1
|
Kekki H, Montoya Perez I, Taimen P, Boström PJ, Gidwani K, Pettersson K. Lectin-nanoparticle concept for free PSA glycovariant providing superior cancer specificity. Clin Chim Acta 2024; 559:119689. [PMID: 38677453 DOI: 10.1016/j.cca.2024.119689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Using lectins to target cancer-associated modifications of PSA glycostructure for identification of clinically significant prostate cancers, e.g., Gleason score (GS) ≥ 7, from benign and indolent cancers (GS 6), is highly promising yet technically challenging. From previous findings to quantify increased PSA fucosylation in urine, we set out to construct a robust, specific test concept suitable for plasma samples. METHODS Macrophage galactose-binding lectin (MGL) coupled to 100 nm Eu3 + -nanoparticles was used to probe PSA captured from cancer cell lines, seminal plasma, and plasma samples from 249 patients with a clinical suspicion of prostate cancer onto 3 mm dense spots of free PSA antibody fab fragments. Results were compared to four kallikrein tests: tPSA, fPSA, iPSA and hK2. RESULTS The fPSAMGLglycovariant provided superior discrimination of the GS ≥ 7 and benign + GS 6 groups (p 0.0003) compared to fPSA (NS). The corresponding AUC in ROC analysis was 0.70 compared to 0.66 for tPSA. In contrast to all four kallikrein tests, the fPSAMGLGV was independent of prostate gland volume. Using a logistic regression analysis the fPSAMGLGV significantly improved on the four-kallikrein model. CONCLUSIONS Due to Eu-nanoparticles and a dense fPSA capture spot, the fPSAMGL glycovariant identifies an fPSA subform with the highest cancer specificity compared to the four conventional kallikreins.
Collapse
Affiliation(s)
- H Kekki
- Biotechnology Unit, Department of Life Technologies, University of Turku, Finland.
| | - I Montoya Perez
- Department of Diagnostic Radiology, University of Turku, Turku, Finland; Department of Computing, University of Turku, Turku, Finland
| | - P Taimen
- Institute of Biomedicine, Department of Pathology, University of Turku, Turku University Hospital, Turku, Finland
| | - P J Boström
- Department of Urology, University of Turku and Turku University Hospital, Turku, Finland
| | - K Gidwani
- Biotechnology Unit, Department of Life Technologies, University of Turku, Finland
| | - K Pettersson
- Biotechnology Unit, Department of Life Technologies, University of Turku, Finland
| |
Collapse
|
2
|
Routila E, Mahran R, Salminen S, Irjala H, Haapio E, Kytö E, Ventelä S, Petterson K, Routila J, Gidwani K, Leivo J. Identification of stemness-related glycosylation changes in head and neck squamous cell carcinoma. BMC Cancer 2024; 24:443. [PMID: 38600440 PMCID: PMC11005150 DOI: 10.1186/s12885-024-12161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Altered glycosylation is a hallmark of cancer associated with therapy resistance and tumor behavior. In this study, we investigated the glycosylation profile of stemness-related proteins OCT4, CIP2A, MET, and LIMA1 in HNSCC tumors. METHODS Tumor, adjacent normal tissue, and blood samples of 25 patients were collected together with clinical details. After tissue processing, lectin-based glycovariant screens were performed. RESULTS Strong correlation between glycosylation profiles of all four stemness-related proteins was observed in tumor tissue, whereas glycosylation in tumor tissue, adjacent normal tissue, and serum was differential. CONCLUSIONS A mannose- and galactose-rich glycosylation niche associated with stemness-related proteins was identified.
Collapse
Affiliation(s)
- E Routila
- Department of Life Technologies, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
- InFLAMES Research Flagship, University of Turku, 20014, Turku, Finland.
- FICAN West Cancer Centre, Turku, Finland.
| | - R Mahran
- Department of Life Technologies, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
- FICAN West Cancer Centre, Turku, Finland
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| | - S Salminen
- Department of Life Technologies, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
- FICAN West Cancer Centre, Turku, Finland
| | - H Irjala
- Department for Otorhinolaryngology- Head and Neck surgery, University of Turku and Turku University Hospital, Savitehtaankatu 5, 20520, Turku, Finland
| | - E Haapio
- Department for Otorhinolaryngology- Head and Neck surgery, University of Turku and Turku University Hospital, Savitehtaankatu 5, 20520, Turku, Finland
| | - E Kytö
- Department for Otorhinolaryngology- Head and Neck surgery, University of Turku and Turku University Hospital, Savitehtaankatu 5, 20520, Turku, Finland
| | - S Ventelä
- FICAN West Cancer Centre, Turku, Finland
- Department for Otorhinolaryngology- Head and Neck surgery, University of Turku and Turku University Hospital, Savitehtaankatu 5, 20520, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - K Petterson
- Department of Life Technologies, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - J Routila
- FICAN West Cancer Centre, Turku, Finland
- Department for Otorhinolaryngology- Head and Neck surgery, University of Turku and Turku University Hospital, Savitehtaankatu 5, 20520, Turku, Finland
| | - K Gidwani
- Department of Life Technologies, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - J Leivo
- Department of Life Technologies, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014, Turku, Finland
- FICAN West Cancer Centre, Turku, Finland
| |
Collapse
|
3
|
Farka Z, Brandmeier JC, Mickert MJ, Pastucha M, Lacina K, Skládal P, Soukka T, Gorris HH. Nanoparticle-Based Bioaffinity Assays: From the Research Laboratory to the Market. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307653. [PMID: 38039956 DOI: 10.1002/adma.202307653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Advances in the development of new biorecognition elements, nanoparticle-based labels as well as instrumentation have inspired the design of new bioaffinity assays. This review critically discusses the potential of nanoparticles to replace current enzymatic or molecular labels in immunoassays and other bioaffinity assays. Successful implementations of nanoparticles in commercial assays and the need for rapid tests incorporating nanoparticles in different roles such as capture support, signal generation elements, and signal amplification systems are highlighted. The limited number of nanoparticles applied in current commercial assays can be explained by challenges associated with the analysis of real samples (e.g., blood, urine, or nasal swabs) that are difficult to resolve, particularly if the same performance can be achieved more easily by conventional labels. Lateral flow assays that are based on the visual detection of the red-colored line formed by colloidal gold are a notable exception, exemplified by SARS-CoV-2 rapid antigen tests that have moved from initial laboratory testing to widespread market adaption in less than two years.
Collapse
Affiliation(s)
- Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | | | - Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- TestLine Clinical Diagnostics, Křižíkova 188, Brno, 612 00, Czech Republic
| | - Karel Lacina
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| |
Collapse
|
4
|
Jain S, Parimelazhagan Santhi P, Vinod R, Afrin Ruma S, Huhtinen K, Pettersson K, Sundfeldt K, Leivo J, Gidwani K. Aberrant glycosylation of α3 integrins as diagnostic markers in epithelial ovarian cancer. Clin Chim Acta 2023; 543:117323. [PMID: 37003518 DOI: 10.1016/j.cca.2023.117323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Glycans are strongly involved in stability and function of integrins (ITG) and tetraspanin protein CD63 and their respective interaction partners as they are dysregulated in the tumorigenic processes. Glycosylation changes is a universal phenomenon of cancer cells. In this study, glycosylation changes in epithelial ovarian cancer (EOC) are explored using tetraspanin and integrin molecules. METHODS ITG and CD63 were immobilized from 10 EOC and 5 benign ovarian cyst fluid on microtiter wells and traced with 3 glycan binding proteins (STn, WGA, UEA) conjugated on europium nanoparticles. Total protein measurements (ITG & CD63 immunoassays) were also performed. The most promising glycovariant candidates identified were then clinically evaluated on the whole cohort of 77 ovarian cyst fluids. Additional testing was performed in ascites fluid samples of liver cirrhosis (n=2) and EOC (n=4). RESULTS Sialylated Tn antibody based glycovariants of ITGα3 (ITGα3STn) and CD63 (CD63STn) performed better than corresponding protein epitope-based immunoassays, ITGα3IA and CD63IA respectively. Combined ITGα3 based assays (ITGα3IA + ITGα3STn) detected 49 out of 55 malignant & borderline cases without detecting any of the 22 benign and healthy cysts. CONCLUSION Our findings indicate the potential diagnostic application of ITGα3STn along with total ITGα3IA, which could help reduce the unnecessary surgeries. The results encourage studying further the potential use of these novel assays to detect EOC at earlier clinical stages.
Collapse
Affiliation(s)
- Shruti Jain
- Department of Life Technologies and FICAN West Cancer Centre, University of Turku, Turku, 20520, Finland.
| | | | - Rufus Vinod
- Department of Life Technologies and FICAN West Cancer Centre, University of Turku, Turku, 20520, Finland.
| | - Shamima Afrin Ruma
- Department of Life Technologies and FICAN West Cancer Centre, University of Turku, Turku, 20520, Finland.
| | - Kaisa Huhtinen
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital; Turku, Finland. Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Kim Pettersson
- Department of Life Technologies and FICAN West Cancer Centre, University of Turku, Turku, 20520, Finland.
| | - Karin Sundfeldt
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.
| | - Janne Leivo
- Department of Life Technologies and FICAN West Cancer Centre, University of Turku, Turku, 20520, Finland.
| | - Kamlesh Gidwani
- Department of Life Technologies and FICAN West Cancer Centre, University of Turku, Turku, 20520, Finland.
| |
Collapse
|
5
|
Dinga DK, Kasprzycka E, Assunção IP, Winterstein F, Alizade A, Caliskanyürek V, Blödorn D, Winkle J, Kynast U, Lezhnina M. High brightness red emitting polymer beads for immunoassays: Comparison between trifluoroacetylacetonates of Europium. Front Chem 2023; 11:1179247. [PMID: 37153529 PMCID: PMC10157089 DOI: 10.3389/fchem.2023.1179247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Efficiently luminescing spherical polymer particles (beads) in the nanoscale regime of up to approximately 250 nm have become very valuable tools in bioanalytical assays. Eu3+- complexes imbedded in polymethacrylate and polystyrene in particular proved to be extraordinarily useful in sensitive immunochemical and multi-analyte assays, and histo- and cytochemistry. Their obvious advantages derive from both, the possibility to realize very high ratios of emitter complexes to target molecules, and the intrinsically long decay times of the Eu3+-complexes, which allows an almost complete discrimination against bothersome autofluorescence via time-gated measuring techniques; the narrow line emission in conjunction with large apparent Stokes shifts are additional benefits with regard to spectral separation of excitation and emission with optical filters. Last but not least, a reasonable strategy to couple the beads to the analytes is mandatory. We have thus screened a variety of complexes and ancillary ligands; the four most promising candidates evaluated and compared to each other were β-diketonates (trifluoroacetylacetonates, R-CO-CH-CO-CF3, R = - thienyl, -phenyl, -naphthyl and -phenanthryl); highest solubilities in polystyrene were obtained with trioctylphosphine co-ligands. All beads had overall quantum yields in excess of 80% as dried powders and lifetimes well beyond 600 µs. Core-shell particles were devised for the conjugation to model proteins (Avidine, Neutravidine). Their applicability was tested in biotinylated titer plates using time gated measurements and a Lateral Flow Assay as practical examples.
