEPC. Functional experiments revealed that overexpression of LINC01801 had a slight stimulatory effect on the NED of LNCaP cells, while downregulation of LINC01801 significantly inhibited the induction of NED. Mechanistically, LINC01801 is transcriptionally repressed by REST, and transcriptomic analysis revealed that LINC01801 preferentially affects the autophagy pathway. LINC01801 was found to function as a competing endogenous RNA (ceRNA) to regulate the expression of autophagy-related genes by sponging hsa-miR-6889-3p in prostate cancer cells. In conclusion, our data expand the current knowledge of REST-induced NED and highlight the contribution of the REST-LINC01801-hsa-miR-6889-3p axis to autophagic induction, which may provide promising avenues for therapeutic opportunities.
Collapse
Affiliation(s)
- Ching-Hsin Chang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
- Department of Urology, Taipei Medical University HospitalTaipei 11031, Taiwan
| | - Ting-Yu Cheng
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - Wayne W Yeh
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - Yun-Li Luo
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - Mel Campbell
- Comprehensive Cancer Center, University of California at DavisSacramento, CA 95817, USA
| | - Tse-Chun Kuo
- Institute of Molecular and Genomic Medicine, National Health Research InstitutesZhunan, Miaoli 35053, Taiwan
| | - Tsai-Wen Shen
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - Yung-Chih Hong
- Faculty of Medicine, National Yang Ming Chiao Tung UniversityTaipei 11221, Taiwan
| | - Cheng-Han Tsai
- Department of Urology, Taipei Veterans General HospitalTaipei 11217, Taiwan
| | - Yu-Ching Peng
- Department of Pathology and Laboratory Medicine, Taipei Veterans General HospitalTaipei 11217, Taiwan
| | - Chin-Chen Pan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General HospitalTaipei 11217, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung UniversityTaipei 11221, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung UniversityTaipei 11221, Taiwan
| | - Jean-Chen Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern CaliforniaLos Angeles, CA 90089, USA
| | - Hsing-Jien Kung
- Comprehensive Cancer Center, University of California at DavisSacramento, CA 95817, USA
- TMU Research Center of Cancer Translational Medicine, Taipei Medical UniversityTaipei 11031, Taiwan
| | - William J Huang
- Department of Urology, Taipei Veterans General HospitalTaipei 11217, Taiwan
| | - Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung UniversityTaipei 11221, Taiwan
| | - Tzu-Ping Lin
- Faculty of Medicine, National Yang Ming Chiao Tung UniversityTaipei 11221, Taiwan
- Department of Urology, Taipei Veterans General HospitalTaipei 11217, Taiwan
| |
Collapse
|
28
|
McCall KC, Liu M, Cheng SC, Abbott A, Dubey S, Young D, Johnston M, Van den Abbeele AD, Overmoyer B, Jacene H. Report on the PET/CT Image-Based Radiation Dosimetry of [ 18F]FDHT in Women, a Validated Imaging Agent with New Applications for Evaluation of Androgen Receptor Status in Women with Metastatic Breast Cancer. J Nucl Med Technol 2023; 51:204-210. [PMID: 37316304 DOI: 10.2967/jnmt.123.265623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/21/2023] [Indexed: 06/16/2023] Open
Abstract
In a prospective clinical trial, [18F]fluoro-5α-dihydrotestosterone ([18F]FDHT), the radiolabeled analog of the androgen dihydrotestosterone, was used as a PET/CT imaging agent for in vivo assessment of metastatic androgen receptor-positive breast cancer in postmenopausal women. To our knowledge, this article presents the first report of PET/CT image-based radiation dosimetry of [18F]FDHT in women. Methods: [18F]FDHT PET/CT imaging was performed on a cohort of 11 women at baseline before the start of therapy and at 2 additional time points during selective androgen receptor modulator (SARM) therapy for androgen receptor-positive breast cancer. Volumes of interest (VOIs) were placed over the whole body and within source organs seen on the PET/CT images, and the time-integrated activity coefficients of [18F]FDHT were derived. The time-integrated activity coefficients for the urinary bladder were calculated using the dynamic urinary bladder model in OLINDA/EXM software, with biologic half-life for urinary excretion derived from VOI measurements of the whole body in postvoid PET/CT images. The time-integrated activity coefficients for all other organs were calculated from VOI measurements in the organs and the physical half-life of 18F. Organ dose and effective dose calculations were then performed using MIRDcalc, version 1.1. Results: At baseline before SARM therapy, the effective dose for [18F]FDHT in women was calculated as 0.020 ± 0.0005 mSv/MBq, and the urinary bladder was the organ at risk, with an average absorbed dose of 0.074 ± 0.011 mGy/MBq. Statistically significant decreases in liver SUV or uptake of [18F]FDHT were found at the 2 additional time points on SARM therapy (linear mixed model, P < 0.05). Likewise, absorbed dose to the liver also decreased by a small but statistically significant amount at the 2 additional time points (linear mixed model, P < 0.05). Neighboring abdominal organs of the gallbladder wall, stomach, pancreas, and adrenals also showed statistically significant decreases in absorbed dose (linear mixed model, P < 0.05). The urinary bladder wall remained the organ at risk at all time points. Absorbed dose to the urinary bladder wall did not show statistically significant changes from baseline at any of the time points (linear mixed model, P ≥ 0.05). Effective dose also did not show statistically significant changes from baseline (linear mixed model, P ≥ 0.05). Conclusion: Effective dose for [18F]FDHT in women before SARM therapy was calculated as 0.020 ± 0.0005 mSv/MBq. The urinary bladder wall was the organ at risk, with an absorbed dose of 0.074 ± 0.011 mGy/MBq.
