1
|
Asada R, Dominguez A, Montpetit B. Single-molecule quantitation of RNA-binding protein occupancy and stoichiometry defines a role for Yra1 (Aly/REF) in nuclear mRNP organization. Cell Rep 2023; 42:113415. [PMID: 37963019 PMCID: PMC10841842 DOI: 10.1016/j.celrep.2023.113415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
RNA-binding proteins (RBPs) interact with mRNA to form supramolecular complexes called messenger ribonucleoprotein (mRNP) particles. These dynamic assemblies direct and regulate individual steps of gene expression; however, their composition and functional importance remain largely unknown. Here, we develop a total internal reflection fluorescence-based single-molecule imaging assay to investigate stoichiometry and co-occupancy of 15 RBPs within mRNPs from Saccharomyces cerevisiae. We show compositional heterogeneity of single mRNPs and plasticity across different growth conditions, with major co-occupants of mRNPs containing the nuclear cap-binding complex identified as Yra1 (1-10 copies), Nab2 (1-6 copies), and Npl3 (1-6 copies). Multicopy Yra1-bound mRNPs are specifically co-occupied by the THO complex and assembled on mRNAs biased by transcript length and RNA secondary structure. Yra1 depletion results in decreased compaction of nuclear mRNPs demonstrating a packaging function. Together, we provide a quantitative framework for gene- and condition-dependent RBP occupancy and stoichiometry in individual nuclear mRNPs.
Collapse
Affiliation(s)
- Ryuta Asada
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| | - Andrew Dominguez
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA; Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Ben Montpetit
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA; Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Sáez Moreno D, Udi Q, Azeredo J, Domingues L. Towards T7 RNA polymerase (T7RNAP)-based expression system in yeast: challenges and opportunities. Bioengineered 2022; 13:14947-14959. [PMID: 37105766 DOI: 10.1080/21655979.2023.2180579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
During the last decades, we have witnessed unprecedented advances in biological engineering and synthetic biology. These disciplines aim to take advantage of gene pathway regulation and gene expression in different organisms, to enable cells to perform desired functions. Yeast has been widely utilized as a model for the study of eukaryotic protein expression while bacteriophage T7RNAP and its promoter constitute the preferred system for prokaryotic protein expression (such as pET-based expression systems). The ability to integrate a T7RNAP-based expression system in yeast could allow for a better understanding of gene regulation in eukaryotic cells, and potentially increase the efficiency and processivity of yeast as an expression system. However, the attempts for the creation of such a system have been unsuccessful to date. This review aims to: (i) summarize the efforts that, for many years, have been devoted to the creation of a T7RNAP-based yeast expression system and ii) provide an overview of the latest advances in knowledge of eukaryotic transcription and translation that could lead to the construction of a successful T7RNAP expression system in yeast. The completion of this new expression system would allow to further expand the toolkit of yeast in synthetic biology and ultimately contribute to boost yeast usage as a key cell factory in sustainable biorefinery and circular economy.
Collapse
Affiliation(s)
- David Sáez Moreno
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, 4835-198, Guimarães, Braga, Portugal
| | - Qimron Udi
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joana Azeredo
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, 4835-198, Guimarães, Braga, Portugal
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, 4835-198, Guimarães, Braga, Portugal
| |
Collapse
|
3
|
Turtola M, Manav MC, Kumar A, Tudek A, Mroczek S, Krawczyk PS, Dziembowski A, Schmid M, Passmore LA, Casañal A, Jensen TH. Three-layered control of mRNA poly(A) tail synthesis in Saccharomyces cerevisiae. Genes Dev 2021; 35:1290-1303. [PMID: 34385261 PMCID: PMC8415320 DOI: 10.1101/gad.348634.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022]
Abstract
Biogenesis of most eukaryotic mRNAs involves the addition of an untemplated polyadenosine (pA) tail by the cleavage and polyadenylation machinery. The pA tail, and its exact length, impacts mRNA stability, nuclear export, and translation. To define how polyadenylation is controlled in S. cerevisiae, we have used an in vivo assay capable of assessing nuclear pA tail synthesis, analyzed tail length distributions by direct RNA sequencing, and reconstituted polyadenylation reactions with purified components. This revealed three control mechanisms for pA tail length. First, we found that the pA binding protein (PABP) Nab2p is the primary regulator of pA tail length. Second, when Nab2p is limiting, the nuclear pool of Pab1p, the second major PABP in yeast, controls the process. Third, when both PABPs are absent, the cleavage and polyadenylation factor (CPF) limits pA tail synthesis. Thus, Pab1p and CPF provide fail-safe mechanisms to a primary Nab2p-dependent pathway, thereby preventing uncontrolled polyadenylation and allowing mRNA export and translation.
Collapse
Affiliation(s)
- Matti Turtola
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - M Cemre Manav
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ananthanarayanan Kumar
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Agnieszka Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Seweryn Mroczek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Paweł S Krawczyk
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Lori A Passmore
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ana Casañal
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Pardamean CI, Wu TT. Inhibition of Host Gene Expression by KSHV: Sabotaging mRNA Stability and Nuclear Export. Front Cell Infect Microbiol 2021; 11:648055. [PMID: 33898329 PMCID: PMC8062738 DOI: 10.3389/fcimb.2021.648055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/19/2021] [Indexed: 12/25/2022] Open
Abstract
Viruses are known for their ability to alter host gene expression. Kaposi sarcoma-associated herpesvirus has two proteins that obstruct host gene expression. KSHV SOX, encoded by the open reading frame 37 (ORF37), induces a widespread cytoplasmic mRNA degradation and a block on mRNA nuclear export. The other KSHV protein, encoded by the open reading frame 10 (ORF10), was recently identified to inhibit host gene expression through its direct function on the cellular mRNA export pathway. In this review, we summarize the studies on both SOX and ORF10 in efforts to elucidate their mechanisms. We also discuss how the findings based on a closely related rodent virus, murine gammaherpesvirus-68 (MHV-68), complement the KSHV findings to decipher the role of these two proteins in viral pathogenesis.
Collapse
Affiliation(s)
- Carissa Ikka Pardamean
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, United States
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Das S, Biswas S, Chaudhuri S, Bhattacharyya A, Das B. A Nuclear Zip Code in SKS1 mRNA Promotes Its Slow Export, Nuclear Retention, and Degradation by the Nuclear Exosome/DRN in Saccharomyces cerevisiae. J Mol Biol 2019; 431:3626-3646. [DOI: 10.1016/j.jmb.2019.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 01/12/2023]
|
6
|
Peck SA, Hughes KD, Victorino JF, Mosley AL. Writing a wrong: Coupled RNA polymerase II transcription and RNA quality control. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1529. [PMID: 30848101 PMCID: PMC6570551 DOI: 10.1002/wrna.1529] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/27/2018] [Accepted: 02/07/2019] [Indexed: 12/20/2022]
Abstract
Processing and maturation of precursor RNA species is coupled to RNA polymerase II transcription. Co-transcriptional RNA processing helps to ensure efficient and proper capping, splicing, and 3' end processing of different RNA species to help ensure quality control of the transcriptome. Many improperly processed transcripts are not exported from the nucleus, are restricted to the site of transcription, and are in some cases degraded, which helps to limit any possibility of aberrant RNA causing harm to cellular health. These critical quality control pathways are regulated by the highly dynamic protein-protein interaction network at the site of transcription. Recent work has further revealed the extent to which the processes of transcription and RNA processing and quality control are integrated, and how critically their coupling relies upon the dynamic protein interactions that take place co-transcriptionally. This review focuses specifically on the intricate balance between 3' end processing and RNA decay during transcription termination. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Processing > 3' End Processing RNA Processing > Splicing Mechanisms RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Sarah A Peck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katlyn D Hughes
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jose F Victorino
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
7
|
Gudde AEEG, van Kessel IDG, André LM, Wieringa B, Wansink DG. Trinucleotide-repeat expanded and normal DMPK transcripts contain unusually long poly(A) tails despite differential nuclear residence. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:740-749. [PMID: 28435090 DOI: 10.1016/j.bbagrm.2017.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/26/2017] [Accepted: 04/14/2017] [Indexed: 12/29/2022]
Abstract
In yeast and higher eukaryotes nuclear retention of transcripts may serve in control over RNA decay, nucleocytoplasmic transport and premature cytoplasmic appearance of mRNAs. Hyperadenylation of RNA is known to be associated with nuclear retention, but the cause-consequence relationship between hyperadenylation and regulation of RNA nuclear export is still unclear. We compared polyadenylation status between normal and expanded DMPK transcripts in muscle cells and tissues derived from unaffected individuals and patients with myotonic dystrophy type 1 (DM1). DM1 is an autosomal dominant disorder caused by (CTG)n repeat expansion in the DMPK gene. DM1 etiology is characterized by an almost complete block of nuclear export of DMPK transcripts carrying a long (CUG)n repeat, including aberrant sequestration of RNA-binding proteins. We show here by use of cell fractionation, RNA size separation and analysis of poly(A) tail length that a considerable fraction of transcripts from the normal DMPK allele is also retained in the nucleus (~30%). They carry poly(A) tails with an unusually broad length distribution, ranging between a few dozen to >500 adenosine residues. Remarkably, expanded DMPK (CUG)n transcripts from the mutant allele, almost exclusively nuclear, carry equally long poly(A) tails. Our findings thus suggest that nuclear retention may be a common feature of regulation of DMPK RNA expression. The typical forced nuclear residence of expanded DMPK transcripts affects this regulation in tissues of DM1 patients, but not through hyperadenylation.
