1
|
Migliorini F, Pilone M, Ascani J, Schäfer L, Jeyaraman M, Maffulli N. Management of knee osteoarthritis using bone marrow aspirate concentrate: a systematic review. Br Med Bull 2024:ldae016. [PMID: 39506910 DOI: 10.1093/bmb/ldae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/20/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024]
Abstract
INTRODUCTION Knee osteoarthritis (OA) is a common degenerative joint condition and a major cause of disability in the general population. SOURCE OF DATA Recent published literature identified from PubMed, EMBASE, Google Scholar, and Scopus. AREAS OF AGREEMENT Orthobiological therapies try to regenerate articular cartilage and stop the progression of the degenerative lesion. Intra-articular injections of biological derivates have been increasingly used in the last decade. AREAS OF CONTROVERSY The indications for the use of bone marrow aspirate concentrate (BMAC) are still unclear. GROWING POINTS We systematically reviewed the current literature on BMAC in the management of knee OA, giving an update on the current indications for the selection of the ideal patient and the preparations and efficacy of BMAC compared to other biological alternatives. AREAS TIMELY FOR DEVELOPING RESEARCH BMAC is a valuable source of mesenchymal stem cells, offering potential benefits in attenuating the inflammatory pathway associated with knee OA. Intra-articular injection of BMAC has shown effectiveness in clinical trials improving functional outcomes of knee OA patients. The superiority of BMAC over other orthobiological treatments cannot be assessed because of conflicting results.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Via Lorenz Böhler 5, 39100, Bolzano, Italy
- Department of Life Sciences, Health, and Health Professions, Link Campus University, Via del Casale di San Pio V, 00165 Rome, Italy
| | - Marco Pilone
- Residency Program in Orthopedics and Traumatology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Jacopo Ascani
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University "La Sapienza" of Rome, Via di Grottarossa 1035, 00189 Roma, Italy
| | - Luise Schäfer
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Via Lorenz Böhler 5, 39100, Bolzano, Italy
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Poonamallee High Rd, Velappanchavadi, Chennai 600077, Tamil Nadu, India
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University "La Sapienza" of Rome, Via di Grottarossa 1035, 00189 Roma, Italy
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Stoke on Trent ST4 7QB, United Kingdom
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, E1 4DG London, UK
| |
Collapse
|
2
|
Algorta A, Artigas R, Rial A, Benavides U, Maisonnave J, Yaneselli K. Morphologic, Proliferative, and Cytogenetic Changes during In Vitro Propagation of Cat Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells. Animals (Basel) 2024; 14:2408. [PMID: 39199942 PMCID: PMC11350862 DOI: 10.3390/ani14162408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Stem cell therapy in cat patients needs a high quantity of mesenchymal stromal/stem cells (MSCs) requiring in vitro propagation under culture conditions which may potentially impact cellular characteristics and genetic stability. This study aimed to assess the in vitro characteristics and cytogenetic stability of cat adipose tissue-derived MSCs (cAT-MSCs). For this purpose, morphological features, clonogenic potential, and proliferative capacity of cAT-MSCs were assessed at passages 2 (P2), P4, and P6. Multipotency and immunophenotype were evaluated. Cytogenetic analyses were conducted up to P6. The cAT-MSCs exhibited a spindle-shaped morphology in early passages. The doubling time increased from 2.5 days at P2 to 9.4 at P4 and 10.5 at P6, accompanied by the observation of nuclear abnormalities such as cluster formation, karyorrhexis, karyolysis, and a decline in the mitotic index at P4. Cells demonstrated multipotency capacity and were CD45-, CD90+, and CD44+. Metaphase analysis at P2 and P4 revealed some indications of structural instability such as gaps, breaks, deletions, duplications, and early chromatid segregation, but these alterations did not show an increase across passages. In conclusion, cAT-MSCs decreased their proliferative capacity after P4, accompanied by morphological alterations and signs of structural instability.
Collapse
Affiliation(s)
- Agustina Algorta
- Unidad de Inmunología e Inmunoterapia, Departamento de Patobiología, Facultad de Veterinaria, Universidad de la República (UdelaR), Montevideo 13000, Uruguay; (U.B.); (J.M.)
| | - Rody Artigas
- Unidad de Genética y Mejoramiento Animal, Departamento de Producción Animal y Salud de los Sistemas Productivos, Facultad de Veterinaria, Universidad de la República (UdelaR), Montevideo 13000, Uruguay;
| | - Analía Rial
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo 11600, Uruguay;
| | - Uruguaysito Benavides
- Unidad de Inmunología e Inmunoterapia, Departamento de Patobiología, Facultad de Veterinaria, Universidad de la República (UdelaR), Montevideo 13000, Uruguay; (U.B.); (J.M.)
| | - Jacqueline Maisonnave
- Unidad de Inmunología e Inmunoterapia, Departamento de Patobiología, Facultad de Veterinaria, Universidad de la República (UdelaR), Montevideo 13000, Uruguay; (U.B.); (J.M.)
| | - Kevin Yaneselli
- Unidad de Inmunología e Inmunoterapia, Departamento de Patobiología, Facultad de Veterinaria, Universidad de la República (UdelaR), Montevideo 13000, Uruguay; (U.B.); (J.M.)
| |
Collapse
|
3
|
Alvero AB, Wright-Chisem J, Vogel MJ, Wright-Chisem A, Mather RC, Nho SJ. Treatment of Hip Cartilage Defects in Athletes. Sports Med Arthrosc Rev 2024; 32:95-103. [PMID: 38978203 DOI: 10.1097/jsa.0000000000000378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Chondral defects in the athlete's hip are a relatively common occurrence, often presenting with debilitating pain and activity limitation. Preoperative identification of cartilage defects is challenging and there are many different modalities for treatment. Nonsurgical interventions, including activity modification, physical therapy, and injections, play a vital role, especially in less severe cases and as adjuncts to surgical intervention. Treating surgeons must be familiar with the cartilage restoration procedures available, including debridement, microfracture, and various implantation and transplantation options. Safe and effective management of cartilage defects is imperative to an athlete's return to sport. It is also imperative that surgeons are aware of all these various treatment options to determine what modality is best for their patients. This review serves to outline these options, cover the published literature, and provide general guidelines for surgeons when they encounter chondral defects in the office and the operating room.
Collapse
Affiliation(s)
- Alexander B Alvero
- Section of Young Adult Hip Surgery, Division of Sports Medicine, Department of Orthopedic Surgery, Rush Medical College of Rush University, Rush University Medical Center; Chicago, IL
| | - Joshua Wright-Chisem
- Section of Young Adult Hip Surgery, Division of Sports Medicine, Department of Orthopedic Surgery, Rush Medical College of Rush University, Rush University Medical Center; Chicago, IL
| | - Michael J Vogel
- Section of Young Adult Hip Surgery, Division of Sports Medicine, Department of Orthopedic Surgery, Rush Medical College of Rush University, Rush University Medical Center; Chicago, IL
| | - Adam Wright-Chisem
- Department of Orthopedic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Richard C Mather
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC
| | - Shane J Nho
- Section of Young Adult Hip Surgery, Division of Sports Medicine, Department of Orthopedic Surgery, Rush Medical College of Rush University, Rush University Medical Center; Chicago, IL
| |
Collapse
|
4
|
Park MK, Song KH. Isolation and characterization of feline endometrial mesenchymal stem cells. J Vet Sci 2024; 25:e31. [PMID: 38568832 PMCID: PMC10990916 DOI: 10.4142/jvs.23267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Recently, there has been a growing interest in stem cells for human medicine. Limited feline endometrial mesenchymal stem cell (fEM-MSC) research in veterinary medicine necessitates reporting for future feline disease research and therapy. OBJECTIVES This study aimed to isolate fEM-MSCs from feline endometrial tissues and evaluate their morphology, proliferative ability, differentiation ability, and immunophenotype. METHODS Feline endometrial tissues were obtained from the ovariohysterectomies of healthy cats and isolated using an enzymatic method. The morphology and proliferative ability of the isolated cells were assessed using a doubling time (DT) assay from passages 3 to 6 (P3 - P6). We measured pluripotency gene expressions of cells in P2 using quantitative real-time polymerase chain reaction (qRT-PCR). To investigate MSC characteristics, a trilineage differentiation assay was conducted in P4, and cells in P4 were immunophenotyped using flow cytometry. RESULTS fEM-MSCs showed a typical spindle-shaped morphology under a microscope, and the DT was maintained from P3 to P6. fEM-MSCs could differentiate into adipocytes, osteoblasts, and chondrocytes, and expressed three pluripotency markers (OCT4, SOX2, and NANOG) by qRT-PCR. Immunophenotypic analysis showed that the fEM-MSCs were CD14 -, CD34 -, CD45 -, CD9+, and CD44+. CONCLUSIONS In this study, the feline endometrium was a novel source of MSCs, and to the best of our knowledge, this is the first report on the isolation method and characteristics of fEM-MSCs.
Collapse
Affiliation(s)
- Mi-Kyung Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- CM Animal Hospital, Jincheon 27802, Korea
| | - Kun-Ho Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
5
|
Purbantoro SD, Taephatthanasagon T, Purwaningrum M, Hirankanokchot T, Peralta S, Fiani N, Sawangmake C, Rattanapuchpong S. Trends of regenerative tissue engineering for oral and maxillofacial reconstruction in veterinary medicine. Front Vet Sci 2024; 11:1325559. [PMID: 38450027 PMCID: PMC10915013 DOI: 10.3389/fvets.2024.1325559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Oral and maxillofacial (OMF) defects are not limited to humans and are often encountered in other species. Reconstructing significant tissue defects requires an excellent strategy for efficient and cost-effective treatment. In this regard, tissue engineering comprising stem cells, scaffolds, and signaling molecules is emerging as an innovative approach to treating OMF defects in veterinary patients. This review presents a comprehensive overview of OMF defects and tissue engineering principles to establish proper treatment and achieve both hard and soft tissue regeneration in veterinary practice. Moreover, bench-to-bedside future opportunities and challenges of tissue engineering usage are also addressed in this literature review.
Collapse
Affiliation(s)
- Steven Dwi Purbantoro
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Teeanutree Taephatthanasagon
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Medania Purwaningrum
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Thanyathorn Hirankanokchot
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Santiago Peralta
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Nadine Fiani
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sirirat Rattanapuchpong
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Academic Affairs, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Danev N, Li G, Duan J(E, Van de Walle GR. Comparative transcriptomic analysis of bovine mesenchymal stromal cells reveals tissue-source and species-specific differences. iScience 2024; 27:108886. [PMID: 38318381 PMCID: PMC10838956 DOI: 10.1016/j.isci.2024.108886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) have the potential to be used as therapeutics, but their efficacy varies due to cellular heterogeneity, which is not fully understood. After characterizing donor-matched bovine MSC from adipose tissue (AT), bone marrow (BM), and peripheral blood (PB), we performed single-cell RNA sequencing (scRNA-seq) to evaluate overarching similarities and differences across these three tissue-derived MSCs. Next, the transcriptomic profiles of the bovine MSCs were compared to those of equine MSCs, derived from the same tissue sources and previously published by our group, and revealed species-specific differences. Finally, the transcriptomic profile from bovine BM-MSCs was compared to mouse and human BM-MSCs and demonstrated that bovine BM-MSCs share more common functionally relevant gene expression profiles with human BM-MSCs than compared to murine BM-MSCs. Collectively, this study presents the cow as a potential non-traditional animal model for translational MSC studies based on transcriptomic profiles similar to human MSCs.