Collapse
Affiliation(s)
- Daniel K. Dinga
- Institute for Optical Technologies, Münster University of Applied Sciences, Steinfurt, Germany
| | - Ewa Kasprzycka
- Institute for Optical Technologies, Münster University of Applied Sciences, Steinfurt, Germany
| | - Israel P. Assunção
- Institute for Optical Technologies, Münster University of Applied Sciences, Steinfurt, Germany
| | - Franziska Winterstein
- Institute for Optical Technologies, Münster University of Applied Sciences, Steinfurt, Germany
| | - Amina Alizade
- Institute for Optical Technologies, Münster University of Applied Sciences, Steinfurt, Germany
| | - Volkan Caliskanyürek
- Institute for Optical Technologies, Münster University of Applied Sciences, Steinfurt, Germany
| | | | | | - Ulrich Kynast
- Institute for Optical Technologies, Münster University of Applied Sciences, Steinfurt, Germany
- *Correspondence: Marina Lezhnina, ; Ulrich Kynast,
| | - Marina Lezhnina
- Institute for Optical Technologies, Münster University of Applied Sciences, Steinfurt, Germany
- Quantum Analysis GmbH, Münster, Germany
- *Correspondence: Marina Lezhnina, ; Ulrich Kynast,
| |
Collapse
|
6
|
Sreenan B, Lee B, Wan L, Zeng R, Zhao J, Zhu X. Review of Mn-Doped Semiconductor Nanocrystals for Time-Resolved Luminescence Biosensing/Imaging. ACS APPLIED NANO MATERIALS 2022; 5:17413-17435. [PMID: 36874078 PMCID: PMC9980291 DOI: 10.1021/acsanm.2c04337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Colloidal semiconductor nanocrystals (NCs) have been developed for decades and are widely applied in biosensing/imaging. However, their biosensing/imaging applications are mainly based on luminescence-intensity measurement, which suffers from autofluorescence in complex biological samples and thus limits the biosensing/imaging sensitivities. It is expected for these NCs to be further developed to gain luminescence features that can overcome sample autofluorescence. On the other hand, time-resolved luminescence measurement utilizing long-lived-luminescence probes is an efficient technique to eliminate short-lived autofluorescence of samples while recording time-resolved luminescence of the probes for signal measurement after pulsed excitation from a light source. Despite time-resolved measurement being very sensitive, the optical limitations of many of the current long-lived-luminescence probes cause time-resolved measurement to be generally performed in laboratories with bulky and costly instruments. In order to apply highly sensitive time-resolved measurement for in-field or point-of-care (POC) testing, it is essential to develop probes possessing high brightness, low-energy (visible-light) excitation, and long lifetimes of up to milliseconds. Such desired optical features can significantly simplify the design criteria of time-resolved measurement instruments and facilitate the development of low-cost, compact, sensitive instruments for in-field or POC testing. Mn-doped NCs have recently been in rapid development and provide a strategy to solve the challenges faced by both colloidal semiconductor NCs and time-resolved luminescence measurement. In this review, we outline the major achievements in the development of Mn-doped binary and multinary NCs, with emphasis on their synthesis approaches and luminescence mechanisms. Specifically, we demonstrate how researchers approached these obstacles to achieve the aforementioned desired optical properties on the basis of the progressive understanding of Mn emission mechanisms. Afterward, we review representative applications of Mn-doped NCs in time-resolved luminescence biosensing/imaging and present the potential of Mn-doped NCs in advancing time-resolved luminescence biosensing/imaging for in-field or POC testing.
Collapse
Affiliation(s)
- Benjamin Sreenan
- Department of Electrical and Biomedical Engineering, University of Nevada-Reno, Reno, Nevada 89557, United States
| | - Bryan Lee
- Department of Electrical and Biomedical Engineering, University of Nevada-Reno, Reno, Nevada 89557, United States
| | - Li Wan
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Ruosheng Zeng
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Jialong Zhao
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiaoshan Zhu
- Department of Electrical and Biomedical Engineering, University of Nevada-Reno, Reno, Nevada 89557, United States
| |
Collapse
|
7
|
Cheignon C, Kassir AA, Soro LK, Charbonnière LJ. Dye-sensitized lanthanide containing nanoparticles for luminescence based applications. NANOSCALE 2022; 14:13915-13949. [PMID: 36072997 DOI: 10.1039/d1nr06464a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to their exceptional luminescent properties, lanthanide (Ln) complexes represent a unique palette of probes in the spectroscopic toolkit. Their extremely weak brightness due to forbidden Ln electronic transitions can be overcome by indirect dye-sensitization from the antenna effect brought by organic ligands. Despite the improvement brought by the antenna effect, (bio)analytical applications with discrete Ln complexes as luminescent markers still suffers from low sensitivity as they are limited by the complex brightness. Thus, there is a need to develop nano-objects that cumulate the spectroscopic properties of multiple Ln ions. This review firstly gives a brief introduction of the spectral properties of lanthanides both in complexes and in nanoparticles (NPs). Then, the research progress of the design of Ln-doped inorganic NPs with capping antennas, Ln-complex encapsulated NPs and Ln-complex surface functionalized NPs is presented along with a summary of the various photosensitizing ligands and of the spectroscopic properties (excited-state lifetime, brightness, quantum yield). The review also emphasizes the problems and limitations encountered over the years and the solutions provided to address them. Finally, a comparison of the advantages and drawbacks of the three types of NP is provided as well as a conclusion about the remaining challenges both in the design of brighter NPs and in the luminescence based applications.
Collapse
Affiliation(s)
- Clémence Cheignon
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| | - Ali A Kassir
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| | - Lohona K Soro
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| | - Loïc J Charbonnière
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| |
Collapse
|
8
|
Islam MK, Dhondt B, Syed P, Khan M, Gidwani K, Webber J, Hendrix A, Jenster G, Lamminen T, Boström PJ, Pettersson K, Lamminmäki U, Leivo J. Integrins are enriched on aberrantly fucosylated tumour-derived urinary extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e64. [PMID: 38939212 PMCID: PMC11080809 DOI: 10.1002/jex2.64] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 06/29/2024]
Abstract
Urinary extracellular vesicles (uEVs) are enriched with glycosylated proteins which have been extensively studied as putative biomarkers of urological cancers. Here, we characterized the glycosylation and integrin profile of EVs derived from urological cancer cell lines. We used fluorescent europium-doped nanoparticles coated with lectins and antibodies to identify a biomarker combination consisting of integrin subunit alpha 3 (ITGA3) and fucose. In addition, we used the same cancer cell line-derived EVs as analytical standards to assess the sensitivity of the ITGA3-UEA assay. The clinical performance of the ITGA3-UEA assay was analysed using urine samples of various urological pathologies including diagnostically challenging benign prostatic hyperplasia (BPH), prostate cancer (PCa) and bladder cancer (BlCa). The assay can significantly discriminate BlCa from all other patient groups: PCa (9.2-fold; p = 0.00038), BPH (5.5-fold; p = 0.004) and healthy individuals (and 23-fold; p = 0.0001). Our results demonstrate that aberrantly fucosylated uEVs and integrin ITGA3 can be detected with fucose-specific lectin UEA in a simple bioaffinity assay for the detection of BlCa directly from unprocessed urine.
Collapse
Affiliation(s)
- Md. Khirul Islam
- Department of Life TechnologiesDivision of BiotechnologyUniversity of TurkuTurkuFinland
- InFLAMES Research Flagship CenterUniversity of TurkuTurkuFinland
| | - Bert Dhondt
- Department of UrologyGhent University HospitalGhentBelgium
- Laboratory for Experimental Cancer ResearchDepartment of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research InstituteGhent UniversityGhentBelgium
| | | | - Misba Khan
- Department of Life TechnologiesDivision of BiotechnologyUniversity of TurkuTurkuFinland
| | - Kamlesh Gidwani
- Department of Life TechnologiesDivision of BiotechnologyUniversity of TurkuTurkuFinland
| | - Jason Webber
- Institute of Life Science 1Swansea University Medical SchoolSwanseaUK
| | - An Hendrix
- Laboratory for Experimental Cancer ResearchDepartment of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research InstituteGhent UniversityGhentBelgium
| | - Guido Jenster
- Department of UrologyErasmus MCRotterdamThe Netherlands
| | - Tarja Lamminen
- Department of UrologyTurku University Hospital and University of TurkuTurkuFinland
| | - Peter J. Boström
- Department of UrologyTurku University Hospital and University of TurkuTurkuFinland
| | - Kim Pettersson
- Department of Life TechnologiesDivision of BiotechnologyUniversity of TurkuTurkuFinland
| | - Urpo Lamminmäki
- Department of Life TechnologiesDivision of BiotechnologyUniversity of TurkuTurkuFinland
- InFLAMES Research Flagship CenterUniversity of TurkuTurkuFinland
| | - Janne Leivo
- Department of Life TechnologiesDivision of BiotechnologyUniversity of TurkuTurkuFinland
- InFLAMES Research Flagship CenterUniversity of TurkuTurkuFinland
| |
Collapse
|
9
|
Gorris HH, Soukka T. What Digital Immunoassays Can Learn from Ambient Analyte Theory: A Perspective. Anal Chem 2022; 94:6073-6083. [PMID: 35404586 DOI: 10.1021/acs.analchem.1c05591] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Immunoassays are important tools for clinical diagnosis as well as environmental and food analysis because they enable highly sensitive and quantitative measurements of analyte concentrations. In the 1980s, Roger Ekins suggested to improve the sensitivity of immunoassays by employing microspot assays, which are carried out under ambient analyte conditions and do not change the bulk analyte concentration of a sample during a measurement. More recently, the measurement of single analyte molecules has additionally attracted wide research interest. Although the ability to detect a single analyte molecule is not synonymous with the highest analytical sensitivity, single-molecule detection makes new routes accessible to avoiding background noise. This perspective follows the development of solid-phase immunoassays from the design of label techniques to single-molecule (digital) assays against the backdrop of Ekins's fundamental work on immunoassay theory. The essential aspects of both ambient analyte and digital assay approaches are presented as a guideline to finding a balance between the speed, sensitivity, and precision of immunoassays.
