1
|
Gao S, Cheng X, Zhang M, Dai Q, Liu C, Lu Y. Design Principles and Applications of Ionic Liquids for Transdermal Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405983. [PMID: 39342651 DOI: 10.1002/advs.202405983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/13/2024] [Indexed: 10/01/2024]
Abstract
Ionic liquids (ILs) are salts with melting points typically <100 °C, composed of specific anions and cations. Recently, IL application has expanded into material engineering and biomedicine. Due to their unique properties, ILs have garnered significant interest in pharmacological research as solubilizers, transdermal absorption enhancers, antibacterial agents, and stabilizers of insoluble pharmaceutical active ingredients. The improvement of skin permeability by ILs is closely associated with their specific physicochemical characteristics, which are identified by their ionic composition. However, the existing literature on transdermal medication administration is insufficient in terms of a comprehensive knowledge base. This review provides a comprehensive assessment of the design principles involved in IL synthesis. Additionally, it discusses the methods utilized to assess skin permeability and provides a focused outline of IL application in transdermal drug administration.
Collapse
Affiliation(s)
- Sai Gao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xueqing Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing, 102206, P. R. China
| | - Qiong Dai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yunfeng Lu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
2
|
Chaiwarit T, Chanabodeechalermrung B, Jantrawut P, Ruksiriwanich W, Sainakham M. Fabrication and Characterization of Dissolving Microneedles Containing Oryza sativa L. Extract Complex for Enhancement of Transfollicular Delivery. Polymers (Basel) 2024; 16:2377. [PMID: 39204596 PMCID: PMC11359393 DOI: 10.3390/polym16162377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Dissolving microneedles are extensively applied in drug delivery systems to enhance penetration into the skin. In this study, dissolving microneedles fabricated from polyvinylpyrrolidone K90 (PVP-K90) and hydroxypropylmethyl cellulose (HPMC) E50 in different ratios were characterized. The selected formulations incorporated Oryza sativa L. extract complex and its characteristics, transfollicular penetration, and safety were observed. The microneedles, fabricated from PVP K90: HPMC E50 in a ratio of 25:5 (P25H5) and 20:10 (P20H10), revealed excellent morphological structure, proper mechanical strength, and excellent skin insertion. P25H5 microneedles exhibited faster dissolution than P20H10 microneedles. Microneedles containing Oryza sativa L. extract complex showed excellent morphological structure via scanning electron microscopy but decreased mechanical strength. P25H5-O, which exhibited an effective ability to enter skin, was selected for further investigation. This microneedle formulation had a high percentage of drug-loading content, enhanced skin penetration via the transfollicular route, and was safe for keratinocytes. As a result, the dissolving microneedle containing Oryza sativa L. extract complex can be used to enhance transfollicular delivery through the skin with safety.
Collapse
Affiliation(s)
- Tanpong Chaiwarit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (T.C.); (B.C.); (P.J.); (W.R.)
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Baramee Chanabodeechalermrung
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (T.C.); (B.C.); (P.J.); (W.R.)
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (T.C.); (B.C.); (P.J.); (W.R.)
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (T.C.); (B.C.); (P.J.); (W.R.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Valorization and Bio-Green Transformation for Translational Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mathukorn Sainakham
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (T.C.); (B.C.); (P.J.); (W.R.)
- Cluster of Valorization and Bio-Green Transformation for Translational Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Akl MA, Eldeen MA, Kassem AM. Beyond Skin Deep: Phospholipid-Based Nanovesicles as Game-Changers in Transdermal Drug Delivery. AAPS PharmSciTech 2024; 25:184. [PMID: 39138693 DOI: 10.1208/s12249-024-02896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Transdermal administration techniques have gained popularity due to their advantages over oral and parenteral methods. Noninvasive, self-administered delivery devices improve patient compliance and control drug release. Transdermal delivery devices struggle with the skin's barrier function. Molecules over 500 Dalton (Da) and ionized compounds don't permeate through the skin. Drug encapsulation in phospholipid-based vesicular systems is the most effective skin delivery technique. Vesicular carriers include bi-layered liposomes, ultra-deformable liposomes, ethanolic liposomes, transethosomes, and invasomes. These technologies enhance skin drug permeation by increasing formula solubilization, partitioning into the skin, and fluidizing the lipid barrier. Phospholipid-based delivery systems are safe and efficient, making them a promising pharmaceutical and cosmeceutical drug delivery technique. Still, making delivery systems requires knowledge about the physicochemical properties of the drug and carrier, manufacturing and process variables, skin delivery mechanisms, technological advances, constraints, and regulatory requirements. Consequently, this review covers recent research achievements addressing the mentioned concerns.
Collapse
Affiliation(s)
- Mohamed A Akl
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
- Department of Pharmaceutics, College of Pharmacy, The Islamic University, Najaf, 54001, Iraq.
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology, & Genetics Division, Zoology Department, Faculty of Science, Zagazig University, Alsharquia, 7120001, Egypt
| | - Abdulsalam M Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|
4
|
Gaikwad SS, Zanje AL, Somwanshi JD. Advancements in transdermal drug delivery: A comprehensive review of physical penetration enhancement techniques. Int J Pharm 2024; 652:123856. [PMID: 38281692 DOI: 10.1016/j.ijpharm.2024.123856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Transdermal drug administration has grown in popularity in the pharmaceutical research community due to its potential to improve drug bioavailability, compliance among patients, and therapeutic effectiveness. To overcome the substantial barrier posed by the stratum corneum (SC) and promote drug absorption within the skin, various physical penetration augmentation approaches have been devised. This review article delves into popular physical penetration augmentation techniques, which include sonophoresis, iontophoresis, magnetophoresis, thermophoresis, needle-free injection, and microneedles (MNs) Sonophoresis is a technique that uses low-frequency ultrasonic waves to break the skin's barrier characteristics, therefore improving drug transport and distribution. In contrast, iontophoresis uses an applied electric current to push charged molecules of drugs inside the skin, effectively enhancing medication absorption. Magnetophoresis uses magnetic fields to drive drug carriers into the dermis, a technology that has shown promise in aiding targeted medication delivery. Thermophoresis is the regulated heating of the skin in order to improve drug absorption, particularly with thermally sensitive drug carriers. Needle-free injection technologies, such as jet injectors (JIs) and microprojection arrays, offer another option by producing temporary small pore sizes in the skin, facilitating painless and effective drug delivery. MNs are a painless, minimally invasive method, easy to self-administration, as well as high drug bioavailability. This study focuses on the underlying processes, current breakthroughs, and limitations connected with all of these approaches, with an emphasis on their applicability in diverse therapeutic areas. Finally, a thorough knowledge of these physical enhancement approaches and their incorporation into pharmaceutical research has the potential to revolutionize drug delivery, providing more efficient and secure treatment choices for a wide range of health-related diseases.
Collapse
Affiliation(s)
- Sachin S Gaikwad
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| | - Abhijit L Zanje
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Jeevan D Somwanshi
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| |
Collapse
|
5
|
Souza IDL, Saez V, Mansur CRE. Lipid nanoparticles containing coenzyme Q10 for topical applications: An overview of their characterization. Colloids Surf B Biointerfaces 2023; 230:113491. [PMID: 37574615 DOI: 10.1016/j.colsurfb.2023.113491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/03/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
The coenzyme Q10 is a compound widely used in pharmaceutical and cosmetic formulations because it is a potent eliminator of free radicals, giving it antioxidant and anti-aging properties. It is naturally synthesized by the human body, but its production wanes with age, leading to the formation of wrinkles. The efficacy of topical application of the coenzyme to counteract this process is subject to several difficulties, due to its instability in the presence of light, low solubility in water and high lipophilicity. Because of these drawbacks, many studies have been conducted of release systems. Lipid nanoparticles stand out in this sense due to the advantages of skin compatibility, protection of the active ingredient against degradation in the external medium, capacity to increase penetration of that ingredient in the skin, and its controlled and prolonged release. In this context, this article presents a review of the main studies of the coenzyme Q10 encapsulated in lipid nanoparticles for topical use, focusing on the analytic methods used to characterize the systems regarding morphology, zeta potential, release profile, Q10 content, encapsulation efficiency, crystalline organization and structure of the lipid matrix, rheology, antioxidant activity, skin penetration and efficacy, among other aspects. We also describe the main results of the different studies and discuss the critical aspects - the simplest, most reproducible, best, and most relevant - that characterize lipid nanoparticles with encapsulated Q10 for topical use.
Collapse
Affiliation(s)
- Ingrid D L Souza
- Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas/Laboratório de Macromoleculas e Coloides na Indústria de Petróleo, Cidade Universitária, Rua Moniz Aragão, 360. Bloco 8G-CT2, CEP 21941-594 Rio de Janeiro, RJ, Brazil
| | - Vivian Saez
- Universidade Federal do Rio de Janeiro, Instituto de Química, Departamento de Química Analítica, Cidade Universitária, CEP 21941-909 Rio de Janeiro, RJ, Brazil.
| | - Claudia R E Mansur
- Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas/Laboratório de Macromoleculas e Coloides na Indústria de Petróleo, Cidade Universitária, Rua Moniz Aragão, 360. Bloco 8G-CT2, CEP 21941-594 Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro, Programa de Engenharia Metalúrgica e de Materiais-PEMM/COPPE, Brazil
| |
Collapse
|
6
|
Graciela CQ, José Juan EC, Gieraldin CL, Xóchitl Alejandra PM, Gabriel AÁ. Hyaluronic Acid-Extraction Methods, Sources and Applications. Polymers (Basel) 2023; 15:3473. [PMID: 37631529 PMCID: PMC10459667 DOI: 10.3390/polym15163473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
In this review, a compilation of articles in databases on the extraction methods and applications of hyaluronic acid (HA) was carried out. HA is a highly hydrated component of different tissues, including connective, epithelial, and neural. It is an anionic, linear glycosaminoglycan (GAG) primarily found in the native extracellular matrix (ECM) of soft connective tissues. Included in the review were studies on the extraction methods (chemical, enzymatical, combined) of HA, describing advantages and disadvantages as well as news methods of extraction. The applications of HA in food are addressed, including oral supplementation, biomaterials, medical research, and pharmaceutical and cosmetic industry applications. Subsequently, we included a section related to the structure and penetration routes of the skin, with emphasis on the benefits of systems for transdermal drug delivery nanocarriers as promoters of percutaneous absorption. Finally, the future trends on the applications of HA were included. This final section contains the effects before, during, and after the application of HA-based products.