Collapse
Affiliation(s)
- Keisha C McCall
- Department of Radiology, Henry Ford Health, Detroit, Michigan;
| | - Mofei Liu
- Division of Biostatistics, Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Su-Chun Cheng
- Division of Biostatistics, Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Amanda Abbott
- Department of Imaging, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shipra Dubey
- BiCOR, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | - Annick D Van den Abbeele
- Department of Imaging, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Radiology, Mass General Brigham, Boston, Massachusetts; and
| | - Beth Overmoyer
- Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Heather Jacene
- Department of Imaging, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Radiology, Mass General Brigham, Boston, Massachusetts; and
| |
Collapse
|
29
|
Tabrizian N, Nouruzi S, Cui CJ, Kobelev M, Namekawa T, Lodhia I, Talal A, Sivak O, Ganguli D, Zoubeidi A. ASCL1 is activated downstream of the ROR2/CREB signaling pathway to support lineage plasticity in prostate cancer. Cell Rep 2023; 42:112937. [PMID: 37552603 DOI: 10.1016/j.celrep.2023.112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Lineage plasticity is a form of therapy-induced drug resistance. In prostate cancer, androgen receptor (AR) pathway inhibitors potentially lead to the accretion of tumor relapse with loss of AR signaling and a shift from a luminal state to an alternate program. However, the molecular and signaling mechanisms orchestrating the development of lineage plasticity under the pressure of AR-targeted therapies are not fully understood. Here, a survey of receptor tyrosine kinases (RTKs) identifies ROR2 as the top upregulated RTK following AR pathway inhibition, which feeds into lineage plasticity by promoting stem-cell-like and neuronal networks. Mechanistically, ROR2 activates the ERK/CREB signaling pathway to modulate the expression of the lineage commitment transcription factor ASCL1. Collectively, our findings nominate ROR2 as a potential therapeutic target to reverse the ENZ-induced plastic phenotype and potentially re-sensitize tumors to AR pathway inhibitors.
Collapse
Affiliation(s)
- Nakisa Tabrizian
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Shaghayegh Nouruzi
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Cassandra Jingjing Cui
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Maxim Kobelev
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Takeshi Namekawa
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Ishana Lodhia
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Amina Talal
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Olena Sivak
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | | | - Amina Zoubeidi
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
30
|
Van-Duyne G, Blair IA, Sprenger C, Moiseenkova-Bell V, Plymate S, Penning TM. The androgen receptor. VITAMINS AND HORMONES 2023; 123:439-481. [PMID: 37717994 DOI: 10.1016/bs.vh.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The Androgen Receptor (AR) is a ligand (androgen) activated transcription factor and a member of the nuclear receptor (NR) superfamily. It is required for male sex hormone function. AR-FL (full-length) has the domain structure of NRs, an N-terminal domain (NTD) required for transactivation, a DNA-binding domain (DBD), a nuclear localization signal (NLS) and a ligand-binding domain (LBD). Paradoxes exist in that endogenous ligands testosterone (T) and 5α-dihydrotestosterone (DHT) have differential effects on male sexual development while binding to the same receptor and transcriptional specificity is achieved even though the androgen response elements (AREs) are identical to those seen for the progesterone, glucocorticoid and mineralocorticoid receptors. A high resolution 3-dimensional structure of AR-FL by either cryo-EM or X-ray crystallography has remained elusive largely due to the intrinsic disorder of the NTD. AR function is regulated by post-translational modification leading to a large number of proteoforms. The interaction of these proteoforms in multiprotein complexes with co-activators and co-repressors driven by interdomain coupling mediates the AR transcriptional output. The AR is a drug target for selective androgen receptor modulators (SARMS) that either have anabolic or androgenic effects. Protstate cancer is treated with androgen deprivation therapy or by the use of AR antagonists that bind to the LBD. Drug resistance occurs due to adaptive AR upregulation and the appearance of splice variants that lack the LBD and become constitutively active. Bipolar T treatment and NTD-antagonists could surmount these resistance mechanisms, respectively. These recent advances in AR signaling are described.
Collapse
Affiliation(s)
- Greg Van-Duyne
- Department of Biophysics & Biochemistry, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Ian A Blair
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Cynthia Sprenger
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington and GRECC, Seattle, WA, United States
| | - Vera Moiseenkova-Bell
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen Plymate
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington and GRECC, Seattle, WA, United States
| | - Trevor M Penning
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
31
|
Li X, Wang Y, Deng S, Zhu G, Wang C, Johnson NA, Zhang Z, Tirado CR, Xu Y, Metang LA, Gonzalez J, Mukherji A, Ye J, Yang Y, Peng W, Tang Y, Hofstad M, Xie Z, Yoon H, Chen L, Liu X, Chen S, Zhu H, Strand D, Liang H, Raj G, He HH, Mendell JT, Li B, Wang T, Mu P. Loss of SYNCRIP unleashes APOBEC-driven mutagenesis, tumor heterogeneity, and AR-targeted therapy resistance in prostate cancer. Cancer Cell 2023; 41:1427-1449.e12. [PMID: 37478850 PMCID: PMC10530398 DOI: 10.1016/j.ccell.2023.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 05/24/2023] [Accepted: 06/29/2023] [Indexed: 07/23/2023]
Abstract
Tumor mutational burden and heterogeneity has been suggested to fuel resistance to many targeted therapies. The cytosine deaminase APOBEC proteins have been implicated in the mutational signatures of more than 70% of human cancers. However, the mechanism underlying how cancer cells hijack the APOBEC mediated mutagenesis machinery to promote tumor heterogeneity, and thereby foster therapy resistance remains unclear. We identify SYNCRIP as an endogenous molecular brake which suppresses APOBEC-driven mutagenesis in prostate cancer (PCa). Overactivated APOBEC3B, in SYNCRIP-deficient PCa cells, is a key mutator, representing the molecular source of driver mutations in some frequently mutated genes in PCa, including FOXA1, EP300. Functional screening identifies eight crucial drivers for androgen receptor (AR)-targeted therapy resistance in PCa that are mutated by APOBEC3B: BRD7, CBX8, EP300, FOXA1, HDAC5, HSF4, STAT3, and AR. These results uncover a cell-intrinsic mechanism that unleashes APOBEC-driven mutagenesis, which plays a significant role in conferring AR-targeted therapy resistance in PCa.