Collapse
Affiliation(s)
- Nikola Danev
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Guangsheng Li
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jingyue (Ellie) Duan
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Wang X, Hu L, Wei B, Wang J, Hou D, Deng X. Regenerative therapies for femoral head necrosis in the past two decades: a systematic review and network meta-analysis. Stem Cell Res Ther 2024; 15:21. [PMID: 38273397 PMCID: PMC10809486 DOI: 10.1186/s13287-024-03635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Regenerative techniques combined with core decompression (CD) are commonly used to treat osteonecrosis of the femoral head (ONFH). However, no consensus exists on regeneration therapy combined with CD that performs optimally. Therefore, we evaluated six regenerative therapies combined with CD treatment using a Bayesian network meta-analysis (NMA). METHODS We searched PubMed, Embase, Cochrane Library, and Web of Science databases. Six common regeneration techniques were categorized into the following groups with CD as the control group: (1) autologous bone graft (ABG), (2) autologous bone graft combined with bone marrow aspirate concentrate (ABG + BMAC), (3) bone marrow aspirate concentrate (BMAC), (4) free vascular autologous bone graft (FVBG), (5) expanded mesenchymal stem cells (MSCs), and (6) platelet-rich plasma (PRP). The conversion rate to total hip arthroplasty (THA) and progression rate to femoral head necrosis were compared among the six treatments. RESULT A total of 17 literature were included in this study. In the NMA, two of the six treatment strategies demonstrated higher response in preventing the progression of ONFH than CD: MSCs (odds ratio [OR]: 0.098, 95% confidence interval [CI]: 0.0087-0.87) and BMAC (OR: 0.27, 95% CI: 0.073-0.73). Additionally, two of the six treatment strategies were effective techniques in preventing the conversion of ONFH to THA: MSCs (OR: 0.062, 95% CI: 0.0038-0.40) and BMAC (OR: 0.32, 95% CI: 0.1-0.074). No significant difference was found among FVBG, PRP, ABG + BMAC, ABG, and CD in preventing ONFH progression and conversion to THA (P > 0.05). CONCLUSIONS Our NMA found that MSCs and BMAC were effective in preventing ONFH progression and conversion to THA among the six regenerative therapies. According to the surface under the cumulative ranking value, MSCs ranked first, followed by BMAC. Additionally, based on our NMA results, MSCs and BMAC following CD may be necessary to prevent ONFH progression and conversion to THA. Therefore, these findings provide evidence for the use of regenerative therapy for ONFH.
Collapse
Affiliation(s)
- Xiaole Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Road 16369, Jinan, 250014, China
| | - Liyou Hu
- Liaoning University of Traditional Chinese Medicine, Chongshan Road 79, Shenyang, 110032, China
| | - Bo Wei
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Beiling Street 33, Shenyang, 110032, China
| | - Jian Wang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Beiling Street 33, Shenyang, 110032, China
| | - Decai Hou
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Beiling Street 33, Shenyang, 110032, China
| | - Xiaolei Deng
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Beiling Street 33, Shenyang, 110032, China.
| |
Collapse
|
8
|
Itha R, Vaishya R, Vaish A, Migliorini F. Management of chondral and osteochondral lesions of the hip : A comprehensive review. ORTHOPADIE (HEIDELBERG, GERMANY) 2024; 53:23-38. [PMID: 37815635 PMCID: PMC10781822 DOI: 10.1007/s00132-023-04444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 10/11/2023]
Abstract
Chondral and osteochondral lesions encompass several acute or chronic defects of the articular cartilage and/or subchondral bone. These lesions can result from several different diseases and injuries, including osteochondritis dissecans, osteochondral defects, osteochondral fractures, subchondral bone osteonecrosis, and insufficiency fractures. As the cartilage has a low capacity for regeneration and self-repair, these lesions can progress to osteoarthritis. This study provides a comprehensive overview of the subject matter that it covers. PubMed, Scopus and Google Scholar were accessed using the following keywords: "chondral lesions/defects of the femoral head", "chondral/cartilage lesions/defects of the acetabulum", "chondral/cartilage lesions/defects of the hip", "osteochondral lesions of the femoral head", "osteochondral lesions of the acetabulum", "osteochondral lesions of the hip", "osteochondritis dissecans," "early osteoarthritis of the hip," and "early stage avascular necrosis". Hip osteochondral injuries can cause significant damage to the articular surface and diminish the quality of life. It can be difficult to treat such injuries, especially in patients who are young and active. Several methods are used to treat chondral and osteochondral injuries of the hip, such as mesenchymal stem cells and cell-based treatment, surgical repair, and microfractures. Realignment of bony anatomy may also be necessary for optimal outcomes. Despite several treatments being successful, there is a lack of head-to-head comparisons and large sample size studies in the current literature. Additional research will be required to provide appropriate clinical recommendations for treating chondral/osteochondral injuries of the hip joint.
Collapse
Affiliation(s)
- Rajesh Itha
- Department of Orthopaedics, ESIC Model Hospital, 201307, Noida, Uttar Pradesh, India
| | - Raju Vaishya
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospital, Sarita Vihar, 110076, New Delhi, India
| | - Abhishek Vaish
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospital, Sarita Vihar, 110076, New Delhi, India
| | - Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Medical Center of Aachen, 52064, Aachen, Germany.
- Department of Orthopedics and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100, Bolzano, Italy.
| |
Collapse
|
9
|
Klein C, Dahmen J, Emanuel KS, Stufkens S, Kerkhoffs GMMJ. Limited evidence in support of bone marrow aspirate concentrate as an additive to the bone marrow stimulation for osteochondral lesions of the talus: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 2023; 31:6088-6103. [PMID: 37962614 DOI: 10.1007/s00167-023-07651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE Bone marrow aspirate concentrate can be used as an additive to surgical treatment of osteochondral lesions of the talus. This systematic literature review aims to study the effect of the additional use of bone marrow aspirate concentrate on top of a surgical treatment for osteochondral lesions of the talus on clinical outcomes compared to surgical treatment alone. METHODS An online literature search was conducted using PubMed (Medline), Embase (Ovid), and the Cochrane library for all studies comparing a surgical intervention with bone marrow aspirate concentrate, with a surgical intervention without bone marrow aspirate concentrate. The methodological quality was rated according to the methodological index for non-randomised studies checklist. The primary outcome measure were clinical outcomes. Secondary outcome measures consisted of revision rate, complication rate, radiographic outcome measures and histological analyses. Subgroups were created based on type of surgical intervention used in the studies. If multiple articles were included in a subgroup, a linear random-effects model was used to compare the bone marrow aspirate concentrate-augmented group with the control group. RESULTS Out of 1006 studies found, eight studies with a total of 718 patients were included. The methodological quality, assessed according to the methodological index for non-randomised studies checklist, was weak. A significantly better functional outcome measures (p < 0.05) was found in the subgroup treated with bone marrow stimulation + bone marrow aspirate concentrate compared to the group treated with bone marrow stimulation alone, based on three non-blinded studies. No significant differences regarding clinical outcomes were found in the subgroups comparing matrix-induced autologous chondrocyte implantation with matrix-induced bone marrow aspirate concentrate, osteochondral autologous transplantation alone with osteochondral autologous transplantation + bone marrow aspirate concentrate and autologous matrix-induced chondrogenesis plus peripheral blood concentrate vs. matrix-associated stem cell transplantation bone marrow aspirate concentrate. CONCLUSION There is insufficient evidence to support a positive effect on clinical outcomes of bone marrow aspirate concentrate as an additive to surgical treatment of osteochondral lesions of the talus. However, based on the safety reports and initial results, sufficiently powered, patient- and researcher-blinded, prospective randomised controlled trials are justified and recommended. Until then, we advise not to implement a therapy (addition of bone marrow aspirate concentrate) without clinical evidence that justifies the additional costs involved. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Chiel Klein
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Academic Center for Evidence Based Sports Medicine (ACES), Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), International Olympic Committee (IOC) Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jari Dahmen
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Academic Center for Evidence Based Sports Medicine (ACES), Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), International Olympic Committee (IOC) Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Kaj S Emanuel
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Academic Center for Evidence Based Sports Medicine (ACES), Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), International Olympic Committee (IOC) Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sjoerd Stufkens
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Academic Center for Evidence Based Sports Medicine (ACES), Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), International Olympic Committee (IOC) Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gino M M J Kerkhoffs
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Academic Center for Evidence Based Sports Medicine (ACES), Amsterdam UMC, Amsterdam, The Netherlands.
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), International Olympic Committee (IOC) Research Center, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Ferreira-Baptista C, Ferreira R, Fernandes MH, Gomes PS, Colaço B. Influence of the Anatomical Site on Adipose Tissue-Derived Stromal Cells' Biological Profile and Osteogenic Potential in Companion Animals. Vet Sci 2023; 10:673. [PMID: 38133224 PMCID: PMC10747344 DOI: 10.3390/vetsci10120673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Adipose tissue-derived stromal cells (ADSCs) have generated considerable interest in the field of veterinary medicine, particularly for their potential in therapeutic strategies focused on bone regeneration. These cells possess unique biological characteristics, including their regenerative capacity and their ability to produce bioactive molecules. However, it is crucial to recognize that the characteristics of ADSCs can vary depending on the animal species and the site from which they are derived, such as the subcutaneous and visceral regions (SCAT and VAT, respectively). Thus, the present work aimed to comprehensively review the different traits of ADSCs isolated from diverse anatomical sites in companion animals, i.e., dogs, cats, and horses, in terms of immunophenotype, morphology, proliferation, and osteogenic differentiation potential. The findings indicate that the immunophenotype, proliferation, and osteogenic potential of ADSCs differ according to tissue origin and species. Generally, the proliferation rate is higher in VAT-derived ADSCs in dogs and horses, whereas in cats, the proliferation rate appears to be similar in both cells isolated from SCAT and VAT regions. In terms of osteogenic differentiation potential, VAT-derived ADSCs demonstrate the highest capability in cats, whereas SCAT-derived ADSCs exhibit superior potential in horses. Interestingly, in dogs, VAT-derived cells appear to have greater potential than those isolated from SCAT. Within the VAT, ADSCs derived from the falciform ligament and omentum show increased osteogenic potential, compared to cells isolated from other anatomical locations. Consequently, considering these disparities, optimizing isolation protocols becomes pivotal, tailoring them to the specific target species and therapeutic aims, and judiciously selecting the anatomical site for ADSC isolation. This approach holds promise to enhance the efficacy of ADSCs-based bone regenerative therapies.
Collapse
Affiliation(s)
- Carla Ferreira-Baptista
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
- REQUIMTE/LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Rita Ferreira
- REQUIMTE/LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Maria Helena Fernandes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
| | - Pedro Sousa Gomes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
| | - Bruno Colaço
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
- CECAV—Animal and Veterinary Research Centre UTAD, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
11
|
Rivas IL, Soltero-Rivera M, Vapniarsky N, Arzi B. Stromal cell therapy in cats with feline chronic gingivostomatitis: current perspectives and future direction. J Feline Med Surg 2023; 25:1098612X231185395. [PMID: 37548494 PMCID: PMC10811994 DOI: 10.1177/1098612x231185395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Feline chronic gingivostomatitis (FCGS) is a painful, immune-mediated, oral mucosal inflammatory disease in cats. The etiology of FCGS remains unclear, with evidence pointing potentially toward a viral cause. Full-mouth tooth extraction is the current standard of care, and cats that are non-responsive to extraction therapy may need lifelong medical management and, in some cases, euthanasia. Adipose-derived mesenchymal stromal cells (adMSCs) have been demonstrated to have advantages in the treatment and potentially the cure of non-responsive FCGS in cats. Therefore, adMSCs have attracted a series of ongoing clinical trials in the past decade. AdMSC therapy immediately after full-mouth tooth extraction was not explored, and we postulate that it may benefit the overall success rate of FCGS therapy. Here, we aim to summarize the current knowledge and impact of adMSCs for the therapeutic management of FCGS and to suggest a novel modified approach to further increase the efficacy of FCGS treatment in cats.