Collapse
Affiliation(s)
- Anke E E G Gudde
- Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Nijmegen, The Netherlands
| | - Ingeborg D G van Kessel
- Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Nijmegen, The Netherlands
| | - Laurène M André
- Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Nijmegen, The Netherlands
| | - Bé Wieringa
- Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Nijmegen, The Netherlands
| | - Derick G Wansink
- Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Huch S, Müller M, Muppavarapu M, Gommlich J, Balagopal V, Nissan T. The decapping activator Edc3 and the Q/N-rich domain of Lsm4 function together to enhance mRNA stability and alter mRNA decay pathway dependence in Saccharomyces cerevisiae. Biol Open 2016; 5:1388-1399. [PMID: 27543059 PMCID: PMC5087693 DOI: 10.1242/bio.020487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The rate and regulation of mRNA decay are major elements in the proper control of gene expression. Edc3 and Lsm4 are two decapping activator proteins that have previously been shown to function in the assembly of RNA granules termed P bodies. Here, we show that deletion of edc3, when combined with a removal of the glutamine/asparagine rich region of Lsm4 (edc3Δ lsm4ΔC) reduces mRNA stability and alters pathways of mRNA degradation. Multiple tested mRNAs exhibited reduced stability in the edc3Δ lsm4ΔC mutant. The destabilization was linked to an increased dependence on Ccr4-mediated deadenylation and mRNA decapping. Unlike characterized mutations in decapping factors that either are neutral or are able to stabilize mRNA, the combined edc3Δ lsm4ΔC mutant reduced mRNA stability. We characterized the growth and activity of the major mRNA decay systems and translation in double mutant and wild-type yeast. In the edc3Δ lsm4ΔC mutant, we observed alterations in the levels of specific mRNA decay factors as well as nuclear accumulation of the catalytic subunit of the decapping enzyme Dcp2. Hence, we suggest that the effects on mRNA stability in the edc3Δ lsm4ΔC mutant may originate from mRNA decay protein abundance or changes in mRNPs, or alternatively may imply a role for P bodies in mRNA stabilization. Summary: A strain mutated in two decapping activators, previously implicated in P body assembly, has reduced mRNA stability and increased dependence on decapping and Ccr4-dependent deadenylation for mRNA degradation.
Collapse
Affiliation(s)
- Susanne Huch
- Department of Molecular Biology, Umeå University, Umeå SE-901 87, Sweden
| | - Maren Müller
- Department of Molecular Biology, Umeå University, Umeå SE-901 87, Sweden
| | | | - Jessie Gommlich
- Department of Molecular Biology, Umeå University, Umeå SE-901 87, Sweden
| | - Vidya Balagopal
- Department of Molecular Biology, Umeå University, Umeå SE-901 87, Sweden
| | - Tracy Nissan
- Department of Molecular Biology, Umeå University, Umeå SE-901 87, Sweden
| |
Collapse
|
9
|
The nuclear exosome is active and important during budding yeast meiosis. PLoS One 2014; 9:e107648. [PMID: 25210768 PMCID: PMC4161446 DOI: 10.1371/journal.pone.0107648] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/18/2014] [Indexed: 11/19/2022] Open
Abstract
Nuclear RNA degradation pathways are highly conserved across eukaryotes and play important roles in RNA quality control. Key substrates for exosomal degradation include aberrant functional RNAs and cryptic unstable transcripts (CUTs). It has recently been reported that the nuclear exosome is inactivated during meiosis in budding yeast through degradation of the subunit Rrp6, leading to the stabilisation of a subset of meiotic unannotated transcripts (MUTs) of unknown function. We have analysed the activity of the nuclear exosome during meiosis by deletion of TRF4, which encodes a key component of the exosome targeting complex TRAMP. We find that TRAMP mutants produce high levels of CUTs during meiosis that are undetectable in wild-type cells, showing that the nuclear exosome remains functional for CUT degradation, and we further report that the meiotic exosome complex contains Rrp6. Indeed Rrp6 over-expression is insufficient to suppress MUT transcripts, showing that the reduced amount of Rrp6 in meiotic cells does not directly cause MUT accumulation. Lack of TRAMP activity stabilises ∼ 1600 CUTs in meiotic cells, which occupy 40% of the binding capacity of the nuclear cap binding complex (CBC). CBC mutants display defects in the formation of meiotic double strand breaks (DSBs), and we see similar defects in TRAMP mutants, suggesting that a key function of the nuclear exosome is to prevent saturation of the CBC complex by CUTs. Together, our results show that the nuclear exosome remains active in meiosis and has an important role in facilitating meiotic recombination.
Collapse
|
10
|
Jalkanen AL, Coleman SJ, Wilusz J. Determinants and implications of mRNA poly(A) tail size--does this protein make my tail look big? Semin Cell Dev Biol 2014; 34:24-32. [PMID: 24910447 DOI: 10.1016/j.semcdb.2014.05.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 05/31/2014] [Indexed: 12/22/2022]
Abstract
While the phenomenon of polyadenylation has been well-studied, the dynamics of poly(A) tail size and its impact on transcript function and cell biology are less well-appreciated. The goal of this review is to encourage readers to view the poly(A) tail as a dynamic, changeable aspect of a transcript rather than a simple static entity that marks the 3' end of an mRNA. This could open up new angles of regulation in the post-transcriptional control of gene expression throughout development, differentiation and cancer.
Collapse
Affiliation(s)
- Aimee L Jalkanen
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Stephen J Coleman
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
11
|
The human nuclear poly(a)-binding protein promotes RNA hyperadenylation and decay. PLoS Genet 2013; 9:e1003893. [PMID: 24146636 PMCID: PMC3798265 DOI: 10.1371/journal.pgen.1003893] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/05/2013] [Indexed: 12/05/2022] Open
Abstract
Control of nuclear RNA stability is essential for proper gene expression, but the mechanisms governing RNA degradation in mammalian nuclei are poorly defined. In this study, we uncover a mammalian RNA decay pathway that depends on the nuclear poly(A)-binding protein (PABPN1), the poly(A) polymerases (PAPs), PAPα and PAPγ, and the exosome subunits RRP6 and DIS3. Using a targeted knockdown approach and nuclear RNA reporters, we show that PABPN1 and PAPα, redundantly with PAPγ, generate hyperadenylated decay substrates that are recognized by the exosome and degraded. Poly(A) tail extension appears to be necessary for decay, as cordycepin treatment or point mutations in the PAP-stimulating domain of PABPN1 leads to the accumulation of stable transcripts with shorter poly(A) tails than controls. Mechanistically, these data suggest that PABPN1-dependent promotion of PAP activity can stimulate nuclear RNA decay. Importantly, efficiently exported RNAs are unaffected by this decay pathway, supporting an mRNA quality control function for this pathway. Finally, analyses of both bulk poly(A) tails and specific endogenous transcripts reveals that a subset of nuclear RNAs are hyperadenylated in a PABPN1-dependent fashion, and this hyperadenylation can be either uncoupled or coupled with decay. Our results highlight a complex relationship between PABPN1, PAPα/γ, and nuclear RNA decay, and we suggest that these activities may play broader roles in the regulation of human gene expression. In eukaryotes, mRNAs include a stretch of adenosine nucleotides at their 3′ end termed the poly(A) tail. In the cytoplasm, the poly(A) tail stimulates translation of the mRNA into protein, and protects the transcript from degradation. Evidence suggests that poly(A) tails may play distinct roles in RNA metabolism in the nucleus, but little is known about these functions and mechanisms. We show here that poly(A) tails can stimulate transcript decay in the nucleus, a function mediated by the ubiquitous nuclear poly(A) binding protein PABPN1. We find that PABPN1 is required for the degradation of a viral nuclear noncoding RNA as well as an inefficiently exported human mRNA. Importantly, the targeting of RNAs to this decay pathway requires the PABPN1 and poly(A) polymerase-dependent extension of the poly(A) tail. Nuclear transcripts with longer poly(A) tails are then selectively degraded by components of the nuclear exosome. These studies elucidate mechanisms that mammalian cells use to ensure proper mRNA “quality control” and may be important to regulate the expression of nuclear noncoding RNAs. Furthermore, our results suggest that the poly(A) tail has diverse and context-specific roles in gene expression.
