1
|
Polák M, Černý J, Novák P. Isotopic Depletion Increases the Spatial Resolution of FPOP Top-Down Mass Spectrometry Analysis. Anal Chem 2024; 96:1478-1487. [PMID: 38226459 PMCID: PMC10831798 DOI: 10.1021/acs.analchem.3c03759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024]
Abstract
Protein radical labeling, like fast photochemical oxidation of proteins (FPOP), coupled to a top-down mass spectrometry (MS) analysis offers an alternative analytical method for probing protein structure or protein interaction with other biomolecules, for instance, proteins and DNA. However, with the increasing mass of studied analytes, the MS/MS spectra become complex and exhibit a low signal-to-noise ratio. Nevertheless, these difficulties may be overcome by protein isotope depletion. Thus, we aimed to use protein isotope depletion to analyze FPOP-oxidized samples by top-down MS analysis. For this purpose, we prepared isotopically natural (IN) and depleted (ID) forms of the FOXO4 DNA binding domain (FOXO4-DBD) and studied the protein-DNA interaction interface with double-stranded DNA, the insulin response element (IRE), after exposing the complex to hydroxyl radicals. As shown by comparing tandem mass spectra of natural and depleted proteins, the ID form increased the signal-to-noise ratio of useful fragment ions, thereby enhancing the sequence coverage by more than 19%. This improvement in the detection of fragment ions enabled us to detect 22 more oxidized residues in the ID samples than in the IN sample. Moreover, less common modifications were detected in the ID sample, including the formation of ketones and lysine carbonylation. Given the higher quality of ID top-down MSMS data set, these results provide more detailed information on the complex formation between transcription factors and DNA-response elements. Therefore, our study highlights the benefits of isotopic depletion for quantitative top-down proteomics. Data are available via ProteomeXchange with the identifier PXD044447.
Collapse
Affiliation(s)
- Marek Polák
- Institute
of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department
of Biochemistry, Faculty of Science, Charles
University, 12843 Prague, Czech Republic
| | - Jiří Černý
- Laboratory
of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Petr Novák
- Institute
of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department
of Biochemistry, Faculty of Science, Charles
University, 12843 Prague, Czech Republic
| |
Collapse
|
2
|
Kang J, Seshadri M, Cupp-Sutton KA, Wu S. Toward the analysis of functional proteoforms using mass spectrometry-based stability proteomics. FRONTIERS IN ANALYTICAL SCIENCE 2023; 3:1186623. [PMID: 39072225 PMCID: PMC11281393 DOI: 10.3389/frans.2023.1186623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional proteomics aims to elucidate biological functions, mechanisms, and pathways of proteins and proteoforms at the molecular level to examine complex cellular systems and disease states. A series of stability proteomics methods have been developed to examine protein functionality by measuring the resistance of a protein to chemical or thermal denaturation or proteolysis. These methods can be applied to measure the thermal stability of thousands of proteins in complex biological samples such as cell lysate, intact cells, tissues, and other biological fluids to measure proteome stability. Stability proteomics methods have been popularly applied to observe stability shifts upon ligand binding for drug target identification. More recently, these methods have been applied to characterize the effect of structural changes in proteins such as those caused by post-translational modifications (PTMs) and mutations, which can affect protein structures or interactions and diversify protein functions. Here, we discussed the current application of a suite of stability proteomics methods, including thermal proteome profiling (TPP), stability of proteomics from rates of oxidation (SPROX), and limited proteolysis (LiP) methods, to observe PTM-induced structural changes on protein stability. We also discuss future perspectives highlighting the integration of top-down mass spectrometry and stability proteomics methods to characterize intact proteoform stability and understand the function of variable protein modifications.
Collapse
Affiliation(s)
- Ji Kang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Meena Seshadri
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Kellye A. Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
3
|
Cornwell O, Ault JR. Fast photochemical oxidation of proteins coupled with mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140829. [PMID: 35933084 DOI: 10.1016/j.bbapap.2022.140829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/17/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Fast photochemical oxidation of proteins (FPOP) is a hydroxyl radical footprinting approach whereby radicals, produced by UV laser photolysis of hydrogen peroxide, induce oxidation of amino acid side-chains. Mass Spectrometry (MS) is employed to locate and quantify the resulting irreversible, covalent oxidations to use as a surrogate for side-chain solvent accessibility. Modulation of oxidation levels under different conditions allows for the characterisation of protein conformation, dynamics and binding epitopes. FPOP has been applied to structurally diverse and biopharmaceutically relevant systems from small, monomeric aggregation-prone proteins to proteome-wide analysis of whole organisms. This review evaluates the current state of FPOP, the progress needed to address data analysis bottlenecks, particularly for residue-level analysis, and highlights significant developments of the FPOP platform that have enabled its versatility and complementarity to other structural biology techniques.
Collapse
Affiliation(s)
- Owen Cornwell
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - James R Ault
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
4
|
Jain R, Dhillon NS, Farquhar ER, Wang B, Li X, Kiselar J, Chance MR. Multiplex Chemical Labeling of Amino Acids for Protein Footprinting Structure Assessment. Anal Chem 2022; 94:9819-9825. [PMID: 35763792 PMCID: PMC9983563 DOI: 10.1021/acs.analchem.2c01640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Protein footprinting with mass spectrometry is an established structural biology technique for mapping solvent accessibility and assessing molecular-level interactions of proteins. In hydroxyl radical protein footprinting (HRPF), hydroxyl (OH) radicals generated by water radiolysis or other methods covalently label protein side chains. Because of the wide dynamic range of OH reactivity, not all side chains are easily detected in a single experiment. Novel reagent development and the use of radical chain reactions for labeling, including trifluoromethyl radicals, is a potential approach to normalize the labeling across a diverse set of residues. HRPF in the presence of a trifluoromethylation reagent under the right conditions could provide a "one-pot" reaction for multiplex labeling of protein side chains. Toward this goal, we have systematically evaluated amino acid labeling with the recently investigated Langlois' reagent (LR) activated by X-ray-mediated water radiolysis, followed by three different mass spectrometry methods. We compared the reactivity of CF3 and OH radical labeling for all 20 protein side chains in a competition-free environment. We found that all 20 amino acids exhibited CF3 or OH labeling in LR. Our investigations provide the evidence and knowledge set to perfect hydroxyl radical-activated trifluoromethyl chemistry as "one-pot" reaction for multiplex labeling of protein side chains to achieve higher resolution in HRPF.
Collapse
Affiliation(s)
- Rohit Jain
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA,Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Nanak S. Dhillon
- Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Erik R. Farquhar
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Benlian Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Xiaolin Li
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Janna Kiselar
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA,Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Mark R. Chance
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA,Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA,Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA,Corresponding Author: Mark R. Chance - Center for Synchrotron Biosciences; Center for Proteomics and Bioinformatics; Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| |
Collapse
|
5
|
Advances in Mass Spectrometry-based Epitope Mapping of Protein Therapeutics. J Pharm Biomed Anal 2022; 215:114754. [DOI: 10.1016/j.jpba.2022.114754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/16/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022]
|
6
|
Zhang Z, Chow SY, De Guzman R, Joh NH, Joubert MK, Richardson J, Shah B, Wikström M, Zhou ZS, Wypych J. A Mass Spectrometric Characterization of Light-Induced Modifications in Therapeutic Proteins. J Pharm Sci 2022; 111:1556-1564. [DOI: 10.1016/j.xphs.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
|
7
|
Norton-Baker B, Rocha MA, Granger-Jones J, Fishman DA, Martin RW. Human γS-Crystallin Resists Unfolding Despite Extensive Chemical Modification from Exposure to Ionizing Radiation. J Phys Chem B 2022; 126:679-690. [PMID: 35021623 PMCID: PMC9977691 DOI: 10.1021/acs.jpcb.1c08157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ionizing radiation has dramatic effects on living organisms, causing damage to proteins, DNA, and other cellular components. γ radiation produces reactive oxygen species (ROS) that damage biological macromolecules. Protein modification due to interactions with hydroxyl radical is one of the most common deleterious effects of radiation. The human eye lens is particularly vulnerable to the effects of ionizing radiation, as it is metabolically inactive and its proteins are not recycled after early development. Therefore, radiation damage accumulates and eventually can lead to cataract formation. Here we explore the impact of γ radiation on a long-lived structural protein. We exposed the human eye lens protein γS-crystallin (HγS) to high doses of γ radiation and investigated the chemical and structural effects. HγS accumulated many post-translational modifications (PTMs), appearing to gain significant oxidative damage. Biochemical assays suggested that cysteines were affected, with the concentration of free thiol reduced with increasing γ radiation exposure. SDS-PAGE analysis showed that irradiated samples form protein-protein cross-links, including nondisulfide covalent bonds. Tandem mass spectrometry on proteolytic digests of irradiated samples revealed that lysine, methionine, tryptophan, leucine, and cysteine were oxidized. Despite these chemical modifications, HγS remained folded past 10.8 kGy of γ irradiation as evidenced by circular dichroism and intrinsic tryptophan fluorescence spectroscopy.
