1
|
Guevara-Vela JM, Gallegos M, Rocha-Rinza T, Muñoz-Castro Á, Kessler PLR, Martín Pendás Á. New global minimum conformers for the Pt 19 and Pt 20 clusters: low symmetric species featuring different active sites. J Mol Model 2024; 30:310. [PMID: 39153076 PMCID: PMC11330413 DOI: 10.1007/s00894-024-06099-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
CONTEXT The study of platinum (Pt) clusters and nanoparticles is essential due to their extensive range of potential technological applications, particularly in catalysis. The electronic properties that yield optimal catalytic performance at the nanoscale are significantly influenced by the size and structure of Pt clusters. This research aimed to identify the lowest-energy conformers for Pt18 , Pt19 , and Pt20 species using Density Functional Theory (DFT). We discovered new low-symmetry conformers for Pt19 and Pt20 , which are 3.0 and 1.0 kcal/mol more stable, respectively, than previously reported structures. Our study highlights the importance of using density functional approximations that incorporate moderate levels of exact Hartree-Fock exchange, alongside basis sets of at least quadruple-zeta quality. The resulting structures are asymmetric with varying active sites, as evidenced by sigma hole analysis on the electrostatic potential surface. This suggests a potential correlation between electronic structure and catalytic properties, warranting further investigation. METHODS An equivariant graph neural network interatomic potential (NequIP) within the Atomic Simulation Environment suite (ASE) was used to provide initial geometries of the aggregates under study. DFT calculations were performed with the ORCA 5 package, using functional approximations that included Generalized Gradient Approximation (PBE), meta-GGA (TPSS, M06-L), hybrid (PBE0, PBEh), meta-GGA hybrid (TPSSh), and range-separated hybrid ( ω B97x) functionals. Def2-TZVP and Def2-QZVP as well as members of the cc-pwCVXZ-PP family to check basis set convergence were used. QTAIM calculations were performed using the AIMAll suite. Structures were visualized with the AVOGADRO code.
Collapse
Affiliation(s)
- José Manuel Guevara-Vela
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, C. Francisco Tomás y Valiente, 7, Madrid, 28049, Spain
| | - Miguel Gallegos
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería, 8, Oviedo, 33006, Asturias, Spain
| | - Tomás Rocha-Rinza
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán, 04510, Mexico City, Mexico
| | - Álvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, RM, Chile
| | - Peter L Rodríguez Kessler
- Centro de Investigaciones en Óptica A.C., Loma del Bosque 115, Col. Lomas del Campestre, León, 37150, Guanajuato, Mexico.
| | - Ángel Martín Pendás
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería, 8, Oviedo, 33006, Asturias, Spain.
| |
Collapse
|
2
|
Kim T, Kim D. Mesoporous silica-supported platinum nanocatalysts for colorimetric detection of glucose, cholesterol, and C-reactive protein. Dalton Trans 2024; 53:12649-12661. [PMID: 39012273 DOI: 10.1039/d4dt01534g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Noble metal nanoparticles decorated on a catalyst support with a large specific surface area can exhibit enhanced catalytic activity. To this end, a synthetic method to heterogeneously and evenly nucleate platinum nanoparticles (Pt NPs) onto mesoporous silica nanoparticles (MSNs) is developed. The obtained Pt NP-modified MSNs (Pt-MSNs) are characterized as a thin layer of 3 nm-sized Pt NPs densely assembled on the MSN surface, by which the throughput of the peroxidase-like activity of Pt-MSNs is greatly improved. The utility of Pt-MSNs in colorimetric detection of analytes is validated for two different assay schemes. Firstly, colloidally dispersed Pt-MSNs are employed as a peroxidase-mimic in a two-step cascade reaction to quantitate glucose/cholesterol based on the amount of H2O2 produced by glucose/cholesterol oxidase. Secondly, detection of C-reactive protein (CRP) is conducted on a solid substrate by adopting a sandwich immunoassay format. Detection limits are estimated to be 20 μM, 55 μM, and 3.9 pM for glucose, cholesterol, and CRP, respectively.
Collapse
Affiliation(s)
- Taehyeong Kim
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea.
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Dokyoon Kim
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea.
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
3
|
Ye J, Lu J, Yuan H, Wan Z, Wan X, Tang Y, Li L, Wen D. Monodispersed Molecular Phthalocyanine with Sulfur-Driven Electron Delocalization for Enhanced Electrochemical Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308285. [PMID: 38353330 DOI: 10.1002/smll.202308285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/14/2023] [Indexed: 07/05/2024]
Abstract
Heterogenizing the molecular catalysts on conductive scaffolds to achieve the isolated molecular dispersion and expected coordination structures is significant yet still challenging. Herein, a sulfur-driving strategy to anchor monodispersed cobalt phthalocyanine on nitrogen and sulfur co-doped graphene (NSG-CoPc) is demonstrated. Experimental and theoretical analysis prove that the incorporation of S dramatically improves the adsorption capability of NSG and evokes the monodispersion of the CoPc molecule, promoting the axial Co─N coordination and the electron delocalization of the Co catalytic center. Benefiting from the reduced activation energy barrier and boosted electron transfer, as well as the maximized active site utilization, NSG-CoPc exhibits outstanding H2O2 oxidization and sensing performance (used as a representative reaction). Moreover, the usage of NSG as a substrate can be readily extended to other metal (Ni, Cu, and Fe) phthalocyanine molecules with molecular-level dispersion. This work clarifies the mechanism of heteroatoms decoration and provides a new paradigm in devising monodispersed molecular catalysts with modulated chemical surroundings for broad applications.
Collapse
Affiliation(s)
- Jianqi Ye
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jinhua Lu
- State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hongxing Yuan
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ziqi Wan
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xinhao Wan
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yarui Tang
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lanqing Li
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Dan Wen
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
4
|
Joksović S, Kundačina I, Milošević I, Stanojev J, Radonić V, Bajac B. Single-Walled Carbon Nanotube-Modified Gold Leaf Immunosensor for Escherichia coli Detection. ACS OMEGA 2024; 9:22277-22284. [PMID: 38799361 PMCID: PMC11112687 DOI: 10.1021/acsomega.4c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
The requirement to prevent foodborne illnesses underscores the need for reliable detection tools, stimulating biosensor technology with practical solutions for in-field applications. This study introduces a low-cost immunosensor based on a single-walled carbon nanotube (SWCNT)-modified gold leaf electrode (GLE) for the sensitive detection of Escherichia coli. The immunosensor is realized with a layer-by-layer (LbL) assembly technique, creating an electrostatic bond between positively charged polyethylenimine (PEI) and negatively charged carboxyl-functionalized SWCNTs on the GLE. The structural and functional characterization of the PEI-SWCNT film was performed with Raman spectroscopy, high-resolution scanning electron microscopy (HRSEM), and electrical measurements. The PEI-SWCNT film was used as a substrate for antibody immobilization, and the electrochemical sensing potential was validated using electrochemical impedance spectroscopy (EIS). The results showed a wide dynamic range of E. coli detection, 101-108 cfu/mL, with a limit of detection (LOD) of 1.6 cfu/mL in buffer and 15 cfu/mL in the aqueous solution used for cleansing fresh lettuce leaves, affirming its efficiency as a practical and affordable tool in enhancing food safety.
Collapse
Affiliation(s)
- Sara Joksović
- University of Novi Sad,
BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Ivana Kundačina
- University of Novi Sad,
BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Ivana Milošević
- University of Novi Sad,
BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Jovana Stanojev
- University of Novi Sad,
BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Vasa Radonić
- University of Novi Sad,
BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Branimir Bajac
- University of Novi Sad,
BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| |
Collapse
|
5
|
German N, Popov A, Ramanaviciene A. Reagentless Glucose Biosensor Based on Combination of Platinum Nanostructures and Polypyrrole Layer. BIOSENSORS 2024; 14:134. [PMID: 38534241 DOI: 10.3390/bios14030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
Two types of low-cost reagentless electrochemical glucose biosensors based on graphite rod (GR) electrodes were developed. The electrodes modified with electrochemically synthesized platinum nanostructures (PtNS), 1,10-phenanthroline-5,6-dione (PD), glucose oxidase (GOx) without and with a polypyrrole (Ppy) layer-(i) GR/PtNS/PD/GOx and (ii) GR/PtNS/PD/GOx/Ppy, respectively, were prepared and tested. Glucose biosensors based on GR/PtNS/PD/GOx and GR/PtNS/PD/GOx/Ppy electrodes were characterized by the sensitivity of 10.1 and 5.31 μA/(mM cm2), linear range (LR) up to 16.5 and 39.0 mM, limit of detection (LOD) of 0.198 and 0.561 mM, good reproducibility, and storage stability. The developed glucose biosensors based on GR/PtNS/PD/GOx/Ppy electrodes showed exceptional resistance to interfering compounds and proved to be highly efficient for the determination of glucose levels in blood serum.