Collapse
|
12
|
Kuss SK, Mata MA, Zhang L, Fontoura BMA. Nuclear imprisonment: viral strategies to arrest host mRNA nuclear export. Viruses 2013; 5:1824-49. [PMID: 23872491 PMCID: PMC3738964 DOI: 10.3390/v5071824] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 06/27/2013] [Accepted: 07/11/2013] [Indexed: 12/15/2022] Open
Abstract
Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses.
Collapse
Affiliation(s)
- Sharon K Kuss
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | | | | | |
Collapse
|
13
|
Affiliation(s)
- C A Niño
- Institut Jacques Monod, Paris Diderot University , Sorbonne Paris Cité, CNRS UMR7592, Equipe labellisée Ligue contre le cancer, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | | | |
Collapse
|
14
|
Schmid M, Jensen TH. Transcription-associated quality control of mRNP. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:158-68. [PMID: 22982197 DOI: 10.1016/j.bbagrm.2012.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/24/2012] [Accepted: 08/29/2012] [Indexed: 01/06/2023]
Abstract
Although a prime purpose of transcription is to produce RNA, a substantial amount of transcript is nevertheless turned over very early in its lifetime. During transcription RNAs are matured by nucleases from longer precursors and activities are also employed to exert quality control over the RNA synthesis process so as to discard, retain or transcriptionally silence unwanted molecules. In this review we discuss the somewhat paradoxical circumstance that the retention or turnover of RNA is often linked to its synthesis. This occurs via the association of chromatin, or the transcription elongation complex, with RNA degradation (co)factors. Although our main focus is on protein-coding genes, we also discuss mechanisms of transcription-connected turnover of non-protein-coding RNA from where important general principles are derived. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C., Denmark
| | | |
Collapse
|
15
|
Kallehauge TB, Robert MC, Bertrand E, Jensen TH. Nuclear retention prevents premature cytoplasmic appearance of mRNA. Mol Cell 2012; 48:145-52. [PMID: 22921936 DOI: 10.1016/j.molcel.2012.07.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 07/02/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
In S. cerevisiae cells debilitated in mRNA nuclear export, transcripts are retained in nuclear foci ("dots"). The ultimate fate of dot-mRNA has remained elusive. Here, we use single molecule counting microscopy and (35)S-methionine pulse-labeling assays to quantify cytoplasmic HSP104 RNA levels and estimate HSP104 RNA translation status. HSP104 transcripts, retained in dots as a consequence of the mex67-5 mutation, are slowly released over time for cytoplasmic translation. Thus, dot-mRNA retains function. However, forcing its nuclear export, by overexpressing the Sub2p mRNA export factor, does not elevate Hsp104p protein levels but is instead paralleled by growth deficiency. Nuclear export and growth phenotypes are both counteracted by coexpressing the nuclear RNA quality control factor Rrp6p. Thus, prematurely released dot-mRNA is translationally inactive and possibly toxic. Accordingly, nuclear retention of mRNA may serve a precautionary role during stressful situations such as, e.g., decreased mRNA maturation competence.
Collapse
Affiliation(s)
- Thomas Beuchert Kallehauge
- Department of Molecular Biology and Genetics, Centre for mRNP Biogenesis and Metabolism, Aarhus University, Aarhus C, Denmark
| | | | | | | |
Collapse
|
16
|
Abstract
All RNA species in yeast cells are subject to turnover. Work over the past 20 years has defined degradation mechanisms for messenger RNAs, transfer RNAs, ribosomal RNAs, and noncoding RNAs. In addition, numerous quality control mechanisms that target aberrant RNAs have been identified. Generally, each decay mechanism contains factors that funnel RNA substrates to abundant exo- and/or endonucleases. Key issues for future work include determining the mechanisms that control the specificity of RNA degradation and how RNA degradation processes interact with translation, RNA transport, and other cellular processes.
Collapse
Affiliation(s)
- Roy Parker
- Department of Molecular and Cellular Biology, University of Arizona and Howard Hughes Medical Institute, Tucson, AZ 85721, USA.
| |
Collapse
|
17
|
Balagopal V, Fluch L, Nissan T. Ways and means of eukaryotic mRNA decay. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:593-603. [DOI: 10.1016/j.bbagrm.2012.01.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/29/2011] [Accepted: 01/03/2012] [Indexed: 10/14/2022]
|
18
|
Kelly S, Pak C, Garshasbi M, Kuss A, Corbett AH, Moberg K. New kid on the ID block: neural functions of the Nab2/ZC3H14 class of Cys₃His tandem zinc-finger polyadenosine RNA binding proteins. RNA Biol 2012; 9:555-62. [PMID: 22614829 DOI: 10.4161/rna.20187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Polyadenosine RNA binding proteins (Pabs) play critical roles in regulating the polyadenylation, nuclear export, stability, and translation of cellular RNAs. Although most Pabs are ubiquitously expressed and are thought to play general roles in post-transcriptional regulation, mutations in genes encoding these factors have been linked to tissue-specific diseases including muscular dystrophy and now intellectual disability (ID). Our recent work defined this connection to ID, as we showed that mutations in the gene encoding the ubiquitously expressed Cys3His tandem zinc-finger (ZnF) Pab, ZC3H14 (Zinc finger protein, CCCH-type, number 14) are associated with non-syndromic autosomal recessive intellectual disability (NS-ARID). This study provided a first link between defects in Pab function and a brain disorder, suggesting that ZC3H14 plays a required role in regulating RNAs in nervous system cells. Here we highlight key questions raised by our study of ZC3H14 and its ortholog in the fruit fly Drosophila melanogaster, dNab2, and comment on future approaches that could provide insights into the cellular and molecular roles of this class of zinc finger-containing Pabs. We propose a summary model depicting how ZC3H14-type Pabs might play particularly important roles in neuronal RNA metabolism.
Collapse
Affiliation(s)
- Seth Kelly
- Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, United States
| | | | | | | | | | | |
Collapse
|
19
|
Schmid M, Jensen TH. Nuclear quality control of RNA polymerase II transcripts. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:474-85. [PMID: 21956943 DOI: 10.1002/wrna.24] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eukaryotic RNA polymerase II produces an astounding diversity of transcripts. These may need to be 5(') capped, spliced, polyadenylated, and packaged with proteins before their export to the cytoplasm. Unscheduled accumulation of any RNA species can interfere with normal RNA metabolism and poses a serious hazard to cells. Yet, given the amount of primary transcripts and the complexity of the RNA maturation process, production of aberrant RNA species is unavoidable. Cells, therefore, employ nuclear RNA quality control mechanisms to rapidly degrade, actively retain, or transcriptionally silence unwanted RNAs. Pathways that monitor mRNA production are best understood and similar pathways are employed to destroy transcriptional noise. Finally, related mechanisms also contribute to gene regulation during normal growth.
Collapse
Affiliation(s)
- Manfred Schmid
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology, Aarhus University, C.F. Møllers Alle, Bldg. 130, 8000 Aarhus C., Denmark
| | | |
Collapse
|
20
|
Abstract
TREX is a conserved multiprotein complex that is necessary for efficient mRNA export to the cytoplasm. In Saccharomyces cerevisiae, the TREX complex is additionally implicated in RNA quality control pathways, but it is unclear whether this function is conserved in mammalian cells. The Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein binds and recruits the TREX component REF/Aly to viral mRNAs. Here, we demonstrate that REF/Aly is recruited to the KSHV noncoding polyadenylated nuclear (PAN) RNA by ORF57. This recruitment correlates with ORF57-mediated stabilization of PAN RNA, suggesting that REF/Aly promotes nuclear RNA stability. Further supporting this idea, tethering REF/Aly to PAN RNA is sufficient to increase the nuclear abundance and half-life of PAN RNA but is not sufficient to promote its export. Interestingly, REF/Aly appears to protect the poly(A) tail from deadenylation, and REF/Aly-stabilized transcripts are further adenylated over time, consistent with previous reports linking poly(A) tail length with nuclear RNA surveillance. These studies show that REF/Aly can stabilize nuclear RNAs independently of their export and support a broader conservation of RNA quality control mechanisms from yeast to humans.
