1
|
Stocks BB, Thibeault MP, L'Abbé D, Umer M, Liu Y, Stuible M, Durocher Y, Melanson JE. Characterization of biotinylated human ACE2 and SARS-CoV-2 Omicron BA.4/5 spike protein reference materials. Anal Bioanal Chem 2024; 416:4861-4872. [PMID: 38942955 PMCID: PMC11330416 DOI: 10.1007/s00216-024-05413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Accurate diagnostic and serology assays are required for the continued management of the COVID-19 pandemic yet spike protein mutations and intellectual property concerns with antigens and antibodies used in various test kits render comparability assessments difficult. As the use of common, well-characterized reagents can help address this lack of standardization, the National Research Council Canada has produced two protein reference materials (RMs) for use in SARS-CoV-2 serology assays: biotinylated human angiotensin-converting enzyme 2 RM, ACE2-1, and SARS-CoV-2 Omicron BA.4/5 spike protein RM, OMIC-1. Reference values were assigned through a combination of amino acid analysis via isotope dilution liquid chromatography tandem mass spectrometry following acid hydrolysis, and ultraviolet-visible (UV-Vis) spectrophotometry at 280 nm. Vial-to-vial homogeneity was established using UV-Vis measurements, and protein oligomeric status, monitored by size exclusion liquid chromatography (LC-SEC), was used to evaluate transportation, storage, and freeze-thaw stabilities. The molar protein concentration in ACE2-1 was 25.3 ± 1.7 µmol L-1 (k = 2, 95% CI) and consisted almost exclusively (98%) of monomeric ACE2, while OMIC-1 contained 5.4 ± 0.5 µmol L-1 (k = 2) spike protein in a mostly (82%) trimeric form. Glycoprotein molar mass determination by LC-SEC with multi-angle light scattering detection facilitated calculation of corresponding mass concentrations. To confirm protein functionality, the binding of OMIC-1 to immobilized ACE2-1 was investigated with surface plasmon resonance and the resulting dissociation constant, KD ~ 4.4 nM, was consistent with literature values.
Collapse
Affiliation(s)
- Bradley B Stocks
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.
| | - Marie-Pier Thibeault
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Denis L'Abbé
- Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Muhammad Umer
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Yali Liu
- Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Matthew Stuible
- Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Yves Durocher
- Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Jeremy E Melanson
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| |
Collapse
|
2
|
Nguyen PH, Cui S, Kozarich AM, Rautio A, Roberts AG, Xiong MP. Utilizing surface plasmon resonance as a novel method for monitoring in-vitro P-glycoprotein efflux. FRONTIERS IN BIOPHYSICS 2024; 2:1367511. [PMID: 38645731 PMCID: PMC11027885 DOI: 10.3389/frbis.2024.1367511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
P-glycoprotein (Pgp) is known for its dichotomous roles as both a safeguarding efflux transporter against xenobiotics and as a catalyst for multidrug resistance. Given the susceptibility of numerous therapeutic compounds to Pgp-mediated resistance, compliance with Food and Drug Administration (FDA) guidelines mandates an in-depth in vitro transport assay during drug development. This study introduces an innovative transport assay that aligns with these regulatory imperatives but also addresses limitations in the currently established techniques. Using Pgp-reconstituted liposomes and employing surface plasmon resonance (SPR), this study developed a distinct method of measuring the relative transport rates of Pgp substrates in a controlled microenvironment. The Pgp substrates selected for this study-quinidine, methadone, and desipramine-resulted in transport ratios that corroborate with trends previously observed. To assess the kinetics of Pgp-mediated transport, the results were analyzed by fitting the data to both currently proposed Pgp substrate translocation models-the vacuum cleaner and flippase models. While the resulting kinetic analysis in this study lends support predominantly to the vacuum cleaner model, this study most notably developed a novel method of assessing Pgp-mediated transport rates and real-time kinetics using surface plasmon resonance.
Collapse
Affiliation(s)
- Phuong H. Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - Shuolin Cui
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - Amanda M. Kozarich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - Alex Rautio
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - Arthur G. Roberts
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - May P. Xiong
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
Baardsnes J, Paul-Roc B. SARS-CoV-2S-Protein-Ace2 Binding Analysis Using Surface Plasmon Resonance. Methods Mol Biol 2024; 2762:71-87. [PMID: 38315360 DOI: 10.1007/978-1-0716-3666-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Surface plasmon resonance (SPR) allows for the label-free determination of the binding affinity and rate constants of bimolecular interactions. Here, we describe the method used for the analysis of the Ace2-SARS-CoV2 S-protein interaction using indirect capture of the S-protein onto the SPR surface, and flowing monomeric Ace2. This method will allow for the determination of the rate constants for affinity, with additional analysis that is achievable using S-protein capture levels in conjunction with the sensorgram response for relative activity benchmarking.
Collapse
Affiliation(s)
- Jason Baardsnes
- Quality Attributes and Characterization, Human Health Therapeutics, National Research Council Canada, Montréal, QC, Canada.
| | - Béatrice Paul-Roc
- Quality Attributes and Characterization, Human Health Therapeutics, National Research Council Canada, Montréal, QC, Canada
| |
Collapse
|
4
|
Chang JW, Mu Y, Armaou A, Rioux RM. Direct Determination of High-Affinity Binding Constants by Continuous Injection Isothermal Titration Calorimetry. J Phys Chem B 2023; 127:10833-10842. [PMID: 38084387 DOI: 10.1021/acs.jpcb.3c05650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Isothermal titration calorimetry (ITC) is a method to determine thermodynamic values (ΔG, ΔH, and ΔS) for ligand-receptor binding in biological and abiological systems. It is challenging to directly determine subnanomolar dissociation constants using a standard incremental injection approach ITC (IIA-ITC) measurement. We recently demonstrated a continuous injection approach ITC (CIA-ITC) [ J. Phys. Chem. B 2021, 125, 8075-8087]enables the estimation of thermodynamic parameters in situ. In this work, we demonstrate a label-free and surface modification-free CIA-ITC to determine the complete binding thermodynamics of a ligand with a subnanomolar dissociation constant KD. The KD for desthiobiotin (DTB)-avidin binding was determined to be 6.5 pM with respect to the ligand by CIA-ITC, a quantity unsuccessfully measured with IIA-ITC and surface plasmon resonance spectroscopy (SPR). This value compares well with literature-reported spectroscopic determination of DTB-avidin binding. Criteria with respect to the concentration of the ligand and receptor and flow rate for obtaining true equilibrium dissociation constants without displacement titration are presented.
Collapse
Affiliation(s)
- Ji Woong Chang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi-si Gyeongsangbuk-do 39177, South Korea
| | - Yanyu Mu
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Antonios Armaou
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, University of Patras, Patras 26504, Greece
| | - Robert M Rioux
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
5
|
Juhász Á, Gombár G, Várkonyi EF, Wojnicki M, Ungor D, Csapó E. Thermodynamic Characterization of the Interaction of Biofunctionalized Gold Nanoclusters with Serum Albumin Using Two- and Three-Dimensional Methods. Int J Mol Sci 2023; 24:16760. [PMID: 38069083 PMCID: PMC10706308 DOI: 10.3390/ijms242316760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Fluorescent gold nanoclusters have been successfully used as fluorescent markers for imaging of cells and tissues, and their potential role in drug delivery monitoring is coming to the fore. In addition, the development of biosensors using structure-tunable fluorescent nanoclusters is also a prominent research field. In the case of these sensor applications, the typical goal is the selective identification of, e.g., metal ions, small molecules having neuroactive or antioxidant effects, or proteins. During these application-oriented developments, in general, there is not enough time to systematically examine the interaction between nanoclusters and relevant biomolecules/proteins from a thermodynamic viewpoint. In this way, the primary motivation of this article is to carry out a series of tests to partially fill this scientific gap. Besides the well-known fluorescent probes, the mentioned interactions were investigated using such unique measurement methods as surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). These two-dimensional (at the solid/liquid interface) and three-dimensional (in the bulk phase) measuring techniques provide a unique opportunity for the thermodynamic characterization of the interaction between different gold nanoclusters containing various surface functionalizing ligands and bovine serum albumin (BSA).
Collapse
Affiliation(s)
- Ádám Juhász
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
- MTA-SZTE Lendület “Momentum” Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary
| | - Gyöngyi Gombár
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
- MTA-SZTE Lendület “Momentum” Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary
| | - Egon F. Várkonyi
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland;
| | - Ditta Ungor
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
| | - Edit Csapó
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
- MTA-SZTE Lendület “Momentum” Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary
| |
Collapse
|
6
|
Romain M, Roman P, Saviot L, Millot N, Boireau W. Inferring the Interfacial Reactivity of Gold Nanoparticles by Surface Plasmon Resonance Measurements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13058-13067. [PMID: 37674412 DOI: 10.1021/acs.langmuir.3c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Gold nanoparticles (GNPs) require a functionalization step in most cases to be suitable for applications. Optimizing this step in order to maintain both the stability and the plasmonic properties of the GNPs is a demanding process. Indeed, multiple analyses are required to get sufficient information on the grafting rate and the stability of the obtained suspension, leading to material and time waste. In this study, we propose to investigate ligand reactivity on a gold surface with surface plasmon resonance (SPR) measurements as a way to simulate the reactivity in GNP suspensions. We consider two thiolated ligands in this work: thioglycolic acid (TA) and 6-mercaptohexanoic acid (MHA). These thiols are grafted using different conditions on GNPs (monitored by optical absorption) and on a gold surface (monitored by SPR) and the grafting efficiency and stability are compared. The same conclusions are reached in both cases regarding the best protocol to implement, namely, the thiol molecules should be introduced in a water solution at a low concentration. This demonstrates the suitability of SPR to predict the reactivity on a GNP surface.