Collapse
Affiliation(s)
- Xiaoling Li
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yunguan Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Su Deng
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guanghui Zhu
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Choushi Wang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nickolas A Johnson
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zeda Zhang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Yaru Xu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lauren A Metang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Julisa Gonzalez
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Atreyi Mukherji
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jianfeng Ye
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yuqiu Yang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Wei Peng
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yitao Tang
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Mia Hofstad
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zhiqun Xie
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Heewon Yoon
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Liping Chen
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xihui Liu
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sujun Chen
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Hong Zhu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Douglas Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX, USA; Department of Systems Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ganesh Raj
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Joshua T Mendell
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bo Li
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ping Mu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
32
|
Tannock IF, Bouche G, Goldstein DA, Goto Y, Lichter AS, Prabhash K, Ranganathan P, Saltz LB, Sonke GS, Strohbehn GW, von Moos R, Ratain MJ. Patient-centred, self-funding dose optimisation trials as a route to reduce toxicity, lower cost and improve access to cancer therapy. Ann Oncol 2023:S0923-7534(23)00687-7. [PMID: 37230253 DOI: 10.1016/j.annonc.2023.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Affiliation(s)
- Ian F Tannock
- Division of Medical Oncology, Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada; Optimal Cancer Care Alliance, Ann Arbor, MI, USA.
| | - Gauthier Bouche
- Anticancer Fund, Meise, Belgium; Medical Research Council Clinical Trials Unit at University College London, London, United Kingdom
| | - Daniel A Goldstein
- Optimal Cancer Care Alliance, Ann Arbor, MI, USA; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | | | - Kumar Prabhash
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | | | - Leonard B Saltz
- Optimal Cancer Care Alliance, Ann Arbor, MI, USA; Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabe S Sonke
- Department of Medical Oncology, Antoni van Leeuwenhoek/Netherlands Cancer Institute, & University of Amsterdam, Amsterdam, The Netherlands
| | - Garth W Strohbehn
- Optimal Cancer Care Alliance, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan; Section of Hematology Oncology, Veterans Affairs Ann Arbor Healthcare System; Veterans Affairs Center for Clinical Management Research, Ann Arbor, MI, USA
| | - Roger von Moos
- Department of Oncology/Hematology, Kantonsspital Graubünden, Chur, Switzerland & SAKK Competence Center, Bern
| | - Mark J Ratain
- Optimal Cancer Care Alliance, Ann Arbor, MI, USA; Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
33
|
Elias AD, Spoelstra NS, Staley AW, Sams S, Crump LS, Vidal GA, Borges VF, Kabos P, Diamond JR, Shagisultanova E, Afghahi A, Mayordomo J, McSpadden T, Crawford G, D'Alessandro A, Zolman KL, van Bokhoven A, Zhuang Y, Gallagher RI, Wulfkuhle JD, Petricoin Iii EF, Gao D, Richer JK. Phase II trial of fulvestrant plus enzalutamide in ER+/HER2- advanced breast cancer. NPJ Breast Cancer 2023; 9:41. [PMID: 37210417 PMCID: PMC10199936 DOI: 10.1038/s41523-023-00544-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/28/2023] [Indexed: 05/22/2023] Open
Abstract
This clinical trial combined fulvestrant with the anti-androgen enzalutamide in women with metastatic ER+/HER2- breast cancer (BC). Eligible patients were women with ECOG 0-2, ER+/HER2- measurable or evaluable metastatic BC. Prior fulvestrant was allowed. Fulvestrant was administered at 500 mg IM on days 1, 15, 29, and every 4 weeks thereafter. Enzalutamide was given at 160 mg po daily. Fresh tumor biopsies were required at study entry and after 4 weeks of treatment. The primary efficacy endpoint of the trial was the clinical benefit rate at 24 weeks (CBR24). The median age was 61 years (46-87); PS 1 (0-1); median of 4 prior non-hormonal and 3 prior hormonal therapies for metastatic disease. Twelve had prior fulvestrant, and 91% had visceral disease. CBR24 was 25% (7/28 evaluable). Median progression-free survival (PFS) was 8 weeks (95% CI: 2-52). Adverse events were as expected for hormonal therapy. Significant (p < 0.1) univariate relationships existed between PFS and ER%, AR%, and PIK3CA and/or PTEN mutations. Baseline levels of phospho-proteins in the mTOR pathway were more highly expressed in biopsies of patients with shorter PFS. Fulvestrant plus enzalutamide had manageable side effects. The primary endpoint of CBR24 was 25% in heavily pretreated metastatic ER+/HER2- BC. Short PFS was associated with activation of the mTOR pathway, and PIK3CA and/or PTEN mutations were associated with an increased hazard of progression. Thus, a combination of fulvestrant or other SERD plus AKT/PI3K/mTOR inhibitor with or without AR inhibition warrants investigation in second-line endocrine therapy of metastatic ER+ BC.
Collapse
Affiliation(s)
- Anthony D Elias
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Nicole S Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alyse W Staley
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sharon Sams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lyndsey S Crump
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gregory A Vidal
- West Cancer Center and Research Institute and Dept of Medicine, University of Tennessee Health Sciences Center, Germantown, TN, USA
| | - Virginia F Borges
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Peter Kabos
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer R Diamond
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elena Shagisultanova
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anosheh Afghahi
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jose Mayordomo
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tessa McSpadden
- University of Colorado Cancer Center, Oncology Clinical Research Support Team, Anschutz Medical Campus, Aurora, CO, USA
| | - Gloria Crawford
- University of Colorado Cancer Center, Cancer Clinical Trials Office, Anschutz Medical Campus, Aurora, CO, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kathryn L Zolman
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Adrie van Bokhoven
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yonghua Zhuang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rosa I Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Julia D Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Emanuel F Petricoin Iii
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Dexiang Gao
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
34
|
Chang X, Zhang D, Qu F, Xie Y, Chen T, Zhang Y, Du Q, Bian J, Li Z, Wang J, Xu X. Discovery of thiohydantoin based antagonists of androgen receptor with efficient degradation for the treatment of prostate cancer. Eur J Med Chem 2023; 257:115490. [PMID: 37209451 DOI: 10.1016/j.ejmech.2023.115490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/22/2023]
Abstract
Prostate cancer (PC) is one of the most prevalent cancers in men worldwide, and androgen receptor (AR) is a well-validated drug target for the treatment of PC. However, PC often exhibits resistance to AR antagonists over time. Thus, it is urgent to identify novel and effective drugs for PC treatment. A series of novel thiohydantoin based AR antagonists with efficient degradation against AR were designed, synthesized, and evaluated. Based on our previous SAR and further structural optimization, a tool molecule 26h was discovered with dual mechanisms including improved antagonistic activity and potent degradation (AR-fl and AR-V7). Moreover, 26h can also effectively block AR nuclear translocation and inhibit AR/AR-V7 heterodimerization, thereby inhibiting downstream gene transcription. Importantly, 26h displayed potent robust efficacy in LNCaP (TGI: 70.70%) and 22Rv1 (TGI: 78.89%) xenograft models. This provides new design strategies and advantageous potential compounds for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Xiujin Chang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Di Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Fangui Qu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Youquan Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Tian Chen
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yuqing Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China
| | - Jinlei Bian
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zhiyu Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Xi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
35
|
Kairemo K, Hodolic M. Androgen Receptor Imaging in the Management of Hormone-Dependent Cancers with Emphasis on Prostate Cancer. Int J Mol Sci 2023; 24:ijms24098235. [PMID: 37175938 PMCID: PMC10179508 DOI: 10.3390/ijms24098235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Prostate cancer is dependent on the action of steroid hormones on the receptors. Endocrine therapy inhibits hormone production or blocks the receptors, thus providing clinical benefit to many, but not all, oncological patients. It is difficult to predict which patient will benefit from endocrine therapy and which will not. Positron Emission Tomography (PET) imaging of androgen receptors (AR) may provide functional information on the likelihood of endocrine therapy response in individual patients. In this article, we review the utility of [18F]FDHT-PET imaging in prostate, breast, and other hormone-dependent cancers expressing AR. The methodologies, development, and new possibilities are discussed as well.