Collapse
Affiliation(s)
- Callejas-Quijada Graciela
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43600, Hidalgo, Mexico; (C.-Q.G.); (C.-L.G.); (P.-M.X.A.)
| | - Escobar-Chávez José Juan
- Unidad de Investigación Multidisciplinaria, Laboratorio 12: Sistemas Transdérmicos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli C.P. 54714, Estado de México, Mexico;
| | - Campos-Lozada Gieraldin
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43600, Hidalgo, Mexico; (C.-Q.G.); (C.-L.G.); (P.-M.X.A.)
| | - Pérez-Marroquín Xóchitl Alejandra
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43600, Hidalgo, Mexico; (C.-Q.G.); (C.-L.G.); (P.-M.X.A.)
| | - Aguirre-Álvarez Gabriel
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43600, Hidalgo, Mexico; (C.-Q.G.); (C.-L.G.); (P.-M.X.A.)
- Uni-Collagen S.A. de C.V., Arnulfo González No. 203, El Paraíso, Tulancingo C.P. 43684, Hidalgo, Mexico
| |
Collapse
|
7
|
Raina N, Rani R, Thakur VK, Gupta M. New Insights in Topical Drug Delivery for Skin Disorders: From a Nanotechnological Perspective. ACS OMEGA 2023; 8:19145-19167. [PMID: 37305231 PMCID: PMC10249123 DOI: 10.1021/acsomega.2c08016] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/28/2023] [Indexed: 06/13/2023]
Abstract
Skin, the largest organ in humans, is an efficient route for the delivery of drugs as it circumvents several disadvantages of the oral and parenteral routes. These advantages of skin have fascinated researchers in recent decades. Drug delivery via a topical route includes moving the drug from a topical product to a locally targeted region with dermal circulation throughout the body and deeper tissues. Still, due to the skin's barrier function, delivery through the skin can be difficult. Drug delivery to the skin using conventional formulations with micronized active components, for instance, lotions, gels, ointments, and creams, results in poor penetration. The use of nanoparticulate carriers is one of the promising strategies, as it provides efficient delivery of drugs through the skin and overcomes the disadvantage of traditional formulations. Nanoformulations with smaller particle sizes contribute to improved permeability of therapeutic agents, targeting, stability, and retention, making nanoformulations ideal for drug delivery through a topical route. Achieving sustained release and preserving a localized effect utilizing nanocarriers can result in the effective treatment of numerous infections or skin disorders. This article aims to evaluate and discuss the most recent developments of nanocarriers as therapeutic agent vehicles for skin conditions with patent technology and a market overview that will give future directions for research. As topical drug delivery systems have shown great preclinical results for skin problems, for future research directions, we anticipate including in-depth studies of nanocarrier behavior in various customized treatments to take into account the phenotypic variability of the disease.
Collapse
Affiliation(s)
- Neha Raina
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Radha Rani
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, SRUC (Scotland’s Rural College), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Madhu Gupta
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| |
Collapse
|
8
|
Wang S, Zhao M, Yan Y, Li P, Huang W. Flexible Monitoring, Diagnosis, and Therapy by Microneedles with Versatile Materials and Devices toward Multifunction Scope. RESEARCH (WASHINGTON, D.C.) 2023; 6:0128. [PMID: 37223469 PMCID: PMC10202386 DOI: 10.34133/research.0128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/02/2023] [Indexed: 05/25/2023]
Abstract
Microneedles (MNs) have drawn rising attention owing to their merits of convenience, noninvasiveness, flexible applicability, painless microchannels with boosted metabolism, and precisely tailored multifunction control. MNs can be modified to serve as novel transdermal drug delivery, which conventionally confront with the penetration barrier caused by skin stratum corneum. The micrometer-sized needles create channels through stratum corneum, enabling efficient drug delivery to the dermis for gratifying efficacy. Then, incorporating photosensitizer or photothermal agents into MNs can conduct photodynamic or photothermal therapy, respectively. Besides, health monitoring and medical detection by MN sensors can extract information from skin interstitial fluid and other biochemical/electronic signals. Here, this review discloses a novel monitoring, diagnostic, and therapeutic pattern by MNs, with elaborate discussion about the classified formation of MNs together with various applications and inherent mechanism. Hereby, multifunction development and outlook from biomedical/nanotechnology/photoelectric/devices/informatics to multidisciplinary applications are provided. Programmable intelligent MNs enable logic encoding of diverse monitoring and treatment pathways to extract signals, optimize the therapy efficacy, real-time monitoring, remote control, and drug screening, and take instant treatment.
Collapse
Affiliation(s)
| | | | - Yibo Yan
- Address correspondence to: (Y.Y.); (P.L.); (W.H.)
| | - Peng Li
- Address correspondence to: (Y.Y.); (P.L.); (W.H.)
| | - Wei Huang
- Address correspondence to: (Y.Y.); (P.L.); (W.H.)
| |
Collapse
|
9
|
Guillot AJ, Martínez-Navarrete M, Zinchuk-Mironova V, Melero A. Microneedle-assisted transdermal delivery of nanoparticles: Recent insights and prospects. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1884. [PMID: 37041036 DOI: 10.1002/wnan.1884] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 04/13/2023]
Abstract
Transdermal delivery of drugs offers an interesting alternative for the administration of molecules that present certain troubles when delivered by the oral route. It can produce systemic effects or perform a local action when the formulation exerts an optimal controlled drug release or a targeted delivery to the specific cell type or site. It also avoids several inconveniences of the oral administration such as the hepatic first pass effect, gastric pH-induced hydrolysis, drug malabsorption because of certain diseases or surgeries, and unpleasant organoleptic properties. Nanomedicine and microneedle array patches (MAPs) are two of the trendiest delivery systems applied to transdermal research nowadays. However, the skin is a protective barrier and nanoparticles (NPs) cannot pass through the intact stratum corneum. The association of NPs and MAPs (NPs@MAPs) work synergistically, since MAPs assist NPs to bypass the outer skin layers, and NPs contribute to the system providing controlled drug release and targeted delivery. Vaccination and tailored therapies have been proposed as fields where both NPs and MAPs have great potential due to inherent characteristics. MAPs conception and easy use could allow self-administration and therefore facilitate mass vaccination campaigns in undeveloped areas with weak healthcare services. Additionally, nanomedicine is being explored as a platform to personalize therapies in such an important field as oncology. In this work we show recent insights that prove the benefits of NPs@MAPs association and analyze the prospects and the discrete interest of the industry in NPs@MAPs, evaluating different limiting steps that restricts NPs@MAPs translation to the clinical practice. This article is categorized under: Nanotechnology Approaches to Biology > NA Therapeutic Approaches and Drug Discovery > NA.
Collapse
Affiliation(s)
- Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles s/n, 46100, Burjassot, Spain
| | - Miquel Martínez-Navarrete
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles s/n, 46100, Burjassot, Spain
| | - Valeria Zinchuk-Mironova
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles s/n, 46100, Burjassot, Spain
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles s/n, 46100, Burjassot, Spain
| |
Collapse
|
10
|
Kanungo S, Gupta N, Rawat R, Jain B, Solanki A, Panday A, Das P, Ganguly S. Doped Carbon Quantum Dots Reinforced Hydrogels for Sustained Delivery of Molecular Cargo. J Funct Biomater 2023; 14:jfb14030166. [PMID: 36976090 PMCID: PMC10057248 DOI: 10.3390/jfb14030166] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Hydrogels have emerged as important soft materials with numerous applications in fields including biomedicine, biomimetic smart materials, and electrochemistry. Because of their outstanding photo-physical properties and prolonged colloidal stability, the serendipitous findings of carbon quantum dots (CQDs) have introduced a new topic of investigation for materials scientists. CQDs confined polymeric hydrogel nanocomposites have emerged as novel materials with integrated properties of the individual constituents, resulting in vital uses in the realm of soft nanomaterials. Immobilizing CQDs within hydrogels has been shown to be a smart tactic for preventing the aggregation-caused quenching effect and also for manipulating the characteristics of hydrogels and introducing new properties. The combination of these two very different types of materials results in not only structural diversity but also significant improvements in many property aspects, leading to novel multifunctional materials. This review covers the synthesis of doped CQDs, different fabrication techniques for nanostructured materials made of CQDs and polymers, as well as their applications in sustained drug delivery. Finally, a brief overview of the present market and future perspectives are discussed.