Collapse
Affiliation(s)
- Hans H Gorris
- Department of Biochemistry, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| |
Collapse
|
10
|
Supersensitive photon upconversion based immunoassay for detection of cardiac troponin I in human plasma. Clin Chim Acta 2021; 523:380-385. [PMID: 34688634 DOI: 10.1016/j.cca.2021.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Upconverting nanoparticles (UCNPs) are attractive reporters for immunoassays due to their excellent detectability. Assays sensitive enough to measure baseline level of cardiac troponin I cTnI in healthy population could be used to identify patients at risk for cardiovascular disease. Aiming for a cTnI assay of such sensitivity, the surface chemistry of the nanoparticles as well as the assay reagents and the protocol were optimized for monodispersity of the UCNP antibody conjugates (Mab UCNPs) and to minimize their non-specific interactions with the solid support. MATERIALS AND METHODS UCNPs were coated with poly(acrylic acid) via two-step ligand exchange and conjugated with monoclonal antibodies. The conjugates were applied in a microplate-based sandwich immunoassay using a combination of two capture antibodies to detect cTnI. Assay was evaluated according to guidelines of Clinical & Laboratory Standards Institute. RESULTS The limit of detection and limit of blank of the assay were 0.13 ng/L and 0.01 ng/L cTnI, respectively. The recoveries were >90% in spiked plasma in the linear range. The within- and between-run imprecisions were <10%. CONCLUSION The results demonstrate that UCNPs enable quantification of cTnI concentrations expected in plasma of healthy individuals and could be used to identify patients at risk for cardiovascular disease.
Collapse
|
11
|
Vinod R, Mahran R, Routila E, Leivo J, Pettersson K, Gidwani K. Nanoparticle-Aided Detection of Colorectal Cancer-Associated Glycoconjugates of Extracellular Vesicles in Human Serum. Int J Mol Sci 2021; 22:ijms221910329. [PMID: 34638669 PMCID: PMC8508761 DOI: 10.3390/ijms221910329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are found in all biological fluids, providing potential for the identification of disease biomarkers such as colorectal cancer (CRC). EVs are heavily glycosylated with specific glycoconjugates such as tetraspanins, integrins, and mucins, reflecting the characteristics of the original cell offering valuable targets for detection of CRC. We report here on europium-nanoparticle (EuNP)-based assay to detect and characterize different surface glycoconjugates of EVs without extensive purification steps from five different CRC and the HEK 293 cell lines. The promising EVs candidates from cell culture were clinically evaluated on small panel of serum samples including early-stage (n = 11) and late-stage (n = 11) CRC patients, benign condition (n = 11), and healthy control (n = 10). The majority of CRC cell lines expressed tetraspanin sub-population and glycovariants of integrins and conventional tumor markers. The subpopulation of CD151 having CD63 expression (CD151CD63) was significantly (p = 0.001) elevated in early-stage CRC (8 out of 11) without detecting any benign and late-stage samples, while conventional CEA detected mostly late-stage CRC (p = 0.045) and with only four early-stage cases. The other glycovariant assays such as CEACon-A, CA125WGA, CA 19.9Ma696, and CA 19.9Con-A further provided some complementation to the CD151CD63 assay. These results indicate the potential application of CD151CD63 assay for early detection of CRC patients in human serum.
Collapse
Affiliation(s)
- Rufus Vinod
- Department of Life Technologies, University of Turku, 20520 Turku, Finland; (R.V.); (R.M.); (E.R.); (J.L.); (K.P.)
| | - Randa Mahran
- Department of Life Technologies, University of Turku, 20520 Turku, Finland; (R.V.); (R.M.); (E.R.); (J.L.); (K.P.)
- Tropical Health and Parasitology Department, High Institute of Public Health, Alexandria University, Alexandria 21617, Egypt
| | - Erica Routila
- Department of Life Technologies, University of Turku, 20520 Turku, Finland; (R.V.); (R.M.); (E.R.); (J.L.); (K.P.)
| | - Janne Leivo
- Department of Life Technologies, University of Turku, 20520 Turku, Finland; (R.V.); (R.M.); (E.R.); (J.L.); (K.P.)
| | - Kim Pettersson
- Department of Life Technologies, University of Turku, 20520 Turku, Finland; (R.V.); (R.M.); (E.R.); (J.L.); (K.P.)
| | - Kamlesh Gidwani
- Department of Life Technologies, University of Turku, 20520 Turku, Finland; (R.V.); (R.M.); (E.R.); (J.L.); (K.P.)
- Correspondence:
| |
Collapse
|
12
|
Terävä J, Verhassel A, Botti O, Islam MK, Leivo J, Wittfooth S, Härkönen P, Pettersson K, Gidwani K. Primary breast cancer biomarkers based on glycosylation and extracellular vesicles detected from human serum. Cancer Rep (Hoboken) 2021; 5:e1540. [PMID: 34423573 PMCID: PMC9351655 DOI: 10.1002/cnr2.1540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Background Breast cancer is a very common cancer that can be severe if not discovered early. The current tools to detect breast cancer need improvement. Cancer has a universal tendency to affect glycosylation. The glycosylation of circulating extracellular vesicle‐associated glycoproteins, and mucins may offer targets for detection methods and have been only explored in a limited capacity. Aim Our aim was to develop an approach to detect the aberrant glycosylation of mucins and extracellular vesicle‐associated glycoproteins from human sera using fluorescent nanoparticles, and preliminarily evaluate this approach for the differential diagnosis of breast cancer. Methods and results The assay involved immobilizing glycosylated antigens using monoclonal antibodies and then probing their glycosylation by using lectins and glycan‐specific antibodies coated on Eu+3‐doped nanoparticles. Detection of mucin 1 and mucin 16 glycosylation with wheat germ agglutinin, and detection of the extracellular vesicle‐associated CD63 were found to have better diagnostic ability for localized breast cancer than the conventional assays for mucin 1 and mucin 16 based tumor markers when the receiver operating characteristics were compared. Conclusions These results indicate that successful differential diagnosis of primary breast cancer may be aided by detecting cancer‐associated glycosylation of mucin 1 and mucin 16, and total concentration of CD63, in human serum.
Collapse
Affiliation(s)
- Joonas Terävä
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Alejandra Verhassel
- Institute of Biomedicine and FICAN West Cancer Research Laboratory, University of Turku, Turku, Finland
| | - Orsola Botti
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Md Khirul Islam
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Janne Leivo
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Saara Wittfooth
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Pirkko Härkönen
- Institute of Biomedicine and FICAN West Cancer Research Laboratory, University of Turku, Turku, Finland
| | - Kim Pettersson
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Kamlesh Gidwani
- Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
13
|
Liu W, Liu J, Huang A, Shi S, Yao T. An artificial intelligence process of immunoassay for multiple biomarkers based on logic gates. Analyst 2021; 146:889-895. [PMID: 33237051 DOI: 10.1039/d0an01844a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We present a universal platform to synchronously analyze the possible existing state of two protein biomarkers. This platform is based on the integration of three logic gates: NAND, OR and NOT. These logic gates were constructed by the principle of immune recognition and fluorescence quenching between fluorescein labelled antibodies/antigens and antibody-conjugated graphene oxide (GO). An artificial intelligence (AI) protein analysis process was designed by us and accordingly a small program was written in JAVA. This protein analysis process with its JAVA code may be applied to give logic judgments on the possible existing state of two protein components. We expect that our fundamental research on multiple biomarker analysis can provide potential application in AI-assisted medical diagnosis with the interface for remote medical treatment.
Collapse
Affiliation(s)
- Wenjie Liu
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd, Shanghai, 200092, PR China.
| | | | | | | | | |
Collapse
|
14
|
Roberts A, Chauhan N, Islam S, Mahari S, Ghawri B, Gandham RK, Majumdar SS, Ghosh A, Gandhi S. Graphene functionalized field-effect transistors for ultrasensitive detection of Japanese encephalitis and Avian influenza virus. Sci Rep 2020; 10:14546. [PMID: 32884083 PMCID: PMC7471952 DOI: 10.1038/s41598-020-71591-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/18/2020] [Indexed: 01/21/2023] Open
Abstract
Graphene, a two-dimensional nanomaterial, has gained immense interest in biosensing applications due to its large surface-to-volume ratio, and excellent electrical properties. Herein, a compact and user-friendly graphene field effect transistor (GraFET) based ultrasensitive biosensor has been developed for detecting Japanese Encephalitis Virus (JEV) and Avian Influenza Virus (AIV). The novel sensing platform comprised of carboxy functionalized graphene on Si/SiO2 substrate for covalent immobilization of monoclonal antibodies of JEV and AIV. The bioconjugation and fabrication process of GraFET was characterized by various biophysical techniques such as Ultraviolet-Visible (UV-Vis), Raman, Fourier-Transform Infrared (FT-IR) spectroscopy, optical microscopy, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The change in the resistance due to antigen-antibody interaction was monitored in real time to evaluate the electrical response of the sensors. The sensors were tested in the range of 1 fM to 1 μM for both JEV and AIV antigens, and showed a limit of detection (LOD) upto 1 fM and 10 fM for JEV and AIV respectively under optimised conditions. Along with ease of fabrication, the GraFET devices were highly sensitive, specific, reproducible, and capable of detecting ultralow levels of JEV and AIV antigen. Moreover, these devices can be easily integrated into miniaturized FET-based real-time sensors for the rapid, cost-effective, and early Point of Care (PoC) diagnosis of JEV and AIV.