Collapse
Affiliation(s)
- Iris L Rivas
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Maria Soltero-Rivera
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Natalia Vapniarsky
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
- Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
- Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
12
|
Baouche M, Ochota M, Locatelli Y, Mermillod P, Niżański W. Mesenchymal Stem Cells: Generalities and Clinical Significance in Feline and Canine Medicine. Animals (Basel) 2023; 13:1903. [PMID: 37370414 DOI: 10.3390/ani13121903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells: they can proliferate like undifferentiated cells and have the ability to differentiate into different types of cells. A considerable amount of research focuses on the potential therapeutic benefits of MSCs, such as cell therapy or tissue regeneration, and MSCs are considered powerful tools in veterinary regenerative medicine. They are the leading type of adult stem cells in clinical trials owing to their immunosuppressive, immunomodulatory, and anti-inflammatory properties, as well as their low teratogenic risk compared with pluripotent stem cells. The present review details the current understanding of the fundamental biology of MSCs. We focus on MSCs' properties and their characteristics with the goal of providing an overview of therapeutic innovations based on MSCs in canines and felines.
Collapse
Affiliation(s)
- Meriem Baouche
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland
| | - Małgorzata Ochota
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland
| | - Yann Locatelli
- Physiology of Reproduction and Behaviors (PRC), UMR085, INRAE, CNRS, University of Tours, 37380 Nouzilly, France
- Museum National d'Histoire Naturelle, Réserve Zoologique de la Haute Touche, 36290 Obterre, France
| | - Pascal Mermillod
- Physiology of Reproduction and Behaviors (PRC), UMR085, INRAE, CNRS, University of Tours, 37380 Nouzilly, France
| | - Wojciech Niżański
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland
| |
Collapse
|
13
|
Ferreira‐Baptista C, Queirós A, Ferreira R, Fernandes MH, Gomes PS, Colaço B. Retinoic acid induces the osteogenic differentiation of cat adipose tissue-derived stromal cells from distinct anatomical sites. J Anat 2023; 242:277-288. [PMID: 36056547 PMCID: PMC9877480 DOI: 10.1111/joa.13758] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/07/2022] [Accepted: 08/16/2022] [Indexed: 02/01/2023] Open
Abstract
Mesenchymal stromal cells-based regenerative orthopedic therapies have been used in cats as a promising and innovative therapeutic approach to enhance the repair of bone defects. Adipose tissue-derived stromal cells (ADSCs) can be obtained from two main sites-subcutaneous and visceral-with established differences regarding structure, composition, cell content, and functionality. However, in cats, to the best of the authors' knowledge, no studies have been conducted to compare the functional activity of the ADSCs isolated from the two sites, and the impact of these differences on the induced osteogenic potential. Additionally, retinoic acid has been recently regarded as a new osteogenic inducer within cells of distinct species, with undisclosed functionality on cat-derived cell populations. Thus, the present study aimed to evaluate the functional activity of ADSCs isolated from the subcutaneous and visceral adipose sites (SCAT and VAT, respectively) of the cat, as well as the effects of two osteogenic-inducing conditions-the classic dexamethasone, β-glycerophosphate and ascorbic acid-supplemented media (Dex + β + AAM), and Retinoic Acid-supplemented media (RAM). The adipose tissue of subcutaneous and visceral origin was isolated, characterized, and ADSCs were isolated and grown in the presence of the two osteogenic-inducing conditions, and characterized in terms of proliferation, metabolic activity, morphology, and osteogenic activity. Our results demonstrated a distinct biological profile of the two adipose tissue sites regarding cell size, vascularization, and morphology. Further, osteogenic-induced ADSCs from both sites presented an increased expression of alkaline phosphatase activity (ALP) and cytochemical staining, as compared with control. Overall, RAM induced higher levels of ALP activity than Dex + β + AAM, supporting an increased osteogenic activation. Additionally, VAT was the tissue with the best osteogenic potential, showing higher levels of ALP expression, particularly with RAM. In conclusion, different characteristics were found between the two adipose tissue sites-SCAT and VAT, which probably reflect the differences found in the functionality of isolated ADSCs from both tissues. Furthermore, for cat, VAT shows a greater osteogenic-inductive capacity than SCAT, particularly with RAM, which can be of therapeutic relevance for regenerative medicine applications.
Collapse
Affiliation(s)
- Carla Ferreira‐Baptista
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB)University of Trás‐os‐Montes e Alto Douro (UTAD)Vila RealPortugal
- BoneLab ‐ Laboratory for Bone Metabolism and Regeneration, Faculty of Dental MedicineUniversity of PortoPortoPortugal
- REQUIMTE/LAQVUniversity of PortoPortoPortugal
- REQUIMTE/LAQVDepartment of Chemistry University of AveiroAveiroPortugal
| | | | - Rita Ferreira
- REQUIMTE/LAQVDepartment of Chemistry University of AveiroAveiroPortugal
| | - Maria Helena Fernandes
- BoneLab ‐ Laboratory for Bone Metabolism and Regeneration, Faculty of Dental MedicineUniversity of PortoPortoPortugal
- REQUIMTE/LAQVUniversity of PortoPortoPortugal
| | - Pedro Sousa Gomes
- BoneLab ‐ Laboratory for Bone Metabolism and Regeneration, Faculty of Dental MedicineUniversity of PortoPortoPortugal
- REQUIMTE/LAQVUniversity of PortoPortoPortugal
| | - Bruno Colaço
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB)University of Trás‐os‐Montes e Alto Douro (UTAD)Vila RealPortugal
- REQUIMTE/LAQVUniversity of PortoPortoPortugal
- CECAV—Animal and Veterinary Research Centre UTADUniversity of Trás‐os‐Montes and Alto DouroVila RealPortugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS)Vila RealPortugal
| |
Collapse
|
14
|
Algorta A, Artigas R, Rial A, Brandl S, Rodellar C, Benavides U, Maisonnave J, Yaneselli K. Isolation and characterization of feline dental pulp stem cells. J Feline Med Surg 2023; 25:1098612X221150625. [PMID: 36745130 PMCID: PMC10812064 DOI: 10.1177/1098612x221150625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of this study was to isolate feline dental pulp stem cells (fDPSCs) and characterize their clonogenic and proliferative abilities, as well as their multipotency, immunophenotype and cytogenetic stability. METHODS Dental pulp was isolated by explant culture from two cats <1 year old at post mortem. Their clonogenicity was characterized using a colony-forming unit fibroblast assay, and their proliferative ability was quantified with a doubling time assay in passages 2, 4 and 6 (P2, P4 and P6, respectively). Multipotency was characterized with an in vitro trilineage differentiation assay in P2, and cells were immunophenotyped in P4 by flow cytometry. Chromosomic stability was evaluated by cytogenetic analysis in P2, P4 and P6. RESULTS The fDPSCs displayed spindle and epithelial-like morphologies. Isolated cells showed a marked clonogenic capacity and doubling time was maintained from P2 to P6. Trilineage differentiation was obtained in one sample, while the other showed osteogenic and chondrogenic differentiation. Immunophenotypic analysis showed fDPSCs were CD45-, CD90+ and CD44+. Structural and numerical cytogenetic aberrations were observed in P2-P4. CONCLUSIONS AND RELEVANCE In this study, fDPSCs from two cats were isolated by explant culture and immunophenotyped. Cells displayed clonogenic and proliferative ability, and multipotency in vitro, and signs of chromosomic instability were observed. Although a larger study is needed to confirm these results, this is the first report of fDPSC isolation and in vitro characterization.
Collapse
Affiliation(s)
- Agustina Algorta
- Immunology and Immunotherapy Unit, Department of Patobiology, Veterinary Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
- Odontostomatology Service, Veterinary Hospital Clinical Department, Veterinary Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Rody Artigas
- Animal Genetics and Improvement Unit, Department of Animal Production and Health Production Systems, Veterinary Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Analía Rial
- Department of Biotechnology Development, Hygiene Institute, Medical Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Scott Brandl
- Microbiology Unit, Department of Pathobiology, Veterinary Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Clementina Rodellar
- LAGENBIO, Veterinary Faculty, Food and Agriculture Institute of Aragón-IA2, University of Zaragoza-CITA, Zaragoza, Spain
| | - Uruguaysito Benavides
- Immunology and Immunotherapy Unit, Department of Patobiology, Veterinary Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Jacqueline Maisonnave
- Immunology and Immunotherapy Unit, Department of Patobiology, Veterinary Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Kevin Yaneselli
- Immunology and Immunotherapy Unit, Department of Patobiology, Veterinary Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
| |
Collapse
|
15
|
Orthobiologics for the Management of Early Arthritis in the Middle-Aged Athlete. Sports Med Arthrosc Rev 2022; 30:e9-e16. [PMID: 35533063 DOI: 10.1097/jsa.0000000000000337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This article is dedicated to the use of orthobiologic therapies in the management of early osteoarthritis in middle-aged athletes. Understanding a patient's presenting symptoms, physical examination, imaging results, and goals is of critical importance in applying orthobiologic therapies. The field of orthobiologics is expanding at a rapid pace, and the clinical studies examining the utility of each treatment lag behind the direct-to-consumer marketing that leads to these products being used. Here we provide a review of the available treatments, emerging treatments, and the current literature supporting or refuting their use. Currently studied orthobiologics include autologous and allogenic cell therapies, autologous blood products, hyaluronic acid, gene therapies, Wnt inhibitors, and a variety of systemic treatments.
Collapse
|
16
|
Isolation and Characterization of Cat Olfactory Ecto-Mesenchymal Stem Cells. Animals (Basel) 2022; 12:ani12101284. [PMID: 35625130 PMCID: PMC9137790 DOI: 10.3390/ani12101284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Cat’s health is impacted by several diseases and lesions for which cell therapy could be an interesting treatment. Mesenchymal stem cells or adult stem cells are found in developed tissue. Olfactory mucosa contains stem cells called olfactory ecto-mesenchymal stem cells which have already been isolated from various animals as dogs and horses. The aim of this study was to evaluate the feasibility of collecting olfactory ecto-mesenchymal stem cells in cats. For that purpose, four cats were biopsied; the cells were collected and characterized. They show stemness features and differentiation capabilities as all the other mammals previously studied. Therefore, olfactory ecto-mesenchymal stem cells could be a promising tool for feline regenerative medicine. Abstract The olfactory mucosa contains olfactory ecto-mesenchymal stem cells (OE-MSCs) which show stemness features, multipotency capabilities, and have a therapeutic potential. The OE-MSCs have already been collected and isolated from various mammals. The aim of this study was to evaluate the feasibility of collecting, purifying and amplifying OE-MSCs from the cat nasal cavity. Four cats were included in the study. Biopsies of olfactory mucosa were performed on anesthetized animals. Then, the olfactory OE-MSCs were isolated, and their stemness features as well as their mesodermal differentiation capabilities were characterized. Olfactory mucosa biopsies were successfully performed in all subjects. From these biopsies, cellular populations were rapidly generated, presenting various stemness features, such as a fibroblast-like morphology, nestin and MAP2 expression, and sphere and colony formation. These cells could differentiate into neural and mesodermal lineages. This report shows for the first time that the isolation of OE-MSCs from cat olfactory mucosa is possible. These cells showed stemness features and multilineage differentiation capabilities, indicating they may be a promising tool for autologous grafts and feline regenerative medicine.