Collapse
Affiliation(s)
- Kalevi Kairemo
- Department of Molecular Radiotherapy & Nuclear Medicine, Docrates Cancer Center, 00180 Helsinki, Finland
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marina Hodolic
- Department of Nuclear Medicine, Faculty of Medicine and Dentistry, Palacký University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
36
|
Kakkat S, Pramanik P, Singh S, Singh AP, Sarkar C, Chakroborty D. Cardiovascular Complications in Patients with Prostate Cancer: Potential Molecular Connections. Int J Mol Sci 2023; 24:ijms24086984. [PMID: 37108147 PMCID: PMC10138415 DOI: 10.3390/ijms24086984] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Cardiovascular diseases (CVDs) and complications are often seen in patients with prostate cancer (PCa) and affect their clinical management. Despite acceptable safety profiles and patient compliance, androgen deprivation therapy (ADT), the mainstay of PCa treatment and chemotherapy, has increased cardiovascular risks and metabolic syndromes in patients. A growing body of evidence also suggests that patients with pre-existing cardiovascular conditions show an increased incidence of PCa and present with fatal forms of the disease. Therefore, it is possible that a molecular link exists between the two diseases, which has not yet been unraveled. This article provides insight into the connection between PCa and CVDs. In this context, we present our findings linking PCa progression with patients' cardiovascular health by performing a comprehensive gene expression study, gene set enrichment (GSEA) and biological pathway analysis using publicly available data extracted from patients with advanced metastatic PCa. We also discuss the common androgen deprivation strategies and CVDs most frequently reported in PCa patients and present evidence from various clinical trials that suggest that therapy induces CVD in PCa patients.
Collapse
Affiliation(s)
- Sooraj Kakkat
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Paramahansa Pramanik
- Department of Mathematics and Statistics, University of South Alabama, Mobile, AL 36688, USA
| | - Seema Singh
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Ajay Pratap Singh
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Chandrani Sarkar
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Debanjan Chakroborty
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
37
|
Li XF, Selli C, Zhou HL, Cao J, Wu S, Ma RY, Lu Y, Zhang CB, Xun B, Lam AD, Pang XC, Fernando A, Zhang Z, Unciti-Broceta A, Carragher NO, Ramachandran P, Henderson NC, Sun LL, Hu HY, Li GB, Sawyers C, Qian BZ. Macrophages promote anti-androgen resistance in prostate cancer bone disease. J Exp Med 2023; 220:213858. [PMID: 36749798 PMCID: PMC9948761 DOI: 10.1084/jem.20221007] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/14/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
Metastatic castration-resistant prostate cancer (PC) is the final stage of PC that acquires resistance to androgen deprivation therapies (ADT). Despite progresses in understanding of disease mechanisms, the specific contribution of the metastatic microenvironment to ADT resistance remains largely unknown. The current study identified that the macrophage is the major microenvironmental component of bone-metastatic PC in patients. Using a novel in vivo model, we demonstrated that macrophages were critical for enzalutamide resistance through induction of a wound-healing-like response of ECM-receptor gene expression. Mechanistically, macrophages drove resistance through cytokine activin A that induced fibronectin (FN1)-integrin alpha 5 (ITGA5)-tyrosine kinase Src (SRC) signaling cascade in PC cells. This novel mechanism was strongly supported by bioinformatics analysis of patient transcriptomics datasets. Furthermore, macrophage depletion or SRC inhibition using a novel specific inhibitor significantly inhibited resistant growth. Together, our findings elucidated a novel mechanism of macrophage-induced anti-androgen resistance of metastatic PC and a promising therapeutic approach to treat this deadly disease.
Collapse
Affiliation(s)
- Xue-Feng Li
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Cigdem Selli
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Han-Lin Zhou
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- BGI-Shenzhen, Shenzhen, China
- BGI-Henan, BGI-Shenzhen, Xinxiang, China
| | - Jian Cao
- Department of Urology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya Medicine School, Central South University, Changsha, China
| | - Shuiqing Wu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ruo-Yu Ma
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Ye Lu
- BGI-Shenzhen, Shenzhen, China
- BGI-Henan, BGI-Shenzhen, Xinxiang, China
| | - Cheng-Bin Zhang
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Bijie Xun
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Alyson D. Lam
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Xiao-Cong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Anu Fernando
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Zeda Zhang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Neil O. Carragher
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Prakash Ramachandran
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Neil C. Henderson
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ling-Ling Sun
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hai-Yan Hu
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Gui-Bo Li
- BGI-Shenzhen, Shenzhen, China
- BGI-Henan, BGI-Shenzhen, Xinxiang, China
| | - Charles Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Charles Sawyers:
| | - Bin-Zhi Qian
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Correspondence to Bin-Zhi Qian:
| |
Collapse
|
38
|
Sasikala CVA, Namshamgari S, Bandreddi V, Nahide PD, Kiran Kumar C, Kumar Roy A, Vakamulla M, Kumar Madhra M, Annapragada R, Bandichhor R. Synthesis and Characterization of API‐Related Substances in Abiraterone Acetate**. ChemistrySelect 2023. [DOI: 10.1002/slct.202204822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Ch. V. A. Sasikala
- API R & D, IPDO Dr. Reddy's Laboratories Ltd. Bachupally Hyderabad, Telangana 500090 India
- Department of Chemistry GITAM University, Rudraram Hyderabad, Telangana 502329 India
| | - Srikanth Namshamgari
- API R & D, IPDO Dr. Reddy's Laboratories Ltd. Bachupally Hyderabad, Telangana 500090 India
| | | | - Pradip D. Nahide
- API R & D, IPDO Dr. Reddy's Laboratories Ltd. Bachupally Hyderabad, Telangana 500090 India
| | - C. Kiran Kumar
- API R & D, IPDO Dr. Reddy's Laboratories Ltd. Bachupally Hyderabad, Telangana 500090 India
| | - Amrendra Kumar Roy
- API R & D, IPDO Dr. Reddy's Laboratories Ltd. Bachupally Hyderabad, Telangana 500090 India
| | - Malati Vakamulla
- API R & D, IPDO Dr. Reddy's Laboratories Ltd. Bachupally Hyderabad, Telangana 500090 India
| | - Mukesh Kumar Madhra