Collapse
Affiliation(s)
- Akanksha Roberts
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, 500032, India
| | - Neha Chauhan
- Department of Physics, Indian Institute of Science (IISc), Bangalore, 560012, India
| | - Saurav Islam
- Department of Physics, Indian Institute of Science (IISc), Bangalore, 560012, India
| | - Subhasis Mahari
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, 500032, India
| | - Bhaskar Ghawri
- Department of Physics, Indian Institute of Science (IISc), Bangalore, 560012, India
| | - Ravi Kumar Gandham
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, 500032, India
| | - S S Majumdar
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, 500032, India
| | - Arindam Ghosh
- Department of Physics, Indian Institute of Science (IISc), Bangalore, 560012, India
- Center for Nanoscience and Engineering, Indian Institute of Science (IISc), Bangalore, 560012, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, 500032, India.
| |
Collapse
|
15
|
Bayoumy S, Hyytiä H, Leivo J, Talha SM, Huhtinen K, Poutanen M, Hynninen J, Perheentupa A, Lamminmäki U, Gidwani K, Pettersson K. Glycovariant-based lateral flow immunoassay to detect ovarian cancer-associated serum CA125. Commun Biol 2020; 3:460. [PMID: 32826955 PMCID: PMC7442799 DOI: 10.1038/s42003-020-01191-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 01/09/2023] Open
Abstract
Cancer antigen 125 (CA125) is a widely used biomarker in monitoring of epithelial ovarian cancer (EOC). Due to insufficient cancer specificity of CA125, its diagnostic use is severely compromised. Abnormal glycosylation of CA125 is a unique feature of ovarian cancer cells and could improve differential diagnosis of the disease. Here we describe the development of a quantitative lateral flow immunoassay (LFIA) of aberrantly glycosylated CA125 which is widely superior to the conventional CA125 immunoassay (CA125IA). With a 30 min read-out time, the LFIA showed 72% sensitivity, at 98% specificity using diagnostically challenging samples with marginally elevated CA125 (35–200 U/mL), in comparison to 16% sensitivity with the CA125IA. We envision the clinical use of the developed LFIA to be based on the substantially enhanced disease specificity against the many benign conditions confounding the diagnostic evaluation and against other cancers. Sherif Bayoumy et al. report a lateral flow immunoassay (LFIA) to quantify aberrantly glycosylated CA125 to diagnose epithelial ovarian cancer. Their method has a 30-minute read-out time, high sensitivity and specificity, and can distinguish ovarian cancer from benign endometriosis and other cancers.
Collapse
Affiliation(s)
- Sherif Bayoumy
- Department of Biochemistry/Biotechnology, University of Turku, Turku, Finland
| | - Heidi Hyytiä
- Department of Biochemistry/Biotechnology, University of Turku, Turku, Finland.,PerkinElmer Finland Oy, Turku, Finland
| | - Janne Leivo
- Department of Biochemistry/Biotechnology, University of Turku, Turku, Finland
| | - Sheikh M Talha
- Department of Biochemistry/Biotechnology, University of Turku, Turku, Finland
| | - Kaisa Huhtinen
- Department of Pathology, Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, Turku, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland
| | - Antti Perheentupa
- Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry/Biotechnology, University of Turku, Turku, Finland
| | - Kamlesh Gidwani
- Department of Biochemistry/Biotechnology, University of Turku, Turku, Finland
| | - Kim Pettersson
- Department of Biochemistry/Biotechnology, University of Turku, Turku, Finland.
| |
Collapse
|
16
|
Li Z, Wang Y, Vasylieva N, Wan D, Yin Z, Dong J, Hammock BD. An Ultrasensitive Bioluminescent Enzyme Immunoassay Based on Nanobody/Nanoluciferase Heptamer Fusion for the Detection of Tetrabromobisphenol A in Sediment. Anal Chem 2020; 92:10083-10090. [PMID: 32559059 DOI: 10.1021/acs.analchem.0c01908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is a flame retardant and has become a widely concerning environmental pollutant. An ultrasensitive nanobody-based immunoassay was developed to monitor the exposure of TBBPA in sediment. First, the anti-TBBPA nanobody was fused with nanoluciferase, and then a one-step bioluminescent enzyme immunoassay (BLEIA) was developed with high sensitivity for TBBPA, with a maximum half inhibition concentration (IC50) at 187 pg/mL. Although approximately 10-fold higher sensitivity can be achieved by this developed BLEIA than by the classical two-step ELISA (IC50 at 1778 pg/mL), it is still a challenge to detect trace TBBPA in sediment samples reliably due to the relatively high matrix effect. To further improve the performance of this one-step BLEIA, a C4b-binding protein (C4BP) was inserted as a self-assembling linker between the nanobody and nanoluciferase. Therefore, a heptamer fusion containing seven binders and seven tracers was generated. This reagent improved the binding capacity and signal amplification. The one-step heptamer plus BLEIA based on this immune-reagent shows an additional 7-fold improvement of sensitivity, with the IC50 of 28.9 pg/mL and the limit of detection as low as 2.5 pg/mL. The proposed assay was further applied to determine the trace TBBPA in sediment, and the recovery was within 92-103%. Taking advantage of this heptamer fusion, one-step BLEIA can serve as a powerful tool for fast detection of trace TBBPA in the sediment samples.
Collapse
Affiliation(s)
- Zhenfeng Li
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Yi Wang
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States.,Department of Pesticides Science, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Debin Wan
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Zihan Yin
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Jiexian Dong
- Shenzhen Forward Pharma Co., Ltd., Shenzhen 518057, China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| |
Collapse
|
17
|
Shahdeo D, Roberts A, Abbineni N, Gandhi S. Graphene based sensors. ANALYTICAL APPLICATIONS OF GRAPHENE FOR COMPREHENSIVE ANALYTICAL CHEMISTRY 2020. [PMCID: PMC7518956 DOI: 10.1016/bs.coac.2020.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The two dimensional, honeycomb structured, single carbon layered graphene has extensively been used in the field of sensor detection due to its unique physicochemical properties. These properties such as excellent electrical conductivity, high electron mobility, tunable optical properties, room temperature quantum Hall effect, large surface to volume ratio, high mechanical strength, and ease of functionalization, make it an ideal nanomaterial for sensor development. This has enabled the fabrication of a large variety of highly sensitive sensors which include colorimetric, electrochemical, potentiometric, fluorescence, etc. based sensors. These sensors in conjugation with graphene or its derivatives such as graphene quantum dots, graphene oxide, reduced graphene oxide, etc. show highly desirable properties such as high sensitivity (detecting minute amounts of target analyte), specificity (no cross reactivity while detecting the target analyte), rapid results, low cost, extended storage shelf life and robustness (stability), and easy-to-use capabilities (user-friendly). This book chapter gives a detailed overview of all the advances made in the development and fabrication of novel graphene based sensors and their application in point of care (PoC) detection of various diseases as well as health monitoring devices. The different sensors, their methods of fabrication, their sensitivity and the analytes and biomolecules used have been discussed in detail and compared.
Collapse
|
18
|
Song L, Chen Y, Ding J, Wu H, Zhang W, Ma M, Zang F, Wang Z, Gu N, Zhang Y. Rituximab conjugated iron oxide nanoparticles for targeted imaging and enhanced treatment against CD20-positive lymphoma. J Mater Chem B 2020; 8:895-907. [DOI: 10.1039/c9tb02521a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Fe3O4-PEG-nAb multivalent nanoprobes provide a possible avenue to improve the cancer therapy of rituximab towards clinical application.
Collapse
|
19
|
Lectin nanoparticle assays for detecting breast cancer-associated glycovariants of cancer antigen 15-3 (CA15-3) in human plasma. PLoS One 2019; 14:e0219480. [PMID: 31344060 PMCID: PMC6658058 DOI: 10.1371/journal.pone.0219480] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/25/2019] [Indexed: 01/29/2023] Open
Abstract
Cancer antigen 15–3 (CA15-3) is widely utilized for monitoring metastatic breast cancer (BC). However, its utility for early detection of breast cancer is severely limited due to poor clinical sensitivity and specificity. The glycosylation of CA15-3 is known to be affected by BC, and therefore it might offer a way to construct CA15-3 glycovariant assays with improved cancer specificity. To this end, we performed lectin-based glycoprofiling of BC-associated CA15-3. CA15-3 expressed by a BC cell line was immobilized on microtitration wells using an anti-CA15-3 antibody. The glycosylation of the immobilized CA15-3 was then detected by using lectins coated onto europium (III)-doped nanoparticles (Eu+3-NPs) and measuring the time-resolved fluorescence of Eu. Out of multiple lectin-Eu+3-NP preparations, wheat germ agglutinin (WGA) and macrophage galactose-type lectin (MGL) -Eu3+-NPs bound to the BC cell line-dericed CA15-3 glycovariants (CA15-3Lectin). To evaluate the clinical performance of these two lectin-based assays, plasma samples from metastatic BC patients (n = 53) and healthy age-matched women (n = 20).Plasma CA15-3Lectin measurements better distinguished metastatic BC patients from healthy controls than the conventional CA15-3 immunoassay. At 90% specificity, the clinical sensitivity of the assays was 66.0, 67.9 and 81.1% for the conventional CA15-3, CA15-3MGL and CA15-3WGA assays, respectively. Baseline CA15-3MGL and CA15-3WGA were correlated to conventional baseline CA15-3 levels (r = 0.68, p<0.001, r = 0.90, p>0.001, respectively). However, very low baseline CA15-3MGL levels ≤ 5 U/mL were common in this metastatic breast cancer patient population.In conclusion, the new CA15-3Lectin concept could considerably improve the clinical sensitivity of BC detection compared to the conventional CA15-3 immunoassays and should be validated further on a larger series of subjects with different cancer subtypes and stages.
