1
|
Wang L, Chu Y, Cao B, Zhang R, Hussain Z, Liu Q. Cobalt (II) porphyrin nanoaggregates as sacrificial templates to improve the peroxidase-like activity of light-controlled TiO 2-based nanozymes for colorimetric determination of amikacin. Talanta 2025; 281:126889. [PMID: 39288583 DOI: 10.1016/j.talanta.2024.126889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Although porphyrin modification can improve the peroxidase-like activity of some inorganic nanozymes, it is hardly studied that metal porphyrin self-assembled nanoaggregates as sacrificial templates to turn on the peroxidase-like activity of inorganic nanozymes under light illumination. In this work, cobalt (II) 5,10,15,20-Tetrakis (4-carboxylpheyl)porphyrin (CoTCPP) self-assembled nanoaggregates are firstly used as soft templates to prepare TiO2-based nanozymes with the enhanced peroxidase-like activity. Interestingly, CoTCPP nanoaggregates can be changed into Co oxide nanoparticles dispersed into the nanosphere composites. Furthermore, the peroxidase-like activity of CoTCPP-TiO2 nanospheres can be controlled by light illumination. Comparatively, CoTCPP-TiO2 nanoshperes exhibit the highest peroxidase-like activity of three nanospheres (CoTCPP-TiO2, H2TCPP-TiO2 and TiO2) with similar morphology under the light illumination. Other than the existence of oxygen vacancy, the formation of heterostructure between TiO2 and a small amount of Co3O4 are ascribed to increase the catalytic activity of CoTCPP-TiO2 composites. Thus, a facile and convenient colorimetric sensing platform has been constructed and tuned by light illumination for determining H2O2 and amikacin in a good linear range of 20-100 and 50-100 μM with a limit of detection (LOD) of 3.04 μM and 1.88 μM, respectively. The CoTCPP-TiO2 based colorimetric sensing platform has been validated by measuring the amikacin residue in lake water.
Collapse
Affiliation(s)
- Liming Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Ying Chu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Bo Cao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Ruizhe Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Zakir Hussain
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan.
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| |
Collapse
|
2
|
Li H, Hu Y, Lin Z, Yan X, Sun C, Yao D. Carbon dots-based stimuli-responsive hydrogel for in-situ detection of thiram on fruits and vegetables. Food Chem 2024; 460:140405. [PMID: 39053272 DOI: 10.1016/j.foodchem.2024.140405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
Stimuli-responsive hydrogel possesses a strong loading capacity to embed luminescent indicators for constructing food safety sensors, which are suitable for field application. In this work, a fluorescent hydrogel sensor was fabricated by incorporating Ag+-modified carbon dots (CDs-Ag+) into a sodium alginate (SA) hydrogel for in-situ detection of thiram. The fluorescence of CDs was quenched due to the combined effects of electrostatic adsorption and electron transfer between Ag+ and CDs. The formation of an AgS bond between thiram and Ag+ facilitates the release of CDs, causing subsequently fluorescence recovery. Combined with smartphone and analysis software, the fluorescence color change of the hydrogel sensor was converted into data information for quantitative detection of thiram. Such a sample-to-result step is completed within 10 min. Notably, the in-situ detection experiment of thiram in fruit and vegetable samples confirmed the practical application of the hydrogel sensor. Therefore, the hydrogel sensor provides a new research direction for the in-situ detection of pesticide residues in the monitoring of food safety.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China; College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yanan Hu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhen Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xu Yan
- College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Dong Yao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
3
|
Lei L, Zhang J, Zhang W, Hao J, Wu K. Ultrasensitive carbon nanotube-bridged MXene conductive network arrays for one-step homogeneous electrochemical immunosensing of tumor markers. Biosens Bioelectron 2024; 263:116609. [PMID: 39094289 DOI: 10.1016/j.bios.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/15/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Developing non-passivating and fully integrated electrode arrays for point-of-care testing of carcinoembryonic antigen (CEA) is crucial, as the serum level of CEA is closely associated with colorectal cancer. Herein, we propose a simple, low-cost, and eco-friendly template-assisted filtration method for the scalable preparation of carbon nanotube-bridged Ti3C2Tx MXene (MX@CNT) electrode arrays with a conductive network. Furthermore, we fabricate a homogeneous electrochemical (HEC) sensor for CEA detection by integrating a magnetic-bead-based alkaline phosphatase-linked immunoassay (MB-aElisa), which enables the in-situ generation of the electroactive substance 1-naphthol (1-NP). Benefiting from the unique electrochemical characteristics of a MX@CNT electrode array, such as ultra-low background signal and superior electrocatalytic activity towards the hydrolyzed 1-NP, the MB-aElisa-based HEC sensor specifically measures CEA within a detection range spanning from 0.005 to 1.0 ng mL-1, achieving a detection limit of 1.6 pg mL-1. Subsequently, this biosensing prototype is successfully utilized for the detection of CEA in serum specimens obtained from colorectal cancer patients. More importantly, the integration of MB-aElisa with a MX@CNT electrode array not only marks a significant advancement but also enables the creation of a one-step homogeneous electrochemical immunosensing platform, serving as a paradigm for the highly sensitive and selective measurement of trace tumor markers in complex biological samples.
Collapse
Affiliation(s)
- Ling Lei
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jingdong Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weikang Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Junxing Hao
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Kangbing Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
4
|
Wang Z, Jia Y, Wang X, Liu Y, Liu Q. Fe(II) Induced Porphyrin Nanoaggregates Assembled in the Liquid-Liquid Interface with Dual Enzyme-like Activity for Colorimetric Determination of Methimazole. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39467156 DOI: 10.1021/acs.langmuir.4c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The liquid-liquid interface offers a confined space to control the growth of nanomaterials. In this study, Fe(II) (water phase) induced Meso-tetra (4-carboxyphenyl) porphyrin (H2TCPP) (CHCl3, organic phase) into nanoaggregates (Fe-TCPP) in the liquid-liquid interface. By tuning the ratio of DMF in organic solvents, Fe(II) induced H2TCPP into two nanoaggregates (Fe-TCPP-1 and Fe-TCPP-2) with different morphologies via coordination interaction occurring at the water-CHCl3 interface. Interestingly, the Fe-TCPP nanoaggregates possess dual enzyme-like activity (peroxidase-like and oxidase-like activity). In particular, both Fe-TCPP-1 and Fe-TCPP-2 demonstrate a peroxidase-/oxidase-like activity under visible light irradiation that is higher than that in the dark. Comparatively, Fe-TCPP-2 exhibits enhanced peroxide-like (POD) activity together with oxidase-like (OXD) activity compared with that of Fe-TCPP-1 under the corresponding similar conditions. The excellent enzyme mimic activity of Fe-TCPP nanozymes is ascribed to the generated hydroxyl radicals (·OH) and superoxide anions (O2•-). Remarkably, the catalytic activity of Fe-TCPP-2 remains more than 90% even in the higher temperature range of 35-40 °C, which is significant for biological detection under physiological conditions. Based on the outstanding dual enzyme-like activity of Fe-TCPP-2, a colorimetric sensing platform for methimazole (an antithyroid medicine) has been developed, demonstrating a linear detection range of 10-100 μM and a detection limit of 4.44 μM.
Collapse
Affiliation(s)
- Zhiwei Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China
| | - Yuqi Jia
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China
| | - Xiajuan Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China
| | - Yanhong Liu
- Technical Institute of Physics and Chemistry, CAS, Beijing 100190, P R China
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China
| |
Collapse
|
5
|
Wang Y, Lai B, Yu Z, Xu Z. One-step fabrication of a self-driven point-of-care chip by femtosecond laser direct writing and its application in cancer cell H 2O 2 detection via semiconductor-based SERS. Talanta 2024; 278:126483. [PMID: 38963977 DOI: 10.1016/j.talanta.2024.126483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Self-driven microfluidic systems have attracted significant attention and demonstrated great potential in the field of point-of-care (POC) testing due to their device simplicity, low power consumption, increased portability, and reduced sample consumption. To develop POC detection chips with diverse characteristics that meet different requirements, there is a strong demand for feasible strategies that enable easy operation and reduce processing time. Here, a one-step processing approach using femtosecond laser direct writing technology was proposed to fabricate a capillary-actuated POC microfluidic chip. The driving force of the chip is highly dependent on its surface wettability, which can be easily adjusted by changing the laser processing parameters. This POC microfluidic chip allowed for the detection of intracellular H2O2 through a catalytic reaction system that incorporated 5-aminosalicylic acid -sensitized colloidal TiO2 nanoparticles and horse radish peroxidase, with integrating semiconductor-based surface-enhanced Raman scattering (SERS) quantitative technique. The concentration of H2O2 was determined by the SERS signal of the catalytic products in the microfluidic chip, resulting in rapid detection with minimal sample consumption. Our method provides a simple, feasible, and alternative strategy for POC testing of H2O2, with a linear range of 10-2∼10-6 M and a limit of detection of 0.55 μM. This approach was successfully applied to rapid detection of intracellular H2O2 in MCF-7 breast cancer cells with high sensitivity and minimal sample consumption. Additionally, this study not only demonstrates the exceptional advantages of femtosecond laser processing technology in fabricating diverse microfluidic chips for various applications, but also presents an efficient POC testing strategy for detecting cell signaling molecules.
Collapse
Affiliation(s)
- Yue Wang
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Bo Lai
- MOE Key Laboratory of Advanced Micro-structured Materials, Institute of Precision Optical Engineering (IPOE), Tongji University, Shanghai, 200092, People's Republic of China
| | - Zhi Yu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China
| | - Zhangrun Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China.
| |
Collapse
|
6
|
Wu H, Wang Q, Dong M, Liu X, Tang Y. pH-responsive dual-emission carbon dots for the ratiometric detection of organophosphorus pesticides in Brassica chinensis and Hg 2+ in water. Food Chem 2024; 454:139755. [PMID: 38810445 DOI: 10.1016/j.foodchem.2024.139755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Accurate and rapid monitoring of organophosphorus pesticides (OPs) residues is crucial for regulating food safety. Herein, dual-emission carbon dots (de-CDs) were fabricated for the ratiometric detection of OPs and Hg2+. The de-CDs exhibited two emission peaks at 678 and 485 nm when excited with visible light. Interestingly, the fluorescence at 678 nm was significantly quenched by Hg2+ mainly because of the static quenching effect, whereas that at 485 nm exhibited a slight change. More significantly, the quenched fluorescence of the de-CDs recovered remarkably after introducing omethoate, diazinon and malathion. Accordingly, the ratiometric detection of the three OPs and Hg2+ was achieved with high selectivity and robust performance. In addition, the OPs residues assay in Brassica chinensis was successfully performed with satisfactory results. This study not only provides an attractive tool for the simple and rapid assay of OPs but also offers new insights into the fabrication of multi-functional carbon dots.
Collapse
Affiliation(s)
- Huifang Wu
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Qiqi Wang
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Miaochen Dong
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xinyue Liu
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yanfeng Tang
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| |
Collapse
|
7
|
Tang S, Xie X, Li L, Zhou L, Xing Y, Chen Y, Cai K, Li F, Zhang J. High fidelity detection of miRNAs from complex physiological samples through electrochemical nanosensors empowered by proximity catalysis and magnetic separation. Biosens Bioelectron 2024; 260:116435. [PMID: 38820724 DOI: 10.1016/j.bios.2024.116435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/25/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Electrochemical detection of miRNA biomarkers in complex physiological samples holds great promise for accurate evaluation of tumor burden in the perioperative period, yet limited by reproducibility and bias issues. Here, nanosensors installed with hybrid probes that responsively release catalytic DNAzymes (G-quadruplexes/hemin) were developed to solve the fidelity challenge in an immobilization-free detection. miRNA targets triggered toehold-mediated strand displacement reactions on the sensor surface and resulted in amplified shedding of DNAzymes. Subsequently, the interference background was removed by Fe3O4 core-facilitated magnetic separation. Binding aptamers of the electrochemical reporter (dopamine) were tethered closely to the catalytic units for boosting H2O2-mediated oxidation through proximity catalysis. The one-to-many conversion by dual amplification from biological-chemical catalysis facilitated sufficient homogeneous sensing signals on electrodes. Thereby, the nanosensor exhibited a low detection limit (2.08 fM), and high reproducibility (relative standard deviation of 1.99%). Most importantly, smaller variations (RSD of 0.51-1.04%) of quantified miRNAs were observed for detection from cell lysates, multiplexed detection from unprocessed serum, and successful discrimination of small upregulations in lysates of tumor tissue samples. The nanosensor showed superior diagnostic performance with an area under curve (AUC) of 0.97 and 94% accuracy in classifying breast cancer patients and healthy donors. These findings demonstrated the synergy of signal amplification and interference removal in achieving high-fidelity miRNA detection for practical clinical applications.
