1
|
Tsujihara T, Nishino K, Miura W, Chiba A, Hayashi W, Yoshida C, Takehara T, Suzuki T, Kawano T. Enantioselective One-Pot Synthesis of Cyclopropane-Fused Tetrahydroquinolines via a Ru-Catalyzed Intramolecular Cyclopropanation. Org Lett 2024; 26:6502-6506. [PMID: 39046795 DOI: 10.1021/acs.orglett.4c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A highly enantioselective one-pot synthesis of cyclopropane-fused tetrahydroquinolines bearing carbonyl functionalities, which are difficult to synthesize using conventional methods, is reported. Employing readily accessible alkene-tethered anthranilaldehydes, hydrazone formation and subsequent Ru-catalyzed intramolecular cyclopropanation furnish the desired products in ≤87% yield and ≤95% ee under mild conditions. Various anthranilaldehydes, functionalized alkenes, and N-aryl sulfonyl groups are tolerated, and a series of synthetic transformations were conducted to demonstrate the practical utility.
Collapse
Affiliation(s)
- Tetsuya Tsujihara
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Koki Nishino
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Wakaba Miura
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Ayumi Chiba
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Wakana Hayashi
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Chika Yoshida
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Tsunayoshi Takehara
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki 567-0047, Japan
| | - Takeyuki Suzuki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki 567-0047, Japan
| | - Tomikazu Kawano
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
2
|
He XK, Lu LQ, Yuan BR, Luo JL, Cheng Y, Xiao WJ. Desymmetrization-Addition Reaction of Cyclopropenes to Imines via Synergistic Photoredox and Cobalt Catalysis. J Am Chem Soc 2024; 146:18892-18898. [PMID: 38968086 DOI: 10.1021/jacs.4c07096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Herein, we designed a reaction for the desymmetrization-addition of cyclopropenes to imines by leveraging the synergy between photoredox and asymmetric cobalt catalysis. This protocol facilitated the synthesis of a series of chiral functionalized cyclopropanes with high yield, enantioselectivity, and diastereoselectivity (44 examples, up to 93% yield and >99% ee). A possible reaction mechanism involving cyclopropene desymmetrization by Co-H species and imine addition by Co-alkyl species was proposed. This study provides a novel route to important chiral cyclopropanes and extends the frontier of asymmetric metallaphotoredox catalysis.
Collapse
Affiliation(s)
- Xiang-Kui He
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Liang-Qiu Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
- Wuhan Institute of Photochemistry and Technology, 7 Bingang North Road, Wuhan 430080, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Bao-Ru Yuan
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Jia-Long Luo
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Ying Cheng
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
- Wuhan Institute of Photochemistry and Technology, 7 Bingang North Road, Wuhan 430080, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
3
|
Ru GX, Liu Q, Wei KF, Zhu XH, Jiang XL, Xie LX, Su H, Lv DC, Xie X, Shen WB. Copper(I)-Catalyzed Indolyl Ynamide Oxidation/Dearomatization: Divergent and Regioselective Synthesis of Valuable Indoline Scaffolds. Org Lett 2024; 26:3715-3721. [PMID: 38678545 DOI: 10.1021/acs.orglett.4c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
A highly convenient copper(I)-catalyzed oxidation-initiated cyclopropanation of indolyl ynamide for the rapid construction of indole-fused cyclopropane-lactams is described, which represents, to the best of our knowledge, the first non-noble-metal-catalyzed indolyl ynamide oxidation/dearomatization by the in situ generated α-oxo copper carbenes. Compared to hydrazone and diazo, the use of alkynes as carbene precursors allows cyclopropanation to occur under a safe and convenient pathway. Moreover, this transformation can lead to the divergent synthesis of pentacyclic spiroindolines involving the reversal of ynamide regioselectivity by engineering substrate structures.
Collapse
Affiliation(s)
- Guang-Xin Ru
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, Michign 49931-1295, United States
| | - Qing Liu
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, Michign 49931-1295, United States
| | - Kua-Fei Wei
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, Michign 49931-1295, United States
| | - Xiu-Hong Zhu
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, Michign 49931-1295, United States
| | - Xiao-Lei Jiang
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, Michign 49931-1295, United States
| | - Li-Xia Xie
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, Michign 49931-1295, United States
| | - Hui Su
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, Michign 49931-1295, United States
| | - Dong-Can Lv
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, Michign 49931-1295, United States
| | - Xinfeng Xie
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, Michign 49931-1295, United States
| | - Wen-Bo Shen
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, Michign 49931-1295, United States
| |
Collapse
|
4
|
Zhao C, Besset T, Legault CY, Jubault P. Experimental and Computational Studies for the Synthesis of Functionalized Cyclopropanes from 2-Substituted Allylic Derivatives with Ethyl Diazoacetate. Chemistry 2024; 30:e202303070. [PMID: 37985211 DOI: 10.1002/chem.202303070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
The catalytic asymmetric synthesis of highly functionalized cyclopropanes from 2-substituted allylic derivatives is reported. Using ethyl diazo acetate, the reaction, catalyzed by a chiral ruthenium complex (Ru(II)-Pheox), furnished the corresponding easily separable cis and trans cyclopropanes in moderate to high yields (32-97 %) and excellent ee (86-99 %). This approach significantly extends the portfolio of accessible enantioenriched cyclopropanes from an underexplored class of olefins. DFT calculations suggest that an outer-sphere mechanism is operative in this system.
Collapse
Affiliation(s)
- Chengtao Zhao
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ., 76000, Rouen, France
| | - Tatiana Besset
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ., 76000, Rouen, France
| | - Claude Y Legault
- Département de Chimie, Université de Sherbrooke, 2500 boul. de l'Université, D1-3029, Sherbrooke, Canada
| | - Philippe Jubault
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ., 76000, Rouen, France
| |
Collapse
|
5
|
Simões MMQ, Cavaleiro JAS, Ferreira VF. Recent Synthetic Advances on the Use of Diazo Compounds Catalyzed by Metalloporphyrins. Molecules 2023; 28:6683. [PMID: 37764459 PMCID: PMC10537418 DOI: 10.3390/molecules28186683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Diazo compounds are organic substances that are often used as precursors in organic synthesis like cyclization reactions, olefinations, cyclopropanations, cyclopropenations, rearrangements, and carbene or metallocarbene insertions into C-H, N-H, O-H, S-H, and Si-H bonds. Typically, reactions from diazo compounds are catalyzed by transition metals with various ligands that modulate the capacity and selectivity of the catalyst. These ligands can modify and enhance chemoselectivity in the substrate, regioselectivity and enantioselectivity by reflecting these preferences in the products. Porphyrins have been used as catalysts in several important reactions for organic synthesis and also in several medicinal applications. In the chemistry of diazo compounds, porphyrins are very efficient as catalysts when complexed with low-cost metals (e.g., Fe and Co) and, therefore, in recent years, this has been the subject of significant research. This review will summarize the advances in the studies involving the field of diazo compounds catalyzed by metalloporphyrins (M-Porph, M = Fe, Ru, Os, Co, Rh, Ir) in the last five years to provide a clear overview and possible opportunities for future applications. Also, at the end of this review, the properties of artificial metalloenzymes and hemoproteins as biocatalysts for a broad range of applications, namely those concerning carbene-transfer reactions, will be considered.