Collapse
Affiliation(s)
- Natalija German
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Anton Popov
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 243, LT-03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 243, LT-03225 Vilnius, Lithuania
| |
Collapse
|
6
|
Guan Y, Xu F, Sun L, Luo Y, Cheng R, Zou Y, Liao L, Cao Z. Hydrogen Peroxide Electrochemical Sensor Based on Ag/Cu Bimetallic Nanoparticles Modified on Polypyrrole. SENSORS (BASEL, SWITZERLAND) 2023; 23:8536. [PMID: 37896629 PMCID: PMC10611109 DOI: 10.3390/s23208536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Due to the strong oxidizing properties of H2O2, excessive discharge of H2O2 will cause great harm to the environment. Moreover, H2O2 is also an energetic material used as fuel, with specific attention given to its safety. Therefore, it is of great importance to explore and prepare good sensitive materials for the detection of H2O2 with a low detection limit and high selectivity. In this work, a kind of hydrogen peroxide electrochemical sensor has been fabricated. That is, polypyrrole (PPy) has been electropolymerized on the glass carbon electrode (GCE), and then Ag and Cu nanoparticles are modified together on the surface of polypyrrole by electrodeposition. SEM analysis shows that Cu and Ag nanoparticles are uniformly deposited on the surface of PPy. Electrochemical characterization results display that the sensor has a good response to H2O2 with two linear intervals. The first linear range is 0.1-1 mM (R2 = 0.9978, S = 265.06 μA/ (mM × cm2)), and the detection limit is 0.027 μM (S/N = 3). The second linear range is 1-35 mM (R2 = 0.9969, 445.78 μA/ (mM × cm2)), corresponding to 0.063 μM of detection limit (S/N = 3). The sensor reveals good reproducibility (σ = 2.104), repeatability (σ = 2.027), anti-interference, and stability. The recoveries of the electrode are 99.84-103.00% (for 0.1-1 mM of linear range) and 98.65-104.80% (for 1-35 mM linear range). Furthermore, the costs of the hydrogen peroxide electrochemical sensor proposed in this work are reduced largely by using non-precious metals without degradation of the sensing performance of H2O2. This study provides a facile way to develop nanocomposite electrochemical sensors.
Collapse
Affiliation(s)
- Yanxun Guan
- Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.G.); (Y.L.); (R.C.); (Y.Z.); (L.L.)
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
| | - Fen Xu
- Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.G.); (Y.L.); (R.C.); (Y.Z.); (L.L.)
| | - Lixian Sun
- Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.G.); (Y.L.); (R.C.); (Y.Z.); (L.L.)
| | - Yumei Luo
- Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.G.); (Y.L.); (R.C.); (Y.Z.); (L.L.)
| | - Riguang Cheng
- Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.G.); (Y.L.); (R.C.); (Y.Z.); (L.L.)
| | - Yongjin Zou
- Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.G.); (Y.L.); (R.C.); (Y.Z.); (L.L.)
| | - Lumin Liao
- Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.G.); (Y.L.); (R.C.); (Y.Z.); (L.L.)
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science & Technology, Changsha 410114, China;
| |
Collapse
|
7
|
Javanbakht S, Darvishi S, Dorchei F, Hosseini-Ghalehno M, Dehghani M, Pooresmaeil M, Suzuki Y, Ul Ain Q, Ruiz Rubio L, Shaabani A, Hayashita T, Namazi H, Heydari A. Cyclodextrin Host-Guest Recognition in Glucose-Monitoring Sensors. ACS OMEGA 2023; 8:33202-33228. [PMID: 37744789 PMCID: PMC10515351 DOI: 10.1021/acsomega.3c03746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
Diabetes mellitus is a prevalent chronic health condition that has caused millions of deaths worldwide. Monitoring blood glucose levels is crucial in diabetes management, aiding in clinical decision making and reducing the incidence of hypoglycemic episodes, thereby decreasing morbidity and mortality rates. Despite advancements in glucose monitoring (GM), the development of noninvasive, rapid, accurate, sensitive, selective, and stable systems for continuous monitoring remains a challenge. Addressing these challenges is critical to improving the clinical utility of GM technologies in diabetes management. In this concept, cyclodextrins (CDs) can be instrumental in the development of GM systems due to their high supramolecular recognition capabilities based on the host-guest interaction. The introduction of CDs into GM systems not only impacts the sensitivity, selectivity, and detection limit of the monitoring process but also improves biocompatibility and stability. These findings motivated the current review to provide a comprehensive summary of CD-based blood glucose sensors and their chemistry of glucose detection, efficiency, and accuracy. We categorize CD-based sensors into four groups based on their modification strategies, including CD-modified boronic acid, CD-modified mediators, CD-modified nanoparticles, and CD-modified functionalized polymers. These findings shed light on the potential of CD-based sensors as a promising tool for continuous GM in diabetes mellitus management.
Collapse
Affiliation(s)
- Siamak Javanbakht
- Research
Laboratory of Dendrimers and Natural Polymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Sima Darvishi
- Faculty
of Chemistry, Khajeh Nasir Toosi University, Tehran, Iran
| | - Faeze Dorchei
- Polymer
Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | | | - Marjan Dehghani
- Department
of Chemistry, Shahid Bahonar University
of Kerman, Kerman 76169, Iran
| | - Malihe Pooresmaeil
- Research
Laboratory of Dendrimers and Natural Polymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Yota Suzuki
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
- Graduate
School of Science and Engineering, Saitama
University, Saitama 338-8570, Japan
| | - Qurat Ul Ain
- Department
of Materials Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad H-12, Pakistan
| | - Leire Ruiz Rubio
- Macromolecular
Chemistry Group (LQM), Department of Physical Chemistry, Faculty of
Science and Technology, University of Basque
Country (UPV/EHU), Leioa 48940, Spain
- Basque
Centre for Materials, Applications and Nanostructures
(BCMaterials), UPV/EHU
Science Park, Leioa 48940, Spain
| | - Ahmad Shaabani
- Faculty
of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Takashi Hayashita
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Hassan Namazi
- Research
Laboratory of Dendrimers and Natural Polymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
- Research
Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran
| | - Abolfazl Heydari
- Polymer
Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National
Institute of Rheumatic Diseases, Nábrežie I. Krasku 4782/4, 921 12 Piešt’any, Slovakia
| |
Collapse
|
8
|
Oliveira DA, McLamore ES, Gomes CL. Rapid and label-free Listeria monocytogenes detection based on stimuli-responsive alginate-platinum thiomer nanobrushes. Sci Rep 2022; 12:21413. [PMID: 36496515 PMCID: PMC9741594 DOI: 10.1038/s41598-022-25753-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
In this work, we demonstrate the development of a rapid and label-free electrochemical biosensor to detect Listeria monocytogenes using a novel stimulus-response thiomer nanobrush material. Nanobrushes were developed via one-step simultaneous co-deposition of nanoplatinum (Pt) and alginate thiomers (ALG-thiomer). ALG-thiomer/Pt nanobrush platform significantly increased the average electroactive surface area of electrodes by 7 folds and maintained the actuation properties (pH-stimulated osmotic swelling) of the alginate. Dielectric behavior during brush actuation was characterized with positively, neutral, and negatively charged redox probes above and below the isoelectric point of alginate, indicating ALG-thiomer surface charge plays an important role in signal acquisition. The ALG-thiomer platform was biofunctionalized with an aptamer selective for the internalin A protein on Listeria for biosensing applications. Aptamer loading was optimized and various cell capture strategies were investigated (brush extended versus collapsed). Maximum cell capture occurs when the ALG-thiomer/aptamer is in the extended conformation (pH > 3.5), followed by impedance measurement in the collapsed conformation (pH < 3.5). Low concentrations of bacteria (5 CFU mL-1) were sensed from a complex food matrix (chicken broth) and selectivity testing against other Gram-positive bacteria (Staphylococcus aureus) indicate the aptamer affinity is maintained, even at these pH values. The new hybrid soft material is among the most efficient and fastest (17 min) for L. monocytogenes biosensing to date, and does not require sample pretreatment, constituting a promising new material platform for sensing small molecules or cells.
Collapse
Affiliation(s)
- Daniela A Oliveira
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Eric S McLamore
- Agricultural Sciences, Clemson University, Clemson, SC, 29631, USA
| | - Carmen L Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
9
|
Stolz R, Kolln AF, Rocha BC, Brinks A, Eagleton AM, Mendecki L, Vashisth H, Mirica KA. Epitaxial Self-Assembly of Interfaces of 2D Metal-Organic Frameworks for Electroanalytical Detection of Neurotransmitters. ACS NANO 2022; 16:13869-13883. [PMID: 36099649 PMCID: PMC9527791 DOI: 10.1021/acsnano.2c02529] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 08/31/2022] [Indexed: 05/19/2023]
Abstract
This paper identifies the electrochemical properties of individual facets of anisotropic layered conductive metal-organic frameworks (MOFs) based on M3(2,3,6,7,10,11-hexahydroxytriphenylene)2 (M3(HHTP)2) (M = Co, Ni). The electroanalytical advantages of each facet are then applied toward the electrochemical detection of neurochemicals. By employing epitaxially controlled deposition of M3(HHTP)2 MOFs on electrodes, the contribution of the basal plane ({001} facets) and edge sites ({100} facets) of these MOFs can be individually determined using electrochemical characterization techniques. Despite having a lower observed heterogeneous electron transfer rate constant, the {001} facets of the M3(HHTP)2 systems prove more selective and sensitive for the detection of dopamine than the {100} facets of the same MOF, with the limit of detection (LOD) of 9.9 ± 2 nM in phosphate-buffered saline and 214 ± 48 nM in a simulated cerebrospinal fluid. Langmuir isotherm studies accompanied by all-atom MD simulations suggested that the observed improvement in performance and selectivity is related to the adsorption characteristics of analytes on the basal plane versus edge sites of the MOF interfaces. This work establishes that the distinct crystallographic facets of 2D MOFs can be used to control the fundamental interactions between analyte and electrode, leading to tunable electrochemical properties by controlling their preferential orientation through self-assembly.