Collapse
Affiliation(s)
- Shuqi Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Lin Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Luoli Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yuhua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Fan Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China.
| |
Collapse
|
8
|
Yan X, Zou R, Lin Q, Ma Y, Li A, Sun X, Lu G, Li H. Glutathione‑iron hybrid nanozyme-based colorimetric sensor for specific and stable detection of thiram pesticide on fruit juices. Food Chem 2024; 452:139569. [PMID: 38744131 DOI: 10.1016/j.foodchem.2024.139569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Given the potential dangers of thiram to food safety, constructing a facile sensor is significantly critical. Herein, we presented a colorimetric sensor based on glutathione‑iron hybrid (GSH-Fe) nanozyme for specific and stable detection of thiram. The GSH-Fe nanozyme exhibits good peroxidase-mimicking activity with comparable Michaelis constant (Km = 0.551 mM) to the natural enzyme. Thiram pesticides can specifically limit the catalytic activity of GSH-Fe nanozyme via surface passivation, causing the change of colorimetric signal. It is worth mentioning that the platform was used to prepare a portable hydrogel kit for rapid qualitative monitoring of thiram. Coupling with an image-processing algorithm, the colorimetric image of the hydrogel reactor is converted into the data information for accurate quantification of thiram with a detection limit of 0.3 μg mL-1. The sensing system has good selectivity and high stability, with recovery rates in fruit juice samples ranging from 92.4% to 106.9%.
Collapse
Affiliation(s)
- Xu Yan
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Ruiqi Zou
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Qiqi Lin
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Yuan Ma
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Aixin Li
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Xun Sun
- Institute of Guizhou Aerospace Measuring and Testing Technology, Guiyang 550009, PR China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Hongxia Li
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China; Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
9
|
Wen SH, Zhang H, Yu S, Ma J, Zhu JJ, Zhou Y. Nanozyme coating-gated multifunctional COF composite based dual-ratio enhanced dual-mode sensor for highly sensitive and reliable detection of organophosphorus pesticides in real samples. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135791. [PMID: 39265396 DOI: 10.1016/j.jhazmat.2024.135791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
The reliable detection of organophosphorus pesticides (OPs) in complex matrices remains an enormous challenge due to inevitable interference of sample matrices and testing factors. To address this issue, we designed a nanozyme-coated mesoporous COF with guest molecule loading, and successfully used it to construct a dual-ratio dual-mode sensor through target-regulated signal generation. The multifunctional COF-based composite (MB/COF@MnO2, MCM) featured high loading of methylene blue (MB), oxidase-like MnO2 coatings as gatekeepers, and specific recognition of thiocholine (TCh). TCh, a regulator produced from acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylthiocholine, could decompose MnO2 coatings, triggering the release of abundant MB and oxidation of few o-phenylenediamine (OPD). OPs, strong inhibitors of AChE, could restrain TCh production and MnO2 decomposition, thereby controlling the release of less MB and oxidation of more OPD. This regulation boosted the dual-ratio dual-mode assay of OPs by using the released MB and oxidized OPD in the solution as testing signals, measured by both fluorescent and electrochemical methods. Experimental results demonstrated the sensitive detection of dichlorvos with LODs of 0.083 and 0.026 ng/mL via the fluorescent/electrochemical mode, respectively. This study represented a creative endeavor to develop dual-ratio dual-mode sensors for OPs detection in complex samples, offering high sensitivity, excellent selectivity, and good reliability.
Collapse
Affiliation(s)
- Shao-Hua Wen
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hengyuan Zhang
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sha Yu
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junping Ma
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
10
|
Wang S, Han Y, Su M, Wang H, Chen Y, Huang B, Bai Q, Wang M. Mediated self-assembled gold nanoclusters with mesoporous silica particles to boost fluorescence for enhanced on-site monitoring of organophosphate pesticides. Food Chem 2024; 463:141120. [PMID: 39244995 DOI: 10.1016/j.foodchem.2024.141120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/04/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
Accurate detection of organophosphate pesticides (OPs) is paramount for ensuring food safety. Dendritic mesoporous silica sphere was employed to confine gold nanoclusters (AuNCs@dmSiO2) to ameliorate fluorescent property of AuNCs. A AuNCs@dmSiO2-based fluorescent method was developed for OPs sensing. Identification of Cu2+ by AuNCs quenched AuNCs@dmSiO2 fluorescence. Interaction between Cu2+ and generated thiocholine in catalysis of acetylcholinesterase (AChE) caused fluorescence enhancement. OPs, an inhibitor of AChE, suppressed thiocholine production to cause fluorescence quenching. Based on fluorescent variation, a fluorescent method was proposed for OPs by selecting paraoxon as a model within range of 0.05-25.0 ng/mL with a limit of detection (LOD) of 0.032 ng/mL. Besides, a portable test swab was prepared for on-site monitoring OP paraoxon with a smartphone-based 3D-printing portable device with a LOD of 0.65 ng/mL. This work is highlighted by the inspiration of designing highly fluorescent AuNCs, and the provision of a viable avenue for OPs-related food analysis.
Collapse
Affiliation(s)
- Shun Wang
- College of Medical Engineering, Jining Medical University, Jining 272067, China
| | - Yaqing Han
- College of Medical Engineering, Jining Medical University, Jining 272067, China
| | - Mengdi Su
- College of Medical Engineering, Jining Medical University, Jining 272067, China
| | - Hao Wang
- College of Medical Engineering, Jining Medical University, Jining 272067, China
| | - Yuze Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Baoling Huang
- College of Medical Engineering, Jining Medical University, Jining 272067, China
| | - Qian Bai
- Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Mengke Wang
- College of Medical Engineering, Jining Medical University, Jining 272067, China.
| |
Collapse
|
11
|
Wang J, Kong J, Zhang X. Riboflavin-induced photo-ATRP electrochemical strategy for detection of biomarker trypsin. Talanta 2024; 277:126386. [PMID: 38876027 DOI: 10.1016/j.talanta.2024.126386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/28/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
The detection of trypsin and its inhibitors is important for both clinical diagnosis and disease treatment. Abnormal trypsin activity affects pancreatic function and leads to corresponding pathological changes in the body. Therefore, the study presented a riboflavin-induced photo-ATRP electrochemical assay of trypsin activity and its inhibitor, including detection of trypsin activity in real urine samples. Experiments were performed on indium tin oxide (ITO) electrodes modified with sulfhydryl groups of 3-mercaptopropionic acid, and target trypsin-specific cleavage of BSA-Au nanocluster (BSA-Au NCs) was followed by the modification of Au NCs to the electrodes using Au-S. The Au NCs immobilized monodeoxy-monomercapto-β-cyclodextrin@adamantan-2-amine (SH-β-CD@2-NH2-Ada) host-guest inclusion complexes to the electrode surfaces via Au-S. In a two-component photo-initiator system consisting of riboflavin as an initiator and ascorbic acid (AA) as a mild reducing agent under mild blue light radiation, a large number of electroactive substances were grafted onto the electrode surface to generate electrochemical signals. In addition, we have successfully realized the detection of clinical drug inhibitors of trypsin. The detection limit of the system is as low as 0.0024 ng/mL, which much littler than the average standard of trypsin in the patient's urine or serum. It's worth noting that this work will provide researchers with a different route to design electrochemical sensors based on non-covalent recognition strategies.
Collapse
Affiliation(s)
- Jiao Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
12
|
Cui Q, Zhou M, Wen Q, Li L, Xiong C, Adeli M, Cheng L, Xu X, Ren X, Cheng C. Pyridine-Bridged Covalent Organic Frameworks with Adjustable Band Gaps as Intelligent Artificial Enzymes for Light-Augmented Biocatalytic Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401673. [PMID: 38721983 DOI: 10.1002/smll.202401673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/12/2024] [Indexed: 10/01/2024]
Abstract
One of the biggest challenges in biotechnology and medical diagnostics is finding extremely sensitive and adaptable biosensors. Since metal-based enzyme-mimetic biocatalysts may lead to biosafety concerns on accumulative toxicity, it is essential to synthesize metal-free enzyme-mimics with optimal biocatalytic activity and superior selectivity. Here, the pyridine-bridged covalent organic frameworks (COFs) with specific oxidase-like (OXD-like) activities as intelligent artificial enzymes for light-augmented biocatalytic sensing of biomarkers are disclosed. Because of the adjustable bandgaps of pyridine structures on the photocatalytic properties of the pristine COF structures, the pyridine-bridged COF exhibit efficient, selective, and light-responsive OXD-like biocatalytic activity. Moreover, the pyridine-bridged COF structures show tunable and light-augmented biocatalytic detection capabilities, which outperform the recently reported state-of-the-art OXD-mimics regarding biosensing efficiency. Notably, the pyridine-bridged COF exhibits efficient and multifaceted diagnostic activity, including the extremely low limit of detection (LOD), which enables visual assays for abundant reducibility biomarkers. It is believed that this design will offer unique metal-free biocatalysts for high-sensitive and low-cost colorimetric detection and also provide new insights to create highly efficient enzyme-like COF materials via linkage-modulation strategies for future biocatalytic applications.
Collapse
Affiliation(s)
- Qiqi Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qinlong Wen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Lin Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao Xiong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mohsen Adeli
- Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Takustr. 3, 14195, Berlin, Germany
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, 68137-17133, Iran
| | - Liang Cheng
- Department of Materials Science and Engineering, The Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Xiaohui Xu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
13
|
Zhang WX, Li WY, Shu Y, Wang JH. Manganese-enriched prussian blue nanohybrids with smaller electrode potential and lower charge transfer resistance to enhance combination therapy. Colloids Surf B Biointerfaces 2024; 241:114045. [PMID: 38897024 DOI: 10.1016/j.colsurfb.2024.114045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Prussian blue (PB) is authenticated in clinical treatment, while it generally exhibits unfavorable chemodynamic therapy (CDT) performance. Herein, we developed manganese-doped prussian blue (PBM) nanoparticles to significantly enhance both CDT and photothermal therapy (PTT) effect. The lower redox potential of Mn3+/2+ (0.088 V) in PBM against that of Fe2+/3+ (0.192 V) in PB leads to favorable electron transfer of PBM with respect to PB. Besides, PBM has a lower charge-transfer resistance (Rct) of 2.98 Ω than 4.83 Ω of PB. Once PBM entering the tumor microenvironment (TME), Mn3+ may be readily reduced by glutathione (GSH) and therein to enhance intracellular oxidative stress. Meanwhile, the superoxide dismutase (SOD)-like activity of PBM facilitates the conversion of endogenous superoxide (O2•-) into H2O2. Mn2+ subsequently catalyzes H2O2 to generate toxic hydroxyl radicals (•OH). Notably, the PBM plus laser irradiation can effectively trigger a robust immunogenic cell death (ICD) due to the combination therapy of CDT and PTT. Additionally, the mice treated by PBM followed by laser irradiation efficiently avoided splenomegaly and lung metastasis, along with significant up-regulation of the Stimulator of Interferon Genes (STING) expression. Overall, PBM significantly inhibits tumor growth and metastasis, making it a promising multifunctional nanoplatform for cancer treatment.