Collapse
Affiliation(s)
- Shweta Kanungo
- Department of Engineering Science and Humanities, Indore Institute of Science and Technology, Indore 452001, Madhya Pradesh, India
| | - Neeta Gupta
- Department of Chemistry, Govt. E. Raghavendra Rao P. G. Science College, Bilaspur 495001, Chhattisgarh, India
| | - Reena Rawat
- Department of Chemistry, Echelon Institute of Technology, Faridabad 121101, Haryana, India
| | - Bhawana Jain
- Department of Chemistry, Govt. V.Y.T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
| | - Aruna Solanki
- Department of Chemistry, JNS Govt PG College Shujalpur, Affiliated to Vikram University Ujjain (M.P.), Dist Shajapur 465333, Madhya Pradesh, India
| | - Ashutosh Panday
- Department of Physics, Dr. C.V. Raman University, Kota, Bilaspur 495113, Chhattisgarh, India
| | - P Das
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| | - S Ganguly
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| |
Collapse
|
11
|
Guillot AJ, Martínez-Navarrete M, Garrigues TM, Melero A. Skin drug delivery using lipid vesicles: A starting guideline for their development. J Control Release 2023; 355:624-654. [PMID: 36775245 DOI: 10.1016/j.jconrel.2023.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
Lipid vesicles can provide a cost-effective enhancement of skin drug absorption when vesicle production process is optimised. It is an important challenge to design the ideal vesicle, since their properties and features are related, as changes in one affect the others. Here, we review the main components, preparation and characterization methods commonly used, and the key properties that lead to highly efficient vesicles for transdermal drug delivery purposes. We stand by size, deformability degree and drug loading, as the most important vesicle features that determine the further transdermal drug absorption. The interest in this technology is increasing, as demonstrated by the exponential growth of publications on the topic. Although long-term preservation and scalability issues have limited the commercialization of lipid vesicle products, freeze-drying and modern escalation methods overcome these difficulties, thus predicting a higher use of these technologies in the market and clinical practice.
Collapse
Affiliation(s)
- Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain
| | - Miquel Martínez-Navarrete
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain
| | - Teresa M Garrigues
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain.
| |
Collapse
|
12
|
Design and Characterization of Lipid-Surfactant-Based Systems for Enhancing Topical Anti-Inflammatory Activity of Ursolic Acid. Pharmaceutics 2023; 15:pharmaceutics15020366. [PMID: 36839688 PMCID: PMC9960079 DOI: 10.3390/pharmaceutics15020366] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Skin inflammation is a symptom of many skin diseases, such as eczema, psoriasis, and dermatitis, which cause rashes, redness, heat, or blistering. The use of natural products with anti-inflammatory properties has gained importance in treating these symptoms. Ursolic acid (UA), a promising natural compound that is used to treat skin diseases, exhibits low aqueous solubility, resulting in poor absorption and low bioavailability. Designing topical formulations focuses on providing adequate delivery via application to the skin surface. The aim of this study was to formulate and characterize lipid-surfactant-based systems for the delivery of UA. Microemulsions and liquid crystalline systems (LCs) were characterized by polarized light microscopy (PLM), rheology techniques, and textural and bioadhesive assays. PLM supported the self-assembly of these systems and elucidated their formation. Rheologic examination revealed pseudoplastic and thixotropic behavior appropriate, and assays confirmed the ability of these formulations to adhere to the skin. In vivo studies were performed, and inflammation induced by croton oil was assessed for response to microemulsions and LCs. UA anti-inflammatory activities of ~60% and 50% were demonstrated by two microemulsions and 40% and 35% by two LCs, respectively. These data support the continued development of colloidal systems to deliver UA to ameliorate skin inflammation.
Collapse
|
13
|
Kabiri H, Tayarani-Najaran Z, Rahmanian-Devin P, Vaziri MS, Nasirizadeh S, Golmohammadzadeh S, Kamali H. Preparation, characterization, and evaluation of anti-tyrosinase activity of solid lipid nanoparticles containing Undecylenoyl phenylalanine (Sepiwhite®). J Cosmet Dermatol 2022; 21:6061-6071. [PMID: 35593521 DOI: 10.1111/jocd.15102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Hyperpigmentation is darkened patches or spots on the skin occurred by increased melanin. Undecylenoyl phenylalanine (Sepiwhite®), as a commercial lipophilic derivative of phenylalanine, is a powerful new brightener that can be used in the treatment of skin pigmentation disorders. AIMS Solid lipid nanoparticles (SLNs) increase the efficiency of hydrophobic drugs. The current study aimed to prepare and characterize SLNs containing Sepiwhite (SEPI-SLN). METHODS In this study, an optimized SEPI-SLN formulation was selected by applying the response surface method. In vitro drug loading content, the release profile of SEPI, and cell viability were investigated. The permeation rate of SEPI-SLN was also compared to conventional cream containing Sepiwhite (SEPI-CREAM). Furthermore, the anti-tyrosinase activity of Sepiwhite was also evaluated. RESULTS The optimized formulation showed a spherical morphology with particle size and entrapment efficiency of 218.6 ± 11.1 nm and % 87.31 ± 0.65, respectively. Differential scanning calorimetry (DSC) analysis confirmed SEPI-loaded SLN formulation with no drug-lipid incompatibility. The in vitro permeation experiment revealed the enhanced cutaneous uptake of SEPI-SLN. The results also showed that Sepiwhite could stop melanogenesis with inhibition of the tyrosinase enzyme. CONCLUSION Our findings confirm that SLNs could be a proper nanocarrier for the relevant usage of Sepiwhite as a powerful brightener agent.
Collapse
Affiliation(s)
- Homa Kabiri
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Samira Nasirizadeh
- Pharmaceutical Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Shiva Golmohammadzadeh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Bains J, Carver S, Hua S. Pathophysiological and Pharmaceutical Considerations for Enhancing the Control of Sarcoptes scabiei in Wombats Through Improved Transdermal Drug Delivery. Front Vet Sci 2022; 9:944578. [PMID: 35836504 PMCID: PMC9274280 DOI: 10.3389/fvets.2022.944578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Sarcoptic scabiei is an invasive parasitic mite that negatively impacts wombats, causing sarcoptic mange disease, characterized by alopecia, intense pruritus, hyperkeratosis, and eventual mortality. Evidence suggests that wombats may be unable to recovery from infection without the assistance of treatments. Transdermal drug delivery is considered the most ideal route of administration for in situ treatment in free-ranging wombats, as it is non-invasive and avoids the need to capture affected individuals. Although there are effective antiparasitic drugs available, an essential challenge is adequate administration of drugs and sufficient drug retention and absorption when delivered. This review will describe the implications of sarcoptic mange on the physiology of wombats as well as discuss the most widely used antiparasitic drugs to treat S. scabiei (ivermectin, moxidectin, and fluralaner). The prospects for improved absorption of these drugs will be addressed in the context of pathophysiological and pharmaceutical considerations influencing transdermal drug delivery in wombats with sarcoptic mange.
Collapse
Affiliation(s)
- Jaskaran Bains
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Susan Hua
| |
Collapse
|
15
|
Łasińska I, Zielińska A, Mackiewicz J, Souto EB. Basal Cell Carcinoma: Pathology, Current Clinical Treatment, and Potential Use of Lipid Nanoparticles. Cancers (Basel) 2022; 14:2778. [PMID: 35681758 PMCID: PMC9179516 DOI: 10.3390/cancers14112778] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022] Open
Abstract
Skin cancer is the most common type of carcinoma diagnosed worldwide, with significant morbidity and mortality rates among Caucasians, in particular basal cell carcinoma (BCC). The main risk factors of BCC are well-identified, and there are many chemotherapeutic drugs available for its treatment. The effectiveness of therapeutic options is governed by several factors, including the location of the tumor, its size, and the presence of metastases (although rare for BCC). However, available treatments are based on non-targeted approaches, which encounter a significant risk of systemic toxicity in several organs. Site-specific chemotherapy for BCC has been proposed via the loading of anticancer drugs into nanoparticles. Among various types of nanoparticles, in this review, we focus on potential new regimens for the treatment of BCC using classical anticancer drugs loaded into novel lipid nanoparticles. To meet patient aesthetic expectations and enhance the effectiveness of basal cell carcinoma treatment, new therapeutic topical strategies are discussed, despite a limited number of reports available in the literature.
Collapse
Affiliation(s)
- Izabela Łasińska
- Department of Medical and Experimental Oncology, Heliodor Święcicki Clinical Hospital, Poznań University of Medical Sciences, 16/18 Grunwaldzka Street, 60-786 Poznań, Poland;
- Department of Nursing, Institute of Health Sciences, University of Zielona Góra, Energetyków Street 2, 65-417 Zielona Góra, Poland
| | - Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland;
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Heliodor Święcicki Clinical Hospital, Poznań University of Medical Sciences, 16/18 Grunwaldzka Street, 60-786 Poznań, Poland;
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznań, Poland
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, nº. 228, 4050-313 Porto, Portugal;
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, nº. 228, 4050-313 Porto, Portugal
| |
Collapse
|
16
|
Santos JS, Barradas TN, Tavares GD. Advances in nanotechnology-based hair care products applied to hair shaft and hair scalp disorders. Int J Cosmet Sci 2022; 44:320-332. [PMID: 35436002 DOI: 10.1111/ics.12780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Nanotechnology has been intensively applied to the development of novel cosmetic products for hair and scalp care during the last decades. Such a trend is corroborated by the fact that about 19% of the total nanocosmetics registered in the StatNano database are intended for hair and scalp care. Nanotechnology-enabled formulations based on nanoparticles, cyclodextrins, liposomes and nanoemulsions have emerged as novel approaches due to chemical stability and their controlled release. Regarding hair care formulations, nanocarriers can target the hair shaft, hair follicle and scalp. Therefore, they have been used to treat several hair disorders, including dandruff and other hair-damaging conditions. METHODS This review addressed the most important nanocarriers applied to hair-related disorders improvement. Furthermore, the application for hair photoprotection and improvement of hair colour duration by nanotechnological formulations is also approached. Besides, we provided an overview of the current scenario of available nano-based commercial hair products and novel patented inventions. RESULTS From the patent search, the Patent Cooperation Treaty was pointed as the most important depositing agency while the United States of America has been the most depositing country. On the contrary, according to the StatNano database, Brazil stands out in the hair care worldwide market, and it is also the main producer of hair cosmetics based on nanotechnology. CONCLUSION As nano-based products offer several advantages over conventional cosmetics, it is expected that in future, there will be more research on nanocarriers applied to hair disorders, as well as commercial products and patent applications.
