1
|
Stepanichev MY, Mamedova DI, Gulyaeva NV. Hippocampus under Pressure: Molecular Mechanisms of Development of Cognitive Impairments in SHR Rats. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:711-725. [PMID: 38831507 DOI: 10.1134/s0006297924040102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/20/2023] [Accepted: 03/14/2024] [Indexed: 06/05/2024]
Abstract
Data from clinical trials and animal experiments demonstrate relationship between chronic hypertension and development of cognitive impairments. Here, we review structural and biochemical alterations in the hippocampus of SHR rats with genetic hypertension, which are used as a model of essential hypertension and vascular dementia. In addition to hypertension, dysfunction of the hypothalamic-pituitary-adrenal system observed in SHR rats already at an early age may be a key factor of changes in the hippocampus at the structural and molecular levels. Global changes at the body level, such as hypertension and neurohumoral dysfunction, are associated with the development of vascular pathology and impairment of the blood-brain barrier. Changes in multiple biochemical glucocorticoid-dependent processes in the hippocampus, including dysfunction of steroid hormones receptors, impairments of neurotransmitter systems, BDNF deficiency, oxidative stress, and neuroinflammation are accompanied by the structural alterations, such as cellular signs of neuroinflammation micro- and astrogliosis, impairments of neurogenesis in the subgranular neurogenic zone, and neurodegenerative processes at the level of synapses, axons, and dendrites up to the death of neurons. The consequence of this is dysfunction of hippocampus, a key structure of the limbic system necessary for cognitive functions. Taking into account the available results at various levels starting from the body and brain structure (hippocampus) levels to molecular one, we can confirm translational validity of SHR rats for modeling mechanisms of vascular dementia.
Collapse
Affiliation(s)
- Mikhail Yu Stepanichev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
| | - Diana I Mamedova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| |
Collapse
|
2
|
Kantak KM. Rodent models of attention-deficit hyperactivity disorder: An updated framework for model validation and therapeutic drug discovery. Pharmacol Biochem Behav 2022; 216:173378. [DOI: 10.1016/j.pbb.2022.173378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 01/21/2023]
|
3
|
Regan SL, Williams MT, Vorhees CV. Review of rodent models of attention deficit hyperactivity disorder. Neurosci Biobehav Rev 2022; 132:621-637. [PMID: 34848247 PMCID: PMC8816876 DOI: 10.1016/j.neubiorev.2021.11.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a polygenic neurodevelopmental disorder that affects 8-12 % of children and >4 % of adults. Environmental factors are believed to interact with genetic predispositions to increase susceptibility to ADHD. No existing rodent model captures all aspects of ADHD, but several show promise. The main genetic models are the spontaneous hypertensive rat, dopamine transporter knock-out (KO) mice, dopamine receptor subtype KO mice, Snap-25 KO mice, guanylyl cyclase-c KO mice, and latrophilin-3 KO mice and rats. Environmental factors thought to contribute to ADHD include ethanol, nicotine, PCBs, lead (Pb), ionizing irradiation, 6-hydroxydopamine, neonatal hypoxia, some pesticides, and organic pollutants. Model validation criteria are outlined, and current genetic models evaluated against these criteria. Future research should explore induced multiple gene KOs given that ADHD is polygenic and epigenetic contributions. Furthermore, genetic models should be combined with environmental agents to test for interactions.
Collapse
Affiliation(s)
- Samantha L. Regan
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45229
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Corresponding author: Charles V. Vorhees, Ph.D., Div. of Neurology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA:
| |
Collapse
|
4
|
Kubrusly RCC, da Rosa Valli T, Ferreira MNMR, de Moura P, Borges-Martins VPP, Martins RS, Ferreira DDP, Sathler MF, de Melo Reis RA, Ferreira GC, Manhães AC, Dos Santos Pereira M. Caffeine Improves GABA Transport in the Striatum of Spontaneously Hypertensive Rats (SHR). Neurotox Res 2021; 39:1946-1958. [PMID: 34637050 DOI: 10.1007/s12640-021-00423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022]
Abstract
The spontaneously hypertensive rat (SHR) is an excellent animal model that mimics the behavioral and neurochemical phenotype of attention-deficit/hyperactivity disorder (ADHD). Here, we characterized the striatal GABA transport of SHR and investigated whether caffeine, a non-selective antagonist of adenosine receptors, could influence GABAergic circuitry. For this purpose, ex vivo striatal slices of SHR and Wistar (control strain) on the 35th postnatal day were dissected and incubated with [3H]-GABA to quantify the basal levels of uptake and release. SHR exhibited a reduced [3H]-GABA uptake and release, suggesting a defective striatal GABAergic transport system. GAT-1 appears to be the primary transporter for [3H]-GABA uptake in SHR striatum, as GAT-1 selective blocker, NO-711, completely abolished it. We also verified that acute exposure of striatal slices to caffeine improved [3H]-GABA uptake and release in SHR, whereas Wistar rats were not affected. GABA-uptake increase and cAMP accumulation promoted by caffeine was reverted by A1R activation with N6-cyclohexyl adenosine (CHA). As expected, the pharmacological blockade of cAMP-PKA signaling by H-89 also prevented caffeine-mediated [3H]-GABA uptake increment. Interestingly, a single caffeine exposure did not affect GAT-1 or A1R protein density in SHR, which was not different from Wistar protein levels, suggesting that the GAT-1-dependent transport in SHR has a defective functional activity rather than lower protein expression. The current data support that caffeine regulates GAT-1 function and improves striatal GABA transport via A1R-cAMP-PKA signaling, specifically in SHR. These results reinforce that caffeine may have therapeutic use in disorders where the GABA transport system is impaired.
Collapse
Affiliation(s)
| | | | | | - Pâmella de Moura
- Laboratório de Neurofarmacologia, Instituto Biomédico, Niterói, RJ, Brazil
| | | | - Robertta Silva Martins
- Laboratório de Neurofarmacologia, Instituto Biomédico, Niterói, RJ, Brazil
- Laboratório de Neurobiologia Celular E Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Ricardo Augusto de Melo Reis
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Costa Ferreira
- Laboratório de Neuroenergética E Erros Inatos Do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex Christian Manhães
- Laboratório de Neurofisiologia, Instituto de Biologia, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurício Dos Santos Pereira
- Laboratório de Neurofarmacologia, Instituto Biomédico, Niterói, RJ, Brazil.
- Laboratório de Neurofisiologia Molecular, Departamento de Biologia Básica E Oral, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
5
|
Buccellato FR, D’Anca M, Fenoglio C, Scarpini E, Galimberti D. Role of Oxidative Damage in Alzheimer's Disease and Neurodegeneration: From Pathogenic Mechanisms to Biomarker Discovery. Antioxidants (Basel) 2021; 10:antiox10091353. [PMID: 34572985 PMCID: PMC8471953 DOI: 10.3390/antiox10091353] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder accounting for over 50% of all dementia patients and representing a leading cause of death worldwide for the global ageing population. The lack of effective treatments for overt AD urges the discovery of biomarkers for early diagnosis, i.e., in subjects with mild cognitive impairment (MCI) or prodromal AD. The brain is exposed to oxidative stress as levels of reactive oxygen species (ROS) are increased, whereas cellular antioxidant defenses are decreased. Increased ROS levels can damage cellular structures or molecules, leading to protein, lipid, DNA, or RNA oxidation. Oxidative damage is involved in the molecular mechanisms which link the accumulation of amyloid-β and neurofibrillary tangles, containing hyperphosphorylated tau, to microglia response. In this scenario, microglia are thought to play a crucial role not only in the early events of AD pathogenesis but also in the progression of the disease. This review will focus on oxidative damage products as possible peripheral biomarkers in AD and in the preclinical phases of the disease. Particular attention will be paid to biological fluids such as blood, CSF, urine, and saliva, and potential future use of molecules contained in such body fluids for early differential diagnosis and monitoring the disease course. We will also review the role of oxidative damage and microglia in the pathogenesis of AD and, more broadly, in neurodegeneration.
Collapse
Affiliation(s)
- Francesca Romana Buccellato
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (E.S.); (D.G.)
- Correspondence: ; Tel.: +39-02 55033814
| | - Marianna D’Anca
- Fondazione IRCSS ca’ Granda, Ospedale Policlinico, 20122 Milano, Italy;
| | - Chiara Fenoglio
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
| | - Elio Scarpini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (E.S.); (D.G.)
- Fondazione IRCSS ca’ Granda, Ospedale Policlinico, 20122 Milano, Italy;
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (E.S.); (D.G.)
- Fondazione IRCSS ca’ Granda, Ospedale Policlinico, 20122 Milano, Italy;
| |
Collapse
|
6
|
van Oudenhoven FM, Swinkels SHN, Soininen H, Kivipelto M, Hartmann T, Rizopoulos D. A competing risk joint model for dealing with different types of missing data in an intervention trial in prodromal Alzheimer's disease. Alzheimers Res Ther 2021; 13:63. [PMID: 33752738 PMCID: PMC7983401 DOI: 10.1186/s13195-021-00801-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/04/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Missing data can complicate the interpretability of a clinical trial, especially if the proportion is substantial and if there are different, potentially outcome-dependent causes. METHODS We aimed to obtain unbiased estimates, in the presence of a high level of missing data, for the intervention effects in a prodromal Alzheimer's disease trial: the LipiDiDiet study. We used a competing risk joint model that can simultaneously model each patient's longitudinal outcome trajectory in combination with the timing and type of missingness. RESULTS Using the competing risk joint model, we were able to provide unbiased estimates of the intervention effects in the presence of the different types of missingness. For the LipiDiDiet study, the intervention effects remained statistically significant after this correction for the timing and type of missingness. CONCLUSION Missing data is a common problem in (Alzheimer) clinical trials. It is important to realize that statistical techniques make specific assumptions about the missing data mechanisms. When there are different missing data sources, a competing risk joint model is a powerful method because it can explicitly model the association between the longitudinal data and each type of missingness. TRIAL REGISTRATION Dutch Trial Register, NTR1705 . Registered on 9 March 2009.
Collapse
Affiliation(s)
- Floor M van Oudenhoven
- Department of Biostatistics, Erasmus Medical Center, PO Box 2040, 3000, Rotterdam, CA, the Netherlands.
