1
|
Mei R, Fries LM, Hune TLK, Santi MD, Rodriguez GG, Sternkopf S, Glöggler S. Hyperpolarization of 15N-Pyridinium by Using Parahydrogen Enables Access to Reactive Oxygen Sensors and Pilot In Vivo Studies. Angew Chem Int Ed Engl 2024; 63:e202403144. [PMID: 38773847 DOI: 10.1002/anie.202403144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/24/2024]
Abstract
Magnetic resonance with hyperpolarized contrast agents is one of the most powerful and noninvasive imaging platforms capable for investigating in vivo metabolism. While most of the utilized hyperpolarized agents are based on 13C nuclei, a milestone advance in this area is the emergence of 15N hyperpolarized contrast agents. Currently, the reported 15N hyperpolarized agents mainly utilize the dissolution dynamic nuclear polarization (d-DNP) protocol. The parahydrogen enhanced 15N probes have proven to be elusive and have been tested almost exclusively in organic solvents. Herein, we designed a reaction based reactive oxygen sensor 15N-boronobenzyl-2-styrylpyridinium (15N-BBSP) which can be hyperpolarized with para-hydrogen. Reactive oxygen species plays a vital role as one of the essential intracellular signalling molecules. Disturbance of the H2O2 level usually represents a hallmark of pathophysiological conditions. This H2O2 probe exhibited rapid responsiveness toward H2O2 and offered spectrally resolvable chemical shifts. We also provide strategies to bring the newly developed probe from the organic reaction solution into a biocompatible injection buffer and demonstrate the feasibility of in vivo 15N signal detection. The present work manifests its great potential not only for reaction based reactive sensing probes but also promises to serve as a platform to develop other contrast agents.
Collapse
Affiliation(s)
- Ruhuai Mei
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Lisa M Fries
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Theresa L K Hune
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Maria Daniela Santi
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Gonzalo Gabriel Rodriguez
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Sonja Sternkopf
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| |
Collapse
|
2
|
Nantogma S, Chowdhury MRH, Kabir MSH, Adelabu I, Joshi SM, Samoilenko A, de Maissin H, Schmidt AB, Nikolaou P, Chekmenev YA, Salnikov OG, Chukanov NV, Koptyug IV, Goodson BM, Chekmenev EY. MATRESHCA: Microtesla Apparatus for Transfer of Resonance Enhancement of Spin Hyperpolarization via Chemical Exchange and Addition. Anal Chem 2024; 96:4171-4179. [PMID: 38358916 PMCID: PMC10939749 DOI: 10.1021/acs.analchem.3c05233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
We present an integrated, open-source device for parahydrogen-based hyperpolarization processes in the microtesla field regime with a cost of components of less than $7000. The device is designed to produce a batch of 13C and 15N hyperpolarized (HP) compounds via hydrogenative or non-hydrogenative parahydrogen-induced polarization methods that employ microtesla magnetic fields for efficient polarization transfer of parahydrogen-derived spin order to X-nuclei (e.g., 13C and 15N). The apparatus employs a layered structure (reminiscent of a Russian doll "Matryoshka") that includes a nonmagnetic variable-temperature sample chamber, a microtesla magnetic field coil (operating in the range of 0.02-75 microtesla), a three-layered mu-metal shield (to attenuate the ambient magnetic field), and a magnetic shield degaussing coil placed in the overall device enclosure. The gas-handling manifold allows for parahydrogen-gas flow and pressure control (up to 9.2 bar of total parahydrogen pressure). The sample temperature can be varied either using a water bath or a PID-controlled heat exchanger in the range from -12 to 80 °C. This benchtop device measures 62 cm (length) × 47 cm (width) × 47 cm (height), weighs 30 kg, and requires only connections to a high-pressure parahydrogen gas supply and a single 110/220 VAC power source. The utility of the device has been demonstrated using an example of parahydrogen pairwise addition to form HP ethyl [1-13C]acetate (P13C = 7%, [c] = 1 M). Moreover, the Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) technique was employed to demonstrate efficient hyperpolarization of 13C and 15N spins in a wide range of biologically relevant molecules, including [1-13C]pyruvate (P13C = 14%, [c] = 27 mM), [1-13C]-α-ketoglutarate (P13C = 17%), [1-13C]ketoisocaproate (P13C = 18%), [15N3]metronidazole (P15N = 13%, [c] = 20 mM), and others. While the vast majority of the utility studies have been performed in standard 5 mm NMR tubes, the sample chamber of the device can accommodate a wide range of sample container sizes and geometries of up to 1 L sample volume. The device establishes an integrated, simple, inexpensive, and versatile equipment gateway needed to facilitate parahydrogen-based hyperpolarization experiments ranging from basic science to preclinical applications; indeed, detailed technical drawings and a bill of materials are provided to support the ready translation of this design to other laboratories.