Collapse
Affiliation(s)
- Wen-Xin Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Wang-Yang Li
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| |
Collapse
|
14
|
Cui Q, Gao Y, Wen Q, Wang T, Ren X, Cheng L, Bai M, Cheng C. Tunable Structured 2D Nanobiocatalysts: Synthesis, Catalytic Properties and New Horizons in Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311584. [PMID: 38566551 DOI: 10.1002/smll.202311584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Indexed: 04/04/2024]
Abstract
2D materials have offered essential contributions to boosting biocatalytic efficiency in diverse biomedical applications due to the intrinsic enzyme-mimetic activity and massive specific surface area for loading metal catalytic centers. Since the difficulty of high-quality synthesis, the varied structure, and the tough choice of efficient surface loading sites with catalytic properties, the artificial building of 2D nanobiocatalysts still faces great challenges. Here, in this review, a timely and comprehensive summarization of the latest progress and future trends in the design and biotherapeutic applications of 2D nanobiocatalysts is provided, which is essential for their development. First, an overview of the synthesis-structure-fundamentals and structure-property relationships of 2D nanobiocatalysts, both metal-free and metal-based is provided. After that, the effective design of the active sites of nanobiocatalysts is discussed. Then, the progress of their applied research in recent years, including biomedical analysis, biomedical therapeutics, pharmacokinetics, and toxicology is systematically highlighted. Finally, future research directions of 2D nanobiocatalysts are prospected. Overall, this review to provide cutting-edge and multidisciplinary guidance for accelerating future developments and biomedical applications of 2D nanobiocatalysts is expected.
Collapse
Affiliation(s)
- Qiqi Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qinlong Wen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Liang Cheng
- Department of Materials Science and Engineering, Center for Oral Diseases, The Macau University of Science and Technology, Taipa, Macau, China
| | - Mingru Bai
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
15
|
Jiang W, Yang Q, Duo H, Wu W, Hou X. Ionic liquid-enhanced silica aerogels for the specific extraction and detection of aflatoxin B1 coupled with a smartphone-based colorimetric biosensor. Food Chem 2024; 447:138917. [PMID: 38452540 DOI: 10.1016/j.foodchem.2024.138917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
The polymer ionic liquid (1-allyl-3-butylimidazolium bromide) enhanced silica aerogel was modified onto the surface of stainless-steel mesh to immobilize aptamer-1 for the specific recognition of AFB1. The porous channels of silica aerogel could prevent the interference of macromolecules in food samples. Enzyme kinetic analysis showed that the MoS2/Au was an effective peroxidase mimic with a relatively low Michaelis constant (Km) value of 0.17 mM and a high catalytic rate of 3.87 × 10-8 mol (L·s)-1, which exhibited obvious superiority compared with horseradish peroxidase. The established "sandwich-structure" biosensor was coupled with the smartphone "Color Picker" application was used to detect AFB1 with a wide linear range (1-100 ng mL-1) and low detection limit (0.25 ng mL-1). The anti-interference ability of the established biosensor was evaluated by adding different concentrations of standards in corn, peanut, and wheat and matrix effects were 90.84-106.11 %. The results showed that this method demonstrated high specificity, sensitivity, rapidity and low interference in food samples.
Collapse
Affiliation(s)
- Wenpeng Jiang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Huixiao Duo
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257343, China.
| | - Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257343, China.
| |
Collapse
|
16
|
Qin J, Guo N, Yang J, Wei J. Recent advances in metal oxide nanozyme-based optical biosensors for food safety assays. Food Chem 2024; 447:139019. [PMID: 38520903 DOI: 10.1016/j.foodchem.2024.139019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
Metal oxide nanozymes are emerging as promising materials for food safety detection, offering several advantages over natural enzymes, including superior stability, cost-effectiveness, large-scale production capability, customisable functionality, design options, and ease of modification. Optical biosensors based on metal oxide nanozymes have significantly accelerated the advancement of analytical research, facilitating the rapid, effortless, efficient, and precise detection and characterisation of contaminants in food. However, few reviews have focused on the application of optical biosensors based on metal oxide nanozymes for food safety detection. In this review, the catalytic mechanisms of the catalase, oxidase, peroxidase, and superoxide dismutase activities of metal oxide nanozymes are characterized. Research developments in optical biosensors based on metal oxide nanozymes, including colorimetric, fluorescent, chemiluminescent, and surface-enhanced Raman scattering biosensors, are comprehensively summarized. The application of metal oxide nanozyme-based biosensors for the detection of nitrites, sulphites, metal ions, pesticides, antibiotics, antioxidants, foodborne pathogens, toxins, and other food contaminants has been highlighted. Furthermore, the challenges and future development prospects of metal oxide nanozymes for sensing applications are discussed. This review offers insights and inspiration for further investigations on optical biosensors based on metal oxide nanozymes for food safety detection.
Collapse
Affiliation(s)
- Jing Qin
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China.
| | - Ningning Guo
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
| | - Jia Yang
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
| | - Jing Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Analytical Chemistry and Instrument for Life Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
17
|
Xiao Y, Peng T, Luo Y, Jiao L, Huang T, Li H. Facile, green and scalable synthesis of single-layer manganese dioxide nanosheets and its application for GSH and cTnI colorimetric detection. Analyst 2024; 149:3961-3970. [PMID: 38980709 DOI: 10.1039/d4an00689e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Manganese dioxide (MnO2) nanosheets possess unique physical and chemical properties, making them widely applicable in various fields, such as chemistry and biomedicine. Although MnO2 nanosheets are produced using bottom-up wet chemistry synthesis methods, their scale is below the gram level and requires a long processing time, restricting their effective scale-up from laboratory to market. We report a facile, green and scalable synthesis of MnO2 nanosheets by mixing Shiranui mandarin orange juice and KMnO4 for 30 minutes. We produced more than one gram (1.095) of MnO2 nanosheets with a 0.65 nm mean thickness and a 50 nm mean lateral size. Furthermore, we established a visual colorimetric biosensing strategy based on MnO2 nanosheets for the assay of glutathione (GSH) and cardiac troponin I (cTnI), offering high sensitivity and feasibility in clinical samples. For GSH, the limit of detection was 0.08 nM, and for cTnI, it was 0.70 pg mL-1. Meanwhile, the strategy can be used for real-time analysis by applying a smartphone-enabled biosensing strategy, which can provide point-of-care testing in remote areas.
Collapse
Affiliation(s)
- Yao Xiao
- College of Optoelectronics Technology, Shuangliu Industry College, Information Materials and Device Applications Key Laboratory of Sichuan Provincial Universities, Chengdu University of Information Technology, Chengdu 610225, China.
| | - TaoMei Peng
- College of Optoelectronics Technology, Shuangliu Industry College, Information Materials and Device Applications Key Laboratory of Sichuan Provincial Universities, Chengdu University of Information Technology, Chengdu 610225, China.
| | - YuXiao Luo
- College of Optoelectronics Technology, Shuangliu Industry College, Information Materials and Device Applications Key Laboratory of Sichuan Provincial Universities, Chengdu University of Information Technology, Chengdu 610225, China.
| | - Lei Jiao
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - TaiXing Huang
- College of Optoelectronics Technology, Shuangliu Industry College, Information Materials and Device Applications Key Laboratory of Sichuan Provincial Universities, Chengdu University of Information Technology, Chengdu 610225, China.
| | - He Li
- College of Optoelectronics Technology, Shuangliu Industry College, Information Materials and Device Applications Key Laboratory of Sichuan Provincial Universities, Chengdu University of Information Technology, Chengdu 610225, China.
| |
Collapse
|
18
|
Liu Z, Yan Y, Li J, Zhou W, Gao H, Lu R. Rapid visual dual-mode detection of Zr(IV) based on L-histidine functionalized gold nanoparticles. ANAL SCI 2024; 40:1269-1278. [PMID: 38575844 DOI: 10.1007/s44211-024-00557-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
Heavy metal pollution has always been a great threat to human health and safety. Compared with other heavy metals, although zirconium ion (Zr(IV)) is equally harmful, due to the lack of research on Zr(IV) in the biological systems and environment, its detection does not seem to have received the attention it deserves. Herein, a rapid visual dual-mode detection (colorimetric and chrominance method) of Zr(IV) based on L-histidine functionalized gold nanoparticles (HIS-AuNPs) has been reported. AuNPs and HIS-AuNPs before and after adding Zr(IV) were characterized by UV-Vis, TEM, DLS, Zeta potential, EDS and FT-IR, etc. These results showed that L-histidine was successfully modified on the surface of AuNPs by forming a stable Au-N bond, and its modification had little effect on the dispersion degree of AuNPs. After the addition of Zr(IV), interaction of this metal ion with the imidazolyl group on L-histidine can obviously cause the aggregation of HIS-AuNPs within 12 min, and the dispersion state and particle size of HIS-AuNPs can be significantly changed. These two detection modes were established by means of absorbance and color change of solution, and being used in addition and recovery experiments of Zr(IV) in natural water. Under the optimal conditions, these two modes exhibited good linearity within 15-70 and 20-100 μmol L-1, and limit of detection of 2.62 and 6.25 μmol L-1. The proposed method was highly sensitive and selective, which provided a new convenient way to realize the detection of Zr(IV).
Collapse
Affiliation(s)
- Zhili Liu
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Yumei Yan
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Jing Li
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Wenfeng Zhou
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Haixiang Gao
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Runhua Lu
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China.
| |
Collapse
|
19
|
Zhang X, Wang SQ, Zhang Q, Li H, Yu R. "On-On-Off" Recyclable Fluorescence Battery for Direct and Selective Detection of Glyphosate and Cu 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13256-13264. [PMID: 38860683 DOI: 10.1021/acs.langmuir.4c01436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Residues of environmental organophosphorus pesticides (OPs) will seriously endanger human health. Most reported OP sensors utilized the restrictions capacity of OPs on the catalytic capacity of acetylcholinesterase (AChE) to acetylthiocholine chloride (ATCh), which suffers from high costs, weak stability, long reaction time, and unrecyclable. Herein, a recyclable strategy was proposed for selective and sensitive detection of glyphosate (Gly). The weak fluorescence of UIO-66-NH2 at 450 nm was enhanced almost 10-fold after reacting with Gly because of the rotation-restricted emission enhancement mechanism. Moreover, inspired by the process of charging and discharging the batteries, we introduced Cu2+ to chelate with Gly. Because of the strong chelation between Cu2+ and Gly, the Gly was removed from UIO-66-NH2, which resulted in the quenching of fluorescence intensity and making UIO-66-NH2 recycle. This method proposed is fast, recyclable, easily conducted, and with a low 0.33 μM LOD in dd H2O based on 3σ/S. The recovery rates of Gly in tap water ranged from 93.07 to 104.35% within a satisfied 7.75% RSD. The Cu2+ LOD is 0.01 mM based on 3σ/S and 94.37-118.34% recovery rates within 6.48% RSD in tap water. We believe that the findings in this work provide a meaningful and promising strategy to detect Gly and Cu2+ in real samples. This sensor first successfully achieves the recycling use of the material in OP fluorescence detection, which greatly decreases the cost of the designed sensor and reduces the possibility of secondary pollution to the environment, broadens a new circulation dimension of fluorescence detection methods in detecting OPs, and has the potential to remove glyphosate from water. It also provides a method to utilize functionalized metal-organic frameworks to establish various sensors.