Collapse
|
17
|
Rinkevich B, Ballarin L, Martinez P, Somorjai I, Ben‐Hamo O, Borisenko I, Berezikov E, Ereskovsky A, Gazave E, Khnykin D, Manni L, Petukhova O, Rosner A, Röttinger E, Spagnuolo A, Sugni M, Tiozzo S, Hobmayer B. A pan-metazoan concept for adult stem cells: the wobbling Penrose landscape. Biol Rev Camb Philos Soc 2022; 97:299-325. [PMID: 34617397 PMCID: PMC9292022 DOI: 10.1111/brv.12801] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities. Such ASCs are mostly rare, morphologically undifferentiated, and undergo asymmetric cell division. Characterized by 'stemness' gene expression, they can regulate tissue/organ homeostasis, repair and regeneration. By contrast, analysis of other animal phyla shows that ASCs emerge at different life stages, present both differentiated and undifferentiated phenotypes, and may possess amoeboid movement. Usually pluri/totipotent, they may express germ-cell markers, but often lack germ-line sequestering, and typically do not reside in discrete niches. ASCs may constitute up to 40% of animal cells, and participate in a range of biological phenomena, from whole-body regeneration, dormancy, and agametic asexual reproduction, to indeterminate growth. They are considered legitimate units of selection. Conceptualizing this divergence, we present an alternative stemness metaphor to the Waddington landscape: the 'wobbling Penrose' landscape. Here, totipotent ASCs adopt ascending/descending courses of an 'Escherian stairwell', in a lifelong totipotency pathway. ASCs may also travel along lower stemness echelons to reach fully differentiated states. However, from any starting state, cells can change their stemness status, underscoring their dynamic cellular potencies. Thus, vertebrate ASCs may reflect just one metazoan ASC archetype.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Loriano Ballarin
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Pedro Martinez
- Departament de Genètica, Microbiologia i EstadísticaUniversitat de BarcelonaAv. Diagonal 643Barcelona08028Spain
- Institut Català de Recerca i Estudis Avançats (ICREA)Passeig Lluís Companys 23Barcelona08010Spain
| | - Ildiko Somorjai
- School of BiologyUniversity of St AndrewsSt Andrews, FifeKY16 9ST, ScotlandUK
| | - Oshrat Ben‐Hamo
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Ilya Borisenko
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center GroningenAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Alexander Ereskovsky
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille University, CNRS, IRD, Avignon UniversityJardin du Pharo, 58 Boulevard Charles LivonMarseille13007France
- Koltzov Institute of Developmental Biology of Russian Academy of SciencesUlitsa Vavilova, 26Moscow119334Russia
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques MonodParisF‐75006France
| | - Denis Khnykin
- Department of PathologyOslo University HospitalBygg 19, Gaustad Sykehus, Sognsvannsveien 21Oslo0188Norway
| | - Lucia Manni
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Olga Petukhova
- Collection of Vertebrate Cell CulturesInstitute of Cytology, Russian Academy of SciencesTikhoretsky Ave. 4St. Petersburg194064Russia
| | - Amalia Rosner
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN)Nice06107France
- Université Côte d'Azur, Federative Research Institute – Marine Resources (IFR MARRES)28 Avenue de ValroseNice06103France
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine OrganismsStazione Zoologica Anton DohrnVilla ComunaleNaples80121Italy
| | - Michela Sugni
- Department of Environmental Science and Policy (ESP)Università degli Studi di MilanoVia Celoria 26Milan20133Italy
| | - Stefano Tiozzo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche‐sur‐mer (LBDV)06234 Villefranche‐sur‐MerVillefranche sur MerCedexFrance
| | - Bert Hobmayer
- Institute of Zoology and Center for Molecular Biosciences, University of InnsbruckTechnikerstrInnsbruck256020Austria
| |
Collapse
|
18
|
Jeyaraman M, Bingi SK, Muthu S, Jeyaraman N, Packkyarathinam RP, Ranjan R, Sharma S, Jha SK, Khanna M, Rajendran SNS, Rajendran RL, Gangadaran P. Impact of the Process Variables on the Yield of Mesenchymal Stromal Cells from Bone Marrow Aspirate Concentrate. Bioengineering (Basel) 2022; 9:bioengineering9020057. [PMID: 35200410 PMCID: PMC8869489 DOI: 10.3390/bioengineering9020057] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Human bone marrow (BM) has been highlighted as a promising source of mesenchymal stromal cells (MSCs) containing various growth factors and cytokines that can be potentially utilized in regenerative procedures involving cartilage and bone. However, the proportion of MSCs in the nucleated cell population of BM is only around 0.001% to 0.01% thereby making the harvesting and processing technique crucial for obtaining optimal results upon its use in various regenerative processes. Although several studies in the literature have given encouraging results on the utility of BM aspiration concentrate (BMAC) in various regenerative procedures, there is a lack of consensus concerning the harvesting variables such as choice of anesthetic agent to be used, site of harvest, size of the syringe to be used, anticoagulant of choice, and processing variables such as centrifugation time, and speed. In this review article, we aim to discuss the variables in the harvesting and processing technique of BMAC and their impact on the yield of MSCs in the final concentrate obtained from them.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, India;
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India;
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, India; (S.K.B.); (M.K.)
| | - Shiva Kumar Bingi
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, India; (S.K.B.); (M.K.)
- Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow 226010, India
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India;
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, India; (S.K.B.); (M.K.)
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, India
- Correspondence: (S.M.); (N.J.); (P.G.)
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, India; (S.K.B.); (M.K.)
- Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow 226010, India
- Fellow in Joint Replacement, Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli 620002, India
- Correspondence: (S.M.); (N.J.); (P.G.)
| | | | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida 201310, India;
| | - Shilpa Sharma
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India;
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, India; (S.K.B.); (M.K.)
- Department of Orthopaedics, Prasad Institute of Medical Sciences, Lucknow 226401, India
| | - Sree Naga Sowndary Rajendran
- Department of Medicine, Sri Venkateshwaraa Medical College Hospital and Research Centre, Puducherry 605102, India;
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (S.M.); (N.J.); (P.G.)
| |
Collapse
|
19
|
Zare S, Ahmadi R, Mohammadnia A, Nilforoushzadeh MA, Mahmoodi M. Biological Characteristics and Optical Reflectance Spectroscopy of Human Placenta Derived Mesenchymal Stem Cells for Application in Regenerative Medicine. J Lasers Med Sci 2021; 12:e18. [PMID: 34733741 DOI: 10.34172/jlms.2021.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Introduction: The efficiency of stem cell isolation, culture, and biological characterization techniques for treatment is facing serious challenges. The purpose of this study was to provide a protocol for isolation and culture of three types of mesenchymal stem cells (MSCs) derived from the human placenta, amniotic membrane, and umbilical cord with high efficiency used for cell therapy. Methods: During this experimental laboratory study, 10 complete placenta samples were prepared from cesarean section mothers. The protocol for isolation and culture of mesenchymal cells from the placenta tissue, umbilical cord, and amniotic membrane was enzymatically optimized. The morphological features of mesenchymal cells were investigated using an inverted microscope and their biological features were measured using flow cytometry. The differentiation potential of the cells was evaluated by measuring their differentiation capacity into osteocytes and adipocytes. The absorption and reflectance features of the cells were recorded by optical spectroscopy. Finally, the data were statistically analyzed. Results: The expression of CD44, CD73, CD90 and CD29 markers in human placenta tissue-derived cells was significant. CD14, CD34 and CD45 markers were not expressed or were slightly expressed. These cells were highly viable and successfully differentiated into osteocytes and adipocytes. MSCs absorbed more light than visible light by showing light absorption peaks at wavelengths of about 435 and 550 nm. Conclusion: The protocol used in this study for isolation and culture of human placenta tissue-derived MSCs had significant efficiency for the production of MSCs for use in cell therapy and tissue engineering.
Collapse
Affiliation(s)
- Sona Zare
- Department of Biology, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Rahim Ahmadi
- Department of Biology, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Abdolreza Mohammadnia
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Minoo Mahmoodi
- Department of Biology, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| |
Collapse
|
20
|
Purwaningrum M, Jamilah NS, Purbantoro SD, Sawangmake C, Nantavisai S. Comparative characteristic study from bone marrow-derived mesenchymal stem cells. J Vet Sci 2021; 22:e74. [PMID: 34697921 PMCID: PMC8636658 DOI: 10.4142/jvs.2021.22.e74] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
Tissue engineering has been extensively investigated and proffered to be a potential platform for novel tissue regeneration. The utilization of mesenchymal stem cells (MSCs) from various sources has been widely explored and compared. In this regard, MSCs derived from bone marrow have been proposed and described as a promising cell resource due to their high yield of isolated cells with colony-forming potential, self-renewal capacity, MSC surface marker expression, and multi-lineage differentiation capacities in vitro. However, there is evidence for bone marrow MSCs (BM-MSCs) both in vitro and in vivo from different species presenting identical and distinct potential stemness characteristics. In this review, the fundamental knowledge of the growth kinetics and stemness properties of BM-MSCs in different animal species and humans are compared and summarized. Finally, to provide a full perspective, this review will procure results of current information studies focusing on the use of BM-MSCs in clinical practice.
Collapse
Affiliation(s)
- Medania Purwaningrum
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.,Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nabila Syarifah Jamilah
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Steven Dwi Purbantoro
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.,Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.,Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirirat Nantavisai
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.,Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
21
|
Isolation and characterization of bone marrow-derived mesenchymal stem cells in Xenopus laevis. Stem Cell Res 2021; 53:102341. [PMID: 33892293 DOI: 10.1016/j.scr.2021.102341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/13/2021] [Accepted: 04/04/2021] [Indexed: 11/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that exist in mesenchymal tissues such as bone marrow and are able to differentiate into osteocytes, chondrocytes, and adipocytes. MSCs are generally collected as adherent cells on a plastic dish, and are positive for markers such as CD44, CD73, CD90, CD105 and CD166, and negative for CD11b, CD14, CD19, CD31, CD34, CD45, CD79a and HLA-DR. MSCs have been established from many kinds of mammals, but MSCs from amphibians have not yet been reported. We cultured adherent cells from the bone marrow of Xenopus laevis by modifying the protocol for culturing mammalian MSCs. The morphology of these cells was similar to that of mammalian MSCs. The amphibian MSCs were positive for cd44, cd73, cd90 and cd166, and negative for cd11b, cd14, cd19, cd31, cd34, cd45, cd79a and hla-dra. Moreover, they could be induced to differentiate into osteocyte-, chondrocyte-, and adipocyte-lineage cells by cytokine induction systems that were similar to those used for mammalian MSC differentiation. Thus, they are considered to be similar to mammalian MSCs. Unlike mammals, amphibians have high regenerative capacity. The findings from the present study will allow for future research to reveal how Xenopus MSCs are involved in the amphibian regenerative capacity and to elucidate the differences in the regenerative capacity between mammals and amphibians.
Collapse
|
22
|
Liu Y, Li F, Cai Z, Wang D, Hou R, Zhang H, Zhang M, Yie S, Wu K, Zeng C, An J. Isolation and characterization of mesenchymal stem cells from umbilical cord of giant panda. Tissue Cell 2021; 71:101518. [PMID: 33676235 DOI: 10.1016/j.tice.2021.101518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Umbilical cord-derived mesenchymal stem cells (UC-MSCs) constitute a class of cells with significant self-renewal and multilineage differentiation properties and have great potential for therapeutic applications and the genetic conservation of endangered animals. In this study, we successfully isolated and cultured UC-MSCs from the blood vessels of giant panda umbilical cord (UC). The cells were arranged in a vortex or cluster pattern and exhibited a normal karyotype, showing the morphological characteristics of fibroblasts. In addition, we found that basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) promoted cell proliferation, whereas stem cell factor (SCF) did not promote cell proliferation. Cultured UC-MSCs were negative for CD34 (hematopoietic stem cell marker) and CD31 (endothelial cell marker), but positive for MSC markers (CD44, CD49f, CD105, and CD73) and stem cell markers (KLF4, SOX2, and THY1). Similar to other MSCs, giant panda UC-MSCs have multiple differentiation ability and can differentiate into adipocytes, osteoblasts and chondrocytes. Giant panda UC-MSCs are new resources for basic research as cell models following their differentiation into different cell types and for future clinical treatments of giant panda diseases.