Collapse
Affiliation(s)
- Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Md Raduanul H. Chowdhury
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Mohammad S. H. Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Isaiah Adelabu
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Sameer M. Joshi
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Anna Samoilenko
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Henri de Maissin
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Andreas B. Schmidt
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | | | | | - Oleg G. Salnikov
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry, Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| |
Collapse
|
3
|
Mandzhieva I, Adelabu I, Nantogma S, Chekmenev EY, Theis T. Delivering Robust Proton-Only Sensing of Hyperpolarized [1,2- 13C 2]-Pyruvate Using Broad-Spectral-Range Nuclear Magnetic Resonance Pulse Sequences. ACS Sens 2023; 8:4101-4110. [PMID: 37948125 PMCID: PMC10883757 DOI: 10.1021/acssensors.3c01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Hyperpolarized [1-13C]pyruvate is the leading hyperpolarized injectable contrast agent and is currently under evaluation in clinical trials for molecular imaging of metabolic diseases, including cardiovascular disease and cancer. One aspect limiting broad scalability of the technique is that hyperpolarized 13C MRI requires specialized 13C hardware and software that are not generally available on clinical MRI scanners, which employ proton-only detection. Here, we present an approach that uses pulse sequences to transfer 13C hyperpolarization to methyl protons for detection of the 13C-13C pyruvate singlet, employing proton-only excitation and detection only. The new pulse sequences are robust to the B1 and B0 magnetic field inhomogeneities. The work focuses on singlet-to-magnetization (S2M) and rotor-synchronized (R) pulses, both relying on trains of hard pulses with broad spectral width coverage designed to effectively transform hyperpolarized 13C2-singlet hyperpolarization to 1H polarization on the CH3 group of [1,2-13C2]pyruvate. This approach may enable a broader adoption of hyperpolarized MRI as a molecular imaging technique.
Collapse
Affiliation(s)
- Iuliia Mandzhieva
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Isaiah Adelabu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Shiraz Nantogma
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Biosciences (Ibio), Wayne State University, Detroit, Michigan 48202, United States
- Karmanos Cancer Institute (KCI), Detroit, Michigan 48201, United States
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, United States
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27606, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
4
|
Vaneeckhaute E, Tyburn J, Kempf JG, Martens JA, Breynaert E. Reversible Parahydrogen Induced Hyperpolarization of 15 N in Unmodified Amino Acids Unraveled at High Magnetic Field. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207112. [PMID: 37211713 PMCID: PMC10427394 DOI: 10.1002/advs.202207112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/02/2023] [Indexed: 05/23/2023]
Abstract
Amino acids (AAs) and ammonia are metabolic markers essential for nitrogen metabolism and cell regulation in both plants and humans. NMR provides interesting opportunities to investigate these metabolic pathways, yet lacks sensitivity, especially in case of 15 N. In this study, spin order embedded in p-H2 is used to produce on-demand reversible hyperpolarization in 15 N of pristine alanine and ammonia under ambient protic conditions directly in the NMR spectrometer. This is made possible by designing a mixed-ligand Ir-catalyst, selectively ligating the amino group of AA by exploiting ammonia as a strongly competitive co-ligand and preventing deactivation of Ir by bidentate ligation of AA. The stereoisomerism of the catalyst complexes is determined by hydride fingerprinting using 1 H/D scrambling of the associated N-functional groups on the catalyst (i.e., isotopological fingerprinting), and unravelled by 2D-ZQ-NMR. Monitoring the transfer of spin order from p-H2 to 15 N nuclei of ligated and free alanine and ammonia targets using SABRE-INEPT with variable exchange delays pinpoints the monodentate elucidated catalyst complexes to be most SABRE active. Also RF-spin locking (SABRE-SLIC) enables transfer of hyperpolarization to 15 N. The presented high-field approach can be a valuable alternative to SABRE-SHEATH techniques since the obtained catalytic insights (stereochemistry and kinetics) will remain valid at ultra-low magnetic fields.
Collapse
Affiliation(s)
- Ewoud Vaneeckhaute
- COK‐katCentre for Surface Chemistry and Catalysis—Characterization and Application TeamKU LeuvenCelestijnenlaan 200F, box 2461LeuvenB‐3001Belgium
- NMRCoReNMR/X‐Ray Platform for Convergence ResearchKU LeuvenCelestijnenlaan 200F, box 2461LeuvenB‐3001Belgium
- Univ LyonCNRS, ENS LyonUCBLUniversité de LyonCRMN UMR 5280Villeurbanne69100France
| | - Jean‐Max Tyburn
- Bruker Biospin34 Rue de l'Industrie BP 10002Wissembourg Cedex67166France
| | | | - Johan A. Martens
- COK‐katCentre for Surface Chemistry and Catalysis—Characterization and Application TeamKU LeuvenCelestijnenlaan 200F, box 2461LeuvenB‐3001Belgium
- NMRCoReNMR/X‐Ray Platform for Convergence ResearchKU LeuvenCelestijnenlaan 200F, box 2461LeuvenB‐3001Belgium
- Deutsches Elektronen‐Synchrotron DESY – Centre for Molecular Water Science (CMWS)Notkestraße 8522607HamburgGermany
| | - Eric Breynaert
- COK‐katCentre for Surface Chemistry and Catalysis—Characterization and Application TeamKU LeuvenCelestijnenlaan 200F, box 2461LeuvenB‐3001Belgium
- NMRCoReNMR/X‐Ray Platform for Convergence ResearchKU LeuvenCelestijnenlaan 200F, box 2461LeuvenB‐3001Belgium
| |
Collapse
|
5
|
Chimenti RV, Daley J, Sack J, Necsutu J, Whiting N. Reconversion of Parahydrogen Gas in Surfactant-Coated Glass NMR Tubes. Molecules 2023; 28:2329. [PMID: 36903572 PMCID: PMC10004819 DOI: 10.3390/molecules28052329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The application of parahydrogen gas to enhance the magnetic resonance signals of a diversity of chemical species has increased substantially in the last decade. Parahydrogen is prepared by lowering the temperature of hydrogen gas in the presence of a catalyst; this enriches the para spin isomer beyond its normal abundance of 25% at thermal equilibrium. Indeed, parahydrogen fractions that approach unity can be attained at sufficiently low temperatures. Once enriched, the gas will revert to its normal isomeric ratio over the course of hours or days, depending on the surface chemistry of the storage container. Although parahydrogen enjoys long lifetimes when stored in aluminum cylinders, the reconversion rate is significantly faster in glass containers due to the prevalence of paramagnetic impurities that are present within the glass. This accelerated reconversion is especially relevant for nuclear magnetic resonance (NMR) applications due to the use of glass sample tubes. The work presented here investigates how the parahydrogen reconversion rate is affected by surfactant coatings on the inside surface of valved borosilicate glass NMR sample tubes. Raman spectroscopy was used to monitor changes to the ratio of the (J: 0 → 2) vs. (J: 1 → 3) transitions that are indicative of the para and ortho spin isomers, respectively. Nine different silane and siloxane-based surfactants of varying size and branching structures were examined, and most increased the parahydrogen reconversion time by 1.5×-2× compared with equivalent sample tubes that were not treated with surfactant. This includes expanding the pH2 reconversion time from 280 min in a control sample to 625 min when the same tube is coated with (3-Glycidoxypropyl)trimethoxysilane.