Collapse
Affiliation(s)
- Júlia Scherer Santos
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Thais Nogueira Barradas
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Guilherme Diniz Tavares
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
17
|
Pinheiro Machado GT, Veleirinho MB, Ferreira RG, Zuglianello C, Lemos-Senna E, Kuhnen S. Protection of bovine mammary epithelial cells by a nanoemulsion of the medicinal herb Achyrocline satureioides (Lam.) DC and its capacity of permeation through mammary epithelium. J DAIRY RES 2022; 89:1-6. [PMID: 35225191 DOI: 10.1017/s0022029922000139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The low levels of toxicity and cytoprotective effect attributed to Achyrocline satureioides (Lam.) DC, a medicinal plant native to South America, are of interest for bovine mastitis therapy. This research paper reports the hypothesis that a nanoemulsion of macela extract (Achyrocline satureioides) exerts protective effects on bovine mammary alveolar cells -T (MAC-T) and increases the permeation of flavonoid compounds through mammary epithelium. Extract-loaded nanoemulsions (2.5 mg/ml) (NE-ML) (n = 4) were prepared using high-pressure homogenization with varying concentrations of flaxseed oil and Tween 80. Permeation and retention of free and nanoencapsulated quercetin, 3-O-methylquercetin and luteolin were performed on mammary glandular epithelium using Franz diffusion cells. The cell viability was evaluated on mammary epithelial cells (MAC-T lineage) using the MTT method (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) after exposure to loaded and blank nanoemulsions (NE-ML and NE-BL). Necrotic or apoptotic cell death was evaluated by flow cytometry after exposure to nanoemulsions (NE-ML and NE-BL). Subsequently, the cell death was assessed by previously treating MAC-T cells with NE-ML for 23 h, followed by exposure to H2O2 (2 mM) for 1 h. Higher permeation of quercetin and 3-O-methylquercetin in NE-ML was found compared to that of free extract with a final permeated amount of 50.7 ± 3.2 and 111.2 ± 0.6 μg/cm2 compared to 35.0 ± 0.6 and 48.9 ± 1.2, respectively. For NE-BL, the IC50 was at least 1.3% (v/v), while for the NE-ML, it was at least 2.6% (v/v). After exposure to NE-ML (5 and 1.2%, v/v), the percentage of apoptotic cells was reduced (±30%). For the H2O2 assay, the percentage of cells in necrosis was reduced by 40% after exposure to NE-ML1% (v/v) + H2O2 2 mM. The protective effects and increased permeation of macela nanoemulsion make this a promising new candidate for bovine mastitis therapy.
Collapse
Affiliation(s)
- Gabriela T Pinheiro Machado
- Biochemistry and Natural Products Laboratory (LABINAT), Federal University of Santa Catarina, Florianópolis88040-900, Brazil
| | - Maria B Veleirinho
- Biochemistry and Natural Products Laboratory (LABINAT), Federal University of Santa Catarina, Florianópolis88040-900, Brazil
| | - Roberto G Ferreira
- Biochemistry and Natural Products Laboratory (LABINAT), Federal University of Santa Catarina, Florianópolis88040-900, Brazil
| | - Carine Zuglianello
- Pharmaceutical Technology Laboratory, Federal University of Santa Catarina, Florianópolis88040-900, Brazil
| | - Elenara Lemos-Senna
- Pharmaceutical Technology Laboratory, Federal University of Santa Catarina, Florianópolis88040-900, Brazil
| | - Shirley Kuhnen
- Biochemistry and Natural Products Laboratory (LABINAT), Federal University of Santa Catarina, Florianópolis88040-900, Brazil
| |
Collapse
|
18
|
The Challenge in Combining Pelotherapy and Electrotherapy (Iontophoresis) in One Single Therapeutic Modality. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pelotherapy and electrotherapy are therapeutic methodologies with proven success in physical medicine and rehabilitation (PMR) and dermatology fields. The main purpose of these therapeutic modalities is to reduce pain, accelerate wound healing, alleviate muscle spasms, and improve mobility, and muscle tone. Their main challenge is in the passage of some ionic species through the skin barrier. The use of drugs, such as diclofenac, corticosteroids or steroids, has gained widespread efficacy recognition in physical therapy and the therapeutic action of these drugs is widely studied in experimental and clinical trials. Unlike pharmaceutical and cosmetic clays, peloids are not subject to any prior quality control or subject to any specific European regulation. The dermal absorption values are an integral part of the risk assessment process for peloids. This work explores the converging points between these two transdermal drug delivery systems (TDDS) and the presentation of methodologies to achieve peloid safety compliance, especially concerning the potential and degree of toxicity arising from ion exchange and trace elements. TDDS is applied to the pharmaceuticals industry and drug is the generic term for the active substances released into skin tissues. The transdermal delivery of drugs or clay components with therapeutic properties is limited due to the excellent barrier function of the stratum corneum. The transdermal drug delivery of pelotherapy is enhanced by temperature and electrically by iontophoresis. The low voltage of iontophoresis and sweat phenomena with pore dilation driven by pelotherapy allows the use of the same pathways: hair follicles and sweat pore. The therapeutic integration of iontophoresis and pelotherapy focused on patient benefits and low safety-related risk may contribute to the outstanding physiological performance of pelotherapy, specifically, in the way the essential elements and exchange cations pass through the skin barrier. The validation of an innovative iontophoretic systems applied to pelotherapy can also promote future challenges in the obtaining of the ideal therapeutic control of peloids and the clinical validation of results with physiological efficacy recognition.
Collapse
|
19
|
Sharma A, Mahanty J, Rasheed S, Kumar S, Singh H. Potential of essential oils as alternative permeation enhancers for transdermal delivery. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.351508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Kim HC, Lee W, Böhlke M, Yoon K, Yoo SS. Focused ultrasound enhances the anesthetic effects of topical lidocaine in rats. BMC Anesthesiol 2021; 21:158. [PMID: 34020595 PMCID: PMC8138995 DOI: 10.1186/s12871-021-01381-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND High-intensity ultrasound has been used to induce acoustic cavitation in the skin and subsequently enhances skin permeability to deliver hydrophobic topical medications including lidocaine. In contrast, instead of changing skin permeability, pulsed application of low-intensity focused ultrasound (FUS) has shown to non-invasively and temporarily disrupt drug-plasma protein binding, thus has potential to enhance the anesthetic effects of hydrophilic lidocaine hydrochloride through unbinding it from serum/interstitial α1-acid glycoprotein (AAG). METHODS FUS, operating at fundamental frequency of 500 kHz, was applied pulse-mode (55-ms pulse duration, 4-Hz pulse repetition frequency) at a spatial-peak pulse-average intensity of 5 W/cm2. In vitro equilibrium dialysis was performed to measure the unbound concentration of lidocaine (lidocaine hydrochloride) from dialysis cassettes, one located at the sonication focus and the other outside the sonication path, all immersed in phosphate-buffered saline solution containing both lidocaine (10 µg/mL) and human AAG (5 mg/mL). In subsequent animal experiments (Sprague-Dawley rats, n = 10), somatosensory evoked potential (SSEP), elicited by electrical stimulations to the unilateral hind leg, was measured under three experimental conditions-applications of FUS to the unilateral thigh area at the site of administered topical lidocaine, FUS only, and lidocaine only. Skin temperature was measured before and after sonication. Passive cavitation detection was also performed during sonication to evaluate the presence of FUS-induced cavitation. RESULTS Sonication increased the unbound lidocaine concentration (8.7 ± 3.3 %) from the dialysis cassette, compared to that measured outside the sonication path (P < 0.001). Application of FUS alone did not alter the SSEP while administration of lidocaine reduced its P23 component (i.e., a positive peak at 23 ms latency). The FUS combined with lidocaine resulted in a further reduction of the P23 component (in a range of 21.8 - 23.4 ms after the electrical stimulations; F(2,27) = 3.2 - 4.0, P < 0.05), indicative of the enhanced anesthetic effect of the lidocaine. Administration of FUS neither induced cavitation nor altered skin conductance or temperature, suggesting that skin permeability was unaffected. CONCLUSIONS Unbinding lidocaine from the plasma proteins by exposure to non-thermal low-intensity ultrasound is attributed as the main mechanism behind the observation.