Collapse
Affiliation(s)
- Yuliang Liu
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China; Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Feiping Li
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Zhigang Cai
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Donghui Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Hao Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China
| | - Ming Zhang
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Shangmian Yie
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Kongju Wu
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Changjun Zeng
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China.
| | - Junhui An
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China.
| |
Collapse
|
23
|
Seo MS, Kang KK, Oh SK, Sung SE, Kim KS, Kwon YS, Yun S. Isolation and Characterization of Feline Wharton's Jelly-Derived Mesenchymal Stem Cells. Vet Sci 2021; 8:vetsci8020024. [PMID: 33562192 PMCID: PMC7915203 DOI: 10.3390/vetsci8020024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Wharton’s jelly is a well-known mesenchymal stem cell source in many species, including humans. However, there have been no reports confirming the presence of mesenchymal stem cells in Wharton’s jelly in cats. The purpose of this study was to isolate mesenchymal stem cells (MSCs) from the Wharton’s jelly of cats and to characterize stem cells. In this study, feline Wharton’s jelly-derived mesenchymal stem cells (fWJ-MSCs) were isolated and successfully cultured. fWJ-MSCs were maintained and the proliferative potential was measured by cumulative population doubling level (CPDL) test, scratch test, and colony forming unit (CFU) test. Stem cell marker, karyotyping and immunophenotyping analysis by flow cytometry showed that fWJ-MSCs possessed characteristic mesenchymal stem cell markers. To confirm the differentiation potential, we performed osteogenic, adipogenic and chondrogenic induction under each differentiation condition. fWJ-MSCs has the ability to differentiate into multiple lineages, including osteogenic, adipogenic and chondrogenic differentiation. This study shows that Wharton’s jelly of cat can be a good source of mesenchymal stem cells. In addition, fWJ-MSCs may be useful for stem cell-based therapeutic applications in feline medicine.
Collapse
Affiliation(s)
- Min-Soo Seo
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (M.-S.S.); (K.-K.K.); (S.-K.O.); (S.-E.S.); (K.-S.K.)
| | - Kyung-Ku Kang
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (M.-S.S.); (K.-K.K.); (S.-K.O.); (S.-E.S.); (K.-S.K.)
| | - Se-Kyung Oh
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (M.-S.S.); (K.-K.K.); (S.-K.O.); (S.-E.S.); (K.-S.K.)
| | - Soo-Eun Sung
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (M.-S.S.); (K.-K.K.); (S.-K.O.); (S.-E.S.); (K.-S.K.)
| | - Kil-Soo Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (M.-S.S.); (K.-K.K.); (S.-K.O.); (S.-E.S.); (K.-S.K.)
- Department of Veterinary Toxicology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Young-Sam Kwon
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (Y.-S.K.); (S.Y.); Tel.: +82 53-950-5963 (S.Y.); Fax: +82-52-950-5955 (S.Y.)
| | - Sungho Yun
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (Y.-S.K.); (S.Y.); Tel.: +82 53-950-5963 (S.Y.); Fax: +82-52-950-5955 (S.Y.)
| |
Collapse
|
24
|
Proteomic Analysis of the Secretome and Exosomes of Feline Adipose-Derived Mesenchymal Stem Cells. Animals (Basel) 2021; 11:ani11020295. [PMID: 33498940 PMCID: PMC7912403 DOI: 10.3390/ani11020295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The enormous advances in stem cell research have generated high expectations in the development of new therapies to repair or regenerate damaged tissues. For this reason, laboratory studies of stem cells enable scientists to learn about cells’ essential properties. Specifically, in recent years, therapies based on mesenchymal stem cells have become an interesting alternative for the treatment of different complex pathologies in veterinary medicine. Mesenchymal stem cells secrete a wide variety of therapeutic elements such as bioactive molecules and extracellular vesicles (e.g., exosomes). Thus, it is essential to characterize them before future use as biotechnological products. Therefore, the objective of this study was to determine and compare their protein profile to understand better the mechanisms of action of these components and facilitate their possible use in future therapies. The data demonstrate the existence of different proteins responsible for the biological effects of cells. In addition, these approaches and techniques can contribute to the better prediction of clinical outcomes of mesenchymal stem cell treatment. Abstract Mesenchymal stem cells (MSCs) have been shown to have therapeutic efficacy in different complex pathologies in feline species. This effect is attributed to the secretion of a wide variety of bioactive molecules and extracellular vesicles, such as exosomes, with significant paracrine activity, encompassed under the concept of the secretome. However, at present, the exosomes from feline MSCs have not yet been studied in detail. The objective of this study is to analyze and compare the protein profiles of the secretome as a whole and its exosomal fraction from feline adipose-derived MSCs (fAd-MSCs). For this, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Protein–Protein Interaction Networks Functional Enrichment Analysis (STRING) were utilized. A total of 239 proteins were identified in the secretome, and 228 proteins specific to exosomes were identified, with a total of 133 common proteins. The proteins identified in the secretome were located in the extracellular regions and in the cytoplasm, while the exosomal proteins were located mainly in the membrane, cytoplasm and cytosol. Regarding function, in the secretome, proteins involved in different metabolic pathways, in pathways related to the immune system and the endocrine system and in the processing of proteins in the endoplasmic reticulum predominated. In contrast, proteins specific to exosomes were predominantly associated with endocytosis, cell junctions, platelet activation and other cell signaling pathways. The possible future use of the secretome, or some of its components, such as exosomes, would provide a non-cell-based therapeutic strategy for the treatment of different diseases that would avoid the drawbacks of cell therapy.
Collapse
|
25
|
Voga M, Kovač V, Majdic G. Comparison of Canine and Feline Adipose-Derived Mesenchymal Stem Cells/Medicinal Signaling Cells With Regard to Cell Surface Marker Expression, Viability, Proliferation, and Differentiation Potential. Front Vet Sci 2021; 7:610240. [PMID: 33521084 PMCID: PMC7838367 DOI: 10.3389/fvets.2020.610240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/26/2020] [Indexed: 12/23/2022] Open
Abstract
Remarkable immunomodulatory abilities of mesenchymal stem cells, also called multipotent mesenchymal stromal cells or medicinal signaling cells (MSCs), have entailed significant advances in veterinary regenerative medicine in recent years. Despite positive outcomes from MSC therapies in various diseases in dogs and cats, differences in MSC characteristics between small animal veterinary patients are not well-known. We performed a comparative study of cells' surface marker expression, viability, proliferation, and differentiation capacity of adipose-derived MSCs (ADMSCs) from dogs and domestic cats. The same growth media and methods were used to isolate, characterize, and culture canine and feline ADMSCs. Adipose tissue was collected from 11 dogs and 8 cats of both sexes. The expression of surface markers CD44, CD90, and CD34 was detected by flow cytometry. Viability at passage 3 was measured with the hemocytometer and compared to the viability measured by flow cytometry after 1 day of handling. The proliferation potential of MSCs was measured by calculating cell doubling and cell doubling time from second to eighth passage. Differentiation potential was determined at early and late passages by inducing cells toward adipogenic, osteogenic, and chondrogenic differentiation using commercial media. Our study shows that the percentage of CD44+CD90+ and CD34−/− cells is higher in cells from dogs than in cells from cats. The viability of cells measured by two different methods at passage 3 differed between the species, and finally, canine ADMSCs possess greater proliferation and differentiation potential in comparison to the feline ADMSCs.
Collapse
Affiliation(s)
- Metka Voga
- Veterinary Faculty, Institute for Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Valerija Kovač
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Gregor Majdic
- Veterinary Faculty, Institute for Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia.,Medical Faculty, Institute for Physiology, University of Maribor, Maribor, Slovenia
| |
Collapse
|
26
|
Autologous Bone Marrow Cell Therapy for the Knee: Are We There Yet? OPER TECHN SPORT MED 2020. [DOI: 10.1016/j.otsm.2020.150777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Hevesi M, Jacob G, Shimomura K, Ando W, Nakamura N, Krych AJ. Current hip cartilage regeneration/repair modalities: a scoping review of biologics and surgery. INTERNATIONAL ORTHOPAEDICS 2020; 45:319-333. [PMID: 32910240 DOI: 10.1007/s00264-020-04789-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE The rapidly growing and emerging nature of biologics have made indications for regenerative and reparative hip therapies ever changing, with at times only early-stage evidence for their use. The purpose of this study was to review and summarize the currently available data on the management of hip cartilage injuries and osteoarthritis. METHODS A scoping review of the available scientific literature for hip biologics was performed, with available evidence for hyaluronic acid (HA), platelet rich plasma (PRP), stem/stromal cells, microfracture, mosaicplasty, osteochondral allograft, and cell-based therapies investigated. RESULTS To date, there exist better guidelines and further consensus concerning knee joint biologic treatments than the hip due to a greater number of studies as well as the more recent emergence of hip preservation approaches. However, increasing evidence is available for the selective implementation of biologics on an individualized basis with attention to lesion size and location. CONCLUSION Orthopedic surgeons are at an exciting crossroads in medicine, where hip biologic therapies are evolving and increasingly available. Timetested interventions such as arthroplasty have shown good results and still have a major role to play but newer, regenerative approaches have the potential to effectively delay or reduce the requirement for such invasive procedures.
Collapse
Affiliation(s)
- Mario Hevesi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - George Jacob
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazunori Shimomura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Wataru Ando
- Department of Orthopaedic Medical Engineering, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Norimasa Nakamura
- Institute for Medical Science in Sports, Osaka Health Science University, Osaka, Japan
| | - Aaron J Krych
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
28
|
|
29
|
Abstract
Regenerative medicine is a complex field of research, with much hope placed on the ability to use regenerative therapies such as stem cells to provide new treatment options for many frustrating disease processes in human and veterinary medicine. Significant research is still needed and ongoing from basic mechanistic studies to advanced bioengineering applications to practical cell delivery methods. Small studies of mesenchymal stem cell therapy shows significant promise in inflammatory feline diseases. Continued research will hopefully help determine the potential of mesenchymal stem cell therapy in feline medicine and lead to development of safe and effective products for clinical use.