Collapse
Affiliation(s)
- Xinyi Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Su Qin Wang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Qianya Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Hongbo Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Ruqin Yu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
20
|
Guo A, Song M, Chen Q, Zhang Z, Feng Y, Hu X, Liu M. Enhanced Label-Free Photoelectrochemical Strategy for Pollutant Detection: Using Surface Oxygen Vacancies-Enriched BiVO 4 Photoanode. Anal Chem 2024; 96:9944-9952. [PMID: 38843071 DOI: 10.1021/acs.analchem.4c01157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Label-free photoelectrochemical sensors have the advantages of high sensitivity and a simple electrode structure. However, its performance is greatly limited due to the photoactive materials' weak photoactivity and poor stability. Herein, a robust homogeneous photoelectrochemical (PEC) aptasensor has been constructed for atrazine (ATZ) based on photoetching (PE) surface oxygen vacancies (Ov)-enriched Bismuth vanadate (BiVO4) (PE-BVO). The surface of the Ov improves the carrier separation ability of BiVO4, thus providing a superior signal substrate for the sensor. A thiol molecular layer self-assembled on PE-BVO acts as a blocker, while 2D graphene acts as a signal-on probe after release from the aptamer-graphene complex. The fabricated sensor has a wide linear detection range of 0.5 pM to 10.0 nM and a low detection limit of 0.34 pM (S/N = 3) for ATZ. In addition, it can efficiently work in a wide pH range (3-13) and high ionic strength (∼6 M Na+), which provides promising opportunities for detecting environmental pollutants under complex conditions.
Collapse
Affiliation(s)
- Aijiao Guo
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Menglin Song
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qichen Chen
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ziwei Zhang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ye Feng
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xialin Hu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Meichuan Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
21
|
Cai X, Huang Y, Zhu C. Immobilized Multi-Enzyme/Nanozyme Biomimetic Cascade Catalysis for Biosensing Applications. Adv Healthc Mater 2024:e2401834. [PMID: 38889805 DOI: 10.1002/adhm.202401834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Multiple enzyme-induced cascade catalysis has an indispensable role in the process of complex life activities, and is widely used to construct robust biosensors for analyzing various targets. The immobilized multi-enzyme cascade catalysis system is a novel biomimetic catalysis strategy that immobilizes various enzymes with different functions in stable carriers to simulate the synergistic catalysis of multiple enzymes in biological systems, which enables high stability of enzymes and efficiency enzymatic cascade catalysis. Nanozymes, a type of nanomaterial with intrinsic enzyme-like characteristics and excellent stabilities, are also widely applied instead of enzymes to construct immobilized cascade systems, achieving better catalytic performance and reaction stability. Due to good stability, reusability, and remarkably high efficiency, the immobilized multi-enzyme/nanozyme biomimetic cascade catalysis systems show distinct advantages in promoting signal transduction and amplification, thereby attracting vast research interest in biosensing applications. This review focuses on the research progress of the immobilized multi-enzyme/nanozyme biomimetic cascade catalysis systems in recent years. The construction approaches, factors affecting the efficiency, and applications for sensitive biosensing are discussed in detail. Further, their challenges and outlooks for future study are also provided.
Collapse
Affiliation(s)
- Xiaoli Cai
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Yuteng Huang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| |
Collapse
|
22
|
Ma Y, Lin X, Xue B, Luan D, Jia C, Feng S, Bian X, Zhao J. Ultrasensitive and Highly Selective Detection of Staphylococcus aureus at the Single-Cell Level Using Bacteria-Imprinted Polymer and Vancomycin-Conjugated MnO 2 Nanozyme. Anal Chem 2024; 96:8641-8647. [PMID: 38716697 DOI: 10.1021/acs.analchem.4c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Pathogenic bacterial infections, even at extremely low concentrations, pose significant threats to human health. However, the challenge persists in achieving high-sensitivity bacterial detection, particularly in complex samples. Herein, we present a novel sandwich-type electrochemical sensor utilizing bacteria-imprinted polymer (BIP) coupled with vancomycin-conjugated MnO2 nanozyme (Van@BSA-MnO2) for the ultrasensitive detection of pathogenic bacteria, exemplified by Staphylococcus aureus (S. aureus). The BIP, in situ prepared on the electrode surface, acts as a highly specific capture probe by replicating the surface features of S. aureus. Vancomycin (Van), known for its affinity to bacterial cell walls, is conjugated with a Bovine serum albumin (BSA)-templated MnO2 nanozyme through EDC/NHS chemistry. The resulting Van@BSA-MnO2 complex, serving as a detection probe, provides an efficient catalytic platform for signal amplification. Upon binding with the captured S. aureus, the Van@BSA-MnO2 complex catalyzes a substrate reaction, generating a current signal proportional to the target bacterial concentration. The sensor displays remarkable sensitivity, capable of detecting a single bacterial cell in a phosphate buffer solution. Even in complex milk matrices, it maintains outstanding performance, identifying S. aureus at concentrations as low as 10 CFU mL-1 without requiring intricate sample pretreatment. Moreover, the sensor demonstrates excellent selectivity, particularly in distinguishing target S. aureus from interfering bacteria of the same genus at concentrations 100-fold higher. This innovative method, employing entirely synthetic materials, provides a versatile and low-cost detection platform for Gram-positive bacteria. In comparison to existing nanozyme-based bacterial sensors with biological recognition materials, our assay offers distinct advantages, including enhanced sensitivity, ease of preparation, and cost-effectiveness, thereby holding significant promise for applications in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Yixin Ma
- College of Food Science and Technology, International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaohui Lin
- College of Food Science and Technology, International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Xue
- College of Food Science and Technology, International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China
| | - Donglei Luan
- College of Food Science and Technology, International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China
| | - Chunping Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xiaojun Bian
- College of Food Science and Technology, International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
23
|
Yang X, Bi Z, Yin C, Huang H, Li Y. A novel hybrid sensor array based on the polyphenol oxidase and its nanozymes combined with the machine learning based dual output model to identify tea polyphenols and Chinese teas. Talanta 2024; 272:125842. [PMID: 38428131 DOI: 10.1016/j.talanta.2024.125842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
A novel sensor array was developed based on the enzyme/nanozyme hybridization for the identification of tea polyphenols (TPs) and Chinese teas. The enzyme/nanozyme with polyphenol oxidase activity can catalyze the reaction between TPs and 4-aminoantipyrine (4-AAP) to produce differences in color, and the sensor array was thus constructed to accurately identify TPs mixed in different species, concentrations, or ratios. In addition, a machine learning based dual output model was further used to effectively predict the classes and concentrations of unknown samples. Therefore, the qualitative and quantitative detection of TPs can be realized continuously and quickly. Furthermore, the sensor array combining the machine learning based dual output model was also utilized for the identification of Chinese teas. The method can distinguish the six teas series in China, and then precisely differentiate the more specific tea varieties. This study provides an efficient and facile strategy for the identification of teas and tea products.
Collapse
Affiliation(s)
- Xiaoyu Yang
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Zhichun Bi
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Chenghui Yin
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China.
| | - Yongxin Li
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| |
Collapse
|
24
|
Hu H, Tian J, Shu R, Liu H, Wang S, Yin X, Wang J, Zhang D. A cheaper substitute for HRP: ultra-small Cu-Au bimetallic enzyme mimics with infinitesimal steric hindrance to promote catalytic lateral flow immunodetection of clenbuterol. LAB ON A CHIP 2024; 24:2272-2279. [PMID: 38504660 DOI: 10.1039/d3lc01079a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
A highly sensitive lateral flow immunoassay (LFIA) is developed for the enzyme-catalyzed and double-reading determination of clenbuterol (CLE), in which a new type of probe was adopted through the direct electrostatic adsorption of ultra-small copper-gold bimetallic enzyme mimics (USCGs) and monoclonal antibodies. In the assay, based on the peroxidase activity of USCG, the chromogenic substrate TMB-H2O2 was introduced to trigger its color development, and the results were compared with those before catalysis. The detection sensitivity after catalysis is 0.03 ng mL-1 under optimal circumstances, which is 6-fold better than that of the traditional Au NPs-based LFIA and 2-fold greater than that before catalysis. This approach was successfully applied to the detection of CLE in milk, pork and mutton samples with an optimum assay time of 7 min and best catalytic time of 80 s, after which satisfactory recoveries of 98.53-117.79% were obtained. Cu-Au nanoparticles as a signal tag and the use of their nanozyme properties are the first applications in the field of LFIA. This work can be a promising exhibition for the application of a cheaper substitute for HRP, ultra-small bimetallic enzyme mimics, in LFIAs.
Collapse
Affiliation(s)
- Huilan Hu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China.
| | - Jiaqi Tian
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China.
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China.
| | - Huihui Liu
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, No. 216 Changjiang Road, Economic and Technological Development Zone, 264006, Yantai, Shandong, China.
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China.
| | - Xuechi Yin
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China.
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China.
| |
Collapse
|
25
|
Yang Z, Guo J, Wang L, Zhang J, Ding L, Liu H, Yu X. Nanozyme-Enhanced Electrochemical Biosensors: Mechanisms and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307815. [PMID: 37985947 DOI: 10.1002/smll.202307815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/22/2023] [Indexed: 11/22/2023]
Abstract
Nanozymes, as innovative materials, have demonstrated remarkable potential in the field of electrochemical biosensors. This article provides an overview of the mechanisms and extensive practical applications of nanozymes in electrochemical biosensors. First, the definition and characteristics of nanozymes are introduced, emphasizing their significant role in constructing efficient sensors. Subsequently, several common categories of nanozyme materials are delved into, including metal-based, carbon-based, metal-organic framework, and layered double hydroxide nanostructures, discussing their applications in electrochemical biosensors. Regarding their mechanisms, two key roles of nanozymes are particularly focused in electrochemical biosensors: selective enhancement and signal amplification, which crucially support the enhancement of sensor performance. In terms of practical applications, the widespread use of nanozyme-based electrochemical biosensors are showcased in various domains. From detecting biomolecules, pollutants, nucleic acids, proteins, to cells, providing robust means for high-sensitivity detection. Furthermore, insights into the future development of nanozyme-based electrochemical biosensors is provided, encompassing improvements and optimizations of nanozyme materials, innovative sensor design and integration, and the expansion of application fields through interdisciplinary collaboration. In conclusion, this article systematically presents the mechanisms and applications of nanozymes in electrochemical biosensors, offering valuable references and prospects for research and development in this field.
Collapse
Affiliation(s)
- Zhongwei Yang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Jiawei Guo
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Longwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Jian Zhang
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Longhua Ding
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
26
|
Purcarea C, Ruginescu R, Banciu RM, Vasilescu A. Extremozyme-Based Biosensors for Environmental Pollution Monitoring: Recent Developments. BIOSENSORS 2024; 14:143. [PMID: 38534250 DOI: 10.3390/bios14030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Extremozymes combine high specificity and sensitivity with the ability to withstand extreme operational conditions. This work presents an overview of extremozymes that show potential for environmental monitoring devices and outlines the latest advances in biosensors utilizing these unique molecules. The characteristics of various extremozymes described so far are presented, underlining their stability and operational conditions that make them attractive for biosensing. The biosensor design is discussed based on the detection of photosynthesis-inhibiting herbicides as a case study. Several biosensors for the detection of pesticides, heavy metals, and phenols are presented in more detail to highlight interesting substrate specificity, applications or immobilization methods. Compared to mesophilic enzymes, the integration of extremozymes in biosensors faces additional challenges related to lower availability and high production costs. The use of extremozymes in biosensing does not parallel their success in industrial applications. In recent years, the "collection" of recognition elements was enriched by extremozymes with interesting selectivity and by thermostable chimeras. The perspectives for biosensor development are exciting, considering also the progress in genetic editing for the oriented immobilization of enzymes, efficient folding, and better electron transport. Stability, production costs and immobilization at sensing interfaces must be improved to encourage wider applications of extremozymes in biosensors.