Collapse
Affiliation(s)
- Hyun-Chul Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, 02115, Boston, MA, USA
| | - Wonhye Lee
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, 02115, Boston, MA, USA
| | - Mark Böhlke
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA
| | - Kyungho Yoon
- Center for Healthcare Robotics, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, 02115, Boston, MA, USA.
| |
Collapse
|
21
|
Pereira R, Silva SG, Pinheiro M, Reis S, do Vale ML. Current Status of Amino Acid-Based Permeation Enhancers in Transdermal Drug Delivery. MEMBRANES 2021; 11:343. [PMID: 34067194 PMCID: PMC8151591 DOI: 10.3390/membranes11050343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022]
Abstract
Transdermal drug delivery (TDD) presents many advantages compared to other conventional routes of drug administration, yet its full potential has not been achieved. The administration of drugs through the skin is hampered by the natural barrier properties of the skin, which results in poor permeation of most drugs. Several methods have been developed to overcome this limitation. One of the approaches to increase drug permeation and thus to enable TDD for a wider range of drugs consists in the use of chemical permeation enhancers (CPEs), compounds that interact with skin to ultimately increase drug flux. Amino acid derivatives show great potential as permeation enhancers, as they exhibit high biodegradability and low toxicity. Here we present an overview of amino acid derivatives investigated so far as CPEs for the delivery of hydrophilic and lipophilic drugs across the skin, focusing on the structural features which promote their enhancement capacity.
Collapse
Affiliation(s)
- Rui Pereira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (R.P.); (S.G.S.)
| | - Sandra G. Silva
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (R.P.); (S.G.S.)
| | - Marina Pinheiro
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (M.P.); (S.R.)
| | - Salette Reis
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (M.P.); (S.R.)
| | - M. Luísa do Vale
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (R.P.); (S.G.S.)
| |
Collapse
|
22
|
Atanasova D, Staneva D, Grabchev I. Textile Materials Modified with Stimuli-Responsive Drug Carrier for Skin Topical and Transdermal Delivery. MATERIALS 2021; 14:ma14040930. [PMID: 33669245 PMCID: PMC7919809 DOI: 10.3390/ma14040930] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Textile materials, as a suitable matrix for different active substances facilitating their gradual release, can have an important role in skin topical or transdermal therapy. Characterized by compositional and structural variety, those materials readily meet the requirements for applications in specific therapies. Aromatherapy, antimicrobial substances and painkillers, hormone therapy, psoriasis treatment, atopic dermatitis, melanoma, etc., are some of the areas where textiles can be used as carriers. There are versatile optional methods for loading the biologically active substances onto textile materials. The oldest ones are by exhaustion, spraying, and a pad-dry-cure method. Another widespread method is the microencapsulation. The modification of textile materials with stimuli-responsive polymers is a perspective route to obtaining new textiles of improved multifunctional properties and intelligent response. In recent years, research has focused on new structures such as dendrimers, polymer micelles, liposomes, polymer nanoparticles, and hydrogels. Numerous functional groups and the ability to encapsulate different substances define dendrimer molecules as promising carriers for drug delivery. Hydrogels are also high molecular hydrophilic structures that can be used to modify textile material. They absorb a large amount of water or biological fluids and can support the delivery of medicines. These characteristics correspond to one of the current trends in the development of materials used in transdermal therapy, namely production of intelligent materials, i.e., such that allow controlled concentration and time delivery of the active substance and simultaneous visualization of the process, which can only be achieved with appropriate and purposeful modification of the textile material.
Collapse
Affiliation(s)
- Daniela Atanasova
- Department of Textile and Leathers, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| | - Desislava Staneva
- Department of Textile and Leathers, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
- Correspondence: ; Tel.: +359-2-8163266
| | - Ivo Grabchev
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria;
| |
Collapse
|
23
|
Tambunlertchai S, Geary SM, Salem AK. Skin Penetration Enhancement Strategies Used in the Development of Melanoma Topical Treatments. AAPS JOURNAL 2021; 23:19. [PMID: 33404992 DOI: 10.1208/s12248-020-00544-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/26/2020] [Indexed: 01/10/2023]
Abstract
Malignant melanoma is an aggressive form of skin cancer for which there is currently no reliable therapy and is considered one of the leading health issues in the USA. At present, surgery is the most effective and acceptable treatment; however, surgical excision can be impractical in certain circumstances. Topical skin delivery of drugs using topical formulations is a potential alternative approach which can have many advantages aside from being a non-invasive delivery route. Nevertheless, the presence of the stratum corneum (SC) limits the penetration of drugs through the skin, lowering their treatment efficacy and raising concerns among physicians and patients as to their effectiveness. Currently, research groups are trying to circumvent the SC barrier by using skin penetration enhancement (SPE) strategies. The SPE strategies investigated include chemical skin penetration enhancers (CPEs), physical skin penetration enhancers (PPEs), nanocarrier systems, and a combination of SPE strategies (cream). Of these, PPEs and cream are the most advanced approaches in terms of preclinical and clinical studies, respectively.
Collapse
Affiliation(s)
- Supreeda Tambunlertchai
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
24
|
Peña-Juárez MC, Guadarrama-Escobar OR, Escobar-Chávez JJ. Transdermal Delivery Systems for Biomolecules. J Pharm Innov 2021; 17:319-332. [PMID: 33425065 PMCID: PMC7786146 DOI: 10.1007/s12247-020-09525-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2020] [Indexed: 01/12/2023]
Abstract
Purpose The present review article focuses on highlighting the main technologies used as tools that improve the delivery of transdermal biomolecules, addressing them from the point of view of research in the development of transdermal systems that use physical and chemical permeation enhancers and nanocarrier systems or a combination of them. Results Transdermal drug delivery systems have increased in importance since the late 1970s when their use was approved by the Food and Drug Administration (FDA). They appeared to be an alternative resource for the administration of many potent drugs. The first transdermal drug delivery system used for biomolecules was for the treatment of hormonal disorders. Biomolecules have been used primarily in many treatments for cancer and diabetes, vaccines, hormonal disorders, and contraception. Conclusions The latest technologies that have used such transdermal biomolecule transporters include electrical methods (physical penetration enhancers), some chemical penetration enhancers and nanocarriers. All of them allow the maintenance of the physical and chemical properties of the main proteins and peptides through these clinical treatments, allowing their efficient storage, transport, and release and ensuring the achievement of their target and better results in the treatment of many diseases. Graphical abstract
Collapse
Affiliation(s)
- Ma. Concepción Peña-Juárez
- Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Unidad de Investigación Multidisciplinaria, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, C.P. 54714 Cuautitlán Izcalli, México, Estado de México Mexico
| | - Omar Rodrigo Guadarrama-Escobar
- Sección de Estudios de Posgrado e Investigación de la Escuela Nacional de Ciencias Biológicas. Programa de Posgrado: Doctorado en Ciencias Químico Biológicas-Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n. Col. Santo Tomás C. P. 11340, Alcaldía Miguel Hidalgo, Ciudad de México, Mexico
| | - José Juan Escobar-Chávez
- Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Unidad de Investigación Multidisciplinaria, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, C.P. 54714 Cuautitlán Izcalli, México, Estado de México Mexico
| |
Collapse
|
25
|
Uchino T, Fujimori S, Hatta I, Miyazaki Y, Kamiya D, Fujino H, Suzuki R, Kirishita Y, Eda T, Murashima K, Kagawa Y. Development of novel polyglycerol fatty acid ester-based nanoparticles for the dermal delivery of tocopherol acetate. Int J Pharm 2021; 592:120004. [PMID: 33127489 DOI: 10.1016/j.ijpharm.2020.120004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/06/2020] [Accepted: 10/18/2020] [Indexed: 11/17/2022]
Abstract
The aim of this study was to develop and evaluate novel polyglycerol fatty acid ester (PGFE)-based nanoparticles (NPs) for the dermal delivery of tocopherol acetate (TA). TA-loaded PGFE-based NPs (PGFE-NPs) were prepared by mixing PGFE, soya phosphatidylcholine, dimyristoylphosphatidylglycerol, and TA with film using the film rehydration and extrusion method. The prepared formulations were analyzed by dynamic light scattering, small-angle X-ray diffraction and polarization microscopy. An in vitro skin accumulation test was performed with TA under occlusive and non-occlusive applications, using Yucatan micropig skin. The size range of the TA-loaded liposome and PGFE-NPs was 107-128 nm, and they were encapsulated in 1.6-2.3 mg/mL TA. All PGFE-NP formulations were negatively charged and stable for 2 weeks. Under occlusive applications, all formulations induced small amounts of TA accumulation in the epidermis but not in the dermis. However, under non-occlusive applications, some of PGFE-NP formulations enhanced TA accumulation in the epidermis. Furthermore, only the polyglycerol 4-laurate (PG4L)-based formulation induced dermal TA accumulation with the change in the formulation from a vesicular to bilayer stacked structure following water evaporation under non-occlusive applications. These results indicated that the novel TA-loaded PG4L formulation enabled the dermal delivery of TA in non-occlusive applications.