Collapse
Affiliation(s)
- Robert V. Chimenti
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, USA
- Advanced Materials & Manufacturing Institute, Rowan University, Glassboro, NJ 08028, USA
| | - James Daley
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, USA
| | - James Sack
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, USA
| | - Jennifer Necsutu
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Nicholas Whiting
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, USA
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
6
|
Marshall A, Salhov A, Gierse M, Müller C, Keim M, Lucas S, Parker A, Scheuer J, Vassiliou C, Neumann P, Jelezko F, Retzker A, Blanchard JW, Schwartz I, Knecht S. Radio-Frequency Sweeps at Microtesla Fields for Parahydrogen-Induced Polarization of Biomolecules. J Phys Chem Lett 2023; 14:2125-2132. [PMID: 36802642 DOI: 10.1021/acs.jpclett.2c03785] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetic resonance imaging of 13C-labeled metabolites enhanced by parahydrogen-induced polarization (PHIP) enables real-time monitoring of processes within the body. We introduce a robust, easily implementable technique for transferring parahydrogen-derived singlet order into 13C magnetization using adiabatic radio frequency sweeps at microtesla fields. We experimentally demonstrate the applicability of this technique to several molecules, including some molecules relevant for metabolic imaging, where we show significant improvements in the achievable polarization, in some cases reaching above 60% nuclear spin polarization. Furthermore, we introduce a site-selective deuteration scheme, where deuterium is included in the coupling network of a pyruvate ester to enhance the efficiency of the polarization transfer. These improvements are enabled by the fact that the transfer protocol avoids relaxation induced by strongly coupled quadrupolar nuclei.
Collapse
Affiliation(s)
- Alastair Marshall
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
- Institute for Quantum Optics (IQO) and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Alon Salhov
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
- Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Martin Gierse
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
- Institute for Quantum Optics (IQO) and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | - Michael Keim
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | | - Anna Parker
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | | | | | | - Fedor Jelezko
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
- Institute for Quantum Optics (IQO) and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Alex Retzker
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
- Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | | | - Ilai Schwartz
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | |
Collapse
|
7
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
8
|
Pravdivtsev AN, Brahms A, Ellermann F, Stamp T, Herges R, Hövener JB. Parahydrogen-induced polarization and spin order transfer in ethyl pyruvate at high magnetic fields. Sci Rep 2022; 12:19361. [PMID: 36371512 PMCID: PMC9653431 DOI: 10.1038/s41598-022-22347-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/13/2022] [Indexed: 01/10/2023] Open
Abstract
Nuclear magnetic resonance has experienced great advances in developing and translating hyperpolarization methods into procedures for fundamental and clinical studies. Here, we propose the use of a wide-bore NMR for large-scale (volume- and concentration-wise) production of hyperpolarized media using parahydrogen-induced polarization. We discuss the benefits of radio frequency-induced parahydrogen spin order transfer, we show that 100% polarization is theoretically expected for homogeneous B0 and B1 magnetic fields for a three-spin system. Moreover, we estimated that the efficiency of spin order transfer is not significantly reduced when the B1 inhomogeneity is below ± 5%; recommendations for the sample size and RF coils are also given. With the latest breakthrough in the high-yield synthesis of 1-13C-vinyl pyruvate and its deuterated isotopologues, the high-field PHIP-SAH will gain increased attention. Some remaining challenges will be addressed shortly.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| | - Arne Brahms
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto- Hahn Platz 4, 24118, Kiel, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Tim Stamp
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto- Hahn Platz 4, 24118, Kiel, Germany
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto- Hahn Platz 4, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| |
Collapse
|
9
|
Pravdivtsev AN, Brahms A, Ellermann F, Stamp T, Herges R, Hövener JB. Parahydrogen-induced polarization and spin order transfer in ethyl pyruvate at high magnetic fields. Sci Rep 2022; 12:19361. [PMID: 36371512 DOI: 10.21203/rs.3.rs-1807976/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/13/2022] [Indexed: 05/21/2023] Open
Abstract