Collapse
Affiliation(s)
- Brenna Norton-Baker
- These authors contributed equally.,Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Megan A. Rocha
- These authors contributed equally.,Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | | | - Dmitry A. Fishman
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| |
Collapse
|
8
|
Gebicki JM, Nauser T. Initiation and Prevention of Biological Damage by Radiation-Generated Protein Radicals. Int J Mol Sci 2021; 23:ijms23010396. [PMID: 35008823 PMCID: PMC8745036 DOI: 10.3390/ijms23010396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/23/2022] Open
Abstract
Ionizing radiations cause chemical damage to proteins. In aerobic aqueous solutions, the damage is commonly mediated by the hydroxyl free radicals generated from water, resulting in formation of protein radicals. Protein damage is especially significant in biological systems, because proteins are the most abundant targets of the radiation-generated radicals, the hydroxyl radical-protein reaction is fast, and the damage usually results in loss of their biological function. Under physiological conditions, proteins are initially oxidized to carbon-centered radicals, which can propagate the damage to other molecules. The most effective endogenous antioxidants, ascorbate, GSH, and urate, are unable to prevent all of the damage under the common condition of oxidative stress. In a promising development, recent work demonstrates the potential of polyphenols, their metabolites, and other aromatic compounds to repair protein radicals by the fast formation of less damaging radical adducts, thus potentially preventing the formation of a cascade of new reactive species.
Collapse
Affiliation(s)
- Janusz M. Gebicki
- Department of Biological Sciences, Macquarie University, Sydney 2109, Australia
- Correspondence:
| | - Thomas Nauser
- Departement für Chemie und Angewandte Biowissenschaften, Eidgenössische Technische Hochschule, 8093 Zurich, Switzerland;
| |
Collapse
|
9
|
McKenzie-Coe A, Montes NS, Jones LM. Hydroxyl Radical Protein Footprinting: A Mass Spectrometry-Based Structural Method for Studying the Higher Order Structure of Proteins. Chem Rev 2021; 122:7532-7561. [PMID: 34633178 DOI: 10.1021/acs.chemrev.1c00432] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hydroxyl radical protein footprinting (HRPF) coupled to mass spectrometry has been successfully used to investigate a plethora of protein-related questions. The method, which utilizes hydroxyl radicals to oxidatively modify solvent-accessible amino acids, can inform on protein interaction sites and regions of conformational change. Hydroxyl radical-based footprinting was originally developed to study nucleic acids, but coupling the method with mass spectrometry has enabled the study of proteins. The method has undergone several advancements since its inception that have increased its utility for more varied applications such as protein folding and the study of biotherapeutics. In addition, recent innovations have led to the study of increasingly complex systems including cell lysates and intact cells. Technological advances have also increased throughput and allowed for better control of experimental conditions. In this review, we provide a brief history of the field of HRPF and detail recent innovations and applications in the field.
Collapse
Affiliation(s)
- Alan McKenzie-Coe
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Nicholas S Montes
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
10
|
Chavez JD, Wippel HH, Tang X, Keller A, Bruce JE. In-Cell Labeling and Mass Spectrometry for Systems-Level Structural Biology. Chem Rev 2021; 122:7647-7689. [PMID: 34232610 PMCID: PMC8966414 DOI: 10.1021/acs.chemrev.1c00223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biological systems have evolved to utilize proteins to accomplish nearly all functional roles needed to sustain life. A majority of biological functions occur within the crowded environment inside cells and subcellular compartments where proteins exist in a densely packed complex network of protein-protein interactions. The structural biology field has experienced a renaissance with recent advances in crystallography, NMR, and CryoEM that now produce stunning models of large and complex structures previously unimaginable. Nevertheless, measurements of such structural detail within cellular environments remain elusive. This review will highlight how advances in mass spectrometry, chemical labeling, and informatics capabilities are merging to provide structural insights on proteins, complexes, and networks that exist inside cells. Because of the molecular detection specificity provided by mass spectrometry and proteomics, these approaches provide systems-level information that not only benefits from conventional structural analysis, but also is highly complementary. Although far from comprehensive in their current form, these approaches are currently providing systems structural biology information that can uniquely reveal how conformations and interactions involving many proteins change inside cells with perturbations such as disease, drug treatment, or phenotypic differences. With continued advancements and more widespread adaptation, systems structural biology based on in-cell labeling and mass spectrometry will provide an even greater wealth of structural knowledge.
Collapse
Affiliation(s)
- Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Helisa H Wippel
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Xiaoting Tang
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| |
Collapse
|
11
|
Misra SK, Sharp JS. Enabling Real-Time Compensation in Fast Photochemical Oxidations of Proteins for the Determination of Protein Topography Changes. J Vis Exp 2020. [PMID: 32955502 DOI: 10.3791/61580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fast photochemical oxidation of proteins (FPOP) is a mass spectrometry-based structural biology technique that probes the solvent-accessible surface area of proteins. This technique relies on the reaction of amino acid side chains with hydroxyl radicals freely diffusing in solution. FPOP generates these radicals in situ by laser photolysis of hydrogen peroxide, creating a burst of hydroxyl radicals that is depleted on the order of a microsecond. When these hydroxyl radicals react with a solvent-accessible amino acid side chain, the reaction products exhibit a mass shift that can be measured and quantified by mass spectrometry. Since the rate of reaction of an amino acid depends in part on the average solvent accessible surface of that amino acid, measured changes in the amount of oxidation of a given region of a protein can be directly correlated to changes in the solvent accessibility of that region between different conformations (e.g., ligand-bound versus ligand-free, monomer vs. aggregate, etc.) FPOP has been applied in a number of problems in biology, including protein-protein interactions, protein conformational changes, and protein-ligand binding. As the available concentration of hydroxyl radicals varies based on many experimental conditions in the FPOP experiment, it is important to monitor the effective radical dose to which the protein analyte is exposed. This monitoring is efficiently achieved by incorporating an inline dosimeter to measure the signal from the FPOP reaction, with laser fluence adjusted in real-time to achieve the desired amount of oxidation. With this compensation, changes in protein topography reflecting conformational changes, ligand-binding surfaces, and/or protein-protein interaction interfaces can be determined in heterogeneous samples using relatively low sample amounts.
Collapse
Affiliation(s)
- Sandeep K Misra
- Department of Biomolecular Sciences, University of Mississippi
| | - Joshua S Sharp
- Department of Biomolecular Sciences, University of Mississippi; Department of Chemistry and Biochemistry, University of Mississippi; GenNext Technologies, Inc.;
| |
Collapse
|
12
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
13
|
Guo C, Steinberg LK, Cheng M, Song JH, Henderson JP, Gross ML. Site-Specific Siderocalin Binding to Ferric and Ferric-Free Enterobactin As Revealed by Mass Spectrometry. ACS Chem Biol 2020; 15:1154-1160. [PMID: 31869199 PMCID: PMC7236765 DOI: 10.1021/acschembio.9b00741] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/23/2019] [Indexed: 11/29/2022]
Abstract
Both host and pathogen competitively manipulate coordination environments during bacterial infections. Human cells release the innate immune protein siderocalin (Scn, also known as lipocalin-2/Lcn2, neutrophil gelatinase-associated lipocalin/NGAL) that can inhibit bacterial growth by sequestering iron in a ferric complex with enterobactin (Ent), the ubiquitous Escherichia coli siderophore. Pathogenic E. coli use the virulence-associated esterase IroE to linearize the Ent cyclic trilactone to linear enterobactin (lin-Ent). We characterized lin-Ent interactions with Scn by using native mass spectrometry (MS) with hydrogen-deuterium exchange (HDX) and Lys/Arg specific covalent footprinting. These approaches support 1:1 binding of both Fe(III)-lin-Ent to Scn and iron-free lin-Ent to Scn. Both ferric and nonferric lin-Ent localize to all three pockets of the Scn calyx, consistent with Scn capture of lin-Ent both before and after Fe(III) chelation. These findings raise the possibility that Scn neutralizes both siderophores and siderophore-bound iron during infections. This integrated, MS-based approach circumvents the limitations that frustrate traditional structural approaches to examining Scn interactions with enterobactin-based ligands.
Collapse
Affiliation(s)
- Chunyang Guo
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Lindsey K. Steinberg
- Division
of Infectious Diseases, Department of Medicine, the Center for Women’s
Infectious Disease Research, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Ming Cheng
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Jong Hee Song
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Jeffrey P. Henderson
- Division
of Infectious Diseases, Department of Medicine, the Center for Women’s
Infectious Disease Research, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Michael L. Gross
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
14
|
Khaje NA, Sharp JS. Rapid Quantification of Peptide Oxidation Isomers From Complex Mixtures. Anal Chem 2020; 92:3834-3843. [PMID: 32039584 DOI: 10.1021/acs.analchem.9b05268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hydroxyl radical protein footprinting (HRPF) is a powerful technique for probing changes in protein topography, based on quantifying the amount of oxidation of different regions of a protein. While quantification of HRPF oxidation at the peptide level is relatively common and straightforward, quantification at the residue level is challenging because of the influence of oxidation on MS/MS fragmentation and the large number of complex and only partially chromatographically resolved isomeric peptide oxidation products. HRPF quantification of isomeric peptide oxidation products (where the peptide sequence is the same but isomeric oxidation products are formed at different sites) at the residue level by electron transfer dissociation tandem mass spectrometry (ETD MS/MS) has been demonstrated in both model peptides and HRPF products, but the method is hampered by the partial separation of oxidation isomers by reversed phase chromatography. This requires custom MS/MS methods to equally sample all isomeric oxidation products across their elution window, greatly increasing method development time and reducing the oxidation products quantified in a single LC-MS/MS run. Here, we present a zwitterionic hydrophilic interaction capillary chromatography (ZIC-HILIC) method to ideally coelute all isomeric peptide oxidation products while separating different peptides. This allows us to relatively quantify peptide oxidation isomers using an ETD MS/MS spectrum acquired at any point across the single peptide oxidation isomer peak, greatly simplifying data acquisition and data analysis.