Collapse
Affiliation(s)
- Mélanie Romain
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon 21078, France
| | - Phoölan Roman
- Université de Franche-Comté, CNRS, Institut Femto-ST, Besançon F-25030, France
| | - Lucien Saviot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon 21078, France
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université de Bourgogne, BP 47870, Dijon 21078, France
| | - Wilfrid Boireau
- Université de Franche-Comté, CNRS, Institut Femto-ST, Besançon F-25030, France
| |
Collapse
|
7
|
Hong X, Tong X, Xie J, Liu P, Liu X, Song Q, Liu S, Liu S. An updated dataset and a structure-based prediction model for protein-RNA binding affinity. Proteins 2023; 91:1245-1253. [PMID: 37186412 DOI: 10.1002/prot.26503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/08/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
Understanding the process of protein-RNA interaction is essential for structural biology. The thermodynamic process is an important part to uncover the protein-RNA interaction mechanism. The regulatory networks between protein and RNA in organisms are dominated by the binding or dissociation in the cells. Therefore, determining the binding affinity for protein-RNA complexes can help us to understand the regulation mechanism of protein-RNA interaction. Since it is time-consuming and labor-intensive to determine the binding affinity for protein-RNA complexes by experimental methods, it is necessary and urgent to develop computational methods to predict that. To develop a binding affinity prediction model, first we update the dataset of protein-RNA binding affinity benchmark (PRBAB), which includes 145 complexes now. Second, we extract the structural features based on complex structure, and then we analyze and select the representative structural features to train the regression model. Third, we random select the subset from the PRBAB2.0 to fit the protein-RNA binding affinity determined by experiment. In the end, we tested our model on the nonredundant PDBbind dataset, and the results showed that Pearson correlation coefficient r = .57 and RMSE = 2.51 kcal/mol. The Pearson correlation coefficient achieves 0.7 while removing 5 complex structures with modified residues/nucleotides and metal ions. While testing on ProNAB, the results showed that 71.60% of the prediction achieves Pearson correlation coefficient r = .61 and RMSE = 1.56 kcal/mol with experiment values.
Collapse
Affiliation(s)
- Xu Hong
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoxue Tong
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Xie
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pinyu Liu
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xudong Liu
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Song
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Sen Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Shiyong Liu
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Hogan K, Paul S, Lin G, Fuerte-Stone J, Sokurenko EV, Thomas WE. Effect of Gravity on Bacterial Adhesion to Heterogeneous Surfaces. Pathogens 2023; 12:941. [PMID: 37513788 PMCID: PMC10383686 DOI: 10.3390/pathogens12070941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial adhesion is the first step in the formation of surface biofilms. The number of bacteria that bind to a surface from the solution depends on how many bacteria can reach the surface (bacterial transport) and the strength of interactions between bacterial adhesins and surface receptors (adhesivity). By using microfluidic channels and video microscopy as well as computational simulations, we investigated how the interplay between bacterial transport and adhesivity affects the number of the common human pathogen Escherichia coli that bind to heterogeneous surfaces with different receptor densities. We determined that gravitational sedimentation causes bacteria to concentrate at the lower surface over time as fluid moves over a non-adhesive region, so bacteria preferentially adhere to adhesive regions on the lower, inflow-proximal areas that are downstream of non-adhesive regions within the entered compartments. Also, initial bacterial attachment to an adhesive region of a heterogeneous lower surface may be inhibited by shear due to mass transport effects alone rather than shear forces per se, because higher shear washes out the sedimented bacteria. We also provide a conceptual framework and theory that predict the impact of sedimentation on adhesion between and within adhesive regions in flow, where bacteria would likely bind both in vitro and in vivo, and how to normalize the bacterial binding level under experimental set-ups based on the flow compartment configuration.
Collapse
Affiliation(s)
- Kayla Hogan
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Sai Paul
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Guanyou Lin
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jay Fuerte-Stone
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Evgeni V Sokurenko
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Wendy E Thomas
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Hug MN, Keller S, Marty T, Gygax D, Meinel D, Spies P, Handschin J, Kleiser M, Vazquez N, Linnik J, Buchli R, Claas F, Heidt S, Kramer CSM, Bezstarosti S, Lee JH, Schaub S, Hönger G. HLA antibody affinity determination: From HLA-specific monoclonal antibodies to donor HLA specific antibodies (DSA) in patient serum. HLA 2023. [PMID: 37191252 DOI: 10.1111/tan.15047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Organs transplanted across donor-specific HLA antibodies (DSA) are associated with a variety of clinical outcomes, including a high risk of acute kidney graft rejection. Unfortunately, the currently available assays to determine DSA characteristics are insufficient to clearly discriminate between potentially harmless and harmful DSA. To further explore the hazard potential of DSA, their concentration and binding strength to their natural target, using soluble HLA, may be informative. There are currently a number of biophysical technologies available that allow the assessment of antibody binding strength. However, these methods require prior knowledge of antibody concentrations. Our objective within this study was to develop a novel approach that combines the determination of DSA-affinity as well as DSA-concentration for patient sample evaluation within one assay. We initially tested the reproducibility of previously reported affinities of human HLA-specific monoclonal antibodies and assessed the technology-specific precision of the obtained results on multiple platforms, including surface plasmon resonance (SPR), bio-layer interferometry (BLI), Luminex (single antigen beads; SAB), and flow-induced dispersion analysis (FIDA). While the first three (solid-phase) technologies revealed comparable high binding-strengths, suggesting measurement of avidity, the latter (in-solution) approach revealed slightly lower binding-strengths, presumably indicating measurement of affinity. We believe that our newly developed in-solution FIDA-assay is particularly suitable to provide useful clinical information by not just measuring DSA-affinities in patient serum samples but simultaneously delivering a particular DSA-concentration. Here, we investigated DSA from 20 pre-transplant patients, all of whom showed negative CDC-crossmatch results with donor cells and SAB signals ranging between 571 and 14899 mean fluorescence intensity (MFI). DSA-concentrations were found in the range between 11.2 and 1223 nM (median 81.1 nM), and their measured affinities fall between 0.055 and 24.7 nM (median 5.34 nM; 449-fold difference). In 13 of 20 sera (65%), DSA accounted for more than 0.1% of total serum antibodies, and 4/20 sera (20%) revealed a proportion of DSA even higher than 1%. To conclude, this study strengthens the presumption that pre-transplant patient DSA consists of various concentrations and different net affinities. Validation of these results in a larger patient cohort with clinical outcomes will be essential in a further step to assess the clinical relevance of DSA-concentration and DSA-affinity.
Collapse
Affiliation(s)
- Melanie N Hug
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences Muttenz, Muttenz, Switzerland
| | - Sabrina Keller
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences Muttenz, Muttenz, Switzerland
| | - Talea Marty
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences Muttenz, Muttenz, Switzerland
| | - Daniel Gygax
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences Muttenz, Muttenz, Switzerland
| | - Dominik Meinel
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences Muttenz, Muttenz, Switzerland
| | - Peter Spies
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences Muttenz, Muttenz, Switzerland
| | - Joëlle Handschin
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Kleiser
- Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Noemi Vazquez
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Janina Linnik
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Rico Buchli
- Department of Research and Development, PureProtein LLC, Oklahoma City, Oklahoma, USA
| | - Frans Claas
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cynthia S M Kramer
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne Bezstarosti
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jar-How Lee
- Research Department, Terasaki Innovation Center (TIC), Glendale, California, USA
| | - Stefan Schaub
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Gideon Hönger
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
10
|
Lyu Y, An L, Zeng H, Zheng F, Guo J, Zhang P, Yang H, Li H. First-passage time analysis of diffusion-controlled reactions in single-molecule detection. Talanta 2023; 260:124569. [PMID: 37116360 DOI: 10.1016/j.talanta.2023.124569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/21/2023] [Accepted: 04/16/2023] [Indexed: 04/30/2023]
Abstract
Single-molecule detection (SMD) aims to achieve the ultimate limit-of-detection (LOD) in biosensing. This method detects a countable number of targeted analyte molecules in solution, where the dynamics of molecule diffusion, capturing, identification and delivery greatly impact the SMD's efficiency and accuracy. In this study, we adopt the first-passage time method to investigate the diffusion-controlled reaction process in SMD. We analyze the influence of detection conditions on incubation time and the expected coefficient of variation (CV) under three SMD molecule capturing strategies, including solid-phase capturing (one-dimensional solid-liquid interface fixation), liquid-phase magnetic bead (MB) capturing, and liquid-phase direct fluorescence pair labeling. We find that inside a finite-sized reaction chamber, a finite average reaction time exists in all three capturing strategies, while the liquid-phase strategies are in general more efficient than the solid-phase approaches. CV can be estimated by averaging first-passage time solely in all three strategies, and the CV reduction is achievable given an extended reaction time. To further enable zeptomolar detection, extra treatments, such as adopting liquid-phase fluorescence pairs with high diffusion rates to label the molecule, or designing specific sensing devices with large effective sensing areas would be required. This framework provides solid theoretical support to guide the design of SMD sensing strategies and sensor structures to achieve desired measurement time and CV.
Collapse
Affiliation(s)
- Yingkai Lyu
- National Innovation Center for Advanced Medical Devices, Shenzhen, China; Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lixiang An
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Huaiyang Zeng
- National Innovation Center for Advanced Medical Devices, Shenzhen, China; Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Feng Zheng
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Jiajia Guo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pengcheng Zhang
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hui Yang
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hao Li
- National Innovation Center for Advanced Medical Devices, Shenzhen, China.
| |
Collapse
|
11
|
Abstract
In the computational design of antibodies, the interaction analysis between target antigen and antibody is an essential process to obtain feedback for validation and optimization of the design. Kinetic and thermodynamic parameters as well as binding affinity (KD) allow for a more detailed evaluation and understanding of the molecular recognition. In this chapter, we summarize the conventional experimental methods which can calculate KD value (ELISA, FP), analyze a binding activity to actual cells (FCM), and evaluate the kinetic and thermodynamic parameters (ITC, SPR, BLI), including high-throughput analysis and a recently developed experimental technique.
Collapse
Affiliation(s)
- Aki Tanabe
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
12
|
Illes-Toth E, Stubbs CJ, Sisley EK, Bellamy-Carter J, Simmonds AL, Mize TH, Styles IB, Goodwin RJA, Cooper HJ. Quantitative Characterization of Three Carbonic Anhydrase Inhibitors by LESA Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1168-1175. [PMID: 35675480 PMCID: PMC9264382 DOI: 10.1021/jasms.2c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid extraction surface analysis (LESA) coupled to native mass spectrometry (MS) presents unique analytical opportunities due to its sensitivity, speed, and automation. Here, we examine whether this tool can be used to quantitatively probe protein-ligand interactions through calculation of equilibrium dissociation constants (Kd values). We performed native LESA MS analyses for a well-characterized system comprising bovine carbonic anhydrase II and the ligands chlorothiazide, dansylamide, and sulfanilamide, and compared the results with those obtained from direct infusion mass spectrometry and surface plasmon resonance measurements. Two LESA approaches were considered: In one approach, the protein and ligand were premixed in solution before being deposited and dried onto a solid substrate for LESA sampling, and in the second, the protein alone was dried onto the substrate and the ligand was included in the LESA sampling solvent. Good agreement was found between the Kd values derived from direct infusion MS and LESA MS when the protein and ligand were premixed; however, Kd values determined from LESA MS measurements where the ligand was in the sampling solvent were inconsistent. Our results suggest that LESA MS is a suitable tool for quantitative analysis of protein-ligand interactions when the dried sample comprises both protein and ligand.