- API R & D, IPDO Dr. Reddy's Laboratories Ltd. Bachupally Hyderabad, Telangana 500090 India
| | - Ratnamala Annapragada
- Department of Chemistry GITAM University, Rudraram Hyderabad, Telangana 502329 India
| | - Rakeshwar Bandichhor
- API R & D, IPDO Dr. Reddy's Laboratories Ltd. Bachupally Hyderabad, Telangana 500090 India
| |
Collapse
|
39
|
Khan MA, Singh D, Fatma H, Akhtar K, Arjmand F, Maurya S, Siddique HR. Antiandrogen enzalutamide induced genetic, cellular, and hepatic damages: amelioration by triterpene Lupeol. Drug Chem Toxicol 2023; 46:380-391. [PMID: 35188013 DOI: 10.1080/01480545.2022.2040528] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Androgen deprivation therapy is commonly used for the treatment of prostate cancer. Enzalutamide is a next-generation androgen receptor inhibitor, initially approved to treat castration-resistance prostate cancer. Lupeol, a triterpene present in various fruits, vegetables, has anti-oxidant and anti-proliferative activity. The present study aimed to evaluate the Enzalutamide-induced toxicity and its possible amelioration by Lupeol. We performed multiple in vitro and in vivo experiments to conclude our hypothesis. The results revealed that both Enzalutamide and Lupeol interact with DNA through electrostatic interactions. Enzalutamide (5-20 μM) caused cytotoxicity in both normal (PNT2) and cancer cells (LNCaP and 22Rv1). However, Lupeol (10-50 μM) specifically killed the cancer cells while sparing normal cells. The study further revealed that Lupeol could attenuate Enzalutamide-induced cytotoxicity and genotoxicity (chromosomal aberrations and micronucleus formation) to normal cells and potentially induce cytotoxicity to transformed cells. We further observed that Lupeol (40 mg/kg) mediated attenuation of the Enzalutamide (10 mg/kg) induced oxidative and DNA damages. Our study also revealed that Lupeol reverses the Enzalutamide-induced hepatic and renal damages. In conclusion, our study indicates that Lupeol can be used as an adjuvant for reducing the toxic effects and enhancing the effectiveness of Enzalutamide.
Collapse
Affiliation(s)
- Mohammad A Khan
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Deepti Singh
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Homa Fatma
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | | | - Farruk Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Santosh Maurya
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | | |
Collapse
|
40
|
Demir O, Demirag G. A case of castration-resistant metastatic prostate cancer who continued treatment with enzalutamide after epileptic seizure. J Oncol Pharm Pract 2023; 29:498-501. [PMID: 35833211 DOI: 10.1177/10781552221112018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Enzalutamide is an androgen receptor inhibitor and is used in metastatic castration-resistant prostate cancer. Seizure is a rare side effect of enzalutamide. In this case, the patient had an epileptic seizure while on enzalutamide treatment. His treatment management and and use of enzalutamide afterwards is discussed. CASE REPORT A 78-year-old male patient who received previous treatments for metastatic castration-resistant prostate cancer was started on enzalutamide due to progression, and had an epileptic seizure while taking enzalutamide was presented. Different pathologies such as the use of other drugs, brain metastasis, bleeding, electrolyte, liver and kidney disorders that can cause epileptic seizures were explored and not found to be the cause in this patient. No neurological pathology was found in the patient after the seizure. MANAGEMENT AND OUTCOME Enzalutamide and antiepileptic treatment were initiated simultaneously again in the patient whose treatment was interrupted after the seizure and no pathology was found in the brain magnetic resonance imaging. Under this dual treatment, the patient did not have seizures again. DISCUSSION Although observed rarely, enzalutamide-induced epileptic seizure is a known side effect. However, a review of literature did not reveal any report on patients for whom enzalutamide and antiepileptic treatment were initiated and followed up simultaneously after seizures. This case report will contribute to the literature for patients whose treatment options have been exhausted and who may benefit significantly from continued use of enzalutamide despite having a seizure.
Collapse
Affiliation(s)
- Ozden Demir
- Department of Medical Oncology, 63991Ondokuz Mayıs University Faculty of Medicine, Samsun, Turkey
| | - Guzin Demirag
- Department of Medical Oncology, 63991Ondokuz Mayıs University Faculty of Medicine, Samsun, Turkey
| |
Collapse
|
41
|
Racial Differences in Androgen Receptor (AR) and AR Splice Variants (AR-SVs) Expression in Treatment-Naïve Androgen-Dependent Prostate Cancer. Biomedicines 2023; 11:biomedicines11030648. [PMID: 36979627 PMCID: PMC10044992 DOI: 10.3390/biomedicines11030648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Androgen receptor splice variants (AR-SVs) contribute to the aggressive growth of castration-resistant prostate cancer (CRPC). AR-SVs, including AR-V7, are expressed in ~30% of CRPC, but minimally in treatment-naïve primary prostate cancer (PCa). Compared to Caucasian American (CA) men, African American (AA) men are more likely to be diagnosed with aggressive/potentially lethal PCa and have shorter disease-free survival. Expression of a truncated AR in an aggressively growing patient-derived xenograft developed with a primary PCa specimen from an AA patient led us to hypothesize that the expression of AR-SVs could be an indicator of aggressive growth both in PCa progression and at the CRPC stage in AA men. Tissue microarrays (TMAs) were created from formalin-fixed paraffin-embedded (FFPE) prostatectomy tumor blocks from 118 AA and 115 CA treatment-naïve PCa patients. TMAs were stained with AR-V7-speicifc antibody and with antibodies binding to the N-terminus domain (NTD) and ligand-binding domain (LBD) of the AR. Since over 20 AR-SVs have been identified, and most AR-SVs do not as yet have a specific antibody, we considered a 2.0-fold or greater difference in the NTD vs. LBD staining as indication of potential AR-SV expression. Two AA, but no CA, patient tumors stained positively for AR-V7. AR staining with NTD and LBD antibodies was robust in most patients, with 21% of patients staining at least 2-fold more for NTD than LBD, indicating that AR-SVs other than AR-V7 are expressed in primary treatment-naïve PCa. About 24% of the patients were AR-negative, and race differences in AR expression were not statistically significant. These results indicate that AR-SVs are not restricted to CRPC, but also are expressed in primary PCa at higher rate than previously reported. Future investigation of the relative expression of NTD vs. LBD AR-SVs could guide the use of newly developed treatments targeting the NTD earlier in the treatment paradigm.