Collapse
Affiliation(s)
- Robert
M. Stolz
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Anna F. Kolln
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Brunno C. Rocha
- Department
of Chemical Engineering, Kingsbury Hall, University of New Hampshire, 33 Academic Way, Durham, New Hampshire 03824, United States
| | - Anna Brinks
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Aileen M. Eagleton
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Lukasz Mendecki
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Harish Vashisth
- Department
of Chemical Engineering, Kingsbury Hall, University of New Hampshire, 33 Academic Way, Durham, New Hampshire 03824, United States
| | - Katherine A. Mirica
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, 41 College Street, Hanover, New Hampshire 03755, United States
| |
Collapse
|
10
|
Ni-Coated Diamond-like Carbon-Modified TiO2 Nanotube Composite Electrode for Electrocatalytic Glucose Oxidation. Molecules 2022; 27:molecules27185815. [PMID: 36144550 PMCID: PMC9501468 DOI: 10.3390/molecules27185815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, a Ni and diamond-like carbon (DLC)-modified TiO2 nanotube composite electrode was prepared as a glucose sensor using a combination of an anodizing process, electrodeposition, and magnetron sputtering. The composition and morphology of the electrodes were analyzed by a scanning electron microscope and energy dispersive X-ray detector, and the electrochemical glucose oxidation performance of the electrodes was evaluated by cyclic voltammetry and chronoamperometry. The results show that the Ni-coated DLC-modified TiO2 electrode has better electrocatalytic oxidation performance for glucose than pure TiO2 and electrodeposited Ni on a TiO2 electrode, which can be attributed to the synergistic effect between Ni and carbon. The glucose test results indicate a good linear correlation in a glucose concentration range of 0.99–22.97 mM, with a sensitivity of 1063.78 μA·mM−1·cm−2 and a detection limit of 0.53 μM. The results suggest that the obtained Ni-DLC/TiO2 electrode has great application potential in the field of non-enzymatic glucose sensors.
Collapse
|
11
|
Ouyang Q, Xie Z, Liu J, Gong M, Yu H. Application of Atomic Force Microscopy as Advanced Asphalt Testing Technology: A Comprehensive Review. Polymers (Basel) 2022; 14:polym14142851. [PMID: 35890627 PMCID: PMC9316586 DOI: 10.3390/polym14142851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
In the past three decades, researchers have engaged in the relationship between the composition, macro performance, and microstructure of asphalt. There are many research results in the use of atomic force microscopy (AFM) to study the microstructure and related mechanisms of asphalt. Based on previous studies, the performance of asphalt from its microstructure has been observed and analyzed, and different evaluation indices and modification methods have been proposed, providing guidance toward improving the performance of asphalt materials and benefiting potential applications. This review focuses on the typical application and analysis of AFM in the study of the aging regeneration and modification properties of asphalt. Additionally, this review introduces the history of the rheological and chemical testing of asphalt materials and the history of using AFM to investigate asphalt. Furthermore, this review introduces the basic principles of various modes of application of AFM in the microstructure of asphalt, providing a research direction for the further popularization and application of AFM in asphalt or other materials in the future. This review aims to provide a reference and direction for researchers to further popularize the application of AFM in asphalt and standardize the testing methods of AFM. This paper is also helpful in further exploring the relationship between the microstructure and macro performance of asphalt.
Collapse
Affiliation(s)
- Qijian Ouyang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; (Q.O.); (Z.X.); (J.L.)
| | - Zhiwei Xie
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; (Q.O.); (Z.X.); (J.L.)
| | - Jinhai Liu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; (Q.O.); (Z.X.); (J.L.)
| | - Minghui Gong
- State Key Laboratory of High Performance Civil Engineering Materials, Nanjing 210096, China;
| | - Huayang Yu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; (Q.O.); (Z.X.); (J.L.)
- State Key Laboratory of High Performance Civil Engineering Materials, Nanjing 210096, China;
- Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology, Guangzhou 510641, China
- Correspondence:
| |
Collapse
|
12
|
Li Y, Keller AL, Cryan MT, Ross AE. Metal Nanoparticle Modified Carbon-Fiber Microelectrodes Enhance Adenosine Triphosphate Surface Interactions with Fast-Scan Cyclic Voltammetry. ACS MEASUREMENT SCIENCE AU 2022; 2:96-105. [PMID: 35479102 PMCID: PMC9026253 DOI: 10.1021/acsmeasuresciau.1c00026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 05/08/2023]
Abstract
Adenosine triphosphate (ATP) is an important rapid signaling molecule involved in a host of pathologies in the body. Historically, ATP is difficult to directly detect electrochemically with fast-scan cyclic voltammetry (FSCV) due to limited interactions at bare carbon-fibers. Systematic investigations of how ATP interacts at electrode surfaces is necessary for developing more sensitive electrochemical detection methods. Here, we have developed gold nanoparticle (AuNP), and platinum nanoparticle (PtNP) modified carbon-fiber microelectrodes coupled to FSCV to measure the extent to which ATP interacts at metal nanoparticle-modified surfaces and to improve the sensitivity of direct electrochemical detection. AuNP and PtNPs were electrodeposited on the carbon-fiber surface by scanning from -1.2 to 1.5 V for 30 s in 0.5 mg/mL HAuCl4 or 0.5 mg/mLK2PtCl6. Overall, we demonstrate an average 4.1 ± 1.0-fold increase in oxidative ATP current at AuNP-modified and a 3.5 ± 0.3-fold increase at PtNP-modified electrodes. Metal nanoparticle-modified surfaces promoted improved electrocatalytic conversion of ATP oxidation products at the surface, facilitated enhanced adsorption strength and surface coverage, and significantly improved sensitivity. ATP was successfully detected within living murine lymph node tissue following exogenous application. Overall, this study demonstrates a detailed characterization of ATP oxidation at metal nanoparticle surfaces and a significantly improved method for direct electrochemical detection of ATP in tissue.
Collapse
|
13
|
Keller AL, Quarin SM, Strobbia P, Ross AE. Platinum Nanoparticle Size and Density Impacts Purine Electrochemistry with Fast-Scan Cyclic Voltammetry. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2022; 169:046514. [PMID: 35497383 PMCID: PMC9053744 DOI: 10.1149/1945-7111/ac65bc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We demonstrate the density and shape of platinum nanoparticles (PtNP) on carbon-fiber microelectrodes with fast-scan cyclic voltammetry (FSCV) directly impacts detection of adenosine. Previously, we showed that metal nanoparticle-modified carbon significantly improves adenine-based purine detection; however, how the size and shape of the particles impact electrochemical detection was not investigated. Electrochemical investigations of how the surface topology and morphology impacts detection is necessary for designing ultrasensitive electrodes and for expanding fundamental knowledge of electrode-analyte interactions. To change the density and shape of the PtNP's on the surface, we varied the concentration of K2PtCl6 and electrodeposition time. We show that increasing the concentration of K2PtCl6 increases the density of PtNP's while increasing the electrodeposition time impacts both the density and size. These changes manipulate the adsorption behavior which impacts sensitivity. Based on these results, an optimal electrodeposition procedure was determined to be 1.0 mg/mL of K2PtCl6 deposited for 45 s and this results in an average increase in adenosine detection by 3.5 ±0.3-fold. Interestingly, increasing the size and density of PtNPs negatively impacts dopamine detection. Overall, this work provides fundamental insights into the differences between adenosine and dopamine interaction at electrode surfaces.
Collapse
|
14
|
Abstract
Printing technology promises a viable solution for the low-cost, rapid, flexible, and mass fabrication of biosensors. Among the vast number of printing techniques, screen printing and inkjet printing have been widely adopted for the fabrication of biosensors. Screen printing provides ease of operation and rapid processing; however, it is bound by the effects of viscous inks, high material waste, and the requirement for masks, to name a few. Inkjet printing, on the other hand, is well suited for mass fabrication that takes advantage of computer-aided design software for pattern modifications. Furthermore, being drop-on-demand, it prevents precious material waste and offers high-resolution patterning. To exploit the features of inkjet printing technology, scientists have been keen to use it for the development of biosensors since 1988. A vast number of fully and partially inkjet-printed biosensors have been developed ever since. This study presents a short introduction on the printing technology used for biosensor fabrication in general, and a brief review of the recent reports related to virus, enzymatic, and non-enzymatic biosensor fabrication, via inkjet printing technology in particular.
Collapse
|
15
|
Schuster S, Su Yien Ting A. Decolourisation of triphenylmethane dyes by biogenically synthesised iron nanoparticles from fungal extract. Mycology 2022; 13:56-67. [PMID: 35186413 PMCID: PMC8856070 DOI: 10.1080/21501203.2021.1948928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In this study, the extract from endophytic Fusarium proliferatum was used to synthesise iron nanoparticles (Fe-NPs). The properties of the biogenically synthesised Fe-NPs were then characterised by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). The efficacy of the synthesised Fe-NPs in decolourizing triphenylmethane dyes was evaluated. Results revealed that fungal extract from F. proliferatum was successfully used to synthesise Fe-NPs. The Fe-NPs produced were 20-50 nm in size, and consist of substantial elemental Fe content (14.83%). The FTIR spectra revealed the presence of amino acids and proteins on the surface of the Fe-NPs, confirming the biogenic synthesis of the Fe-NPs. When tested for decolourisation, the Fe-NPs were most effective in decolourising Methyl Violet (28.9%), followed by Crystal Violet (23.8%) and Malachite Green (18.3%). This study is the first few to report the biogenic synthesis of Fe-NPs using extracts from an endophytic Fusarium species and their corresponding dye decolourisation activities.