Collapse
Affiliation(s)
- Eva Illes-Toth
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Christopher J. Stubbs
- Mechanistic
and Structural Biology, Discovery Sciences,
R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Emma K. Sisley
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | - Anna L. Simmonds
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Todd H. Mize
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Iain B. Styles
- School
of Computer Science and Centre of Membrane Proteins and Receptors
(COMPARE), University of Birmingham, Birmingham B15 2TT, United Kingdom
- The Alan Turing Institute, London NW1 2DB, United Kingdom
- University of Nottingham, Midlands NG7 2RD, United Kingdom
| | - Richard J. A. Goodwin
- Imaging and
Data Analytics, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals
R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Helen J. Cooper
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
13
|
Alfeo MJ, Pagotto A, Barbieri G, Foster TJ, Vanhoorelbeke K, De Filippis V, Speziale P, Pietrocola G. Staphylococcus aureus iron-regulated surface determinant B (IsdB) protein interacts with von Willebrand factor and promotes adherence to endothelial cells. Sci Rep 2021; 11:22799. [PMID: 34815454 PMCID: PMC8611056 DOI: 10.1038/s41598-021-02065-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/01/2021] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus aureus is the cause of a spectrum of diseases in humans and animals. The molecular basis of this pathogenicity lies in the expression of a variety of virulence factors, including proteins that mediate adherence to the host plasma and extracellular matrix proteins. In this study, we discovered that the iron-regulated surface determinant B (IsdB) protein, besides being involved in iron transport and vitronectin binding, interacts with von Willebrand Factor (vWF). IsdB-expressing bacteria bound to both soluble and immobilized vWF. The binding of recombinant IsdB to vWF was blocked by heparin and reduced at high ionic strength. Furthermore, treatment with ristocetin, an allosteric agent that promotes the exposure of the A1 domain of vWF, potentiates the binding of IsdB to vWF. Both near-iron transporter motifs NEAT1 and NEAT2 of IsdB individually bound recombinant A1 domain with KD values in the micromolar range. The binding of IsdB and adhesion of S. aureus expressing IsdB to monolayers of activated endothelial cells was significantly inhibited by a monoclonal antibody against the A1 domain and by IsdB reactive IgG from patients with staphylococcal endocarditis. This suggests the importance of IsdB in adherence of S. aureus to the endothelium colonization and as potential therapeutic target.
Collapse
Affiliation(s)
- Mariangela J Alfeo
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100, Pavia, Italy
| | - Anna Pagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131, Padua, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Timothy J Foster
- Microbiology Department, Trinity College Dublin, Dublin, Ireland
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Vincenzo De Filippis
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131, Padua, Italy
| | - Pietro Speziale
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100, Pavia, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100, Pavia, Italy.
| |
Collapse
|
14
|
Barton MI, MacGowan SA, Kutuzov MA, Dushek O, Barton GJ, van der Merwe PA. Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. eLife 2021; 10:e70658. [PMID: 34435953 PMCID: PMC8480977 DOI: 10.7554/elife.70658] [Citation(s) in RCA: 232] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022] Open
Abstract
The interaction between the SARS-CoV-2 virus Spike protein receptor binding domain (RBD) and the ACE2 cell surface protein is required for viral infection of cells. Mutations in the RBD are present in SARS-CoV-2 variants of concern that have emerged independently worldwide. For example, the B.1.1.7 lineage has a mutation (N501Y) in its Spike RBD that enhances binding to ACE2. There are also ACE2 alleles in humans with mutations in the RBD binding site. Here we perform a detailed affinity and kinetics analysis of the effect of five common RBD mutations (K417N, K417T, N501Y, E484K, and S477N) and two common ACE2 mutations (S19P and K26R) on the RBD/ACE2 interaction. We analysed the effects of individual RBD mutations and combinations found in new SARS-CoV-2 Alpha (B.1.1.7), Beta (B.1.351), and Gamma (P1) variants. Most of these mutations increased the affinity of the RBD/ACE2 interaction. The exceptions were mutations K417N/T, which decreased the affinity. Taken together with other studies, our results suggest that the N501Y and S477N mutations enhance transmission primarily by enhancing binding, the K417N/T mutations facilitate immune escape, and the E484K mutation enhances binding and immune escape.
Collapse
Affiliation(s)
- Michael I Barton
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | | | - Mikhail A Kutuzov
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | | | | |
Collapse
|
15
|
Li D, Odessey R, Li D, Pacifici D. Plasmonic Interferometers as TREM2 Sensors for Alzheimer's Disease. BIOSENSORS 2021; 11:217. [PMID: 34356688 PMCID: PMC8301914 DOI: 10.3390/bios11070217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/17/2022]
Abstract
We report an effective surface immobilization protocol for capture of Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), a receptor whose elevated concentration in cerebrospinal fluid has recently been associated with Alzheimer's disease (AD). We employ the proposed surface functionalization scheme to design, fabricate, and assess a biochemical sensing platform based on plasmonic interferometry that is able to detect physiological concentrations of TREM2 in solution. These findings open up opportunities for label-free biosensing of TREM2 in its soluble form in various bodily fluids as an early indicator of the onset of clinical dementia in AD. We also show that plasmonic interferometry can be a powerful tool to monitor and optimize surface immobilization schemes, which could be applied to develop other relevant antibody tests.
Collapse
Affiliation(s)
- Dingdong Li
- School of Engineering, Brown University, 184 Hope St, Providence, RI 02912, USA; (D.L.); (R.O.); (D.L.)
| | - Rachel Odessey
- School of Engineering, Brown University, 184 Hope St, Providence, RI 02912, USA; (D.L.); (R.O.); (D.L.)
| | - Dongfang Li
- School of Engineering, Brown University, 184 Hope St, Providence, RI 02912, USA; (D.L.); (R.O.); (D.L.)
| | - Domenico Pacifici
- School of Engineering, Brown University, 184 Hope St, Providence, RI 02912, USA; (D.L.); (R.O.); (D.L.)
- Department of Physics, Brown University, 182 Hope St, Providence, RI 02912, USA
| |
Collapse
|
16
|
Frutiger A, Tanno A, Hwu S, Tiefenauer RF, Vörös J, Nakatsuka N. Nonspecific Binding-Fundamental Concepts and Consequences for Biosensing Applications. Chem Rev 2021; 121:8095-8160. [PMID: 34105942 DOI: 10.1021/acs.chemrev.1c00044] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nature achieves differentiation of specific and nonspecific binding in molecular interactions through precise control of biomolecules in space and time. Artificial systems such as biosensors that rely on distinguishing specific molecular binding events in a sea of nonspecific interactions have struggled to overcome this issue. Despite the numerous technological advancements in biosensor technologies, nonspecific binding has remained a critical bottleneck due to the lack of a fundamental understanding of the phenomenon. To date, the identity, cause, and influence of nonspecific binding remain topics of debate within the scientific community. In this review, we discuss the evolution of the concept of nonspecific binding over the past five decades based upon the thermodynamic, intermolecular, and structural perspectives to provide classification frameworks for biomolecular interactions. Further, we introduce various theoretical models that predict the expected behavior of biosensors in physiologically relevant environments to calculate the theoretical detection limit and to optimize sensor performance. We conclude by discussing existing practical approaches to tackle the nonspecific binding challenge in vitro for biosensing platforms and how we can both address and harness nonspecific interactions for in vivo systems.
Collapse
Affiliation(s)
- Andreas Frutiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Alexander Tanno
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Stephanie Hwu
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Raphael F Tiefenauer
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| |
Collapse
|
17
|
Molecular coevolution of coagulation factor VIII and von Willebrand factor. Blood Adv 2021; 5:812-822. [PMID: 33560395 DOI: 10.1182/bloodadvances.2020002971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Ancestral sequence reconstruction provides a unique platform for investigating the molecular evolution of single gene products and recently has shown success in engineering advanced biological therapeutics. To date, the coevolution of proteins within complexes and protein-protein interactions is mostly investigated in silico via proteomics and/or within single-celled systems. Herein, ancestral sequence reconstruction is used to investigate the molecular evolution of 2 proteins linked not only by stabilizing association in circulation but also by their independent roles within the primary and secondary hemostatic systems of mammals. Using sequence analysis and biochemical characterization of recombinant ancestral von Willebrand factor (VWF) and coagulation factor VIII (FVIII), we investigated the evolution of the essential macromolecular FVIII/VWF complex. Our data support the hypothesis that these coagulation proteins coevolved throughout mammalian diversification, maintaining strong binding affinities while modulating independent and distinct hemostatic activities in diverse lineages.
Collapse
|
18
|
Tiwari PB, Bencheqroun C, Lemus M, Shaw T, Kouassi-Brou M, Alaoui A, Üren A. SPRD: a surface plasmon resonance database of common factors for better experimental planning. BMC Mol Cell Biol 2021; 22:17. [PMID: 33676410 PMCID: PMC7937274 DOI: 10.1186/s12860-021-00354-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Background Surface plasmon resonance is a label-free biophysical technique that is widely used in investigating biomolecular interactions, including protein-protein, protein-DNA, and protein-small molecule binding. Surface plasmon resonance is a very powerful tool in different stages of small molecule drug development and antibody characterization. Both academic institutions and pharmaceutical industry extensively utilize this method for screening and validation studies involving direct molecular interactions. In most applications of the surface plasmon resonance technology, one of the studied molecules is immobilized on a microchip, while the second molecule is delivered through a microfluidic system over the immobilized molecules. Changes in total mass on the chip surface is recorded in real time as an indicator of the molecular interactions. Main body Quality and accuracy of the surface plasmon resonance data depend on experimental variables, including buffer composition, type of sensor chip, coupling chemistry of molecules on the sensor surface, and surface regeneration conditions. These technical details are generally included in materials and methods sections of published manuscripts and are not easily accessible using the common internet browser search engines or PubMed. Herein, we introduce a surface plasmon resonance database, www.sprdatabase.info that contains technical details extracted from 5140 publications with surface plasmon resonance data. We also provide an analysis of experimental conditions preferred by different laboratories. These experimental variables can be searched within the database and help future users of this technology to design better experiments. Conclusion Amine coupling and CM5 chips were the most common methods used for immobilizing proteins in surface plasmon resonance experiments. However, number of different chips, capture methods and buffer conditions were used by multiple investigators. We predict that the database will significantly help the scientific community using this technology and hope that users will provide feedback to improve and expand the database indefinitely. Publicly available information in the database can save a great amount of time and resources by assisting initial optimization and troubleshooting of surface plasmon resonance experiments.