Collapse
Affiliation(s)
- Tracy L Webb
- Clinical Sciences, Colorado State University, 1678 Campus Delivery, Fort Collins, CO 80523, USA.
| |
Collapse
|
30
|
Improved outcomes after mesenchymal stem cells injections for knee osteoarthritis: results at 12-months follow-up: a systematic review of the literature. Arch Orthop Trauma Surg 2020; 140:853-868. [PMID: 31456015 DOI: 10.1007/s00402-019-03267-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE According to the World Health organization (WHO), more than 10% in people older than 60 years suffer from osteoarthritis (OA). Over the last years, there has been an increased interest around regenerative medicine, especially regarding stem cell treatments and related applications. We hypothesize that stem cell therapies can represent a feasible option for idiopathic knee OA, delaying or even avoiding the joint replacement. To emphasize the potential of percutaneous injections of mesenchymal stem cells for knee OA, a comprehensive systematic review of the literature was conducted. MATERIAL AND METHODS Two independent authors (FM, GC) performed the literature search. This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA). The main databases were accessed: Pubmed, Embase, Google Scholar, Cochrane Systematic Reviews, Scopus, AMED. For this systematic review, all articles treating percutaneous injections of mesenchymal stem cells for knee OA were considered. Because of the rapid advancements promoted by the scientific progress on stem cell expansion and processing, only articles published within the last five years were included. Solely articles reporting the outcomes of interest across 6- and 12-month follow-up were recruited for eligibility. We included only studies reporting quantitative data under the outcomes of interest. We referred for the quality assessment to the Coleman Methodology Score (CMS). The statistical analysis was performed with Review Manager Software 5.3 (The Nordic Cochrane Centre, Copenhagen). RESULTS A total of 18 studies were enrolled in the present study, comprising 1069 treated knees. The mean age of the samples was 57.39 ± 7.37 years. 72% of the included studies harvested the stem cells from the iliac crest (bone marrow-derived MSCs), the remaining 28% from the adipose tissue (adipose-derived MSCs). The mean visual analogic scale improved from 18.37 to 30.98 and 36.91 at 6- and 12-month follow-up, respectively. The mean WOMAC score improved from 25.66 to 25.23 and 15.60 at 6- and 12-month follow-up, respectively. The mean walking distance improved from 71.90 to 152.22 and 316.72 at 6- and 12-month follow-up, respectively. The mean Lequesne scale improved from 33.76 to 12.90 at 12-month follow-up. The KOOS score improved from 41.07 to 8.47% and 18.94 at 6- and 12-month follow-up. All the KOOS subscales improved significantly from the baseline. A total of 136 (12.7%) local complications were detected. CONCLUSION According to the current evidences and the main findings of this systematic review, we reported that MSC infiltrations for knee OA can represent a feasible option, leading to an overall remarkable improvement of all clinical and functional considered outcomes, regardless of the cell source. Patients treated at earlier-degeneration stages reported statistically significant greater outcomes. The pain and function scores were improved considerably, thus, leading to a significant improvement of patient participation in recreational activities and quality of life.
Collapse
|
31
|
Safety and immunomodulatory properties of equine peripheral blood-derived mesenchymal stem cells in healthy cats. Vet Immunol Immunopathol 2020; 227:110083. [PMID: 32563854 DOI: 10.1016/j.vetimm.2020.110083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Due to the immunomodulatory properties of mesenchymal stem cells (MSCs) through stimulation of endogenous immune cells by paracrine signals and cell contact, they have been proposed as alternative treatment option for many inflammatory and immune-mediated diseases in veterinary medicine. However, the long-term cultivation possibilities of feline MSCs are currently compromised due to a restricted proliferation capacity. Therefore, the xenogeneic use of equine peripheral blood-derived MSCs (ePB-MSCs) would present an interesting alternative thanks to their superior cultivation properties. To the authors' knowledge, there are currently no safety reports concerning the xenogeneic use of ePB-MSCs in cats. Therefore, the overall goal of this preliminary study was to investigate if ePB-MSCs can safely be administered in healthy cats and by extension evaluating their immunogenic and immunomodulatory properties. METHODS Ten healthy cats were intravenously (i.v.) injected with 3 × 105 ePB-MSCs at three time points (T0, T1, T2). All cats were daily inspected by the caretaker and underwent a physical examination with hematological and biochemical analysis at day 0 (T0), week 2 (T1), week 4 (T2) and week 6 (T3) by a veterinarian. Furthermore, a modified mixed lymphocyte reaction (MLR) was performed at T0 and T3 for each cat in order to evaluate immunogenic and immunomodulatory properties of the ePB-MSCs RESULTS: No adverse clinical effects could be detected following repeated i.v. administration of ePB-MSCs in all cats. Significant lower protein (T1: P-value = 0.002; T2: P-value > 0.001; T3: P-value = 0.004) and albumin levels (T1: P-value = 0.003; T2: P-value = 0.001) were seen after repeated administration of ePB-MSCs, compared to T0. However, all biochemical and hematological parameters stayed within clinical acceptance level. In addition, the repeated injections did not induce a cellular immune response before and after repeated ePB-MSCs administration. Furthermore, convincing immunomodulatory properties of ePB-MSCs on feline peripheral blood mononuclear cells were confirmed in the MLR-assay CONCLUSION: This preliminary study demonstrates that ePB-MSCs can safely be administered in healthy cats and provide a promising alternative for the treatment of various inflammatory diseases in cats.
Collapse
|
32
|
Voga M, Adamic N, Vengust M, Majdic G. Stem Cells in Veterinary Medicine-Current State and Treatment Options. Front Vet Sci 2020; 7:278. [PMID: 32656249 PMCID: PMC7326035 DOI: 10.3389/fvets.2020.00278] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine is a branch of medicine that develops methods to grow, repair, or replace damaged or diseased cells, organs or tissues. It has gained significant momentum in recent years. Stem cells are undifferentiated cells with the capability to self—renew and differentiate into tissue cells with specialized functions. Stem cell therapies are therefore used to overcome the body's inability to regenerate damaged tissues and metabolic processes after acute or chronic insult. The concept of stem cell therapy was first introduced in 1991 by Caplan, who proposed that massive differentiation of cells into the desired tissue could be achieved by isolation, cultivation, and expansion of stem cells in in vitro conditions. Among different stem cell types, mesenchymal stem cells (MSC) currently seem to be the most suitable for therapeutic purposes, based on their simple isolation and culturing techniques, and lack of ethical issues regarding their usage. Because of their remarkable immunomodulatory abilities, MSCs are increasingly gaining recognition in veterinary medicine. Developments are primarily driven by the limitations of current treatment options for various medical problems in different animal species. MSCs represent a possible therapeutic option for many animal diseases, such as orthopedic, orodental and digestive tract diseases, liver, renal, cardiac, respiratory, neuromuscular, dermal, olfactory, and reproductive system diseases. Although we are progressively gaining an understanding of MSC behavior and their mechanisms of action, some of the issues considering their use for therapy are yet to be resolved. The aim of this review is first to summarize the current knowledge and stress out major issues in stem cell based therapies in veterinary medicine and, secondly, to present results of clinical usage of stem cells in veterinary patients.
Collapse
Affiliation(s)
- Metka Voga
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neza Adamic
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Modest Vengust
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
33
|
Kim GB, Shon OJ. Current perspectives in stem cell therapies for osteoarthritis of the knee. Yeungnam Univ J Med 2020; 37:149-158. [PMID: 32279478 PMCID: PMC7384917 DOI: 10.12701/yujm.2020.00157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are emerging as an attractive option for osteoarthritis (OA) of the knee joint, due to their marked disease-modifying ability and chondrogenic potential. MSCs can be isolated from various organ tissues, such as bone marrow, adipose tissue, synovium, umbilical cord blood, and articular cartilage with similar phenotypic characteristics but different proliferation and differentiation potentials. They can be differentiated into a variety of connective tissues such as bone, adipose tissue, cartilage, intervertebral discs, ligaments, and muscles. Although several studies have reported on the clinical efficacy of MSCs in knee OA, the results lack consistency. Furthermore, there is no consensus regarding the proper cell dosage and application method to achieve the optimal effect of stem cells. Therefore, the purpose of this study is to review the characteristics of various type of stem cells in knee OA, especially MSCs. Moreover, we summarize the clinical issues faced during the application of MSCs.
Collapse
Affiliation(s)
- Gi Beom Kim
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Daegu, Korea
| | - Oog-Jin Shon
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
34
|
Efficacy of the Combination of rhBMP-2 with Bone Marrow Aspirate Concentrate in Mandibular Defect Reconstruction after a Pindborg Tumor Resection. Case Rep Dent 2020; 2020:8281741. [PMID: 32257455 PMCID: PMC7104310 DOI: 10.1155/2020/8281741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/02/2020] [Indexed: 11/18/2022] Open
Abstract
Recombinant human bone morphogenetic protein-2 (rhBMP-2) is an osteoinductive growth factor used in oral and maxillofacial surgery. It offers a feasible alternative for various regenerative procedures, including reconstruction of mandibular defects. In this study, we report a case of a large Pindborg tumor involving the left mandible. The treatment consisted of surgical resection, followed by off-label use of rhBMP-2 in addition to bone marrow aspirate concentrate, together with an allograft in a titanium mesh. The patient was rehabilitated with dental implants, and a good clinical outcome was achieved. We found no evidence of bone resorption or complications in both clinical and radiographic evaluations during the one-year follow-up period. In conclusion, we have demonstrated the efficacy of using rhBMP-2 combined with bone marrow aspirate concentrate, and an allograft with a titanium mesh, for the reconstruction of long mandibular bone defects. Not only is this combination feasible, but it also has the advantages of lower morbidity and cost.
Collapse
|
35
|
An JH, Li FP, He P, Chen JS, Cai ZG, Liu SR, Yue CJ, Liu YL, Hou R. Characteristics of Mesenchymal Stem Cells Isolated from the Bone Marrow of Red Pandas. ZOOLOGY 2020; 140:125775. [PMID: 32251890 DOI: 10.1016/j.zool.2020.125775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/08/2023]
Abstract
Mesenchymal stem cells (MSC) have strong therapeutic potential due to their capacity for self-renewal and multilineage differentiation. MSCs can also be useful in preserving the current genetic diversity of endangered wildlife. To date, MSCs from various species have been studied, but only a few species of endangered wild animals have been reported. Adult bone marrow (BM) is a rich source of mesenchymal stem cells. The aim of this study was to isolate and characterize MSCs derived from the BM of red pandas. Red panda BM-MSCs isolated from five individuals were fibroblast-like cells, similar to other species. Cultured BM-MSCs with normal karyotype were negative for the hematopoietic line marker CD34 and the endothelial cell marker CD31 but were positive for MSC markers, including CD44, CD105 and CD90. RT-PCR and western blot analysis showed self-renewal and pluripotency genes, including Oct4, Sox2 and Klf4, were also expressed in red panda BM-MSCs. Finally, red panda BM-MSCs had the potential for differentiation into osteogenic, adipogenic and neuron-like cells by using a combination of previously reported protocols for other species. We have therefore demonstrated that cells harvested from red panda bone marrow are capable of extensive in vitro multiplication and multilineage differentiation, which is an essential step toward their use in the preservation of red pandas biological diversity and future studies on MSC applications in endangered species.
Collapse
Affiliation(s)
- Jun-Hui An
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Fei-Ping Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Ping He
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Jia-Song Chen
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Zhi-Gang Cai
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Song-Rui Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Chan-Juan Yue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Yu-Liang Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China.
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China.
| |
Collapse
|
36
|
|
37
|
Thongphakdee A, Sukparangsi W, Comizzoli P, Chatdarong K. Reproductive biology and biotechnologies in wild felids. Theriogenology 2020; 150:360-373. [PMID: 32102745 DOI: 10.1016/j.theriogenology.2020.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 12/18/2022]
Abstract
Conservation strategies in natural habitats as well as in breeding centers are necessary for maintaining and reinforcing viable populations of wild felids. Among the fundamental knowledge that is required for conservation breeding, a solid understanding of reproductive biology is critical for improving natural breeding and enhance genetic diversity. Additionally, it offers the opportunity to develop assisted reproductive technologies (ARTs) in threatened and endangered species. Conservation breeding and reproductive biotechnologies of wild felids have advanced in the past decade. It has been clearly shown that female felids have species and individual patterns of reproductive cycles and respond differently to exogenous hormones. In males, several species still have poor semen quality often due to the loss of genetic diversity in small populations. To overcome the challenges of natural breeding (incompatibility between individuals or suboptimal environment) and mitigate inbreeding, artificial insemination, embryo production and embryo transfer have been further developed in 24 wild cat species. Major factors limiting ART success are inconsistent responses to ovarian stimulation, variable quality of gametes and embryos, and preparation of recipient females. Additional approaches including stem cell technologies have been explored for future medical applications. However, there still is a critical need for better knowledge of feline reproductive biology and improvement of ARTs efficiency to increase the genetic diversity and create sustainable populations of wild felids.