Collapse
|
21
|
Borah S, Darricarrère N, Darnell A, Myoung J, Steitz JA. A viral nuclear noncoding RNA binds re-localized poly(A) binding protein and is required for late KSHV gene expression. PLoS Pathog 2011; 7:e1002300. [PMID: 22022268 PMCID: PMC3192849 DOI: 10.1371/journal.ppat.1002300] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 08/19/2011] [Indexed: 01/01/2023] Open
Abstract
During the lytic phase of infection, the gamma herpesvirus Kaposi's Sarcoma-Associated Herpesvirus (KSHV) expresses a highly abundant, 1.1 kb nuclear noncoding RNA of unknown function. We observe that this polyadenylated nuclear (PAN) RNA avidly binds host poly(A)-binding protein C1 (PABPC1), which normally functions in the cytoplasm to bind the poly(A) tails of mRNAs, regulating mRNA stability and translation efficiency. During the lytic phase of KSHV infection, PABPC1 is re-localized to the nucleus as a consequence of expression of the viral shutoff exonuclease (SOX) protein; SOX also mediates the host shutoff effect in which host mRNAs are downregulated while viral mRNAs are selectively expressed. We show that whereas PAN RNA is not required for the host shutoff effect or for PABPC1 re-localization, SOX strongly upregulates the levels of PAN RNA in transient transfection experiments. This upregulation is destroyed by the same SOX mutation that ablates the host shutoff effect and PABPC1 nuclear re-localization or by removal of the poly(A) tail of PAN. In cells induced into the KSHV lytic phase, depletion of PAN RNA using RNase H-targeting antisense oligonucleotides reveals that it is necessary for the production of late viral proteins from mRNAs that are themselves polyadenylated. Our results add to the repertoire of functions ascribed to long noncoding RNAs and suggest a mechanism of action for nuclear noncoding RNAs in gamma herpesvirus infection. Almost all eukaryotic messenger RNAs (mRNAs) have a string of 150–200 adenylates at the 3′ end. This poly(A) tail has been implicated as important for regulating mRNA translation, stability and export. During the lytic phase of infection of Kaposi's Sarcoma-Associated Herpesvirus (KSHV), a noncoding viral RNA is synthesized that resembles an mRNA in that it is transcribed by RNA polymerase II, is methyl-G capped at the 5′ end, and is polyadenylated at the 3′ end; yet this RNA is never exported to the cytoplasm for translation. Rather, it builds up in the nucleus to exceedingly high levels. We present evidence that the function of this abundant, polyadenylated nuclear (PAN) RNA is to bind poly(A) binding protein, which normally binds poly(A) tails of mRNAs in the cytoplasm but is re-localized into the nucleus during lytic KSHV infection. The interaction between PAN RNA and re-localized poly(A) binding protein is important for formation of new virus, in particular for the synthesis of proteins made late in infection. Our study provides new insight into the function of this noncoding RNA during KSHV infection and expands recent discoveries regarding re-localization of poly(A) binding protein during many viral infections.
Collapse
Affiliation(s)
- Sumit Borah
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, United States of America
| | - Nicole Darricarrère
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Alicia Darnell
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, United States of America
| | - Jinjong Myoung
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, California, United States of America
| | - Joan A. Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
22
|
Ledoux S, Guthrie C. Regulation of the Dbp5 ATPase cycle in mRNP remodeling at the nuclear pore: a lively new paradigm for DEAD-box proteins. Genes Dev 2011; 25:1109-14. [PMID: 21632821 DOI: 10.1101/gad.2062611] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It is commonly assumed that all DEAD-box ATPases function via a shared mechanism, since this is the case for the few proteins characterized thus far. Hodge and colleagues (pp. 1052-1064) and Noble and colleagues (pp. 1065-1077) now describe a novel model for Dbp5's ATPase cycle in mRNA (messenger RNA)/protein complex (mRNP) remodeling during nuclear export. Notably, unlike other DEAD-box proteins, Dbp5 uses a conformational change distinct from ATP hydrolysis for its activity and requires an ADP release factor to reset its ATPase cycle.
Collapse
Affiliation(s)
- Sarah Ledoux
- Department of Biochemistry and Biophysics, University of California at San Francisco, USA
| | | |
Collapse
|
23
|
Red1 promotes the elimination of meiosis-specific mRNAs in vegetatively growing fission yeast. EMBO J 2011; 30:1027-39. [PMID: 21317872 DOI: 10.1038/emboj.2011.32] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 01/21/2011] [Indexed: 01/01/2023] Open
Abstract
Meiosis-specific mRNAs are transcribed in vegetative fission yeast, and these meiotic mRNAs are selectively removed from mitotic cells to suppress meiosis. This RNA elimination system requires degradation signal sequences called determinant of selective removal (DSR), an RNA-binding protein Mmi1, polyadenylation factors, and the nuclear exosome. However, the detailed mechanism by which meiotic mRNAs are selectively degraded in mitosis but not meiosis is not understood fully. Here we report that Red1, a novel protein, is essential for elimination of meiotic mRNAs from mitotic cells. A red1 deletion results in the accumulation of a large number of meiotic mRNAs in mitotic cells. Red1 interacts with Mmi1, Pla1, the canonical poly(A) polymerase, and Rrp6, a subunit of the nuclear exosome, and promotes the destabilization of DSR-containing mRNAs. Moreover, Red1 forms nuclear bodies in mitotic cells, and these foci are disassembled during meiosis. These results demonstrate that Red1 is involved in DSR-directed RNA decay to prevent ectopic expression of meiotic mRNAs in vegetative cells.
Collapse
|
24
|
Clyde K, Glaunsinger BA. Getting the message direct manipulation of host mRNA accumulation during gammaherpesvirus lytic infection. Adv Virus Res 2011; 78:1-42. [PMID: 21040830 DOI: 10.1016/b978-0-12-385032-4.00001-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Gammaherpesvirinae subfamily of herpesviruses comprises lymphotropic viruses, including the oncogenic human pathogens Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. During lytic infection, gammaherpesviruses manipulate host gene expression to optimize the cellular environment for viral replication and to evade the immune response. Additionally, although a lytically infected cell will itself be killed in the process of viral replication, lytic infection can contribute to pathogenesis by inducing the secretion of paracrine factors with functions in cell survival and proliferation, and angiogenesis. The mechanisms by which these viruses manipulate host gene expression are varied and target the accumulation of cellular mRNAs and their translation, signaling pathways, and protein stability. Here, we discuss how gammaherpesviral proteins directly influence host mRNA biogenesis and stability, either selectively or globally, in order to fine-tune the cellular environment to the advantage of the virus. Appreciation of the mechanisms by which these viruses interface with and adapt normal cellular processes continues to inform our understanding of gammaherpesviral biology and the regulation of mRNA accumulation and turnover in our own cells.
Collapse
Affiliation(s)
- Karen Clyde
- Department of Plant and Microbial Biology, University of California, Berkeley, USA
| | | |
Collapse
|
25
|
Early recruitment of AU-rich element-containing mRNAs determines their cytosolic fate during iron deficiency. Mol Cell Biol 2010; 31:417-29. [PMID: 21135132 DOI: 10.1128/mcb.00754-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The yeast Cth2 protein is a CX(8)CX(5)CX(3)H tandem zinc finger protein that binds AU-rich element (ARE)-containing transcripts to enhance their decay in response to iron (Fe) deficiency. Mammalian members of this family of proteins are known to undergo nucleocytoplasmic shuttling, but little is known about the role of shuttling in the mechanism of ARE-dependent mRNA decay. Here we demonstrate that, like its mammalian homologues, Cth2 is a nucleocytoplasmic shuttling protein whose nuclear export depends on mRNA transport to the cytosol. The nuclear import information of Cth2 is contained within its tandem zinc finger domain, but it is independent of mRNA-binding function. Moreover, we also demonstrate that nucleocytoplasmic shuttling of Cth2 requires active transcription and that disruption of shuttling leads to defects in Cth2 function in mRNA decay under Fe deficiency. Taken together, our data suggest that under conditions of Fe deficiency Cth2 travels into the nucleus to recruit target mRNAs, perhaps cotranscriptionally, that are destined for cytosolic degradation as part of the mechanism of adaptation to growth under Fe limitation. These data also suggest an important role for nucleocytoplasmic shuttling in this conserved family of proteins in the mechanism of ARE-mediated mRNA decay.
Collapse
|
26
|
Nuclear import of cytoplasmic poly(A) binding protein restricts gene expression via hyperadenylation and nuclear retention of mRNA. Mol Cell Biol 2010; 30:4996-5008. [PMID: 20823266 DOI: 10.1128/mcb.00600-10] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Poly(A) tail length is emerging as an important marker of mRNA fate, where deviations from the canonical length can signal degradation or nuclear retention of transcripts. Pathways regulating polyadenylation thus have the potential to broadly influence gene expression. Here we demonstrate that accumulation of cytoplasmic poly(A) binding protein (PABPC) in the nucleus, which can occur during viral infection or other forms of cellular stress, causes mRNA hyperadenylation and nuclear accumulation of poly(A) RNA. This inhibits gene expression but does not affect mRNA stability. Unexpectedly, PABPC-induced hyperadenylation can occur independently of mRNA 3'-end processing yet requires the canonical mRNA poly(A) polymerase II. We find that nuclear PABPC-induced hyperadenylation is triggered by multiple divergent viral factors, suggesting that altering the subcellular localization of PABPC may be a commonly used mechanism to regulate cellular gene expression in a polyadenylation-linked manner.