Collapse
Affiliation(s)
| | - Camelia Bencheqroun
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington, DC, 20057, USA
| | - Mario Lemus
- Department of Oncology, Georgetown University, Washington, DC, 20057, USA
| | - Taryn Shaw
- Department of Oncology, Georgetown University, Washington, DC, 20057, USA
| | - Marilyn Kouassi-Brou
- Department of Oncology, Georgetown University, Washington, DC, 20057, USA.,Geisel School of Medicine, Dartmouth College, NH, 03755, Hanover, USA
| | - Adil Alaoui
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington, DC, 20057, USA
| | - Aykut Üren
- Department of Oncology, Georgetown University, Washington, DC, 20057, USA.
| |
Collapse
|
19
|
Arshavsky Graham S, Boyko E, Salama R, Segal E. Mass Transfer Limitations of Porous Silicon-Based Biosensors for Protein Detection. ACS Sens 2020; 5:3058-3069. [PMID: 32896130 PMCID: PMC7589614 DOI: 10.1021/acssensors.0c00670] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
Porous
silicon (PSi) thin films have been widely studied for biosensing
applications, enabling label-free optical detection of numerous targets.
The large surface area of these biosensors has been commonly recognized
as one of the main advantages of the PSi nanostructure. However, in
practice, without application of signal amplification strategies,
PSi-based biosensors suffer from limited sensitivity, compared to
planar counterparts. Using a theoretical model, which describes the
complex mass transport phenomena and reaction kinetics in these porous
nanomaterials, we reveal that the interrelated effect of bulk and
hindered diffusion is the main limiting factor of PSi-based biosensors.
Thus, without significantly accelerating the mass transport to and
within the nanostructure, the target capture performance of these
biosensors would be comparable, regardless of the nature of the capture
probe–target pair. We use our model to investigate the effect
of various structural and biosensor characteristics on the capture
performance of such biosensors and suggest rules of thumb for their
optimization.
Collapse
Affiliation(s)
- Sofia Arshavsky Graham
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
- Institute of Technical Chemistry, Leibniz Universität Hannover, Callinstr. 5, Hanover 30167, Germany
| | - Evgeniy Boyko
- Department of Mechanical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
- The Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
20
|
Hornok V, Juhász Á, Paragi G, Kovács AN, Csapó E. Thermodynamic and kinetic insights into the interaction of kynurenic acid with human serum albumin: Spectroscopic and calorimetric approaches. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Application of the Gyrolab microfluidic platform to measure picomolar affinity of a PD-L1-binding Adnectin™ radioligand for positron emission tomography. Biotechniques 2020; 69:200-205. [PMID: 32672060 DOI: 10.2144/btn-2020-0080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Advances in in vitro display and protein engineering yield therapeutics with affinities in the picomolar range. The Gyrolab® microfluidics platform uses the kinetic exclusion assay principle to measure subnanomolar solution affinities. This work describes application of the Gyrolab solution affinity module and the new multi-curve analysis feature to determine affinity of the PD-L1 Adnectin™ positron emission tomography radioligand, which was measured as 20 pM for human PD-L1. We also report key parameters that affect assay signal-to-background ratio and data quality, such as detection reagent concentration. Gyrolab offers the necessary throughput for rapid assay development with low sample consumption, as demonstrated in this study, which also provides helpful tips for assay optimization for solution affinity measurement.
Collapse
|
22
|
Mamer SB, Page P, Murphy M, Wang J, Gallerne P, Ansari A, Imoukhuede PI. The Convergence of Cell-Based Surface Plasmon Resonance and Biomaterials: The Future of Quantifying Bio-molecular Interactions-A Review. Ann Biomed Eng 2020; 48:2078-2089. [PMID: 31811474 PMCID: PMC8637426 DOI: 10.1007/s10439-019-02429-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022]
Abstract
Cell biology is driven by complex networks of biomolecular interactions. Characterizing the kinetic and thermodynamic properties of these interactions is crucial to understanding their role in different physiological processes. Surface plasmon resonance (SPR)-based approaches have become a key tool in quantifying biomolecular interactions, however conventional approaches require isolating the interacting components from the cellular system. Cell-based SPR approaches have recently emerged, promising to enable precise measurements of biomolecular interactions within their normal biological context. Two major approaches have been developed, offering their own advantages and limitations. These approaches currently lack a systematic exploration of 'best practices' like those existing for traditional SPR experiments. Toward this end, we describe the two major approaches, and identify the experimental parameters that require exploration, and discuss the experimental considerations constraining the optimization of each. In particular, we discuss the requirements of future biomaterial development needed to advance the cell-based SPR technique.
Collapse
Affiliation(s)
- Spencer B Mamer
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | - Jiaojiao Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Pierrick Gallerne
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Ecole Centrale de Lille, Villeneuve d'Ascq, Hauts-De-France, France
| | - Ali Ansari
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - P I Imoukhuede
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
23
|
Robin M, Tayakout-Fayolle M, Pitault I, Jallut C, Drazek L. Estimation of Kinetic Parameters Involved in Solid-Phase Immunoassays by Affinity Chromatography. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maëlenn Robin
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
- bioMérieux SA, Immuno Innovation Department, 376 chemin de l’Orme, 69280 Marcy l’Etoile, France
| | - Mélaz Tayakout-Fayolle
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Isabelle Pitault
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Christian Jallut
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Laurent Drazek
- bioMérieux SA, Biomathematics Departement, 5 rue des Berges, 38024 Grenoble, France
| |
Collapse
|
24
|
Stack E, McMurray S, McMurray G, Wade J, Clark M, Young G, Marquette K, Jain S, Kelleher K, Chen T, Lin Q, Bloom L, Lin L, Finlay W, Suzuki R, Cunningham O. In vitro affinity optimization of an anti-BDNF monoclonal antibody translates to improved potency in targeting chronic pain states in vivo. MAbs 2020; 12:1755000. [PMID: 32329655 PMCID: PMC7188400 DOI: 10.1080/19420862.2020.1755000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The role of brain-derived neurotrophic factor (BDNF) signaling in chronic pain has been well documented. Given the important central role of BDNF in long term plasticity and memory, we sought to engineer a high affinity, peripherally-restricted monoclonal antibody against BDNF to modulate pain. BDNF shares 100% sequence homology across human and rodents; thus, we selected chickens as an alternative immune host for initial antibody generation. Here, we describe the affinity optimization of complementarity-determining region-grafted, chicken-derived R3bH01, an anti-BDNF antibody specifically blocking the TrkB receptor interaction. Antibody optimization led to the identification of B30, which has a > 300-fold improvement in affinity based on BIAcore, an 800-fold improvement in potency in a cell-based pERK assay and demonstrates exquisite selectivity over related neurotrophins. Affinity improvements measured in vitro translated to in vivo pharmacological activity, with B30 demonstrating a 30-fold improvement in potency over parental R3bH01 in a peripheral nerve injury model. We further demonstrate that peripheral BDNF plays a role in maintaining the plasticity of sensory neurons following nerve damage, with B30 reversing neuron hyperexcitability associated with heat and mechanical stimuli in a dose-dependent fashion. In summary, our data demonstrate that effective sequestration of BDNF via a high affinity neutralizing antibody has potential utility in modulating the pathophysiological mechanisms that drive chronic pain states.
Collapse
Affiliation(s)
| | | | | | - Jason Wade
- Biomedicine Design, Pfizer, Dublin, Ireland.,Biomedicine Design, Pfizer, Cambridge, US
| | | | | | | | | | | | - Ting Chen
- Biomedicine Design, Pfizer, Cambridge, US
| | | | | | - Laura Lin
- Biomedicine Design, Pfizer, Cambridge, US
| | | | | | | |
Collapse
|
25
|
Faltinek L, Fujdiarová E, Melicher F, Houser J, Kašáková M, Kondakov N, Kononov L, Parkan K, Vidal S, Wimmerová M. Lectin PLL3, a Novel Monomeric Member of the Seven-Bladed β-Propeller Lectin Family. Molecules 2019; 24:E4540. [PMID: 31835851 PMCID: PMC6943638 DOI: 10.3390/molecules24244540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 01/23/2023] Open
Abstract
The Photorhabdus species is a Gram-negative bacteria of the family Morganellaceae that is known for its mutualistic relationship with Heterorhabditis nematodes and pathogenicity toward insects. This study is focused on the characterization of the recombinant lectin PLL3 with an origin in P. laumondii subsp. laumondii. PLL3 belongs to the PLL family of lectins with a seven-bladed β-propeller fold. The binding properties of PLL3 were tested by hemagglutination assay, glycan array, isothermal titration calorimetry, and surface plasmon resonance, and its structure was determined by X-ray crystallography. Obtained data revealed that PLL3 binds similar carbohydrates to those that the other PLL family members bind, with some differences in the binding properties. PLL3 exhibited the highest affinity toward l-fucose and its derivatives but was also able to interact with O-methylated glycans and other ligands. Unlike the other members of this family, PLL3 was discovered to be a monomer, which might correspond to a weaker avidity effect compared to homologous lectins. Based on the similarity to the related lectins and their proposed biological function, PLL3 might accompany them during the interaction of P. laumondii with both the nematode partner and the insect host.
Collapse
Affiliation(s)
- Lukáš Faltinek
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic;
| | - Eva Fujdiarová
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (E.F.); (F.M.); (J.H.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Filip Melicher
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (E.F.); (F.M.); (J.H.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Josef Houser
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (E.F.); (F.M.); (J.H.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Martina Kašáková
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague (UCTP), Technická 5, 166 28 Prague, Czech Republic; (M.K.); (K.P.)
| | - Nikolay Kondakov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119 415, Russia; (N.K.); (L.K.)
| | - Leonid Kononov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119 415, Russia; (N.K.); (L.K.)
| | - Kamil Parkan
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague (UCTP), Technická 5, 166 28 Prague, Czech Republic; (M.K.); (K.P.)
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CO2-Glyco, UMR 5246, CNRS, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 6922 Villeurbanne, France;
| | - Michaela Wimmerová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic;
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (E.F.); (F.M.); (J.H.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
26
|
Gianquinto E, Moscetti I, De Bei O, Campanini B, Marchetti M, Luque FJ, Cannistraro S, Ronda L, Bizzarri AR, Spyrakis F, Bettati S. Interaction of human hemoglobin and semi-hemoglobins with the Staphylococcus aureus hemophore IsdB: a kinetic and mechanistic insight. Sci Rep 2019; 9:18629. [PMID: 31819099 PMCID: PMC6901573 DOI: 10.1038/s41598-019-54970-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022] Open
Abstract
Among multidrug-resistant bacteria, methicillin-resistant Staphylococcus aureus is emerging as one of the most threatening pathogens. S. aureus exploits different mechanisms for its iron supply, but the preferred one is acquisition of organic iron through the expression of hemoglobin (Hb) receptors. One of these, IsdB, belonging to the Isd (Iron-Regulated Surface Determinant) system, was shown to be essential for bacterial growth and virulence. Therefore, interaction of IsdB with Hb represents a promising target for the rational design of a new class of antibacterial molecules. However, despite recent investigations, many structural and mechanistic details of complex formation and heme extraction process are still elusive. By combining site-directed mutagenesis, absorption spectroscopy, surface plasmon resonance and molecular dynamics simulations, we tackled most of the so far unanswered questions: (i) the exact complex stoichiometry, (ii) the microscopic kinetic rates of complex formation, (iii) the IsdB selectivity for binding to, and extracting heme from, α and β subunits of Hb, iv) the role of specific amino acid residues and structural regions in driving complex formation and heme transfer, and (v) the structural/dynamic effect played by the hemophore on Hb.