Collapse
Affiliation(s)
- Niloofar Abolhasani Khaje
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Joshua S Sharp
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States.,Depertmant of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
15
|
Nauser T, Gebicki JM. Fast reaction of carbon free radicals with flavonoids and other aromatic compounds. Arch Biochem Biophys 2019; 674:108107. [DOI: 10.1016/j.abb.2019.108107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/27/2019] [Accepted: 09/13/2019] [Indexed: 12/26/2022]
|
16
|
Liu XR, Zhang MM, Zhang B, Rempel DL, Gross ML. Hydroxyl-Radical Reaction Pathways for the Fast Photochemical Oxidation of Proteins Platform As Revealed by 18O Isotopic Labeling. Anal Chem 2019; 91:9238-9245. [PMID: 31241913 PMCID: PMC6635036 DOI: 10.1021/acs.analchem.9b02134] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fast photochemical oxidation of protein (FPOP) has become an important mass spectrometry-based protein footprinting approach. Although the hydroxyl radical (•OH) generated by photolysis of hydrogen peroxide (H2O2) is most commonly used, the pathways for its reaction with amino-acid side chains remain unclear. Here, we report a systematic study of •OH oxidative modification of 13 amino acid residues by using 18O isotopic labeling. The results differentiate three classes of residues on the basis of their oxygen uptake preference toward different oxygen sources. Histidine, arginine, tyrosine, and phenylalanine residues preferentially take oxygen from H2O2. Methionine residues competitively take oxygen from H2O2 and dissolved oxygen (O2), whereas the remaining residues take oxygen exclusively from O2. Results reported in this work deepen the understanding of •OH labeling pathway on a FPOP platform, opening new possibilities for tailoring FPOP conditions in addressing many biological questions in a profound way.
Collapse
Affiliation(s)
- Xiaoran Roger Liu
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, 63130, United
States
| | - Mengru Mira Zhang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, 63130, United
States
| | - Bojie Zhang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, 63130, United
States
| | - Don L. Rempel
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, 63130, United
States
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, 63130, United
States
| |
Collapse
|
17
|
Johnson DT, Di Stefano LH, Jones LM. Fast photochemical oxidation of proteins (FPOP): A powerful mass spectrometry-based structural proteomics tool. J Biol Chem 2019; 294:11969-11979. [PMID: 31262727 DOI: 10.1074/jbc.rev119.006218] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fast photochemical oxidation of proteins (FPOP) is a MS-based method that has proved useful in studies of protein structures, interactions, conformations, and protein folding. The success of this method relies on the irreversible labeling of solvent-exposed amino acid side chains by hydroxyl radicals. FPOP generates these radicals through laser-induced photolysis of hydrogen peroxide. The data obtained provide residue-level resolution of protein structures and interactions on the microsecond timescale, enabling investigations of fast processes such as protein folding and weak protein-protein interactions. An extensive comparison between FPOP and other footprinting techniques gives insight on their complementarity as well as the robustness of FPOP to provide unique structural information once unattainable. The versatility of this method is evidenced by both the heterogeneity of samples that can be analyzed by FPOP and the myriad of applications for which the method has been successfully used: from proteins of varying size to intact cells. This review discusses the wide applications of this technique and highlights its high potential. Applications including, but not limited to, protein folding, membrane proteins, structure elucidation, and epitope mapping are showcased. Furthermore, the use of FPOP has been extended to probing proteins in cells and in vivo These promising developments are also presented herein.
Collapse
Affiliation(s)
- Danté T Johnson
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201
| | - Luciano H Di Stefano
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201.
| |
Collapse
|
18
|
Nishitani Y, Okutani H, Takeda Y, Uchida T, Iwai K, Ishimori K. Specific heme binding to heme regulatory motifs in iron regulatory proteins and its functional significance. J Inorg Biochem 2019; 198:110726. [PMID: 31220756 DOI: 10.1016/j.jinorgbio.2019.110726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/07/2019] [Accepted: 05/27/2019] [Indexed: 12/31/2022]
Abstract
Iron regulatory proteins (IRPs) control iron metabolism in mammalian cells by binding to the iron-responsive element (IRE) in the target mRNA. Heme regulatory motifs (HRMs) are conserved in the two IRP homologues IRP1 and IRP2 that specifically bind to two and three heme equivalents, respectively; however, only the heme binding to the iron-dependent degradation (IDD) domain of IRP2 causes heme-mediated oxidation, which does not occur in IRP1. Therefore, the functional significance of conserved HRMs outside the IDD domain is yet unclear. In this study, spectroscopic heme titration with IRP mutants confirmed heme binding to each HRM in IRPs, and the effect of heme binding to HRMs on IRE binding was examined. Native polyacrylamide gel electrophoresis analysis revealed that heme binding to HRMs near the IRE binding site inhibits complex formation between IRPs and IRE without oxidative modification, indicating that the function of HRMs varies outside and within the IDD domain. However, the formation of a typical reactive oxygen species (ROS), hydrogen peroxide, was spectroscopically detected in both heme-bound IRPs. Comparing the heme environmental structures surrounding HRMs, the flexible conformation and many amino acid residues sensitive to ROS of the IDD domain were suggested to promote specific oxidation by the generated hydrogen peroxide. Thus, heme binding to HRM near the IRE binding site sterically interferes with IRE binding, while HRM in the IDD domain facilitates specific heme-mediated oxidation of the protein moiety and the protein degradation via the ubiquitin-proteasome system, resulting in the inhibition of IRE binding.
Collapse
Affiliation(s)
- Yudai Nishitani
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Hirotaka Okutani
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yukiko Takeda
- Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8561, Japan
| | - Takeshi Uchida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kazuhiro Iwai
- Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8561, Japan
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
19
|
Minkoff BB, Bruckbauer ST, Sabat G, Cox MM, Sussman MR. Covalent Modification of Amino Acids and Peptides Induced by Ionizing Radiation from an Electron Beam Linear Accelerator Used in Radiotherapy. Radiat Res 2019; 191:447-459. [PMID: 30849023 PMCID: PMC6506356 DOI: 10.1667/rr15288.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To identify modifications to amino acids that are directly induced by ionizing radiation, free amino acids and 3-residue peptides were irradiated using a linear accelerator (Linac) radiotherapy device. Mass spectrometry was performed to detail the relative sensitivity to radiation as well as identify covalent, radiation-dependent adducts. The order of reactivity of the 20 common amino acids was generally in agreement with published literature except for His (most reactive of the 20) and Cys (less reactive). Novel and previously identified modifications on the free amino acids were detected. Amino acids were far less reactive when flanked by glycine residues in a tripeptide. Order of reactivity, with GVG most and GEG least, was substantially altered, as were patterns of modification. Radiation reactivity of amino acids is clearly and strongly affected by conversion of the α-amino and α-carboxyl groups to peptide bonds, and the presence of neighboring amino acid residues.
Collapse
Affiliation(s)
- Benjamin B. Minkoff
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Steven T. Bruckbauer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Grzegorz Sabat
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Michael R. Sussman
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
20
|
Leser M, Chapman JR, Khine M, Pegan J, Law M, Makkaoui ME, Ueberheide BM, Brenowitz M. Chemical Generation of Hydroxyl Radical for Oxidative 'Footprinting'. Protein Pept Lett 2019; 26:61-69. [PMID: 30543161 DOI: 10.2174/0929866526666181212164812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/21/2018] [Accepted: 10/30/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND For almost four decades, hydroxyl radical chemically generated by Fenton chemistry has been a mainstay for the oxidative 'footprinting' of macromolecules. OBJECTIVE In this article, we start by reviewing the application of chemical generation of hydroxyl radical to the development of oxidative footprinting of DNA and RNA and the subsequent application of the method to oxidative footprinting of proteins. We next discuss a novel strategy for generating hydroxyl radicals by Fenton chemistry that immobilizes catalytic iron on a solid surface (Pyrite Shrink Wrap laminate) for the application of nucleic acid and protein footprinting. METHOD Pyrite Shrink-Wrap Laminate is fabricated by depositing pyrite (Fe-S2, aka 'fool's gold') nanocrystals onto thermolabile plastic (Shrinky Dink). The laminate can be thermoformed into a microtiter plate format into which samples are deposited for oxidation. RESULTS We demonstrate the utility of the Pyrite Shrink-Wrap Laminate for the chemical generation of hydroxyl radicals by mapping the surface of the T-cell co-stimulatory protein Programmed Death - 1 (PD-1) and the interface of the complex with its ligand PD-L1. CONCLUSION We have developed and validated an affordable and reliable benchtop method of hydroxyl radical generation that will broaden the application of protein oxidative footprinting. Due to the minimal equipment required to implement this method, it should be easily adaptable by many laboratories with access to mass spectrometry.