Collapse
Affiliation(s)
- Cristina Purcarea
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Robert Ruginescu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Roberta Maria Banciu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania
| |
Collapse
|
27
|
Xia L, Luo F, Niu X, Tang Y, Wu Y. Facile colorimetric sensor using oxidase-like activity of octahedral Ag 2O particles for highly selective detection of Pb(II) in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170025. [PMID: 38219997 DOI: 10.1016/j.scitotenv.2024.170025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/23/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Pb(II) is a prevalent heavy metal ion classified as a 2B carcinogen. Excessive intake of Pb(II) in the human body can damage the central nervous system, kidneys, liver, and immune system, leading to permanent brain damage, anemia, and cancer. Colorimetry can be applied to rapidly determine Pb(II) residues, but there are still many challenges in the accuracy and sensitivity of detection. Based on the inhibitory impact of Pb(II) on the oxidase-like activity of octahedral silver oxide (Ag2O), a colorimetric sensor with smartphone-assisted analysis for the Pb(II) detection was first developed. Herein, it has been found that Pb(II) can adsorb onto the surface of octahedral Ag2O, hindering the production of O2- in the reaction system. This ultimately results in the suppression of oxidase-like activity, leading to a lighter purple appearance of the colorimetric reaction solution. The sensor exhibits a high degree of sensitivity and a limit of detection (LOD) for Pb(II) was calculated as 2.2 μg L-1. Hence, the developed colorimetric sensor with high sensitivity, excellent specificity, and high tolerance to sodium ions is hopeful to have practical applications in Pb(II) detection in environmental water samples. Moreover, the sensor will provide a novel strategy for heavy metal ion detection and other substances.
Collapse
Affiliation(s)
- Lian Xia
- College of Life Sciences, Guizhou Normal University, Guiyang 550025, China; College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Feng Luo
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xiaojuan Niu
- College of Life Sciences, Guizhou Normal University, Guiyang 550025, China; College of Life Sciences, Guizhou University, Guiyang 550025, China.
| | - Yue Tang
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Yuangen Wu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; College of Life Sciences, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
28
|
Wu X, Zhu J, Wen R, Tian J, Lu J. A photoelectrochemical aptasensor for omethoate determination based on a photocatalysis of CeO 2@MnO 2 heterojunction for glucose oxidation. Anal Chim Acta 2024; 1293:342284. [PMID: 38331552 DOI: 10.1016/j.aca.2024.342284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
In the present work, we developed a photoelectrochemical aptasensor to determine omethoate (OMT) based on the dual signal amplification of CeO2@MnO2 photocatalysis for glucose oxidation and exonuclease I-assisted cyclic catalytic hydrolysis. CeO2@MnO2 heterojunction material prepared by hydrothermal method was linked with captured DNA (cDNA) and then assembled on the ITO conductive glass to form ITO/CeO2@MnO2-cDNA, which exhibited significant photocurrent response and good photocatalytic performance for glucose oxidation under visible light irradiation, providing the feasibility for sensitive determining OMT. After binding with the aptamer of OMT (apt), the formation of rigid double stranded cDNA/apt kept CeO2@MnO2 away from ITO surface, which ensured a low photocurrent background for the constructed ITO/CeO2@MnO2-cDNA/apt aptasensor. In the presence of target OMT, the restoration of the cDNA hairpin structure and the exonuclease I-assisted cyclic catalytic hydrolysis led to the generation and amplification of measurement photocurrent signals, and allowed the aptasensor to have an ideal quantitative range of 0.01-10.0 nM and low detection limit of 0.0027 nM. Moreover, the aptasensor has been applied for selective determination of OMT in real samples with good precision of the relative standard deviation less than 6.2 % and good accuracy of the recoveries from 93 % to 108 %. What's more, the aptasensor can be used for other target determination only by replacing the captured DNA and corresponding aptamer.
Collapse
Affiliation(s)
- Xingyang Wu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Jing Zhu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Ruiting Wen
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Jiuying Tian
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, PR China.
| | - Jusheng Lu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, PR China.
| |
Collapse
|
29
|
Chen Y, Zhang J, Li J, Hu Y, Ge K, Li G, Liu S. Bifunctional Mo 2N Nanoparticles with Nanozyme and SERS Activity: A Versatile Platform for Sensitive Detection of Biomarkers in Serum Samples. Anal Chem 2024. [PMID: 38335969 DOI: 10.1021/acs.analchem.3c04801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The combined application of nanozymes and surface-enhanced Raman scattering (SERS) provides a promising approach to obtain label-free detection. However, developing nanomaterials with both highly efficient enzyme-like activity and excellent SERS sensitivity remains a huge challenge. Herein, we proposed one-step synthesis of Mo2N nanoparticles (NPs) as a "two-in-one" substrate, which exhibits both excellent peroxidase (POD)-like activity and high SERS activity. Its mimetic POD activity can catalyze the 3,3',5,5'-tetramethylbenzidine (TMB) molecule to SERS-active oxidized TMB (ox-TMB) with high efficiency. Furthermore, combining experimental profiling with theory, the mechanism of POD-like activity and SERS enhancement of Mo2N NPs was explored in depth. Benefiting from the outstanding properties of Mo2N NPs, a versatile platform for indirect SERS detection of biomarkers was developed based on the Mo2N NPs-catalyzed product ox-TMB, which acts as the SERS signal readout. The feasibility of this platform was validated using glutathione (GSH) and target antigens alpha-fetoprotein antigen (AFP) and carcinoembryonic antigen (CEA) as representatives of small molecules with a hydroxyl radical (·OH) scavenging effect and proteins with a low Raman scattering cross-section, respectively. The limits of detection of GSH, AFP, and CEA were as low as 0.1 μmol/L, 89.1, and 74.6 pg/mL, respectively. Significantly, it also showed application in human serum samples with recoveries ranging from 96.0 to 101%. The acquired values based on this platform were compared with the standard electrochemiluminescence method, and the relative error was less than ±7.3. This work not only provides a strategy for developing highly active bifunctional nanomaterials but also manifests their widespread application for multiple biomarkers analysis.
Collapse
Affiliation(s)
- Ying Chen
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ji Zhang
- Department of Neurosurgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jiayi Li
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuling Hu
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Kun Ge
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Gongke Li
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Sichen Liu
- Department of Neurosurgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
30
|
Li J, Cai X, Jiang P, Wang H, Zhang S, Sun T, Chen C, Fan K. Co-based Nanozymatic Profiling: Advances Spanning Chemistry, Biomedical, and Environmental Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307337. [PMID: 37724878 DOI: 10.1002/adma.202307337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Nanozymes, next-generation enzyme-mimicking nanomaterials, have entered an era of rational design; among them, Co-based nanozymes have emerged as captivating players over times. Co-based nanozymes have been developed and have garnered significant attention over the past five years. Their extraordinary properties, including regulatable enzymatic activity, stability, and multifunctionality stemming from magnetic properties, photothermal conversion effects, cavitation effects, and relaxation efficiency, have made Co-based nanozymes a rising star. This review presents the first comprehensive profiling of the Co-based nanozymes in the chemistry, biology, and environmental sciences. The review begins by scrutinizing the various synthetic methods employed for Co-based nanozyme fabrication, such as template and sol-gel methods, highlighting their distinctive merits from a chemical standpoint. Furthermore, a detailed exploration of their wide-ranging applications in biosensing and biomedical therapeutics, as well as their contributions to environmental monitoring and remediation is provided. Notably, drawing inspiration from state-of-the-art techniques such as omics, a comprehensive analysis of Co-based nanozymes is undertaken, employing analogous statistical methodologies to provide valuable guidance. To conclude, a comprehensive outlook on the challenges and prospects for Co-based nanozymes is presented, spanning from microscopic physicochemical mechanisms to macroscopic clinical translational applications.
Collapse
Affiliation(s)
- Jingqi Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinda Cai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Peng Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Huayuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shiwei Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
31
|
He Y, Jiang K, Liu B, Meng HM, Li Z. Spatiotemporal control of DNAzyme activity for fluorescent imaging of telomerase RNA in living cells. Anal Chim Acta 2024; 1287:342085. [PMID: 38182380 DOI: 10.1016/j.aca.2023.342085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Human telomerase is a ribonucleoprotein complex that includes proteins and human telomerase RNA (hTR). Emerging evidence suggested that the expression level of hTR was high related with the development of tumor, so it is important to accurately detect the content of hTR. Optical control of DNAzyme activity shows a promising strategy for precise biosensing, biomedical imaging and modulation of biological processes. Although DNAzyme-based sensors can be controlled spatiotemporally by light, its application in the detection of hTR in living cells is still rare. Therefore, designing DNAzyme activity spatiotemporal controllable sensors for hTR detection is highly needed. RESULTS We developed a UV light-activated DNAzyme-based nanoprobe for spatially accurate imaging of intracellular hTR. The proposed nanoprobe was named MDPH, which composed of an 8-17 DNAzyme (D) inactivated by a protector strand (P), a substrate strand (H), and MnO2 nanosheets. The MnO2 nanosheets can enhance the cellular uptake of DNA strands, so that MDPH probe can enter cells autonomously through endocytosis. Under the high concentration of GSH in cancer cells, MnO2 nanosheets can self-generate cofactors to maintain the catalytic activity of DNAzyme. When exposing UV light and in presence of target hTR, DNAzyme could cleave substrate H, resulting in the recovery of fluorescence of the system. The cells imaging results show that MDPH probe could be spatiotemporally controlled to image endogenous hTR in cancer cells. SIGNIFICANCE With this design, telomerase RNA-specific fluorescent imaging was achieved by MDPH probe in both cancer and normal cells. Our probe made a promising new platform for spatiotemporal controllable intracellular hTR monitoring. This current method can be applied to monitor a variety of other biomarkers in living cells and perform medical diagnosis, so it may has broad applications in the field of medicine.
Collapse
Affiliation(s)
- Yating He
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Kemei Jiang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Bojun Liu
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Hong-Min Meng
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou, 450001, China.
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou, 450001, China; The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
32
|
Cao Y, Song Y, Wei T, Feng T, Li M, Xue C, Xu J. MnO 2 in-situ coated upconversion nanosystem for turn-on fluorescence detection of hypoxanthine in aquatic products. Food Chem 2024; 431:137131. [PMID: 37579612 DOI: 10.1016/j.foodchem.2023.137131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Hypoxanthine concentration is a potential indicator to evaluate the freshness in the early post-mortem of several aquatic products. Based on MnO2 in-situ coated upconversion nanoparticles (UCNPs) and xanthine oxidase (XOD), a novel sensor was conducted for the efficient, sensitive determination of hypoxanthine. In this strategy, upconversion fluorescence quenched by MnO2 would be restored by H2O2 and uric acid (UA), two products from the XOD-catalyzed reactions of hypoxanthine. Through pretreatment with short-time heating and alkylation by N-ethylmaleimide (NEM) to avoid potential interference from reducing substances in the food matrix, this method exhibited satisfactory selectivity. The fluorescence intensity of green emission Igreen was positively proportional to hypoxanthine concentration at a wide range of 0.5-50 mg/L with a detection limit of 0.14 mg/L. Moreover, this convenient method was employed to quantify the hypoxanthine in fish, shrimp, and shellfish samples, showing excellent potential for the application in quality control of aquatic products.
Collapse
Affiliation(s)
- Yunrui Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Yu Song
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Tingting Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Tingyu Feng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Meihuan Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China; Qingdao Marine Science and Technology Center, Qingdao 266235, PR China.