Collapse
Affiliation(s)
- Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Turin, 10125, Italy
| | - Ilaria Moscetti
- Department of Environmental and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy
| | - Omar De Bei
- Department of Food and Drug, University of Parma, Parma, 43124, Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, Parma, 43124, Italy.,Interdepartment Center Biopharmanet-TEC, University of Parma, Parma, 43124, Italy
| | - Marialaura Marchetti
- Department of Drug Science and Technology, University of Turin, Turin, 10125, Italy.,Interdepartment Center Biopharmanet-TEC, University of Parma, Parma, 43124, Italy
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Santa Coloma de Gramenet, 08921, Spain
| | - Salvatore Cannistraro
- Department of Environmental and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy
| | - Luca Ronda
- Interdepartment Center Biopharmanet-TEC, University of Parma, Parma, 43124, Italy.,Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy.,Institute of Biophysics, National Research Council, Pisa, 56124, Italy
| | - Anna Rita Bizzarri
- Department of Environmental and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy.
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Turin, 10125, Italy.
| | - Stefano Bettati
- Interdepartment Center Biopharmanet-TEC, University of Parma, Parma, 43124, Italy. .,Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy. .,Institute of Biophysics, National Research Council, Pisa, 56124, Italy.
| |
Collapse
|
27
|
Sass S, Stöcklein WFM, Klevesath A, Hurpin J, Menger M, Hille C. Binding affinity data of DNA aptamers for therapeutic anthracyclines from microscale thermophoresis and surface plasmon resonance spectroscopy. Analyst 2019; 144:6064-6073. [PMID: 31528891 DOI: 10.1039/c9an01247h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Anthracyclines like daunorubicin (DRN) and doxorubicin (DOX) play an undisputed key role in cancer treatment, but their chronic administration can cause severe side effects. For precise anthracycline analytical systems, aptamers are preferable recognition elements. Here, we describe the detailed characterisation of a single-stranded DNA aptamer DRN-10 and its truncated versions for DOX and DRN detection. Binding affinities were determined from surface plasmon resonance (SPR) and microscale thermophoresis (MST) and combined with conformational data from circular dichroism (CD). Both aptamers displayed similar nanomolar binding affinities to DRN and DOX, even though their rate constants differed as shown by SPR recordings. SPR kinetic data unravelled a two-state reaction model including a 1 : 1 binding and a subsequent conformational change of the binding complex. This model was supported by CD spectra. In addition, the dissociation constants determined with MST were always lower than that from SPR, and especially for the truncated aptamer they differed by two orders of magnitude. This most probably reflects the methodological difference, namely labelling for MST vs. immobilisation for SPR. From CD recordings, we suggested a specific G-quadruplex as structural basis for anthracycline binding. We concluded that the aptamer DRN-10 is a promising recognition element for anthracycline detection systems and further selected aptamers can be also characterised with the combined methodological approach presented here.
Collapse
Affiliation(s)
- Stephan Sass
- Physical Chemistry/ALS ComBi, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Walter F M Stöcklein
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalysis and Bioprocesses (IZI-BB), 14476 Potsdam, Germany.
| | - Anja Klevesath
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalysis and Bioprocesses (IZI-BB), 14476 Potsdam, Germany.
| | - Jeanne Hurpin
- Physical Chemistry/ALS ComBi, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Marcus Menger
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalysis and Bioprocesses (IZI-BB), 14476 Potsdam, Germany.
| | - Carsten Hille
- Physical Chemistry/ALS ComBi, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany.,Technical University of Applied Sciences Wildau, 15745 Wildau, Germany.
| |
Collapse
|
28
|
Duan Z, Liu J, Niu L, Wang J, Feng M, Chen H, Luo C. Discovery of DC_H31 as potential mutant IDH1 inhibitor through NADPH-based high throughput screening. Bioorg Med Chem 2019; 27:3229-3236. [PMID: 31208797 DOI: 10.1016/j.bmc.2019.05.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 11/30/2022]
Abstract
IDH1 mutations are early events in the development of IDH-mutant gliomas and leukemias and are associated with various regulation of molecular process. Mutations of active site in IDH1 could lead to high levels of 2-HG and the suppression of cellular differentiation, while these changes can be reversed by molecule inhibitors target mutant IDH1. Here, through in-house developed enzymatic assay-based high throughput screening platform, we discovered DC_H31 as a novel IDH1-R132H/C inhibitor, with the IC50 value of 0.41 μmol/L and 2.7 μmol/L respectively. In addition, saturable SPR binding assay indicated that DC_H31 bound to IDH1-R132H/C due to specific interaction. Further computational docking studies and structure-activity relationship (SAR) suggest that DC_H31 could occupy the allosteric pocket between the two monomers of IDH1-R132H homodimer, which accounts for its inhibitory ability. And it is possible to conclude that DC_H31 acts via an allosteric mechanism of inhibition. At the cellular level, DC_H31 could inhibit cell proliferation, promote cell differentiation and reduce the production of 2-HG with a dose-dependent manner in HT1080 cells. Taken together, DC_H31 is a potent selective inhibitor of IDH1-R132H/C both in vitro and in vivo, which can promote the development of more potent pan-inhibitors against IDH1-R132H/C through further structural decoration and provide a new insight for the pharmacological treatment of gliomas.
Collapse
Affiliation(s)
- Zhe Duan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingqiu Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liping Niu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Jun Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingqian Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hua Chen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
29
|
Haghaei H, Aref Hosseini SR, Soltani S, Fathi F, Mokhtari F, Karima S, Rashidi MR. Kinetic and thermodynamic study of beta-Boswellic acid interaction with Tau protein investigated by surface plasmon resonance and molecular modeling methods. ACTA ACUST UNITED AC 2019; 10:17-25. [PMID: 31988853 PMCID: PMC6977593 DOI: 10.15171/bi.2020.03] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
Abstract
![]()
Introduction: Beta-Boswellic acid (BBA) is a pentacyclic terpene which has been obtained from frankincense and its beneficial effects on neurodegenerative disorders such as Alzheimer’s disease (AD) have been addressed.
Methods: In the present study, thermodynamic and kinetic aspects of BBA interaction with Tau protein as one of the important proteins involved in AD in the absence and presence of glucose has been investigated using surface plasmon resonance (SPR) method. Tau protein was immobilized onto the carboxy methyl dextran chip and its binding interactions with BBA were studied at physiological pH at various temperatures. Glucose interference with these interactions was also investigated.
Results: Results showed that BBA forms a stable complex with Tau (KD=8.45×10-7 M) at 298 K. Molecular modeling analysis showed a hydrophobic interaction between BBA and HVPGGG segment of R2 and R4 repeated domains of Tau.
Conclusion: The binding affinity increased by temperature enhancement, while it decreased significantly in the presence of glucose. Both association and dissociation of the BBA-Tau complex were accompanied with an entropic activation barrier; however, positive enthalpy and entropy changes revealed that hydrophobic bonding is the main force involved in the interaction.
Collapse
Affiliation(s)
- Hossein Haghaei
- Nutrition and Food Sciences Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Somaieh Soltani
- Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Fathi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Mokhtari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Saeed Karima
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mohammad-Reza Rashidi
- Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Erbaş A, Olvera de la Cruz M, Marko JF. Receptor-Ligand Rebinding Kinetics in Confinement. Biophys J 2019; 116:1609-1624. [PMID: 31029377 PMCID: PMC6506716 DOI: 10.1016/j.bpj.2019.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/05/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022] Open
Abstract
Rebinding kinetics of molecular ligands plays a key role in the operation of biomachinery, from regulatory networks to protein transcription, and is also a key factor in design of drugs and high-precision biosensors. In this study, we investigate initial release and rebinding of ligands to their binding sites grafted on a planar surface, a situation commonly observed in single-molecule experiments and that occurs in vivo, e.g., during exocytosis. Via scaling arguments and molecular dynamic simulations, we analyze the dependence of nonequilibrium rebinding kinetics on two intrinsic length scales: the average separation distance between the binding sites and the total diffusible volume (i.e., height of the experimental reservoir in which diffusion takes place or average distance between receptor-bearing surfaces). We obtain time-dependent scaling laws for on rates and for the cumulative number of rebinding events. For diffusion-limited binding, the (rebinding) on rate decreases with time via multiple power-law regimes before the terminal steady-state (constant on-rate) regime. At intermediate times, when particle density has not yet become uniform throughout the diffusible volume, the cumulative number of rebindings exhibits a novel, to our knowledge, plateau behavior because of the three-dimensional escape process of ligands from binding sites. The duration of the plateau regime depends on the average separation distance between binding sites. After the three-dimensional diffusive escape process, a one-dimensional diffusive regime describes on rates. In the reaction-limited scenario, ligands with higher affinity to their binding sites (e.g., longer residence times) delay entry to the power-law regimes. Our results will be useful for extracting hidden timescales in experiments such as kinetic rate measurements for ligand-receptor interactions in microchannels, as well as for cell signaling via diffusing molecules.
Collapse
Affiliation(s)
- Aykut Erbaş
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey.
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois; Department of Physics and Astronomy, Northwestern University, Evanston, Illinois; Department of Chemistry, Northwestern University, Evanston, Illinois
| | - John F Marko
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois; Department of Molecular Biosciences, Northwestern University, Evanston, Illinois.
| |
Collapse
|
31
|
Nanoparticle based simple electrochemical biosensor platform for profiling of protein-nucleic acid interactions. Talanta 2019; 195:46-54. [DOI: 10.1016/j.talanta.2018.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 12/24/2022]
|
32
|
Exploring designability of electrostatic complementarity at an antigen-antibody interface directed by mutagenesis, biophysical analysis, and molecular dynamics simulations. Sci Rep 2019; 9:4482. [PMID: 30872635 PMCID: PMC6418251 DOI: 10.1038/s41598-019-40461-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/08/2019] [Indexed: 12/05/2022] Open
Abstract
Antibodies protect organisms from a huge variety of foreign antigens. Antibody diversity originates from both genetic and structural levels. Antigen recognition relies on complementarity between antigen-antibody interfaces. Recent methodological advances in structural biology and the accompanying rapid increase of the number of crystal structures of proteins have enabled atomic-level manipulation of protein structures to effect alterations in function. In this study, we explored the designability of electrostatic complementarity at an antigen-antibody interface on the basis of a crystal structure of the complex. We designed several variants with altered charged residues at the interface and characterized the designed variants by surface plasmon resonance, circular dichroism, differential scanning calorimetry, and molecular dynamics simulations. Both successes and failures of the structure-based design are discussed. The variants that compensate electrostatic interactions can restore the interface complementarity, enabling the cognate antigen-antibody binding. Retrospectively, we also show that these mutational effects could be predicted by the simulations. Our study demonstrates the importance of charged residues on the physical properties of this antigen-antibody interaction and suggests that computational approaches can facilitate design of antibodies that recognize a weakly immunogenic antigen.