Collapse
|
20
|
Islam MK, Syed P, Lehtinen L, Leivo J, Gidwani K, Wittfooth S, Pettersson K, Lamminmäki U. A Nanoparticle-Based Approach for the Detection of Extracellular Vesicles. Sci Rep 2019; 9:10038. [PMID: 31296879 PMCID: PMC6624270 DOI: 10.1038/s41598-019-46395-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/18/2019] [Indexed: 01/17/2023] Open
Abstract
The analysis of extracellular vesicles (EVs) typically requires tedious and time-consuming isolation process from bio-fluids. We developed a nanoparticle-based time resolved fluorescence immunoassay (NP-TRFIA) that uses biotinylated antibodies against the proteins of tetraspanin family and tumor-associated antigens for capturing EVs from urine samples and cell culture supernatants without the need for isolation. The captured-EVs were detected either with Eu3+-chelate or Eu3+-doped nanoparticle-based labels conjugated either to antibodies against the tetraspanins or lectins targeting the glycan moieties on EVs surface. The NP-TRFIA demonstrated specific capturing and detection of EVs by antibodies and lectins. Lectin-nanoparticle based assays showed 2–10 fold higher signal-to-background ratio compared with lectin-chelate assays. The nanoparticle assay concept allowed surface glycosylation profiling of the urine derived-EVs with lectins. It was also applied to establish an assay showing differential expression of tumor-associated proteins on more aggressive (higher ITGA3 on DU145- and PC3-EVs) compared to less aggressive (higher EpCAM on LNCaP-EVs) PCa- cell lines derived-EVs. This NP-TRFIA can be used as a simple tool for analysis and characterization of EVs in urine and cell culture supernatants. Such approach could be useful in identification of disease-specific markers on the surface of patient-derived urinary EVs.
Collapse
Affiliation(s)
- Md Khirul Islam
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland.
| | - Parvez Syed
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland
| | - Laura Lehtinen
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Janne Leivo
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland.,Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kamlesh Gidwani
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland
| | - Saara Wittfooth
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland
| | - Kim Pettersson
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland
| |
Collapse
|
21
|
Singh S, Moudgil A, Mishra N, Das S, Mishra P. Vancomycin functionalized WO3 thin film-based impedance sensor for efficient capture and highly selective detection of Gram-positive bacteria. Biosens Bioelectron 2019; 136:23-30. [DOI: 10.1016/j.bios.2019.04.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 01/08/2023]
|
22
|
Ermini ML, Chadtová Song X, Špringer T, Homola J. Peptide Functionalization of Gold Nanoparticles for the Detection of Carcinoembryonic Antigen in Blood Plasma via SPR-Based Biosensor. Front Chem 2019; 7:40. [PMID: 30778384 PMCID: PMC6369193 DOI: 10.3389/fchem.2019.00040] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Nanoparticles functionalized with specific biological recognition molecules play a major role for sensor response enhancement in surface plasmon resonance (SPR) based biosensors. The functionalization procedure of such nanoparticles is crucial, since it influences their interactions with the environment and determines their applicability to biomolecular detection in complex matrices. In this work we show how the ζ-potential (Zpot) of bio-functionalized gold spherical NPs (Bio-NPs) is related to the SPR sensor response enhancement of an immune-sandwich-assay for the detection of the carcinoembryonic antigen (CEA), a cancer marker for colorectal carcinomas. In particular, we prepare bio-functional nanoparticles by varying the amount of peptide (either streptavidin or antibody against CEA) bound on their surface. Specific and non-specific sensor responses, reproducibility, and colloidal stability of those bio-functional nanoparticles are measured via SPR and compared to ζ-potential values. Those parameters are first measured in buffer solution, then measured again when the surface of the biosensor is exposed to blood plasma, and finally when the nanoparticles are immersed in blood plasma and flowed overnight on the biosensor. We found that ζ-potential values can guide the design of bio-functional NPs with improved binding efficiency and reduced non-specific sensor response, suitable reproducibility and colloidal stability, even in complex matrixes like blood plasma.
Collapse
Affiliation(s)
- Maria Laura Ermini
- Institute of Photonics and Electronics, Czech Academy of Sciences, Prague, Czechia
| | - Xue Chadtová Song
- Institute of Photonics and Electronics, Czech Academy of Sciences, Prague, Czechia
| | - Tomáš Špringer
- Institute of Photonics and Electronics, Czech Academy of Sciences, Prague, Czechia
| | - Jiří Homola
- Institute of Photonics and Electronics, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
23
|
Salminen T, Juntunen E, Talha SM, Pettersson K. High-sensitivity lateral flow immunoassay with a fluorescent lanthanide nanoparticle label. J Immunol Methods 2019; 465:39-44. [DOI: 10.1016/j.jim.2018.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 11/16/2022]
|
24
|
|
25
|
Huang A, Zhang L, Li W, Ma Z, Shuo S, Yao T. Controlled fluorescence quenching by antibody-conjugated graphene oxide to measure tau protein. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171808. [PMID: 29765647 PMCID: PMC5936912 DOI: 10.1098/rsos.171808] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/09/2018] [Indexed: 05/31/2023]
Abstract
We report an ultrasensitive immunoassay for tau protein-a key marker of Alzheimer's disease. This sensing platform relies on graphene oxide (GO) surfaces conjugated with anti-human tau antibody to provide quantitative binding sites for the tau protein. The GO quenches standard fluorescein isothiocyanate labelled tau (tau-FITC) when tau protein and tau-FITC are both present and compete for the binding sites. This change in fluorescence signal can be used to quantitate tau protein. In contrast with traditional enzyme-linked immunosorbent assay (ELISA), our method does not require enzyme-linked secondary antibodies for protein recognition nor does it require an enzyme substrate for optical signal generation. This requires fewer reagents and has less systematic error than the antigen-antibody recognition steps in ELISA. Our method has a tau protein detection limit of 0.14 pmol ml-1 in buffer. This approach could be developed into a promising biosensor for the detection of tau protein and may be useful in the clinical diagnosis of tau-induced neurodegeneration syndromes.
Collapse
Affiliation(s)
- Ao Huang
- Authors for correspondence: Ao Huang e-mail:
| | | | | | | | - Shi Shuo
- Authors for correspondence: Shi Shuo e-mail:
| | - Tianming Yao
- Authors for correspondence: Tianming Yao e-mail:
| |
Collapse
|
26
|
Malaspina DC, Longo G, Szleifer I. Behavior of ligand binding assays with crowded surfaces: Molecular model of antigen capture by antibody-conjugated nanoparticles. PLoS One 2017; 12:e0185518. [PMID: 28957393 PMCID: PMC5619776 DOI: 10.1371/journal.pone.0185518] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022] Open
Abstract
Ligand-receptor binding is of utmost importance in several biologically related disciplines. Ligand binding assays (LBA) use the high specificity and high affinity of ligands to detect, target or measure a specific receptors. One particular example of ligand binding assays are Antibody conjugated Nanoparticles (AcNPs), edge-cutting technologies that are present in several novel biomedical approaches for imaging, detection and treatment of diseases. However, the nano-confinement in AcNPs and LBA nanostructures introduces extra complexity in the analysis of ligand-receptor equilibriums. Because antibodies are large voluminous ligands, the effective affinity in AcNPs is often determined by antibody orientation and surface coverage. Moreover, antibodies have two binding sites introducing an extra ligand-receptor binding equilibrium. As consequence of all this, experimental or theoretical studies providing a guidelines for the prediction of the binding behavior in AcNPs are scarce. In this work, we present a set of theoretical calculations to shed light into the complex binding behavior of AcNPs and its implications in biomedical applications. To investigate the ligand-receptor binding on AcNPs, we have used a molecular theory that predicts the probability of different molecular conformations of the system depending on the local environment. We have considered two different pathways for designing these devices: covalently conjugated antibodies and streptavidin-biotin conjugated antibodies. We also explore the effects of surface coverage, bulk concentrations, nanoparticle size and antibody-antigen affinity. Overall, this work offers a series of theoretical predictions that can be used as a guide in the design of antibody conjugated nanoparticles for different applications.
Collapse
Affiliation(s)
- David C. Malaspina
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois, United States of America
| | - Gabriel Longo
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP, CONICET, La Plata, Argentina
| | - Igal Szleifer
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois, United States of America
- Chemistry Department and Chemistry of Life Processes Institute, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
27
|
Pomelova VG, Osin NS, Bychenkova TA, Paramonov DV, Kostryukova TS. Application of Eu(III) nanoparticle labels in time-resolved phosphorescence analysis for detection of thyroid stimulating hormone. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017030153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Näreoja T, Rosenholm JM, Lamminmäki U, Hänninen PE. Super-sensitive time-resolved fluoroimmunoassay for thyroid-stimulating hormone utilizing europium(III) nanoparticle labels achieved by protein corona stabilization, short binding time, and serum preprocessing. Anal Bioanal Chem 2017; 409:3407-3416. [PMID: 28303322 PMCID: PMC5395595 DOI: 10.1007/s00216-017-0284-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 02/17/2017] [Accepted: 02/27/2017] [Indexed: 11/29/2022]
Abstract
Thyrotropin or thyroid-stimulating hormone (TSH) is used as a marker for thyroid function. More precise and more sensitive immunoassays are needed to facilitate continuous monitoring of thyroid dysfunctions and to assess the efficacy of the selected therapy and dosage of medication. Moreover, most thyroid diseases are autoimmune diseases making TSH assays very prone to immunoassay interferences due to autoantibodies in the sample matrix. We have developed a super-sensitive TSH immunoassay utilizing nanoparticle labels with a detection limit of 60 nU L-1 in preprocessed serum samples by reducing nonspecific binding. The developed preprocessing step by affinity purification removed interfering compounds and improved the recovery of spiked TSH from serum. The sensitivity enhancement was achieved by stabilization of the protein corona of the nanoparticle bioconjugates and a spot-coated configuration of the active solid-phase that reduced sedimentation of the nanoparticle bioconjugates and their contact time with antibody-coated solid phase, thus making use of the higher association rate of specific binding due to high avidity nanoparticle bioconjugates. Graphical Abstract We were able to decrease the lowest limit of detection and increase sensitivity of TSH immunoassay using Eu(III)-nanoparticles. The improvement was achieved by decreasing binding time of nanoparticle bioconjugates by small capture area and fast circular rotation. Also, we applied a step to stabilize protein corona of the nanoparticles and a serum-preprocessing step with a structurally related antibody.
Collapse
Affiliation(s)
- Tuomas Näreoja
- Laboratory of Biophysics, Institute of Biomedicine and Medicity research laboratories, University of Turku, Tykistökatu 6A, 20520, Turku, Finland.
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, F46, Karolinska Universitetssjukhuset, Huddinge, 141 86, Stockholm, Sweden.