Nuclear magnetic resonance has experienced great advances in developing and translating hyperpolarization methods into procedures for fundamental and clinical studies. Here, we propose the use of a wide-bore NMR for large-scale (volume- and concentration-wise) production of hyperpolarized media using parahydrogen-induced polarization. We discuss the benefits of radio frequency-induced parahydrogen spin order transfer, we show that 100% polarization is theoretically expected for homogeneous B0 and B1 magnetic fields for a three-spin system. Moreover, we estimated that the efficiency of spin order transfer is not significantly reduced when the B1 inhomogeneity is below ± 5%; recommendations for the sample size and RF coils are also given. With the latest breakthrough in the high-yield synthesis of 1-13C-vinyl pyruvate and its deuterated isotopologues, the high-field PHIP-SAH will gain increased attention. Some remaining challenges will be addressed shortly.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| | - Arne Brahms
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto- Hahn Platz 4, 24118, Kiel, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Tim Stamp
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto- Hahn Platz 4, 24118, Kiel, Germany
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto- Hahn Platz 4, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| |
Collapse
|
10
|
Dagys L, Bengs C, Moustafa GAI, Levitt MH. Deuteron-Decoupled Singlet NMR in Low Magnetic Fields: Application to the Hyperpolarization of Succinic Acid. Chemphyschem 2022; 23:e202200274. [PMID: 35925559 PMCID: PMC9804268 DOI: 10.1002/cphc.202200274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/23/2022] [Indexed: 01/05/2023]
Abstract
The reaction of unsaturated substrates with hydrogen gas enriched in the para spin isomer leads to products with a high degree of nuclear singlet spin order. This leads to greatly enhanced NMR signals, with important potential applications such as magnetic resonance imaging (MRI) of metabolic processes. Although parahydrogen-induced polarization has the advantage of being cheap, compact, and mobile, especially when performed in ultralow magnetic fields, efficiency is lost when more than a few protons are involved. This strongly restricts the range of compatible substances. We show that these difficulties may be overcome by a combination of deuteration with the application of a sinusoidally modulated longitudinal field as a well as a transverse rotating magnetic field. We demonstrate a six-fold enhancement in the 13 C hyperpolarization of [1-13 C, 2,3-d2 ]-succinic acid, as compared with standard hyperpolarization methods, applied in the same ultralow field regime.
Collapse
Affiliation(s)
- Laurynas Dagys
- School of ChemistryHighfield CampusSouthamptonSO17 1BJUnited Kingdom
| | - Christian Bengs
- School of ChemistryHighfield CampusSouthamptonSO17 1BJUnited Kingdom
| | | | - Malcolm H. Levitt
- School of ChemistryHighfield CampusSouthamptonSO17 1BJUnited Kingdom
| |
Collapse
|
11
|
Adelabu I, Ettedgui J, Joshi SM, Nantogma S, Chowdhury MRH, McBride S, Theis T, Sabbasani VR, Chandrasekhar M, Sail D, Yamamoto K, Swenson RE, Krishna MC, Goodson BM, Chekmenev EY. Rapid 13C Hyperpolarization of the TCA Cycle Intermediate α-Ketoglutarate via SABRE-SHEATH. Anal Chem 2022; 94:13422-13431. [PMID: 36136056 PMCID: PMC9907724 DOI: 10.1021/acs.analchem.2c02160] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
α-Ketoglutarate is a key biomolecule involved in a number of metabolic pathways─most notably the TCA cycle. Abnormal α-ketoglutarate metabolism has also been linked with cancer. Here, isotopic labeling was employed to synthesize [1-13C,5-12C,D4]α-ketoglutarate with the future goal of utilizing its [1-13C]-hyperpolarized state for real-time metabolic imaging of α-ketoglutarate analytes and its downstream metabolites in vivo. The signal amplification by reversible exchange in shield enables alignment transfer to heteronuclei (SABRE-SHEATH) hyperpolarization technique was used to create 9.7% [1-13C] polarization in 1 minute in this isotopologue. The efficient 13C hyperpolarization, which utilizes parahydrogen as the source of nuclear spin order, is also supported by favorable relaxation dynamics at 0.4 μT field (the optimal polarization transfer field): the exponential 13C polarization buildup constant Tb is 11.0 ± 0.4 s whereas the 13C polarization decay constant T1 is 18.5 ± 0.7 s. An even higher 13C polarization value of 17.3% was achieved using natural-abundance α-ketoglutarate disodium salt, with overall similar relaxation dynamics at 0.4 μT field, indicating that substrate deuteration leads only to a slight increase (∼1.2-fold) in the relaxation rates for 13C nuclei separated by three chemical bonds. Instead, the gain in polarization (natural abundance versus [1-13C]-labeled) is rationalized through the smaller heat capacity of the "spin bath" comprising available 13C spins that must be hyperpolarized by the same number of parahydrogen present in each sample, in line with previous 15N SABRE-SHEATH studies. Remarkably, the C-2 carbon was not hyperpolarized in both α-ketoglutarate isotopologues studied; this observation is in sharp contrast with previously reported SABRE-SHEATH pyruvate studies, indicating that the catalyst-binding dynamics of C-2 in α-ketoglutarate differ from that in pyruvate. We also demonstrate that 13C spectroscopic characterization of α-ketoglutarate and pyruvate analytes can be performed at natural 13C abundance with an estimated detection limit of 80 micromolar concentration × *%P13C. All in all, the fundamental studies reported here enable a wide range of research communities with a new hyperpolarized contrast agent potentially useful for metabolic imaging of brain function, cancer, and other metabolically challenging diseases.