Collapse
Affiliation(s)
- Micheal Leser
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jessica R Chapman
- Proteomics Laboratory, Department of Biochemistry, New York University School of Medicine, New York, NY, United States
| | - Michelle Khine
- Department of Biomedical Engineering, University of California, Irvine, CA, United States.,Department of Chemical Engineering & Materials Science, University of California, Irvine, CA, United States
| | - Jonathan Pegan
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| | - Matt Law
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA, United States.,Department of Chemistry, University of California, Irvine, CA, United States
| | - Mohammed El Makkaoui
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA, United States.,Department of Chemistry, University of California, Irvine, CA, United States
| | - Beatrix M Ueberheide
- Proteomics Laboratory, Department of Biochemistry, New York University School of Medicine, New York, NY, United States.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States
| | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
21
|
Sharp JS, Misra SK, Persoff JJ, Egan RW, Weinberger SR. Real Time Normalization of Fast Photochemical Oxidation of Proteins Experiments by Inline Adenine Radical Dosimetry. Anal Chem 2018; 90:12625-12630. [PMID: 30290117 PMCID: PMC7811273 DOI: 10.1021/acs.analchem.8b02787] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hydroxyl radical protein footprinting (HRPF) is a powerful method for measuring protein topography, allowing researchers to monitor events that alter the solvent accessible surface of a protein (e.g., ligand binding, aggregation, conformational changes, etc.) by measuring changes in the apparent rate of reaction of portions of the protein to hydroxyl radicals diffusing in solution. Fast Photochemical Oxidation of Proteins (FPOP) offers an ultrafast benchtop method for radical generation for HRPF, photolyzing hydrogen peroxide using a UV laser to generate high concentrations of hydroxyl radicals that are consumed on roughly a microsecond time scale. The broad reactivity of hydroxyl radicals means that almost anything added to the solution (e.g., ligands, buffers, excipients, etc.) will scavenge hydroxyl radicals, altering their half-life and changing the effective radical concentration experienced by the protein. Similarly, minute changes in peroxide concentration, laser fluence, and buffer composition can alter the effective radical concentration, making reproduction of data challenging. Here, we present a simple method for radical dosimetry that can be carried out as part of the FPOP workflow, allowing for measurement of effective radical concentration in real time. Additionally, by modulating the amount of radical generated, we demonstrate that effective hydroxyl radical yields in FPOP HRPF experiments carried out in buffers with widely differing levels of hydroxyl radical scavenging capacity can be compensated on the fly, yielding statistically indistinguishable results for the same conformer. This method represents a major step in transforming FPOP into a robust and reproducible technology capable of probing protein structure in a wide variety of contexts.
Collapse
Affiliation(s)
- Joshua S. Sharp
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677
- GenNext Technologies, Inc., Montara, CA 94037
| | - Sandeep K. Misra
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677
| | | | | | | |
Collapse
|
22
|
Kiselar J, Chance MR. High-Resolution Hydroxyl Radical Protein Footprinting: Biophysics Tool for Drug Discovery. Annu Rev Biophys 2018. [DOI: 10.1146/annurev-biophys-070317-033123] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hydroxyl radical footprinting (HRF) of proteins with mass spectrometry (MS) is a widespread approach for assessing protein structure. Hydroxyl radicals react with a wide variety of protein side chains, and the ease with which radicals can be generated (by radiolysis or photolysis) has made the approach popular with many laboratories. As some side chains are less reactive and thus cannot be probed, additional specific and nonspecific labeling reagents have been introduced to extend the approach. At the same time, advances in liquid chromatography and MS approaches permit an examination of the labeling of individual residues, transforming the approach to high resolution. Lastly, advances in understanding of the chemistry of the approach have led to the determination of absolute protein topologies from HRF data. Overall, the technology can provide precise and accurate measures of side-chain solvent accessibility in a wide range of interesting and useful contexts for the study of protein structure and dynamics in both academia and industry.
Collapse
Affiliation(s)
- Janna Kiselar
- Center for Proteomics and Bioinformatics, and Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Mark R. Chance
- Center for Proteomics and Bioinformatics, and Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
23
|
Duerkop M, Berger E, Dürauer A, Jungbauer A. Influence of cavitation and high shear stress on HSA aggregation behavior. Eng Life Sci 2017; 18:169-178. [PMID: 29610567 PMCID: PMC5873263 DOI: 10.1002/elsc.201700079] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/04/2017] [Accepted: 11/02/2017] [Indexed: 12/02/2022] Open
Abstract
Neither the influence of high shear rates nor the impact of cavitation on protein aggregation is fully understood. The effect of cavitation bubble collapse‐derived hydroxyl radicals on the aggregation behavior of human serum albumin (HSA) was investigated. Radicals were generated by pumping through a micro‐orifice, ultra‐sonication, or chemically by Fenton's reaction. The amount of radicals produced by the two mechanical methods (0.12 and 11.25 nmol/(L min)) was not enough to change the protein integrity. In contrast, Fenton's reaction resulted in 382 nmol/(L min) of radicals, inducing protein aggregation. However, the micro‐orifice promoted the formation of soluble dimeric HSA aggregates. A validated computational fluid dynamic model of the orifice revealed a maximum and average shear rate on the order of 108 s−1 and 1.2 × 106 s−1, respectively. Although these values are among the highest ever reported in the literature, dimer formation did not occur when we used the same flow rate but suppressed cavitation. Therefore, aggregation is most likely caused by the increased surface area due to cavitation‐mediated bubble growth, not by hydroxyl radical release or shear stress as often reported.
Collapse
Affiliation(s)
- Mark Duerkop
- Austrian Centre of Industrial BiotechnologyContinuous Integrated ManufacturingViennaAustria
| | - Eva Berger
- Austrian Centre of Industrial BiotechnologyContinuous Integrated ManufacturingViennaAustria
| | - Astrid Dürauer
- Austrian Centre of Industrial BiotechnologyContinuous Integrated ManufacturingViennaAustria
- University of Natural Resources and Life SciencesDepartment of BiotechnologyViennaAustria
| | - Alois Jungbauer
- Austrian Centre of Industrial BiotechnologyContinuous Integrated ManufacturingViennaAustria
- University of Natural Resources and Life SciencesDepartment of BiotechnologyViennaAustria
| |
Collapse
|
24
|
Nauser T, Gebicki JM. Physiological Concentrations of Ascorbate Cannot Prevent the Potentially Damaging Reactions of Protein Radicals in Humans. Chem Res Toxicol 2017; 30:1702-1710. [PMID: 28745873 DOI: 10.1021/acs.chemrestox.7b00160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The principal initial biological targets of free radicals formed under conditions of oxidative stress are the proteins. The most common products of the interaction are carbon-centered alkyl radicals which react rapidly with oxygen to form peroxyl radicals and hydroperoxides. All these species are reactive, capable of propagating the free radical damage to enzymes, nucleic acids, lipids, and endogenous antioxidants, leading finally to the pathologies associated with oxidative stress. The best chance of preventing this chain of damage is in early repair of the protein radicals by antioxidants. Estimate of the effectiveness of the physiologically significant antioxidants requires knowledge of the antioxidant tissue concentrations and rate constants of their reaction with protein radicals. Previous studies by pulse radiolysis have shown that only ascorbate can repair the Trp and Tyr protein radicals before they form peroxyl radicals under physiological concentrations of oxygen. We have now extended this work to other protein C-centered radicals generated by hydroxyl radicals because these and many other free radicals formed under oxidative stress can produce secondary radicals on virtually any amino acid residue. Pulse radiolysis identified two classes of rate constants for reactions of protein radicals with ascorbate, a faster one in the range (9-60) × 107 M-1 s-1 and a slow one with a range of (0.5-2) × 107 M-1 s-1. These results show that ascorbate can prevent further reactions of protein radicals only in the few human tissues where its concentration exceeds about 2.5 mM.