Collapse
Affiliation(s)
- Mário M. Q. Simões
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal; (M.M.Q.S.); (J.A.S.C.)
| | - José A. S. Cavaleiro
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal; (M.M.Q.S.); (J.A.S.C.)
| | - Vitor F. Ferreira
- Departamento de Tecnologia Farmacêutica Química, Universidade Federal Fluminense, Niterói 24241-002, RJ, Brazil
| |
Collapse
|
6
|
Hu J, Tang M, Wang J, Wu Z, Friedrich A, Marder TB. Photocatalyzed Borylcyclopropanation of Alkenes with a (Diborylmethyl)iodide Reagent. Angew Chem Int Ed Engl 2023; 62:e202305175. [PMID: 37527975 DOI: 10.1002/anie.202305175] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
Cyclopropane skeletons play a prominent role in the development of organic synthesis and pharmaceutical chemistry. Herein, we report the design and synthesis of a stable, multifunctional (diborylmethyl)iodide reagent (CHI(Bpin)2 ) for the photoinduced cyclopropanation of alkenes, providing an array of 1,2-substituted cyclopropylboronates in good yields. This α-haloboronic ester can be readily synthesized on a multigram scale from commercially available starting materials. Furthermore, the protocol displays high chemo- and diastereoselectivity, excellent functional-group tolerance, and allows for late-stage borylcyclopropanation of complex molecules. Mechanistic studies reveal that the borylcyclopropanation proceeds through a radical addition/polar cyclization pathway mediated by the photocatalyst fac-Ir(ppy)3 and visible light.
Collapse
Affiliation(s)
- Jiefeng Hu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu, China
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland, 97074, Würzburg, Germany
| | - Man Tang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu, China
| | - Jing Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu, China
| | - Zhu Wu
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
7
|
Mukherjee A, Datta S, Richmond MG, Bhattacharya S. Ruthenium complexes of 1,4-diazabutadiene ligands with a cis-RuCl 2 moiety for catalytic acceptorless dehydrogenation of alcohols: DFT evidence of chemically non-innocent ligand participation. RSC Adv 2023; 13:25660-25672. [PMID: 37649575 PMCID: PMC10463240 DOI: 10.1039/d3ra04750d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
The acceptorless dehydrogenative coupling (ADC) of primary alcohols to esters by diazabutadiene-coordinated ruthenium compounds is reported. Treatment of cis-Ru(dmso)4Cl2 in acetone at 56 °C with different 1,4-diazabutadienes [p-XC6H4N[double bond, length as m-dash]C(H)(H)C[double bond, length as m-dash]NC6H4X-p; X = H, CH3, OCH3, and Cl; abbreviated as DAB-X], gives trans-Ru[κ2-N,N-DAB-X]2Cl2 as the kinetic product of substitution. Heating these products in o-xylene at 144 °C gives the thermodynamically favored cis-Ru[κ2-N,N-DAB-X]2Cl2 isomers. Electronic structure calculations confirm the greater stability of the cis diastereomer. The molecular structures for each pair of geometric isomers have been determined by X-ray diffraction analyses. Cyclic voltammetry experiments on the complexes show an oxidative response and a reductive response within 0.50 to 0.93 V and -0.76 to -1.24 V vs. SCE respectively. The cis-Ru[κ2-N,N-DAB-X]2Cl2 complexes function as catalyst precursors for the acceptorless dehydrogenative coupling of primary alcohols to H2 and homo- and cross-coupled esters. When 1,4-butanediol and 1,5-pentanediol are employed as substrates, lactones and hydroxyaldehydes are produced as the major dehydrogenation products, while secondary alcohols afforded ketones in excellent yields. The mechanism for the dehydrogenation of benzyl alcohol to benzyl benzoate and H2 using cis-Ru[κ2-N,N-DAB-H]2Cl2 (cis-1) as a catalyst precursor was investigated by DFT calculations. The data support a catalytic cycle that involves the four-coordinate species Ru[κ2-N,N-DAB-H][κ1-N-DAB-H](κ1-OCH2Ph) whose protonated κ1-diazabutadiene moiety functions as a chemically non-innocent ligand that facilitates a β-hydrogen elimination from the κ1-O-benzoxide ligand to give the corresponding hydride HRu[κ2-N,N-DAB-H][κ1-N-DAB-H](κ2-O,C-benzaldehyde). H2 production follows a Noyori-type elimination to give (H2)Ru[κ2-N,N-DAB-H][κ1-N-DAB-H](κ1-O-benzaldehyde) as an intermediate in the catalytic cycle.
Collapse
Affiliation(s)
- Aparajita Mukherjee
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University Kolkata 700 032 India
| | - Sayanti Datta
- Department of Chemistry, Brainware University Kolkata 700 125 India
| | | | - Samaresh Bhattacharya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University Kolkata 700 032 India
| |
Collapse
|
8
|
Sar S, Ghorai P. An Intramolecular Umpolung Cascade Kukhtin-Ramirez Reaction/Michael Addition-Initiated Cyclization: Stereoselective Synthesis of Tetrasubstituted Cyclopropane Fused 1-Indanones. Org Lett 2023; 25:1946-1951. [PMID: 36920108 DOI: 10.1021/acs.orglett.3c00494] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Herein, we disclose a fascinating highly stereoselective P(NMe2)3 mediated intramolecular deoxygenative umpolung cascade Michael addition-initiated cyclopropanation with a diverse substrate adaptability. This methodology creates a new horizon for expedient access to valuable 6,5,3-fused scaffolds having an all-carbon quaternary stereocenter via Kukhtin-Ramirez (K-R) adduct formation, with excellent diastereoselectivity and yields under metal-free ambient conditions. A few functional group transformations have also been performed successfully. Additionally, an asymmetric catalytic attempt using (R)-(+)-H8-BINOL has delivered good enantioselectivity.