Collapse
Affiliation(s)
- Isaiah Adelabu
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Jessica Ettedgui
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland 20850, United States
| | - Sameer M. Joshi
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Md Raduanul H. Chowdhury
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Stephen McBride
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Venkata R. Sabbasani
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland 20850, United States
| | - Mushti Chandrasekhar
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland 20850, United States
| | - Deepak Sail
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland 20850, United States
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland 20892, United States
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland 20850, United States
| | - Murali C. Krishna
- Center for Cancer Research, National Cancer Institute, Bethesda, 31 Center Drive Maryland 20814, United States
| | - Boyd M. Goodson
- School of Chemical & Biomolecular Sciences and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| |
Collapse
|
12
|
Mamone S, Jagtap AP, Korchak S, Ding Y, Sternkopf S, Glöggler S. A Field-Independent Method for the Rapid Generation of Hyperpolarized [1- 13 C]Pyruvate in Clean Water Solutions for Biomedical Applications. Angew Chem Int Ed Engl 2022; 61:e202206298. [PMID: 35723041 PMCID: PMC9543135 DOI: 10.1002/anie.202206298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 11/08/2022]
Abstract
Hyperpolarization methods in magnetic resonance enhance the signals by several orders of magnitude, opening new windows for real-time investigations of dynamic processes in vitro and in vivo. Here, we propose a field-independent para-hydrogen-based pulsed method to produce rapidly hyperpolarized 13 C-labeled substrates. We demonstrate the method by polarizing the carboxylic carbon of the pyruvate moiety in a purposely designed precursor to 24 % at ≈22 mT. Following a fast purification procedure, we measure 8 % polarization on free [1-13 C]pyruvate in clean water solutions at physiological conditions at 7 T. The enhanced signals allow real-time monitoring of the pyruvate-lactate conversion in cancer cells, demonstrating the potential of the method for biomedical applications in combination with existing or developing magnetic resonance technologies.
Collapse
Affiliation(s)
- Salvatore Mamone
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| | - Anil P. Jagtap
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| | - Sergey Korchak
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| | - Yonghong Ding
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| | - Sonja Sternkopf
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| | - Stefan Glöggler
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| |
Collapse
|
13
|
Bondar O, Cavallari E, Carrera C, Aime S, Reineri F. Effect of the hydrogenation solvent in the PHIP-SAH hyperpolarization of [1-13C]pyruvate. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Mhaske Y, Sutter E, Daley J, Mahoney C, Whiting N. 65% Parahydrogen from a liquid nitrogen cooled generator. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 341:107249. [PMID: 35717743 DOI: 10.1016/j.jmr.2022.107249] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
The isomeric enrichment of parahydrogen (pH2) gas is readily accomplished by lowering the gas temperature in the presence of a catalyst. This enrichment is often pursued at two distinct temperatures: ∼51% pH2 is generated at liquid nitrogen temperatures (77 K), while nearly 100% pH2 can be produced at 20 K. While the liquid nitrogen cooled generator is attractive due to the low cost of entry, there are benefits to having access to greater than 51% pH2 for enhanced NMR applications. In this work, we introduce a low-cost modification to an existing laboratory-constructed liquid nitrogen cooled pH2 generator that provides ∼ 65% pH2. This modification takes advantage of vacuum-mediated boiling point suppression of liquid nitrogen, allowing the temperature of the liquid to be lowered from 77 K to nitrogen's triple point of 63 K. The reduced temperature allowed for the generation of parahydrogen fractions of 63-67% at gas flow rates from 20 to 1000 standard cubic centimeters per minute. We compare this to equivalent experiments that did not utilize the temperature-lowering effects of pressure reduction; these controls generally maintained pH2 fractions of ∼ 50%. All results (experimental and control) agree with the theoretically expected parahydrogen generation at these temperatures. This straightforward modification to an existing pH2 generator may be of interest to a broad range of scientists involved with parahydrogen research by introducing a simple and low-cost entryway to increased pH2 fractions using a conventional liquid nitrogen cooled generator.
Collapse
Affiliation(s)
- Yash Mhaske
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, United States
| | - Elodie Sutter
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, United States
| | - James Daley
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, United States
| | - Christopher Mahoney
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, United States
| | - Nicholas Whiting
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, United States; Department of Molecular & Cellular Biosciences, Rowan University. Glassboro, NJ 08028, United States.
| |
Collapse
|
15
|
Mamone S, Jagtap AP, Korchak S, Ding Y, Sternkopf S, Glöggler S. A Field‐Independent Method for the Rapid Generation of Hyperpolarized [1‐13C]Pyruvate in Clean Water Solutions for Biomedical Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Salvatore Mamone
- Max Planck Institute for Multidisciplinary Sciences - Fassberg Campus: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften NMR Signal Enhancement GERMANY
| | - Anil P Jagtap
- Max Planck Institute for Multidisciplinary Sciences: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften NMR Signal Enhancement GERMANY
| | - Sergey Korchak
- Max Planck Institute for Multidisciplinary Sciences: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften NMR Signal Enhancement GERMANY
| | - Yonghong Ding
- Max Planck Institute for Multidisciplinary Sciences: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften NMR Signal Enhancement GERMANY
| | - Sonja Sternkopf
- Max Planck Institute for Multidisciplinary Sciences: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften NMR Signal Enhancement GERMANY
| | - Stefan Glöggler
- Max-Planck-Institute for Biophysical Chemistry NMR Signal Enhancement Group Am Fassberg 11 37077 Göttingen GERMANY
| |
Collapse
|
16
|
Joalland B, Chekmenev EY. Scanning Nuclear Spin Level Anticrossings by Constant-Adiabaticity Magnetic Field Sweeping of Parahydrogen-Induced 13C Polarization. J Phys Chem Lett 2022; 13:1925-1930. [PMID: 35180341 DOI: 10.1021/acs.jpclett.2c00029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The polarization transfer between 1H protons and 13C heteronuclei is of central importance in the development of parahydrogen-based hyperpolarization techniques dedicated to the production of 13C-hyperpolarized molecular probes. Here we unveil the spin conversion efficiency in the polarization transfer between parahydrogen-derived protons and 13C nuclei of an ethyl acetate biomolecule, formed by the homogeneous hydrogenation of vinyl acetate with parahydrogen, obtained by applying constant-adiabaticity sweep profiles at ultralow magnetic fields. The experiments employed natural C-13 abundance. Spin level anticrossings can be detected experimentally using a scanning approach and are selected to improve the polarization transfer efficiency. 13C polarization of up to 12% is readily achieved on the carbonyl center. The results demonstrate the simplicity, reproducibility, and high conversion efficiency of the technique, opening the door for a refined manipulation of hyperpolarized spins in both basic science experiments (e.g., state-selected spectroscopy in the strong-coupling regime) and biomedical nuclear magnetic resonance applications.