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, The Netherlands.
| | | | - Hilkka Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland
- Neurocenter, Department of Neurology, Kuopio University Hospital, PO Box 100, 70029, Kuopio, Finland
| | - Miia Kivipelto
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, 14157, Huddinge, Sweden
- Clinical Trials Unit, Theme Aging, Karolinska University Hospital, 14152, Huddinge, Sweden
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, St Dunstan's Road, London, UK
| | - Tobias Hartmann
- Deutsches Institut für Demenz Prävention (DIDP), Medical Faculty, Saarland University, Kirrbergerstraße, 66421, Homburg, Germany
- Department of Experimental Neurology, Saarland University, Kirrbergerstraße, 66421, Homburg, Germany
| | - Dimitris Rizopoulos
- Department of Biostatistics, Erasmus Medical Center, PO Box 2040, 3000, Rotterdam, CA, the Netherlands
| |
Collapse
|
7
|
Kuś PM, Rola R. LC-QqQ-MS/MS methodology for determination of purine and pyrimidine derivatives in unifloral honeys and application of chemometrics for their classification. Food Chem 2021; 348:129076. [PMID: 33503535 DOI: 10.1016/j.foodchem.2021.129076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/26/2020] [Accepted: 01/07/2021] [Indexed: 11/15/2022]
Abstract
The new liquid chromatographic-triple quadrupole tandem mass spectrometry (LC-QqQ-MS/MS) method for determination of purine and pyrimidine derivatives in honey produced by Apis mellifera was developed. 13 compounds were determined in total of 130 unifloral honey samples of 13 varieties: uracil, thymine, thymidine, xanthine, guanine, adenine, uridine, pseudouridine, xanthosine, inosine, hypoxanthine, guanosine and cytidine. The levels of some of these compounds varied between the specific honey types. The most abundant were uridine (up to 44.66 mg/kg), xanthine (up to 20.48 mg/kg) and xanthosine (up to 19.22 mg/kg). The data were evaluated by principal component analysis (PCA) and k-nearest neighbors (k-NN) classification (selected 9 and 8 honey types, respectively) to examine differences between the honey varieties allowing their discrimination based on purine and pyrimidine derivatives amounts. The data allowed to distinguish between 8 honey types (balanced accuracy 82%) and for most of the varieties obtained classification rates ranged from 96 to 100%.
Collapse
Affiliation(s)
- Piotr M Kuś
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland.
| | - Rafał Rola
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland; Masdiag Laboratory, Żeromskiego 33, 01-882 Warsaw, Poland.
| |
Collapse
|
8
|
Soininen H, Solomon A, Visser PJ, Hendrix SB, Blennow K, Kivipelto M, Hartmann T. 36-month LipiDiDiet multinutrient clinical trial in prodromal Alzheimer's disease. Alzheimers Dement 2020; 17:29-40. [PMID: 32920957 PMCID: PMC7821311 DOI: 10.1002/alz.12172] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022]
Abstract
Introduction The LipiDiDiet trial investigates the effects of the specific multinutrient combination Fortasyn Connect on cognition and related measures in prodromal Alzheimer's disease (AD). Based on previous results we hypothesized that benefits increase with long‐term intervention. Methods In this randomized, double‐blind, placebo‐controlled trial, 311 people with prodromal AD were recruited using the International Working Group‐1 criteria and assigned to active product (125 mL once‐a‐day drink) or an isocaloric, same tasting, placebo control drink. Main outcome was change in cognition (Neuropsychological Test Battery [NTB] 5‐item composite). Analyses were by modified intention‐to‐treat, excluding (ie, censoring) data collected after the start of open‐label active product and/or AD medication. Results Of the 382 assessed for eligibility, 311 were randomized, of those 162 participants completed the 36‐month study, including 81 with 36‐month data eligible for efficacy analysis. Over 36 months, significant reductions in decline were observed for the NTB 5‐item composite (−60%; between‐group difference 0.212 [95% confidence interval: 0.044 to 0.380]; P = 0.014), Clinical Dementia Rating‐Sum of Boxes (−45%; P = 0.014), memory (−76%; P = 0.008), and brain atrophy measures; small to medium Cohen's d effect size (0.25–0.31) similar to established clinically relevant AD treatment. Discussion This multinutrient intervention slowed decline on clinical and other measures related to cognition, function, brain atrophy, and disease progression. These results indicate that intervention benefits increased with long‐term use.
Collapse
Affiliation(s)
- Hilkka Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Alina Solomon
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Huddinge, Sweden.,Clinical Trials Unit, Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Pieter Jelle Visser
- Department of Neurology, Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands.,Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, University of Maastricht, Maastricht, the Netherlands
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Miia Kivipelto
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Huddinge, Sweden.,Clinical Trials Unit, Theme Aging, Karolinska University Hospital, Huddinge, Sweden.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Tobias Hartmann
- Deutsches Institut für Demenz Prävention (DIDP), Medical Faculty, Saarland University, Kirrbergerstraße, Homburg, Germany.,Department of Experimental Neurology, Saarland University, Kirrbergerstraße, Homburg, Germany
| | | |
Collapse
|
9
|
Chang EH, Carreiro ST, Frattini SA, Huerta PT. Assessment of glutamatergic synaptic transmission and plasticity in brain slices: relevance to bioelectronic approaches. Bioelectron Med 2020; 5:6. [PMID: 32232097 PMCID: PMC7098243 DOI: 10.1186/s42234-019-0022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/20/2019] [Indexed: 11/30/2022] Open
Abstract
Background Glutamatergic neurons represent the largest neuronal class in the brain and are responsible for the bulk of excitatory synaptic transmission and plasticity. Abnormalities in glutamatergic neurons are linked to several brain disorders and their modulation represents a potential opportunity for emerging bioelectronic medicine (BEM) approaches. Here, we have used a set of electrophysiological assays to identify the effect of the pyrimidine nucleoside uridine on glutamatergic systems in ex vivo brain slices. An improved understanding of glutamatergic synaptic transmission and plasticity, through this type of examination, is critical to the development of potential neuromodulation strategies. Methods Ex vivo hippocampal slices (400 μm thick) were prepared from mouse brain. We recorded field excitatory postsynaptic potentials (fEPSP) in the CA1’s stratum radiatum by stimulation of the CA3 Schaeffer collateral/commissural axons. Uridine was applied at concentrations (3, 30, 300 μM) representing the physiological range present in brain tissue. Synaptic function was studied with input-output (I-O) functions, as well as paired-pulse facilitation (PPF). Synaptic plasticity was studied by applying tetanic stimulation to induce post-tetanic potentiation (PTP), short-term potentiation (STP) and long-term potentiation (LTP). Additionally, we determined whether uridine affected synaptic responses carried solely by n-methyl-d-aspartate receptors (NMDARs), particularly during the oxygen-glucose deprivation (OGD) paradigm. Results The presence of uridine altered glutamatergic synaptic transmission and plasticity. We found that uridine affected STP and LTP in a concentration-dependent manner. Low-dose uridine (3 μM) had no effect, but higher doses (30 and 300 μM) impaired STP and LTP. Moreover, uridine (300 μM) decreased NMDAR-mediated synaptic responses. Conversely, uridine (at all concentrations tested) had a negligible effect on PPF and basal synaptic transmission, which is mediated primarily by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). In addition, uridine (100 μM) exerted a protective effect when the hippocampal slices were challenged with OGD, a widely used model of cerebral ischemia. Conclusions Using a wide set of electrophysiological assays, we identify that uridine interacts with glutamatergic neurons to alter NMDAR-mediated responses, impair synaptic STP and LTP in a dose-dependent manner, and has a protective effect against OGD insult. This work outlines a strategy to identify deficits in glutamatergic mechanisms for signaling and plasticity that may be critical for targeting these same systems with BEM device-based approaches. To improve the efficacy of potential neuromodulation approaches for treating brain dysfunction, we need to improve our understanding of glutamatergic systems in the brain, including the effects of modulators such as uridine.
Collapse
Affiliation(s)
- Eric H Chang
- 1Laboratory of Immune & Neural Networks, Institutes of Molecular Medicine and Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA.,2Laboratory of Biomedical Science, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549 USA
| | - Samantha T Carreiro
- Nimbus Therapeutics, 130 Prospect Street, Suite 301, Cambridge, MA 02139 USA
| | - Stephen A Frattini
- 1Laboratory of Immune & Neural Networks, Institutes of Molecular Medicine and Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
| | - Patricio T Huerta
- 1Laboratory of Immune & Neural Networks, Institutes of Molecular Medicine and Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549 USA
| |
Collapse
|
10
|
Bouchatta O, Manouze H, Ba-M'Hamed S, Landry M, Bennis M. Neonatal 6-OHDA Lesion Model in Mouse Induces Cognitive Dysfunctions of Attention-Deficit/Hyperactivity Disorder (ADHD) During Young Age. Front Behav Neurosci 2020; 14:27. [PMID: 32174817 PMCID: PMC7054716 DOI: 10.3389/fnbeh.2020.00027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/05/2020] [Indexed: 11/13/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a syndrome characterized by impaired attention, impulsivity and hyperactivity in children. These symptoms are often maintained in adults. During adolescence, prefrontal cortex develops connectivity with other brain regions to engage executive functions such as, latent inhibition, attention and inhibitory control. In our previous work, we demonstrated the validity of the neonatal 6-Hydroxydopamine (6-OHDA) mouse model, a classical neurodevelopmental model mimicking major symptoms of the human ADHD pathology. In order to evaluate pathological forms of executive functions and impulsive behavior in 6-OHDA mice during young age, we first tested latent inhibition (LI) after weaning, and then we evaluated the impulsive behavior using a cliff avoidance reaction test. Our results demonstrated that 6-OHDA mice showed disruption in latent inhibition, suggesting a deficit in selective attention, and displayed repetitive peering-down behavior, indicating a maladaptive impulsive behavior. Subsequently, to assess impulsivity and attention in young mice, we performed a modified 5-choice serial reaction time task test (5-CSRTT), optimizing the degree of food restriction for young animals and shortening the training duration. This test allowed us to demonstrate a deficit in inhibitory control and a loss of accuracy of 6-OHDA mice in the 5-CSRTT. In conclusion, we demonstrated that the 6-OHDA mouse model reproduces human symptoms of ADHD in childhood and early adulthood periods, as seen in human. Taken together, the 6-OHDA mouse model will be useful alongside other animal models to understand the neurobiological mechanisms underlying complex, heterogeneous neurological disorders.