Collapse
Affiliation(s)
- Tomonobu Uchino
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Shun Fujimori
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ichiro Hatta
- Department of Research, Nagoya Industrial Science Research Institute, 1-13 Yotsuyadori, Chikusa-ku, Nagoya 464-0819, Japan
| | - Yasunori Miyazaki
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Daichi Kamiya
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiyori Fujino
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Rie Suzuki
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yukako Kirishita
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takashi Eda
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kenji Murashima
- Research and Development Center, Sakamoto Yakuhin Kogyo Co., Ltd., 3-1-62 Ayumino, Izumi, Osaka 594-1157, Japan
| | - Yoshiyuki Kagawa
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
26
|
Kassem AA, Abd El-Alim SH. Vesicular Nanocarriers: A Potential Platform for Dermal and Transdermal Drug Delivery. NANOPHARMACEUTICALS: PRINCIPLES AND APPLICATIONS VOL. 2 2021. [DOI: 10.1007/978-3-030-44921-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Zainuddin N, Ahmad I, Zulfakar MH, Kargarzadeh H, Ramli S. Cetyltrimethylammonium bromide-nanocrystalline cellulose (CTAB-NCC) based microemulsions for enhancement of topical delivery of curcumin. Carbohydr Polym 2020; 254:117401. [PMID: 33357890 DOI: 10.1016/j.carbpol.2020.117401] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
Low bioavailability and poor water solubility have limited the utilization of curcumin in conventional dosing methods. As an alternative, microemulsions as drug carrier can improve curcumin delivery. A cetyltrimethylammonium bromide-nanocrystalline cellulose (CTAB-NCC)-based microemulsion was developed and its potential use as a topical delivery method for curcumin was investigated. The effect of microemulsion's particle size and its microstructure as well as the presence of the CTAB-NCC nanoparticle on the topical delivery of curcumin was studied. In vitro permeation studies showed higher penetration rate of curcumin from the oil-in-water type-microemulsions. The skin permeation profile of curcumin followed Higuchi release kinetics. Furthermore, use of the (CTAB-NCC)-based microemulsion enhanced curcumin accumulation in the skin and these system showed non cytotoxicity effect on L929 cell line. These results showed the potential of (CTAB-NCC)-based microemulsions as controlled-release topical systems for the delivery of curcumin and potentially other lipophilic drugs.
Collapse
Affiliation(s)
- Norhidayu Zainuddin
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Ishak Ahmad
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor, Malaysia
| | - Mohd Hanif Zulfakar
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódz, Poland
| | - Suria Ramli
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
28
|
Schneider-Rauber G, Argenta DF, Caon T. Emerging Technologies to Target Drug Delivery to the Skin - the Role of Crystals and Carrier-Based Systems in the Case Study of Dapsone. Pharm Res 2020; 37:240. [PMID: 33169237 DOI: 10.1007/s11095-020-02951-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022]
Abstract
Dapsone (DAP) is a long-established molecule that remains a promising therapeutic agent for various diseases mainly because it combines antimicrobial and anti-inflammatory activities. Its oral application, however, is limited by the dose-dependent hematological side effects that may rise from systemic exposure. As an alternative to overcome this limitation, the administration of DAP to the skin has witnessed prominent interest in the past 20 years, particularly when applied to the treatment of dermatological disorders. In this review, all technological strategies proposed to the topical delivery of DAP are presented. Most of the reported studies have been devoted to the clinical use and safety of a gel formulation containing both solubilized and microcrystalline drug, however, the technological characteristics of such preparation are still missing. In parallel, the incorporation of DAP into vesicular and particulate carriers (e.g. nano- and microemulsions, niosomes, invasomes, bilosomes, cubosomes, solid lipid nanoparticles, nanostructured lipid carriers, polymeric nanocapsules and polymer-lipid-polymer hybrid nanoparticles) appears to be an alternative to provide greater drug release control, enhanced drug solubilization and follicular targeting. Indeed, the main application of DAP topical formulations reported in the literature was the treatment of acne vulgaris, a disease located in the hair follicle. Other diseases affecting different regions of the skin (e.g. cutaneous lupus erythematosus and cutaneous leishmaniasis), however, may also benefit from a topical therapeutic regimen containing DAP. Therefore, the investigation of appendageal route in comparison to passive transmembrane diffusion as a function of targeted disease, as well as pharmacokinetic studies, are perspectives highlighted herein. Such studies may drive future efforts towards the rational development of safe and effective technologies to deliver DAP to the skin. Graphical abstract.
Collapse
Affiliation(s)
- Gabriela Schneider-Rauber
- Postgraduate Program in Pharmacy (PGFar), Federal University of Santa Catarina, Trindade, SC, 88040-900, Florianopolis, Brazil
| | - Debora Fretes Argenta
- Postgraduate Program in Pharmacy (PGFar), Federal University of Santa Catarina, Trindade, SC, 88040-900, Florianopolis, Brazil
| | - Thiago Caon
- Postgraduate Program in Pharmacy (PGFar), Federal University of Santa Catarina, Trindade, SC, 88040-900, Florianopolis, Brazil.
| |
Collapse
|
29
|
Elmahdy A, Cao Y, Hui X, Maibach H. Follicular pathway role in chemical warfare simulants percutaneous penetration. J Appl Toxicol 2020; 41:964-971. [DOI: 10.1002/jat.4081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Akram Elmahdy
- Dermatology Department University of California, San Francisco San Francisco California USA
| | - Yachao Cao
- Dermatology Department University of California, San Francisco San Francisco California USA
| | - Xiaoying Hui
- Dermatology Department University of California, San Francisco San Francisco California USA
| | - Howard Maibach
- Dermatology Department University of California, San Francisco San Francisco California USA
| |
Collapse
|
30
|
Cardoso SA, Barradas TN. Developing formulations for drug follicular targeting: Nanoemulsions loaded with minoxidil and clove oil. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101908] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Bodenlenz M, Augustin T, Birngruber T, Tiffner KI, Boulgaropoulos B, Schwingenschuh S, Raney SG, Rantou E, Sinner F. Variability of Skin Pharmacokinetic Data: Insights from a Topical Bioequivalence Study Using Dermal Open Flow Microperfusion. Pharm Res 2020; 37:204. [PMID: 32989514 PMCID: PMC7522073 DOI: 10.1007/s11095-020-02920-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/28/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE Dermal open flow microperfusion (dOFM) has previously demonstrated its utility to assess the bioequivalence (BE) of topical drug products in a clinical study. We aimed to characterize the sources of variability in the dermal pharmacokinetic data from that study. METHODS Exploratory statistical analyses were performed with multivariate data from a clinical dOFM-study in 20 healthy adults evaluating the BE, or lack thereof, of Austrian test (T) and U.S. reference (R) acyclovir cream, 5% products. RESULTS The overall variability of logAUC values (CV: 39% for R and 45% for T) was dominated by inter-subject variability (R: 82%, T: 91%) which correlated best with the subject's skin conductance. Intra-subject variability was 18% (R) and 9% (T) of the overall variability; skin treatment sites or methodological factors did not significantly contribute to that variability. CONCLUSIONS Inter-subject variability was the major component of overall variability for acyclovir, and treatment site location did not significantly influence intra-subject variability. These results support a dOFM BE study design with T and R products assessed simultaneously on the same subject, where T and R treatment sites do not necessarily need to be next to each other. Localized variation in skin microstructure may be primarily responsible for intra-subject variability.
Collapse
Affiliation(s)
- Manfred Bodenlenz
- HEALTH - Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Thomas Augustin
- HEALTH - Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Thomas Birngruber
- HEALTH - Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Katrin I Tiffner
- HEALTH - Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Beate Boulgaropoulos
- HEALTH - Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Simon Schwingenschuh
- HEALTH - Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Sam G Raney
- Division of Therapeutic Performance Office of Research and Standards Office of Generic Drugs, United States (U.S.) Food and Drug Administration, 10903 New Hampshire Avenue, MD, 20993, Silver Spring, USA
| | - Elena Rantou
- Division of Biostatistics VIII, Office of Biostatistics, Office of Translational Sciences, United States (U.S.) Food and Drug Administration, 10903 New Hampshire Avenue, MD, 20993, Silver Spring, USA
| | - Frank Sinner
- HEALTH - Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria.
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
| |
Collapse
|
32
|
Improved surface adhesion and wound healing effect of madecassoside liposomes modified by temperature-responsive PEG-PCL-PEG copolymers. Eur J Pharm Sci 2020; 151:105373. [PMID: 32450220 DOI: 10.1016/j.ejps.2020.105373] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022]
Abstract
Madecassoside (MA) exhibits excellent therapeutic effects in wound healing and scar management. However, its high hydrophilic nature and low permeability through skin tissue limits its topical application. Liposomes are widely used to deliver drugs due to their high structural similarity and biocompatibility with cell membranes. However, normal liposome formulations are too fluid to maintain sufficient adhesion to the wound surface. In this study, in order to make an MA formulation conducive to topical administration, poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE), a biodegradable and temperature-responsive copolymer material, was synthesized and applied to improve the adhesion properties of MA liposomes. The mean particle size of the PECE-modified MA liposomes was 213.43±4.68 nm, and the zeta potential was -23.80±15.37 mV under the optimal conditions of EPC (egg yolk lecithin) to PECE at a mass ratio of 1:1. Additionally, PECE-modified MA liposomes maintained a hydrogel state for better adhesion until the temperature reached 43°C. Furthermore, the PECE-modified MA liposomes showed superior wound contraction effects relative to the MA liposomes in second-degree burn experiments using a rat model. These results indicated that PECE-modified MA liposomes have better surface adhesion performance and healing effects than unmodified MA liposomes.
Collapse
|
33
|
Sarhadi S, Gholizadeh M, Moghadasian T, Golmohammadzadeh S. Moisturizing effects of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) using deionized and magnetized water by in vivo and in vitro methods. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:337-343. [PMID: 32440320 PMCID: PMC7229509 DOI: 10.22038/ijbms.2020.39587.9397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 01/16/2023]
Abstract
OBJECTIVES The present study aimed to determine and compare moisturizing and occlusion effects of different solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) using magnetized water and deionized water. MATERIALS AND METHODS SLN formulations were prepared using various lipids, including Tripalmitin, Compritol®, Precirol®, and emulsifiers including Poloxamer and Tween 80. NLC formulations were also prepared with oleic acid and the same solid lipids. Two types of formulations were prepared; first with deionized water and then with magnetized water. Formulations were prepared using high shear homogenization and ultrasound methods. The products were analyzed by PSA (particle size analyzer), DSC (differential scanning calorimetry), and TEM (transmission electron microscopy). The moisturizing effect of formulations was determined by in vivo and in vitro methods. RESULTS Findings of the assessments demonstrated that in products prepared with magnetized water, 5% SLN Precirol® had the most moisturizing effect in vivo and 5% SLN Compritol® had the most moisturizing effect in vitro. The use of magnetized water in formulations can improve the effectiveness and increase the stability of moisturizing products. CONCLUSION In this study, all products prepared with magnetized water showed more stability, smaller size, and more moisturizing effects compared with products prepared with deionized water.