Collapse
Affiliation(s)
- Suman Sar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, India
| | - Prasanta Ghorai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, India
| |
Collapse
|
9
|
Zhang J, Xu W, Xu MH. Low Coordination State Rh I -Complex as High Performance Catalyst for Asymmetric Intramolecular Cyclopropanation: Construction of penta-Substituted Cyclopropanes. Angew Chem Int Ed Engl 2023; 62:e202216799. [PMID: 36602264 DOI: 10.1002/anie.202216799] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
A simple, broad-scope rhodium(I)/chiral diene catalytic system for challenging asymmetric intramolecular cyclopropanation of various tri-substituted allylic diazoacetates was successfully developed. The low coordination state RhI -complex exhibits an extraordinarily high degree of tolerance to the variation in the extent of substitution of the allyl double bond, thus allowing the efficient construction of a wide range of penta-substituted, fused-ring cyclopropanes bearing three contiguous stereogenic centers, including two quaternary carbon stereocenters, in a highly enantioselective manner with ease at catalyst loading as low as 0.1 mol %. The stereoinduction mode of this RhI -carbene-directed asymmetric intramolecular cyclopropanation was investigated by DFT calculations, indicating that π-π stacking interactions between the aromatic rings of chiral diene ligand and diazo substrate play a key role in the control of the reaction enantioselectivity.
Collapse
Affiliation(s)
- Junyou Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.,Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weici Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ming-Hua Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
10
|
Cui XY, Ye ZT, Wu HH, Ji CG, Zhou F, Zhou J. Au(I)-Catalyzed Formal Intermolecular Carbene Insertion into Vinylic C(sp 2)–H Bonds and Allylic C(sp 3)–H Bonds. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xiao-Yuan Cui
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, China
| | - Zhong-Tian Ye
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, China
| | - Hai-Hong Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, China
| | - Chang-Ge Ji
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, China
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| |
Collapse
|
11
|
Chen X, Patel K, Marek I. Stereospecific nucleophilic substitution at quaternary carbon stereocenters of cyclopropyl carbinols. Chem 2023. [DOI: 10.1016/j.chempr.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Nguyen T, Sreekumar S, Wang S, Jiang Q, Montel F, Buono F. Enantioselective Synthesis of trans-Disubstituted Cyclopropyltrifluoroborate Building Blocks through Ru-Catalyzed Cyclopropanation. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thach Nguyen
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877-0378, United States
| | - Sanil Sreekumar
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877-0378, United States
| | - Shuai Wang
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877-0378, United States
| | - Qi Jiang
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877-0378, United States
| | - Florian Montel
- Discovery Research, Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 65 Birkendorfer Strasse, Biberach an der Riss 88400, Germany
| | - Frederic Buono
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877-0378, United States
| |
Collapse
|
13
|
Han F, Choi PH, Ye CX, Grell Y, Xie X, Ivlev SI, Chen S, Meggers E. Cyclometalated Chiral-at-Ruthenium Catalyst for Enantioselective Ring-Closing C(sp 3)–H Carbene Insertion to Access Chiral Flavanones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Feng Han
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, Marburg 35043, Germany
| | - Peter H. Choi
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Chen-Xi Ye
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, Marburg 35043, Germany
| | - Yvonne Grell
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, Marburg 35043, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, Marburg 35043, Germany
| | - Sergei I. Ivlev
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, Marburg 35043, Germany
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, Marburg 35043, Germany
| |
Collapse
|
14
|
Pian J, Chen Q, Luo Y, Zhao Z, Liu J, He L, Li SW. Asymmetric Synthesis of Chiral Cyclopropanes from Sulfoxonium Ylides Catalyzed by a Chiral-at-Metal Rh(III) Complex. Org Lett 2022; 24:5641-5645. [PMID: 35901168 DOI: 10.1021/acs.orglett.2c01724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An enantioselective cyclopropanation reaction of sulfoxonium ylides with β,γ-unsaturated ketoesters catalyzed by a chiral rhodium catalyst has been realized. A variety of optically pure 1,2,3-trisubstituted cyclopropanes was synthesized in 48-89% yields, with up to 99% ee, and with dr >20:1. Furthermore, research shows that a weak coordination between the chiral rhodium catalyst and β,γ-unsaturated ketoesters was responsible for the high diastereoselectivity and enantioselectivity of the corresponding products.
Collapse
Affiliation(s)
- Jixin Pian
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemitry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| | - Qingqing Chen
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemitry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| | - Yujiao Luo
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemitry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| | - Zhifei Zhao
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemitry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| | - Jichang Liu
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemitry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| | - Lin He
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemitry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| | - Shi-Wu Li
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemitry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| |
Collapse
|
15
|
Nakada M. Research on the Efficient Enantioselective Total Synthesis of Useful Bioactive Polycyclic Compounds. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masahisa Nakada
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 119-8555
| |
Collapse
|
16
|
Sahu MK, Jaiswal S, Pattanaik S, Gunanathan C. Base-Catalyzed Traceless Silylation and Deoxygenative Cyclization of Chalcones to Cyclopropanes. J Org Chem 2022; 87:6695-6709. [PMID: 35522975 DOI: 10.1021/acs.joc.2c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Development of simple synthetic methods from readily available compounds to complex products is of utmost interest in modern synthesis. Catalytic synthesis of cyclopropanes is important for diverse chemical applications. We present a method for the transformation of readily accessible α,β-unsaturated ketones (chalcones) to cyclopropanes. A simple base, KOH, catalyzed the selective reduction of the enone carbonyl functionality, dehydrogenative silylation, and deoxygenative cyclization of chalcones to provide the cyclopropane products. Chalcones with extended conjugation and 4-chromanone-based substrates also provided the corresponding cyclopropanes. One-pot synthesis of cyclopropanes directly from industrial feedstock compounds such as ketones and aldehydes is also demonstrated using catalytic KOH for both intermolecular condensation and dehydrogenative silylation-deoxygenative intramolecular cyclization cascade.