Collapse
Affiliation(s)
- Otmane Bouchatta
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences, Cadi Ayyad University, Marrakesh, Morocco.,University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Centre Paul Broca-Nouvelle Aquitaine, Interdisciplinary Institute of Neuroscience, Bordeaux, France
| | - Houria Manouze
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences, Cadi Ayyad University, Marrakesh, Morocco
| | - Saadia Ba-M'Hamed
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences, Cadi Ayyad University, Marrakesh, Morocco
| | - Marc Landry
- University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Centre Paul Broca-Nouvelle Aquitaine, Interdisciplinary Institute of Neuroscience, Bordeaux, France
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences, Cadi Ayyad University, Marrakesh, Morocco
| |
Collapse
|
11
|
Kuś PM. Honey as Source of Nitrogen Compounds: Aromatic Amino Acids, Free Nucleosides and Their Derivatives. Molecules 2020; 25:molecules25040847. [PMID: 32075114 PMCID: PMC7070497 DOI: 10.3390/molecules25040847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
The content of selected major nitrogen compounds including nucleosides and their derivatives was evaluated in 75 samples of seven varieties of honey (heather, buckwheat, black locust, goldenrod, canola, fir, linden) by targeted ultra-high performance liquid chromatography-diode array detector - high-resolution quadrupole time-of-flight mass spectrometry (UHPLC-DAD-QqTOF-MS) and determined by UHPLC-DAD. The honey samples contained nucleosides, nucleobases and their derivatives (adenine: 8.9 to 18.4 mg/kg, xanthine: 1.2 to 3.3 mg/kg, uridine: 17.5 to 51.2 mg/kg, guanosine: 2.0 to 4.1 mg/kg; mean amounts), aromatic amino acids (tyrosine: 7.8 to 263.9 mg/kg, phenylalanine: 9.5 to 64.1 mg/kg; mean amounts). The amounts of compounds significantly differed between some honey types. For example, canola honey contained a much lower amount of uridine (17.5 ± 3.9 mg/kg) than black locust where it was most abundant (51.2 ± 7.8 mg/kg). The presence of free nucleosides and nucleobases in different honey varieties is reported first time and supports previous findings on medicinal activities of honey reported in the literature as well as traditional therapy and may contribute for their explanation. This applies, e.g., to the topical application of honey in herpes infections, as well as its beneficial activity on cognitive functions as nootropic and neuroprotective, in neuralgia and is also important for the understanding of nutritional values of honey.
Collapse
Affiliation(s)
- Piotr M Kuś
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211a, 50-556 Wrocław, Poland
| |
Collapse
|
12
|
Nitrogen compounds in Phacelia tanacetifolia Benth. honey: First time report on occurrence of (−)-5- epi -lithospermoside, uridine, adenine and xanthine in honey. Food Chem 2018; 255:332-339. [DOI: 10.1016/j.foodchem.2018.02.093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/08/2018] [Accepted: 02/16/2018] [Indexed: 11/20/2022]
|
13
|
Atanasova D, Tchekalarova J, Ivanova N, Nenchovska Z, Pavlova E, Atanassova N, Lazarov N. Losartan suppresses the kainate-induced changes of angiotensin AT 1 receptor expression in a model of comorbid hypertension and epilepsy. Life Sci 2017; 193:40-46. [PMID: 29223539 DOI: 10.1016/j.lfs.2017.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 11/16/2022]
Abstract
AIMS Experimental and clinical studies have demonstrated that components of renin-angiotensin system are elevated in the hippocampus in epileptogenic conditions. In the present work, we explored the changes in the expression of angiotensin II receptor, type 1 (AT1 receptor) in limbic structures, as well as the effect of the AT1 receptor antagonist losartan in a model of comorbid hypertension and epilepsy. MAIN METHODS The expression of AT1 receptors was compared between spontaneously hypertensive rats (SHRs) and Wistar rats by using immunohistochemistry in the kainate (KA) model of temporal lobe epilepsy (TLE). The effect of losartan was studied on AT1 receptor expression in epileptic rats that were treated for a period of 4weeks after status epilepticus. KEY FINDINGS The naive and epileptic SHRs were characterized by stronger protein expression of AT1 receptor than normotensive Wistar rats in the CA1, CA3a, CA3b, CA3c field and the hilus of the dentate gyrus of the dorsal hippocampus but fewer cells were immunostained in the piriform cortex. Increased AT1 immunostaining was observed in the basolateral amygdala of epileptic SHRs but not of epileptic Wistar rats. Losartan exerted stronger and structure-dependent suppression of AT1 receptor expression in SHRs compared to Wistar rats. SIGNIFICANCE Our results confirm the important role of AT1 receptor in epilepsy and suggest that the AT1receptor antagonists could be used as a therapeutic strategy for treatment of comorbid hypertension and epilepsy.
Collapse
Affiliation(s)
- Dimitrinka Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora 6003, Bulgaria; Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Göttingen 37077, Germany.
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Natasha Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Zlatina Nenchovska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Ekaterina Pavlova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nina Atanassova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nikolai Lazarov
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; Department of Anatomy and Histology, Medical University of Sofia, Sofia 1431, Bulgaria
| |
Collapse
|
14
|
Grimm MOW, Michaelson DM, Hartmann T. Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimer's disease: a rationale for multi-nutrient dementia prevention. J Lipid Res 2017; 58:2083-2101. [PMID: 28528321 PMCID: PMC5665674 DOI: 10.1194/jlr.r076331] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/09/2017] [Indexed: 12/14/2022] Open
Abstract
In the last decade, it has become obvious that Alzheimer's disease (AD) is closely linked to changes in lipids or lipid metabolism. One of the main pathological hallmarks of AD is amyloid-β (Aβ) deposition. Aβ is derived from sequential proteolytic processing of the amyloid precursor protein (APP). Interestingly, both, the APP and all APP secretases are transmembrane proteins that cleave APP close to and in the lipid bilayer. Moreover, apoE4 has been identified as the most prevalent genetic risk factor for AD. ApoE is the main lipoprotein in the brain, which has an abundant role in the transport of lipids and brain lipid metabolism. Several lipidomic approaches revealed changes in the lipid levels of cerebrospinal fluid or in post mortem AD brains. Here, we review the impact of apoE and lipids in AD, focusing on the major brain lipid classes, sphingomyelin, plasmalogens, gangliosides, sulfatides, DHA, and EPA, as well as on lipid signaling molecules, like ceramide and sphingosine-1-phosphate. As nutritional approaches showed limited beneficial effects in clinical studies, the opportunities of combining different supplements in multi-nutritional approaches are discussed and summarized.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Department of Experimental Neurology and Department of Neurodegeneration and Neurobiology, and Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Daniel M Michaelson
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tobias Hartmann
- Department of Experimental Neurology and Department of Neurodegeneration and Neurobiology, and Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Homburg/Saar, Germany
| |
Collapse
|
15
|
Rostron CL, Gaeta V, Brace LR, Dommett EJ. Instrumental conditioning for food reinforcement in the spontaneously hypertensive rat model of attention deficit hyperactivity disorder. BMC Res Notes 2017; 10:525. [PMID: 29084583 PMCID: PMC5661932 DOI: 10.1186/s13104-017-2857-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/23/2017] [Indexed: 01/17/2023] Open
Abstract
Background The spontaneously hypertensive rat is thought to show good validity as a model of attention deficit hyperactivity disorder, in part because of impaired delayed reinforcement behaviour, corresponding to the dynamic developmental theory of the disorder. However, some previous studies may have been confounded use of fluid reward. Therefore, the objective of this study was to assess the spontaneously hypertensive rat and two comparison strains (Wistar and Wistar Kyoto) using a non-delayed food reinforcement paradigm in an attempt to advance knowledge of basic learnt behaviour in this strain, without potentially confounding reward sensitivity, which could impact on motivation to learn. Rats were trained on a fixed ratio 1 two choice discrimination schedule, extinction, reacquisition and reversal. We also tested non-reinforced spontaneous alternation to facilitate data interpretation. Results The spontaneously hypertensive rat displayed slower shaping and reduced on task activity during task acquisition, contrasting with previous results which indicate either enhanced responding and an impairment only when a delay is used; we suggest several reasons for this. In line with previous work, the same strain exhibited poor extinguishing of behaviour but were not impaired to the same extent on reversal of the discrimination. Finally, non-reinforced alternations on a Y-maze were also reduced in the spontaneously hypertensive rat. Conclusions In sum, the spontaneously hypertensive rat appear to show poor response inhibition in reinforced and non-reinforced contexts. However, impaired response inhibition was reduced during reversal when an opposite response produced food reward alongside presentation of the conditioned stimulus. We discuss the possibility of enhanced attribution of incentive salience to cues in this strain and highlight several points of caution for researchers conducting behavioural assessments using the spontaneously hypertensive rat and their associated comparison strains. Electronic supplementary material The online version of this article (10.1186/s13104-017-2857-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claire L Rostron
- Dept Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Victoria Gaeta
- Dept Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Louise R Brace
- Dept Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Eleanor J Dommett
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Addison House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
16
|
Blockade of α2-adrenergic receptors in prelimbic cortex: impact on cocaine self-administration in adult spontaneously hypertensive rats following adolescent atomoxetine treatment. Psychopharmacology (Berl) 2017; 234:2897-2909. [PMID: 28730282 PMCID: PMC5693724 DOI: 10.1007/s00213-017-4681-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/25/2017] [Indexed: 12/17/2022]
Abstract
RATIONALE Research with the spontaneously hypertensive rat (SHR) model of attention deficit/hyperactivity disorder demonstrated that chronic methylphenidate treatment during adolescence increased cocaine self-administration established during adulthood under a progressive ratio (PR) schedule. Compared to vehicle, chronic atomoxetine treatment during adolescence failed to increase cocaine self-administration under a PR schedule in adult SHR. OBJECTIVES We determined if enhanced noradrenergic transmission at α2-adrenergic receptors within prefrontal cortex contributes to this neutral effect of adolescent atomoxetine treatment in adult SHR. METHODS Following treatment from postnatal days 28-55 with atomoxetine (0.3 mg/kg) or vehicle, adult male SHR and control rats from Wistar-Kyoto (WKY) and Wistar (WIS) strains were trained to self-administer 0.3 mg/kg cocaine. Self-administration performance was evaluated under a PR schedule of cocaine delivery following infusion of the α2-adrenergic receptor antagonist idazoxan (0 and 10-56 μg/side) directly into prelimbic cortex. RESULTS Adult SHR attained higher PR break points and had greater numbers of active lever responses and infusions than WKY and WIS. Idazoxan dose-dependently increased PR break points and active lever responses in SHR following adolescent atomoxetine vs. vehicle treatment. Behavioral changes were negligible after idazoxan pretreatment in SHR following adolescent vehicle or in WKY and WIS following adolescent atomoxetine or vehicle. CONCLUSIONS α2-Adrenergic receptor blockade in prelimbic cortex of SHR masked the expected neutral effect of adolescent atomoxetine on adult cocaine self-administration behavior. Moreover, greater efficacy of acute idazoxan challenge in adult SHR after adolescent atomoxetine relative to vehicle is consistent with the idea that chronic atomoxetine may downregulate presynaptic α2A-adrenergic autoreceptors in SHR.