Collapse
|
27
|
Nuclear export of mRNA. Trends Biochem Sci 2010; 35:609-17. [PMID: 20719516 DOI: 10.1016/j.tibs.2010.07.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/05/2010] [Accepted: 07/07/2010] [Indexed: 01/19/2023]
Abstract
The nuclear export of mRNA, in which Mex67-Mtr2 mediates movement of mature transcripts through nuclear pores, represents the culmination of the nuclear portion of the gene expression pathway. Nuclear export is closely integrated with transcription and processing, and is based on forming a messenger ribonucleoprotein (mRNP) export complex in the nucleus that is able to diffuse back and forth through the pores. Directionality is imposed by remodelling of the mRNP in the cytoplasm, thereby removing key transport-related proteins and preventing its return to the nucleus. The nuclear and cytoplasmic steps of this pathway, in which Mex67-Mtr2 and Nab2 are added and removed, are crucial, and both involve remodelling of the mRNP, which is mediated by DEAD-box helicases together with adaptor and accessory proteins. Recent structural and cell biology results provide key information that should enable development of a detailed understanding of this central cellular process at a molecular level.
Collapse
|
28
|
The interface between transcription and mRNP export: from THO to THSC/TREX-2. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:533-8. [PMID: 20601280 DOI: 10.1016/j.bbagrm.2010.06.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/10/2010] [Accepted: 06/14/2010] [Indexed: 11/20/2022]
Abstract
Eukaryotic gene expression is a multilayer process covering transcription to post-translational protein modifications. As the nascent pre-mRNA emerges from the RNA polymerase II (RNAPII), it is packed in a messenger ribonucleoparticle (mRNP) whose optimal configuration is critical for the normal pre-mRNA processing and mRNA export, mRNA integrity as well as for transcription elongation efficiency. The interplay between transcription and mRNP formation feeds forward and backward and involves a number of conserved factors, from THO to THSC/TREX-2, which in addition have a unique impact on transcription-dependent genome instability. Here we review our actual knowledge of the role that these factors play at the interface between transcription and mRNA export in the model organism Saccharomyces cerevisiae.
Collapse
|
29
|
Kelly SM, Leung SW, Apponi LH, Bramley AM, Tran EJ, Chekanova JA, Wente SR, Corbett AH. Recognition of polyadenosine RNA by the zinc finger domain of nuclear poly(A) RNA-binding protein 2 (Nab2) is required for correct mRNA 3'-end formation. J Biol Chem 2010; 285:26022-32. [PMID: 20554526 PMCID: PMC2924000 DOI: 10.1074/jbc.m110.141127] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Proteins bound to the poly(A) tail of mRNA transcripts, called poly(A)-binding proteins (Pabs), play critical roles in regulating RNA stability, translation, and nuclear export. Like many mRNA-binding proteins that modulate post-transcriptional processing events, assigning specific functions to Pabs is challenging because these processing events are tightly coupled to one another. To investigate the role that a novel class of zinc finger-containing Pabs plays in these coupled processes, we defined the mode of polyadenosine RNA recognition for the conserved Saccharomyces cerevisiae Nab2 protein and assessed in vivo consequences caused by disruption of RNA binding. The polyadenosine RNA recognition domain of Nab2 consists of three tandem Cys-Cys-Cys-His (CCCH) zinc fingers. Cells expressing mutant Nab2 proteins with decreased binding to polyadenosine RNA show growth defects as well as defects in poly(A) tail length but do not accumulate poly(A) RNA in the nucleus. We also demonstrate genetic interactions between mutant nab2 alleles and mutant alleles of the mRNA 3'-end processing machinery. Together, these data provide strong evidence that Nab2 binding to RNA is critical for proper control of poly(A) tail length.
Collapse
Affiliation(s)
- Seth M Kelly
- Departments of Biochemistry, Emory University School ofMedicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kaposi's sarcoma-associated herpesvirus ORF57 protein binds and protects a nuclear noncoding RNA from cellular RNA decay pathways. PLoS Pathog 2010; 6:e1000799. [PMID: 20221435 PMCID: PMC2832700 DOI: 10.1371/journal.ppat.1000799] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 01/28/2010] [Indexed: 02/07/2023] Open
Abstract
The control of RNA stability is a key determinant in cellular gene expression. The stability of any transcript is modulated through the activity of cis- or trans-acting regulatory factors as well as cellular quality control systems that ensure the integrity of a transcript. As a result, invading viral pathogens must be able to subvert cellular RNA decay pathways capable of destroying viral transcripts. Here we report that the Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein binds to a unique KSHV polyadenylated nuclear RNA, called PAN RNA, and protects it from degradation by cellular factors. ORF57 increases PAN RNA levels and its effects are greatest on unstable alleles of PAN RNA. Kinetic analysis of transcription pulse assays shows that ORF57 protects PAN RNA from a rapid cellular RNA decay process, but ORF57 has little effect on transcription or PAN RNA localization based on chromatin immunoprecipitation and in situ hybridization experiments, respectively. Using a UV cross-linking technique, we further demonstrate that ORF57 binds PAN RNA directly in living cells and we show that binding correlates with function. In addition, we define an ORF57-responsive element (ORE) that is necessary for ORF57 binding to PAN RNA and sufficient to confer ORF57-response to a heterologous intronless beta-globin mRNA, but not its spliced counterparts. We conclude that ORF57 binds to viral transcripts in the nucleus and protects them from a cellular RNA decay pathway. We propose that KSHV ORF57 protein functions to enhance the nuclear stability of intronless viral transcripts by protecting them from a cellular RNA quality control pathway.
Collapse
|
31
|
Apponi LH, Leung SW, Williams KR, Valentini SR, Corbett AH, Pavlath GK. Loss of nuclear poly(A)-binding protein 1 causes defects in myogenesis and mRNA biogenesis. Hum Mol Genet 2009; 19:1058-65. [PMID: 20035013 DOI: 10.1093/hmg/ddp569] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The nuclear poly(A)-binding protein 1 (PABPN1) is a ubiquitously expressed protein that plays a critical role in polyadenylation. Short expansions of the polyalanine tract in the N-terminus of PABPN1 lead to oculopharyngeal muscular dystrophy (OPMD), which is an adult onset disease characterized by eyelid drooping, difficulty in swallowing and weakness in the proximal limb muscles. Although significant data from in vitro biochemical assays define the function of PABPN1 in control of poly(A) tail length, little is known about the role of PABPN1 in mammalian cells. To assess the function of PABPN1 in mammalian cells and specifically in cells affected in OPMD, we examined the effects of PABPN1 depletion using siRNA in primary mouse myoblasts from extraocular, pharyngeal and limb muscles. PABPN1 knockdown significantly decreased cell proliferation and myoblast differentiation during myogenesis in vitro. At the molecular level, PABPN1 depletion in myoblasts led to a shortening of mRNA poly(A) tails, demonstrating the cellular function of PABPN1 in polyadenylation control in a mammalian cell. In addition, PABPN1 depletion caused nuclear accumulation of poly(A) RNA, revealing that PABPN1 is required for proper poly(A) RNA export from the nucleus. Together, these experiments demonstrate that PABPN1 plays an essential role in myoblast proliferation and differentiation, suggesting that it is required for muscle regeneration and maintenance in vivo.
Collapse
Affiliation(s)
- Luciano H Apponi
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
32
|
Assembly of an export-competent mRNP is needed for efficient release of the 3'-end processing complex after polyadenylation. Mol Cell Biol 2009; 29:5327-38. [PMID: 19635808 DOI: 10.1128/mcb.00468-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Before polyadenylated mRNA is exported from the nucleus, the 3'-end processing complex is removed by a poorly described mechanism. In this study, we asked whether factors involved in mRNP maturation and export are also required for disassembly of the cleavage and polyadenylation complex. An RNA immunoprecipitation assay monitoring the amount of the cleavage factor (CF) IA component Rna15p associated with poly(A)(+) RNA reveals defective removal of Rna15p in mutants of the nuclear export receptor Mex67p as well as other factors important for assembly of an export-competent mRNP. In contrast, Rna15p is not retained in mutants of export factors that function primarily on the cytoplasmic side of the nuclear pore. Consistent with a functional interaction between Mex67p and the 3'-end processing complex, a mex67 mutant accumulates unprocessed SSA4 transcripts and exhibits a severe growth defect when this mutation is combined with mutation of Rna15p or another CF IA subunit, Rna14p. RNAs that become processed in a mex67 mutant have longer poly(A) tails both in vivo and in vitro. This influence of Mex67p on 3'-end processing is conserved, as depletion of its human homolog, TAP/NXF1, triggers mRNA hyperadenylation. Our results indicate a function for nuclear mRNP assembly factors in releasing the 3'-end processing complex once polyadenylation is complete.
Collapse
|
33
|
Host shutoff is a conserved phenotype of gammaherpesvirus infection and is orchestrated exclusively from the cytoplasm. J Virol 2009; 83:9554-66. [PMID: 19587049 DOI: 10.1128/jvi.01051-09] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lytic infection with the two human gammaherpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), leads to significant depletion of the cellular transcriptome. This host shutoff phenotype is driven by the conserved herpesviral alkaline exonuclease, termed SOX in KSHV and BGLF5 in EBV, which in gammaherpesviruses has evolved the genetically separable ability to target cellular mRNA. We now show that host shutoff is also a prominent consequence of murine gammaherpesvirus 68 (MHV68) infection, which is widely used as a model system to study pathogenesis of these viruses in vivo. The effector of MHV68-induced host shutoff is its SOX homolog, here termed muSOX. There is remarkable functional conservation of muSOX host shutoff activities with those of KSHV SOX, including the recently described ability of SOX to induce mRNA hyperadenylation in the nucleus as well as cause nuclear relocalization of the poly(A) binding protein. SOX and muSOX localize to both the nucleus and cytoplasm of infected cells. Using spatially restricted variants of these proteins, we go on to demonstrate that all known host shutoff-related activities of SOX and muSOX are orchestrated exclusively from the cytoplasm. These results have important mechanistic implications for how SOX and muSOX target nascent cellular transcripts in the nucleus. Furthermore, our findings establish MHV68 as a new, genetically tractable model to study host shutoff.