Collapse
Affiliation(s)
- Manas Kumar Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| | - Shubham Jaiswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| | - Sandip Pattanaik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| |
Collapse
|
17
|
Wen X, Lu P, Shen Y, Peng H, Ke Z, Zhao C. DFT Mechanistic Study of the Cyclopropanation of Styrene and Aryldiazodiacetate Catalyzed by Tris(pentafluorophenyl)borane. ACS OMEGA 2022; 7:12900-12909. [PMID: 35474821 PMCID: PMC9025995 DOI: 10.1021/acsomega.2c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Metal-free boron Lewis acids, tris(pentafluorophenyl)borane B(C6F5)3, have the advantages of low toxicity and low cost and are a promising catalyst. A density functional theory (DFT) calculation was used to clarify the mechanism and the origin of the diastereoselective cyclopropanation of aryldiazodiacetate and styrene derivatives catalyzed by B(C6F5)3. Four pathways were calculated: B(C6F5)3-catalyzed N-, C-, and O-bound boron-activated aryldiazodiacetate and without B(C6F5)3 catalysis. By calculating and comparing the energy barriers, the most possible reaction mechanism was proposed, that is, first, B(C6F5)3 catalyzed O-bound boron to activate aryldiazodiacetate, followed by the removal of a N2 molecule, and finally, styrene nucleophilic attack occurred to produce [2+1] cyclopropane products. N2 removal is the rate-limiting step, and this step determines the preference of a given mechanism. The calculated results are in agreement with experimental observations. The origin of diastereoselectivity is further explained on the basis of the favorable mechanism. The steric hindrance interference between the styrene aryl group and the large tri(pentafluorophenyl)borane B(C6F5)3 and the favorable π-π stacking interaction between the benzene rings combined to cause the high diastereoselectivity, which resulted in lower energy of the transition state (TS) corresponding to the reaction mechanism. The calculated results not only provide a more detailed explanation of the mechanism for the experimental study but also have certain reference and guiding significance for other catalytic cyclopropanation reactions.
Collapse
Affiliation(s)
- Xiuling Wen
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Peiquan Lu
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yong Shen
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Haojie Peng
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhuofeng Ke
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Cunyuan Zhao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
18
|
Caló FP, Zimmer A, Bistoni G, Fürstner A. From Serendipity to Rational Design: Heteroleptic Dirhodium Amidate Complexes for Diastereodivergent Asymmetric Cyclopropanation. J Am Chem Soc 2022; 144:7465-7478. [PMID: 35420801 PMCID: PMC9052758 DOI: 10.1021/jacs.2c02258] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
A heteroleptic dirhodium
paddlewheel complex comprising three chiral
carboxylate ligands and one achiral acetamidate ligand has recently
been found to be uniquely effective in catalyzing the asymmetric cyclopropanation
of olefins with α-stannylated (silylated and germylated) α-diazoacetate
derivatives. A number of control experiments in combination with detailed
computational studies provide compelling evidence that an interligand
hydrogen bond between the −NH group of the amidate and the
ester carbonyl group of the reactive rhodium carbene intermediate
plays a quintessential role in the stereodetermining transition state.
The penalty for distorting this array outweighs steric arguments and
renders two of the four conceivable transitions states unviable. Based
on this mechanistic insight, the design of the parent catalyst is
revisited herein: placement of appropriate peripheral substituents
allows high levels of diastereocontrol to be imposed upon cyclopropanation,
which the original catalyst lacks. Because the new complexes allow
either trans- or cis-configured stannylated cyclopropanes to be made
selectively and in excellent optical purity, this transformation also
marks a rare case of diastereodivergent asymmetric catalysis. The
products are amenable to stereospecific cross coupling with aryl halides
or alkenyl triflates; these transformations appear to be the first
examples of the formation of stereogenic quaternary carbon centers
by the Stille reaction; carbonylative coupling is also achieved. Moreover,
tin/lithium exchange affords chiral lithium enolates, which can be
intercepted with a variety of electrophilic partners. The virtues
and inherent flexibility of this new methodology are illustrated by
an efficient synthesis of two salinilactones, extremely scarce bacterial
metabolites with signaling function involved in the self-regulatory
growth inhibition of the producing strain.
Collapse
Affiliation(s)
| | - Anne Zimmer
- Max-Planck-Institut für Kohlenforschung, Mülheim/Ruhr D-45470, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung, Mülheim/Ruhr D-45470, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, Mülheim/Ruhr D-45470, Germany
| |
Collapse
|
19
|
Findlay MT, Domingo-Legarda P, McArthur G, Yen A, Larrosa I. Catalysis with cycloruthenated complexes. Chem Sci 2022; 13:3335-3362. [PMID: 35432864 PMCID: PMC8943884 DOI: 10.1039/d1sc06355c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/08/2022] [Indexed: 12/03/2022] Open
Abstract
Cycloruthenated complexes have been studied extensively over the last few decades. Many accounts of their synthesis, characterisation, and catalytic activity in a wide variety of transformations have been reported to date. Compared with their non-cyclometallated analogues, cycloruthenated complexes may display enhanced catalytic activities in known transformations or possess entirely new reactivity. In other instances, these complexes can be chiral, and capable of catalysing stereoselective reactions. In this review, we aim to highlight the catalytic applications of cycloruthenated complexes in organic synthesis, emphasising the recent advancements in this field. We discuss recent advances in the applications of cycloruthenated complexes in organic synthesis, comprising C–H activation, chiral-at-metal catalysis, Z-selective olefin metathesis, transfer hydrogenation, enantioselective cyclopropanations and cycloadditions.![]()
Collapse
Affiliation(s)
- Michael T Findlay
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | | | - Gillian McArthur
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Andy Yen
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Igor Larrosa
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
20
|
Yuan B, Ding D, Wang C. Nickel-Catalyzed Regioselective Reductive Ring Opening of Aryl Cyclopropyl Ketones with Alkyl Bromides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Bing Yuan
- Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Decai Ding
- Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
21
|
Pons A, Decaens J, Najjar R, Otog N, Arribat M, Jolly S, Couve-Bonnaire S, Sebban M, Coadou G, Oulyadi H, Speybrouck D, Iwasa S, Charette AB, Poisson T, Jubault P. Fluorocyclopropane-Containing Proline Analogue: Synthesis and Conformation of an Item in the Peptide Chemist's Toolbox. ACS OMEGA 2022; 7:4868-4878. [PMID: 35187307 PMCID: PMC8851640 DOI: 10.1021/acsomega.1c05337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/10/2021] [Indexed: 05/27/2023]
Abstract
Over the years, numerous modifications to the structure of proline have been made in order to tune its effects on bioactive compounds. Notably, the introduction of a cyclopropane ring or a fluorine atom has produced interesting results. Herein, we describe the synthesis of a proline containing fluorocyclopropane. This modified amino acid was inserted into a tripeptide, whose conformation was studied by nuclear magnetic resonance and density functional theory calculations.