Collapse
|
17
|
Aparicio CF, Hennigan PJ, Mulligan LJ, Alonso-Alvarez B. Spontaneously hypertensive (SHR) rats choose more impulsively than Wistar-Kyoto (WKY) rats on a delay discounting task. Behav Brain Res 2017; 364:480-493. [PMID: 28963043 DOI: 10.1016/j.bbr.2017.09.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 11/29/2022]
Abstract
Indications of Attention Deficit Hyperactivity Disorder (ADHD) in the spontaneously hypertensive rat (SHR) are not consistent across different tests of impulsivity, questioning the SHR's validity as a rodent model of ADHD. This study used a concurrent-chains procedure to examine possible differences in impulsive choice between SHRs and control-normotensive Wistar Kyoto (WKY) rats. The aim was to extend the generality of findings showing regularities between the hyperbolic-decay model and the generalized matching law fitting delay discounting data from nonhuman animals. The objectives were to: (1) examine differences in impulsive choice between SHRs and WKYs; (2) add evidence suggesting that the SHR is a suitable model of ADHD; (3) demonstrate that concurrent-chains procedures requiring locomotion detect differences in impulsive choice between SHRs and WKYs; (4) support the idea that impulsivity in nonhuman animals increases with training. The initial link used two non-independent random interval schedules arranging entries to the terminal links, where one fixed-time (FT) schedule delayed 1-food pellet and the other FT 4-food pellets. The FT delaying the former was kept constant at 0.1s and that delaying the latter changed after every 10 food deliveries, defining six delay components (0.1, 5, 10, 20, 40, and 80s) presented in random order each session. Results showed that the SHRs choose more impulsively than the WKYs, adding to the body of evidence suggesting that the SHR may be a suitable model of ADHD. Both models of choice fitted the impulsive choices of the SHRs and WKYs well; positive correlations between estimates of parameters k and s suggested compatibility between models of choice showing that impulsivity increases with training.
Collapse
|
18
|
Fei YL, Lv HJ, Li YB, Liu J, Qian YH, Yang WN, Ma KG, Li HB, Qu QM. Tongxinluo improves cognition by decreasing β-amyloid in spontaneous hypertensive rats. Brain Res 2017; 1663:151-160. [DOI: 10.1016/j.brainres.2017.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/31/2022]
|
19
|
Goren B, Cakir A, Ocalan B, Serter Kocoglu S, Alkan T, Cansev M, Kahveci N. Long-term cognitive effects of uridine treatment in a neonatal rat model of hypoxic-ischemic encephalopathy. Brain Res 2017; 1659:81-87. [DOI: 10.1016/j.brainres.2017.01.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/19/2016] [Accepted: 01/20/2017] [Indexed: 01/14/2023]
|
20
|
Fox AE, Caramia SR, Haskell MM, Ramey AL, Singha D. Stimulus control in two rodent models of attention-deficit/hyperactivity disorder. Behav Processes 2017; 135:16-24. [DOI: 10.1016/j.beproc.2016.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 12/16/2022]
|
21
|
Tchekalarova JD, Ivanova N, Atanasova D, Pechlivanova DM, Lazarov N, Kortenska L, Mitreva R, Lozanov V, Stoynev A. Long-Term Treatment with Losartan Attenuates Seizure Activity and Neuronal Damage Without Affecting Behavioral Changes in a Model of Co-morbid Hypertension and Epilepsy. Cell Mol Neurobiol 2016; 36:927-941. [PMID: 26464042 DOI: 10.1007/s10571-015-0278-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/28/2015] [Indexed: 02/03/2023]
Abstract
Over the last 10 years, accumulated experimental and clinical evidence has supported the idea that AT1 receptor subtype is involved in epilepsy. Recently, we have shown that the selective AT1 receptor antagonist losartan attenuates epileptogenesis and exerts neuroprotection in the CA1 area of the hippocampus in epileptic Wistar rats. This study aimed to verify the efficacy of long-term treatment with losartan (10 mg/kg) after kainate-induced status epilepticus (SE) on seizure activity, behavioral and biochemical changes, and neuronal damage in a model of co-morbid hypertension and epilepsy. Spontaneous seizures were video- and EEG-monitored in spontaneously hypertensive rats (SHRs) for a 16-week period after SE. The behavior was analyzed by open field, elevated plus maze, sugar preference test, and forced swim test. The levels of serotonin in the hippocampus and neuronal loss were estimated by HPLC and hematoxylin and eosin staining, respectively. The AT1 receptor antagonism delayed the onset of seizures and alleviated their frequency and duration during and after discontinuation of treatment. Losartan showed neuroprotection mostly in the CA3 area of the hippocampus and the septo-temporal hilus of the dentate gyrus in SHRs. However, the AT1 receptor antagonist did not exert a substantial influence on concomitant with epilepsy behavioral changes and decreased 5-HT levels in the hippocampus. Our results suggest that the antihypertensive therapy with an AT1 receptor blocker might be effective against seizure activity and neuronal damage in a co-morbid hypertension and epilepsy.
Collapse
Affiliation(s)
- Jana D Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria.
| | - Natasha Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| | - Dimitrina Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| | - Daniela M Pechlivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| | - Nikolai Lazarov
- Department of Anatomy, Medical Faculty, MU-Sofia, Sofia, Bulgaria
| | - Lidia Kortenska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| | - Rumiana Mitreva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| | - Valentin Lozanov
- Department of Medical Chemistry and Biochemistry, Sofia, Bulgaria
| | - Alexander Stoynev
- Department of Pathophysiology, Medical Faculty, MU-Sofia, Sofia, Bulgaria
| |
Collapse
|
22
|
Cansev M. Synaptogenesis: Modulation by Availability of Membrane Phospholipid Precursors. Neuromolecular Med 2016; 18:426-40. [DOI: 10.1007/s12017-016-8414-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
|
23
|
Ianov L, Rani A, Beas BS, Kumar A, Foster TC. Transcription Profile of Aging and Cognition-Related Genes in the Medial Prefrontal Cortex. Front Aging Neurosci 2016; 8:113. [PMID: 27242522 PMCID: PMC4868850 DOI: 10.3389/fnagi.2016.00113] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/29/2016] [Indexed: 12/22/2022] Open
Abstract
Cognitive function depends on transcription; however, there is little information linking altered gene expression to impaired prefrontal cortex function during aging. Young and aged F344 rats were characterized on attentional set shift and spatial memory tasks. Transcriptional differences associated with age and cognition were examined using RNA sequencing to construct transcriptomic profiles for the medial prefrontal cortex (mPFC), white matter, and region CA1 of the hippocampus. The results indicate regional differences in vulnerability to aging. Age-related gene expression in the mPFC was similar to, though less robust than, changes in the dorsolateral PFC of aging humans suggesting that aging processes may be similar. Importantly, the pattern of transcription associated with aging did not predict cognitive decline. Rather, increased mPFC expression of genes involved in regulation of transcription, including transcription factors that regulate the strength of excitatory and inhibitory inputs, and neural activity-related immediate-early genes was observed in aged animals that exhibit delayed set shift behavior. The specificity of impairment on a mPFC-dependent task, associated with a particular mPFC transcriptional profile indicates that impaired executive function involves altered transcriptional regulation and neural activity/plasticity processes that are distinct from that described for impaired hippocampal function.
Collapse
Affiliation(s)
- Lara Ianov
- Department of Neuroscience, McKnight Brain Institute, University of FloridaGainesville, FL, USA
- Genetics and Genomics Program, Genetics Institute, University of FloridaGainesville, FL, USA
| | - Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of FloridaGainesville, FL, USA
| | - Blanca S. Beas
- Department of Neuroscience, McKnight Brain Institute, University of FloridaGainesville, FL, USA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of FloridaGainesville, FL, USA
| | - Thomas C. Foster
- Department of Neuroscience, McKnight Brain Institute, University of FloridaGainesville, FL, USA
- Genetics and Genomics Program, Genetics Institute, University of FloridaGainesville, FL, USA
| |
Collapse
|
24
|
Kantak KM, Dwoskin LP. Necessity for research directed at stimulant type and treatment-onset age to access the impact of medication on drug abuse vulnerability in teenagers with ADHD. Pharmacol Biochem Behav 2016; 145:24-6. [PMID: 27012495 DOI: 10.1016/j.pbb.2016.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Kathleen M Kantak
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA.
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
25
|
Brace LR, Kraev I, Rostron CL, Stewart MG, Overton PG, Dommett EJ. Auditory responses in a rodent model of Attention Deficit Hyperactivity Disorder. Brain Res 2015; 1629:10-25. [PMID: 26453290 DOI: 10.1016/j.brainres.2015.09.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 01/30/2023]
Abstract
A central component of Attention Deficit Hyperactivity Disorder (ADHD) is increased distractibility in response to visual and auditory stimuli, which is linked to the superior colliculus (SC). Furthermore, there is now mounting evidence of altered collicular functioning in ADHD and it is proposed that a hyper-responsive SC could mediate symptoms of ADHD, including distractibility. In the present study we conducted a systematic characterisation of the intermediate and deep layers of the SC in the most commonly used and well-validated model of ADHD, the spontaneously hypertensive rat (SHR), building on prior work showing increased distractible behaviour in this strain using visual distractors. We examined collicular-dependent orienting behaviour, local field potential (LFP) and multiunit activity (MUA) in response to auditory stimuli in the anaesthetised rat, and morphological measures, in the SHR in comparison to the Wistar Kyoto (WKY) and Wistar (WIS). We found no evidence of increased distractibility in the behavioural data but suggest that this may arise due to cochlear hearing loss in the SHR. Furthermore, the electrophysiology data indicate that the SC in the SHR may still be hyper-responsive, normalising the amplitude of auditory responses that would otherwise be reduced due to the hearing impairment. The morphological measures of collicular volume, cell density and ratios did not indicate this potential hyper-responsiveness had a basis at the structural level examined. These findings have implications for future use of the SHR in auditory processing studies and may represent a limitation to the validity of this animal model.