Collapse
Affiliation(s)
- Ampika Thongphakdee
- Wildlife Reproductive Innovation Center, Bureau of Conservation and Research, Zoological Park Organization Under the Royal Patronage of H.M. the King, 267, Pracharaj 1 Road, Bang Sue, Bangkok, 10800, Thailand.
| | - Woranop Sukparangsi
- Department of Biology, Faculty of Science, Burapha University, Saen Suk, Muang, Chonburi, 20131, Thailand
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, 3001 Connecticut Ave, NW, Washington, DC, 2008, USA
| | - Kaywalee Chatdarong
- Research Unit of Obstetrics and Reproduction in Animals, Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Road, Bangkok, 10330, Thailand
| |
Collapse
|
38
|
Ixazomib Improves Bone Remodeling and Counteracts sonic Hedgehog signaling Inhibition Mediated by Myeloma Cells. Cancers (Basel) 2020; 12:cancers12020323. [PMID: 32019102 PMCID: PMC7073172 DOI: 10.3390/cancers12020323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) is a clonal B-cell malignancy characterized by an accumulation of plasma cells (PC) in the bone marrow (BM), leading to bone loss and BM failure. Osteolytic bone disease is a common manifestation observed in MM patients and represents the most severe cause of morbidity, leading to progressive skeletal damage and disabilities. Pathogenetic mechanisms of MM bone disease are closely linked to PCs and osteoclast (OCs) hyperactivity, coupled with defective osteoblasts (OBs) function that is unable to counteract bone resorption. The aim of the present study was to investigate the effects of Ixazomib, a third-generation proteasome inhibitor, on osteoclastogenesis and osteogenic differentiation. We found that Ixazomib was able to reduce differentiation of human monocytes into OCs and to inhibit the expression of OC markers when added to the OC medium. Concurrently, Ixazomib was able to stimulate osteogenic differentiation of human mesenchymal stromal cells (MSCs), increasing osteogenic markers, either alone or in combination with the osteogenic medium. Given the key role of Sonic Hedgehog (SHH) signaling in bone homeostasis, we further investigated Ixazomib-induced SHH pathway activation. This set of experiments showed that Ixazomib, but not Bortezomib, was able to bind the Smoothened (SMO) receptor leading to nuclear translocation of GLI1 in human MSCs. Moreover, we demonstrated that PCs act as GLI1 suppressors on MSCs, thus reducing the potential of MSCs to differentiate in OBs. In conclusion, our data demonstrated that Ixazomib regulates bone remodeling by decreasing osteoclastogenesis and prompting osteoblast differentiation via the canonical SHH signaling pathway activation, thus, representing a promising therapeutic option to improve the complex pathological condition of MM patients.
Collapse
|
39
|
Desai MJ, Mansfield JT, Robinson DM, Miller BC, Borg-Stein J. Regenerative Medicine for Axial and Radicular Spine-Related Pain: A Narrative Review. Pain Pract 2020; 20:437-453. [PMID: 31869517 DOI: 10.1111/papr.12868] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/03/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Regenerative injection-based therapy has established itself as a therapeutic option for the management of a variety of painful musculoskeletal conditions. The aim of this work was to review the current literature regarding regenerative injection therapy for axial/radicular spine pain. METHODS A comprehensive literature review was conducted on the use of regenerative medicine for axial/radicular spine pain. Eligible articles analyzed the therapeutic injection effects of platelet-rich plasma (PRP), prolotherapy, or mesenchymal signaling cells (MSCs) via intradiscal, facet joint, epidural, or sacroiliac joint delivery. RESULTS Regarding intradiscal PRP, there are level I/IV studies supporting its use. Regarding intradiscal prolotherapy, there are level III to IV studies supporting its use. Regarding intradiscal MSCs, there are level I/IV studies supporting its use with the exception of one level IV study that found no significant improvement at 12 months. Regarding facet joint injections with PRP, there are level I/IV studies supporting its use. Regarding facet joint injections with prolotherapy, there are level IV studies supporting its use, though the one level I study did not demonstrate any statistical significance supporting its use. Regarding epidural injections with PRP, there are level I/IV studies supporting its use. Regarding epidural injections with prolotherapy, there are level IV studies supporting its use, though the one level I study did not demonstrate statistical significance beyond 48 hours. Regarding sacroiliac joint injections with PRP, there are level I/IV studies supporting its use. Regarding sacroiliac joint injections with prolotherapy, there are level I/III studies supporting its use. CONCLUSIONS Currently, there are level I studies to support the use of PRP and MSC injections for discogenic pain; facet joint injections with PRP; epidural injections of autologous conditioned serum and epidural prolotherapy; and PRP and prolotherapy for sacroiliac joint pain. One level I study showed that facet joint prolotherapy has no significant benefit. Notably, no intervention has multiple published level I studies.
Collapse
Affiliation(s)
- Mehul J Desai
- International Spine, Pain & Performance Center, Washington, DC, U.S.A.,George Washington University, Washington, DC, U.S.A.,Division of Pain Medicine, Virginia Hospital Center, Arlington, Virginia, U.S.A
| | - John Taylor Mansfield
- Department of Physical Medicine and Rehabilitation, MedStar Georgetown University Hospital, Washington, DC, U.S.A
| | - David M Robinson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, U.S.A
| | - Benjamin C Miller
- Department of Physical Medicine and Rehabilitation, MedStar Georgetown University Hospital, Washington, DC, U.S.A
| | - Joanne Borg-Stein
- Division of Sports and Musculoskeletal Rehabilitation, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, U.S.A
| |
Collapse
|
40
|
The role of biologic agents in the management of common shoulder pathologies: current state and future directions. J Shoulder Elbow Surg 2019; 28:2041-2052. [PMID: 31585784 DOI: 10.1016/j.jse.2019.07.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 07/28/2019] [Indexed: 02/01/2023]
Abstract
The field of orthopedic surgery has seen a rapid increase in the use of various biologic agents for the treatment of common musculoskeletal injuries. Most biologic agents attempt to harness or mimic naturally occurring growth factors, cytokines, and anti-inflammatory mediators to improve tissue healing and recovery. The most commonly used biologic agents are platelet-rich plasma and cells derived from bone marrow aspirate and adipose tissue. These agents have become increasingly popular despite a relative dearth of clinical data to support their use. Much confusion exists among patients and physicians in determining the role of these agents in treating common shoulder pathologies, such as glenohumeral osteoarthritis, rotator cuff tears, and tendinopathy. This article reviews the basic science and clinical evidence for the most commonly used biologic agents in the management of common shoulder pathology.
Collapse
|
41
|
Abdelrazik H, Giordano E, Barbanti Brodano G, Griffoni C, De Falco E, Pelagalli A. Substantial Overview on Mesenchymal Stem Cell Biological and Physical Properties as an Opportunity in Translational Medicine. Int J Mol Sci 2019; 20:ijms20215386. [PMID: 31671788 PMCID: PMC6862078 DOI: 10.3390/ijms20215386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSC) have piqued worldwide interest for their extensive potential to treat a large array of clinical indications, their unique and controversial immunogenic and immune modulatory properties allowing ample discussions and debates for their possible applications. Emerging data demonstrating that the interaction of biomaterials and physical cues with MSC can guide their differentiation into specific cell lineages also provide new interesting insights for further MSC manipulation in different clinical applications. Moreover, recent discoveries of some regulatory molecules and signaling pathways in MSC niche that may regulate cell fate to distinct lineage herald breakthroughs in regenerative medicine. Although the advancement and success in the MSC field had led to an enormous increase in the amount of ongoing clinical trials, we still lack defined clinical therapeutic protocols. This review will explore the exciting opportunities offered by human and animal MSC, describing relevant biological properties of these cells in the light of the novel emerging evidence mentioned above while addressing the limitations and challenges MSC are still facing.
Collapse
Affiliation(s)
- Heba Abdelrazik
- Department of Clinical Pathology, Cairo University, Cairo 1137, Egypt.
- Department of Diagnosis, central laboratory department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16131 Genoa, Italy.
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, 47522 Cesena, Italy.
| | - Giovanni Barbanti Brodano
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Cristiana Griffoni
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- Mediterranea Cardiocentro, 80122 Napoli, Italy.
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy.
- Institute of Biostructures and Bioimages (IBB), National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
42
|
Ziegler CG, Van Sloun R, Gonzalez S, Whitney KE, DePhillipo NN, Kennedy MI, Dornan GJ, Evans TA, Huard J, LaPrade RF. Characterization of Growth Factors, Cytokines, and Chemokines in Bone Marrow Concentrate and Platelet-Rich Plasma: A Prospective Analysis. Am J Sports Med 2019; 47:2174-2187. [PMID: 31034242 DOI: 10.1177/0363546519832003] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Platelet-rich plasma (PRP) and bone marrow concentrate (BMC) are orthobiologic therapies with numerous growth factors and other bioactive molecules. Before the clinical utility of PRP and BMC is optimized as a combined therapy or monotherapy, an improved understanding of the components and respective concentrations is necessary. PURPOSE To prospectively measure and compare anabolic, anti-inflammatory, and proinflammatory growth factors, cytokines, and chemokines in bone marrow aspirate (BMA), BMC, whole blood, leukocyte-poor PRP (LP-PRP), and leukocyte-rich PRP (LR-PRP) from samples collected and processed concurrently on the same day from patients presenting for elective knee surgery. STUDY DESIGN Cross-sectional study; Level of evidence, 3. METHODS Patients presenting for elective knee surgery were prospectively enrolled over a 3-week period. Whole blood from peripheral venous draw and BMA from the posterior iliac crest were immediately processed via centrifugation and manual extraction methods to prepare LR-PRP, LP-PRP, and BMC samples, respectively. BMA, BMC, whole blood, LR-PRP, and LP-PRP samples were immediately assayed and analyzed to measure protein concentrations. RESULTS BMC had a significantly higher interleukin 1 receptor antagonist (IL-1Ra) concentration than all other preparations (all P < .0009). LR-PRP also had a significantly higher IL-1Ra concentration than LP-PRP (P = .0006). There were no significant differences in IL-1Ra concentration based on age, sex, body mass index, or chronicity of injury in all preparations. LR-PRP had significantly higher concentrations of platelet-derived growth factor AA (PDGF-AA) and PDGF-AB/BB than all other preparations (all P < .0006). LR-PRP also had significantly higher concentrations of matrix metalloproteinase 1 (MMP-1) and soluble CD40 ligand than all other preparations (all P < .004). LP-PRP had significantly higher concentrations of MMPs, namely MMP-2, MMP-3, and MMP-12, than all other preparations (all P < .007). CONCLUSION BMC is a clinically relevant source of anti-inflammatory biologic therapy that may be more effective in treating osteoarthritis and for use as an intra-articular biologic source for augmented healing in the postsurgical inflammatory and healing phases, owing to its significantly higher concentration of IL-1Ra as compared with LR-PRP and LP-PRP. Additionally, LR-PRP had a significantly higher concentration of IL-1Ra than LP-PRP. In cases where increased vascularity and healing are desired for pathological or injured tissues, including muscle and tendon, LR-PRP may be optimal given its higher overall concentrations of PDGF, TGF-β, EGF, VEGF, and soluble CD40 ligand.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grant J Dornan
- Steadman Philippon Research Institute, Vail, Colorado, USA
| | | | - Johnny Huard
- Steadman Philippon Research Institute, Vail, Colorado, USA
| | | |
Collapse
|
43
|
Liu Q, Zhu Y, Qi J, Amadio PC, Moran SL, Gingery A, Zhao C. Isolation and characterization of turkey bone marrow-derived mesenchymal stem cells. J Orthop Res 2019; 37:1419-1428. [PMID: 30548886 DOI: 10.1002/jor.24203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/06/2018] [Indexed: 02/04/2023]
Abstract
Flexor tendon injury is often associated with suboptimal outcomes and results in substantial digit dysfunction. Stem cells have been isolated from several experimental animals for the growing interest and needs of utilizing cell-based therapies. Recently, turkey has been developed as a new large animal model for flexor tendon research. In the present study, we reported the isolation and characterization of bone marrow-derived mesenchymal stem cells (BMSCs) from 8- to 12-month-old heritage-breed turkeys. The isolated cells demonstrated fibroblast-like morphology, clonogenic capacity, and high proliferation rate. These cells were positive for surface antigens CD90, CD105, and CD44, but were negative for CD45. The multipotency of turkey BMSCs was determined by differentiating cells into osteogenic, adipogenic, chondrogenic, and tenogenic lineages. There was upregulated gene expression of tenogenic markers, including mohawk, tenomodulin, and EGR1 as well as increased collagen synthesis in BMP12 induced cells. The successful isolation and verification of bone marrow-derived MSCs from turkey would provide opportunities of studying cell-based therapies and developing new treatments for tendon injuries using this novel preclinical large animal model. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1419-1428, 2019.