Collapse
Affiliation(s)
- Thomas Nauser
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology , Zurich CH8093, Switzerland
| | - Janusz M Gebicki
- Department of Biological Sciences, Macquarie University , Sydney, New South Wales 2109, Australia
| |
Collapse
|
25
|
Quantitative Protein Topography Measurements by High Resolution Hydroxyl Radical Protein Footprinting Enable Accurate Molecular Model Selection. Sci Rep 2017; 7:4552. [PMID: 28674401 PMCID: PMC5495787 DOI: 10.1038/s41598-017-04689-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/18/2017] [Indexed: 11/23/2022] Open
Abstract
We report an integrated workflow that allows mass spectrometry-based high-resolution hydroxyl radical protein footprinting (HR-HRPF) measurements to accurately measure the absolute average solvent accessible surface area (<SASA>) of amino acid side chains. This approach is based on application of multi-point HR-HRPF, electron-transfer dissociation (ETD) tandem MS (MS/MS) acquisition, measurement of effective radical doses by radical dosimetry, and proper normalization of the inherent reactivity of the amino acids. The accuracy of the resulting <SASA> measurements was tested by using well-characterized protein models. Moreover, we demonstrated the ability to use <SASA> measurements from HR-HRPF to differentiate molecular models of high accuracy (<3 Å backbone RMSD) from models of lower accuracy (>4 Å backbone RMSD). The ability of <SASA> data from HR-HRPF to differentiate molecular model quality was found to be comparable to that of <SASA> data obtained from X-ray crystal structures, indicating the accuracy and utility of HR-HRPF for evaluating the accuracy of computational models.
Collapse
|
26
|
Baud A, Aymé L, Gonnet F, Salard I, Gohon Y, Jolivet P, Brodolin K, Da Silva P, Giuliani A, Sclavi B, Chardot T, Mercère P, Roblin P, Daniel R. SOLEIL shining on the solution-state structure of biomacromolecules by synchrotron X-ray footprinting at the Metrology beamline. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:576-585. [PMID: 28452748 DOI: 10.1107/s1600577517002478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/13/2017] [Indexed: 06/07/2023]
Abstract
Synchrotron X-ray footprinting complements the techniques commonly used to define the structure of molecules such as crystallography, small-angle X-ray scattering and nuclear magnetic resonance. It is remarkably useful in probing the structure and interactions of proteins with lipids, nucleic acids or with other proteins in solution, often better reflecting the in vivo state dynamics. To date, most X-ray footprinting studies have been carried out at the National Synchrotron Light Source, USA, and at the European Synchrotron Radiation Facility in Grenoble, France. This work presents X-ray footprinting of biomolecules performed for the first time at the X-ray Metrology beamline at the SOLEIL synchrotron radiation source. The installation at this beamline of a stopped-flow apparatus for sample delivery, an irradiation capillary and an automatic sample collector enabled the X-ray footprinting study of the structure of the soluble protein factor H (FH) from the human complement system as well as of the lipid-associated hydrophobic protein S3 oleosin from plant seed. Mass spectrometry analysis showed that the structural integrity of both proteins was not affected by the short exposition to the oxygen radicals produced during the irradiation. Irradiated molecules were subsequently analysed using high-resolution mass spectrometry to identify and locate oxidized amino acids. Moreover, the analyses of FH in its free state and in complex with complement C3b protein have allowed us to create a map of reactive solvent-exposed residues on the surface of FH and to observe the changes in oxidation of FH residues upon C3b binding. Studies of the solvent accessibility of the S3 oleosin show that X-ray footprinting offers also a unique approach to studying the structure of proteins embedded within membranes or lipid bodies. All the biomolecular applications reported herein demonstrate that the Metrology beamline at SOLEIL can be successfully used for synchrotron X-ray footprinting of biomolecules.
Collapse
Affiliation(s)
- A Baud
- CNRS, UMR8587, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, 91025 Evry, France
| | - L Aymé
- INRA, AgroParisTech, UMR1318, Institut Jean-Pierre Bourgin, 78000 Versailles, France
| | - F Gonnet
- CNRS, UMR8587, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, 91025 Evry, France
| | - I Salard
- CNRS, UMR8587, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, 91025 Evry, France
| | - Y Gohon
- INRA, AgroParisTech, UMR1318, Institut Jean-Pierre Bourgin, 78000 Versailles, France
| | - P Jolivet
- INRA, AgroParisTech, UMR1318, Institut Jean-Pierre Bourgin, 78000 Versailles, France
| | - K Brodolin
- CPBS, CNRS UMR 5236-UM1/UM2, BP 14491, 34093 Montpellier Cedex 5, France
| | - P Da Silva
- Metrology Beamline, Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - A Giuliani
- Disco Beamline, Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - B Sclavi
- LBPA, CNRS UMR 8113, ENS Cachan, 94235 Cachan, France
| | - T Chardot
- INRA, AgroParisTech, UMR1318, Institut Jean-Pierre Bourgin, 78000 Versailles, France
| | - P Mercère
- Metrology Beamline, Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - P Roblin
- INRA, UAR1008 Caractérisation et Élaboration des Produits Issus de l'Agriculture, F-44316 Nantes, France
| | - R Daniel
- CNRS, UMR8587, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, 91025 Evry, France
| |
Collapse
|
27
|
Fromm M, Boulanouar O. Low energy electrons and ultra-soft X-rays irradiation of plasmid DNA. Technical innovations. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2016.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Khalil TT, Taillefumier B, Boulanouar O, Mavon C, Fromm M. Complexation des acides aminés basiques arginine, histidine et lysine avec l’ADN plasmidique en solution aqueuse : participation à la capture de radicaux sous irradiation X à 1,5 keV. EPJ WEB OF CONFERENCES 2016. [DOI: 10.1051/epjconf/201612400003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Protein Structural Analysis via Mass Spectrometry-Based Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:397-431. [PMID: 27975228 DOI: 10.1007/978-3-319-41448-5_19] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Modern mass spectrometry (MS) technologies have provided a versatile platform that can be combined with a large number of techniques to analyze protein structure and dynamics. These techniques include the three detailed in this chapter: (1) hydrogen/deuterium exchange (HDX), (2) limited proteolysis, and (3) chemical crosslinking (CX). HDX relies on the change in mass of a protein upon its dilution into deuterated buffer, which results in varied deuterium content within its backbone amides. Structural information on surface exposed, flexible or disordered linker regions of proteins can be achieved through limited proteolysis, using a variety of proteases and only small extents of digestion. CX refers to the covalent coupling of distinct chemical species and has been used to analyze the structure, function and interactions of proteins by identifying crosslinking sites that are formed by small multi-functional reagents, termed crosslinkers. Each of these MS applications is capable of revealing structural information for proteins when used either with or without other typical high resolution techniques, including NMR and X-ray crystallography.
Collapse
|
30
|
Rivera-Santiago RF, Sriswasdi S, Harper SL, Speicher DW. Probing structures of large protein complexes using zero-length cross-linking. Methods 2015; 89:99-111. [PMID: 25937394 PMCID: PMC4628899 DOI: 10.1016/j.ymeth.2015.04.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/10/2015] [Accepted: 04/24/2015] [Indexed: 02/02/2023] Open
Abstract
Structural mass spectrometry (MS) is a field with growing applicability for addressing complex biophysical questions regarding proteins and protein complexes. One of the major structural MS approaches involves the use of chemical cross-linking coupled with MS analysis (CX-MS) to identify proximal sites within macromolecules. Identified cross-linked sites can be used to probe novel protein-protein interactions or the derived distance constraints can be used to verify and refine molecular models. This review focuses on recent advances of "zero-length" cross-linking. Zero-length cross-linking reagents do not add any atoms to the cross-linked species due to the lack of a spacer arm. This provides a major advantage in the form of providing more precise distance constraints as the cross-linkable groups must be within salt bridge distances in order to react. However, identification of cross-linked peptides using these reagents presents unique challenges. We discuss recent efforts by our group to minimize these challenges by using multiple cycles of LC-MS/MS analysis and software specifically developed and optimized for identification of zero-length cross-linked peptides. Representative data utilizing our current protocol are presented and discussed.
Collapse
Affiliation(s)
- Roland F Rivera-Santiago
- The Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, United States; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Sira Sriswasdi
- The Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, United States; Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Sandra L Harper
- The Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, United States
| | - David W Speicher
- The Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, United States; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
31
|
Kaur P, Tomechko S, Kiselar J, Shi W, Deperalta G, Wecksler AT, Gokulrangan G, Ling V, Chance MR. Characterizing monoclonal antibody structure by carbodiimide/GEE footprinting. MAbs 2015; 6:1486-99. [PMID: 25484052 DOI: 10.4161/19420862.2014.975096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Amino acid-specific covalent labeling is well suited to probe protein structure and macromolecular interactions, especially for macromolecules and their complexes that are difficult to examine by alternative means, due to size, complexity, or instability. Here we present a detailed account of carbodiimide-based covalent labeling (with GEE tagging) applied to a glycosylated monoclonal antibody therapeutic, which represents an important class of biologic drugs. Characterization of such proteins and their antigen complexes is essential to development of new biologic-based medicines. In this study, the experiments were optimized to preserve the structural integrity of the protein, and experimental conditions were varied and replicated to establish the reproducibility and precision of the technique. Homology-based models were generated and used to compare the solvent accessibility of the labeled residues, which include D, E, and the C-terminus, against the experimental surface accessibility data in order to understand the accuracy of the approach in providing an unbiased assessment of structure. Data from the protein were also compared to reactivity measures of several model peptides to explain sequence or structure-based variations in reactivity. The results highlight several advantages of this approach. These include: the ease of use at the bench top, the linearity of the dose response plots at high levels of labeling (indicating that the label does not significantly perturb the structure of the protein), the high reproducibility of replicate experiments (<2 % variation in modification extent), the similar reactivity of the 3 target probe residues (as suggested by analysis of model peptides), and the overall positive and significant correlation of reactivity and solvent accessible surface area (the latter values predicted by the homology modeling). Attenuation of reactivity, in otherwise solvent accessible probes, is documented as arising from the effects of positive charge or bond formation between adjacent amine and carboxyl groups, the latter accompanied by observed water loss. The results are also compared with data from hydroxyl radical-mediated oxidative footprinting on the same protein, showing that complementary information is gained from the 2 approaches, although the number of target residues in carbodiimide/GEE labeling is fewer. Overall, this approach is an accurate and precise method for assessing protein structure of biologic drugs.