Collapse
Affiliation(s)
- Louise R Brace
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Igor Kraev
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Claire L Rostron
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Michael G Stewart
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Paul G Overton
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Eleanor J Dommett
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK; Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King׳s College London, London SE1 3QD, UK.
| |
Collapse
|
26
|
Onakpoya IJ, Heneghan CJ. The efficacy of supplementation with the novel medical food, Souvenaid, in patients with Alzheimer's disease: A systematic review and meta-analysis of randomized clinical trials. Nutr Neurosci 2015; 20:219-227. [DOI: 10.1080/1028415x.2015.1110899] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Igho J. Onakpoya
- Centre for Evidence-Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, UK
| | - Carl J. Heneghan
- Centre for Evidence-Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, UK
| |
Collapse
|
27
|
D-amphetamine improves attention performance in adolescent Wistar, but not in SHR rats, in a two-choice visual discrimination task. Psychopharmacology (Berl) 2015; 232:3269-86. [PMID: 26037943 DOI: 10.1007/s00213-015-3974-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/24/2015] [Indexed: 01/30/2023]
Abstract
The validity of spontaneous hypertensive rat (SHR) as a model of attention deficit hyperactivity disorder (ADHD) has been explored by comparing SHR with Wistar rats in a test of attention, the two-choice visual discrimination task (2-CVDT). Animals were 4-5 weeks old during the training phase of the experiment and 6-7 weeks old during the testing phase in which they were tested with D-amphetamine, a stimulant drug used for the treatment of ADHD. As compared to Wistar, SHR showed a slightly better attention performance, a slightly lower impulsivity level, and a lower general activity during the training phase, but these differences disappeared or lessened thereafter, during the testing phase. D-amphetamine (0.5, 1 mg/kg) improved attention performance in Wistar, but not in SHR, and did not modify impulsivity and activity in the two strains. In conclusion, the present study did not demonstrate that SHR represents a valid model of ADHD, since it did not show face validity regarding the behavioral symptoms of ADHD and predictive validity regarding the effect of a compound used for the treatment of ADHD. On the other hand, this study showed that the 2-CVDT may represent a suitable tool for evaluating in adolescent Wistar rats the effect on attention of compounds intended for the treatment of ADHD.
Collapse
|
28
|
Dela Peña I, Bang M, Lee J, de la Peña JB, Kim BN, Han DH, Noh M, Shin CY, Cheong JH. Common prefrontal cortical gene expression profiles between adolescent SHR/NCrl and WKY/NCrl rats which showed inattention behavior. Behav Brain Res 2015; 291:268-276. [PMID: 26048425 DOI: 10.1016/j.bbr.2015.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/07/2015] [Accepted: 05/10/2015] [Indexed: 12/12/2022]
Abstract
Factor analyses of attention-deficit/hyperactivity (ADHD) symptoms divide the behavioral symptoms of ADHD into two separate domains, one reflecting inattention and the other, a combination of hyperactivity and impulsivity. Identifying domain-specific genetic risk variants may aid in the discovery of specific biological risk factors for ADHD. In contrast with data available on genes involved in hyperactivity and impulsivity, there is limited information on the genetic influences of inattention. Transcriptional profiling analysis in animal models of disorders may provide an important tool to identify genetic involvement in behavioral phenotypes. To explore some of the potential genetic underpinnings of ADHD inattention, we examined common differentially expressed genes (DEGs) in the prefrontal cortex of SHR/NCrl, the most validated animal model of ADHD and WKY/NCrl, animal model of ADHD-inattentive type. In contrast with Wistar rats, strain representing the "normal" heterogeneous population, SHR/NCrl and WKY/NCrl showed inattention behavior in the Y-maze task. The common DEGs in the PFC of SHR/NCrl and WKY/NCrl vs. Wistar rats are those involved in transcription (e.g. Creg1, Thrsp, Zeb2), synaptic transmission (e.g. Atp2b2, Syt12, Chrna5), neurological system process (e.g. Atg7, Cacnb4, Grin3a), and immune response (e.g. Atg7, Ip6k2, Mx2). qRT-PCR analyses validated expression patterns of genes representing the major functional gene families among the DEGs (Grin3a, Thrsp, Vof-16 and Zeb2). Although further studies are warranted, the present findings indicate novel genes associated with known functional pathways of relevance to ADHD which are assumed to play important roles in the etiology of ADHD-inattentive subtype.
Collapse
Affiliation(s)
- Ike Dela Peña
- Uimyung Research Institute for Neuroscience, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815, Nowon-gu, Seoul 139-742, Republic of Korea; Department of Pharmaceutical and Administrative Sciences, Loma Linda University, CA 92350, USA.
| | - Minji Bang
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jinhee Lee
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | - June Bryan de la Peña
- Uimyung Research Institute for Neuroscience, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815, Nowon-gu, Seoul 139-742, Republic of Korea
| | - Bung-Nyun Kim
- Division of Child and Adolescent Psychiatry, Clinical Research Institute, Seoul National University Hospital, 28 Yungundong, Chongrogu, Seoul 110-744, Republic of Korea
| | - Doug Hyun Han
- Department of Psychiatry, Chung-Ang University Medical School, 102 Heukseok-ro, Dongjak-gu, Seoul 156-755, Republic of Korea
| | - Minsoo Noh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Chan Young Shin
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815, Nowon-gu, Seoul 139-742, Republic of Korea.
| |
Collapse
|
29
|
Behavioral and molecular responses to electroconvulsive shock differ between genetic and environmental rat models of depression. Psychiatry Res 2015; 226:451-60. [PMID: 25708608 DOI: 10.1016/j.psychres.2014.12.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 12/09/2014] [Accepted: 12/18/2014] [Indexed: 11/23/2022]
Abstract
Depression׳s causes play a role in individuals׳ different responses to antidepressant treatments, which require advancements. We investigated the mechanisms behind and responses to a highly effective antidepressant treatment, electroconvulsive therapy (ECT), in rat models with different (genetic or environmental) depression causes. Wistar Kyoto (WKY) rats and Wistar rats treated with chronic unpredictable mild stresses (CUMS) were used as genetic and environmental rat models of depression, respectively. The rats underwent electroconvulsive shock (ECS, the animal analog of ECT) or sham ECS. We performed a sucrose preference test, open field test, and Morris water maze to assess behavior. Hippocampal neuron numbers were measured with Nissl stain. Hippocampal BDNF, CREB, and p-CREB proteins were assayed with ELISA or western blotting. The main results showed that ECS impaired WKY rats׳ memories but improved CUMS rats׳ memories. It elevated hippocampal BDNF and CREB proteins only in CUMS rats, while it improved depressive behavior and hippocampal p-CREB protein levels in both rats, with more effective regulations in the CUMS rats. ECS did not change the hippocampal neuron number in both rats. These findings suggest that ECS exerted up-regulating effects on hippocampal BDNF and CREB (and its phosphorylation) in depressed rats, and the environmental model responded better.
Collapse
|
30
|
Bayless DW, Perez MC, Daniel JM. Comparison of the validity of the use of the spontaneously hypertensive rat as a model of attention deficit hyperactivity disorder in males and females. Behav Brain Res 2015; 286:85-92. [PMID: 25724583 DOI: 10.1016/j.bbr.2015.02.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/18/2015] [Accepted: 02/16/2015] [Indexed: 12/31/2022]
Abstract
The spontaneously hypertensive rat (SHR) is a commonly used and well-studied rodent model of attention deficit hyperactivity disorder (ADHD). Sex differences in the cognitive symptoms of ADHD are reported. However, the female SHR rat is much less studied than its male counterpart. The goal of the current study was to assess the validity of the SHR rodent model of ADHD by examining attentional performance, inhibitory control, and hyperactivity in both male and female SHR rats. Adult SHR and control Wistar-Kyoto rats were trained on the 5-choice serial reaction time task, a self-paced test of attention and inhibitory control. This task requires animals to identify the location of a brief light stimulus among five possible locations under several challenging conditions. Analyses of percent correct revealed that attentional performance in SHR females was not significantly different from control females, whereas attentional performance in SHR males was significantly different from control males. Analyses of the number of premature responses revealed that SHR rats made more inhibitory control errors than did control rats and that this decrease in inhibitory control was present in both SHR males and females. Analyses of activity in the open field revealed that SHR rats were more hyperactive than were control rats and that this increased hyperactivity was present in both SHR males and females. The current findings have implications for the study of sex differences in ADHD and for the use of SHR rats as a model of ADHD in females.
Collapse
Affiliation(s)
- Daniel W Bayless
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA.
| | - Maria C Perez
- Neuroscience Program, Tulane University, New Orleans, LA 70118, USA.
| | - Jill M Daniel
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA; Neuroscience Program, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
31
|
Dudzinska W, Lubkowska A, Dolegowska B, Suska M, Janiak M. Uridine--an indicator of post-exercise uric acid concentration and blood pressure. Physiol Res 2014; 64:467-77. [PMID: 25470512 DOI: 10.33549/physiolres.932766] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Studies have shown that uridine concentration in plasma may be an indicator of uric acid production in patients with gout. It has been also postulated that uridine takes part in blood pressure regulation. Since physical exercise is an effective tool in treatment and prevention of cardio-vascular diseases that are often accompanied by hyperuricemia and hypertension, it seemed advisable to attempt to evaluate the relationship between oxypurine concentrations (Hyp, Xan and UA) and that of Urd and BP after physical exercise in healthy subjects. Sixty healthy men (17.2+/-1.71 years, BMI 23.2+/-2.31 kg m(-2), VO(2max) 54.7+/-6.48 ml kg(-1) min(-1)) took part in the study. The subjects performed a single maximal physical exercise on a bicycle ergometer. Blood for analyses was sampled three times: immediately before exercise, immediately after exercise, and in the 30th min of rest. Concentrations of uridine and hypoxanthine, xanthine and uric acid were determined in whole blood using high-performance liquid chromatography. We have shown in this study that the maximal exercise-induced increase of uridine concentration correlates with the post-exercise increase of uric acid concentration and systolic blood pressure. The results of our study show a relationship between uridine concentration in blood and uric acid concentration and blood pressure. We have been the first to demonstrate that a maximal exercise-induced increase in uridine concentration is correlated with the post-exercise and recovery-continued increase of uric acid concentration in healthy subjects. Thus, it appears that uridine may be an indicator of post-exercise hyperuricemia and blood pressure.