Collapse
Affiliation(s)
- Amandine Pons
- Normandie
Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Jonathan Decaens
- Normandie
Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Riham Najjar
- Normandie
Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Nansalmaa Otog
- Department
of Applied Chemistry and Life Science, Toyohashi
University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Mathieu Arribat
- Normandie
Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Sandrine Jolly
- Analytical
Sciences—Discovery Sciences, Janssen
Research & Development, a Division of Janssen-Cilag, Campus de Maigremont, CS10615, F-27106 Val de Reuil Cedex, France
| | - Samuel Couve-Bonnaire
- Normandie
Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Muriel Sebban
- Normandie
Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Gael Coadou
- Normandie
Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Hassan Oulyadi
- Normandie
Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - David Speybrouck
- Analytical
Sciences—Discovery Sciences, Janssen
Research & Development, a Division of Janssen-Cilag, Campus de Maigremont, CS10615, F-27106 Val de Reuil Cedex, France
| | - Seiji Iwasa
- Department
of Applied Chemistry and Life Science, Toyohashi
University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - André B. Charette
- Centre
in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department
of Chemistry, Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, Québec H3C3J7, Canada
| | - Thomas Poisson
- Normandie
Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
- Institut
Universitaire de France, 1 rue Descartes, 75231 Paris, France
| | - Philippe Jubault
- Normandie
Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| |
Collapse
|
22
|
Yu JK, Czekelius C. Insights into the Gold‐catalyzed Cycloisomerization of 3‐Allyl‐1,4‐diynes for the Synthesis of Bicyclic Hydrocarbons. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jhen-Kuei Yu
- Heinrich Heine University Düsseldorf: Heinrich-Heine-Universitat Dusseldorf Chemistry GERMANY
| | - Constantin Czekelius
- Heinrich-Heine-Universitat Dusseldorf Organic Chemistry II Building 26.33Room U1.33Universitaetsstrasse 1 40225 Duesseldorf GERMANY
| |
Collapse
|
23
|
Zhu Y, Zhou T, Zhang H, He J, Li H, Lang M, Wang J, Peng S. Enantioselective Synthesis of α-Aryl-β-Aminocyclopropane Carboxylic Acid Derivatives via Rh(II)-Catalyzed Cyclopropanation of Vinylsulfonamides with α-Aryldiazoesters. J Org Chem 2022; 87:1074-1085. [PMID: 35057627 DOI: 10.1021/acs.joc.1c02386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of vinylsulfonamides with donor-acceptor carbenes derived from α-aryldiazoesters, catalyzed by the tert-butyl glycine-derived dirhodium complex Rh2(S-4-Br-NTTL)4, has been reported. This method provides a variety of α-aryl-β-aminocyclopropane carboxylic acid derivatives bearing one quaternary carbon stereogenic center vicinal to the amino-substituted carbon in high yields with excellent diastereo- and enantioselectivities. Vinylsulfonamides showed complementary advantages over the well-developed vinylamides or vinylcarbamates for this Rh(II)-catalyzed cyclopropanation strategy. Moreover, these conformationally restricted α-aryl-β-aminocyclopropyl carboxylic acid derivatives can be readily incorporated into dipeptides.
Collapse
Affiliation(s)
- Yuqi Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China
| | - Ting Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China
| | - Hong Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China
| | - Jieyin He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China
| | - Hongguang Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China
| | - Ming Lang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China
| | - Jian Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China.,School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| | - Shiyong Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China
| |
Collapse
|
24
|
Zhang Z, Kvasovs N, Dubrovina A, Gevorgyan V. Visible Light Induced Brønsted Acid Assisted Pd‐Catalyzed Alkyl Heck Reaction of Diazo Compounds and
N
‐Tosylhydrazones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell Rd Richardson TX 75080 USA
| | - Nikita Kvasovs
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell Rd Richardson TX 75080 USA
| | - Anastasiia Dubrovina
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell Rd Richardson TX 75080 USA
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell Rd Richardson TX 75080 USA
| |
Collapse
|
25
|
Zhang Z, Kvasovs N, Dubrovina A, Gevorgyan V. Visible Light Induced Brønsted Acid Assisted Pd-Catalyzed Alkyl Heck Reaction of Diazo Compounds and N-Tosylhydrazones. Angew Chem Int Ed Engl 2022; 61:e202110924. [PMID: 34706124 PMCID: PMC8712420 DOI: 10.1002/anie.202110924] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/04/2021] [Indexed: 01/05/2023]
Abstract
A mild visible light-induced palladium-catalyzed alkyl Heck reaction of diazo compounds and N-tosylhydrazones is reported. A broad range of vinyl arenes and heteroarenes with high functional group tolerance, as well as a range of different diazo compounds, can efficiently undergo this transformation. This method features Brønsted acid-assisted generation of hybrid palladium C(sp3 )-centered radical intermediate, which allowed for new selective C-H functionalization protocol.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX, 75080, USA
| | - Nikita Kvasovs
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX, 75080, USA
| | - Anastasiia Dubrovina
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX, 75080, USA
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX, 75080, USA
| |
Collapse
|
26
|
Pan BW, Shi Y, Dong SZ, He JX, Mu BS, Wu WB, Zhou Y, Zhou F, Zhou J. Highly stereoselective synthesis of spirocyclopropylthiooxindoles and biological evaluation. Org Chem Front 2022. [DOI: 10.1039/d2qo00300g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We present a novel highly stereoselective Rh-catalyzed cyclopropanation of diazothiooxindoles with a broad range of α-functionalized styrenes, enabling facile access of chiral spirocyclopropylthiooxindoles in high to excellent enantiomeric excess.
Collapse
Affiliation(s)
- Bo-Wen Pan
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yang Shi
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Su-Zhen Dong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| | - Jun-Xiong He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| | - Bo-Shuai Mu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| | - Wen-Biao Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032, China
| |
Collapse
|
27
|
Otog N, Gantogos B, Fujisawa I, Iwasa S. Highly enantioselective synthesis of norcaradiene derivatives from naphthyl diazoacetamides using a Ru( ii)-Pheox complex. Chem Commun (Camb) 2022; 58:12325-12328. [DOI: 10.1039/d2cc04355f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The highly regio- and enantioselective intramolecular cyclopropanation reactions of naphthyl diazoacetamides have been reported herein.
Collapse
Affiliation(s)
- Nansalmaa Otog
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Bilguun Gantogos
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Ikuhide Fujisawa
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Seiji Iwasa
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| |
Collapse
|
28
|
Sharma SK, Paniraj ASR, Tambe YB. Developments in the Catalytic Asymmetric Synthesis of Agrochemicals and Their Synthetic Importance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14761-14780. [PMID: 34847666 DOI: 10.1021/acs.jafc.1c05553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Catalytic asymmetric synthesis has become an essential tool for the enantioselective synthesis of pharmaceuticals, natural products, and agrochemicals (mainly fungicides, herbicides, insecticides, and pheromones). With continuous growing interest in both modern agricultural chemistry and catalytic asymmetric synthesis chemistry, this review provides a comprehensive overview of some earlier reports as well as the recent successful applications of various catalytic asymmetric syntheses methodologies, such as enantioselective hydroformylation, enantioselective hydrogenation, asymmetric Sharpless epoxidation and dihydroxylation, asymmetric cyclopropanation or isomerization, organocatalyzed asymmetric synthesis, and so forth, which have been used as key steps in the preparation of chiral agrochemicals (on R&D, piloting, and commercial scales). Chiral agrochemicals can also lead the new generation of such chemicals having specific and novel modes of action for achieving sustainable crop protection and production. Some perspectives and challenges for these catalytic asymmetric methodologies in the synthesis of chiral agrochemicals are also briefly discussed in the final section of the manuscript. This review will provide the insight regarding understanding, development, and evaluation of catalytic asymmetric systems for the synthesis of chiral agrochemicals among the agrochemists.