Collapse
Affiliation(s)
- Susan Sarhadi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Gholizadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Tina Moghadasian
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Golmohammadzadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Neupane R, Boddu SH, Renukuntla J, Babu RJ, Tiwari AK. Alternatives to Biological Skin in Permeation Studies: Current Trends and Possibilities. Pharmaceutics 2020; 12:E152. [PMID: 32070011 PMCID: PMC7076422 DOI: 10.3390/pharmaceutics12020152] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
: The transdermal route of drugs has received increased attention in recent years due to numerous advantages over the oral and injectable routes, such as avoidance of the hepatic metabolism, protection of drugs from the gastrointestinal tract, sustained drug delivery, and good patient compliance. The assessment of ex vivo permeation during the pharmaceutical development process helps in understanding the product quality and performance of a transdermal delivery system. Generally, excised human skin relevant to the application site or animal skin is recommended for ex vivo permeation studies. However, the limited availability of the human skin and ethical issues surrounding the use of animal skin rendered these models less attractive in the permeation study. In the last three decades, enormous efforts have been put into developing artificial membranes and 3D cultured human skin models as surrogates to the human skin. This manuscript provides an insight on the European Medicines Agency (EMA) guidelines for permeation studies and the parameters affected when using Franz diffusion cells in the permeation study. The need and possibilities for skin alternatives, such as artificially cultured human skin models, parallel artificial membrane permeability assays (PAMPA), and artificial membranes for penetration and permeation studies, are comprehensively discussed.
Collapse
Affiliation(s)
- Rabin Neupane
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (R.N.); (A.K.T.)
| | - Sai H.S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, UAE;
| | - Jwala Renukuntla
- Department of Pharmaceutical Sciences, School of Pharmacy, High Point University, High Point, NC 27240, USA
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA;
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (R.N.); (A.K.T.)
| |
Collapse
|
35
|
Kováčik A, Kopečná M, Vávrová K. Permeation enhancers in transdermal drug delivery: benefits and limitations. Expert Opin Drug Deliv 2020; 17:145-155. [PMID: 31910342 DOI: 10.1080/17425247.2020.1713087] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction: Transdermal drug delivery has several clinical benefits over conventional routes of drug administration. To open the transdermal route for a wider range of drugs, including macromolecules, numerous physical and chemical techniques to overcome the natural low skin permeability have been developed.Areas covered: This review focuses on permeation enhancers (penetration enhancers, percutaneous absorption promoters or accelerants), which are chemicals that increase drug flux through the skin barrier. First, skin components, drug permeation pathways, and drug properties are introduced. Next, we discuss properties of enhancers, their various classifications, structure-activity relationships, mechanisms of action, reversibility and toxicity, biodegradable enhancers, and synergistic enhancer combinations.Expert opinion: Overcoming the remarkable skin barrier properties in an efficient, temporary and safe manner remains a challenge. High permeation-enhancing potency has long been perceived to be associated with toxicity and irritation potential of such compounds, which has limited their further development. In addition, the complexity of enhancer interactions with skin, formulation and drug, along with their vast chemical diversity hampered understanding of their mechanisms of action. The recent development in the field revealed highly potent yet safe enhancers or enhancer combinations, which suggest that enhancer-aided transdermal drug delivery has yet to reach its full potential.
Collapse
Affiliation(s)
- Andrej Kováčik
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Monika Kopečná
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Kateřina Vávrová
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
36
|
Krishnan V, Mitragotri S. Nanoparticles for topical drug delivery: Potential for skin cancer treatment. Adv Drug Deliv Rev 2020; 153:87-108. [PMID: 32497707 DOI: 10.1016/j.addr.2020.05.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Nanoparticles offer new opportunities for the treatment of skin diseases. The barrier function of the skin poses a significant challenge for nanoparticles to permeate into the tissue, although the barrier is partially compromised in case of injury or inflammation, as in the case of skin cancer. This may facilitate the penetration of nanoparticles. Extensive research has gone into developing nanoparticles for topical delivery; however, relatively little progress has been made in translating them to the clinic for treating skin cancers. We summarize the types of skin cancers and practices in current clinical management. The review provides a comprehensive outlook of the various nanoparticle technologies tested for topical therapy of skin cancers and summarizes the obstacles that impede its progress from the bench-to-bedside. The review also aims to provide an understanding of the pathways that govern nanoparticle penetration into the skin and a critical analysis of the approaches used to study nanoparticle interactions within the tissue.
Collapse
Affiliation(s)
- Vinu Krishnan
- John A. Paulson School of Engineering & Applied Sciences Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, United States of America
| | - Samir Mitragotri
- John A. Paulson School of Engineering & Applied Sciences Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, United States of America.
| |
Collapse
|
37
|
Parsa M, Trybala A, Malik DJ, Starov V. Foam in pharmaceutical and medical applications. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Jiao Z, Han S, Wang W, Song J, Cheng J. Preparation and optimization of Vitamin E acetate liposomes using a modified RESS process combined with response surface methodology. PARTICULATE SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1080/02726351.2019.1636913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Zhen Jiao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
- Centre for Nanobiotechnology, Joint Research Institute of Southeast University and Monash University, Suzhou, China
| | - Sai Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Weifang Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Junying Song
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Jiangrui Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
39
|
Niedorf F, Schmidt E, Kietzmann M. The Automated, Accurate and Reproducible Determination of Steady-state Permeation Parameters from Percutaneous Permeation Data. Altern Lab Anim 2019; 36:201-13. [DOI: 10.1177/026119290803600209] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Frank Niedorf
- Institute for Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Elisabeth Schmidt
- Centre for Alternative Methods to Animal Experiments (ZEBET), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Manfred Kietzmann
- Institute for Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| |
Collapse
|
40
|
Limcharoen B, Toprangkobsin P, Banlunara W, Wanichwecharungruang S, Richter H, Lademann J, Patzelt A. Increasing the percutaneous absorption and follicular penetration of retinal by topical application of proretinal nanoparticles. Eur J Pharm Biopharm 2019; 139:93-100. [PMID: 30878519 DOI: 10.1016/j.ejpb.2019.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022]
Abstract
Topical retinoids are frequently applied for therapeutic and cosmeceutical reasons although their bioavailability is low due to their chemical and photochemical instability. Moreover, skin irritation is a common side effect. Therefore, proretinal nanoparticles (PRN) as a novel formulation of topical retinoids, which are based on chitosan grafted with retinal through reversible linkage, were developed and their skin penetration behavior was studied. As nanoparticles preferably penetrate into the hair follicles, the follicular penetration depths of PRN at different time points were investigated. Moreover, the release capacity of the nanoparticulate system was studied using fluorescein as a model drug. Additionally, the concentration of retinal in the stratum corneum and in the hair follicles was quantified after application in particulate and non-particulate form. The results showed that the nanocarriers reached the infundibular area of the hair follicles, irrespective of the incubation time. The nanoparticles were able to release their model drug within the hair follicle. The retinal concentration delivered to the stratum corneum and the hair follicles was significantly higher when retinal was applied in the particulate form. In conclusion, the presented proretinal nanoparticle system may help to overcome the main problems of topical retinoid therapy, which are skin irritation, chemical and photochemical instability and low bioavailability, thus improving the topical retinoid therapy.
Collapse
Affiliation(s)
- Benchaphorn Limcharoen
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand; Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | | | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Thailand
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Thailand
| | - Heike Richter
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Jürgen Lademann
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Alexa Patzelt
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.
| |
Collapse
|
41
|
Microemulsions and microheterogeneous microemulsion-based polymeric matrices for transdermal delivery of lipophilic drug (Felodipine). Colloid Polym Sci 2019. [DOI: 10.1007/s00396-018-4447-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Wadhwa S, Garg V, Gulati M, Kapoor B, Singh SK, Mittal N. Nanovesicles for Nanomedicine: Theory and Practices. Methods Mol Biol 2019; 2000:1-17. [PMID: 31148004 DOI: 10.1007/978-1-4939-9516-5_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lipid-based nanovesicles such as liposomes, niosomes, and ethosomes are now well recognized as potential candidates for drug delivery and theranostic applications. Some of them have already stepped forward from laboratory to market. The property to entrap lipophilic drugs in their bilayers and hydrophilic drugs in the aqueous milieu makes them a unique carrier for drug delivery. Delivery of drugs/diagnostics to various organs/tissues/cells via nanovesicles is considered to be a topic of long-standing interest with new challenges being posed to formulation scientists with new developments. The key challenge in this context is the physiological and pathological conditions, which make the delivery of drugs extremely difficult at the disease locus and makes their precise delivery ineffective. This chapter gives an insight into the role of novel nanovesicles in the field of drug delivery. We present an overview of the formulation and characterization and role of diverse nanovesicles. A comprehensive update about their application and current as well as potential challenges have also been discussed.