Collapse
|
16
|
Self-Referenced Optical Fiber Sensor Based on LSPR Generated by Gold and Silver Nanoparticles Embedded in Layer-by-Layer Nanostructured Coatings. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this work, an optical fiber sensor based on the localized surface plasmon resonance (LSPR) phenomenon has been designed for the detection of two different chemical species (mercury and hydrogen peroxide) by using Layer-by-Layer Embedding (LbL-E) as a nanofabrication technique. In the first step, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) have been synthesized by using a chemical protocol as a function of the strict control of three main parameters, which were polyelectrolyte concentration, a loading agent, and a reducing agent. In the second step, their incorporation into nanometric thin films have been demonstrated as a function of the number of bilayers, which shows two well-located absorption peaks associated to their LSPR in the visible region at 420 nm (AgNPs) and 530 nm (AuNPs). Finally, both plasmonic peaks provide a stable real-time reference measurement, which can be extracted from the spectral response of the optical fiber sensor, which shows a specific sensing mechanism as a function of the analyte of study.
Collapse
|
17
|
Fu X, Sale M, Ding B, Lewis W, Silvester DS, Ling CD, D'Alessandro DM. Hydrogen-Bonding 2D Coordination Polymer for Enzyme-Free Electrochemical Glucose Sensing. CrystEngComm 2022. [DOI: 10.1039/d2ce00240j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regular detection of blood glucose levels is a critical indicator for effective diabetes management. Owing to the intrinsic highly sensitive nature of enzymes, the performance of enzymatic glucose sensors is...
Collapse
|
18
|
Liu X, Qiu Y, Jiang D, Li F, Gan Y, Zhu Y, Pan Y, Wan H, Wang P. Covalently grafting first-generation PAMAM dendrimers onto MXenes with self-adsorbed AuNPs for use as a functional nanoplatform for highly sensitive electrochemical biosensing of cTnT. MICROSYSTEMS & NANOENGINEERING 2022; 8:35. [PMID: 35450327 PMCID: PMC8967855 DOI: 10.1038/s41378-022-00352-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/26/2021] [Accepted: 12/28/2021] [Indexed: 05/16/2023]
Abstract
2D MXene-Ti3C2Tχ has demonstrated promising application prospects in various fields; however, it fails to function properly in biosensor setups due to restacking and anodic oxidation problems. To expand beyond these existing limitations, an effective strategy to for modifying the MXene by covalently grafting first-generation poly(amidoamine) dendrimers onto an MXene in situ (MXene@PAMAM) was reported herein. When used as a conjugated template, the MXene not only preserved the high conductivity but also conferred a specific 2D architecture and large specific surface areas for anchoring PAMAM. The PAMAM, an efficient spacer and stabilizer, simultaneously suppressed the substantial restacking and oxidation of the MXene, which endowed this hybrid with improved electrochemical performance compared to that of the bare MXene in terms of favorable conductivity and stability under anodic potential. Moreover, the massive amino terminals of PAMAM offer abundant active sites for adsorbing Au nanoparticles (AuNPs). The resulting 3D hierarchical nanoarchitecture, AuNPs/MXene@PAMAM, had advanced structural merits that led to its superior electrochemical performance in biosensing. As a proof of concept, this MXene@PAMAM-based nanobiosensing platform was applied to develop an immunosensor for detecting human cardiac troponin T (cTnT). A fast, sensitive, and highly selective response toward the target in the presence of a [Fe(CN)6]3-/4- redox marker was realized, ensuring a wide detection of 0.1-1000 ng/mL with an LOD of 0.069 ng/mL. The sensor's signal only decreased by 4.38% after 3 weeks, demonstrating that it exhibited satisfactory stability and better results than previously reported MXene-based biosensors. This work has potential applicability in the bioanalysis of cTnT and other biomarkers and paves a new path for fabricating high-performance MXenes for biomedical applications and electrochemical engineering.
Collapse
Affiliation(s)
- Xin Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, 310027 Hangzhou, China
- Cancer Centre, Zhejiang University, 310058 Hangzhou, Zhejiang China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- Binjiang Institute of Zhejiang University, 310053 Hangzhou, China
| | - Yong Qiu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Deming Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Fengheng Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Ying Gan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, 310027 Hangzhou, China
- School of Biomedical Engineering, Tianjin Medical University, 300070 Tianjin, China
| | - Yuxuan Zhu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Yuxiang Pan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, 310027 Hangzhou, China
- Research Center of Smart Sensing, ZhejiangLab, 310027 Hangzhou, China
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, 310027 Hangzhou, China
- Cancer Centre, Zhejiang University, 310058 Hangzhou, Zhejiang China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- Binjiang Institute of Zhejiang University, 310053 Hangzhou, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, 310027 Hangzhou, China
- Cancer Centre, Zhejiang University, 310058 Hangzhou, Zhejiang China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- Binjiang Institute of Zhejiang University, 310053 Hangzhou, China
| |
Collapse
|
19
|
Functionalization of Screen-Printed Sensors with a High Reactivity Carbonaceous Material for Ascorbic Acid Detection in Fresh-Cut Fruit with Low Vitamin C Content. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9120354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, carbon screen-printed sensors (C-SPEs) were functionalized with a high reactivity carbonaceous material (HRCM) to measure the ascorbic acid (AA) concentration in fresh-cut fruit (i.e., watermelon and apple) with a low content of vitamin C. HRCM and the functionalized working electrodes (WEs) were characterized by SEM and TEM. The increases in the electroactive area and in the diffusion of AA molecules towards the WE surface were evaluated by cyclic voltammetry (CV) and chronoamperometry. The performance of HRCM-SPEs were evaluated by CV and constant potential amperometry compared with the non-functionalized C-SPEs and MW-SPEs nanostructured with multi-walled carbon nanotubes. The results indicated that SPEs functionalized with 5 mg/mL of HRCM and 10 mg/mL of MWCNTs had the best performances. HRCM and MWCNTs increased the electroactive area by 1.2 and 1.4 times, respectively, whereas, after functionalization, the AA diffusion rate towards the electrode surface increased by an order of 10. The calibration slopes of HRCM and MWCNTs improved from 1.9 to 3.7 times, thus reducing the LOD of C-SPE from 0.55 to 0.15 and 0.28 μM, respectively. Finally, the functionalization of the SPEs proved to be indispensable for determining the AA concentration in the watermelon and apple samples.
Collapse
|
20
|
Khan MAR, Mamun MSA, Ara MH. Review on platinum nanoparticles: Synthesis, characterization, and applications. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Ferrier DC, Honeychurch KC. Carbon Nanotube (CNT)-Based Biosensors. BIOSENSORS 2021; 11:bios11120486. [PMID: 34940243 PMCID: PMC8699144 DOI: 10.3390/bios11120486] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 05/28/2023]
Abstract
This review focuses on recent advances in the application of carbon nanotubes (CNTs) for the development of sensors and biosensors. The paper discusses various configurations of these devices, including their integration in analytical devices. Carbon nanotube-based sensors have been developed for a broad range of applications including electrochemical sensors for food safety, optical sensors for heavy metal detection, and field-effect devices for virus detection. However, as yet there are only a few examples of carbon nanotube-based sensors that have reached the marketplace. Challenges still hamper the real-world application of carbon nanotube-based sensors, primarily, the integration of carbon nanotube sensing elements into analytical devices and fabrication on an industrial scale.
Collapse
Affiliation(s)
- David C. Ferrier
- Institute of Bio-Sensing Technology, Frenchay Campus, University of the West of England, Bristol BS16 1QY, UK;
| | - Kevin C. Honeychurch
- Institute of Bio-Sensing Technology, Frenchay Campus, University of the West of England, Bristol BS16 1QY, UK;
- Centre for Research in Biosciences, Frenchay Campus, Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| |
Collapse
|
22
|
Montague SJ, Patel P, Martin EM, Slater A, Quintanilla LG, Perrella G, Kardeby C, Nagy M, Mezzano D, Mendes PM, Watson SP. Platelet activation by charged ligands and nanoparticles: platelet glycoprotein receptors as pattern recognition receptors. Platelets 2021; 32:1018-1030. [PMID: 34266346 DOI: 10.1080/09537104.2021.1945571] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
Charge interactions play a critical role in the activation of the innate immune system by damage- and pathogen-associated molecular pattern receptors. The ability of these receptors to recognize a wide spectrum of ligands through a common mechanism is critical in host defense. In this article, we argue that platelet glycoprotein receptors that signal through conserved tyrosine-based motifs function as pattern recognition receptors (PRRs) for charged endogenous and exogenous ligands, including sulfated polysaccharides, charged proteins and nanoparticles. This is exemplified by GPVI, CLEC-2 and PEAR1 which are activated by a wide spectrum of endogenous and exogenous ligands, including diesel exhaust particles, sulfated polysaccharides and charged surfaces. We propose that this mechanism has evolved to drive rapid activation of platelets at sites of injury, but that under some conditions it can drive occlusive thrombosis, for example, when blood comes into contact with infectious agents or toxins. In this Opinion Article, we discuss mechanisms behind charge-mediated platelet activation and opportunities for designing nanoparticles and related agents such as dendrimers as novel antithrombotics.