Collapse
|
42
|
Zhao S, Liao J, Zhang S, Shen M, Li X, Zhou L. The positive relationship between androgen receptor splice variant-7 expression and the risk of castration-resistant prostate cancer: A cumulative analysis. Front Oncol 2023; 13:1053111. [PMID: 36865799 PMCID: PMC9972874 DOI: 10.3389/fonc.2023.1053111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/09/2023] [Indexed: 02/16/2023] Open
Abstract
Background At present, androgen deprivation therapy (ADT) is still the standard regimen for patients with metastatic and locally advanced prostate cancer (PCa). The level of androgen receptor splice variant-7 (AR-V7) in men with castration-resistant prostate cancer (CRPC) has been reported to be elevated compared with that in patients diagnosed with hormone-sensitive prostate cancer (HSPC). Aim Herein, we performed a systematic review and cumulative analysis to evaluate whether the expression of AR-V7 was significantly higher in patients with CRPC than in HSPC patients. Methods The commonly used databases were searched to identify the potential studies reporting the level of AR-V7 in CRPC and HSPC patients. The association between CRPC and the positive expression of AR-V7 was pooled by using the relative risk (RR) with the corresponding 95% confidence intervals (CIs) under a random-effects model. For detecting the potential bias and the heterogeneity of the included studies, sensitivity analysis and subgroup analysis were performed. Publication bias was assessed Egger's and Begg's tests. This study was registered on PROSPERO (ID: CRD42022297014). Results This cumulative analysis included 672 participants from seven clinical trials. The study group contained 354 CRPC patients, while the other group contained 318 HSPC patients. Pooled results from the seven eligible studies showed that the expression of positive AR-V7 was significantly higher in men with CRPC compared to those with HSPC (RR = 7.55, 95% CI: 4.61-12.35, p < 0.001). In the sensitivity analysis, the combined RRs did not change substantially, ranging from 6.85 (95% CI: 4.16-11.27, p < 0.001) to 9.84 (95% CI: 5.13-18.87, p < 0.001). In the subgroup analysis, a stronger association was detected in RNA in situ hybridization (RISH) measurement in American patients, and those studies were published before 2011 (all p < 0.001). There was no significant publication bias identified in our study. Conclusion Evidence from the seven eligible studies demonstrated that patients with CRPC had a significantly elevated positive expression of AR-V7. More investigations are still warranted to clarify the association between CRPC and AR-V7 testing. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022297014.
Collapse
Affiliation(s)
- Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Shilong Zhang
- Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Maolei Shen
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xin Li
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Libo Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Libo Zhou,
| |
Collapse
|
43
|
Mir N, Burke O, Yates S, Rajasekaran T, Chan J, Szmulewitz R, Kanesvaran R. Androgen receptor pathway inhibitors, prostate cancer, and older adults: a global Young International Society of Geriatric Oncology drug review. Ther Adv Med Oncol 2023; 15:17588359221149887. [PMID: 36743522 PMCID: PMC9893362 DOI: 10.1177/17588359221149887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/21/2022] [Indexed: 01/29/2023] Open
Abstract
Prostate cancer is a disease of older adults that has undergone a significant therapeutic paradigm shift in the last decade with the emergence of novel androgen receptor pathway inhibitors (ARPis). One of the more commonly used ARPis is enzalutamide. This drug, along with darolutamide and apalutamide, initially received approvals in the metastatic castrate-resistant prostate cancer setting but is now utilized frequently in the metastatic castrate-sensitive and non-metastatic castration-resistant settings. Landmark phase III data illustrating ARPi efficacy in older adults are limited to those with excellent performance status. However, its role in unfit older prostate cancer patients remains to be explored in the context of a narrative review. This first-of-its-kind drug review aims to shed light on the most up-to-date evidence behind the unique toxicity profile of ARPis in the context of geriatric vulnerabilities such as cognitive and functional impairment, along with potential solutions and supporting evidence that exists to circumvent these issues in the vulnerable older adult.
Collapse
Affiliation(s)
- Nabiel Mir
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S Maryland Avenue, Chicago, IL 60637, USA
| | - Olivia Burke
- Hospice and Palliative Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Samuel Yates
- Internal Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Tanujaa Rajasekaran
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Johan Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Russell Szmulewitz
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Ravindran Kanesvaran
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
44
|
Inhibiting androgen receptor splice variants with cysteine-selective irreversible covalent inhibitors to treat prostate cancer. Proc Natl Acad Sci U S A 2023; 120:e2211832120. [PMID: 36577061 PMCID: PMC9910435 DOI: 10.1073/pnas.2211832120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Androgen receptor (AR) and its splice variants (AR-SVs) promote prostate cancer (PCa) growth by orchestrating transcriptional reprogramming. Mechanisms by which the low complexity and intrinsically disordered primary transactivation domain (AF-1) of AR and AR-SVs regulate transcriptional programming in PCa remains poorly defined. Using omics, live and fixed fluorescent microscopy of cells, and purified AF-1 and AR-V7 recombinant proteins we show here that AF-1 and the AR-V7 splice variant form molecular condensates by liquid-liquid phase separation (LLPS) that exhibit disorder characteristics such as rapid intracellular mobility, coactivator interaction, and euchromatin induction. The LLPS and other disorder characteristics were reversed by a class of small-molecule-selective AR-irreversible covalent antagonists (SARICA) represented herein by UT-143 that covalently and selectively bind to C406 and C327 in the AF-1 region. Interfering with LLPS formation with UT-143 or mutagenesis resulted in chromatin condensation and dissociation of AR-V7 interactome, all culminating in a transcriptionally incompetent complex. Biochemical studies suggest that C327 and C406 in the AF-1 region are critical for condensate formation, AR-V7 function, and UT-143's irreversible AR inhibition. Therapeutically, UT-143 possesses drug-like pharmacokinetics and metabolism properties and inhibits PCa cell proliferation and tumor growth. Our work provides critical information suggesting that clinically important AR-V7 forms transcriptionally competent molecular condensates and covalently engaging C327 and C406 in AF-1, dissolves the condensates, and inhibits its function. The work also identifies a library of AF-1-binding AR and AR-SV-selective covalent inhibitors for the treatment of PCa.