Collapse
Affiliation(s)
- Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| |
Collapse
|
17
|
Schmidt AB, Zimmermann M, Berner S, de Maissin H, Müller CA, Ivantaev V, Hennig J, Elverfeldt DV, Hövener JB. Quasi-continuous production of highly hyperpolarized carbon-13 contrast agents every 15 seconds within an MRI system. Commun Chem 2022; 5:21. [PMID: 36697573 PMCID: PMC9814607 DOI: 10.1038/s42004-022-00634-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/25/2022] [Indexed: 01/28/2023] Open
Abstract
Hyperpolarized contrast agents (HyCAs) have enabled unprecedented magnetic resonance imaging (MRI) of metabolism and pH in vivo. Producing HyCAs with currently available methods, however, is typically time and cost intensive. Here, we show virtually-continuous production of HyCAs using parahydrogen-induced polarization (PHIP), without stand-alone polarizer, but using a system integrated in an MRI instead. Polarization of ≈2% for [1-13C]succinate-d2 or ≈19% for hydroxyethyl-[1-13C]propionate-d3 was created every 15 s, for which fast, effective, and well-synchronized cycling of chemicals and reactions in conjunction with efficient spin-order transfer was key. We addressed these challenges using a dedicated, high-pressure, high-temperature reactor with integrated water-based heating and a setup operated via the MRI pulse program. As PHIP of several biologically relevant HyCAs has recently been described, this Rapid-PHIP technique promises fast preclinical studies, repeated administration or continuous infusion within a single lifetime of the agent, as well as a prolonged window for observation with signal averaging and dynamic monitoring of metabolic alterations.
Collapse
Affiliation(s)
- Andreas B Schmidt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany.
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| | - Mirko Zimmermann
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Stephan Berner
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Henri de Maissin
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Christoph A Müller
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Vladislav Ivantaev
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Dominik V Elverfeldt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| |
Collapse
|
18
|
Adelabu I, TomHon P, Kabir MSH, Nantogma S, Abdulmojeed M, Mandzhieva I, Ettedgui J, Swenson RE, Krishna MC, Theis T, Goodson BM, Chekmenev EY. Order-Unity 13 C Nuclear Polarization of [1- 13 C]Pyruvate in Seconds and the Interplay of Water and SABRE Enhancement. Chemphyschem 2022; 23:e202100839. [PMID: 34813142 PMCID: PMC8770613 DOI: 10.1002/cphc.202100839] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 01/21/2023]
Abstract
Signal Amplification By Reversible Exchange in SHield Enabled Alignment Transfer (SABRE-SHEATH) is investigated to achieve rapid hyperpolarization of 13 C1 spins of [1-13 C]pyruvate, using parahydrogen as the source of nuclear spin order. Pyruvate exchange with an iridium polarization transfer complex can be modulated via a sensitive interplay between temperature and co-ligation of DMSO and H2 O. Order-unity 13 C (>50 %) polarization of catalyst-bound [1-13 C]pyruvate is achieved in less than 30 s by restricting the chemical exchange of [1-13 C]pyruvate at lower temperatures. On the catalyst bound pyruvate, 39 % polarization is measured using a 1.4 T NMR spectrometer, and extrapolated to >50 % at the end of build-up in situ. The highest measured polarization of a 30-mM pyruvate sample, including free and bound pyruvate is 13 % when using 20 mM DMSO and 0.5 M water in CD3 OD. Efficient 13 C polarization is also enabled by favorable relaxation dynamics in sub-microtesla magnetic fields, as indicated by fast polarization buildup rates compared to the T1 spin-relaxation rates (e. g., ∼0.2 s-1 versus ∼0.1 s-1 , respectively, for a 6 mM catalyst-[1-13 C]pyruvate sample). Finally, the catalyst-bound hyperpolarized [1-13 C]pyruvate can be released rapidly by cycling the temperature and/or by optimizing the amount of water, paving the way to future biomedical applications of hyperpolarized [1-13 C]pyruvate produced via comparatively fast and simple SABRE-SHEATH-based approaches.