Collapse
Affiliation(s)
- Samantha J Montague
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pushpa Patel
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, UK
| | - Eleyna M Martin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lourdes Garcia Quintanilla
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Caroline Kardeby
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Magdolna Nagy
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Diego Mezzano
- Laboratorio de Trombosis y Hemostasia, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Paula M Mendes
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, UK
| |
Collapse
|
23
|
Maruthapandi M, Saravanan A, Das P, Luong JHT, Gedanken A. Microbial inhibition and biosensing with multifunctional carbon dots: Progress and perspectives. Biotechnol Adv 2021; 53:107843. [PMID: 34624454 DOI: 10.1016/j.biotechadv.2021.107843] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 12/25/2022]
Abstract
Carbon dots (CDs) and their doped counterparts including nitrogen-doped CDs (N@CDs) have been synthesized by bottom-up or top-down approaches from different precursors. The attractiveness of such emerging 2D‑carbon-based nanosized materials is attributed to their excellent biocompatibility, preparation, aqueous dispersibility, and functionality. The antimicrobial, optical, and electrochemical properties of CDs have been advocated for two important biotechnological applications: bacterial eradication and sensing/biosensing. CDs as well as N@CDs act as antimicrobial agents as their surfaces encompass functional hydroxyl, carboxyl, and amino groups that generate free radicals. As a new class of photoluminescent nanomaterials, CDs can be employed in diversified analytics. CDs with surface carboxyl or amino groups form nanocomposites with nanomaterials or be conjugated with biorecognition molecules toward the development of sensors/biosensors. The deployment of conductive CDs in electrochemical sensing has also increased significantly because of their quantum size, excellent biocompatibility, enzyme-mimicking activity, and high surface area. The review also addresses the ongoing challenges and promises of CDs in pathogenesis and analytics. Perspectives on the future possibilities include the use of CDs in microbial viability assay, wound healing, antiviral therapy, and medical devices.
Collapse
Affiliation(s)
- Moorthy Maruthapandi
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Arumugam Saravanan
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Poushali Das
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - John H T Luong
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
24
|
Hutapea S, Elveny M, Amin MA, Attia M, Khan A, Sarkar SM. Adsorption of thallium from wastewater using disparate nano-based materials: A systematic review. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
25
|
Housaindokht MR, Janati‐Fard F, Ashraf N. Recent advances in applications of surfactant‐based voltammetric sensors. J SURFACTANTS DETERG 2021. [DOI: 10.1002/jsde.12541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mohammad Reza Housaindokht
- Department of Chemistry, Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
- Research and Technology Center of Biomolecules, Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| | - Fatemeh Janati‐Fard
- Research and Technology Center of Biomolecules, Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| | - Narges Ashraf
- Department of Chemistry, Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
26
|
Ngo QP, He M, Concellón A, Yoshinaga K, Luo SXL, Aljabri N, Swager TM. Reconfigurable Pickering Emulsions with Functionalized Carbon Nanotubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8204-8211. [PMID: 34190561 DOI: 10.1021/acs.langmuir.1c00904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pickering emulsions (PEs) achieve interfacial stabilization by colloidal particle surfactants and are commonly used in food, cosmetics, and pharmaceuticals. Carbon nanotubes (CNTs) have recently been used as stabilizing materials to create dynamic single emulsions. In this study, we used the formation of Meisenheimer complexes on functionalized CNTs to fabricate complex biphasic emulsions containing hydrocarbons (HCs) and fluorocarbons (FCs). The reversible nature of Meisenheimer complex formation allows for further functionalization at the droplet-water interface. The strong affinity of fluorofluorescent perylene bisimide (F-PBI) to the CNTs was used to enhance the assembly of CNTs on the FC-water interface. The combination of different concentrations of the functionalized CNTs and the pelene additive enables predictable complex emulsion morphologies. Reversible morphology reconfiguration was explored with the addition of molecular surfactants. Our results show that the interfacial properties of functionalized CNTs have considerable utility in the fabrication of complex dynamic emulsions.
Collapse
Affiliation(s)
- Quynh P Ngo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Maggie He
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Alberto Concellón
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kosuke Yoshinaga
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shao-Xiong Lennon Luo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nouf Aljabri
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Exploration Advanced Research Center (EXPEC ARC), Saudi Aramco, Dhahran 31311, Saudi Arabia
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
27
|
Wang H, Zhang J, Wang D, Wang Z, Chen Y, Feng X. Flexible triphase enzyme electrode based on hydrophobic porous PVDF membrane for high-performance bioassays. Biosens Bioelectron 2021; 183:113201. [PMID: 33812291 DOI: 10.1016/j.bios.2021.113201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/13/2021] [Accepted: 03/23/2021] [Indexed: 01/13/2023]
Abstract
Flexible bioassays based on oxidase-catalyzed and electrocatalytic cascade reactions have been widely reported. However, the fluctuant oxygen level and high anodic potential restricts the detection accuracy. To overcome these challenges, we report here a flexible triphase enzyme electrode by assembling an oxidase enzyme layer and Pt electrocatalysts onto a carbon nanotube film/porous polyvinylidene fluoride hydrophobic substrate. Such a flexible enzyme electrode has an air-liquid-solid triphase reaction zone where oxygen level is air phase dependent (constant and sufficient high), which stabilized the oxidase kinetics and enabled the cathodic measurement of enzymatic product H2O2 with minimum interferents caused from oxygen level fluctuation and many oxidizable species in analyte solution. Furthermore, the flexible triphase enzyme electrode exhibited good mechanical stability even after being bent over 600 times and an excellent air permeability, which are crucial to wearable devices that require long-term skin contact.
Collapse
Affiliation(s)
- Haili Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Jun Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China.
| | - Dandan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Zhaohong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Yangru Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Xinjian Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
28
|
Faruk Hossain M, Slaughter G. Flexible electrochemical uric acid and glucose biosensor. Bioelectrochemistry 2021; 141:107870. [PMID: 34118555 DOI: 10.1016/j.bioelechem.2021.107870] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/15/2021] [Accepted: 06/02/2021] [Indexed: 12/23/2022]
Abstract
Fully integrated uric acid (UA) and glucose biosensors were fabricated on polydimethylsiloxane/polyimide platform by facile one step laser scribed technique. The laser scribed graphene (LSG) on the thin polyimide film was functionalized using pyrenebutanoic acid, succinimide ester (PBSE) to improve the electrochemical activity of the biosensors. The LSG was further decorated with platinum nanoparticles (PtNPs) to promote the electrocatalytic activity towards the oxidation of UA. Glucose oxidase was immobilized on the PtNPs modified surface for selective detection of glucose. The fabricated biosensors were characterized via scanning electron microscopy (SEM), Energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), and electrochemical methods (cyclic voltammetry and amperometry measurements). Outstanding electrocatalytic activities toward oxidation of UA and glucose were demonstrated. A wide detection range of 5 µM to 480 µM UA with a high sensitivity of 156.56 µA/mMcm2 and a calculated detection limit (LOD) of 0.018 μM (S/N = 3) were achieved for the UA biosensor. The glucose biosensor exhibited a detection range of 5 µM to 3200 µM with a sensitivity of 12.64 µA/mMcm2 and an LOD of 2.57 µM (S/N = 3). These integrated biosensors offer great promise for potential applications in wearable UA and glucose sensing due to their good sensitivity, selectivity, and stability properties.
Collapse
Affiliation(s)
- Md Faruk Hossain
- Frank Reidy Research Center for Bioelectrics, Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23528, USA
| | - Gymama Slaughter
- Frank Reidy Research Center for Bioelectrics, Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23528, USA.
| |
Collapse
|
29
|
Trujillo RM, Barraza DE, Zamora ML, Cattani-Scholz A, Madrid RE. Nanostructures in Hydrogen Peroxide Sensing. SENSORS 2021; 21:s21062204. [PMID: 33801140 PMCID: PMC8004286 DOI: 10.3390/s21062204] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/31/2023]
Abstract
In recent years, several devices have been developed for the direct measurement of hydrogen peroxide (H2O2), a key compound in biological processes and an important chemical reagent in industrial applications. Classical enzymatic biosensors for H2O2 have been recently outclassed by electrochemical sensors that take advantage of material properties in the nano range. Electrodes with metal nanoparticles (NPs) such as Pt, Au, Pd and Ag have been widely used, often in combination with organic and inorganic molecules to improve the sensing capabilities. In this review, we present an overview of nanomaterials, molecules, polymers, and transduction methods used in the optimization of electrochemical sensors for H2O2 sensing. The different devices are compared on the basis of the sensitivity values, the limit of detection (LOD) and the linear range of application reported in the literature. The review aims to provide an overview of the advantages associated with different nanostructures to assess which one best suits a target application.
Collapse
Affiliation(s)
- Ricardo Matias Trujillo
- Laboratorio de Medios e Interfases (LAMEIN), DBI, FACET, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 Tucumán, Argentina; (R.M.T.); (D.E.B.); (M.L.Z.)
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Chacabuco 461, 4000 Tucumán, Argentina
| | - Daniela Estefanía Barraza
- Laboratorio de Medios e Interfases (LAMEIN), DBI, FACET, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 Tucumán, Argentina; (R.M.T.); (D.E.B.); (M.L.Z.)