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of science and engineering, Åbo akademi University, Tykistökatu 6A, 20520, Turku, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry/Biotechnology, University of Turku, Vatselankatu 2, 20500, Turku, Finland
| | - Pekka E Hänninen
- Laboratory of Biophysics, Institute of Biomedicine and Medicity research laboratories, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| |
Collapse
|
29
|
Huang A, Li W, Shi S, Yao T. Quantitative Fluorescence Quenching on Antibody-conjugated Graphene Oxide as a Platform for Protein Sensing. Sci Rep 2017; 7:40772. [PMID: 28084438 PMCID: PMC5233999 DOI: 10.1038/srep40772] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/09/2016] [Indexed: 02/05/2023] Open
Abstract
We created an immunosensing platform for the detection of proteins in a buffer solution. Our sensing platform relies on graphene oxide (GO) nanosheets conjugated with antibodies to provide quantitative binding sites for analyte proteins. When analyte proteins and standard fluorescein-labelled proteins are competing for the binding sites, the assay exhibits quantitative fluorescence quenching by GO for the fluorescein-labelled proteins as determined by the analyte protein concentration. Because of this mechanism, measured fluorescence intensity from unquenched fluorescein-labelled protein was shown to increase with an increasing analyte protein concentration. As an alternative to the conventional enzyme-linked immunosorbent assay (ELISA), our method does not require an enzyme-linked second antibody for protein recognition and the enzyme for optical signal measurement. Thus, it is beneficial with its low cost and fewer systematic errors caused by the series of antigen-antibody recognition steps in ELISA. Immune globulin G (IgG) was introduced as a model protein to test our method and our results showed that the limit of detection for IgG was 4.67 pmol mL-1 in the buffer solution. This sensing mechanism could be developed into a promising biosensor for the detection of proteins, which would broaden the spectrum of GO applications in both analytical biochemistry and clinical diagnosis.
Collapse
Affiliation(s)
- Ao Huang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd, Shanghai, 200092, PR China
| | - Weiwei Li
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd, Shanghai, 200092, PR China
| | - Shuo Shi
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd, Shanghai, 200092, PR China
| | - Tianming Yao
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd, Shanghai, 200092, PR China
| |
Collapse
|
30
|
Ahumada M, Lissi E, Montagut AM, Valenzuela-Henríquez F, Pacioni NL, Alarcon EI. Association models for binding of molecules to nanostructures. Analyst 2017; 142:2067-2089. [DOI: 10.1039/c7an00288b] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between nanoparticles and molecules determines the activity of nanostructures.
Collapse
Affiliation(s)
- Manuel Ahumada
- Bio-nanomaterials Chemistry and Engineering Laboratory
- Division of Cardiac Surgery
- University of Ottawa Heart Institute
- Rm H5229, Ottawa
- Canada
| | - Eduardo Lissi
- Laboratorio de Cinética y Fotoquímica
- Departamento de Ciencias del Ambiente-Facultad de Química y Biología
- Universidad de Santiago de Chile
- Santiago
- Chile
| | - Ana Maria Montagut
- Bio-nanomaterials Chemistry and Engineering Laboratory
- Division of Cardiac Surgery
- University of Ottawa Heart Institute
- Rm H5229, Ottawa
- Canada
| | | | - Natalia L. Pacioni
- INFIQC-CONICET and Universidad Nacional de Córdoba
- Departamento de Química Orgánica-Facultad de Ciencias Químicas
- Haya de la Torre y Medina Allende s/n
- X5000HUA
- Ciudad Universitaria
| | - Emilio I. Alarcon
- Bio-nanomaterials Chemistry and Engineering Laboratory
- Division of Cardiac Surgery
- University of Ottawa Heart Institute
- Rm H5229, Ottawa
- Canada
| |
Collapse
|
31
|
Lundgren A, Agnarsson B, Zirbs R, Zhdanov VP, Reimhult E, Höök F. Nonspecific Colloidal-Type Interaction Explains Size-Dependent Specific Binding of Membrane-Targeted Nanoparticles. ACS NANO 2016; 10:9974-9982. [PMID: 27783496 DOI: 10.1021/acsnano.6b04160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Emerging biomedical applications such as molecular imaging and drug delivery often require directed binding of nanoparticles to cell-membrane receptors. The specific apparent affinity of such ligand-functionalized particles is size-dependent, an observation so far solely attributed to multivalent receptor-ligand interaction. We question the universality of this explanation by demonstrating that the binding kinetics also depends on weak, attractive colloidal-type interaction between nanoparticles and a lipid membrane. Applying label-free single-particle imaging, we correlate binding of nanoparticles targeted to a cell-mimetic lipid membrane with the distribution of nontargeted particles freely diffusing close to the membrane interface. This analysis shows that already a weak, kBT-scale attraction present between 50 nm gold nanoparticles and the membrane renders these particles an order of magnitude higher avidity compared to 20 nm particles. A stronger emphasis on nonspecific particle-membrane interaction might thus be required to accurately predict nanoparticle targeting and other similar processes such as cellular uptake of exosomes and viruses.
Collapse
Affiliation(s)
- Anders Lundgren
- Department of Physics, Chalmers University of Technology , Gothenburg 412 96, Sweden
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences , Vienna 1190, Austria
| | - Björn Agnarsson
- Department of Physics, Chalmers University of Technology , Gothenburg 412 96, Sweden
| | - Ronald Zirbs
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences , Vienna 1190, Austria
| | - Vladimir P Zhdanov
- Department of Physics, Chalmers University of Technology , Gothenburg 412 96, Sweden
- Boreskov Institute of Catalysis, Russian Academy of Sciences , Novosibirsk 630090, Russia
| | - Erik Reimhult
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences , Vienna 1190, Austria
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology , Gothenburg 412 96, Sweden
| |
Collapse
|
32
|
Sonu VK, Islam MM, Rohman MA, Mitra S. Lysozyme binding ability toward psychoactive stimulant drugs: Modulatory effect of colloidal metal nanoparticles. Colloids Surf B Biointerfaces 2016; 146:514-22. [DOI: 10.1016/j.colsurfb.2016.06.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/27/2016] [Accepted: 06/28/2016] [Indexed: 11/26/2022]
|
33
|
Huttunen RJ, Näreoja T, Mariani L, Härmä H. Residual nanoparticle label immunosensor for wash-free C-reactive protein detection in blood. Biosens Bioelectron 2016; 83:54-9. [DOI: 10.1016/j.bios.2016.04.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/23/2016] [Accepted: 04/12/2016] [Indexed: 01/30/2023]
|
34
|
Tang CK, Vaze A, Shen M, Rusling JF. High-Throughput Electrochemical Microfluidic Immunoarray for Multiplexed Detection of Cancer Biomarker Proteins. ACS Sens 2016; 1:1036-1043. [PMID: 27747294 DOI: 10.1021/acssensors.6b00256] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microchip-based microfluidic electrochemical arrays hold great promise for fast, high-throughput multiplexed detection of cancer biomarker proteins at low cost per assay using relatively simple instrumentation. Here we describe an inexpensive high-throughput electrochemical array featuring 32 individually addressable microelectrodes that is further multiplexed with an 8-port manifold to provide 256 sensors. The gold electrode arrays were fabricated by wet-etching commercial gold compact discs (CD-R) followed by patterned insulation. A print-and-peel method was used to create sub-microliter hydrophobic wells surrounding each sensor to eliminate cross contamination during immobilization of capture antibodies. High-throughput analyses were realized using eight 32-sensor immunoarrays connected to the miniaturized 8-port manifold, allowing 256 measurements in <1 h. This system was used to determine prostate cancer biomarker proteins prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), interleukin-6 (IL-6), and platelet factor-4 (PF-4) in serum. Clinically relevant detection limits (0.05 to 2 pg mL-1) and 5-decade dynamic ranges (sub pg mL-1 to well above ng mL-1) were achieved for these proteins utilizing precapture of analyte proteins on magnetic nanoparticles decorated with enzyme labels and antibodies.
Collapse
Affiliation(s)
| | | | | | - James F. Rusling
- Department
of Surgery and Neag Cancer Center, University of Connecticut Health Center, Farmington, Connecticut 06032, United States
- School
of Chemistry, National University of Ireland at Galway, Galway, Ireland
| |
Collapse
|
35
|
Gidwani K, Huhtinen K, Kekki H, van Vliet S, Hynninen J, Koivuviita N, Perheentupa A, Poutanen M, Auranen A, Grenman S, Lamminmäki U, Carpen O, van Kooyk Y, Pettersson K. A Nanoparticle-Lectin Immunoassay Improves Discrimination of Serum CA125 from Malignant and Benign Sources. Clin Chem 2016; 62:1390-400. [PMID: 27540033 DOI: 10.1373/clinchem.2016.257691] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/23/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND Measurement of serum cancer antigen 125 (CA125) is the standard approach for epithelial ovarian cancer (EOC) diagnostics and follow-up. However, the clinical specificity is not optimal because increased values are also detected in healthy controls and in benign diseases. CA125 is known to be differentially glycosylated in EOC, potentially offering a way to construct CA125 assays with improved cancer specificity. Our goal was to identify carbohydrate-reactive lectins for discriminating between CA125 originating from EOC and noncancerous sources. METHODS CA125 from the OVCAR-3 cancer cell line, placental homogenate, and ascites fluid from patients with cirrhosis were captured on anti-CA125 antibody immobilized on microtitration wells. A panel of lectins, each coated onto fluorescent europium-chelate-doped 97-nm nanoparticles (Eu(+3)-NPs), was tested for detection of the immobilized CA125. Serum samples from high-grade serous EOC or patients with endometriosis and healthy controls were analyzed. RESULTS By using macrophage galactose-type lectin (MGL)-coated Eu(+3)-NPs, an analytically sensitive CA125 assay (CA125(MGL)) was achieved that specifically recognized the CA125 isoform produced by EOC, whereas the recognition of CA125 from nonmalignant conditions was reduced. Serum CA125(MGL) measurement better discriminated patients with EOC from endometriosis compared to conventional immunoassay. The discrimination was particularly improved for marginally increased CA125 values and for earlier detection of EOC progression. CONCLUSIONS The new CA125(MGL) assay concept could help reduce the false-positive rates of conventional CA125 immunoassays. The improved analytical specificity of this test approach is dependent on a discriminating lectin immobilized in large numbers on Eu(+3)-NPs, providing both an avidity effect and signal amplification.