Collapse
Affiliation(s)
- Isaiah Adelabu
- Integrative Biosciences, Department of Chemistry Karmanos Cancer Institute, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Patrick TomHon
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA
| | - Mohammad S H Kabir
- Integrative Biosciences, Department of Chemistry Karmanos Cancer Institute, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Shiraz Nantogma
- Integrative Biosciences, Department of Chemistry Karmanos Cancer Institute, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Mustapha Abdulmojeed
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA
| | - Iuliia Mandzhieva
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA
| | - Jessica Ettedgui
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland, 20850, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland, 20850, USA
| | - Murali C Krishna
- Center for Cancer Research, National Cancer Institute, Bethesda, 31 Center Drive, Maryland, 20814, USA
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA
| | - Boyd M Goodson
- School of Chemical and Biomolecular Sciences Materials Technology Center, Southern Illinois University, 1245 Lincoln Dr., Carbondale, IL, 62901, USA
| | - Eduard Y Chekmenev
- Integrative Biosciences, Department of Chemistry Karmanos Cancer Institute, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospect, 14, 119991, Moscow, Russia
| |
Collapse
|
19
|
Schmidt AB, Bowers CR, Buckenmaier K, Chekmenev EY, de Maissin H, Eills J, Ellermann F, Glöggler S, Gordon JW, Knecht S, Koptyug IV, Kuhn J, Pravdivtsev AN, Reineri F, Theis T, Them K, Hövener JB. Instrumentation for Hydrogenative Parahydrogen-Based Hyperpolarization Techniques. Anal Chem 2022; 94:479-502. [PMID: 34974698 PMCID: PMC8784962 DOI: 10.1021/acs.analchem.1c04863] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Andreas B. Schmidt
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - C. Russell Bowers
- Department of Chemistry, University of Florida, 2001 Museum Road, Gainesville, Florida 32611, USA
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Kai Buckenmaier
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076, Tübingen, Germany
| | - Eduard Y. Chekmenev
- Intergrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
- Russian Academy of Sciences (RAS), Leninskiy Prospect, 14, 119991 Moscow, Russia
| | - Henri de Maissin
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max Planck Institutefor Biophysical Chemistry Am Fassberg 11, 37077 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A, 37075 Göttingen, Germany
| | - Jeremy W. Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry St., San Francisco, CA, 94158, USA
| | | | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Jule Kuhn
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Francesca Reineri
- Dept. Molecular Biotechnology and Health Sciences, Via Nizza 52, University of Torino, Italy
| | - Thomas Theis
- Departments of Chemistry, Physics and Biomedical Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kolja Them
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| |
Collapse
|
20
|
Stewart NJ, Sato T, Takeda N, Hirata H, Matsumoto S. Hyperpolarized 13C Magnetic Resonance Imaging as a Tool for Imaging Tissue Redox State, Oxidative Stress, Inflammation, and Cellular Metabolism. Antioxid Redox Signal 2022; 36:81-94. [PMID: 34218688 PMCID: PMC8792501 DOI: 10.1089/ars.2021.0139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Magnetic resonance imaging (MRI) with hyperpolarized (HP) 13C-labeled redox-sensitive metabolic tracers can provide noninvasive functional imaging biomarkers, reflecting tissue redox state, oxidative stress, and inflammation, among others. The capability to use endogenous metabolites as 13C-enriched imaging tracers without structural modification makes HP 13C MRI a promising tool to evaluate redox state in patients with various diseases. Recent Advances: Recent studies have demonstrated the feasibility of in vivo metabolic imaging of 13C-labeled tracers polarized by parahydrogen-induced polarization techniques, which offer a cost-effective alternative to the more widely used dissolution dynamic nuclear polarization-based hyperpolarizers. Critical Issues: Although the fluxes of many metabolic pathways reflect the change in tissue redox state, they are not functionally specific. In the present review, we summarize recent challenges in the development of specific 13C metabolic tracers for biomarkers of redox state, including that for detecting reactive oxygen species. Future Directions: Applications of HP 13C metabolic MRI to evaluate redox state have only just begun to be investigated. The possibility to gain a comprehensive understanding of the correlations between tissue redox potential and metabolism under different pathological conditions by using HP 13C MRI is promoting its interest in the clinical arena, along with its noninvasive biomarkers to evaluate the extent of disease and treatment response.
Collapse
Affiliation(s)
- Neil J Stewart
- Division of Bioengineering & Bioinformatics, Graduate School of Information Science & Technology, Hokkaido University, Sapporo, Japan.,POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Tatsuyuki Sato
- Division of Cardiology and Metabolism Center for Molecular Medicine, Jichi Medical University, Shimotsuke-shi, Japan.,Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism Center for Molecular Medicine, Jichi Medical University, Shimotsuke-shi, Japan
| | - Hiroshi Hirata
- Division of Bioengineering & Bioinformatics, Graduate School of Information Science & Technology, Hokkaido University, Sapporo, Japan
| | - Shingo Matsumoto
- Division of Bioengineering & Bioinformatics, Graduate School of Information Science & Technology, Hokkaido University, Sapporo, Japan
| |
Collapse
|
21
|
Kondo Y, Nonaka H, Takakusagi Y, Sando S. Entwicklung molekularer Sonden für die hyperpolarisierte NMR‐Bildgebung im biologischen Bereich. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201915718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yohei Kondo
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoichi Takakusagi
- Institute of Quantum Life Science National Institutes for Quantum and Radiological Science and Technology 4-9-1 Anagawa, Inage Chiba-city 263-8555 Japan
- National Institute of Radiological Sciences National Institutes for Quantum and Radiological Science and Technology 4-9-1 Anagawa, Inage Chiba-city 263-8555 Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Department of Bioengineering Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
22
|
Vaneeckhaute E, De Ridder S, Tyburn JM, Kempf JG, Taulelle F, Martens JA, Breynaert E. Long-Term Generation of Longitudinal Spin Order Controlled by Ammonia Ligation Enables Rapid SABRE Hyperpolarized 2D NMR. Chemphyschem 2021; 22:1170-1177. [PMID: 33851495 DOI: 10.1002/cphc.202100079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/29/2021] [Indexed: 01/19/2023]
Abstract
Symmetry breaking of parahydrogen using iridium catalysts converts singlet spin order into observable hyperpolarization. In this contribution, iridium catalysts are designed to exhibit asymmetry in their hydrides, regulated by in situ generation of deuterated ammonia governed by ammonium buffers. The concentrations of ammonia (N) and pyridine (P) provide a handle to generate a variety of stereo-chemically asymmetric N-heterocyclic carbene iridium complexes, ligating either [3xP], [2xP;N], [P;2xN] or [3xN] in an octahedral SABRE type configuration. The non-equivalent hydride positions, in correspondence with the ammonium buffer solutions, enables to extend singlet-triplet or S ⟩ → T 0 ⟩ mixing at high magnetic field and experimentally induce prolonged generation of non-equilibrium longitudinal two-spin order. This long-lasting magnetization can be exploited in hyperpolarized 2D-OPSY-COSY experiments providing direct structural information on the catalyst using a single contact with parahydrogen. Separately, field cycling revealed hyperpolarization properties in low-field conditions. Controlling catalyst stereochemistry by introducing small and deuterated ligands, such as deuterated ammonia, simplifies the spin-system. This is shown to unify experimental and theoretically derived field-sweep experiments for four-spin systems.