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
33
|
Bi H, You R, Bian X, Li P, Zhao X, You Z. A magnetic control enrichment technique combined with terahertz metamaterial biosensor for detecting SARS-CoV-2 spike protein. Biosens Bioelectron 2024; 243:115763. [PMID: 37890389 DOI: 10.1016/j.bios.2023.115763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
The highly contagious SARS-CoV-2 virus, responsible for the COVID-19 pandemic continues to pose significant challenges to public health. Developing new methods for early detection and diagnosis is crucial in combatting the disease, mitigating its impact and be prepared for future challenges in pandemic diseases. In this study, we propose a terahertz (THz) biosensing technology that capitalizes on the properties of THz metamaterial in conjunction with magnetic nanoparticles. This approach can accurately identify the SARS-CoV-2 spike protein by pinpointing its location on the THz resonance sources grooved surface. The magnetic nanoparticles are employed to selectively bind with target molecules, and migrate towards the THz metamaterial unit cell when exposed to an applied magnetic field. The presence of target molecules in to the metamaterial variation in the frequency, amplitude, and phase of the resonance response, thus enabling swift, accurate and sensitive detection. To assess the effectiveness of the proposed technique, we have conducted a comparative analysis between real samples on platforms controlled by magnetic manipulation and those without the control. It was confirmed that the proposed THz sensing method demonstrated a linear detection range spanning from 0.005 ng mL-1 to 1000 ng mL-1 with a detection limit of 0.002 ng mL-1. Furthermore, it exhibited a frequency shift of 24 GHz and a stability index of 95%. The THz biosensing technique may pave a new avenue in identifying and preempting the spread of potential pandemic diseases.
Collapse
Affiliation(s)
- Hao Bi
- Beijing Laboratory of Biomedical Detection Technology and Instrument, Beijing Information Science & Technology University, Beijing, 10029, PR China; School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100029, PR China
| | - Rui You
- Beijing Laboratory of Biomedical Detection Technology and Instrument, Beijing Information Science & Technology University, Beijing, 10029, PR China; School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100029, PR China.
| | - Xiaomeng Bian
- Beijing Laboratory of Biomedical Detection Technology and Instrument, Beijing Information Science & Technology University, Beijing, 10029, PR China; School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100029, PR China
| | - Peng Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, PR China; Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing, 100084, PR China; Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100084, PR China.
| | - Xiaoguang Zhao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, PR China; Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing, 100084, PR China; Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100084, PR China.
| | - Zheng You
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, PR China; Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing, 100084, PR China; Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100084, PR China
| |
Collapse
|
34
|
Liu LE, Xue L, Li Y, Ji J, Yuan X, Han H, Ding L, Wu Y, Yang R. MOFs-derived Co 3O 4@MnO 2@Carbon dots with enhanced nanozymes activity for photoelectrochemical detection of cancer cells in whole blood. Talanta 2024; 266:125095. [PMID: 37625292 DOI: 10.1016/j.talanta.2023.125095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Nanozymes have attracted widespread attention, and rationally designing high-activity nanozymes to improve their application performance are a long-term objective. Herein, taking metal-organic frameworks-derived Co3O4 polyhedron with large surface area and high porosity as nanoconfinement carriers, Co3O4@MnO2@CDs polyhedron was successfully synthesized by the room-temperature reduction of MnO4- ions and physical load of carbon dots (CDs). Through cancer cells-triggered double antibody sandwich strategy, the Co3O4@MnO2@CDs polyhedron were introduced to the TiO2 nanoparticle (NPs) modified electrode, leading to the decreased photocurrent. The Co3O4@MnO2@CDs polyhedron can not only quench the photocurrent of TiO2 NPs, also act as nanozymes to catalyze precipitates. Moreover, the precipitates can not only reduce the photoelectrochemical (PEC) response, also increase the quenching capacity of the Co3O4@MnO2@CDs polyhedron. Additionally, the steric hindrance effect of the Co3O4@MnO2@CDs-Ab conjugates further weaken the photocurrent. Based on the multifunctional Co3O4@MnO2@CDs polyhedron, the proposed PEC biosensor for the detection of A549 cancer cells exhibits a wide linear range from 102 to 106 cells/mL and a low detection limit of 11 cells/mL. Furthermore, this strategy can differentiate between lung cancer patients and healthy individuals. The designed multifunctional Co3O4@MnO2@CDs nanozymes provide a new horizon for PEC detection of cancer cells, and may have great potential in early clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Li-E Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Linsheng Xue
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuling Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiangying Ji
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinxin Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Hangchen Han
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiying Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
35
|
Qiao W, He B, Yang J, Ren W, Zhao R, Zhang Y, Bai C, Suo Z, Xu Y, Wei M, Jin H. Pt@AuNF nanozyme and horseradish peroxidase-based lateral flow immunoassay dual enzymes signal amplification strategy for sensitive detection of zearalenone. Int J Biol Macromol 2024; 254:127746. [PMID: 37923041 DOI: 10.1016/j.ijbiomac.2023.127746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Lateral flow immunoassay (LFIA) has been employed extensively for the rapid, accurate, and portable detection of foodborne toxins. Here, the platinum gold nanoflower core-shell (Pt@AuNF) nanozyme with excellent optical properties, good catalytic ability and controllable reaction conditions were prepared to effectively improve the performance of lateral flow immunoassay (LFIA) strips. The Pt@AuNF nanozyme and horseradish peroxidase (HRP) combined with monoclonal antibody were used as signal probes based on the dual enzymes catalytic signal amplification strategy to detect Zearalenone sensitively. Dual enzymes catalyze the decomposition of hydrogen peroxide into hydroxyl radicals, and under the influence of hydroxyl radicals, colorless 3,3',5,5' -tetramethylbenzidine (TMB) is oxidized to blue ox-TMB, which is superimposed on the strips for signal amplification to broaden the detection range. The limit of detection (LOD) of the Pt@AuNF-HRP labeled LFIA strips after signal amplification was 0.052 ng/mL, and the detection range was 0.052-7.21 ng/mL. Compared with the Pt@AuNF labeled strips, while reducing the probes amount by half to achieve antibody conservation, the detection range was expanded by 5-fold based on achieving improved sensitivity. The study provided a meaningful reference for expanding the detection range based on immunoassay.
Collapse
Affiliation(s)
- Weili Qiao
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Jun Yang
- Department of Entomology, University of California, Davis, CA 95616, United States
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Renyong Zhao
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yurong Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Chunqi Bai
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
36
|
Niu X, He H, Ran H, Wu Z, Tang Y, Wu Y. Rapid colorimetric sensor for ultrasensitive and highly selective detection of Fumonisin B1 in cereal based on laccase-mimicking activity of silver phosphate nanoparticles. Food Chem 2023; 429:136903. [PMID: 37487390 DOI: 10.1016/j.foodchem.2023.136903] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
Ag3PO4 nanoparticles (NPs) was prepared through a facile coprecipitation method, and was first found to have excellent laccase-mimicking catalytic activity. The study confirms that Fumonisin B1 (FB1) can effectively hinder the production of superoxide anion (O2-) between Ag3PO4 NPs and dissolved oxygen, and further inhibit laccase-mimicking activity of Ag3PO4 NPs. Thus, a novel rapid colorimetric sensor for FB1 analysis in cereal was first established using laccase-mimicking activity as sensing signal. The absorbance variation of sensing solution is directly related to the amount of FB1, and the color change is further combined with smartphone for quantitively analysis of FB1. The limit of detection (LOD) of the sensor is determined as low as 1.73 μg·L-1, which is far lower than the maximum residue limits (MRLs) of FB1 set by European Commission and US Food and Drug Administration (FDA). The average recovery of 87.8-104.5% for FB1 detection was obtained in cereal.
Collapse
Affiliation(s)
- Xiaojuan Niu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, China; College of Life Sciences, Guizhou Normal University, Guiyang 550001, China
| | - Huanhuan He
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Hang Ran
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Zhen Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, China
| | - Yue Tang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, China
| | - Yuangen Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
37
|
Patel V, Ramadass K, Morrison B, Britto JSJ, Lee JM, Mahasivam S, Weerathunge P, Bansal V, Yi J, Singh G, Vinu A. Utilising the Nanozymatic Activity of Copper-Functionalised Mesoporous C 3 N 5 for Sensing Biomolecules. Chemistry 2023; 29:e202302723. [PMID: 37673789 DOI: 10.1002/chem.202302723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
Designing unique nanomaterials for the selective sensing of biomolecules is of significant interest in the field of nanobiotechnology. In this work, we demonstrated the synthesis of ordered Cu nanoparticle-functionalised mesoporous C3 N5 that has unique peroxidase-like nanozymatic activity for the ultrasensitive and selective detection of glucose and glutathione. A nano hard-templating technique together with the in-situ polymerisation and self-assembly of Cu and high N-containing CN precursor was adopted to introduce mesoporosity as well as high N and Cu content in mesoporous C3 N5 . Due to the ordered structure and highly dispersed Cu in the mesoporous C3 N5 , a large enhancement of the peroxidase mimetic activity in the oxidation of a redox dye in the presence of hydrogen peroxide could be obtained. Additionally, the optimised Cu-functionalised mesoporous C3 N5 exhibited excellent sensitivity to glutathione with a low detection limit of 2.0 ppm. The strong peroxidase activity of the Cu-functionalised mesoporous C3 N5 was also effectively used for the sensing of glucose with a detection limit of 0.4 mM through glucose oxidation with glucose oxidase. This unique Cu-functionalised mesoporous C3 N5 has the potential for detecting various molecules in the environment as well as for next-generation glucose and glutathione diagnostic devices.
Collapse
Affiliation(s)
- Vaishwik Patel
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Brodie Morrison
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jolitta Sheri John Britto
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jang Mee Lee
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), Science, Technology, Engineering and Mathematics (STEM) College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Victoria, 3001, Australia
| | - Sanje Mahasivam
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
38
|
Zhang X, Li Z, Hong L, Wang X, Cao J. Tetrahedral DNA Nanostructure-Engineered Paper-Based Electrochemical Aptasensor for Fumonisin B1 Detection Coupled with Au@Pt Nanocrystals as an Amplification Label. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19121-19128. [PMID: 38009689 DOI: 10.1021/acs.jafc.3c06962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Fumonisin B1 (FB1), as one of the highest toxicity mycotoxins, poses a serious threat to animal and human health, even at low concentrations. It is significant and challenging to develop a sensitive and reliable analytical device. Herein, a paper-based electrochemical aptasensor was designed utilizing tetrahedral DNA nanostructures (TDNs) to controllably anchor an aptamer (Apt), improving the recognition efficiency of Apt to its target. First, gold nanoparticles (AuNPs)@MXenes were used as a sensing substrate with good conductivity and modified on the electrode for immobilization of complementary DNA-TDNs (cDNA-TDNs). In the absence of FB1, numerous Apt-Au@Pt nanocrystals (NCs) was hybridized with cDNA and assembled on the sensing interface, which accelerated the oxidation of TMB with H2O2 and produced a highly amplified differential pulse voltammetry (DPV) signal. When the target FB1 specifically bound to its Apt, the electrochemical signal was decreased by releasing the Apt-Au@Pt NCs from double-stranded DNA (dsDNA). On account of the strand displacement reaction by FB1 triggering, the aptasensor had a wider dynamic linear range (from 50 fg/mL to 100 ng/mL) with a lower limit of detection (21 fg/mL) under the optimized conditions. More impressively, the designed FB1 aptasensor exhibited satisfactory performance in corn and wheat samples. Therefore, the TDN-engineered sensing platform opens an effective approach for sensitive and accurate analysis of FB1, holding strong potential in food safety and public health.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian, Liaoning 116600, People's Republic of China
| | - Zhiru Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian, Liaoning 116600, People's Republic of China
| | - Lin Hong
- Dalian Inspection and Testing Certification Technical Service Center, Dalian, Liaoning 116021, People's Republic of China
| | - Xiuwen Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian, Liaoning 116600, People's Republic of China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian, Liaoning 116600, People's Republic of China
| |
Collapse
|
39
|
Qin J, Li J, Zeng H, Du F, Tang D, Tang J. Bifunctional TiO 2 Nanoflower-Induced H 4TCBPE Aggregation Enhanced Electrochemiluminescence for an Ultrasensitive Assay of Organophosphorus. Anal Chem 2023; 95:17903-17911. [PMID: 37972093 DOI: 10.1021/acs.analchem.3c04183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
In this work, the aggregation-induced emission ligand 1,1,2,2-tetra(4-carboxylbiphenyl)ethylene (H4TCBPE) was rigidified in the Ti-O network to form novel electrochemiluminescence (ECL) emitter H4TCBPE-TiO2 nanospheres, which acted as an effective ECL emitter to construct an "on-off" ECL biosensor for ultrasensitive detection of malathion (Mal). H4TCBPE-TiO2 exhibited excellent ECL responses due to the Ti-O network that can restrict the intramolecular free motions within H4TCBPE and then reduce the nonradiative relaxation. Moreover, TiO2 can act as an ECL co-reaction accelerator to promote the generation of sulfate radical anion (SO4•-), which interacts with H4TCBPE in the Ti-O network to produce enhanced ECL response. In the presence of Mal, numerous ligated probes (probe 1 to probe 2, P1-P2) were formed and released by copper-free click nucleic acid ligation reaction, which then hybridized with hairpin probe 1 (H1)-modified H4TCBPE-TiO2-based electrode surface. The P1-P2 probes can initiate the target-assisted terminal deoxynucleoside transferase (TdTase) extended reaction to produce long tails of deoxyadenine with abundant biotin, which can load numerous streptavidin-functionalized ferrocenedicarboxylic acid polymer (SA-PFc), causing quenching of the ECL signal. Thus, the ultrasensitive ECL biosensor based on H4TCBPE-TiO2 ECL emitter and click chemistry-actuated TdTase amplification strategy presents a desirable range from 0.001 to 100 ng/mL and a detection limit low to 9.9 fg/mL. Overall, this work has paved an avenue for the development of novel ECL emitters, which has opened up new prospects for ECL biosensing.