Collapse
|
34
|
Kelly SM, Corbett AH. Messenger RNA export from the nucleus: a series of molecular wardrobe changes. Traffic 2009; 10:1199-208. [PMID: 19552647 DOI: 10.1111/j.1600-0854.2009.00944.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The advent of the nucleus during the evolutionary development of the eukaryotic cell necessitated the development of a transport system to convey messenger RNA (mRNA) from the site of transcription in the nucleus to ribosomes in the cytoplasm. In this review, we highlight components of each step in mRNA biogenesis, from transcription to processing, that are coupled with mRNA export from the nucleus. We also review the mechanism by which proteins from one step in the mRNA assembly line are replaced by those required for the next. These 'molecular wardrobe changes' appear to be key steps in facilitating the rapid and efficient nuclear export of mRNA transcripts.
Collapse
Affiliation(s)
- Seth M Kelly
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
35
|
Aberrant herpesvirus-induced polyadenylation correlates with cellular messenger RNA destruction. PLoS Biol 2009; 7:e1000107. [PMID: 19468299 PMCID: PMC2680333 DOI: 10.1371/journal.pbio.1000107] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 03/26/2009] [Indexed: 12/30/2022] Open
Abstract
Inhibition of host cell gene expression by the human herpesvirus KSHV occurs via a novel mechanism involving polyadenylation-linked RNA turnover. Regulation of messenger RNA (mRNA) stability plays critical roles in controlling gene expression, ensuring transcript fidelity, and allowing cells to respond to environmental cues. Unregulated enhancement of mRNA turnover could therefore dampen cellular responses to such signals. Indeed, several herpesviruses instigate widespread destruction of cellular mRNAs to block host gene expression and evade immune detection. Kaposi's sarcoma-associated herpesvirus (KSHV) promotes this phenotype via the activity of its viral SOX protein, although the mechanism of SOX-induced mRNA turnover has remained unknown, given its apparent lack of intrinsic ribonuclease activity. Here, we report that KSHV SOX stimulates cellular transcriptome turnover via a unique mechanism involving aberrant polyadenylation. Transcripts in SOX-expressing cells exhibit extended poly(A) polymerase II-generated poly(A) tails and polyadenylation-linked mRNA turnover. SOX-induced polyadenylation changes correlate with its RNA turnover function, and inhibition of poly(A) tail formation blocks SOX activity. Both nuclear and cytoplasmic poly(A) binding proteins are critical cellular cofactors for SOX function, the latter of which undergoes striking nuclear relocalization by SOX. SOX-induced mRNA turnover therefore represents both a novel mechanism of host shutoff as well as a new model system to probe the regulation of poly(A) tail-stimulated mRNA turnover in mammalian cells. During viral infection, many essential cellular functions are targets for viral manipulation, yet aside from RNA interference, surprisingly few examples of viruses disrupting RNA turnover have been documented. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus that induces widespread cellular messenger RNA destabilization during lytic infection. The viral protein SOX is a critical effector of this phenotype, yet it lacks ribonuclease activity, so presumably it targets cellular factors governing RNA stability. Here, we show that SOX stimulates host mRNA destruction via a unique mechanism involving polyadenylation. During SOX expression, newly formed messages have longer than normal poly(A) tails, leading to their retention in the nucleus. Coincident with this hyperadenylation, poly(A) binding protein (PABPC) is relocalized from the cytoplasm to the nucleus. PABPC has prominent roles in translation, messenger RNA stabilization, and quality control in the cytoplasm; we find its nuclear relocalization by SOX correlates with enhanced mRNA turnover in the cytoplasm. Thus, KSHV appears to have evolved distinct polyadenylation-linked mechanisms to target both new messages in the nucleus and preexisting cytoplasmic messages for destruction, thereby effectively inhibiting cellular gene expression.
Collapse
|
36
|
Holbein S, Wengi A, Decourty L, Freimoser FM, Jacquier A, Dichtl B. Cordycepin interferes with 3' end formation in yeast independently of its potential to terminate RNA chain elongation. RNA (NEW YORK, N.Y.) 2009; 15:837-49. [PMID: 19324962 PMCID: PMC2673080 DOI: 10.1261/rna.1458909] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cordycepin (3' deoxyadenosine) is a biologically active compound that, when incorporated during RNA synthesis in vitro, provokes chain termination due to the absence of a 3' hydroxyl moiety. We were interested in the effects mediated by this drug in vivo and analyzed its impact on RNA metabolism of yeast. Our results support the view that cordycepin-triphosphate (CoTP) is the toxic component that is limiting cell growth through inhibition of RNA synthesis. Unexpectedly, cordycepin treatment modulated 3' end heterogeneity of ACT1 and ASC1 mRNAs and rapidly induced extended transcripts derived from CYH2 and NEL025c loci. Moreover, cordycepin ameliorated the growth defects of poly(A) polymerase mutants and the pap1-1 mutation neutralized the effects of the drug on gene expression. Our observations are consistent with an epistatic relationship between poly(A) polymerase function and cordycepin action and suggest that a major mode of cordycepin activity reduces 3' end formation efficiency independently of its potential to terminate RNA chain elongation. Finally, chemical-genetic profiling revealed genome-wide pathways linked to cordycepin activity and identified novel genes involved in poly(A) homeostasis.
Collapse
Affiliation(s)
- Sandra Holbein
- Institute of Molecular Biology, University of Zürich, CH-8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
37
|
Hurt JA, Obar RA, Zhai B, Farny NG, Gygi SP, Silver PA. A conserved CCCH-type zinc finger protein regulates mRNA nuclear adenylation and export. ACTA ACUST UNITED AC 2009; 185:265-77. [PMID: 19364924 PMCID: PMC2700372 DOI: 10.1083/jcb.200811072] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coupling of messenger RNA (mRNA) nuclear export with prior processing steps aids in the fidelity and efficiency of mRNA transport to the cytoplasm. In this study, we show that the processes of export and polyadenylation are coupled via the Drosophila melanogaster CCCH-type zinc finger protein CG6694/dZC3H3 through both physical and functional interactions. We show that depletion of dZC3H3 from S2R+ cells results in transcript hyperadenylation. Using targeted coimmunoprecipitation and liquid chromatography mass spectrometry (MS)/MS techniques, we characterize interactions of known components of the mRNA nuclear export and polyadenylation machineries with dZC3H3. Furthermore, we demonstrate the functional conservation of this factor, as depletion of its human homologue ZC3H3 by small interfering RNA results in an mRNA export defect in human cells as well. Nuclear polyadenylated (poly(A)) RNA in ZC3H3-depleted cells is sequestered in foci removed from SC35-containing speckles, indicating a shift from the normal subnuclear distribution of poly(A) RNA. Our data suggest a model wherein ZC3H3 interfaces between the polyadenylation machinery, newly poly(A) mRNAs, and factors for transcript export.
Collapse
Affiliation(s)
- Jessica A Hurt
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
38
|
Estruch F, Peiró-Chova L, Gómez-Navarro N, Durbán J, Hodge C, Del Olmo M, Cole CN. A genetic screen in Saccharomyces cerevisiae identifies new genes that interact with mex67-5, a temperature-sensitive allele of the gene encoding the mRNA export receptor. Mol Genet Genomics 2008; 281:125-34. [PMID: 19034519 DOI: 10.1007/s00438-008-0402-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 10/29/2008] [Indexed: 10/21/2022]
Abstract
The Mex67p protein, together with Mtr2p, functions as the mRNA export receptor in Saccharomyces cerevisiae by interacting with both mRNA and nuclear pore complexes. To identify genes that interact functionally with MEX67, we used transposon insertion to search for mutations that suppressed the temperature-sensitive mex67-5 allele. Four suppressors are described here. The screen revealed that mutant Mex67-5p, but not wild-type Mex67p, is a target of the nuclear protein quality control mediated by San1p, a ubiquitin-protein ligase that participates in degradation of aberrant chromatin-associated proteins. Our finding that overexpression of the SPT6 gene alleviates the growth defects of the mex67-5 strain, together with the impairment of poly(A)(+) RNA export caused by depletion of Spt6p or the related protein Iws1p/Spn1p, supports the mechanism proposed in mammalian cells for Spt6-mediated co-transcriptional loading of mRNA export factors during transcription elongation. Finally, our results also uncovered genetic connections between Mex67p and the poly(A) nuclease complex and with components of chromatin boundary elements.