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Chacabuco 461, 4000 Tucumán, Argentina
| | - Martin Lucas Zamora
- Laboratorio de Medios e Interfases (LAMEIN), DBI, FACET, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 Tucumán, Argentina; (R.M.T.); (D.E.B.); (M.L.Z.)
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Chacabuco 461, 4000 Tucumán, Argentina
| | - Anna Cattani-Scholz
- Walter Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 4, 85748 Garching, Germany
- Correspondence: (A.C.-S.); (R.E.M.)
| | - Rossana Elena Madrid
- Laboratorio de Medios e Interfases (LAMEIN), DBI, FACET, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 Tucumán, Argentina; (R.M.T.); (D.E.B.); (M.L.Z.)
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Chacabuco 461, 4000 Tucumán, Argentina
- Correspondence: (A.C.-S.); (R.E.M.)
| |
Collapse
|
30
|
Hei Y, Liu J, Bi Y, Bai J, Hu Z, Ma C, Liu J, Zhou M. Sweet potato derived three-dimensional carbon aerogels with a hierarchical meso-macroporous and branching nanostructure for electroanalysis. Analyst 2021; 146:1216-1223. [PMID: 33367324 DOI: 10.1039/d0an02210a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, sweet potatoes (Ipomoea batatas) are used as low-cost precursors to synthesize carbon aerogels with a hierarchical meso-macroporous and branching nanostructure (HMM-BNCA). An HMM-BNCA-modified glassy carbon electrode (GCE) (HMM-BNCA/GCE) exhibits high electrocatalytic activity for some electroactive biomolecules. For ascorbic acid (AA), the HMM-BNCA/GCE exhibits low oxidation peak potential and detection limit (-0.005 V and 0.45 μM, S/N = 3), high sensitivities (195.43 and 121.00 μA mM-1 cm-2) and wide linear ranges (10-1250 μM and 1250-4750 μM), which are superior to those obtained at the GCE and carbon nanotube (CNT)-modified GCE (CNT/GCE). The HMM-BNCA/GCE exhibits significant resistance to fouling and the interfering substances for the detection of AA. The successful and accurate detection of AA in real samples (such as vitamin C injections and vitamin C soft drinks) in this work demonstrates the feasibility and tremendous potential of HMM-BNCA/GCE for the analysis of AA in complex systems.
Collapse
Affiliation(s)
- Yashuang Hei
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, P.R. China.
| | - Jingju Liu
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, P.R. China.
| | - Yanni Bi
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, P.R. China.
| | - Jing Bai
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, P.R. China.
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China.
| | - Chongbo Ma
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, P.R. China.
| | - Jian Liu
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, P.R. China.
| | - Ming Zhou
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, P.R. China.
| |
Collapse
|
31
|
Gold-Platinum Core-Shell Nanoparticles with Thiolated Polyaniline and Multi-Walled Carbon Nanotubes for the Simultaneous Voltammetric Determination of Six Drug Molecules. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9020024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this proof-of-concept study, a novel nanocomposite of the thiolated polyaniline (tPANI), multi-walled carbon nanotubes (MWCNTs) and gold–platinum core-shell nanoparticles (Au@Pt) (tPANI-Au@Pt-MWCNT) was synthesized and utilized to modify a glassy carbon electrode (GCE) for simultaneous voltammetric determination of six over-the-counter (OTC) drug molecules: ascorbic acid (AA), levodopa (LD), acetaminophen (AC), diclofenac (DI), acetylsalicylic acid (AS) and caffeine (CA). The nanocomposite (tPANI-Au@Pt-MWCNT) was characterized with transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Using the sensor (GCE-tPANI-Au@Pt-MWCNT) in connection with differential pulse voltammetry (DPV), the calibration plots were determined to be linear up to 570.0, 60.0, 60.0, 115.0, 375.0 and 520.0 µM with limit of detection (LOD) of 1.5, 0.25, 0.15, 0.2, 2.0, and 5.0 µM for AA, LD, AC, DI, AS and CA, respectively. The nanocomposite-modified sensor was successfully used for the determination of these redox-active compounds in commercially available OTC products such as energy drinks, cream and tablets with good recovery yields ranging from 95.48 ± 0.53 to 104.1 ± 1.63%. We envisage that the electrochemical sensor provides a promising platform for future applications towards the detection of redox-active drug molecules in pharmaceutical quality control studies and forensic investigations.
Collapse
|
32
|
Kant T, Shrivas K, Tapadia K, Devi R, Ganesan V, Deb MK. Inkjet-printed paper-based electrochemical sensor with gold nano-ink for detection of glucose in blood serum. NEW J CHEM 2021. [DOI: 10.1039/d1nj00771h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An inkjet-printed paper electrode with gold nanoparticle-ink as a non-enzymatic electrochemical sensor for detection of glucose in blood serum is reported.
Collapse
Affiliation(s)
- Tushar Kant
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
| | - Kamlesh Shrivas
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
| | - Kavita Tapadia
- Department of Chemistry
- National Institute of Technology
- Raipur-492010
- India
| | - Rama Devi
- Department of Chemistry
- National Institute of Technology
- Raipur-492010
- India
| | - Vellaichamy Ganesan
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Manas Kanti Deb
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
| |
Collapse
|
33
|
Carbon Nanotubes and Their Composites: From Synthesis to Applications. ENGINEERING MATERIALS 2021. [DOI: 10.1007/978-3-030-62761-4_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
34
|
Prommapan P, Brljak N, Lowry TW, Van Winkle D, Lenhert S. Aptamer Functionalized Lipid Multilayer Gratings for Label-Free Analyte Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:nano10122433. [PMID: 33291389 PMCID: PMC7762078 DOI: 10.3390/nano10122433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Lipid multilayer gratings are promising optical biosensor elements that are capable of transducing analyte binding events into changes in an optical signal. Unlike solid state transducers, reagents related to molecular recognition and signal amplification can be incorporated into the lipid grating ink volume prior to fabrication. Here we describe a strategy for functionalizing lipid multilayer gratings with a DNA aptamer for the protein thrombin that allows label-free analyte detection. A double cholesterol-tagged, double-stranded DNA linker was used to attach the aptamer to the lipid gratings. This approach was found to be sufficient for binding fluorescently labeled thrombin to lipid multilayers with micrometer-scale thickness. In order to achieve label-free detection with the sub-100 nm-thick lipid multilayer grating lines, the binding affinity was improved by varying the lipid composition. A colorimetric image analysis of the light diffracted from the gratings using a color camera was then used to identify the grating nanostructures that lead to an optimal signal. Lipid composition and multilayer thickness were found to be critical parameters for the signal transduction from the aptamer functionalized lipid multilayer gratings.
Collapse
Affiliation(s)
- Plengchart Prommapan
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA; (P.P.); (T.W.L.); (D.V.W.)
| | - Nermina Brljak
- Department of Chemistry, Florida State University, Tallahassee, FL 32306, USA;
| | - Troy W. Lowry
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA; (P.P.); (T.W.L.); (D.V.W.)
- Department of Biological Science and Integrative Nanoscience Institute, Florida State University, 77 Chieftan Way, Tallahassee, FL 32306, USA
| | - David Van Winkle
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA; (P.P.); (T.W.L.); (D.V.W.)
| | - Steven Lenhert
- Department of Biological Science and Integrative Nanoscience Institute, Florida State University, 77 Chieftan Way, Tallahassee, FL 32306, USA
| |
Collapse
|
35
|
Wu H, Xiao K, Ouyang T, Wang Z, Chen Y, Li N, Liu ZQ. Co-Cr mixed spinel oxide nanodots anchored on nitrogen-doped carbon nanotubes as catalytic electrode for hydrogen peroxide sensing. J Colloid Interface Sci 2020; 585:605-613. [PMID: 33139019 DOI: 10.1016/j.jcis.2020.10.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Hydrogen peroxide (H2O2) is a significant biomarker in physiological processes. Abnormal levels of H2O2 are considered to be closely related to some acute diseases. Therefore, it is important to monitor the H2O2 levels in bio-samples. Herein, we present a novel non-enzymatic electrochemical H2O2 sensor based on the excellent electrocatalytic performance of a composite comprising Zn-Cr-Co ternary spinel metal oxide nanodots (ZnCrCoO4) anchored on the surface of nitrogen-doped carbon nanotubes (NCNTs), denoted as ZnCrCoO4/NCNTs, toward H2O2 reduction. ZnCrCoO4/NCNTs were synthesized using a facile one-pot hydrothermal strategy. The enhanced electrocatalytic performance of ZnCrCoO4 is resulted from the partial substitution of Co in spinel zinc cobaltate (ZnCo2O4) with Cr, which modifies the CoO electronic structure and enhances electroconductivity. The ZnCrCoO4/NCNTs-based H2O2 sensor exhibited a wide quantitative detection range from 1 to 7330 μM with a detection limit of 1 μM. The sensor showed excellent reproducibility and selectivity for H2O2 sensing. In addition, remarkable recoveries were obtained for H2O2-spiked fish serum samples. These results demonstrated that the as-developed sensor has a great potential in monitoring H2O2 levels in practical applications.