Collapse
Affiliation(s)
- Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Garg
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Neeraj Mittal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
43
|
Uchino T, Kato S, Hatta I, Miyazaki Y, Suzuki T, Sasaki K, Kagawa Y. Study on the drug permeation mechanism from flurbiprofen-loaded glyceryl monooleyl ether-based lyotropic liquid crystalline nanoparticles across the skin: Synchrotron X-ray diffraction and confocal laser scanning microscopy study. Int J Pharm 2019; 555:259-269. [DOI: 10.1016/j.ijpharm.2018.11.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 01/09/2023]
|
44
|
Potential of nanoparticulate carriers for improved drug delivery via skin. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-00418-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Rajab Asadi F, Hamzavi SF, Shahverdizadeh GH, Ilkhchi MG, Hosseinzadeh-Khanmiri R. Dipeptide-functionalized MIL-101(Fe) as efficient material for ibuprofen delivery. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Seyedeh Fazileh Hamzavi
- Department of Marine Biology, Science and Research Branch; Islamic Azad University; Tehran Iran
| | | | | | | |
Collapse
|
46
|
Gomez CCS, Marson FAL, Servidoni MF, Ribeiro AF, Ribeiro MÂGO, Gama VAL, Costa ET, Ribeiro JD, Vieira Junior FU. Evaluation of continuous constant current and continuous pulsed current in sweat induction for cystic fibrosis diagnosis. BMC Pulm Med 2018; 18:153. [PMID: 30217179 PMCID: PMC6137935 DOI: 10.1186/s12890-018-0696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/24/2018] [Indexed: 11/17/2022] Open
Abstract
Background The sweat test (ST) is the gold standard for the diagnosis of cystic fibrosis (CF). However, little is known about sweat induction using different types of currents and waves. In this context, our objective was to develop a device to induce sweat and compare the use of continuous constant current (CCC) and continuous pulsed current (CPC) in individuals with CF and healthy controls. Methods A prospective cross-sectional study with experimental intervention. The variables of gender, ethnicity, age, and body mass index (BMI) were considered. The method of Gibson and Cooke was used, and the following markers were evaluated: sweat weight, electrical impedance, sufficient sweat amount, and CF diagnosis. Triangular (TPC) or sinusoidal (SPC) pulsed current was applied to the right arm, and CCC was applied to the left arm. Results The study analyzed 260 individuals, 141/213 (54.2%) were female participants, 135/260 (51.9%) were Caucasians. The distribution of individuals by concentration of chloride at the ST was: (CF) 26/260 (10%); (borderlines) 109/260 (41.9%); (healthy) 97/260 (37.3%); (insufficient weight in sweat) 28/260 (10.8%). No association was observed between the sufficient sweat amount to perform the ST when we compared the currents. However, the SPC showed a higher amount of sweat weight. Using Bland and Altman plot considering the agreement between the sweat chloride values achieved from CPC [SPC and TPC] and CCC, there was no proportional bias and mean values are unrelated and only explain less than 8% of the variation. Moreover, TPC presented higher electrical impedance when compared with SPC and CCC. SPC presented lower electrical impedance and higher sweat weight than CCC. Male participants presented lower electrical impedance and higher sweat weight with CCC and TPC, and higher sweat weight with SPC. Conclusions The evaluated currents are safe and able to induce and produce sweat in sufficient quantities for the ST. SPC presented lower electrical impedance when compared with other currents. The use of SPC is recommended to induce sweat in patients with sweat problems. Finally, ethnicity, gender, age and BMI did not influence sweat induction at the ST, and no side effect was observed in our study. Electronic supplementary material The online version of this article (10.1186/s12890-018-0696-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carla Cristina Souza Gomez
- Department of Pediatrics, School of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, 13083-887, Brazil. .,Center for Research in Pediatrics, School of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, 13083-887, Brazil.
| | - Fernando Augusto Lima Marson
- Department of Pediatrics, School of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, 13083-887, Brazil. .,Center for Research in Pediatrics, School of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, 13083-887, Brazil. .,Department of Medical Genetics, School of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, 13083-887, Brazil.
| | - Maria Fátima Servidoni
- Department of Pediatrics, School of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, 13083-887, Brazil.,Center for Research in Pediatrics, School of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, 13083-887, Brazil.,Gastrocentro - Endoscopy Unit, University of Campinas, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, 13083-872, Brazil
| | - Antônio Fernando Ribeiro
- Department of Pediatrics, School of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, 13083-887, Brazil.,Center for Research in Pediatrics, School of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, 13083-887, Brazil
| | - Maria Ângela Gonçalves Oliveira Ribeiro
- Department of Pediatrics, School of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, 13083-887, Brazil.,Center for Research in Pediatrics, School of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, 13083-887, Brazil
| | - Veruska Acioli Lopes Gama
- Center for Biomedical Engineering, University of Campinas, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, 13083-970, Brazil.,Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, University of Campinas, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, 13083-881, Brazil.,Federal Institute of Education, Science and Technology of Sao Paulo, Campus Campinas, km 143.5, Campinas, São Paulo, 13069-901, Brazil
| | - Eduardo Tavares Costa
- Center for Biomedical Engineering, University of Campinas, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, 13083-970, Brazil.,Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, University of Campinas, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, 13083-881, Brazil
| | - José Dirceu Ribeiro
- Department of Pediatrics, School of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, 13083-887, Brazil.,Center for Research in Pediatrics, School of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, 13083-887, Brazil
| | - Francisco Ubaldo Vieira Junior
- Center for Biomedical Engineering, University of Campinas, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, 13083-970, Brazil.,Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, University of Campinas, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, 13083-881, Brazil.,Federal Institute of Education, Science and Technology of Sao Paulo, Campus Campinas, km 143.5, Campinas, São Paulo, 13069-901, Brazil
| |
Collapse
|
47
|
Suzuki T, Uchino T, Hatta I, Miyazaki Y, Kato S, Sasaki K, Kagawa Y. Evaluation of the molecular lipid organization in millimeter-sized stratum corneum by synchrotron X-ray diffraction. Skin Res Technol 2018; 24:621-629. [PMID: 29707821 DOI: 10.1111/srt.12474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND The aim of this study was to investigate whether the lamellar and lateral structure of intercellular lipid of stratum corneum (SC) can be evaluated from millimeter-sized SC (MSC) by X-ray diffraction. MATERIALS AND METHODS A 12 mm × 12 mm SC sheet from hairless mouse was divided into 16 pieces measuring 3 mm × 3 mm square. From another sheet, 4 pieces of ultramillimeter-sized SC (USC:1.5 mm × 1.5 mm square) were prepared. Small and wide-angle X-ray diffraction (SAXD and WAXD) measurements were performed on each piece. For MSC and USC, changes in the lamellar and lateral structure after the application of d-limonene were measured. RESULTS The intensity of SAXD peaks due to the lamellar phase of long periodicity phase (LPP) and WAXD peaks due to the lateral hydrocarbon chain-packing structures varied in MSC and USC pieces, although over the 12 mm × 12 mm SC sheet. These results indicated that the intercellular lipid components and their proportion appeared nearly uniform. Application of d-limonene on MSC and USC piece with strong peaks in SAXD and the WAXD resulted in the disappearance of peaks due to the lamellar phase of LPP and decrease in peak intensity for the lateral hydrocarbon chain-packing structures. These changes are consistent with normal-sized sample results. CONCLUSION We found that the selection of a sample piece with strong diffraction peaks due to the lamellar and lateral structure enabled evaluation of the SC structure in small-sized samples by X-ray diffraction.
Collapse
Affiliation(s)
- T Suzuki
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - T Uchino
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - I Hatta
- Department of Research, Nagoya Industrial Science Research Institute, Nagoya, Japan
| | - Y Miyazaki
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - S Kato
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - K Sasaki
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Y Kagawa
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
48
|
Patel V, Sharma OP, Mehta T. Nanocrystal: a novel approach to overcome skin barriers for improved topical drug delivery. Expert Opin Drug Deliv 2018; 15:351-368. [PMID: 29465253 DOI: 10.1080/17425247.2018.1444025] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Skin is an important route of drug delivery for the treatment of various dermatological conditions. The advent of nanotechnology is paving the roadmaps for topical drug delivery by providing sustained release as well as maintaining a localized effect, outweighing the toxicity concern. AREAS COVERED This review highlighted the morphology of skin, its barrier nature as well as drug penetration pathways after topical application of formulations. The existing methods to improve topical drug delivery, by infringing or permeating the skin barriers, are discussed. This context concretes the foundation to accentuate the need for the development of nanocrystal-based topical formulation. The mechanism of drug release, immediate as well as sustained release, after topical administration of drug nanocrystals is also elaborated. The special emphasis is given on the breakthrough achieved, in topical drug delivery using drug nanocrystals, so far in the plethora of literature, patents, and products, under clinical trial as well as in the market. EXPERT OPINION The current research on nanocrystals for topical drug delivery is highlighting the breakthroughs achieved so far. The output of these research envisages that topical nanocrystals based formulations can be a novel strategy for the drugs which are facing solubility, bioavailability and toxicity concerns.
Collapse
Affiliation(s)
- Viral Patel
- a Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy , Nirma University , Ahmedabad , India
| | - Om Prakash Sharma
- b Pharmaceutical Technology Centre , Cadila Healthcare Limited , Ahmedabad , India
| | - Tejal Mehta
- a Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy , Nirma University , Ahmedabad , India
| |
Collapse
|
49
|
Uchino T, Hatta I, Miyazaki Y, Onai T, Yamazaki T, Sugiura F, Kagawa Y. Modulation mechanism of the stratum corneum structure during permeation of surfactant-based rigid and elastic vesicles. Int J Pharm 2017; 521:222-231. [DOI: 10.1016/j.ijpharm.2017.02.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/07/2017] [Accepted: 02/19/2017] [Indexed: 12/30/2022]
|
50
|
|