Collapse
Affiliation(s)
- Jiao Qin
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Jinjin Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Haisen Zeng
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Fan Du
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education of China and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Juan Tang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| |
Collapse
|
40
|
Wang L, Sun Y, Zhang H, Shi W, Huang H, Li Y. Selective sensing of catechol based on a fluorescent nanozyme with catechol oxidase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123003. [PMID: 37336190 DOI: 10.1016/j.saa.2023.123003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Nanozymes, an unusual category of nanomaterials possessing enzymatic properties, and have generated considerable interest regarding their application feasibilities on several important fronts. In the present work, an innovative sensing device for catechol was established ground on a fluorescent nanozyme (Cu-BDC-NH2) that exhibited catechol oxidase activity. The fluorescent nanozyme combines both functions of catechol recognition and response signal output, and can realize the sensing of catechol without the addition of other chromogenic agents. In the existence of Cu-BDC-NH2, catechol can be oxidized efficiently to produce quinones or polymers with strong electron absorption capacity, which immediately results in efficient fluorescence quenching of Cu-BDC-NH2. However, other common phenolic compounds, such as phenol, the other two diphenols (hydroquinone and resorcinol), phloroglucinol, and chlorophenol, do not result in efficient fluorescence quenching of Cu-BDC-NH2. The method shows a nice linear relationship between catechol concentration prep the fluorescence intensity of Cu-BDC-NH2 in the scope of 0-10 μM, with a detection limit of 0.997 μM. The detection of catechol in actual water samples has also achieved the satisfactory consequences, which provides a new strategy for the convenient and selective detection of catechol.
Collapse
Affiliation(s)
- Le Wang
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Yue Sun
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Hao Zhang
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Wenqi Shi
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Yongxin Li
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|
41
|
Yuan M, Li Q, Wu Z, Zhu H, Gao Y, Zhou M, Luo X, Wang M, Cheng C. Ultralow Ru Single Atoms Confined in Cerium Oxide Nanoglues for Highly-Sensitive and Robust H 2 O 2 -Related Biocatalytic Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304532. [PMID: 37649195 DOI: 10.1002/smll.202304532] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Indexed: 09/01/2023]
Abstract
Exploring highly efficient, portable, and robust biocatalysts is a great challenge in colorimetric biosensors. To overcome the challenging states in creating single-atom biocatalysts, such as insufficient activity and stability, here, this work has engineered a unique CeO2 support as nanoglue to tightly anchor the Ru single-atom sites (CeO2 -Ru) with strong electronic coupling for achieving highly sensitive and robust H2 O2 -related biocatalytic diagnosis. The morphology and chemical/electronic structure analysis demonstrates that the Ru atoms are well-dispersed on CeO2 surface to form high-density active sites. Benefiting from the unique structure, the prepared CeO2 -Ru exhibits outstanding peroxidase (POD) like catalytic activity and selectivity to H2 O2 . Steady-state kinetic study results show that the CeO2 -Ru presents the highest Vmax and turnover number than the state-of-the-art POD-like biocatalysts. Consequently, the CeO2 -Ru discloses a high efficiency, good selectivity, and robust stability in the colorimetric detection of L-cysteine, glucose, and uric acid. Notably, the limit of detection (LOD) can reach 0.176 × 10-3 m for the L-cysteine, 0.095 × 10-3 m for the glucose, and 0.088 × 10-3 m for the uric acid via cascade reaction. This work suggests that the proposed unique CeO2 nanoglue will offer a new path to create single-atom noble metal biocatalysts and take a step closer to future biotherapeutic and biocatalytic applications.
Collapse
Affiliation(s)
- Minjia Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Huang Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mao Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
42
|
Liu J, Ha W, Alibekovna EK, Ma R, Shi YP. Ruptured organosilica nanocapsules immobilized acetylcholinesterase coupled with MnO 2 nanozyme for screening inhibitors from Inula macrophylla. NANOSCALE 2023; 15:17464-17472. [PMID: 37860933 DOI: 10.1039/d3nr04025a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Abnormal expression of acetylcholinesterase (AChE) causes Alzheimer's disease (AD). Inhibiting AChE is a common strategy for reducing the degradation of neurotransmitter acetylcholine, in order to treat early-stage AD. Therefore, it is crucial to screen and explore AChE inhibitors which are safer and cause fewer side effects. Our research is focused on establishing a platform of ruptured organosilica nanocapsules (RONs) immobilized AChE coupled with an MnO2-OPD colorimetric assay, which could monitor AChE activity and screen AChE inhibitors. The fabricated RONs immobilized AChE possessed excellent pH and thermal stability. Huperzine A was introduced into the established platform to evaluate the inhibition kinetics of the immobilized AChE, which promoted its application in the screening of AChE inhibitors. The satisfactory results of enzyme inhibition kinetics proved the feasibility and applicability of the established method. Thus, the proposed platform was applied to screen AChE inhibitors from 14 compounds isolated from Inula macrophylla, and β-cyclocostunolide (compound 4) demonstrated the best AChE inhibitory activity among these compounds. This work confirms the existence of chemical components that inhibit AChE activity in Inula macrophylla, and provides a new idea for the application of immobilized enzyme-nanozyme in the field of enzyme inhibitor screening.
Collapse
Affiliation(s)
- Jia Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| | - Eshbakova Komila Alibekovna
- S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Uzbekistan
| | - Rui Ma
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| |
Collapse
|
43
|
Kaur S, Chowdhary S, Kumar D, Bhattacharyya R, Banerjee D. Organophosphorus and carbamate pesticides: Molecular toxicology and laboratory testing. Clin Chim Acta 2023; 551:117584. [PMID: 37805177 DOI: 10.1016/j.cca.2023.117584] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Population and food requirements are increasing daily throughout the world. To fulfil these requirements application of pesticides is also increasing. Organophosphorous (OP) and Organocarbamate (OC) compounds are widely used pesticides. These pesticides are used for suicidal purposes too. Both inhibit Acetylcholinesterase (AChE) and cholinergic symptoms are mainly used for the diagnosis of pesticide poisoning. Although the symptoms of the intoxication of OP and OC are similar, recent research has described different targets for OP and OC pesticides. Researchers believe the distinction of OP/OC poisoning will be beneficial for the management of pesticide exposure. OP compounds produce adducts with several proteins. There is a new generation of OP compounds like glyphosate that do not inhibit AChE. Therefore, it's high time to develop biomarkers that can distinguish OP poisoning from OC poisoning.
Collapse
Affiliation(s)
- Sumanpreet Kaur
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India
| | - Sheemona Chowdhary
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India
| | - Deepak Kumar
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India.
| | - Rajasri Bhattacharyya
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India.
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India.
| |
Collapse
|
44
|
Özcan S, Süngü Akdoğan ÇZ, Polat M, Kip Ç, Tuncel A. A new multimodal magnetic nanozyme and a reusable peroxymonosulfate oxidation catalyst: Manganese oxide coated-monodisperse-porous and magnetic core-shell microspheres. CHEMOSPHERE 2023; 341:140034. [PMID: 37659514 DOI: 10.1016/j.chemosphere.2023.140034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Monodisperse-porous, polydopamine and manganese oxide coated, core-shell type, magnetic SiO2 (MagSiO2@PDA@MnO2) microspheres 6.4 μm in size were synthesized for the first time, using magnetic, monodisperse-porous SiO2 (MagSiO2) microspheres 6.2 μm in size as the starting material. MagSiO2 microspheres were obtained by a recently developed method namely "staged shape templated hydrolysis and condensation protocol". In the synthesis, MagSiO2 microspheres were consecutively coated by polydopamine (PDA) and then by a MnO2 layer in the aqueous medium. The pore volume and the specific surface area of monodisperse-porous MagSiO2@PDA@MnO2 microspheres were measured as 0.59 cm3 g-1 and 154 m2 g-1, respectively. Their Mn and Fe contents were determined as 66 ± 1 mg g-1 and 165 ± 5 mg g-1 respectively. MagSiO2@PDA@MnO2 microspheres exhibited multimodal enzyme mimetic behavior with highly superior catalase-like, oxidase-like and peroxidase-like activities. The effective production of singlet oxygen (1O2) and superoxide anion (O2-*) radicals in MagSiO2@PDA@MnO2-peroxymonosulfate (PMS) system was demonstrated by ESR spectroscopy. By evaluating this property, MagSiO2@PDA@MnO2 microspheres were tried as a reusable catalyst for dye removal via peroxymonosulfate (PMS) activation in batch experiments for the first time. The degradation runs were made with, rhodamine B (Rh B), methyl orange (MO) and methylene blue (MB) as the pollutant. The core-shell type design allowing the deposition of porous MnO2 layer onto a large surface area provided very fast, instant removals with all dyes, via both physical adsorption and degradation via PMS activation. In the reusability experiments, the removal yields of MO and Rh B decreased 1.8% and 8.9% over five consecutive runs in batch fashion. MagSiO2@PDA@MnO2 microspheres exhibited very good functional and structural stability in consecutive dye degradations. No significant change was observed in Fe content of microspheres while Mn content exhibited a decrease of 7.4% w/w over 5 consecutive degradation runs.