Collapse
Key Words
- ACN, acetonitrile
- CD, circular dichroism
- CL, covalent labeling
- DR, dose response
- EDC, 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide
- EIC, extracts the ion chromatogram
- FPOP, fast photochemical oxidation of proteins
- GEE
- GEE, glycine ethyl ester
- HC, heavy chain
- HDX, hydrogen-deuterium exchange
- HRF, hydroxyl radical footprinting
- IT, ion trap
- IgG, immunoglobulin gamma
- LC, light chain
- LysC, Lysyl endopeptidase
- MS, mass spectrometry
- NMR, nuclear magnetic resonance
- RC, rate constant
- SASA, solvent accessible surface area
- SEC, size-exclusion chromatography
- VEGF, vascular endothelial growth factor
- covalent labeling
- footprinting
- mAb, monoclonal antibody
- protein structure
- structural proteomics
Collapse
Affiliation(s)
- Parminder Kaur
- a Center for Proteomics and Bioinformatics ; Case Western Reserve University ; Cleveland , OH USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Farrokhi V, Bajrami B, Nemati R, McShane AJ, Rueckert F, Wells B, Yao X. Development of Structural Marker Peptides for Cystic Fibrosis Transmembrane Conductance Regulator in Cell Plasma Membrane by Reversed-Footprinting Mass Spectrometry. Anal Chem 2015; 87:8603-7. [DOI: 10.1021/acs.analchem.5b01962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | | | | | | | - Franz Rueckert
- Department
of Physics, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Barrett Wells
- Department
of Physics, University of Connecticut, Storrs, Connecticut 06269, United States
| | | |
Collapse
|
33
|
Lapidus LJ, Acharya S, Schwantes CR, Wu L, Shukla D, King M, DeCamp SJ, Pande VS. Complex pathways in folding of protein G explored by simulation and experiment. Biophys J 2015; 107:947-55. [PMID: 25140430 DOI: 10.1016/j.bpj.2014.06.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 01/28/2023] Open
Abstract
The B1 domain of protein G has been a classic model system of folding for decades, the subject of numerous experimental and computational studies. Most of the experimental work has focused on whether the protein folds via an intermediate, but the evidence is mostly limited to relatively slow kinetic observations with a few structural probes. In this work we observe folding on the submillisecond timescale with microfluidic mixers using a variety of probes including tryptophan fluorescence, circular dichroism, and photochemical oxidation. We find that each probe yields different kinetics and compare these observations with a Markov State Model constructed from large-scale molecular dynamics simulations and find a complex network of states that yield different kinetics for different observables. We conclude that there are many folding pathways before the final folding step and that these paths do not have large free energy barriers.
Collapse
Affiliation(s)
- Lisa J Lapidus
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan.
| | - Srabasti Acharya
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan
| | | | - Ling Wu
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan
| | - Diwakar Shukla
- Department of Chemistry, Stanford University, Stanford, California; Simbios Program, Stanford University, Stanford, California
| | - Michael King
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan
| | - Stephen J DeCamp
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan
| | - Vijay S Pande
- Department of Chemistry, Stanford University, Stanford, California; Simbios Program, Stanford University, Stanford, California; Department of Structural Biology, Stanford University, Stanford, California; Biophysics Program, Stanford University, Stanford, California; Department of Computer Science, Stanford University, Stanford, California
| |
Collapse
|
34
|
Wang B, Tsybovsky Y, Palczewski K, Chance MR. Reliable determination of site-specific in vivo protein N-glycosylation based on collision-induced MS/MS and chromatographic retention time. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:729-41. [PMID: 24549892 PMCID: PMC3988243 DOI: 10.1007/s13361-013-0823-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 05/12/2023]
Abstract
Site-specific glycopeptide mapping for simultaneous glycan and peptide characterization by MS is difficult because of the heterogeneity and diversity of glycosylation in proteins and the lack of complete fragmentation information for either peptides or glycans with current fragmentation technologies. Indeed, multiple peptide and glycan combinations can readily match the same mass of glycopeptides even with mass errors less than 5 ppm providing considerably ambiguity and analysis of complex mixtures of glycopeptides becomes quite challenging in the case of large proteins. Here we report a novel strategy to reliably determine site-specific N-glycosylation mapping by combining collision-induced dissociation (CID)-only fragmentation with chromatographic retention times of glycopeptides. This approach leverages an experimental pipeline with parallel analysis of glyco- and deglycopeptides. As the test case we chose ABCA4, a large integral membrane protein with 16 predicted sites for N-glycosylation. Taking advantage of CID features such as high scan speed and high intensity of fragment ions together combined with the retention times of glycopeptides to conclusively identify the non-glycolytic peptide from which the glycopeptide was derived, we obtained virtually complete information about glycan compositions and peptide sequences, as well as the N-glycosylation site occupancy and relative abundances of each glycoform at specific sites for ABCA4. The challenges provided by this example provide guidance in analyzing complex relatively pure glycoproteins and potentially even more complex glycoprotein mixtures.
Collapse
Affiliation(s)
- Benlian Wang
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Yaroslav Tsybovsky
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Krzysztof Palczewski
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Mark R. Chance
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
- To whom correspondence may be addressed: Mark R. Chance, Case Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106-4965. Tel.: 216-368-4406; Fax: 216-368-3812;
| |
Collapse
|
35
|
|
36
|
Wang J, Song W, Hu X, Yu Z, Liu Y, Liu R. Comparative studies on the discrepant fragmentation mechanisms of the GLy-Asp-Gly-Arg and Arg-Gly-Asp-Gly: evidence for the mobile proton model. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2014; 20:317-325. [PMID: 25420344 DOI: 10.1255/ejms.1287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The fragmentation mechanisms of singly protonated Gly-Asp-Gly-Arg (GDGRI and Arg-Gly-Asp-Gly (RGDGJ were investigated by mass spectrometry and theoretical methods. Both protonated molecules are fragmented mainly at the Asp-Gly amide bond C-terminal to Asp, as supported by quantum chemical calculations. Charge distributions of C and N atoms (Qc + QN) on the amide bonds were collected when the ionizing proton was fixed at different nitrogen atoms along the backbone for each peptide. Compared with the neutral molecules, the total charges of C and N atoms (Qc + QN] for the singly charged peptides tended to be negative when the proton was located at the backbone nitrogen atoms. A relatively larger value of QC + QN corresponds to a higher trend of fragmentation, which is consistent with the experimental relative abundances data that the predominant ions are y2 for [GDGR + H]+ and b3 for [RGDG + H]+. Also, the anhydride mechanism driven by the C-terminal COOH for [RGDG + H]+ was explored by a quantum-mechanical/molecular-mechanical method. Calculations indicate that the protonated peptide can be cleaved through an unusual charge-directed pathway by forming a salt bridge at the C-termini. The formation of the anhydride linkage is much more feasible since this process needs very little energy and is exother- mic, though the subsequent nucleophilic attack on the Asp carbonyl carbon is more difficult. The combined experimental and theoretical methods substantiate the mobile proton model, which opens a way to analyze quantitatively the discrepant fragmentation of dissociated peptides in peptide/protein identification.
Collapse
Affiliation(s)
- Jinhu Wang
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
- College of Chemistry Chemical Engineering and Material Science, Zaozhuang University, Zaozhuang, Shandong 277160, China
| | - Wei Song
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Xinxin Hu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Zehua Yu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Yongjun Liu
- Key Lab of Theoretical and Computational Chemistry in University of Shandong, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
37
|
Li X, Li Z, Xie B, Sharp JS. Improved identification and relative quantification of sites of peptide and protein oxidation for hydroxyl radical footprinting. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1767-76. [PMID: 24014150 PMCID: PMC3814024 DOI: 10.1007/s13361-013-0719-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 05/08/2023]
Abstract
Protein oxidation is typically associated with oxidative stress and aging and affects protein function in normal and pathological processes. Additionally, deliberate oxidative labeling is used to probe protein structure and protein-ligand interactions in hydroxyl radical protein footprinting (HRPF). Oxidation often occurs at multiple sites, leading to mixtures of oxidation isomers that differ only by the site of modification. We utilized sets of synthetic, isomeric "oxidized" peptides to test and compare the ability of electron-transfer dissociation (ETD) and collision-induced dissociation (CID), as well as nano-ultra high performance liquid chromatography (nanoUPLC) separation, to quantitate oxidation isomers with one oxidation at multiple adjacent sites in mixtures of peptides. Tandem mass spectrometry by ETD generates fragment ion ratios that accurately report on relative oxidative modification extent on specific sites, regardless of the charge state of the precursor ion. Conversely, CID was found to generate quantitative MS/MS product ions only at the higher precursor charge state. Oxidized isomers having multiple sites of oxidation in each of two peptide sequences in HRPF product of protein Robo-1 Ig1-2, a protein involved in nervous system axon guidance, were also identified and the oxidation extent at each residue was quantified by ETD without prior liquid chromatography (LC) separation. ETD has proven to be a reliable technique for simultaneous identification and relative quantification of a variety of functionally different oxidation isomers, and is a valuable tool for the study of oxidative stress, as well as for improving spatial resolution for HRPF studies.