Collapse
Affiliation(s)
- Francisco Estruch
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, c/Dr. Moliner, 50, Burjassot (Valencia), 46100, Spain.
| | | | | | | | | | | | | |
Collapse
|
39
|
Synthetic genetic array analysis in Saccharomyces cerevisiae provides evidence for an interaction between RAT8/DBP5 and genes encoding P-body components. Genetics 2008; 179:1945-55. [PMID: 18689878 DOI: 10.1534/genetics.108.091256] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Coordination of the multiple steps of mRNA biogenesis helps to ensure proper regulation of gene expression. The Saccharomyces cerevisiae DEAD-box protein Rat8p/Dbp5p is an essential mRNA export factor that functions at the nuclear pore complex (NPC) where it is thought to remodel mRNA/protein complexes during mRNA export. Rat8p also functions in translation termination and has been implicated in functioning during early transcription. We conducted a synthetic genetic array analysis (SGA) using a strain harboring the temperature-sensitive rat8-2 allele. Although RAT8 had been shown to interact genetically with >15 other genes, we identified >40 additional genes whose disruption in a rat8-2 background causes synthetic lethality or dramatically reduced growth. Included were five that encode components of P-bodies, sites of cytoplasmic mRNA turnover and storage. Wild-type Rat8p localizes to NPCs and diffusely throughout the cell but rat8-2p localized to cytoplasmic granules at nonpermissive temperature that are distinct from P-bodies. In some genetic backgrounds, these granules also contain poly(A)-binding protein, Pab1p, and additional mRNA export factors. Although these foci are distinct from P-bodies, the two merge under heat-stress conditions. We suggest that these granules reflect defective mRNP remodeling during mRNA export and during cytoplasmic mRNA metabolism.
Collapse
|
40
|
Heat shock and ethanol stress provoke distinctly different responses in 3′-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae. Biochem J 2008; 414:111-9. [DOI: 10.1042/bj20071567] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Under conditions of heat shock at 42 °C, mRNAs of HSP (heat shock protein) genes are exported out of the nucleus, whereas bulk poly(A)+ (polyadenylated) mRNA shows a nuclear accumulation in Saccharomyces cerevisiae. Such a selective mRNA export seems an efficacious strategy of yeast cells to adapt rapidly to stress. Although ethanol stress (10%, v/v) as well as heat shock blocks the export of bulk poly(A)+ mRNA, the differences and/or similarity between heat shock and ethanol stress in the mechanisms of selective mRNA export still remain to be clarified. We found that ethanol stress induced transcriptional activation of a subset of yeast HSP genes; however, intriguingly, most such transcripts remained in the nucleus in a hyperadenylated state and, as a consequence, were not translated into HSPs. Elimination of ethanol resulted in a rapid shortening of the poly(A) tails of HSP mRNAs, loss of their nuclear retention, and the coincidental synthesis of the respective HSPs. Since HSP mRNAs are selectively exported from the nucleus in heat-shocked cells, yeast cells respond differently to ethanol stress and heat shock in the 3′-processing and transport of HSP mRNAs. Furthermore, these results also suggest that hyperadenylation and nuclear retention of mRNAs might be used as a means to control eukaryotic gene expression under stressed conditions.
Collapse
|
41
|
Viphakone N, Voisinet-Hakil F, Minvielle-Sebastia L. Molecular dissection of mRNA poly(A) tail length control in yeast. Nucleic Acids Res 2008; 36:2418-33. [PMID: 18304944 PMCID: PMC2367721 DOI: 10.1093/nar/gkn080] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In eukaryotic cells, newly synthesized mRNAs acquire a poly(A) tail that plays several fundamental roles in export, translation and mRNA decay. In mammals, PABPN1 controls the processivity of polyadenylation and the length of poly(A) tails during de novo synthesis. This regulation is less well-detailed in yeast. We have recently demonstrated that Nab2p is necessary and sufficient for the regulation of polyadenylation and that the Pab1p/PAN complex may act at a later stage in mRNA metabolism. Here, we show that the presence of both Pab1p and Nab2p in reconstituted pre-mRNA 3′-end processing reactions has no stimulating nor inhibitory effect on poly(A) tail regulation. Importantly, the poly(A)-binding proteins are essential to protect the mature mRNA from being subjected to a second round of processing. We have determined which domains of Nab2p are important to control polyadenylation and found that the RGG-box work in conjunction with the two last essential CCCH-type zinc finger domains. Finally, we have tried to delineate the mechanism by which Nab2p performs its regulation function during polyadenylation: it likely forms a complex with poly(A) tails different from a simple linear deposit of proteins as it has been observed with Pab1p.
Collapse
Affiliation(s)
- Nicolas Viphakone
- Université Victor Segalen Bordeaux 2, CNRS, Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | | | | |
Collapse
|
42
|
Affiliation(s)
- Meenakshi K Doma
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
43
|
Perreault A, Lemieux C, Bachand F. Regulation of the nuclear poly(A)-binding protein by arginine methylation in fission yeast. J Biol Chem 2007; 282:7552-62. [PMID: 17213188 DOI: 10.1074/jbc.m610512200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Two structurally different poly(A)-binding proteins (PABP) bind the poly(A) tract of mRNAs in most mammalian cells: PABPC in the cytoplasm and PABP2/PABPN1 in the nucleus. Whereas yeast orthologs of the cytoplasmic PABP are characterized, a gene product homologous to mammalian PABP2 has not been identified in yeast. We report here the identification of a homolog of PABP2 as an arginine methyltransferase 1 (RMT1)-associated protein in fission yeast. The product of the Schizosaccharomyces pombe pab2 gene encodes a nonessential nuclear protein and demonstrates specific poly(A) binding in vitro. Consistent with a functional role in poly(A) tail metabolism, mRNAs from pab2-null cells displayed hyperadenylated 3'-ends. We also show that arginine residues within the C-terminal arginine-rich domain of Pab2 are modified by RMT1-dependent methylation. Whereas the arginine methylated and unmethylated forms of Pab2 behaved similarly in terms of subcellular localization, poly(A) binding, and poly(A) tail length control; Pab2 oligomerization levels were markedly increased when Pab2 was not methylated. Significantly, Pab2 overexpression reduced growth rate, and this growth inhibitory effect was exacerbated in rmt1-null cells. Our results indicate that the main cellular function of Pab2 is in poly(A) tail length control and support a biological role for arginine methylation in the regulation of Pab2 oligomerization.
Collapse
Affiliation(s)
- Audrey Perreault
- Department of Biochemistry, Université de Sherbrooke, Québec J1H 5N4, Canada
| | | | | |
Collapse
|
44
|
Keeling KM, Salas-Marco J, Osherovich LZ, Bedwell DM. Tpa1p is part of an mRNP complex that influences translation termination, mRNA deadenylation, and mRNA turnover in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:5237-48. [PMID: 16809762 PMCID: PMC1592710 DOI: 10.1128/mcb.02448-05] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report, we show that the Saccharomyces cerevisiae protein Tpa1p (for termination and polyadenylation) influences translation termination efficiency, mRNA poly(A) tail length, and mRNA stability. Tpa1p is encoded by the previously uncharacterized open reading frame YER049W. Yeast strains carrying a deletion of the TPA1 gene (tpa1Delta) exhibited increased readthrough of stop codons, and coimmunoprecipitation assays revealed that Tpa1p interacts with the translation termination factors eRF1 and eRF3. In addition, the tpa1Delta mutation led to a 1.5- to 2-fold increase in the half-lives of mRNAs degraded by the general 5'-->3' pathway or the 3'-->5' nonstop decay pathway. In contrast, this mutation did not have any affect on the nonsense-mediated mRNA decay pathway. Examination of mRNA poly(A) tail length revealed that poly(A) tails are longer than normal in a tpa1Delta strain. Consistent with a potential role in regulating poly(A) tail length, Tpa1p was also found to coimmunoprecipitate with the yeast poly(A) binding protein Pab1p. These results suggest that Tpa1p is a component of a messenger ribonucleoprotein complex bound to the 3' untranslated region of mRNAs that affects translation termination, deadenylation, and mRNA decay.
Collapse
Affiliation(s)
- Kim M Keeling
- Department of Microbiology, BBRB 432/Box 8, 1530 3rd Avenue South, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA.
| | | | | | | |
Collapse
|
45
|
Lund MK, Guthrie C. The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported mRNPs at the nuclear rim. Mol Cell 2006; 20:645-51. [PMID: 16307927 DOI: 10.1016/j.molcel.2005.10.005] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 07/30/2005] [Accepted: 10/05/2005] [Indexed: 11/16/2022]
Abstract
Eukaryotic mRNAs are exported from the nucleus to the cytoplasm as complex mRNA-protein particles (mRNPs), and translocation through the nuclear pore complex (NPC) is accompanied by extensive structural changes of the mRNP. We have tested the hypothesis that the DEAD-box ATPase Dbp5p is required for such an mRNP rearrangement. In dbp5 mutant cells, the mRNA export receptor Mex67p accumulates on mRNA. This aberrant accumulation of Mex67p with RNA and the cold-sensitive growth phenotype of a dbp5 allele are suppressed by a mex67 mutation. Moreover, Mex67 bound mRNA accumulates at the nuclear rim in a temperature-sensitive dbp5 mutant when the nuclear exosome is impaired. Importantly, although accumulation of Mex67p-containing mRNPs is also observed when a nuclear basket component is mutated, these mRNPs still contain the nuclear export factor Yra1p. In contrast, the dbp5-trapped mRNPs lack Yra1p. We propose that Dbp5p's function is specifically required to displace Mex67p from exported mRNPs, thus terminating export.