Collapse
|
33
|
Cambay F, Henry O, Durocher Y, De Crescenzo G. Impact of N-glycosylation on Fcγ receptor / IgG interactions: unravelling differences with an enhanced surface plasmon resonance biosensor assay based on coiled-coil interactions. MAbs 2019; 11:435-452. [PMID: 30822189 DOI: 10.1080/19420862.2019.1581017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The N-glycosylation profile of immunoglobulin G (IgG) is considered a critical quality attribute due to its impact on IgG-Fc gamma receptor (FcγR) interactions, which subsequently affect antibody-dependent cell-based immune responses. In this study, we investigated the impact of the FcγR capture method, as well as FcγR N-glycosylation, on the kinetics of interaction with various glycoforms of trastuzumab (TZM) in a surface plasmon resonance (SPR) biosensor assay. More specifically, we developed a novel strategy based on coiled-coil interactions for the stable and oriented capture of coil-tagged FcγRs at the biosensor surface. Coil-tagged FcγR capture outperformed all other capture strategies applied to the SPR study of IgG-FcγR interactions, as the robustness and reproducibility of the assay and the shelf life of the biosensor chip were excellent (> 1,000 IgG injections with the same biosensor surface). Coil-tagged FcγRs displaying different N-glycosylation profiles were generated either by different expression systems, in vitro glycoengineering or by size-exclusion chromatography, and roughly characterized by lectin blotting. Of salient interest, the overlay of their kinetics of interaction with several TZM glycoforms revealed key differences on both association and dissociation kinetics, confirming a complex influence of the FcγR N-glycosylation and its inherent heterogeneity upon receptor interaction with mAbs. This work is thus an important step towards better understanding of the impact of glycosylation upon binding of IgGs, either natural or engineered, to their receptors.
Collapse
Affiliation(s)
- Florian Cambay
- a Department of Chemical Engineering , Polytechnique Montréal , Montréal , Québec , Canada.,b Human Health Therapeutics Research Center , National Research Council Canada , Montréal , Québec , Canada
| | - Olivier Henry
- a Department of Chemical Engineering , Polytechnique Montréal , Montréal , Québec , Canada
| | - Yves Durocher
- b Human Health Therapeutics Research Center , National Research Council Canada , Montréal , Québec , Canada.,c Département de Biochimie et Médecine Moléculaire , Université de Montréal , Montréal , Québec , Canada
| | - Gregory De Crescenzo
- a Department of Chemical Engineering , Polytechnique Montréal , Montréal , Québec , Canada
| |
Collapse
|
34
|
Soler M, Li X, John-Herpin A, Schmidt J, Coukos G, Altug H. Two-Dimensional Label-Free Affinity Analysis of Tumor-Specific CD8 T Cells with a Biomimetic Plasmonic Sensor. ACS Sens 2018; 3:2286-2295. [PMID: 30339020 DOI: 10.1021/acssensors.8b00523] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The screening and analysis of T cells functional avidity for specific tumor-associated antigens is crucial for the development of personalized immunotherapies against cancer. The affinity and kinetics of a T cell receptor (TCR) binding to the peptide-major histocompatibility complex (pMHC), expressed on tumor or antigen-presenting cells, have shown major implications in T cell activation and effector functions. We introduce an innovative methodology for the two-dimensional affinity analysis of TCR-pMHC in a label-free configuration by employing a multiparametric Surface Plasmon Resonance biosensor (MP-SPR) functionalized with artificial cell membranes. The biomimetic scaffold created with planar lipid bilayers is able to efficiently capture the specific and intact tumor-specific T cells and monitor the formation of the immunological synapse in situ. We have achieved excellent limits of detection for in-flow cell capturing, up to 2 orders of magnitude below the current state-of-the-art for plasmonic sensing. We demonstrate the accuracy and selectivity of our sensor for the analysis of CD8+ T cells bioengineered with TCR of incremental affinities specific for the HLA-A0201/NY-ESO-I157-165 pMHC complex. The study confirmed the significance of providing a biomimetic microenvironment, compared to the traditional molecular analysis, and showed fine agreement with previous results employing flow cytometry. Our methodology is reliable and versatile; thus, it can be applied to more sophisticated photonic and nanoplasmonic technologies for the screening of multiple cell types and boost the development of novel treatments for cancer.
Collapse
Affiliation(s)
- Maria Soler
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Xiaokang Li
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Aurelian John-Herpin
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Julien Schmidt
- Lausanne Branch - Ludwig Institute for Cancer Research, and Department of Oncology, University of Lausanne (UNIL), CH-1007 Lausanne, Switzerland
| | - George Coukos
- Lausanne Branch - Ludwig Institute for Cancer Research, and Department of Oncology, University of Lausanne (UNIL), CH-1007 Lausanne, Switzerland
| | - Hatice Altug
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
35
|
Puiu M, Zamfir LG, Buiculescu V, Baracu A, Mitrea C, Bala C. Significance Testing and Multivariate Analysis of Datasets from Surface Plasmon Resonance and Surface Acoustic Wave Biosensors: Prediction and Assay Validation for Surface Binding of Large Analytes. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3541. [PMID: 30347726 PMCID: PMC6210280 DOI: 10.3390/s18103541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022]
Abstract
In this study, we performed uni- and multivariate data analysis on the extended binding curves of several affinity pairs: immobilized acetylcholinesterase (AChE)/bioconjugates of aflatoxin B₁(AFB₁) and immobilized anti-AFB₁ monoclonal antibody/AFB₁-protein carriers. The binding curves were recorded on three mass sensitive cells operating in batch configurations: one commercial surface plasmon resonance (SPR) sensor and two custom-made Love wave surface-acoustic wave (LW-SAW) sensors. We obtained 3D plots depicting the time-evolution of the sensor response as a function of analyte concentration using real-time SPR binding sensograms. These "calibration" surfaces exploited the transient periods of the extended kinetic curves, prior to equilibrium, creating a "fingerprint" for each analyte, in considerably shortened time frames compared to the conventional 2D calibration plots. The custom-made SAW sensors operating in different experimental conditions allowed the detection of AFB₁-protein carrier in the nanomolar range. Subsequent statistical significance tests were performed on unpaired data sets to validate the custom-made LW-SAW sensors.
Collapse
Affiliation(s)
- Mihaela Puiu
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., Bucharest 030018, Romania.
| | - Lucian-Gabriel Zamfir
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., Bucharest 030018, Romania.
- ICUB, University of Bucharest, 36-46 M. Kogalniceanu Blvd., Bucharest 050107, Romania.
| | - Valentin Buiculescu
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 126A Erou Iancu Nicolae Street, Voluntari 077190, Ilfov, Romania.
| | - Angela Baracu
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 126A Erou Iancu Nicolae Street, Voluntari 077190, Ilfov, Romania.
| | - Cristina Mitrea
- S.C ROM-QUARTZ S.A, 126A Erou Iancu Nicolae Street, Voluntari 077190, Ilfov, Romania.
| | - Camelia Bala
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., Bucharest 030018, Romania.
- Department of Analytical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., Bucharest 030018, Romania.
| |
Collapse
|
36
|
Lu T, Hu JC, Lu WC, Han J, Ding H, Jiang H, Zhang YY, Yue LY, Chen SJ, Jiang HL, Chen KX, Chai HF, Luo C. Identification of small molecule inhibitors targeting the SMARCA2 bromodomain from a high-throughput screening assay. Acta Pharmacol Sin 2018; 39:1544-1552. [PMID: 29795359 DOI: 10.1038/aps.2017.188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/19/2017] [Indexed: 01/13/2023] Open
Abstract
SMARCA2 is a critical catalytic subunit of the switch/sucrose non-fermenting (SWI/SNF) chromatin remodeling complexes. Dysregulation of SMARCA2 is associated with several diseases, including some cancers. SMARCA2 is multi-domain protein containing a bromodomain (BRD) that specifically recognizes acetylated lysine residues in histone tails, thus playing an important role in chromatin remodeling. Many potent and specific inhibitors targeting other BRDs have recently been discovered and have been widely used for cancer treatments and biological research. However, hit discovery targeting SMARCA2-BRD is particularly lacking. To date, there is a paucity of reported high-throughput screening (HTS) assays targeting the SMARCA2-BRD interface. In this study, we developed an AlphaScreen HTS system for the discovery of SMARCA2-BRD inhibitors and optimized the physicochemical conditions including pH, salt concentrations and detergent levels. Through an established AlphaScreen-based high-throughput screening assay against an in-house compound library, DCSM06 was identified as a novel SMARCA2-BRD inhibitor with an IC50 value of 39.9±3.0 μmol/L. Surface plasmon resonance demonstrated the binding between SMARCA2-BRD and DCSM06 (Kd=38.6 μmol/L). A similarity-based analog search led to identification of DCSM06-05 with an IC50 value of 9.0±1.4 μmol/L. Molecular docking was performed to predict the binding mode of DCSM06-05 and to decipher the structural basis of the infiuence of chemical modifications on inhibitor potency. DCSM06-05 may be used as a starting point for further medicinal chemistry optimization and could function as a chemical tool for SMARCA2-related functional studies.