Collapse
|
45
|
Parent EE, Fowler AM. Nuclear Receptor Imaging In Vivo-Clinical and Research Advances. J Endocr Soc 2022; 7:bvac197. [PMID: 36655003 PMCID: PMC9838808 DOI: 10.1210/jendso/bvac197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Indexed: 01/01/2023] Open
Abstract
Nuclear receptors are transcription factors that function in normal physiology and play important roles in diseases such as cancer, inflammation, and diabetes. Noninvasive imaging of nuclear receptors can be achieved using radiolabeled ligands and positron emission tomography (PET). This quantitative imaging approach can be viewed as an in vivo equivalent of the classic radioligand binding assay. A main clinical application of nuclear receptor imaging in oncology is to identify metastatic sites expressing nuclear receptors that are targets for approved drug therapies and are capable of binding ligands to improve treatment decision-making. Research applications of nuclear receptor imaging include novel synthetic ligand and drug development by quantifying target drug engagement with the receptor for optimal therapeutic drug dosing and for fundamental research into nuclear receptor function in cells and animal models. This mini-review provides an overview of PET imaging of nuclear receptors with a focus on radioligands for estrogen receptor, progesterone receptor, and androgen receptor and their use in breast and prostate cancer.
Collapse
Affiliation(s)
- Ephraim E Parent
- Mayo Clinic Florida, Department of Radiology, Jacksonville, Florida 32224, USA
| | - Amy M Fowler
- Correspondence: Amy M. Fowler, MD, PhD, Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792-3252, USA.
| |
Collapse
|
46
|
Zhang F, Biswas M, Massah S, Lee J, Lingadahalli S, Wong S, Wells C, Foo J, Khan N, Morin H, Saxena N, Kung SY, Sun B, Parra Nuñez A, Sanchez C, Chan N, Ung L, Altıntaş U, Bui J, Wang Y, Fazli L, Oo H, Rennie P, Lack N, Cherkasov A, Gleave M, Gsponer J, Lallous N. Dynamic phase separation of the androgen receptor and its coactivators key to regulate gene expression. Nucleic Acids Res 2022; 51:99-116. [PMID: 36535377 PMCID: PMC9841400 DOI: 10.1093/nar/gkac1158] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Numerous cancers, including prostate cancer (PCa), are addicted to transcription programs driven by specific genomic regions known as super-enhancers (SEs). The robust transcription of genes at such SEs is enabled by the formation of phase-separated condensates by transcription factors and coactivators with intrinsically disordered regions. The androgen receptor (AR), the main oncogenic driver in PCa, contains large disordered regions and is co-recruited with the transcriptional coactivator mediator complex subunit 1 (MED1) to SEs in androgen-dependent PCa cells, thereby promoting oncogenic transcriptional programs. In this work, we reveal that full-length AR forms foci with liquid-like properties in different PCa models. We demonstrate that foci formation correlates with AR transcriptional activity, as this activity can be modulated by changing cellular foci content chemically or by silencing MED1. AR ability to phase separate was also validated in vitro by using recombinant full-length AR protein. We also demonstrate that AR antagonists, which suppress transcriptional activity by targeting key regions for homotypic or heterotypic interactions of this receptor, hinder foci formation in PCa cells and phase separation in vitro. Our results suggest that enhanced compartmentalization of AR and coactivators may play an important role in the activation of oncogenic transcription programs in androgen-dependent PCa.
Collapse
Affiliation(s)
- Fan Zhang
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak St., Vancouver, BC V6H 3Z6, Canada
| | | | | | - Joseph Lee
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak St., Vancouver, BC V6H 3Z6, Canada
| | - Shreyas Lingadahalli
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak St., Vancouver, BC V6H 3Z6, Canada
| | - Samantha Wong
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak St., Vancouver, BC V6H 3Z6, Canada
| | - Christopher Wells
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak St., Vancouver, BC V6H 3Z6, Canada
| | - Jane Foo
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak St., Vancouver, BC V6H 3Z6, Canada
| | - Nabeel Khan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak St., Vancouver, BC V6H 3Z6, Canada
| | - Helene Morin
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak St., Vancouver, BC V6H 3Z6, Canada
| | - Neetu Saxena
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak St., Vancouver, BC V6H 3Z6, Canada
| | - Sonia H Y Kung
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak St., Vancouver, BC V6H 3Z6, Canada
| | - Bei Sun
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak St., Vancouver, BC V6H 3Z6, Canada
| | - Ana Karla Parra Nuñez
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak St., Vancouver, BC V6H 3Z6, Canada
| | - Christophe Sanchez
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak St., Vancouver, BC V6H 3Z6, Canada
| | - Novia Chan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak St., Vancouver, BC V6H 3Z6, Canada
| | - Lauren Ung
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak St., Vancouver, BC V6H 3Z6, Canada
| | - Umut Berkay Altıntaş
- School of Medicine, Koç University, Rumelifeneri Yolu, Istanbul 34450, Turkey,Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Rumelifeneri Yolu, Istanbul 34450, Turkey
| | - Jennifer M Bui
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak St., Vancouver, BC V6H 3Z6, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak St., Vancouver, BC V6H 3Z6, Canada
| | - Htoo Zarni Oo
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak St., Vancouver, BC V6H 3Z6, Canada
| | - Paul S Rennie
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak St., Vancouver, BC V6H 3Z6, Canada
| | - Nathan A Lack
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak St., Vancouver, BC V6H 3Z6, Canada,School of Medicine, Koç University, Rumelifeneri Yolu, Istanbul 34450, Turkey,Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Rumelifeneri Yolu, Istanbul 34450, Turkey
| | - Artem Cherkasov
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak St., Vancouver, BC V6H 3Z6, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak St., Vancouver, BC V6H 3Z6, Canada
| | - Jörg Gsponer
- Correspondence may also be addressed to Jörg Gsponer.