Collapse
Affiliation(s)
- W Dudzinska
- Department of Physiology, Faculty of Biology, University of Szczecin, Szczecin, Poland.
| | | | | | | | | |
Collapse
|
32
|
Kishikawa Y, Kawahara Y, Yamada M, Kaneko F, Kawahara H, Nishi A. The spontaneously hypertensive rat/Izm (SHR/Izm) shows attention deficit/hyperactivity disorder-like behaviors but without impulsive behavior: therapeutic implications of low-dose methylphenidate. Behav Brain Res 2014; 274:235-42. [PMID: 25151620 DOI: 10.1016/j.bbr.2014.08.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 01/20/2023]
Abstract
The spontaneously hypertensive rat (SHR) has been used as a genetic animal model of attention deficit/hyperactivity disorder (ADHD). SHR/Izm is derived from stroke-resistant SHR as SHR/NIH and SHR/NCrl but from 22nd to 23rd generation descendants of the SHR/NIH ancestor and therefore may show different behavioral phenotypes compared to other SHR sub-strains. In this study, ADHD-like behaviors in SHR/Izm were evaluated compared to Wistar rats. SHR/Izm showed high locomotor activity in the habituation phase in a novel environment, although locomotor activity in the initial exploratory phase was low. In a behavioral test for attention, spontaneous alternation behavior in the Y-maze test was impaired in SHR/Izm. However, impulsive behavior in the elevated-plus maze test, which is designed to detect anxiety-related behavior but also reflects impulsivity for novelty seeking, was comparable to Wistar rats. Hyperactivity and inattention, detected as ADHD-like behaviors in SHR/Izm, were ameliorated with methylphenidate at a low dose (0.05mg/kg, i.p.). Therefore, SHR/Izm represents a unique animal model of ADHD without anxiety-related impulsive behavior.
Collapse
Affiliation(s)
- Yuki Kishikawa
- Department of Pharmacology, Kurume University School of Medicine, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan.
| | - Yukie Kawahara
- Department of Pharmacology, Kurume University School of Medicine, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan.
| | - Makiko Yamada
- Department of Pharmacology, Kurume University School of Medicine, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan; Department of Psychiatry, Tokyo Women's Medical University, Kawada-Cho 8-1, Shinjuku-ku, Tokyo 168-8666, Japan.
| | - Fumi Kaneko
- Department of Pharmacology, Kurume University School of Medicine, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan.
| | - Hiroshi Kawahara
- Department of Dental Anesthesiology, School of Dentistry, Tsurumi University, Tsurumi 2-1-3, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan.
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan.
| |
Collapse
|
33
|
Dommett EJ. Using the five-choice serial reaction time task to examine the effects of atomoxetine and methylphenidate in the male spontaneously hypertensive rat. Pharmacol Biochem Behav 2014; 124:196-203. [PMID: 24933335 DOI: 10.1016/j.pbb.2014.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/22/2014] [Accepted: 06/07/2014] [Indexed: 11/16/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder and is normally treated with either stimulant or non-stimulant medication such as methylphenidate and atomoxetine respectively. The impact of these drugs on attention and impulsivity has been explored extensively in healthy animals but there is little research into their effects in an animal model of ADHD. In the present study we investigated the effects of both drugs on the spontaneously hypertensive rat (SHR) model of ADHD using the five-choice serial reaction time task (5CSRTT). We found a number of difficulties associated with training this vulnerable strain on such a complex task. However, where rats were able to learn the task we found very small effects of methylphenidate; increased incorrect responding and therefore decreased accuracy, a marker of attention at a single dose. There were no significant effects of atomoxetine on accuracy once multiple comparisons were taken into consideration. We found no effects of either drug on premature responding, a marker of impulsivity. These results indicate that the 5CSRTT may not be most sensitive to the impulsivity displayed in the SHR. Furthermore, they suggest that the SHR may lack predictive validity and further investigation is needed to optimise use of this model.
Collapse
Affiliation(s)
- Eleanor J Dommett
- Brain and Behavioural Sciences, Dept of Life, Health and Chemical Sciences, Biomedical Research Network, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| |
Collapse
|
34
|
Ritchie CW, Bajwa J, Coleman G, Hope K, Jones RW, Lawton M, Marven M, Passmore P. Souvenaid®: a new approach to management of early Alzheimer's disease. J Nutr Health Aging 2014; 18:291-9. [PMID: 24626757 DOI: 10.1007/s12603-013-0411-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Synaptic loss correlates closely with cognitive deficits in Alzheimer's disease and represents a new target for intervention. Souvenaid® is the first medical nutrition product to be designed to support synapse formation and function in early Alzheimer's disease, and has undergone an extensive, 12-year development programme. The relatively large amount of clinical data available for Souvenaid® is unusual for a medical nutrition product. Souvenaid® contains omega-3 polyunsaturated fatty acids (docosahexaenoic acid and eicosapentaenoic acid), uridine (as uridine monophosphate) and choline which are nutritional precursors required for synaptic membrane phospholipid synthesis, together with phospholipids and other cofactors. Souvenaid® has demonstrated cognitive benefits in patients with mild Alzheimer's disease but not in patients with mild-to-moderate Alzheimer's disease. Two randomised, double-blind, controlled trials (duration 12 and 24 weeks) in patients with mild Alzheimer's disease untreated with acetylcholinesterase inhibitors and/or memantine have demonstrated that Souvenaid® is well tolerated and improves episodic memory performance. The daily intake of Souvenaid® has not been associated with any harmful effects or interactions with medications and none are anticipated. The ongoing, 24-month, European Union-funded LipiDiDiet trial in subjects with prodromal Alzheimer's disease is evaluating the potential benefits of Souvenaid® on memory and in slowing progression to Alzheimer's dementia. If Souvenaid® induces synaptogenesis and improved synaptic function, it may provide benefits in other clinical conditions characterised by neurodegeneration. A number of trials are ongoing and planned to evaluate the potential wider benefits of Souvenaid®.
Collapse
Affiliation(s)
- C W Ritchie
- C Ritchie, Department of Medicine, Imperial College, London, UK, ;
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Petkova Z, Tchekalarova J, Pechlivanova D, Moyanova S, Kortenska L, Mitreva R, Popov D, Markova P, Lozanov V, Atanasova D, Lazarov N, Stoynev A. Treatment with melatonin after status epilepticus attenuates seizure activity and neuronal damage but does not prevent the disturbance in diurnal rhythms and behavioral alterations in spontaneously hypertensive rats in kainate model of temporal lobe epilepsy. Epilepsy Behav 2014; 31:198-208. [PMID: 24440891 DOI: 10.1016/j.yebeh.2013.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/14/2013] [Accepted: 12/15/2013] [Indexed: 11/16/2022]
Abstract
Melatonin is involved in the control of circadian and seasonal rhythmicity, possesses potent antioxidant activity, and exerts a neuroprotective and anticonvulsant effect. Spontaneously hypertensive rats (SHRs) are widely accepted as an experimental model of essential hypertension with hyperactivity, deficient sustained attention, and alterations in circadian autonomic profiles. The purpose of the present study was to determine whether melatonin treatment during epileptogenesis can prevent the deleterious consequences of status epilepticus (SE) in SHRs in the kainate (KA) model of temporal lobe of epilepsy (TLE). Spontaneous recurrent seizures (SRSs) were EEG- and video-recorded during and after the treatment protocol. Melatonin (10mg/kg diluted in drinking water, 8weeks) increased the seizure-latent period, decreased the frequency of SRSs, and attenuated the circadian rhythm of seizure activity in SHRs. However, melatonin was unable to affect the disturbed diurnal rhythms and behavioral changes associated with epilepsy, including the decreased anxiety level, depression, and impaired spatial memory. Melatonin reduced neuronal damage specifically in the CA1 area of the hippocampus and piriform cortex and decreased hippocampal serotonin (5-HT) levels both in control and epileptic SHRs. Although long-term melatonin treatment after SE shows a potential to attenuate seizure activity and neuronal loss, it is unable to restore epilepsy-associated behavioral abnormalities in SHRs.
Collapse
Affiliation(s)
- Zlatina Petkova
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Daniela Pechlivanova
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Slavianka Moyanova
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Lidia Kortenska
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Rumiana Mitreva
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Deyan Popov
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Petya Markova
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Valentin Lozanov
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Dimitrina Atanasova
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nikolai Lazarov
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Alexander Stoynev
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
36
|
Kim P, Choi I, Pena ICD, Kim HJ, Kwon KJ, Park JH, Han SH, Ryu JH, Cheong JH, Shin CY. A simple behavioral paradigm to measure impulsive behavior in an animal model of attention deficit hyperactivity disorder (ADHD) of the spontaneously hypertensive rats. Biomol Ther (Seoul) 2013; 20:125-31. [PMID: 24116285 PMCID: PMC3792196 DOI: 10.4062/biomolther.2012.20.1.125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/18/2011] [Accepted: 11/23/2011] [Indexed: 11/24/2022] Open
Abstract
Impulsiveness is an important component of many psychiatric disorders including Attention-deficit/hyperactivity disorder (ADHD). Although the neurobiological basis of ADHD is unresolved, behavioral tests in animal models have become indispensable tools for improving our understanding of this disorder. In the punishment/extinction paradigm, impulsivity is shown by subjects that persevere with responding despite punishment or unrewarded responses. Exploiting this principle, we developed a new behavioral test that would evaluate impulsivity in the most validated animal model of ADHD of the Spontaneously Hypertensive rat (SHR) as compared with the normotensive “control” strain, the Wistar Kyoto rat (WKY). In this paradigm we call the Electro-Foot Shock aversive water Drinking test (EFSDT), water-deprived rats should pass over an electrified quadrant of the EFSDT apparatus to drink water. We reasoned that impulsive animals show increased frequency to drink water even with the presentation of an aversive consequence (electro-shock). Through this assay, we showed that the SHR was more impulsive than the WKY as it demonstrated more “drinking attempts” and drinking frequency. Methylphenidate, the most widely used ADHD medication, significantly reduced drinking frequency of both SHR and WKY in the EFSDT. Thus, the present assay may be considered as another behavioral tool to measure impulsivity in animal disease models, especially in the context of ADHD.