Collapse
Affiliation(s)
- Huixiang Wu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, PR China
| | - Kang Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, PR China
| | - Ting Ouyang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, PR China
| | - Zhu Wang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, PR China
| | - Yibo Chen
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, PR China
| | - Nan Li
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, PR China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, PR China.
| |
Collapse
|
36
|
Guan JF, Zou J, Liu YP, Jiang XY, Yu JG. Hybrid carbon nanotubes modified glassy carbon electrode for selective, sensitive and simultaneous detection of dopamine and uric acid. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110872. [PMID: 32559693 DOI: 10.1016/j.ecoenv.2020.110872] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/04/2020] [Accepted: 06/07/2020] [Indexed: 05/20/2023]
Abstract
Based on a hybrid carbon nanotube composite, a novel electrochemical sensor with high sensitivity and selectivity was designed for the simultaneous determination of dopamine (DA) and uric acid (UA). The hybrid carbon nanotube composite was prepared by ultrasonic assembly of carboxylated multi-walled carbon nanotube (MWCNT-COOH) and hydroxylated single-walled carbon nanotube (SWCNT-OH). And the hybrid (MWCNT-COOH/SWCNT-OH) composite was characterized by field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy. The electrochemical performances of MWCNT-COOH/SWCNT-OH composite modified glassy carbon electrode (MWCNT-COOH/SWCNT-OH/GCE) were analyzed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). Under the optimum experimental conditions, the as-prepared sensor showed high sensitivity and selectivity for DA and UA. The calibration curves obtained were linear for the currents versus DA and UA concentrations in the range 2-150 μM, and limits of detection (LODs) were calculated to be 0.37 μM and 0.61 μM (signal-to-noise ratio of 3, S/N = 3), respectively. The recoveries of DA and UA in bovine serum samples at MWCNT-COOH/SWCNT-OH/GCE were in the range 96.18-105.02%, and relative standard deviations (RSDs) were 3.34-7.27%. The proposed electrochemical sensor showed good anti-interference ability, excellent reproducibility and stability, as well as high selectivity, which might provide a promising platform for determination of DA and UA.
Collapse
Affiliation(s)
- Jin-Feng Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jiao Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yi-Ping Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Xin-Yu Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
37
|
Cao Q, Liang B, Yu C, Fang L, Tu T, Wei J, Ye X. High accuracy determination of multi metabolite by an origami-based coulometric electrochemical biosensor. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Nguyen TNH, Nolan JK, Cheng X, Park H, Wang Y, Lam S, Lee H, Kim SJ, Shi R, Chubykin AA, Lee H. Fabrication and ex vivo evaluation of activated carbon-Pt microparticle based glutamate biosensor. J Electroanal Chem (Lausanne) 2020; 866. [PMID: 32489342 DOI: 10.1016/j.jelechem.2020.114136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As one of the most abundant neurotransmitters in the brain and the spinal cord, glutamate plays many important roles in the nervous system. Precise information about the level of glutamate in the extracellular space of living brain tissue may provide new insights on fundamental understanding of the role of glutamate in neurological disorders as well as neurophysiological phenomena. Electrochemical sensor has emerged as a promising solution that can satisfy the requirement for highly reliable and continuous monitoring method with good spatiotemporal resolution for characterization of extracellular glutamate concentration. Recently, we published a method to create a simple printable glutamate biosensor using platinum nanoparticles. In this work, we introduce an even simpler and lower cost conductive polymer composite using commercially available activated carbon with platinum microparticles to easily fabricate highly sensitive glutamate biosensor using direct ink writing method. The fabricated biosensors are functionality superior than previously reported with the sensitivity of 5.73 ± 0.078 nA μM-1 mm-2, detection limit of 0.03 μM, response time less than or equal to 1 s, and a linear range from 1 μM up to 925 μM. In this study, we utilize astrocyte cell culture to demonstrate our biosensor's ability to monitor glutamate uptake process. We also demonstrate direct measurement of glutamate release from optogenetic stimulation in mouse primary visual cortex (V1) brain slices.
Collapse
Affiliation(s)
- Tran N H Nguyen
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Device, Purdue University, West Lafayette, IN, USA
| | - James K Nolan
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Device, Purdue University, West Lafayette, IN, USA
| | - Xi Cheng
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Hyunsu Park
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Device, Purdue University, West Lafayette, IN, USA
| | - Yi Wang
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Device, Purdue University, West Lafayette, IN, USA
| | - Stephanie Lam
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Device, Purdue University, West Lafayette, IN, USA
| | - Hyungwoo Lee
- Samsung Advanced Institute of Technology, Suwon, South Korea
| | - Sang Joon Kim
- Samsung Advanced Institute of Technology, Suwon, South Korea
| | - Riyi Shi
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Alexander A Chubykin
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Device, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
39
|
Li J, Tang C, Liang T, Tang C, Lv X, Tang K, Li CM. Porous Molybdenum Carbide Nanostructured Catalyst toward Highly Sensitive Biomimetic Sensing of H
2
O
2. ELECTROANAL 2020. [DOI: 10.1002/elan.202000008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Juan Li
- Institute for Clean Energy and Advanced Materials, School of Materials and EnergySouthwest University Chongqing 400715 China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies Chongqing 400715 China
| | - Chun Tang
- Institute for Clean Energy and Advanced Materials, School of Materials and EnergySouthwest University Chongqing 400715 China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies Chongqing 400715 China
| | - Taotao Liang
- Institute for Clean Energy and Advanced Materials, School of Materials and EnergySouthwest University Chongqing 400715 China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies Chongqing 400715 China
| | - Chuyue Tang
- Institute for Clean Energy and Advanced Materials, School of Materials and EnergySouthwest University Chongqing 400715 China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies Chongqing 400715 China
| | - Xiaohui Lv
- Institute for Clean Energy and Advanced Materials, School of Materials and EnergySouthwest University Chongqing 400715 China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies Chongqing 400715 China
| | - Kanglai Tang
- Chongqing Sports Medicine Center, Department of Orthopedic Surgery, Southwest HospitalThe Third Military Medical University Chongqing 400038 China
| | - Chang Ming Li
- Institute for Clean Energy and Advanced Materials, School of Materials and EnergySouthwest University Chongqing 400715 China
- Institute of Materials Science and DevicesSuzhou University of Science and Technology Suzhou 215011 China
- Institute of Advanced Cross-field Science and College of Life ScienceQingdao University Qingdao 200671 China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies Chongqing 400715 China
| |
Collapse
|
40
|
Modeling of ultrasensitive DNA hybridization detection based on gold nanoparticles/carbon-nanotubes/chitosan-modified electrodes. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Zhang Y, Ren B, Zhang D, Liu Y, Zhang M, Zhao C, Zheng J. Design principles and fundamental understanding of biosensors for amyloid-β detection. J Mater Chem B 2020; 8:6179-6196. [DOI: 10.1039/d0tb00344a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aβ as biomarker in Alzheimer’s disease (AD) drives the significant research efforts for developing different biosensors with different sensing strategies, materials, and mechanisms for Aβ detection.
Collapse
Affiliation(s)
- Yanxian Zhang
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Baiping Ren
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Dong Zhang
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Yonglan Liu
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Mingzhen Zhang
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Chao Zhao
- Department of Chemical and Biomolecular Engineering
- The University of Alabama
- USA
| | - Jie Zheng
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| |
Collapse
|
42
|
Mei L, Zhang Q, Du M, Zeng Z. Electrochemical biosensing platforms on the basis of reduced graphene oxide and its composites with Au nanodots. Analyst 2020; 145:3749-3756. [DOI: 10.1039/c9an02592h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
rGO and AuNDs-rGO, synthesized by a simple photochemical reduction method, are used for electrochemical biosensors and show good glucose detection.