Collapse
|
37
|
Langmuir-monolayer methodologies for characterizing protein-lipid interactions. Chem Phys Lipids 2018; 212:61-72. [DOI: 10.1016/j.chemphyslip.2018.01.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/22/2017] [Accepted: 01/18/2018] [Indexed: 12/22/2022]
|
38
|
Gasperino DJ, Leon D, Lutz B, Cate DM, Nichols KP, Bell D, Weigl BH. Threshold-Based Quantification in a Multiline Lateral Flow Assay via Computationally Designed Capture Efficiency. Anal Chem 2018; 90:6643-6650. [DOI: 10.1021/acs.analchem.8b00440] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Daniel Leon
- University of Washington, Seattle, Washington 98195, United States
| | - Barry Lutz
- University of Washington, Seattle, Washington 98195, United States
| | - David M. Cate
- Intellectual Ventures, Bellevue, Washington 98005, United States
| | - Kevin P. Nichols
- Intellectual Ventures, Bellevue, Washington 98005, United States
| | - David Bell
- Intellectual Ventures, Bellevue, Washington 98005, United States
| | - Bernhard H. Weigl
- Intellectual Ventures, Bellevue, Washington 98005, United States
- University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
39
|
Thomsen L, Gurevich L. A surface plasmon resonance assay for characterisation and epitope mapping of anti-GLP-1 antibodies. J Mol Recognit 2018; 31:e2711. [PMID: 29671912 DOI: 10.1002/jmr.2711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 01/28/2018] [Accepted: 02/19/2018] [Indexed: 11/07/2022]
Abstract
The incretin hormone glucagon-like peptide-1 (GLP-1) has been subject to substantial pharmaceutical research regarding the treatment of type 2 diabetes mellitus. However, quantification of GLP-1 levels remains complicated due to the low circulation concentration and concurrent existence of numerous metabolites, homologous peptides, and potentially introduced GLP-1 receptor agonists. Surface plasmon resonance (SPR) facilitates real-time monitoring allowing a more detailed characterisation of the interaction compared with conventional enzyme-linked immunosorbent assays (ELISA). In this paper, we describe the development of the first SPR assays for characterisation of anti-GLP-1 antibodies for ELISA purposes. Binding responses were obtained on covalently immobilised anti-GLP-1 antibodies at 12°C, 25°C, and 40°C and fitted to a biomolecular (1:1) interaction model showing association rates of 1.01 × 103 to 4.54 × 103 M-1 s-1 and dissociation rates of 3.56 × 10-5 to 1.56 × 10-3 s-1 leading to affinities of 35.2 to 344 nM, depending on the temperature. Determination of thermodynamic properties revealed an enthalpy driven interaction (ΔH < ΔS < 0) with higher affinities at lower temperatures due to the formation and stabilisation of hydrogen bonds within the binding site primarily composed of polar amino acids (ΔCp < 0). Pair-wise epitope mapping was performed on captured anti-GLP-1 antibodies followed by subsequent interaction with GLP-1 (7-36) and other anti-GLP-1 antibodies. A global evaluation of every binding response led to an epitope map elucidating the potential of various anti-GLP-1 antibody pairs for sandwich ELISA and hence pinpointing the optimal antibody combinations. The SPR assays proved capable of providing vital information for ELISA development endorsing it as a useful optimisation tool.
Collapse
Affiliation(s)
- Lasse Thomsen
- Institute of Physics and Nanotechnology, Aalborg University, 9220, Aalborg Ø, Denmark
| | - Leonid Gurevich
- Institute of Physics and Nanotechnology, Aalborg University, 9220, Aalborg Ø, Denmark
| |
Collapse
|
40
|
Chiu NF, Lin TL. Affinity capture surface carboxyl-functionalized MoS 2 sheets to enhance the sensitivity of surface plasmon resonance immunosensors. Talanta 2018; 185:174-181. [PMID: 29759186 DOI: 10.1016/j.talanta.2018.03.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 11/27/2022]
Abstract
The development of functionalized molybdenum disulfide (MoS2) has led to a new trend in the biosensing field, owing to its high sensitivity and bio-affinity characteristics with regards to the simple synthesis of carboxyl-functionalized MoS2 nanocomposites. In this study, we used monochloroacetic acid (MCA) to successfully modify carboxyl-MoS2. The efficiency of this MCA modification method showed a higher -COOH group content of 30.1%, mainly due to chlorine atoms occupying the MoS2 sulfur vacancy to allow for the formation of a strong bonding effect. This then enhanced the surface area of -COOH and improved the formation of covalent bonds between proteins. We demonstrated that MoS2-COOH-based surface plasmon resonance (SPR) chips can provide excellent sensitivity and high affinity for immunoassay biomolecules detected in a low sample volume of 20 μl. With respect to the shifts of the SPR angles of the chips, the high binding affinity at a BSA concentration of 14.5 nM for a MoS2-COOH chip, a MoS2 chip and a traditional SPR chip are 4.69 m°, 2.49 m° and 1.53 m°, respectively. In addition, the MoS2-COOH chip could amplify the SPR angle response by 3.1 folds and enhance the high association rate of ka by 212 folds compared to MoS2 and traditional SPR chips. The results thus obtained revealed that the overall affinity binding value, KA, of the MoS2-COOH chip can be significantly enhanced by up to ∼ 6.5 folds that of the MoS2 chip. In summary, the excellent binding affinity, biocompatible and high sensitivity suggest the potential of the clinical application of this MoS2-COOH-based SPR chip detection method for in vitro diagnostic and point-of-care testing devices.
Collapse
Affiliation(s)
- Nan-Fu Chiu
- Laboratory of Nano-photonics and Biosensors, Institute of Electro-Optical Science and Technology, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chou Road, Taipei 11677, Taiwan.
| | - Ting-Li Lin
- Laboratory of Nano-photonics and Biosensors, Institute of Electro-Optical Science and Technology, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chou Road, Taipei 11677, Taiwan
| |
Collapse
|
41
|
Abstract
Drug metabolites have been monitored with various types of newly developed techniques and/or combination of common analytical methods, which could provide a great deal of information on metabolite profiling. Because it is not easy to analyze whole drug metabolites qualitatively and quantitatively, a single solution of analytical techniques is combined in a multilateral manner to cover the widest range of drug metabolites. Mass-based spectroscopic analysis of drug metabolites has been expanded with the help of other parameter-based methods. The current development of metabolism studies through contemporary pharmaceutical research are reviewed with an overview on conventionally used spectroscopic methods. Several technical approaches for conducting drug metabolic profiling through spectroscopic methods are discussed in depth.
Collapse
Affiliation(s)
- Jong-Jae Yi
- Department of Pharmacy, College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon-Si, Gyeonggi-do, 11160, Republic of Korea
| | - Kyeongsoon Park
- Department of Systems Biotechnology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodong-daero, Anseong-Si, Gyeonggi-do, 17546, Republic of Korea
| | - Won-Je Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jin-Kyu Rhee
- Department of Food Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| | - Woo Sung Son
- Department of Pharmacy, College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon-Si, Gyeonggi-do, 11160, Republic of Korea.
| |
Collapse
|
42
|
Orihara K, Hikichi A, Arita T, Muguruma H, Yoshimi Y. Heparin molecularly imprinted polymer thin flm on gold electrode by plasma-induced graft polymerization for label-free biosensor. J Pharm Biomed Anal 2018; 151:324-330. [DOI: 10.1016/j.jpba.2018.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/24/2017] [Accepted: 01/08/2018] [Indexed: 11/26/2022]
|
43
|
Moscetti I, Bizzarri AR, Cannistraro S. Imaging and kinetics of the bimolecular complex formed by the tumor suppressor p53 with ubiquitin ligase COP1 as studied by atomic force microscopy and surface plasmon resonance. Int J Nanomedicine 2018; 13:251-259. [PMID: 29379285 PMCID: PMC5757491 DOI: 10.2147/ijn.s152214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
p53 plays an important role in the safeguard of the genome but it is frequently downregulated mainly by E3 ubiquitin ligases among which COP1 plays an important role. The overexpression of COP1 has been reported to occur in several tumors and may be indicative of its overall oncogenic effect, which in turn might be originated by a direct interaction of COP1 with p53. Such an interaction may constitute a rewarding target for anticancer drug design strategies; therefore, a deeper understanding of its underlying molecular mechanism and kinetics is needed. The formation of a single p53–COP1 bimolecular complex was visualized by atomic force microscopy imaging on a mica substrate. The kinetic characterization of the complex, performed by atomic force spectroscopy and surface plasmon resonance, provided a KD value of ∼10−8 M and a relative long lifetime in the order of minutes, both at the single-molecule level and in bulk solution. The surprisingly high affinity value and low dissociation rate of the p53–COP1 bimolecular complex, which is even stronger than the p53–MDM2 complex, should be considered a benchmark for designing, development and optimization of suitable drugs able to antagonize the complex formation with the aim of preventing the inhibitory effect of COP1 on the p53 oncosuppressive function.
Collapse
Affiliation(s)
- Ilaria Moscetti
- Biophysics and Nanoscience Centre, Department of Ecology and Biology, Università della Tuscia, Viterbo, Italy
| | - Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, Department of Ecology and Biology, Università della Tuscia, Viterbo, Italy
| | - Salvatore Cannistraro
- Biophysics and Nanoscience Centre, Department of Ecology and Biology, Università della Tuscia, Viterbo, Italy
| |
Collapse
|
44
|
Gleitsman KR, Sengupta RN, Herschlag D. Slow molecular recognition by RNA. RNA (NEW YORK, N.Y.) 2017; 23:1745-1753. [PMID: 28971853 PMCID: PMC5688996 DOI: 10.1261/rna.062026.117] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/26/2017] [Indexed: 05/28/2023]
Abstract
Molecular recognition is central to biological processes, function, and specificity. Proteins associate with ligands with a wide range of association rate constants, with maximal values matching the theoretical limit set by the rate of diffusional collision. As less is known about RNA association, we compiled association rate constants for all RNA/ligand complexes that we could find in the literature. Like proteins, RNAs exhibit a wide range of association rate constants. However, the fastest RNA association rates are considerably slower than those of the fastest protein associations and fall well below the diffusional limit. The apparently general observation of slow association with RNAs has implications for evolution and for modern-day biology. Our compilation highlights a quantitative molecular property that can contribute to biological understanding and underscores our need to develop a deeper physical understanding of molecular recognition events.
Collapse
Affiliation(s)
- Kristin R Gleitsman
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Raghuvir N Sengupta
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
- Department of Chemical Engineering and Department of Chemistry, Stanford University, Stanford, California 94305, USA
- Stanford ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford University, Stanford, California 94305, USA
| |
Collapse
|
45
|
López de Victoria A, Moore AFT, Gittis AG, Koculi E. Kinetics and Thermodynamics of DbpA Protein's C-Terminal Domain Interaction with RNA. ACS OMEGA 2017; 2:8033-8038. [PMID: 29214235 PMCID: PMC5709793 DOI: 10.1021/acsomega.7b01205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
DbpA is an Escherichia coli DEAD-box RNA helicase implicated in RNA structural isomerization in the peptide bond formation site. In addition to the RecA-like catalytic core conserved in all of the members of DEAD-box family, DbpA contains a structured C-terminal domain, which is responsible for anchoring DbpA to hairpin 92 of 23S ribosomal RNA during the ribosome assembly process. Here, surface plasmon resonance was used to determine the equilibrium dissociation constant and the microscopic rate constants of the DbpA C-terminal domain association and dissociation to a fragment of 23S ribosomal RNA containing hairpin 92. Our results show that the DbpA protein's residence time on the RNA is 10 times longer than the time DbpA requires to hydrolyze one ATP. Thus, our data suggest that once bound to the intermediate ribosomal particles via its RNA-binding domain, DbpA could unwind a number of double-helix substrates before its dissociation from the ribosomal particles.