Collapse
Affiliation(s)
- Pitna Kim
- Center for Neuroscience Research, IBST and School of Medicine, Konkuk University, Seoul 143-701
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jansen D, Zerbi V, Arnoldussen IAC, Wiesmann M, Rijpma A, Fang XT, Dederen PJ, Mutsaers MPC, Broersen LM, Lütjohann D, Miller M, Joosten LAB, Heerschap A, Kiliaan AJ. Effects of specific multi-nutrient enriched diets on cerebral metabolism, cognition and neuropathology in AβPPswe-PS1dE9 mice. PLoS One 2013; 8:e75393. [PMID: 24086523 PMCID: PMC3782450 DOI: 10.1371/journal.pone.0075393] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/12/2013] [Indexed: 11/30/2022] Open
Abstract
Recent studies have focused on the use of multi-nutrient dietary interventions in search of alternatives for the treatment and prevention of Alzheimer's disease (AD). In this study we investigated to which extent long-term consumption of two specific multi-nutrient diets can modulate AD-related etiopathogenic mechanisms and behavior in 11-12-month-old AβPPswe-PS1dE9 mice. Starting from 2 months of age, male AβPP-PS1 mice and wild-type littermates were fed either a control diet, the DHA+EPA+UMP (DEU) diet enriched with uridine monophosphate (UMP) and the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), or the Fortasyn® Connect (FC) diet enriched with the DEU diet plus phospholipids, choline, folic acid, vitamins and antioxidants. We performed behavioral testing, proton magnetic resonance spectroscopy, immunohistochemistry, biochemical analyses and quantitative real-time PCR to gain a better understanding of the potential mechanisms by which these multi-nutrient diets exert protective properties against AD. Our results show that both diets were equally effective in changing brain fatty acid and cholesterol profiles. However, the diets differentially affected AD-related pathologies and behavioral measures, suggesting that the effectiveness of specific nutrients may depend on the dietary context in which they are provided. The FC diet was more effective than the DEU diet in counteracting neurodegenerative aspects of AD and enhancing processes involved in neuronal maintenance and repair. Both diets elevated interleukin-1β mRNA levels in AβPP-PS1 and wild-type mice. The FC diet additionally restored neurogenesis in AβPP-PS1 mice, decreased hippocampal levels of unbound choline-containing compounds in wild-type and AβPP-PS1 animals, suggesting diminished membrane turnover, and decreased anxiety-related behavior in the open field behavior. In conclusion, the current data indicate that specific multi-nutrient diets can influence AD-related etiopathogenic processes. Intervention with the FC diet might be of interest for several other neurodegenerative and neurological disorders.
Collapse
Affiliation(s)
- Diane Jansen
- Department of Anatomy, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Valerio Zerbi
- Department of Anatomy, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Ilse A. C. Arnoldussen
- Department of Anatomy, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Maximilian Wiesmann
- Department of Anatomy, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Anne Rijpma
- Department of Anatomy, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Xiaotian T. Fang
- Department of Anatomy, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Pieter J. Dederen
- Department of Anatomy, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Martina P. C. Mutsaers
- Department of Anatomy, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Laus M. Broersen
- Nutricia Advanced Medical Nutrition, Danone Research, Centre for Specialised Nutrition, Wageningen, The Netherlands
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Bonn, Germany
| | - Malgorzata Miller
- Department of General Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen Institute for Infection, Inflammation and Immunity, Nijmegen, The Netherlands
| | - Leo A. B. Joosten
- Department of General Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen Institute for Infection, Inflammation and Immunity, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Amanda J. Kiliaan
- Department of Anatomy, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
38
|
Mi W, van Wijk N, Cansev M, Sijben JW, Kamphuis PJ. Nutritional approaches in the risk reduction and management of Alzheimer's disease. Nutrition 2013; 29:1080-9. [DOI: 10.1016/j.nut.2013.01.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 01/06/2023]
|
39
|
Abstract
The spontaneously hypertensive rat (SHR) is an established animal model of ADHD. It has been suggested that ADHD symptoms arise from deficits in executive functions such as working memory, attentional control and decision making. Both ADHD patients and SHRs show deficits in spatial working memory. However, the data on spatial working memory deficits in SHRs are not consistent. It has been suggested that the reported cognitive deficits of SHRs may be related to the SHRs’ locomotor activity. We have used a holeboard (COGITAT) to study both cognition and activity in order to evaluate the influence of the activity on the cognitive performance of SHRs. In comparison to Wistar-Kyoto (WKY) rats, SHRs did not have any impairment in spatial working memory and reference memory. When the rats’ locomotor activity was taken into account, the SHRs’ working memory and reference memory were significantly better than in WKY rats. The locomotor activity appears to be a confounding factor in spatial memory tasks and should therefore be controlled for in future studies. In the SHR model of ADHD, we were unable to demonstrate an impairment of working memory which has been reported in patients with ADHD.
Collapse
|
40
|
Jansen D, Zerbi V, Janssen CIF, van Rooij D, Zinnhardt B, Dederen PJ, Wright AJ, Broersen LM, Lütjohann D, Heerschap A, Kiliaan AJ. Impact of a multi-nutrient diet on cognition, brain metabolism, hemodynamics, and plasticity in apoE4 carrier and apoE knockout mice. Brain Struct Funct 2013; 219:1841-68. [PMID: 23832599 DOI: 10.1007/s00429-013-0606-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/24/2013] [Indexed: 11/28/2022]
Abstract
Lipid metabolism and genetic background together strongly influence the development of both cardiovascular and neurodegenerative diseases like Alzheimer's disease (AD). A non-pharmacological way to prevent the genotype-induced occurrence of these pathologies is given by dietary behavior. In the present study, we tested the effects of long-term consumption of a specific multi-nutrient diet in two models for atherosclerosis and vascular risk factors in AD: the apolipoprotein ε4 (apoE4) and the apoE knockout (apoE ko) mice. This specific multi-nutrient diet was developed to support neuronal membrane synthesis and was expected to contribute to the maintenance of vascular health. At 12 months of age, both genotypes showed behavioral changes compared to control mice and we found increased neurogenesis in apoE ko mice. The specific multi-nutrient diet decreased anxiety-related behavior in the open field, influenced sterol composition in serum and brain tissue, and increased the concentration of omega-3 fatty acids in the brain. Furthermore, we found that wild-type and apoE ko mice fed with this multi-nutrient diet showed locally increased cerebral blood volume and decreased hippocampal glutamate levels. Taken together, these data suggest that a specific dietary intervention has beneficial effects on early pathological consequences of hypercholesterolemia and vascular risk factors for AD.
Collapse
Affiliation(s)
- Diane Jansen
- Department of Anatomy, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, 6500 HB, Nijmegen, The Netherlands,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Turner JR, Gold A, Schnoll R, Blendy JA. Translational research in nicotine dependence. Cold Spring Harb Perspect Med 2013; 3:a012153. [PMID: 23335115 PMCID: PMC3579204 DOI: 10.1101/cshperspect.a012153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nicotine addiction accounts for 4.9 million deaths each year. Furthermore, although smoking represents a significant health burden in the United States, at present there are only three FDA-approved pharmacotherapies currently on the market: (1) nicotine replacement therapy, (2) bupropion, and (3) varenicline. Despite this obvious gap in the market, the complexity of nicotine addiction in addition to the increasing cost of drug development makes targeted drug development prohibitive. Furthermore, using combinations of mouse and human studies, additional treatments could be developed from off-the-shelf, currently approved medication lists. This article reviews translational studies targeting manipulations of the cholinergic system as a viable therapeutic target for nicotine addiction.
Collapse
Affiliation(s)
- Jill R Turner
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
42
|
Harvey RC, Jordan CJ, Tassin DH, Moody KR, Dwoskin LP, Kantak KM. Performance on a strategy set shifting task during adolescence in a genetic model of attention deficit/hyperactivity disorder: methylphenidate vs. atomoxetine treatments. Behav Brain Res 2013; 244:38-47. [PMID: 23376704 DOI: 10.1016/j.bbr.2013.01.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/18/2013] [Accepted: 01/24/2013] [Indexed: 11/17/2022]
Abstract
Research examining medication effects on set shifting in teens with attention deficit/hyperactivity disorder (ADHD) is lacking. An animal model of ADHD may be useful for exploring this gap. The spontaneously hypertensive rat (SHR) is a commonly used animal model of ADHD. SHR and two comparator strains, Wistar-Kyoto (WKY) and Wistar (WIS), were evaluated during adolescence in a strategy set shifting task under conditions of a 0s or 15s delay to reinforcer delivery. The task had three phases: initial discrimination, set shift and reversal learning. Under 0s delays, SHR performed as well as or better than WKY and WIS. Treatment with 0.3mg/kg/day atomoxetine had little effect, other than to modestly increase trials to criterion during set shifting in all strains. Under 15s delays, SHR had longer lever press reaction times, longer latencies to criterion and more trial omissions than WKY during set shifting and reversal learning. These deficits were not reduced systematically by 1.5mg/kg/day methylphenidate or 0.3mg/kg/day atomoxetine. Regarding learning in SHR, methylphenidate improved initial discrimination, whereas atomoxetine improved set shifting but disrupted initial discrimination. During reversal learning, both drugs were ineffective in SHR, and atomoxetine made reaction time and trial omissions greater in WKY. Overall, WIS performance differed from SHR or WKY, depending on phase. Collectively, a genetic model of ADHD in adolescent rats revealed that neither methylphenidate nor atomoxetine mitigated all deficits in SHR during the set shifting task. Thus, methylphenidate or atomoxetine monotherapy may not mitigate all set shift task-related deficits in teens with ADHD.