Collapse
Affiliation(s)
- Liang Mei
- Department of Materials Science and Engineering
- City University of Hong Kong
- Kowloon
- P. R. China
| | - Qingyong Zhang
- Department of Materials Science and Engineering
- City University of Hong Kong
- Kowloon
- P. R. China
| | - Min Du
- Department of Materials Science and Engineering
- City University of Hong Kong
- Kowloon
- P. R. China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering
- City University of Hong Kong
- Kowloon
- P. R. China
| |
Collapse
|
43
|
Osonga FJ, Kalra S, Miller RM, Isika D, Sadik OA. Synthesis, characterization and antifungal activities of eco-friendly palladium nanoparticles. RSC Adv 2020; 10:5894-5904. [PMID: 35497427 PMCID: PMC9049209 DOI: 10.1039/c9ra07800b] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/23/2020] [Indexed: 01/16/2023] Open
Abstract
Palladium is a versatile catalyst, but the synthesis of palladium nanoparticles (PdNPs) is usually attained at a high temperature in the range of 160 °C to 200 °C using toxic reducing agents such as sodium borohydride. We report the synthesis of PdNPs using a low-cost and environmentally-friendly route at ambient temperatures. Quercetin diphosphate (QDP), a naturally-derived flavonoid, was employed as a reducing, capping, and stabilizing agent. The effect of temperature was optimized to produce perfectly spherical PdNP nanoparticles with sizes ranging from 0.1 to 0.3 microns in diameter. At relatively higher concentration of QDP, significantly smaller particles were produced with a size distribution of 1–7 nm. Perfectly spherical PdNP nanoparticles are a rare occurrence, especially under ambient room temperature conditions with fast reaction time. The formation of the nanoparticles was confirmed using UV-vis, TEM, EDS, and XRD. HRTEM demonstrated the lattice structure of the PdNPs. The synthesized PdNPs were also tested for their antifungal properties against Colletotrichum gloeosporioides and Fusarium oxysporum. Results showed that the size of the PdNPs played a critical role in their antifungal activity. However, for F. oxysporum, other factors beyond size could affect the antifungal activity including fine-scale, nutrient composition, and target organisms. Palladium is a versatile catalyst, but the synthesis of palladium nanoparticles (PdNPs) is usually attained at a high temperature in the range of 160 °C to 200 °C using toxic reducing agents such as sodium borohydride.![]()
Collapse
Affiliation(s)
- Francis J. Osonga
- Department of Chemistry
- Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES)
- State University of New York at Binghamton
- USA
| | - Sanjay Kalra
- Department of Chemistry
- Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES)
- State University of New York at Binghamton
- USA
| | - Roland M. Miller
- Department of Chemistry
- Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES)
- State University of New York at Binghamton
- USA
| | - Daniel Isika
- Department of Chemistry and Environmental Science
- New Jersey Institute of Technology
- University Heights
- Newark
- USA
| | - Omowunmi A. Sadik
- Department of Chemistry and Environmental Science
- New Jersey Institute of Technology
- University Heights
- Newark
- USA
| |
Collapse
|
44
|
Kusnin N, Yusof NA, Abdullah J, Sabri S, Mohammad F, Mustafa S, Ab Mutalib NA, Sato S, Takenaka S, Parmin NA, Al-Lohedan HA. Electrochemical sensory detection of Sus scrofa mtDNA for food adulteration using hybrid ferrocenylnaphthalene diimide intercalator as a hybridization indicator. RSC Adv 2020; 10:27336-27345. [PMID: 35516939 PMCID: PMC9055540 DOI: 10.1039/d0ra03585h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/19/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, an electrochemical DNA biosensor was developed based on the fabrication of silicon nanowires/platinum nanoparticles (SiNWs/PtNPs) on a screen-printed carbon electrode (SPCE) for the detection of Sus scrofa mitochondrial DNA (mtDNA) in food utilizing a new hybrid indicator, ferrocenylnaphthalene diimide (FND). The morphology and elemental composition of the SiNWs/PtNPs-modified SPCE was analyzed by field emission scanning electron microscopy (FESEM) combined with energy dispersive X-ray spectroscopy (EDX). Cyclic voltammetry (CV) was used to study the electrical contact between the PtNPs and the screen-printed working electrode through SiNWs, while electrochemical impedance spectroscopy (EIS) was used to measure the charge transfer resistance of the modified electrode. The results clearly showed that the SiNWs/PtNPs were successfully coated onto the electrode and the effective surface area for the SiNWs/PtNPs-modified SPCE was increased 16.8 times as compared with that of the bare SPCE. Differential pulse voltammetry used for the detection of porcine DNA with FND as an intercalator confirmed its specific binding to the double-stranded DNA (dsDNA) sequences. The developed biosensor showed a selective response towards complementary target DNA and was able to distinguish non-complementary and mismatched DNA oligonucleotides. The SiNWs/PtNPs-modified SPCE that was fortified with DNA hybridization demonstrated good linearity in the range of 3 × 10−9 M to 3 × 10−5 M (R2 = 0.96) with a detection limit of 2.4 × 10−9 M. A cross-reactivity study against various types of meat and processed food showed good reliability for porcine samples. An electrochemical DNA biosensor was developed based on the fabrication of silicon nanowires/platinum nanoparticles on a screen-printed carbon electrode for the detection of Sus scrofa mitochondrial DNA in food.![]()
Collapse
|
45
|
Metal Nanoparticles as Green Catalysts. MATERIALS 2019; 12:ma12213602. [PMID: 31684023 PMCID: PMC6862223 DOI: 10.3390/ma12213602] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/24/2019] [Accepted: 10/31/2019] [Indexed: 01/08/2023]
Abstract
Nanoparticles play a significant role in various fields ranging from electronics to composite materials development. Among them, metal nanoparticles have attracted much attention in recent decades due to their high surface area, selectivity, tunable morphologies, and remarkable catalytic activity. In this review, we discuss various possibilities for the synthesis of different metal nanoparticles; specifically, we address some of the green synthesis approaches. In the second part of the paper, we review the catalytic performance of the most commonly used metal nanoparticles and we explore a few roadblocks to the commercialization of the developed metal nanoparticles as efficient catalysts.
Collapse
|
46
|
A gold electrode modified with a gold-graphene oxide nanocomposite for non-enzymatic sensing of glucose at near-neutral pH values. Mikrochim Acta 2019; 186:722. [DOI: 10.1007/s00604-019-3796-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/07/2019] [Indexed: 10/25/2022]
|
47
|
Cuando-Espitia N, Bernal-Martínez J, Torres-Cisneros M, May-Arrioja D. Laser-Induced Deposition of Carbon Nanotubes in Fiber Optic Tips of MMI Devices. SENSORS 2019; 19:s19204512. [PMID: 31627363 PMCID: PMC6832263 DOI: 10.3390/s19204512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/05/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022]
Abstract
The integration of carbon nanotubes (CNTs) into optical fibers allows the application of their unique properties in robust and versatile devices. Here, we present a laser-induced technique to obtain the deposition of CNTs onto the fiber optics tips of multimode interference (MMI) devices. An MMI device is constructed by splicing a section of no-core fiber (NCF) to a single-mode fiber (SMF). The tip of the MMI device is immersed into a liquid solution of CNTs and laser light is launched into the MMI device. CNTs solutions using water and methanol as solvents were tested. In addition, the use of a polymer dispersant polyvinylpyrrolidone (PVP) in the CNTs solutions was also studied. We found that the laser-induced deposition of CNTs performed in water-based solutions generates non-uniform deposits. On the other hand, the laser-induced deposition performed with methanol solutions generates uniform deposits over the fiber tip when no PVP is used and deposition at the center of the fiber when PVP is present in the CNTs solution. The results show the crucial role of the solvent on the spatial features of the laser-induced deposition process. Finally, we register and study the reflection spectra of the as-fabricated CNTs deposited MMI devices.
Collapse
Affiliation(s)
- Natanael Cuando-Espitia
- CONACyT, Applied Physics Group, DICIS, University of Guanajuato, Salamanca, Guanajuato 368850, Mexico.
| | - Juan Bernal-Martínez
- Unidad de Investigación Biomédica y Nanotecnología, Calle Cañada Honda 129, Ojocaliente 1 Aguascalientes, Ags. C.P. 20190, Mexico.
| | - Miguel Torres-Cisneros
- Applied Physics Group, DICIS, University of Guanajuato, Salamanca, Guanajuato 368850, Mexico.
| | - Daniel May-Arrioja
- Centro de Investigaciones en Óptica, Prol. Constitución 607, Fracc. Reserva Loma Bonita, Aguascalientes 20200, Mexico.
| |
Collapse
|
48
|
Nambiar M, Nepal M, Chmielewski J. Self-Assembling Coiled-Coil Peptide Nanotubes with Biomolecular Cargo Encapsulation. ACS Biomater Sci Eng 2019; 5:5082-5087. [PMID: 33455255 DOI: 10.1021/acsbiomaterials.9b01304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Monessha Nambiar
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Manish Nepal
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
49
|
Sabu C, Henna T, Raphey V, Nivitha K, Pramod K. Advanced biosensors for glucose and insulin. Biosens Bioelectron 2019; 141:111201. [DOI: 10.1016/j.bios.2019.03.034] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/06/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022]
|
50
|
Ding Z, Chen L, Wang D, Zhou H, Zhou L, Zhu X, Jiang L, Feng X. Oxygen-Tolerant Hydrogen Peroxide Reduction Catalysts for Reliable Noninvasive Bioassays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903320. [PMID: 31402577 DOI: 10.1002/smll.201903320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Noninvasive bioassays based on the principle of a hydrogen peroxide (H2 O2 ) cathodic reaction are highly desirable for low concentration analyte detection within biofluids since the reaction is immune to interference from oxidizable species. However, the inability to selectively reduce H2 O2 over O2 for commonly used stable catalysts (carbon or noble metals) is one of the key factors limiting their development and practical applications. Herein, catalysts that enable selective H2 O2 reduction in the presence of oxygen with fluctuating concentrations are reported. These catalysts consist of noble metal nanoparticles underneath an amorphous chromium oxide nanolayer, which inhibits O2 diffusion to the metal/oxide interface and suppresses its reduction reaction. Using these catalysts, analytes of low concentration in biofluids, including but not limited to glucose and lactate, are detected within the presence of various interferents. This work enables wide application of the cathodic detection principle and the development of reliable noninvasive bioassays.
Collapse
Affiliation(s)
- Zhenyao Ding
- College of Chemistry, Soochow University, Suzhou, 215123, P. R. China
| | - Liping Chen
- College of Chemistry, Soochow University, Suzhou, 215123, P. R. China
| | - Dandan Wang
- College of Chemistry, Soochow University, Suzhou, 215123, P. R. China
| | - Hang Zhou
- College of Chemistry, Soochow University, Suzhou, 215123, P. R. China
| | - Lu Zhou
- College of Chemistry, Soochow University, Suzhou, 215123, P. R. China
| | - Xing Zhu
- Analysis and Testing Center, Soochow University, Suzhou, 215123, P. R. China
| | - Lei Jiang
- Technical Institute of Physics and Chemistry, CAS, Beijing, 100091, P. R. China
| | - Xinjian Feng
- College of Chemistry, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|