Collapse
Affiliation(s)
- Sandeep Kumar Sharma
- Rallis Research Centre, No. 73/1C and 73/1D, Byregowda Industrial Estate, Srigandhanagar, Hegganhalli, Bangalore 560091, Karnataka, India
| | - Alilugatta Sheshagiri Rao Paniraj
- Rallis Research Centre, No. 73/1C and 73/1D, Byregowda Industrial Estate, Srigandhanagar, Hegganhalli, Bangalore 560091, Karnataka, India
| | - Yashwant Bhikaji Tambe
- Rallis Research Centre, No. 73/1C and 73/1D, Byregowda Industrial Estate, Srigandhanagar, Hegganhalli, Bangalore 560091, Karnataka, India
| |
Collapse
|
29
|
Neouchy Z, Verhoeven J, Kong H, Zhao Y, Wang W, Brambilla M, Van Hecke K, Meerpoel L, Thuring JW, Verniest G, Winne J. Stereodivergent Synthesis of Biologically Active Spironucleoside Scaffolds via Catalytic Cyclopropanation of 4- exo-Methylene Furanosides. J Org Chem 2021; 86:17344-17361. [PMID: 34748342 DOI: 10.1021/acs.joc.1c01611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cyclopropane fusion of the only rotatable carbon-carbon bond in furanosyl nucleosides (i.e., exocyclic 4'-5') is a powerful design strategy to arrive at conformationally constrained analogues. Herein, we report a direct stereodivergent route toward the synthesis of the four possible configurations of 4-spirocyclopropane furanoses, which have been transformed into the corresponding 4'-spirocyclic adenosine analogues. The latter showed differential inhibition of the protein methyltransferase PRMT5-MEP50 complex, with one analogue inhibiting more effectively than adenosine itself, demonstrating the utility of rationally probing 4'-5' side chain orientations.
Collapse
Affiliation(s)
- Zeina Neouchy
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Jonas Verhoeven
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Hanchu Kong
- Department of Synthetic Chemistry, Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, China
| | - Yongbin Zhao
- Department of Synthetic Chemistry, Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, China
| | - Wenbin Wang
- Department of Synthetic Chemistry, Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, China
| | - Marta Brambilla
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Lieven Meerpoel
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | - Guido Verniest
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Johan Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| |
Collapse
|
30
|
Tsukano C, Yagita R, Heike T, Mohammed TA, Nishibayashi K, Irie K, Takemoto Y. Asymmetric Total Synthesis of Shagenes A and B. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chihiro Tsukano
- Graduate School of Agriculture Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8501 Japan
| | - Ryotaro Yagita
- Graduate School of Agriculture Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8501 Japan
| | - Takayoshi Heike
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku Kyoto 606-8502 Japan
| | - Tagwa A. Mohammed
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku Kyoto 606-8502 Japan
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Khartoum Alqsr Avenue Khartoum 11111 Sudan
| | - Kazuya Nishibayashi
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku Kyoto 606-8502 Japan
| | - Kazuhiro Irie
- Graduate School of Agriculture Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8501 Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
31
|
Tsukano C, Yagita R, Heike T, Mohammed TA, Nishibayashi K, Irie K, Takemoto Y. Asymmetric Total Synthesis of Shagenes A and B. Angew Chem Int Ed Engl 2021; 60:23106-23111. [PMID: 34423896 DOI: 10.1002/anie.202109786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 11/07/2022]
Abstract
We report the first total synthesis of shagenes A and B, which are tricyclic terpenoids containing a cis-substituted cyclopropane, via ring-closing metathesis of an enamide and Ir-catalyzed double-bond isomerization of an alkylidenecyclopropane. Chemo- and diastereoselectivity in the distorted cis-substituted structures were controlled by the alkylidenecyclopropane reactivity and using the ketone functionality as a remote directing group for the Ir catalyst, respectively. The total synthesis suggested the absolute configuration of shagenes.
Collapse
Affiliation(s)
- Chihiro Tsukano
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ryotaro Yagita
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takayoshi Heike
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tagwa A Mohammed
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8502, Japan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of, Khartoum, Alqsr Avenue, Khartoum, 11111, Sudan
| | - Kazuya Nishibayashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kazuhiro Irie
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
32
|
Zhang M, Li H, Zhao J, Li Y, Zhang Q. Copper-catalyzed [3 + 1] cyclization of cyclopropenes/diazo compounds and bromodifluoroacetamides: facile synthesis of α,α-difluoro-β-lactam derivatives. Chem Sci 2021; 12:11805-11809. [PMID: 34659719 PMCID: PMC8442724 DOI: 10.1039/d1sc02930d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
We have developed a novel copper-catalyzed cyclization of cyclopropenes/diazo compounds and bromodifluoroacetamides, efficiently synthesizing a series of α,α-difluoro-β-lactams in moderate to excellent yields under mild reaction conditions. This reaction represents the first example of [3 + 1] cyclization for the synthesis of β-lactams utilizing a metal carbene intermediate as the C1 synthon. A copper-catalyzed [3 + 1] cyclization of cyclopropenes and bromodifluoroacetamides/diazo compounds has been successfully developed, efficiently synthesizing a wide range of α,α-difluoro-β-lactams.![]()
Collapse
Affiliation(s)
- Mengru Zhang
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University Changchun 130024 China
| | - Hexin Li
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University Changchun 130024 China
| | - Jinbo Zhao
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University Changchun 130024 China .,Department of Chemistry, Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology Changchun 130012 China
| | - Yan Li
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University Changchun 130024 China
| | - Qian Zhang
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University Changchun 130024 China .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
33
|
Planas F, Costantini M, Montesinos-Magraner M, Himo F, Mendoza A. Combined Experimental and Computational Study of Ruthenium N-Hydroxyphthalimidoyl Carbenes in Alkene Cyclopropanation Reactions. ACS Catal 2021; 11:10950-10963. [PMID: 34504736 PMCID: PMC8419840 DOI: 10.1021/acscatal.1c02540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/05/2021] [Indexed: 01/14/2023]
Abstract
A combined experimental-computational approach has been used to study the cyclopropanation reaction of N-hydroxyphthalimide diazoacetate (NHPI-DA) with various olefins, catalyzed by a ruthenium-phenyloxazoline (Ru-Pheox) complex. Kinetic studies show that the better selectivity of the employed redox-active NHPI diazoacetate is a result of a much slower dimerization reaction compared to aliphatic diazoacetates. Density functional theory calculations reveal that several reactions can take place with similar energy barriers, namely, dimerization of the NHPI diazoacetate, cyclopropanation (inner-sphere and outer-sphere), and a previously unrecognized migratory insertion of the carbene into the phenyloxazoline ligand. The calculations show that the migratory insertion reaction yields an unconsidered ruthenium complex that is catalytically competent for both the dimerization and cyclopropanation, and its relevance is assessed experimentally. The stereoselectivity of the reaction is argued to stem from an intricate balance between the various mechanistic scenarios.