Collapse
Affiliation(s)
- Xiaoyan Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | | | | | | |
Collapse
|
38
|
Pilau EJ, Iglesias AH, Gozzo FC. A new label-free approach for the determination of reaction rates in oxidative footprinting experiments. Anal Bioanal Chem 2013; 405:7679-86. [DOI: 10.1007/s00216-013-7247-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 11/29/2022]
|
39
|
Snider GW, Ruggles E, Khan N, Hondal RJ. Selenocysteine confers resistance to inactivation by oxidation in thioredoxin reductase: comparison of selenium and sulfur enzymes. Biochemistry 2013; 52:5472-81. [PMID: 23865454 DOI: 10.1021/bi400462j] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mammalian thioredoxin reductase (TR) is a selenocysteine (Sec)-containing homodimeric pyridine nucleotide oxidoreductase which catalyzes the reduction of oxidized thioredoxin. We have previously demonstrated the full-length mitochondrial mammalian TR (mTR3) enzyme to be resistant to inactivation from exposure to 50 mM H2O2. Because a Sec residue oxidizes more rapidly than a cysteine (Cys) residue, it has been previously thought that Sec-containing enzymes are "sensitive to oxidation" compared to Cys-orthologues. Here we show for the first time a direct comparison of the abilities of Sec-containing mTR3 and the Cys-orthologue from D. melanogaster (DmTR) to resist inactivation by oxidation from a variety of oxidants including H2O2, hydroxyl radical, peroxynitrite, hypochlorous acid, hypobromous acid, and hypothiocyanous acid. The results show that the Sec-containing TR is far superior to the Cys-orthologue TR in resisting inactivation by oxidation. To further test our hypothesis that the use of Sec confers strong resistance to inactivation by oxidation, we constructed a chimeric enzyme in which we replaced the active site Cys nucleophile of DmTR with a Sec residue using semisynthesis. The chimeric Sec-containing enzyme has similar ability to resist inactivation by oxidation as the wild type Sec-containing TR from mouse mitochondria. The use of Sec in the chimeric enzyme "rescued" the enzyme from oxidant-induced inactivation for all of the oxidants tested in this study, in direct contrast to previous understanding. We discuss two possibilities for this rescue effect from inactivation under identical conditions of oxidative stress: (i) Sec resists overoxidation and inactivation, whereas a Cys residue can be permanently overoxidized to the sulfinic acid form, and (ii) Sec protects the body of the enzyme from harmful oxidation by allowing the enzyme to metabolize (turnover) various oxidants much better than a Cys-containing TR.
Collapse
Affiliation(s)
- Gregg W Snider
- Department of Biochemistry, University of Vermont, 89 Beaumont Ave, Given Building Room B413, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
40
|
Gau BC, Chen J, Gross ML. Fast photochemical oxidation of proteins for comparing solvent-accessibility changes accompanying protein folding: data processing and application to barstar. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1834:1230-8. [PMID: 23485913 PMCID: PMC3663899 DOI: 10.1016/j.bbapap.2013.02.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 11/21/2022]
Abstract
Mass spectrometry-based protein footprinting reveals regional and even amino-acid structural changes and fills the gap for many proteins and protein interactions that cannot be studied by X-ray crystallography or NMR spectroscopy. Hydroxyl radical-mediated labeling has proven to be particularly informative in this pursuit because many solvent-accessible residues can be labeled by OH in a protein or protein complex, thus providing more coverage than does specific amino-acid modifications. Finding all the OH-labeling sites requires LC/MS/MS analysis of a proteolyzed sample, but data processing is daunting without the help of automated software. We describe here a systematic means for achieving a comprehensive residue-resolved analysis of footprinting data in an efficient manner, utilizing software common to proteomics core laboratories. To demonstrate the method and the utility of OH-mediated labeling, we show that FPOP easily distinguishes the buried and exposed residues of barstar in its folded and unfolded states. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.
Collapse
Affiliation(s)
- Brian C Gau
- Donald Danforth Plant Science Center, Washington University, St. Louis, MO 63132, USA
| | | | | |
Collapse
|
41
|
Domazou AS, Zelenay V, Koppenol WH, Gebicki JM. Efficient depletion of ascorbate by amino acid and protein radicals under oxidative stress. Free Radic Biol Med 2012; 53:1565-73. [PMID: 22910232 DOI: 10.1016/j.freeradbiomed.2012.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/27/2012] [Accepted: 08/03/2012] [Indexed: 11/23/2022]
Abstract
Ascorbate levels decrease in organisms subjected to oxidative stress, but the responsible reactions have not been identified. Our earlier studies have shown that protein C-centered radicals react rapidly with ascorbate. In aerobes, these radicals can react with oxygen to form peroxyl radicals. To estimate the relative probabilities of the reactions of ascorbate with protein C- and O-centered radicals, we measured by pulse radiolysis the rate constants of the reactions of C-centered radicals in Gly, Ala, and Pro with O₂ and of the resultant peroxyl radicals with ascorbate. Calculations based on the concentrations of ascorbate and oxygen in human tissues show that the relative probabilities of reactions of the C-centered amino acid radicals with O₂ and ascorbate vary between 1:2.6 for the pituitary gland and 1:0.02 for plasma, with intermediate ratios for other tissues. The high frequency of occurrence of Gly, Ala, and Pro in proteins and the similar reaction rate constants of their C-centered radicals with O₂ and their peroxo-radicals with ascorbate suggest that our results are also valid for proteins. Thus, the formation of protein C- or O-centered radicals in vivo can account for the loss of ascorbate in organisms under oxidative stress.
Collapse
Affiliation(s)
- Anastasia S Domazou
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich CH-8093, Switzerland
| | | | | | | |
Collapse
|
42
|
Conformational dynamics of activation for the pentameric complex of dimeric G protein-coupled receptor and heterotrimeric G protein. Structure 2012; 20:826-40. [PMID: 22579250 DOI: 10.1016/j.str.2012.03.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 01/08/2023]
Abstract
Photoactivation of rhodopsin (Rho), a G protein-coupled receptor, causes conformational changes that provide a specific binding site for the rod G protein, G(t). In this work we employed structural mass spectrometry techniques to elucidate the structural changes accompanying transition of ground state Rho to photoactivated Rho (Rho(∗)) and in the pentameric complex between dimeric Rho(∗) and heterotrimeric G(t). Observed differences in hydroxyl radical labeling and deuterium uptake between Rho(∗) and the (Rho(∗))(2)-G(t) complex suggest that photoactivation causes structural relaxation of Rho following its initial tightening upon G(t) coupling. In contrast, nucleotide-free G(t) in the complex is significantly more accessible to deuterium uptake allowing it to accept GTP and mediating complex dissociation. Thus, we provide direct evidence that in the critical step of signal amplification, Rho(∗) and G(t) exhibit dissimilar conformational changes when they are coupled in the (Rho(∗))(2)-G(t) complex.
Collapse
|
43
|
Zong W, Liu R, Guo C, Sun F. Novel biomarkers of protein oxidation sites and degrees using horse cytochrome c as the target by mass spectrometry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 78:1581-1586. [PMID: 21377407 DOI: 10.1016/j.saa.2011.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 01/27/2011] [Accepted: 02/07/2011] [Indexed: 05/30/2023]
Abstract
Biomarkers held both incredible application and significant challenge in probing the oxidation mechanisms of proteins under oxidative stress. Here, mass spectrometry (MS) coupled with liquid chromatography (LC) was applied to establish a new pipeline to probe the oxidation sites and degrees of horse cytochrome c (HCC) with its oxidative products serving as the biomarkers. Samples of native and UV/H(2)O(2) oxidized HCCs were digested by trypsin and subjected to biomarker discovery using LC/MS and tandem mass spectrometry (MS/MS). Experiment results proved that the main oxidation sites were located at Cys(14), Cys(17), Met(65) and Met(80) residues in peptides C(14)AQC(heme)HTVEK(22), C(14)AQCHTVEK(22), E(60)ETLMEYLENPKK(73), M(80)IFAGIK(86) and M(80)IFAGIKK(87). Quantitative analysis on the oxidized peptides showed the oxidation degrees of target sites had positive correlations with extended oxidation dose and controlled by residues types and their accessibility to solvent molecules. Being able to provide plentiful information for the oxidation sites and oxidation degrees, the identified oxidized products were feasibility biomarkers for HCC oxidation, compared with the conventional protein carbonyl assay.