Collapse
Affiliation(s)
- Kamlesh Gidwani
- Department of Biochemistry/Biotechnology, University of Turku, Turku, Finland;
| | - Kaisa Huhtinen
- Department of Pathology, Medicity research laboratories, University of Turku and Turku University Hospital, Turku, Finland
| | - Henna Kekki
- Department of Biochemistry/Biotechnology, University of Turku, Turku, Finland
| | - Sandra van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, Turku, Finland
| | - Niina Koivuviita
- Department of Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Antti Perheentupa
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, Turku, Finland
| | - Matti Poutanen
- Department of Physiology, Institute of Biomedicine, and Turku Center for Disease Modeling, University of Turku, Finland
| | - Annika Auranen
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, Turku, Finland; Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland
| | - Seija Grenman
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, Turku, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry/Biotechnology, University of Turku, Turku, Finland
| | - Olli Carpen
- Department of Pathology, Medicity research laboratories, University of Turku and Turku University Hospital, Turku, Finland; Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Kim Pettersson
- Department of Biochemistry/Biotechnology, University of Turku, Turku, Finland
| |
Collapse
|
36
|
Haleyur Giri Setty MK, Liu J, Mahtani P, Zhang P, Du B, Ragupathy V, Devadas K, Hewlett IK. Novel Time-Resolved Fluorescence Europium Nanoparticle Immunoassay for Detection of Human Immunodeficiency Virus-1 Group O Viruses Using Microplate and Microchip Platforms. AIDS Res Hum Retroviruses 2016; 32:612-9. [PMID: 26978478 DOI: 10.1089/aid.2014.0351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accurate detection and quantification of HIV-1 group O viruses have been challenging for currently available HIV assays. We have developed a novel time-resolved fluorescence (TRF) europium nanoparticle immunoassay for HIV-1 group O detection using a conventional microplate enzyme-linked immunosorbent assay (ELISA) and a microchip platform. We screened several antibodies for optimal reactivity with several HIV-1 group O strains and identified antibodies that can detect all the strains of HIV-1 group O that were available for testing. The antibodies were used to develop a conventional ELISA format assay and an in-house developed europium nanoparticle-based assay for sensitivity. The method was evaluated on both microwell plate and microchip platforms. We identified two specific and sensitive antibodies among the six we screened. The antibodies, C65691 and ANT-152, were able to quantify 15 and detect all 17 group O viruses, respectively, as they were broadly cross-reactive with all HIV-1 group O strains and yielded better signals compared with other antibodies. We have developed a sensitive assay that reflects the actual viral load in group O samples by using an appropriate combination of p24 antibodies that enhance group O detection and a highly sensitive TRF-based europium nanoparticle for detection. The combination of ANT-152 and C65690M in the ratio 3:1 was able to give significantly higher signals in our europium-based assay compared with using any single antibody.
Collapse
Affiliation(s)
| | - Jikun Liu
- Laboratory of Molecular Virology, CBER, FDA, Silver Spring, Maryland
| | - Prerna Mahtani
- Laboratory of Molecular Virology, CBER, FDA, Silver Spring, Maryland
| | - Panhe Zhang
- Laboratory of Molecular Virology, CBER, FDA, Silver Spring, Maryland
| | - Bingchen Du
- Laboratory of Molecular Virology, CBER, FDA, Silver Spring, Maryland
| | | | | | - Indira K. Hewlett
- Laboratory of Molecular Virology, CBER, FDA, Silver Spring, Maryland
| |
Collapse
|
37
|
Juntunen E, Arppe R, Kalliomäki L, Salminen T, Talha SM, Myyryläinen T, Soukka T, Pettersson K. Effects of blood sample anticoagulants on lateral flow assays using luminescent photon-upconverting and Eu(III) nanoparticle reporters. Anal Biochem 2015; 492:13-20. [PMID: 26408349 DOI: 10.1016/j.ab.2015.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/03/2015] [Accepted: 09/10/2015] [Indexed: 12/27/2022]
Abstract
Many quantitative and semiquantitative lateral flow (LF) assays have been introduced for clinical analytes such as biomarkers for cancer or acute myocardial infarction (AMI). Various detection technologies involving quantitative analyzing devices have been reported to have sufficient analytical sensitivity and quantification capability for clinical point-of-care tests. Fluorescence-based detection technologies such as quantum dots, Eu(III) nanoparticles, and photon-upconverting nanoparticles (UCNPs) have been introduced as promising solutions for point-of-care devices because of their high detectability by optical sensors. Lateral flow assays can be used for various sample types, e.g., urine, saliva, cerebrospinal fluid, and blood. This study focuses on the properties of serum and plasma because of their relevance in cancer and AMI diagnostics. The limit of detection was compared in LF assays having Eu(III) nanoparticles or UCNPs as reporters and the antibody configurations for two different analytes (prostate-specific antigen and cardiac troponin I (cTnI)). The results indicate a significant effect of anticoagulants in venipuncture tubes. The samples in K3EDTA tubes resulted in significant interference by decreased reporter particle mobility, and thus the limit of detection was up to eightfold less sensitive compared to serum samples. Despite the matrix interference in the cTnI assay with UCNP reporters, limits of detection of 41 ng/L with serum and 66 ng/L with the Li-heparin sample were obtained.
Collapse
Affiliation(s)
- Etvi Juntunen
- Department of Biotechnology, University of Turku, 20520 Turku, Finland.
| | - Riikka Arppe
- Department of Biotechnology, University of Turku, 20520 Turku, Finland
| | - Laura Kalliomäki
- Department of Biotechnology, University of Turku, 20520 Turku, Finland
| | - Teppo Salminen
- Department of Biotechnology, University of Turku, 20520 Turku, Finland
| | - Sheikh M Talha
- Department of Biotechnology, University of Turku, 20520 Turku, Finland
| | - Tiina Myyryläinen
- Department of Biotechnology, University of Turku, 20520 Turku, Finland
| | - Tero Soukka
- Department of Biotechnology, University of Turku, 20520 Turku, Finland
| | - Kim Pettersson
- Department of Biotechnology, University of Turku, 20520 Turku, Finland
| |
Collapse
|
38
|
Nakahara Y, Tatsumi Y, Akimoto I, Osaki S, Doi M, Kimura K. Fluorescent silica nanoparticles modified chemically with terbium complexes as potential bioimaging probes: their fluorescence and colloidal properties in water. NEW J CHEM 2015. [DOI: 10.1039/c4nj01222d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly fluorescent silica nanoparticles were synthesized using silylated terbium complexes, which were prepared easily through formation of a Schiff base.
Collapse
Affiliation(s)
- Yoshio Nakahara
- Department of Applied Chemistry
- Faculty of Systems Engineering
- Wakayama University
- Wakayama 640-8510
- Japan
| | - Yoichi Tatsumi
- Department of Applied Chemistry
- Faculty of Systems Engineering
- Wakayama University
- Wakayama 640-8510
- Japan
| | - Ikuko Akimoto
- Department of Applied Chemistry
- Faculty of Systems Engineering
- Wakayama University
- Wakayama 640-8510
- Japan
| | - Shusuke Osaki
- Industrial Technology Center of Wakayama Prefecture
- Wakayama 649-6261
- Japan
| | - Motomichi Doi
- National Institute of Advanced Industrial Science and Technology
- Tsukuba 305-8566
- Japan
| | - Keiichi Kimura
- Department of Applied Chemistry
- Faculty of Systems Engineering
- Wakayama University
- Wakayama 640-8510
- Japan
| |
Collapse
|
39
|
Saha B, Evers TH, Prins MWJ. How Antibody Surface Coverage on Nanoparticles Determines the Activity and Kinetics of Antigen Capturing for Biosensing. Anal Chem 2014; 86:8158-66. [DOI: 10.1021/ac501536z] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bedabrata Saha
- Philips Research, High Tech Campus, 5656 AE Eindhoven, The Netherlands
| | - Toon H. Evers
- Philips Research, High Tech Campus, 5656 AE Eindhoven, The Netherlands
| | - Menno W. J. Prins
- Philips Research, High Tech Campus, 5656 AE Eindhoven, The Netherlands
| |
Collapse
|
40
|
Li Q, Zhang J, Sun W, Yu J, Wu C, Qin W, Chiu DT. Europium-complex-grafted polymer dots for amplified quenching and cellular imaging applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:8607-8614. [PMID: 24976495 DOI: 10.1021/la501876m] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report on a europium-complex-grafted polymer for preparing stable nanoparticle probes with high luminescence brightness, narrow emission bandwidth, and long luminescence lifetimes. A Eu complex bearing an amino group was used to react with a functional copolymer poly(styrene-co-maleic anhydride) by the spontaneous amidation reaction, producing the polymer grafted with Eu complexes in the side chains. The Eu-complex-grafted polymer was further used to prepare Eu-complex-grafted polymer dots (Pdots) and Eu-complex-blended poly(9-vinylcarbazole) composite Pdots, which showed improved colloidal stability as compared to those directly doped with Eu-complex molecules. Both types of Pdots can be efficiently quenched by a nile blue dye, exhibiting much lower detection limit and higher quenching sensitivity as compared to free Eu-complex molecules. Steady-state spectroscopy and time-resolved decay dynamics suggest the quenching mechanism is via efficient fluorescence resonance energy transfer from the Eu complex inside a Pdot to surface dye molecules. The amplified quenching in Eu-complex Pdots, together with efficient cell uptake and specific cell surface labeling observed in mammalian cells, suggests their potential applications in time-resolved bioassays and cellular imaging.