Collapse
Affiliation(s)
| | | | - Marc Montesinos-Magraner
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Abraham Mendoza
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
34
|
K. Pagire S, Kumagai N, Shibasaki M. Highly Enantio- and Diastereoselective Synthesis of 1,2,3-Trisubstituted Cyclopropanes from α,β-Unsaturated Amides and Stabilized Sulfur Ylides Catalyzed by a Chiral Copper(I) Complex. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Santosh K. Pagire
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Naoya Kumagai
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| |
Collapse
|
35
|
Su Y, Dong K, Zheng H, Doyle MP. Generation of Diazomethyl Radicals by Hydrogen Atom Abstraction and Their Cycloaddition with Alkenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yong‐Liang Su
- Department of Chemistry The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Kuiyong Dong
- Department of Chemistry The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Haifeng Zheng
- Department of Chemistry The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Michael P. Doyle
- Department of Chemistry The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
36
|
Su YL, Dong K, Zheng H, Doyle MP. Generation of Diazomethyl Radicals by Hydrogen Atom Abstraction and Their Cycloaddition with Alkenes. Angew Chem Int Ed Engl 2021; 60:18484-18488. [PMID: 34043866 DOI: 10.1002/anie.202105472] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/23/2021] [Indexed: 12/16/2022]
Abstract
A general catalytic methodology for the synthesis of pyrazolines from α-diazo compounds and conjugated alkenes is reported. The direct hydrogen atom transfer (HAT) process of α-diazo compounds promoted by the tert-butylperoxy radical generates electrophilic diazomethyl radicals, thereby reversing the reactivity of the carbon atom attached with the diazo group. The regiocontrolled addition of diazomethyl radicals to carbon-carbon double bonds followed by intramolecular ring closure on the terminal diazo nitrogen and tautomerization affords a diverse set of pyrazolines in good yields with excellent regioselectivity. This strategy overcomes the limitations of electron-deficient alkenes in traditional dipolar [3+2]-cycloaddition of α-diazo compounds with alkenes. Furthermore, the straightforward formation of the diazomethyl radicals provides umpolung reactivity, thus opening new opportunities for the versatile transformations of diazo compounds.
Collapse
Affiliation(s)
- Yong-Liang Su
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Kuiyong Dong
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Haifeng Zheng
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| |
Collapse
|
37
|
Dong K, Gurung R, Xu X, Doyle MP. Enantioselective Catalytic Cyclopropanation-Rearrangement Approach to Chiral Spiroketals. Org Lett 2021; 23:3955-3959. [PMID: 33955755 DOI: 10.1021/acs.orglett.1c01113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly enantioselective synthesis of chiral heterobicyclic spiroketals is reported via a "one-pot" cyclopropanation-rearrangement (CP-RA) cascade reaction that is sequentially catalyzed by a chiral Rh(II) catalyst and tetrabutylammonium fluoride (TBAF). Exocyclic vinyl substrates form spirocyclopropanes with tert-butyldimethylsilyl-protected enoldiazoacetates in excellent yields and with excellent enantioselectivities when catalyzed by chiral dirhodium(II) carboxylates, and following desilylation with simultaneous rearrangement in the presence of TBAF, they give (S)-spiroketals in high yields with excellent chirality retention (>95% ee).
Collapse
Affiliation(s)
- Kuioyng Dong
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Raj Gurung
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Michael P Doyle
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
38
|
Doerksen RS, Hodík T, Hu G, Huynh NO, Shuler WG, Krische MJ. Ruthenium-Catalyzed Cycloadditions to Form Five-, Six-, and Seven-Membered Rings. Chem Rev 2021; 121:4045-4083. [PMID: 33576620 DOI: 10.1021/acs.chemrev.0c01133] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ruthenium-catalyzed cycloadditions to form five-, six-, and seven-membered rings are summarized, including applications in natural product total synthesis. Content is organized by ring size and reaction type. Coverage is limited to processes that involve formation of at least one C-C bond. Processes that are stoichiometric in ruthenium or exploit ruthenium as a Lewis acid (without intervention of organometallic intermediates), ring formations that occur through dehydrogenative condensation-reduction, σ-bond activation-initiated annulations that do not result in net reduction of bond multiplicity, and photochemically promoted ruthenium-catalyzed cycloadditions are not covered.
Collapse
Affiliation(s)
- Rosalie S Doerksen
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Tomáš Hodík
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Guanyu Hu
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Nancy O Huynh
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - William G Shuler
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
39
|
Wang L, Perveen S, Ouyang Y, Zhang S, Jiao J, He G, Nie Y, Li P. Well-Defined, Versatile and Recyclable Half-Sandwich Nickelacarborane Catalyst for Selective Carbene-Transfer Reactions. Chemistry 2021; 27:5754-5760. [PMID: 33458881 DOI: 10.1002/chem.202005014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/30/2020] [Indexed: 11/11/2022]
Abstract
Catalytic carbene-transfer reactions constitute a class of highly useful transformations in organic synthesis. Although catalysts based on a range of transition-metals have been reported, the readily accessible nickel(II)-based complexes have been rarely used. Herein, an air-stable nickel(II)-carborane complex is reported as a well-defined, versatile and recyclable catalyst for selective carbene transfer reactions with low catalyst loading under mild conditions. This catalyst is effective for several types of reactions including diastereoselective cyclopropanation, epoxidation, selective X-H insertions (X = C, N, O, S, Si), particularly for the unprotected substrates. This represents a rare example of carborane ligands in base metal catalysis.