Collapse
Affiliation(s)
- Aliana López de Victoria
- Department
of Chemistry, University of Central Florida, 4111 Libra Dr., Physical Sciences
Bldg. Room 255, Orlando, Florida 32816-2366, United States
| | - Anthony F. T. Moore
- Department
of Chemistry, University of Central Florida, 4111 Libra Dr., Physical Sciences
Bldg. Room 255, Orlando, Florida 32816-2366, United States
| | - Apostolos G. Gittis
- National
Institute of Allergy and Infectious Diseases, 12441 Parklawn Dr., Rockville, Maryland 20852, United States
| | - Eda Koculi
- Department
of Chemistry, University of Central Florida, 4111 Libra Dr., Physical Sciences
Bldg. Room 255, Orlando, Florida 32816-2366, United States
| |
Collapse
|
46
|
Boncler M, Kehrel B, Szewczyk R, Stec-Martyna E, Bednarek R, Brodde M, Watala C. Oxidation of C-reactive protein by hypochlorous acid leads to the formation of potent platelet activator. Int J Biol Macromol 2017; 107:2701-2714. [PMID: 29111269 DOI: 10.1016/j.ijbiomac.2017.10.159] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 01/27/2023]
Abstract
We examined the structural and functional consequences of oxidative modification of C-reactive protein (CRP) by hypochlorous acid (HOCl), which can be generated in vivo via the myeloperoxidase/H2O2/Cl- system. HOCl exposure resulted in the oxidation and chlorination of CRP amino acid residues, leading to protein unfolding, greater surface hydrophobicity and the formation of aggregates. After treatment of isolated platelets with 50μg/ml HOCl-CRP, the modified CRP significantly stimulated platelet activation (over 10-fold increase in the fraction of CD62-positive platelets compared to controls, P<0.008), enhanced deposition of platelets onto immobilized fibrinogen (two-fold rise in platelet adhesion compared to controls, P<0.0001), and induced platelet aggregation by up to 79.5%. The ability of HOCl-CRP to interact with several platelet receptors (TLR-4, GPIIbIIIa) and plasma proteins (C1q, IgG) strongly indicates that HOCl-modification leads to structural changes of CRP resulting in the formation of new ligand binding sites, which is characteristic of the monomeric form of CRP exerting pro-inflammatory effects on a variety of cells. Overall, the oxidation of native CRP by HOCl seems to represent an alternative mechanism of CRP modification, by which CRP reveals its pro-inflammatory and pro-thrombotic properties, and as such, it might be of causal relevance in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Magdalena Boncler
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland.
| | - Beate Kehrel
- Department of Anesthesiology, Intensive Care and Pain Medicine, Experimental and Clinical Haemostasis, University Hospital, Muenster, Germany
| | - Rafał Szewczyk
- Department of Industrial Microbiology and Biotechnology, University of Lodz, Lodz, Poland
| | | | - Radosław Bednarek
- Department of Cytobiology and Proteomics, Medical University of Lodz, Lodz, Poland
| | - Martin Brodde
- Department of Anesthesiology, Intensive Care and Pain Medicine, Experimental and Clinical Haemostasis, University Hospital, Muenster, Germany
| | - Cezary Watala
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
47
|
Salvadó M, Reina JJ, Rojo J, Castillón S, Boutureira O. Topological Defects in Hyperbranched Glycopolymers Enhance Binding to Lectins. Chemistry 2017; 23:15790-15794. [PMID: 28851127 DOI: 10.1002/chem.201703432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Indexed: 11/10/2022]
Abstract
Central scaffold topology and carbohydrate density are important features in determining the binding mechanism and potency of synthetic multivalent of poly- versus monodisperse carbohydrate systems against a model plant toxin (Ricinus communis agglutinin (RCA120 )). Lower densities of protein receptors favour the use of heterogeneous, polydisperse glycoconjugate presentations, as determined by surface plasmon resonance and dynamic light scattering.
Collapse
Affiliation(s)
- Míriam Salvadó
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel lí Domingo 1, 43007, Tarragona, Spain
| | - José J Reina
- Glycosystems Laboratory, Instituto de Investigaciones Químicas, IIQ, CSIC -, Universidad de Sevilla, Av. Américo Vespucio 49, 41092, Sevilla, Spain
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas, IIQ, CSIC -, Universidad de Sevilla, Av. Américo Vespucio 49, 41092, Sevilla, Spain
| | - Sergio Castillón
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel lí Domingo 1, 43007, Tarragona, Spain
| | - Omar Boutureira
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel lí Domingo 1, 43007, Tarragona, Spain
| |
Collapse
|
48
|
Birch J, Harðarson HK, Khan S, Van Calsteren MR, Ipsen R, Garrigues C, Almdal K, Hachem MA, Svensson B. Effect of repeat unit structure and molecular mass of lactic acid bacteria hetero-exopolysaccharides on binding to milk proteins. Carbohydr Polym 2017; 177:406-414. [PMID: 28962786 DOI: 10.1016/j.carbpol.2017.08.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 07/03/2017] [Accepted: 08/10/2017] [Indexed: 01/05/2023]
Abstract
Interactions of exopolysaccharides and proteins are of great importance in food science, but complicated to analyze and quantify at the molecular level. A surface plasmon resonance procedure was established to characterize binding of seven structure-determined, branched hetero-exopolysaccharides (HePSs) of 0.14-4.9MDa from lactic acid bacteria to different milk proteins (β-casein, κ-casein, native and heat-treated β-lactoglobulin) at pH 4.0-5.0. Maximum binding capacity (RUmax) and apparent affinity (KA,app) were HePS- and protein-dependent and varied for example 10- and 600-fold, respectively, in the complexation with native β-lactoglobulin at pH 4.0. Highest RUmax and KA,app were obtained with heat-treated β-lactoglobulin and β-casein, respectively. Overall, RUmax and KA,app decreased 6- and 20-fold, respectively, with increasing pH from 4.0 to 5.0. KA,app was influenced by ionic strength and temperature, indicating that polar interactions stabilize HePS-protein complexes. HePS size as well as oligosaccharide repeat structure, conferring chain flexibility and hydrogen bonding potential, influence the KA,app.
Collapse
Affiliation(s)
- Johnny Birch
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Elektrovej, building 375, DK-2800 Kgs. Lyngby, Denmark.
| | - Hörður Kári Harðarson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Elektrovej, building 375, DK-2800 Kgs. Lyngby, Denmark.
| | - Sanaullah Khan
- Department of Micro- and Nanotechnology, Technical University of Denmark, Produktionstorvet, building 423, DK-2800 Kgs. Lyngby, Denmark.
| | - Marie-Rose Van Calsteren
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, Quebec J2S 8E3, Canada.
| | - Richard Ipsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark.
| | | | - Kristoffer Almdal
- Department of Micro- and Nanotechnology, Technical University of Denmark, Produktionstorvet, building 423, DK-2800 Kgs. Lyngby, Denmark.
| | - Maher Abou Hachem
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Elektrovej, building 375, DK-2800 Kgs. Lyngby, Denmark.
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Elektrovej, building 375, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
49
|
Scherr TF, Markwalter CF, Bauer WS, Gasperino D, Wright DW, Haselton FR. Application of mass transfer theory to biomarker capture by surface functionalized magnetic beads in microcentrifuge tubes. Adv Colloid Interface Sci 2017; 246:275-288. [PMID: 28595937 DOI: 10.1016/j.cis.2017.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 12/11/2022]
Abstract
In many diagnostic assays, specific biomarker extraction and purification from a patient sample is performed in microcentrifuge tubes using surface-functionalized magnetic beads. Although assay binding times are known to be highly dependent on sample viscosity, sample volume, capture reagent, and fluid mixing, the theoretical mass transport framework that has been developed and validated in engineering has yet to be applied in this context. In this work, we adapt this existing framework for simultaneous mass transfer and surface reaction and apply it to the binding of biomarkers in clinical samples to surface-functionalized magnetic beads. We discuss the fundamental fluid dynamics of vortex mixing within microcentrifuge tubes as well as describe how particles and biomolecules interact with the fluid. The model is solved over a wide range of parameters, and we present scenarios when a simplified analytical expression would be most accurate. Next, we review of some relevant techniques for model parameter estimation. Finally, we apply the mass transfer theory to practical use-case scenarios of immediate use to clinicians and assay developers. Throughout, we highlight where further characterization is necessary to bridge the gap between theory and practical application.
Collapse
|
50
|
Then WL, Aguilar MI, Garnier G. Quantitative Detection of Weak D Antigen Variants in Blood Typing using SPR. Sci Rep 2017; 7:1616. [PMID: 28487531 PMCID: PMC5431640 DOI: 10.1038/s41598-017-01817-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/30/2017] [Indexed: 11/12/2022] Open
Abstract
Modern techniques for quantifying blood group antibody-antigen interactions are very limited, especially for weaker interactions which result from low antigen expression and/or partial expression of the antigen structure. Surface plasmon resonance (SPR) detection is often used to monitor and quantify bio-interactions. Previously, a regenerable, multi-fucntional platform for quantitative RBC phenotyping of normal antigen expression using SPR detection was reported. However, detection of weaker variants were not explored. Here, this sensitivity study used anti-human IgG antibodies immobilized to a gold sensor surface to two clinically important types of weaker D variants using SPR; weak D and partial D. Positive pre-sensitised cells bind to the anti-human IgG monolayer, and the response unit (RU) is reported (>100 RU). Unbound negative cells are directly eluted (<100 RU). Weak D cells were detected between a range of 180–580 RU, due to a lower expression of antigens. Partial D cells, category D VI, were also positively identified (352–1147 RU), similar to that of normal D antigens. The detection of two classes of weaker D variants was achieved for the first time using this fully regenerable SPR platform, opening up a new avenue to replace the current subjective and arbitrary methods for quantifying blood group antibody-antigen interactions.
Collapse
Affiliation(s)
- Whui Lyn Then
- Bioresource Research Institute of Australia (BioPRIA), Australian Pulp and Paper Institute (APPI), Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Marie-Isabel Aguilar
- Monash biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Heath Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Gil Garnier
- Bioresource Research Institute of Australia (BioPRIA), Australian Pulp and Paper Institute (APPI), Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|