Collapse
Affiliation(s)
- Roxann C Harvey
- Department of Psychology, Boston University, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
43
|
Goo MJ, Choi SM, Kim SH, Ahn BO. Protective effects of acetyl-L-carnitine on neurodegenarative changes in chronic cerebral ischemia models and learning-memory impairment in aged rats. Arch Pharm Res 2012; 35:145-54. [PMID: 22297753 DOI: 10.1007/s12272-012-0116-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 07/14/2011] [Accepted: 07/25/2011] [Indexed: 11/30/2022]
Abstract
This study investigated the effects of acetyl-L-carnitine (ALC) in secondarily-induced cerebral chronic ischemia models using rats with permanent ligation of bilateral common carotid arteries (BCCL) and spontaneously hypertensive rats (SHR). Additionally, we used normal aged rats as a primary dementia model. Chronic ALC administration at 100 mg/kg (p.o.) for 4 weeks significantly attenuated neurodegenerative changes. In groups receiving 50 mg/kg or 100 mg/kg, ALC inhibited the active astrocyte increase in cerebral tissues of both BCCL and SHR models. In BCCL rats, ALC administration (50 mg/kg or 100 mg/kg, p.o.) resulted in significant promotion of glutathione levels in brain tissues. We also confirmed behavioral improvement after ALC treatment (100 mg/kg for 8 weeks, p.o.) on learning-memory function using aged rats (18 months old) in a passive avoidance task and preservation of CA1 pyramidal neurons was coincided on histopathological observation. In conclusion, chronic ALC administration may ameliorate cerebral ischemia progress after a cerebrovascular disorder as well as spontaneous ageing-related cerebral dysfunction via hippocampal protection.
Collapse
Affiliation(s)
- Moon-Jung Goo
- Preclinical Research Laboratories, Dong-A Pharmaceutical Company, Yongin 446-905, Korea.
| | | | | | | |
Collapse
|
44
|
Abstract
The neonatal 6-OHDA-lesioned rat, coloboma mouse, DAT-KO mouse, and spontaneously hypertensive rat (SHR) models all bear a phenotypic resemblance to ADHD in that they express hyperactivity, inattention, and/or impulsivity. The models also illustrate the heterogeneity of ADHD: the initial cause (chemical depletion or genetic abnormality) of the ADHD-like behaviors is different for each model. Neurochemical and behavioral studies of the models indicate aberrations in monoaminergic neurotransmission. Hyperdopaminergic neurotransmission is implicated in the abnormal behavior of all models. Norepinephrine has a dual enhancing/inhibitory role in ADHD symptoms, and serotonin acts to inhibit abnormal dopamine and norepinephrine signaling. It is unlikely that symptoms arise from a single neurotransmitter dysfunction. Rather, studies of animal models of ADHD suggest that symptoms develop through the complex interactions of monoaminergic neurotransmitter systems.
Collapse
Affiliation(s)
- Xueliang Fan
- Departments of Pharmacology and Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | | |
Collapse
|
45
|
Yang H, Pang W, Lu H, Cheng D, Yan X, Cheng Y, Jiang Y. Comparison of metabolic profiling of cyanidin-3-O-galactoside and extracts from blueberry in aged mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2069-76. [PMID: 21302942 DOI: 10.1021/jf1033619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The metabonomics changes of plasma and brain tissue after dietary supplementation with blueberry extracts (BBE) and cyanidin-3-O-galactoside from blueberry (BBM) in aged mice were investigated by (1)H NMR technique. The mice received intragastric administration of BBE (200 mg/kg/day), BBM (50 mg/kg/day), and saline water (0.9%) for 6 weeks, respectively, in the BBE, BBM, and control groups. At the end of the experiment, plasma and brain samples were collected for NMR analysis. The results demonstrated that the level of choline in plasma from BBE and BBM groups were obviously elevated relative to the control group, whereas the levels of lactate and phosphocholine in plasma were remarkably reduced. Compared with those in the control group, the levels of choline and GABA in the brain from the BBE group were obviously increased, whereas glutamate and phosphocholine in the BBE group were significantly decreased. The level of taurine in the brain from the BBM group was particularly higher than that in the control group. These results indicated supplementation with BBE or BBM might induce similar changes of endogenous plasma and brain metabolic profiles in aged mice.
Collapse
Affiliation(s)
- Hongpeng Yang
- Department of Nutrition and Food Science, Institute of Health and Environmental Medicine of Academy of Military Medical Sciences , 1 Dali Road, Tianjin 300050, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Meneses A, Perez-Garcia G, Ponce-Lopez T, Tellez R, Gallegos-Cari A, Castillo C. Spontaneously hypertensive rat (SHR) as an animal model for ADHD: a short overview. Rev Neurosci 2011; 22:365-71. [DOI: 10.1515/rns.2011.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Pires VA, Pamplona FA, Pandolfo P, Prediger RD, Takahashi RN. Chronic caffeine treatment during prepubertal period confers long-term cognitive benefits in adult spontaneously hypertensive rats (SHR), an animal model of attention deficit hyperactivity disorder (ADHD). Behav Brain Res 2010; 215:39-44. [DOI: 10.1016/j.bbr.2010.06.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 06/10/2010] [Accepted: 06/16/2010] [Indexed: 02/03/2023]
|
48
|
Scheltens P, Kamphuis PJGH, Verhey FRJ, Olde Rikkert MGM, Wurtman RJ, Wilkinson D, Twisk JWR, Kurz A. Efficacy of a medical food in mild Alzheimer's disease: A randomized, controlled trial. Alzheimers Dement 2010; 6:1-10.e1. [PMID: 20129316 DOI: 10.1016/j.jalz.2009.10.003] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/24/2009] [Accepted: 10/22/2009] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the effect of a medical food on cognitive function in people with mild Alzheimer's disease (AD). METHODS A total of 225 drug-naïve AD patients participated in this randomized, double-blind controlled trial. Patients were randomized to active product, Souvenaid, or a control drink, taken once-daily for 12 weeks. Primary outcome measures were the delayed verbal recall task of the Wechsler Memory Scale-revised, and the 13-item modified Alzheimer's Disease Assessment Scale-cognitive subscale at week 12. RESULTS At 12 weeks, significant improvement in the delayed verbal recall task was noted in the active group compared with control (P = .021). Modified Alzheimer's Disease Assessment Scale-cognitive subscale and other outcome scores (e.g., Clinician Interview Based Impression of Change plus Caregiver Input, 12-item Neuropsychiatric Inventory, Alzheimer's disease Co-operative Study-Activities of Daily Living, Quality of Life in Alzheimer's Disease) were unchanged. The control group neither deteriorated nor improved. Compliance was excellent (95%) and the product was well tolerated. CONCLUSIONS Supplementation with a medical food including phosphatide precursors and cofactors for 12 weeks improved memory (delayed verbal recall) in mild AD patients. This proof-of-concept study justifies further clinical trials.
Collapse
|
49
|
Abstract
Alzheimer's disease (AD) is a progressive condition characterized by neurodegeneration and the dense deposition of proteins in the brain. There is no cure for AD and current treatments usually only provide a temporary reduction of symptoms. There is thus a strong unmet need for effective preventative and therapeutic strategies and the potential role for nutrition in such strategies is rapidly gaining interest. An Alzheimer's brain contains fewer synapses and reduced levels of synaptic proteins and membrane phosphatides. Brain membrane phosphatide synthesis requires at least three dietary precursors: polyunsaturated fatty acids, uridine monophosphate (UMP) and choline. Animal studies have shown that administration of these nutrients increases the level of phosphatides, specific pre- or post-synaptic proteins and the number of dendritic spines - a requirement for new synapse formation. These effects are markedly enhanced when animals receive all three compounds together. This multi-nutrient approach in animals has also been shown to decrease amyloid beta protein (Abeta) plaque burden, improve learning and memory through increased cholinergic neurotransmission and have a neuroprotective effect in several mouse models of AD. Whether these potential therapeutic effects of a multi-nutrient approach observed in animal models can also be replicated in a clinical setting warrants further investigation.
Collapse
Affiliation(s)
- P J Kamphuis
- Danone Research-Centre for Specialised Nutrition, Wageningen, The Netherlands.
| | | |
Collapse
|
50
|
Pamplona FA, Pandolfo P, Savoldi R, Prediger RDS, Takahashi RN. Environmental enrichment improves cognitive deficits in Spontaneously Hypertensive Rats (SHR): relevance for Attention Deficit/Hyperactivity Disorder (ADHD). Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1153-60. [PMID: 19549550 DOI: 10.1016/j.pnpbp.2009.06.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 06/08/2009] [Accepted: 06/14/2009] [Indexed: 12/15/2022]
Abstract
The interaction between genes and environment seems to be relevant for the development of Attention Deficit/Hyperactivity Disorder (ADHD), one of the most prevalent childhood psychiatric diseases. The occurrence of ADHD is typically associated with poor academic performance, probably reflecting learning difficulties and/or cognitive impulsiveness. The inbred Spontaneously Hypertensive Rats (SHR) strain has often been considered as an animal model of ADHD, since they 'naturally' display the main ADHD symptomatology. Although pharmacological agents improve SHR's cognitive deficits, little is known about the involvement of environmental factors in SHR disabilities and to what extent 'protective' non-pharmacological factors may be considered as strategy for ADHD prevention. Here we investigated whether the rearing environment during neurodevelopment may counteract later cognitive deficits presented by adult SHR. Wistar (WIS) rats were also used to investigate whether the putative effects of environmental enrichment depend on a specific genetic background. The animals were reared in enriched environment (EE) or standard environment (SE) from the post-natal day 21 until 3 months of age (adulthood) and tested for cognitive and non-cognitive phenotypes. EE improved SHR's performance in open field habituation, water maze spatial reference, social and object recognition tasks, while non-cognitive traits, such as nociception and hypertension, were not affected by EE. Response of WIS rats was generally not affected by the present EE. These results show that the general low cognitive performance presented by SHR rats strongly depends on the rearing environment and they may suggest modifications of the familial environment as a putative preventive strategy to cope with ADHD.
Collapse
Affiliation(s)
- Fabrício A Pamplona
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | | |
Collapse
|