Collapse
Affiliation(s)
- Sinem Özcan
- Hacettepe University, Chemical Engineering Department, Ankara, 06800, Turkey
| | | | - Mustafa Polat
- Hacettepe University, Department of Physics Engineering, Ankara, 06800, Turkey
| | - Çiğdem Kip
- Hacettepe University, Chemical Engineering Department, Ankara, 06800, Turkey
| | - Ali Tuncel
- Hacettepe University, Chemical Engineering Department, Ankara, 06800, Turkey; Hacettepe University, Bioengineering Division, Ankara, 06800, Turkey.
| |
Collapse
|
45
|
Chu C, Jiang M, Hui Y, Huang Y, Kong W, Zhu W, Wei J, Wu L, Huang C, Yu XF, Zhao Z, Zhou W, Geng S, Ji L. Colorimetric immunosensing using liposome encapsulated MnO 2 nanozymes for SARS-CoV-2 antigen detection. Biosens Bioelectron 2023; 239:115623. [PMID: 37643492 DOI: 10.1016/j.bios.2023.115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Development of specific signal reporters with signal amplification effect are highly needed for sensitive and accurate detection of pathogen. Herein, we design a colorimetric immunosensing nanosystem based on liposome encapsulated quantum dots-sized MnO2 nanozyme (MnO2QDs@Lip) as a signal reporter for ultrasensitive and fast detection of SARS-CoV-2 antigen. The pathogenic antigens captured and separated by antibody-conjugated magnetic beads (MBs) are further connected with antibody-modified MnO2QDs@Lip to form a sandwich-like immunocomplex structure. After triggered release, MnO2 QDs efficiently catalyze colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB, which can be qualitatively observed by naked eyes and quantitatively analyzed by UV-Vis spectra or smartphone platforms. By taking advantages of immuno-magnetic separation, excellent peroxidase-like catalytic activity of MnO2 QDs, and high encapsulation efficiency of MnO2QDs@Lip, ultrasensitive detection of SARS-CoV-2 antigen ranging from 0.1 pg/mL to 100 ng/mL is achieved within 20 min. The limit of detection (LOD) is calculated to be 65 fg/mL in PBS buffer. Furthermore, real clinical samples of SARS-CoV-2 antigens can be effectively identified by this immunosensing nanosystem with excellent accuracy. This proposed detection nanosystem provides a strategy for simple, rapid and ultrasensitive detection of pathogens and may shed light on the development of new POCT detection platforms for early diagnosis of pathogens and surveillance in public health.
Collapse
Affiliation(s)
- Chenchen Chu
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, 518055, China; Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Department of Medical Laboratory, Weifang Medical University, Weifang 261053, China
| | - Mingyang Jiang
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yun Hui
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yueying Huang
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, 518055, China
| | - Weijun Kong
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenting Zhu
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jitao Wei
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lie Wu
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chi Huang
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xue-Feng Yu
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhen Zhao
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Wenhua Zhou
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Shengyong Geng
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Ling Ji
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, 518055, China.
| |
Collapse
|
46
|
Wen SH, Zhang H, Yu S, Ma J, Zhu JJ, Zhou Y. Complementary Homogeneous Electrochemical and Photothermal Dual-Modal Sensor for Highly Sensitive Detection of Organophosphorus Pesticides via Stimuli-Responsive COF/Methylene Blue@MnO 2 Composite. Anal Chem 2023; 95:14914-14924. [PMID: 37769195 DOI: 10.1021/acs.analchem.3c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Credible and on-site detection of organophosphorus pesticides (OPs) in complex matrixes is significant for food security and environmental monitoring. Herein, a novel COF/methylene blue@MnO2 (COF/MB@MnO2) composite featured abundant signal loading, a specific recognition unit, and robust oxidase-like activity was successfully prepared through facile assembly processes. The multifunctional composite acted as a homogeneous electrochemical and photothermal dual-mode sensing platform for OPs detection through stimuli-responsive regulation. Without the presence of OPs, the surface MnO2 coating could recognize thiocholine (TCh), originating from acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylthiocholine (ATCh), and exhibited a distinctly amplified diffusion current due to the release of plentiful MB; while the residual MnO2 nanosheets could only catalyze less TMB into oxidized TMB (oxTMB) with a typical near-infrared (NIR) absorption, enabling NIR-driven photothermal assay with a low temperature using a portable thermometer. Based on the inhibitory effect of OPs on AChE activity and OP-regulated generation of TCh, chlorpyrifos as a model target can be accurately detected with a low limit of detection of 0.0632 and 0.108 ng/mL by complementary electrochemical and photothermal measurements, respectively. The present dual-mode sensor was demonstrated to be excellent for application to the reliable detection of OPs in complex environmental and food samples. This work can not only provide a complementary dual-mode method for convenient and on-site detection of OPs in different scenarios but also expand the application scope of the COF-based multifunctional composite in multimodal sensors.
Collapse
Affiliation(s)
- Shao-Hua Wen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hengyuan Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sha Yu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junping Ma
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
47
|
Zeng H, Chen H, Yang B, Zeng J, Meng L, Shi D, Chen L, Huang Y. Highly-oxidizing Au@MnO 2-X nanozymes mediated homogeneous electrochemical detection of organophosphorus independent of dissolved oxygen. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132116. [PMID: 37487330 DOI: 10.1016/j.jhazmat.2023.132116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Traditional oxidase-like (OXD) nanozymes rely primarily on O2-mediated superoxide anion (O2·-) process for catalytic oxidation and organophosphorus (Ops) detection. While during the actual detection process, the concentration of O2 is inconstant that can be easily changed with the external environment, distorting detection results. Herein, highly-oxidizing Au@MnO2-X nanozymes with core-shell nanostructure are designed which trigger substantial electron transfer from inner Au core to outer ultrathin MnO2-X layer. According to experimental and theoretical calculations, the core-shell nanostructure and ultrathin MnO2-X of Au@MnO2-X result in the large surface defects, high oxygen vacancies and MnIII ratios. The specially structured Au@MnO2-X nanozymes are therefore highly-oxidizing and the catalytic oxidation can be completed merely through electrons transferring instead of the O2-mediated O2·- process. Based on this, an oxygen independent and ultrasensitive nanozyme-based sensor is established using homogeneous electrochemistry (HEC), its Ops is detected at a LOD of 0.039 ng mL-1. Combined with the UV-vis spectrum of 3,3',5,5'-tetramethylbenzidine (TMB), the linear discriminant analysis of five Ops i.e., Ethion, Omethoate, Diazinon, Chlorpyrifos methyl and Dipterex has achieved superior discrimination results. Therefore, HEC based on strong oxidizing nanozymes provide a new avenue for the development of high-performance electrochemical sensors and demonstrate potential applicability to pesticide residue determination in real samples.
Collapse
Affiliation(s)
- Huiling Zeng
- College of Animal Science and Technology, The Key Laboratory of Ministry of Education, Guangxi University, Nanning 530000, Guangxi, People's Republic of China; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Hailan Chen
- College of Animal Science and Technology, The Key Laboratory of Ministry of Education, Guangxi University, Nanning 530000, Guangxi, People's Republic of China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, People's Republic of China.
| | - Bing Yang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Junyi Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Lin Meng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Donglin Shi
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Liang Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Youju Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
48
|
Xu H, Guo C, Yuan W, Zhang W, Sun Q, Wu J, Zhang X. Effects of additives on the performance of a laser-induced graphene sensor modified with ZrO 2 nanoparticles for OP detection. Analyst 2023; 148:5210-5220. [PMID: 37724336 DOI: 10.1039/d3an01215h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
In this study, a simple and portable electrochemical sensor based on laser-induced graphene (LIG) has been developed to systematically investigate the feasibility of LIG as an electrode to detect organophosphorus pesticides (OPs). It proves that the LIG-based electrode has a relatively high electrochemically active surface area (ECSA) and heterogeneous electron transfer (HET) of 0.100 cm2 and 0.000825 cm s-1, respectively. In addition, zirconium dioxide nanoparticles (ZrO2 NPs) have been modified on the electrode with three different binders, β-cyclodextrin (β-CD), chitosan (CS) and Nafion, to improve the adsorption capacity of the electrode toward OPs, and the effect of the binders on the performance of the as-fabricated sensor has been investigated in detail. The results show that β-CD increases not only the electrochemically active surface area of the electrode but also the redox peak current of methyl parathion (MP). To evaluate the sensitivity of the sensor, differential pulse voltammetry (DPV) curves have been tested in solutions containing different concentrations of MP using ZrO2-β-CD/LIG as an electrode, which shows a detection range of 5-200 ng ml-1 and a detection limit of 0.89 ng ml-1. In summary, the LIG-based sensor has a low detection limit, high sensitivity and good interference resistance, and thus has tremendous potential for the detection of pesticides in the environment.
Collapse
Affiliation(s)
- Huiyang Xu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, China.
| | - Chuang Guo
- Beijing Spacecrafts, Beijing, 100194, China
| | - Weijian Yuan
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, China.
| | - Wenna Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Qiu Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Jianfeng Wu
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Xuelin Zhang
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
49
|
Lu J, Wang L. Multiple electromagnet synergistic control enabled fast and automatic biosensing of Salmonella in a sealed microfluidic chip. Biosens Bioelectron 2023; 237:115459. [PMID: 37392491 DOI: 10.1016/j.bios.2023.115459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
Point-of-care testing of pathogens is vital for prevention of food poisoning. Herein, a colorimetric biosensor was elaborately developed to rapidly and automatically detect Salmonella in a sealed microfluidic chip with one central chamber for housing immunomagnetic nanoparticles (IMNPs), bacterial sample and immune manganese dioxide nanoclusters (IMONCs), four functional chambers for housing absorbent pad, deionized water and H2O2-TMB substrate, and four symmetric peripheral chambers for achieving fluidic control. Four electromagnets were placed under peripheral chambers and synergistically controlled to manipulate their respective iron cylinders at the top of these chambers for deforming these chambers, resulting in precise fluidic control with designated flowrate, volume, direction and time. First, the electromagnets were automatically controlled to mix IMNPs, target bacteria and IMONCs, resulting in the formation of IMNP-bacteria-IMONC conjugates. Then, these conjugates were magnetically separated by a central electromagnet and the supernatant was directionally transferred to the absorbent pad. After these conjugates were washed by deionized water, the H2O2-TMB substrate was directionally transferred to resuspend the conjugates and catalyzed by the IMONCs with peroxidase-mimic activity. Finally, the catalysate was directionally transferred back to its initial chamber, and its color was analyzed by the smartphone APP to determinate bacterial concentration. This biosensor could detect Salmonella quantitatively and automatically in 30 min with a low detection limit of 101 CFU/mL. More importantly, the whole bacterial detection procedure from bacterial separation to result analysis was achieved on a sealed microfluidic chip through multiple electromagnet synergistic control, and this biosensor has great potential for point-of-care testing of pathogens without cross contaminations.
Collapse
Affiliation(s)
- Jialin Lu
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Lei Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
50
|
Liang L, Jiang Y, Liu F, Li S, Wu J, Zhao S, Ye F. Three-in-one covalent organic framework nanozyme: Self-reporting, self-correcting and light-responsive for fluorescence sensing 3-nitrotyrosine. Biosens Bioelectron 2023; 237:115542. [PMID: 37481867 DOI: 10.1016/j.bios.2023.115542] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Most current redox-type nanozyme-based colorimetric sensing platforms are susceptible to interference from the reductant when using chromogenic probe, and the unstable H2O2 used in the peroxidase-like nanozyme-based systems is prone to difficulty in sensing signal reproducibility, while peroxidase-like nanozyme with oxidase-mimicking activity is easy to bring background interference by O2. Since the strong structural designability of covalent organic frameworks (COFs) endows them great application value in the sensing fields, therefore, we envision the construction a COF oxidase-like nanozyme-based controllable sensing system that integrates self-reporting, self-correcting and light-responsive functions to avoid these affects. Herein, 3-nitrotyrosine (3-NT) biomarker was selected as model analyte. 1,3,5-triformylphloroglucinol (Tp) and 3,6-diaminoacridine (DA) were acted as building monomers of the multifunctional COF nanozyme (termed as TpDA). Owing to the excellent light-responsive oxidase-mimicking property of TpDA, 3-NT can be efficiently oxidized, the inner filter effect (IFE) between TpDA and the 3-NT oxidation product greatly quenches the intrinsic fluorescence of TpDA, making it a controllable self-reporting system for fluorescence turn-off sensing 3-NT. Additionally, the excessive reactive oxygen species (ROS) that generated continuously during photocatalysis can resist the interference of endogenous reductants. This study not only provides new insights to avoid the interference of H2O2, background and reductants from conventional redox-type nanozyme-based colorimetric systems but also opens avenues to rational construct versatile COF nanozyme-based sensor.
Collapse
Affiliation(s)
- Ling Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, PR China
| | - Yuting Jiang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, PR China
| | - Fengping Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, PR China
| | - Shuishi Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, PR China
| | - Jia Wu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, PR China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, PR China
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|