Collapse
Affiliation(s)
- Qiong Li
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun, Jilin 130012, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Chiu RY, Tsuji T, Wang SJ, Wang J, Liu CT, Kamei DT. Improving the systemic drug delivery efficacy of nanoparticles using a transferrin variant for targeting. J Control Release 2014; 180:33-41. [DOI: 10.1016/j.jconrel.2014.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/29/2014] [Accepted: 01/31/2014] [Indexed: 11/17/2022]
|
42
|
Buzoglu L, Maltas E, Ozmen M, Yildiz S. Interaction of donepezil with human serum albumin on amine-modified magnetic nanoparticles. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Xue FM, Liang MH, Wang ZH, Luan LY, Li FW, Cheng Y, Shao GS. The preparation and performance of visible-light-sensitized luminescent nanoparticles based on europium complex. CHINESE CHEM LETT 2014. [DOI: 10.1016/j.cclet.2013.10.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Zhang P, Lu H, Chen J, Han H, Ma W. Simple and sensitive detection of HBsAg by using a quantum dots nanobeads based dot-blot immunoassay. Am J Cancer Res 2014; 4:307-15. [PMID: 24505238 PMCID: PMC3915093 DOI: 10.7150/thno.8007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/24/2013] [Indexed: 01/22/2023] Open
Abstract
Simple and sensitive detection of infectious disease at an affordable cost is urgently needed in developing nations. In this regard, the dot blot immunoassay has been used as a common protein detection method for detection of disease markers. However, the traditional signal reporting systems, such as those using enzymes or gold nanoparticles lack sensitivity and thus restrict the application of these methods for disease detection. In this study, we report a simple and sensitive detection method for the detection of infectious disease markers that couples the dot-blot immunoassay with quantum dots nanobeads (QDNBs) as a reporter. First, the QDNBs were prepared by an oil-in-water emulsion-evaporation technique. Because of the encapsulation of several QDs in one particle, the fluorescent signal of reporter can be amplified with QDNBs in a one-step test and be read using a UV lamp obviating the need for complicated instruments. Detection of disease-associated markers in complex mixture is possible, which demonstrates the potential of developing QDNBs into a sensitive diagnostic kit.
Collapse
|
45
|
Rusling JF, Bishop GW, Doan N, Papadimitrakopoulos F. Nanomaterials and biomaterials in electrochemical arrays for protein detection. J Mater Chem B 2014; 2:10.1039/C3TB21323D. [PMID: 24392222 PMCID: PMC3878175 DOI: 10.1039/c3tb21323d] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nanomaterials and biomaterials are important components of new electrochemical arrays designed for sensitive detection of proteins in biological fluids. Such multiplexed protein arrays are predicted to have an important future in personalized medical diagnostics, especially for cancer and heart disease. Sandwich immunoassays for proteins benefit greatly in sensitivity from the use of nanostructured sensor surfaces and multilabeled detection strategies involving nano- or microparticles. In these assays, capture agents such as antibodies or aptamers are attached to sensor surfaces in the array. Target proteins with large binding constants for the affinity agents are captured from liquid samples with high efficiency, either on the sensors or on magnetic bioconjugate particles decorated with many copies of labels and antibodies. After target proteins are captured on the sensor surfaces, the labels are detected by electrochemical techniques. This feature article begins with an overview of the recent history of nanoparticles in electrochemical protein sensors, then moves on to specific examples from our own laboratories. We discuss fabrication of nanostructured sensors and arrays with the aim of multiplexed detection as well as reusability. Following this, we describe systems that integrate particle-based protein sensing with microfluidics for multiplexed protein detection. We end with predictions on the diagnostic future of protein detection.
Collapse
Affiliation(s)
- James F Rusling
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, USA ; Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA ; Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06032, USA ; School of Chemistry, National University of Ireland at Galway, Ireland
| | - Gregory W Bishop
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, USA
| | - Nhi Doan
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, USA
| | - Fotios Papadimitrakopoulos
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, USA ; Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
| |
Collapse
|
46
|
Talha SM, Hytönen J, Westhorpe A, Kumar S, Khanna N, Pettersson K. Europium nanoparticle-based high performing immunoassay for the screening of treponemal antibodies. PLoS One 2013; 8:e84050. [PMID: 24386329 PMCID: PMC3873409 DOI: 10.1371/journal.pone.0084050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/15/2013] [Indexed: 11/19/2022] Open
Abstract
Treponema pallidum subspecies pallidum (Tp) is the causative agent of syphilis which mainly spreads through sexual contact, blood transfusion and perinatal route. In order to curtail the spread of the infection and to clinically manage the disease, timely, accurate and reliable diagnosis is very important. We have developed an immunoassay for the detection of treponemal antibodies in human serum or plasma samples. In vivo biotinylated and non-biotinylated versions of the recombinant antigen were designed by the fusion of three Tp-specific antigens namely Tp15, Tp17 and Tp47. These fusion antigens were expressed in E. coli and purified using single-step metal affinity chromatography. Biotinylated fusion antigen immobilized on streptavidin coated plate was used to capture the treponemal antibodies and the non-biotinylated antigen coated on europium nanoparticles was used as tracer. Assays with two different incubation times of 10 min and 1 h were developed, and following the incubation the europium fluorescence was measured using time-resolved fluorometry. The developed time-resolved fluorometric (TRF) immunoassays were evaluated with in-house and commercial serum/plasma sample panels. For well-established treponemal antibodies positive or negative samples, the sensitivity of TRF immunoassay with 10 min incubation time was 97.4%, and of TRF immunoassay with 1 h incubation time was 98.7%, and the specificities of both the TRF immunoassays were 99.2%. For the samples with discordant results with the reference assays, both the TRF immunoassays showed better specificity than the Enzygnost syphilis enzyme immunoassay as a screening test. The two different incubation times did not have any significant effect on the signal to cutoff (S/Co) ratios obtained with the two immunoassays (p=0.06). Our results indicate that the developed immunoassay with a short incubation time of 10 min has the potential to be used in clinical laboratories and in blood-bank settings as a screening test for treponemal antibodies.
Collapse
Affiliation(s)
- Sheikh M. Talha
- Department of Biotechnology, University of Turku, Turku, Finland
- * E-mail:
| | - Jukka Hytönen
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | | | - Sushil Kumar
- Recombinant Gene Products Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Navin Khanna
- Recombinant Gene Products Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Kim Pettersson
- Department of Biotechnology, University of Turku, Turku, Finland
| |
Collapse
|
47
|
Bolley J, Lalatonne Y, Haddad O, Letourneur D, Soussan M, Pérard-Viret J, Motte L. Optimized multimodal nanoplatforms for targeting α(v)β3 integrins. NANOSCALE 2013; 5:11478-11489. [PMID: 24154564 DOI: 10.1039/c3nr03763k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Magnetic Resonance Imaging (MRI) using contrast agents is a very powerful technique for diagnosis in clinical medicine and biomedical research. The synthesis of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles targeting αvβ3 integrins and acting as new MRI contrast agents seems to be a promising way for cancer diagnosis. Indeed, it is well established that αvβ3 integrin plays a key role in tumor angiogenesis acting like a receptor for the extracellular matrix proteins like vitronectin, fibronectin through the arginine-glycine-aspartic acid (RGD) sequence. Up-regulation of αvβ3 has been found to be associated with a wide range of cancers, making it a broad-spectrum tumor-marker. In this study, USPIO nanocrystals were synthesized and surface passivated with caffeic acid. The large number of the carboxylic acid functions at the outer surface of the nanoplatforms was used for the covalent coupling of Rhodamine123, polyethylene glycol (PEG) and cyclic RGD. Soluble carbodiimide (EDC) and N-hydroxysuccinimide (NHS) were used to crosslink carboxylic acid with the amino group of the ligands. We examined the design of the nanoplatforms with each individual entity and then the combination of two and three of them. Several methods were used to characterize the nanoparticle surface functionalization and the magnetic properties of these contrast agents were studied using a 1.5 T clinical MRI scanner. The affinity towards integrins was evidenced by surface plasmon resonance and solid-phase receptor-binding assay.
Collapse
Affiliation(s)
- Julie Bolley
- Université Paris 13, Sorbonne Paris Cité, Laboratoire CSPBAT, CNRS (UMR 7244), 74 avenue M. Cachin, 93017 Bobigny, France.
| | | | | | | | | | | | | |
Collapse
|
48
|
Näreoja T, Ebner A, Gruber HJ, Taskinen B, Kienberger F, Hänninen PE, Hytönen VP, Hinterdorfer P, Härmä H. Kinetics of bioconjugate nanoparticle label binding in a sandwich-type immunoassay. Anal Bioanal Chem 2013; 406:493-503. [PMID: 24264621 DOI: 10.1007/s00216-013-7474-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/16/2013] [Accepted: 10/30/2013] [Indexed: 11/29/2022]
Abstract
Nanoparticle labels have enhanced the performance of diagnostic, screening, and other measurement applications and hold further promise for more sensitive, precise, and cost-effective assay technologies. Nevertheless, a clear view of the biomolecular interactions on the molecular level is missing. Controlling the ratio of molecular recognition over undesired nonspecific adhesion is the key to improve biosensing with nanoparticles. To improve this ratio with an aim to disallow nonspecific binding, a more detailed perspective into the kinetic differences between the cases is needed. We present the application of two novel methods to determine complex binding kinetics of bioconjugate nanoparticles, interferometry, and force spectroscopy. Force spectroscopy is an atomic force microscopy technique and optical interferometry is a direct method to monitor reaction kinetics in second-hour timescale, both having steadily increasing importance in nanomedicine. The combination is perfectly suited for this purpose, due to the high sensitivity to detect binding events and the ability to investigate biological samples under physiological conditions. We have attached a single biofunctionalized nanoparticle to the outer tip apex and studied the binding behavior of the nanoparticle in a sandwich-type immunoassay using dynamic force spectroscopy in millisecond timescale. Utilization of the two novel methods allowed characterization of binding kinetics in a time range spanning from 50 ms to 4 h. These experiments allowed detection and demonstration of differences between specific and nonspecific binding. Most importantly, nonspecific binding of a nanoparticle was reduced at contact times below 100 ms with the solid-phase surface.
Collapse
Affiliation(s)
- Tuomas Näreoja
- Laboratory of Biophysics, Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Tykistökatu 6A, 20520, Turku, Finland,
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hyytiä H, Järvenpää ML, Ristiniemi N, Lövgren T, Pettersson K. A comparison of capture antibody fragments in cardiac troponin I immunoassay. Clin Biochem 2013; 46:963-968. [DOI: 10.1016/j.clinbiochem.2013.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 01/10/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
|
50
|
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013; 113:1904-2074. [PMID: 23432378 DOI: 10.1021/cr300143v] [Citation(s) in RCA: 824] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | | | | | | | | | | | | | | |
Collapse
|