Collapse
Affiliation(s)
- Linghua Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P. R. China
| | - Saima Perveen
- Department of Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yizhao Ouyang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P. R. China
| | - Shuai Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P. R. China
| | - Jiao Jiao
- Department of Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China.,Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Gang He
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P. R. China
| | - Yong Nie
- Institute for Smart Materials & Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P. R. China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China.,Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
40
|
Rosenbaum N, Schmidt L, Mohr F, Fuhr O, Nieger M, Bräse S. Formal Semisynthesis of Demethylgorgosterol Utilizing a Stereoselective Intermolecular Cyclopropanation Reaction. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nicolai Rosenbaum
- Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Lisa Schmidt
- Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Florian Mohr
- Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
- New address: Pharmazeutisches Institut Eberhard-Karls-Universität Tübingen Auf der Morgenstelle 8 72076 Tübingen
| | - Olaf Fuhr
- Institute for Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen
| | - Martin Nieger
- Department of Chemistry University of Helsinki P. O. Box 55 00014 Helsinki Finland
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen
| |
Collapse
|
41
|
Shen WB, Tang XT, Zhang TT, Lv DC, Zhao D, Su TF, Meng L. Copper(I)-Catalyzed Enyne Oxidation/Cyclopropanation: Divergent and Enantioselective Synthesis of Cyclopropanes. Org Lett 2021; 23:1285-1290. [PMID: 33529040 DOI: 10.1021/acs.orglett.0c04268] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient copper(I)-catalyzed enyne oxidation/cyclopropanation for the modular synthesis of cyclopropane derivatives is described, which represents the first non-noble metal-catalyzed enynes oxidation/cyclopropanation by the in situ generated α-oxo copper carbenes. This protocol allows the assembly of valuable cyclopropane-γ-lactams in generally good to excellent yields with excellent diastereoselectivity. More significantly, the enantioselective version of enyne oxidation/cyclopropanation has been disclosed with chiral copper catalysts.
Collapse
Affiliation(s)
- Wen-Bo Shen
- College of Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Xiang-Ting Tang
- College of Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Ting-Ting Zhang
- College of Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Dong-Can Lv
- College of Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Dan Zhao
- College of Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Tong-Fu Su
- College of Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Lei Meng
- College of Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
| |
Collapse
|
42
|
Otog N, Chanthamath S, Fujisawa I, Iwasa S. Catalytic Asymmetric Carbene Insertion Reactions into B−H Bonds Using a Ru(II)‐Pheox Complex. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Nansalmaa Otog
- Department of Applied Chemistry and Life Science Toyohashi University of Technology 1-1 Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Soda Chanthamath
- Department of Applied Chemistry and Life Science Toyohashi University of Technology 1-1 Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Ikuhide Fujisawa
- Department of Applied Chemistry and Life Science Toyohashi University of Technology 1-1 Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Seiji Iwasa
- Department of Applied Chemistry and Life Science Toyohashi University of Technology 1-1 Tempaku-cho Toyohashi Aichi 441-8580 Japan
| |
Collapse
|
43
|
Pierrot D, Marek I. Stereospecific Reactions Leading to Allylboronic Esters Within Acyclic Systems Bearing Distant Stereocenters. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David Pierrot
- Schulich Faculty of Chemistry, Technion— Israel Institute of Technology Technion City 3200009 Haifa Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion— Israel Institute of Technology Technion City 3200009 Haifa Israel
| |
Collapse
|
44
|
Pierrot D, Marek I. Stereospecific Reactions Leading to Allylboronic Esters Within Acyclic Systems Bearing Distant Stereocenters. Angew Chem Int Ed Engl 2020; 59:20434-20438. [PMID: 32757448 DOI: 10.1002/anie.202010135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/05/2020] [Indexed: 11/11/2022]
Abstract
The preparation of acyclic molecules featuring congested stereocenters in a 1,4-relationship in only three catalytic steps from commercially available building blocks is reported. This approach involves a diastereoselective diboration of alkenyl cyclopropyl methanol derivatives followed by a regioselective exergonic ring fragmentation. The starting materials can be prepared enantiomerically enriched and all substituents can be interconverted, therefore, this strategy allows a large variety of diversely functionalized allylboronic esters possessing distant tetrasubstituted stereocenters with high diastereoselectivity.
Collapse
Affiliation(s)
- David Pierrot
- Schulich Faculty of Chemistry, Technion-, Israel Institute of Technology, Technion City, 3200009, Haifa, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion-, Israel Institute of Technology, Technion City, 3200009, Haifa, Israel
| |
Collapse
|
45
|
Otog N, Inoue H, Trinh DTT, Batgerel Z, Langendorf NM, Fujisawa I, Iwasa S. Ru(II)‐Pheox Catalyzed Highly Stereoselective Cyclopropanation of Allyl‐ and Vinylsilanes with Diazoesters and Their Synthetic Applications. ChemCatChem 2020. [DOI: 10.1002/cctc.202001427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nansalmaa Otog
- Department of Applied Chemistry and Life Science Toyohashi University of Technology 1-1 Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Hayato Inoue
- Department of Applied Chemistry and Life Science Toyohashi University of Technology 1-1 Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Doan Thi Thuy Trinh
- Department of Applied Chemistry and Life Science Toyohashi University of Technology 1-1 Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Zolzaya Batgerel
- Department of Applied Chemistry and Life Science Toyohashi University of Technology 1-1 Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Niklas Maximilian Langendorf
- Department of Applied Chemistry and Life Science Toyohashi University of Technology 1-1 Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Ikuhide Fujisawa
- Department of Applied Chemistry and Life Science Toyohashi University of Technology 1-1 Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Seiji Iwasa
- Department of Applied Chemistry and Life Science Toyohashi University of Technology 1-1 Tempaku-cho Toyohashi Aichi 441-8580 Japan
| |
Collapse
|
46
|
Liao J, Zhang S, Wang Z, Song X, Zhang D, Kumar R, Jin J, Ren P, You H, Chen FE. Transition-metal catalyzed asymmetric reactions under continuous flow from 2015 to early 2020. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
47
|
Phan Thi Thanh N, Dang Thi Thu H, Tone M, Inoue H, Iwasa S. Synthesis of Oxindole Derivatives via Intramolecular C–H Insertion of Diazoamides Using Ru(II)-Pheox Catalyst. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Mancinelli JP, Wilkerson-Hill SM. Tris(pentafluorophenyl)borane-Catalyzed Cyclopropanation of Styrenes with Aryldiazoacetates. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03218] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Joseph P. Mancinelli
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sidney M. Wilkerson-Hill
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
49
|
Synthesis of γ-lactams via Ru(II)–Pheox-catalyzed regioselective intramolecular Csp3–H insertion of diazoacetamides. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Xue Z, Li Y, Luo S. Chiral Primary Amine-Catalyzed Divergent Coupling of α-Substituted Acrylaldehydes with α-Diazoesters. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zaikun Xue
- Key Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100490, China
| | - Yao Li
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sanzhong Luo
- Key Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100490, China
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|