| | - Nada Lallous
- To whom correspondence should be addressed. Tel: +1 604 875 4111; Fax: +1 604 875 5654;
| |
Collapse
|
47
|
Vinh-Hung V, Gorobets O, Natchagande G, Sargos P, Yin M, Nguyen NP, Verschraegen C, Folefac E. Low-Dose Enzalutamide in Metastatic Prostate Cancer-Longevity Over Conventional Survival Analysis. Clin Genitourin Cancer 2022; 20:e473-e484. [PMID: 35778336 DOI: 10.1016/j.clgc.2022.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 01/08/2022] [Accepted: 05/30/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Enzalutamide is an important drug in the treatment of prostate cancer. Standard dosing often requires dose reduction because of side effects. There is no information on survival outcomes with lower doses. We investigated the impact of starting enzalutamide at ≤ 50% dose on metastatic prostate cancer outcomes including patients' longevity. PATIENTS AND METHODS Records of metastatic prostate cancer patients treated with enzalutamide at one center were retrospectively reviewed. Low-dose enzalutamide (≤80 mg/day) was compared with standard-dose (160 mg/day). The primary objective was to compute the restricted mean survival time (RMST - time scale) and restricted mean attained age (RMAA - age scale) using the Irwin method. Secondary objectives included overall survival (OS), progression-free survival (PFS), and PSA progression per PCWG3 criteria (PSA PFS). We used the logrank test and the ∆ difference between RMSTs for comparison. RESULTS Of 111 patients treated, 32 received a low-dose and 79 the standard-dose. Low-dose patients had less prior abiraterone or chemotherapy (28.1% vs. 65.8%, P < .001); more testosterone assessment (65.6% vs. 40.5%, P = .016); poorer ECOG performance status (48.3% score ≥2 vs. 26.6%; P = .040), more comorbidities (75.9% vs. 46.3%; P = .010)) including increased cardiovascular disease (51.7% vs. 21.4%, P = .004). Baseline PSA value and doubling time at start of enzalutamide and distribution of metastases were similar between the groups. OS and PFS did not differ between low-dose and standard-dose. Patients on low-dose had a better longevity with significantly longer RMAA, 89.1 years, versus standard-dose RMAA of 83.8 years (∆ = 5.3 years, P = .003, logrank P = .025). In a subgroup analysis by age at start of enzalutamide, <75 versus ≥75 years old, longevity was also better with low-dose in younger patients (∆ = 2.9 years, P = .034, and older, ∆ = 3.3 years, P = .011). CONCLUSION The longevity advantage and reduced adverse events seen in patients with prostate cancer treated with low-dose enzalutamide warrants further investigation.
Collapse
Affiliation(s)
- Vincent Vinh-Hung
- Centre Hospitalier Universitaire de Martinique, Fort-de-France, Martinique, France
| | | | - Gilles Natchagande
- Centre National Hospitalier Universitaire Hubert K. MAGA, Cotonou, Benin
| | - Paul Sargos
- Département de radiothérapie, Institut Bergonié, Bordeaux, France
| | - Ming Yin
- Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | | | - Edmund Folefac
- Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
48
|
Tautomycin and enzalutamide combination yields synergistic effects on castration-resistant prostate cancer. Cell Death Dis 2022; 8:471. [DOI: 10.1038/s41420-022-01257-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
AbstractThe androgen receptor (AR) plays an essential role in prostate cancer progression and is a key target for prostate cancer treatment. However, patients with prostate cancer undergoing androgen deprivation therapy eventually experience biochemical relapse, with hormone-sensitive prostate cancer progressing into castration-resistant prostate cancer (CRPC). The widespread application of secondary antiandrogens, such as enzalutamide, indicates that targeting AR remains the most efficient method for CRPC treatment. Unfortunately, neither can block AR signaling thoroughly, leading to AR reactivation within several months. Here, we report an approach for suppressing reactivated AR signaling in the CRPC stage. A combination of the protein phosphatase 1 subunit α (PP1α)-specific inhibitor tautomycin and enzalutamide synergistically inhibited cell proliferation and AR signaling in LNCaP and C4-2 cells, as well as in AR variant-positive 22RV1 cells. Our results revealed that enzalutamide competed with residual androgens in CRPC, enhancing tautomycin-mediated AR degradation. In addition, the remaining competitive inhibitory role of enzalutamide on AR facilitated tautomycin-induced AR degradation in 22RV1 cells, further decreasing ARv7 levels via a full-length AR/ARv7 interaction. Taken together, our findings suggest that the combination of tautomycin and enzalutamide could achieve a more comprehensive inhibition of AR signaling in CRPC. AR degraders combined with AR antagonists may represent a new therapeutic strategy for CRPC.
Collapse
|
49
|
Chen X, Shao Y, Wei W, Zhu S, Li Y, Chen Y, Li H, Tian H, Sun G, Niu Y, Shang Z. Androgen deprivation restores ARHGEF2 to promote neuroendocrine differentiation of prostate cancer. Cell Death Dis 2022; 13:927. [PMID: 36335093 PMCID: PMC9637107 DOI: 10.1038/s41419-022-05366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022]
Abstract
Androgen receptor (AR) plays an important role in the progression of prostate cancer and has been targeted by castration or AR-antagonists. The emergence of castration-resistant prostate cancer (CRPC) after androgen deprivation therapy (ADT) is inevitable. However, it is not entirely clear how ADT fails or how it causes resistance. Through analysis of RNA-seq data, we nominate ARHGEF2 as a pivotal androgen-repressed gene. We show that ARHGEF2 is directly suppressed by androgen/AR. AR occupies the enhancer and communicates with the promoter region of ARHGEF2. Functionally, ARHGEF2 is important for the growth, lethal phenotype, and survival of CRPC cells and tumor xenografts. Correspondingly, AR inhibition or AR antagonist treatment can restore ARHGEF2 expression, thereby allowing prostate cancer cells to induce treatment resistance and tolerance. Overall, our findings provide an explanation for the contradictory clinical results that ADT resistance may be caused by the up-regulation of ARHGEF2 and provide a novel target.
Collapse
Affiliation(s)
- Xuanrong Chen
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Yi Shao
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Wanqing Wei
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
- Department of Pediatric Surgery, Huai'an Maternal and Children Health Hospital, Huai'an, China
| | - Shimiao Zhu
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Yang Li
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Yutong Chen
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Hanling Li
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Hao Tian
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Guijiang Sun
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
50
|
Kotamarti S, Armstrong AJ, Polascik TJ, Moul JW. Molecular Mechanisms of Castrate-Resistant Prostate Cancer. Urol Clin North Am 2022; 49:615-626. [DOI: 10.1016/j.ucl.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|