Collapse
Affiliation(s)
- Qian Liu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Yaxi Zhu
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jun Qi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Peter C Amadio
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Steven L Moran
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Anne Gingery
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
44
|
Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A, Garbossa D. Mesenchymal Stem Cells for Spinal Cord Injury: Current Options, Limitations, and Future of Cell Therapy. Int J Mol Sci 2019; 20:ijms20112698. [PMID: 31159345 PMCID: PMC6600381 DOI: 10.3390/ijms20112698] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) constitutes an inestimable public health issue. The most crucial phase in the pathophysiological process of SCI concerns the well-known secondary injury, which is the uncontrolled and destructive cascade occurring later with aberrant molecular signaling, inflammation, vascular changes, and secondary cellular dysfunctions. The use of mesenchymal stem cells (MSCs) represents one of the most important and promising tested strategies. Their appeal, among the other sources and types of stem cells, increased because of their ease of isolation/preservation and their properties. Nevertheless, encouraging promise from preclinical studies was followed by weak and conflicting results in clinical trials. In this review, the therapeutic role of MSCs is discussed, together with their properties, application, limitations, and future perspectives.
Collapse
Affiliation(s)
- Fabio Cofano
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Marina Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute "Cavalieri Ottolenghi", University of Turin, Consorzio Istituto Nazionale di Neuroscienze, 10043 Orbassano, Italy.
| | - Matteo Monticelli
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Francesco Zenga
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Alessandro Ducati
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Alessandro Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute "Cavalieri Ottolenghi", University of Turin, Consorzio Istituto Nazionale di Neuroscienze, 10043 Orbassano, Italy.
| | - Diego Garbossa
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| |
Collapse
|
45
|
Abstract
Stem cell therapy has tremendous potential for clinical application in the treatment of a variety of diseases in veterinary medicine. Based on the known desirable immunomodulatory properties of mesenchymal stem cells, this therapy has potential for treatment of a variety of renal diseases. This review details our current understanding of stem cell biology and proposed mechanism of action as applicable to renal disease. Studies performed in chronic kidney disease clinical trials and models of acute kidney injury are summarized with the goal of providing an overview of the current status of this treatment modality and its potential for the future.
Collapse
Affiliation(s)
- Jessica M Quimby
- Department of Veterinary Clinical Sciences, The Ohio State University, 601 Vernon Tharp Road, Columbus, OH 43210, USA.
| |
Collapse
|
46
|
An JH, Song WJ, Li Q, Kim SM, Yang JI, Ryu MO, Nam AR, Bhang DH, Jung YC, Youn HY. Prostaglandin E 2 secreted from feline adipose tissue-derived mesenchymal stem cells alleviate DSS-induced colitis by increasing regulatory T cells in mice. BMC Vet Res 2018; 14:354. [PMID: 30453939 PMCID: PMC6245895 DOI: 10.1186/s12917-018-1684-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is an intractable autoimmune disease, relatively common in cats, with chronic vomiting and diarrhea. Previous studies have reported that mesenchymal stem cells (MSCs) alleviate inflammation by modulating immune cells. However, there is a lack of research on cross-talk mechanism between feline adipose tissue-derived mesenchymal stem cells (fAT-MSCs) and immune cells in IBD model. Hence, this study aimed to evaluate the therapeutic effects of fAT-MSC on mice model of colitis and to clarify the therapeutic mechanism of fAT-MSCs. RESULTS Intraperitoneal infusion of fAT-MSC ameliorated the clinical and histopathologic severity of colitis, including body weight loss, diarrhea, and inflammation in the colon of Dextran sulfate sodium (DSS)-treated mice (C57BL/6). Since regulatory T cells (Tregs) are pivotal in modulating immune responses and maintaining tolerance in colitis, the relation of Tregs with fAT-MSC-secreted factor was investigated in vitro. PGE2 secreted from fAT-MSC was demonstrated to induce elevation of FOXP3 mRNA expression and adjust inflammatory cytokines in Con A-induced feline peripheral blood mononuclear cells (PBMCs). Furthermore, in vivo, FOXP3+ cells of the fAT-MSC group were significantly increased in the inflamed colon, relative to that in the PBS group. CONCLUSION Our results suggest that PGE2 secreted from fAT-MSC can reduce inflammation by increasing FOXP3+ Tregs in mice model of colitis. Consequently, these results propose the possibility of administration of fAT-MSC to cats with not only IBD but also other immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Ju-Hyun An
- Labolatory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Woo-Jin Song
- Labolatory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Qiang Li
- Labolatory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sang-Min Kim
- Labolatory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ji-In Yang
- Labolatory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Min-Ok Ryu
- Labolatory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - A Ryung Nam
- Labolatory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dong Ha Bhang
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Yun-Chan Jung
- Chaon Corporation, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13493, Republic of Korea
| | - Hwa-Young Youn
- Labolatory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
47
|
Zahedi M, Parham A, Dehghani H, Kazemi Mehrjerdi H. Equine bone marrow-derived mesenchymal stem cells: optimization of cell density in primary culture. Stem Cell Investig 2018; 5:31. [PMID: 30498742 DOI: 10.21037/sci.2018.09.01] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/27/2018] [Indexed: 11/06/2022]
Abstract
Background The primary cell seeding density of bone marrow-derived mononuclear cells (BM-MNCs) affects several cellular behaviors, including attachment to the culture dish, proliferation, and differentiation. Methods The aim of this study was to determine the best density of equine BM-MNCs in primary culture (P0) for obtaining the maximum bone marrow-derived mesenchymal stem cell (BM-MSC) yields at the end of P0. Bone marrow samples of two healthy mares were aspirated. The MNCs were isolated and cultured at different densities (1×105, 2×105, 4×105, 8×105, and 1×106 cells/cm2). Within the 7th and 14th days after seeding, the colonies containing more than 15 cells were counted and the percentage of confluency and the number of cells were calculated on day 21. Results The lowest density of MNCs was associated with the least number of colonies, number of adherent cells, and confluency percentage, whereas the highest density was associated with the maximum number of colonies and confluency percentage (P<0.05). However, the maximum number of cells at the end of P0 was associated with the intermediate (4×105 cells/cm2) and the highest concentration (P<0.05). Conclusions The maximum number of MSCs at the end of P0 was obtained at the densities of 1×106 and, especially, at 4×105 cells/cm2.
Collapse
Affiliation(s)
- Morteza Zahedi
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Parham
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell Biotechnology and Alterative Regenerative Medicine Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell Biotechnology and Alterative Regenerative Medicine Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Kazemi Mehrjerdi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
48
|
Marcheque J, Bussolati B, Csete M, Perin L. Concise Reviews: Stem Cells and Kidney Regeneration: An Update. Stem Cells Transl Med 2018; 8:82-92. [PMID: 30302937 PMCID: PMC6312445 DOI: 10.1002/sctm.18-0115] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023] Open
Abstract
Significant progress has been made to advance stem cell products as potential therapies for kidney diseases: various kinds of stem cells can restore renal function in preclinical models of acute and chronic kidney injury. Nonetheless this literature contains contradictory results, and for this reason, we focus this review on reasons for apparent discrepancies in the literature, because they contribute to difficulty in translating renal regenerative therapies. Differences in methodologies used to derive and culture stem cells, even those from the same source, in addition to the lack of standardized renal disease animal models (both acute and chronic), are important considerations underlying contradictory results in the literature. We propose that harmonized rigorous protocols for characterization, handling, and delivery of stem cells in vivo could significantly advance the field, and present details of some suggested approaches to foster translation in the field of renal regeneration. Our goal is to encourage coordination of methodologies (standardization) and long‐lasting collaborations to improve protocols and models to lead to reproducible, interpretable, high‐quality preclinical data. This approach will certainly increase our chance to 1 day offer stem cell therapeutic options for patients with all‐too‐common renal diseases. Stem Cells Translational Medicine2019;8:82–92
Collapse
Affiliation(s)
- Julia Marcheque
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, Los Angeles, California
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Marie Csete
- Medical Engineering, California Institute of Technology, Los Angeles, California.,Department of Anesthesiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, Los Angeles, California
| |
Collapse
|
49
|
Golachowski A, Hashmi SA, Golachowska B. Isolation and preservation of multipotent mesenchymal stem cells from bone marrow of Arabian leopard ( Panthera pradus nimr). Open Vet J 2018; 8:325-329. [PMID: 30237980 PMCID: PMC6140384 DOI: 10.4314/ovj.v8i3.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 08/25/2018] [Indexed: 11/17/2022] Open
Abstract
The Arabian leopard (Panthera pardus nimr) is critically endangered by the International Union for Conservation of Nature, with an effective population of 150-250 across its entire range in the Arabian Peninsula. Isolation and preservation of multipotent mesenchymal stem cells is beneficial both for medical and research purposes. The optimal protocol for collection, handling, culturing and preserving the Arabian leopard mesenchymal stem cells acquired from bone marrow was established. Anesthesia with combination of medetomidine and tiletamine-zozalepam is the safest option even for old animals with concurrent disease including chronic kidney disease.
Collapse
Affiliation(s)
- Andrzej Golachowski
- Directorate General of Veterinary Services, Royal Court Affairs, PC111 PO 64 Seeb, Oman
| | - Sulaiman Al Hashmi
- Biomedical Laboratory, University of Nizwa P. O. Box : 33, PC 616, Birkat Al-Mouz, Nizwa, Oman
| | - Barbara Golachowska
- Directorate General of Veterinary Services, Royal Court Affairs, PC111 PO 64 Seeb, Oman
| |
Collapse
|
50
|
Wang Q, Wang X, Lai D, Deng J, Hou Z, Liang H, Liu D. BIX-01294 promotes the differentiation of adipose mesenchymal stem cells into adipocytes and neural cells in Arbas Cashmere goats. Res Vet Sci 2018; 119:9-18. [PMID: 29783122 DOI: 10.1016/j.rvsc.2018.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/02/2018] [Accepted: 05/12/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Qing Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Defang Lai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Jin Deng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Zhuang Hou
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Hao Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|