Collapse
Affiliation(s)
- Mette K Lund
- Department of Biochemistry and Biophysics, Genentech Hall, 600 16th Street, San Francisco, California 94143, USA
| | | |
Collapse
|
46
|
Brengues M, Teixeira D, Parker R. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 2005; 310:486-9. [PMID: 16141371 PMCID: PMC1863069 DOI: 10.1126/science.1115791] [Citation(s) in RCA: 575] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Eukaryotic cells contain nontranslating messenger RNA concentrated in P-bodies, which are sites where the mRNA can be decapped and degraded. We present evidence that mRNA molecules within yeast P-bodies can also return to translation. First, inhibiting delivery of new mRNAs to P-bodies leads to their disassembly independent of mRNA decay. Second, P-bodies decline in a translation initiation-dependent manner during stress recovery. Third, reporter mRNAs concentrate in P-bodies when translation initiation is blocked and resume translation and exit P-bodies when translation is restored. Fourth, stationary phase yeast have large P-bodies containing mRNAs that reenter translation when growth resumes. The reciprocal movement of mRNAs between polysomes and P-bodies is likely to be important in the control of mRNA translation and degradation. Moreover, the presence of related proteins in P-bodies and maternal mRNA storage granules suggests this mechanism is widely adapted for mRNA storage.
Collapse
Affiliation(s)
| | | | - Roy Parker
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Teixeira D, Sheth U, Valencia-Sanchez MA, Brengues M, Parker R. Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA (NEW YORK, N.Y.) 2005; 11:371-82. [PMID: 15703442 PMCID: PMC1370727 DOI: 10.1261/rna.7258505] [Citation(s) in RCA: 533] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Accepted: 12/10/2004] [Indexed: 05/19/2023]
Abstract
Recent experiments have defined cytoplasmic foci, referred to as processing bodies (P-bodies), wherein mRNA decay factors are concentrated and where mRNA decay can occur. However, the physical nature of P-bodies, their relationship to translation, and possible roles of P-bodies in cellular responses remain unclear. We describe four properties of yeast P-bodies that indicate that P-bodies are dynamic structures that contain nontranslating mRNAs and function during cellular responses to stress. First, in vivo and in vitro analysis indicates that P-bodies are dependent on RNA for their formation. Second, the number and size of P-bodies vary in response to glucose deprivation, osmotic stress, exposure to ultraviolet light, and the stage of cell growth. Third, P-bodies vary with the status of the cellular translation machinery. Inhibition of translation initiation by mutations, or cellular stress, results in increased P-bodies. In contrast, inhibition of translation elongation, thereby trapping the mRNA in polysomes, leads to dissociation of P-bodies. Fourth, multiple translation factors and ribosomal proteins are lacking from P-bodies. These results suggest additional biological roles of P-bodies in addition to being sites of mRNA degradation.
Collapse
Affiliation(s)
- Daniela Teixeira
- Department of Molecular and Cellular Biology & Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721-0106, USA
| | | | | | | | | |
Collapse
|
48
|
Mustafa F, Phillip PS, Jayanth P, Ghazawi A, Lew KA, Schmidt RD, Rizvi TA. Close proximity of the MPMV CTE to the polyadenylation sequences is important for efficient function in the subgenomic context. Virus Res 2005; 105:209-18. [PMID: 15351494 DOI: 10.1016/j.virusres.2004.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 06/29/2004] [Accepted: 06/30/2004] [Indexed: 10/26/2022]
Abstract
The constitutive transport element (CTE) of Mason-Pfizer monkey virus (MPMV) is a short cis-acting sequence element critical for virus gene expression. Analogous to the Rev/Rev Responsive Element (RRE) of primate lentiviruses, CTE allows the nucleocytoplasmic transport of unspliced viral mRNAs. In fact, CTE can functionally replace Rev/RRE in the genomic context and has been used successfully in the expression of viral and cellular genes from expression vectors as well. However, unlike RRE, CTE accomplishes this by interacting with cellular factors, making CTE function independent of co-expressed trans factors. Thus, CTE has proven to be a valuable tool in the expression of heterologous genes. Our previous studies have shown that close proximity of CTE to the polyadenylation sequences is important for CTE function in the genomic context. However, it is controversial whether CTE needs to be located spatially close to the polyadenylation sequences in the subgenomic context. Since CTE is being frequently used in expression vectors, we investigated the position dependency of CTE in the heterologous, subgenomic background using both genetic and structural analyses. Our results reveal that similar to the genomic situation, close proximity of CTE to the polyadenylation sequences is important for its function in the heterologous subgenomic context.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Base Sequence
- Gene Expression Regulation, Viral
- Genes, env
- Genes, rev
- Mason-Pfizer monkey virus/genetics
- Mason-Pfizer monkey virus/physiology
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Messenger/genetics
- RNA, Messenger/physiology
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Regulatory Sequences, Ribonucleic Acid
Collapse
Affiliation(s)
- Farah Mustafa
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, The United Arab Emirates University, Al Ain, UAE
| | | | | | | | | | | | | |
Collapse
|
49
|
Dunn EF, Hammell CM, Hodge CA, Cole CN. Yeast poly(A)-binding protein, Pab1, and PAN, a poly(A) nuclease complex recruited by Pab1, connect mRNA biogenesis to export. Genes Dev 2005; 19:90-103. [PMID: 15630021 PMCID: PMC540228 DOI: 10.1101/gad.1267005] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Accepted: 11/02/2004] [Indexed: 11/25/2022]
Abstract
In eukaryotic cells, pre-mRNAs undergo extensive processing in the nucleus prior to export. Processing is subject to a quality-control mechanism that retains improperly processed transcripts at or near sites of transcription. A poly(A) tail added by the normal 3'-processing machinery is necessary but not sufficient for export. Retention depends on the exosome. In this study, we identify the poly(A)-binding protein, Pab1, and the poly(A) nuclease, PAN, as important factors that couple 3' processing to export. Pab1 contains a nonessential leucine-rich nuclear export signal and shuttles between the nucleus and the cytoplasm. It can exit the nucleus either as cargo of exportin 1 or bound to mRNA. Pab1 is essential but several bypass suppressors have been identified. Deletion of PAB1 from these bypass suppressor strains results in exosome-dependent retention at sites of transcription. Retention is also seen in cells lacking PAN, which Pab1 is thought to recruit and which may be responsible for the final step of mRNA biogenesis, trimming of the poly(A) tail to the length found on newly exported mRNAs. The studies presented here suggest that proper loading of Pab1 onto mRNAs and final trimming of the tail allows release from transcription sites and couples pre-mRNA processing to export.
Collapse
Affiliation(s)
- Ewan F Dunn
- Department of Biochemistry, the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
50
|
Kufel J, Bousquet-Antonelli C, Beggs JD, Tollervey D. Nuclear pre-mRNA decapping and 5' degradation in yeast require the Lsm2-8p complex. Mol Cell Biol 2004; 24:9646-57. [PMID: 15485930 PMCID: PMC522261 DOI: 10.1128/mcb.24.21.9646-9657.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous analyses have identified related cytoplasmic Lsm1-7p and nuclear Lsm2-8p complexes. Here we report that mature heat shock and MET mRNAs that are trapped in the nucleus due to a block in mRNA export were strongly stabilized in strains lacking Lsm6p or the nucleus-specific Lsm8p protein but not by the absence of the cytoplasmic Lsm1p. These nucleus-restricted mRNAs remain polyadenylated until their degradation, indicating that nuclear mRNA degradation does not involve the incremental deadenylation that is a key feature of cytoplasmic turnover. Lsm8p can be UV cross-linked to nuclear poly(A)(+) RNA, indicating that an Lsm2-8p complex interacts directly with nucleus-restricted mRNA. Analysis of pre-mRNAs that contain intronic snoRNAs indicates that their 5' degradation is specifically inhibited in strains lacking any of the Lsm2-8p proteins but Lsm1p. Nucleus-restricted mRNAs and pre-mRNA degradation intermediates that accumulate in lsm mutants remain 5' capped. We conclude that the Lsm2-8p complex normally targets nuclear RNA substrates for decapping.
Collapse
Affiliation(s)
- Joanna Kufel
- Wellcome Trust Centre for Cell Biology, King's Buildings, The University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | | | | | | |
Collapse
|