Collapse
Affiliation(s)
- Wansong Zong
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, PR China
| | | | | | | |
Collapse
|
44
|
Juers DH, Weik M. Similarities and differences in radiation damage at 100 K versus 160 K in a crystal of thermolysin. JOURNAL OF SYNCHROTRON RADIATION 2011; 18:329-337. [PMID: 21525640 DOI: 10.1107/s0909049511007631] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 03/01/2011] [Indexed: 05/30/2023]
Abstract
The temperature-dependence of radiation damage in macromolecular X-ray crystallography is currently much debated. Most protein crystallographic studies are based on data collected at 100 K. Data collection at temperatures below 100 K has been proposed to reduce radiation damage and above 100 K to be useful for kinetic crystallography that is aimed at the generation and trapping of protein intermediate states. Here the global and specific synchrotron-radiation sensitivity of crystalline thermolysin at 100 and 160 K are compared. Both types of damage are higher at 160 K than at 100 K. At 160 K more residue types are affected (Lys, Asp, Gln, Pro, Thr, Met, Asn) than at 100 K (Met, Asp, Glu, Lys). The X-ray-induced relative atomic B-factor increase is shown to correlate with the proximity of the atom to the nearest solvent channel at 160 K. Two models may explain the observed correlation: either an increase in static disorder or an increased attack of hydroxyl radicals from the solvent area of the crystal.
Collapse
Affiliation(s)
- Douglas H Juers
- Department of Physics, Whitman College, Walla Walla, WA 99362, USA
| | | |
Collapse
|
45
|
Influence of amino acid relative position on the oxidative modification of histidine and glycine peptides. Anal Bioanal Chem 2011; 399:2779-94. [DOI: 10.1007/s00216-011-4668-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/05/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
|
46
|
Kiselar JG, Chance MR. Future directions of structural mass spectrometry using hydroxyl radical footprinting. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:1373-82. [PMID: 20812376 PMCID: PMC3012749 DOI: 10.1002/jms.1808] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hydroxyl radical protein footprinting coupled to mass spectrometry has been developed over the last decade and has matured to a powerful method for analyzing protein structure and dynamics. It has been successfully applied in the analysis of protein structure, protein folding, protein dynamics, and protein-protein and protein-DNA interactions. Using synchrotron radiolysis, exposure of proteins to a 'white' X-ray beam for milliseconds provides sufficient oxidative modification to surface amino acid side chains, which can be easily detected and quantified by mass spectrometry. Thus, conformational changes in proteins or protein complexes can be examined using a time-resolved approach, which would be a valuable method for the study of macromolecular dynamics. In this review, we describe a new application of hydroxyl radical protein footprinting to probe the time evolution of the calcium-dependent conformational changes of gelsolin on the millisecond timescale. The data suggest a cooperative transition as multiple sites in different molecular subdomains have similar rates of conformational change. These findings demonstrate that time-resolved protein footprinting is suitable for studies of protein dynamics that occur over periods ranging from milliseconds to seconds. In this review, we also show how the structural resolution and sensitivity of the technology can be improved as well. The hydroxyl radical varies in its reactivity to different side chains by over two orders of magnitude, thus oxidation of amino acid side chains of lower reactivity are more rarely observed in such experiments. Here we demonstrate that the selected reaction monitoring (SRM)-based method can be utilized for quantification of oxidized species, improving the signal-to-noise ratio. This expansion of the set of oxidized residues of lower reactivity will improve the overall structural resolution of the technique. This approach is also suggested as a basis for developing hypothesis-driven structural mass spectrometry experiments.
Collapse
Affiliation(s)
- Janna G Kiselar
- Center for Proteomics and Bioinformatics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | |
Collapse
|
47
|
Sun F, Zong W, Liu R, Wang M, Zhang P, Xu Q. The relative charge ratio between C and N atoms in amide bond acts as a key factor to determine peptide fragment efficiency in different charge states. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1857-1862. [PMID: 20688527 DOI: 10.1016/j.jasms.2010.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 06/24/2010] [Accepted: 06/30/2010] [Indexed: 05/29/2023]
Abstract
The influence of charge state on the peptide dissociation behavior in tandem mass spectrometry (MS/MS) is worthy of discussion. Comparative studies of singly- and doubly-protonated peptide molecules are performed to explore the effect and mechanism of charge state on peptide fragmentation. In view of the charge-directed cleavage of protonated peptides described in the mobile proton model, radiolytic oxidation was applied to change the charge distribution of peptides but retain the sequence. Experimental studies of collision energy-dependent fragmentation efficiencies coupled with quantum chemical calculations indicated that the cleavage of ARRA and its side-chain oxidation products with oxygen atoms added followed a trend that doubly-protonated peptides fragment more easily than singly-protonated forms, while the oxidation product with the guanidine group deleted showed the opposite trend. By analyzing the charge distribution around the amide bonds, we found that the relative charge ratios between C and N atoms (Q(C)/Q(N)) in the amide bonds provided a reasonable explanation for peptide fragmentation efficiencies. An increase of the Q(C)/Q(N) value of the amide bond means that a peptide fragments more easily, and vice versa. The results described in this paper provide an experimental and calculation strategy for predicting peptide fragmentation efficiency.
Collapse
Affiliation(s)
- Feng Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment and Health, Jinan, PR China
| | | | | | | | | | | |
Collapse
|
48
|
Economical evolution: microbes reduce the synthetic cost of extracellular proteins. mBio 2010; 1. [PMID: 20824102 PMCID: PMC2932507 DOI: 10.1128/mbio.00131-10] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 07/29/2010] [Indexed: 11/20/2022] Open
Abstract
Protein evolution is not simply a race toward improved function. Because organisms compete for limited resources, fitness is also affected by the relative economy of an organism’s proteome. Indeed, many abundant proteins contain relatively high percentages of amino acids that are metabolically less taxing for the cell to make, thus reducing cellular cost. However, not all abundant proteins are economical, and many economical proteins are not particularly abundant. Here we examined protein composition and found that the relative synthetic cost of amino acids constrains the composition of microbial extracellular proteins. In Escherichia coli, extracellular proteins contain, on average, fewer energetically expensive amino acids independent of their abundance, length, function, or structure. Economic pressures have strategically shaped the amino acid composition of multicomponent surface appendages, such as flagella, curli, and type I pili, and extracellular enzymes, including type III effector proteins and secreted serine proteases. Furthermore, in silico analysis of Pseudomonas syringae, Mycobacterium tuberculosis, Saccharomyces cerevisiae, and over 25 other microbes spanning a wide range of GC content revealed a broad bias toward more economical amino acids in extracellular proteins. The synthesis of any protein, especially those rich in expensive aromatic amino acids, represents a significant investment. Because extracellular proteins are lost to the environment and not recycled like other cellular proteins, they present a greater burden on the cell, as their amino acids cannot be reutilized during translation. We hypothesize that evolution has optimized extracellular proteins to reduce their synthetic burden on the cell. Microbes secrete proteins to perform essential interactions with their environment, such as motility, pathogenesis, biofilm formation, and resource acquisition. However, because microbes generally lack protein import systems, secretion is often a one-way street. Consequently, secreted proteins are less likely to be recycled by the cell due to environmental loss. We demonstrate that evolution has in turn selected these extracellular proteins for increased economy at the level of their amino acid composition. Compared to their cellular counterparts, extracellular proteins have fewer synthetically expensive amino acids and more inexpensive amino acids. The resulting bias lessens the loss of cellular resources due to secretion. Furthermore, this economical bias was observed regardless of the abundance, length, structure, or function of extracellular proteins. Thus, it appears that economy may address the compositional bias seen in many extracellular proteins and deliver further insight into the forces driving their evolution.
Collapse
|
49
|
Sun F, Liu R, Zong W, Tian Y, Wang M, Zhang P. A Unique Approach to the Mobile Proton Model: Influence of Charge Distribution on Peptide Fragmentation. J Phys Chem B 2010; 114:6350-3. [DOI: 10.1021/jp911772q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Feng Sun
- School of Environmental Science and Engineering, Shandong University, 27 Shanda South Road, Jinan 250100, P. R. China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, 27 Shanda South Road, Jinan 250100, P. R. China
| | - Wansong Zong
- School of Environmental Science and Engineering, Shandong University, 27 Shanda South Road, Jinan 250100, P. R. China
| | - Yanmin Tian
- School of Environmental Science and Engineering, Shandong University, 27 Shanda South Road, Jinan 250100, P. R. China
| | - Meijie Wang
- School of Environmental Science and Engineering, Shandong University, 27 Shanda South Road, Jinan 250100, P. R. China
| | - Pengjun Zhang
- School of Environmental Science and Engineering, Shandong University, 27 Shanda South Road, Jinan 250100, P. R. China
| |
Collapse
|
50
|
Nardi DT, Rosa JC, Jubilut GN, Miranda A, Nascimento N, Nakaie CR. Gamma Ray Irradiation of the Vasoactive Peptide Bradykinin Reveals a Residue- and Position-Dependent Structural Modification. Int J Pept Res Ther 2010. [DOI: 10.1007/s10989-010-9205-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|