Collapse
Affiliation(s)
- Ewoud Vaneeckhaute
- COK-kat, Centre for Surface Chemistry and Catalysis-Characterisation and Application Team, KU Leuven, Celestijnenlaan 200F, box 2461, B-3001, Leuven, Belgium.,NMRCoRe, NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F, box 2461, 3001, Leuven, Belgium
| | - Sophie De Ridder
- COK-kat, Centre for Surface Chemistry and Catalysis-Characterisation and Application Team, KU Leuven, Celestijnenlaan 200F, box 2461, B-3001, Leuven, Belgium
| | - Jean-Max Tyburn
- Bruker Biospin, 34 rue de l'Industrie BP 10002, 67166, Wissembourg Cedex, France
| | - James G Kempf
- Bruker Biospin, 15 Fortune Dr., Billerica, 01821, Massachusetts, United States
| | - Francis Taulelle
- COK-kat, Centre for Surface Chemistry and Catalysis-Characterisation and Application Team, KU Leuven, Celestijnenlaan 200F, box 2461, B-3001, Leuven, Belgium.,NMRCoRe, NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F, box 2461, 3001, Leuven, Belgium
| | - Johan A Martens
- COK-kat, Centre for Surface Chemistry and Catalysis-Characterisation and Application Team, KU Leuven, Celestijnenlaan 200F, box 2461, B-3001, Leuven, Belgium.,NMRCoRe, NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F, box 2461, 3001, Leuven, Belgium
| | - Eric Breynaert
- COK-kat, Centre for Surface Chemistry and Catalysis-Characterisation and Application Team, KU Leuven, Celestijnenlaan 200F, box 2461, B-3001, Leuven, Belgium.,NMRCoRe, NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F, box 2461, 3001, Leuven, Belgium
| |
Collapse
|
23
|
Wen Y, Qi H, Østergaard Mariager C, Mose Nielsen P, Bonde Bertelsen L, Stødkilde-Jørgensen H, Laustsen C. Sex Differences in Kidney Function and Metabolism Assessed Using Hyperpolarized [1- 13C]Pyruvate Interleaved Spectroscopy and Nonspecific Imaging. ACTA ACUST UNITED AC 2021; 6:5-13. [PMID: 32280745 PMCID: PMC7138520 DOI: 10.18383/j.tom.2020.00022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metabolic sex differences have recently been shown to be particularly important in tailoring treatment strategies. Sex has a major effect on fat turnover rates and plasma lipid delivery in the body. Differences in kidney structure and transporters between male and female animals have been found. Here we investigated sex-specific renal pyruvate metabolic flux and whole-kidney functional status in age-matched healthy Wistar rats. Blood oxygenation level–dependent and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) were used to assess functional status. Hyperpolarized [1-13C]pyruvate was used to assess the metabolic differences between male and female rats. Female rats had a 41% ± 3% and 41% ± 5% lower absolute body and kidney weight, respectively, than age-matched male rats. No difference was seen between age-matched male and female rats in the kidney-to-body weight ratio. A 56% ± 11% lower lactate production per mL/100 mL/min was found in female rats than in age-matched male rats measured by hyperpolarized magnetic resonance and DCE MRI. Female rats had a 33% ± 11% higher glomerular filtration rate than age-matched male rats measured by DCE MRI. A similar renal oxygen tension (T2*) was found between age-matched male and female rats as shown by blood oxygenation level–dependent MRI. The results were largely independent of the pyruvate volume and the difference in body weight. This study shows an existing metabolic difference between kidneys in age-matched male and female rats, which indicates that sex differences need to be considered when performing animal experiments.
Collapse
Affiliation(s)
- Yibo Wen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; and.,The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, China
| | - Haiyun Qi
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; and
| | | | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; and
| | - Lotte Bonde Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; and
| | | | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; and
| |
Collapse
|
24
|
Rodin BA, Eills J, Picazo-Frutos R, Sheberstov KF, Budker D, Ivanov KL. Constant-adiabaticity ultralow magnetic field manipulations of parahydrogen-induced polarization: application to an AA'X spin system. Phys Chem Chem Phys 2021; 23:7125-7134. [PMID: 33876078 DOI: 10.1039/d0cp06581a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of magnetic resonance imaging with hyperpolarized contrast agents is rapidly expanding, and parahydrogen-induced polarization (PHIP) is emerging as an inexpensive and easy-to-implement method for generating the required hyperpolarized biomolecules. Hydrogenative PHIP delivers hyperpolarized proton spin order to a substrate via chemical addition of H2 in the spin-singlet state, but it is typically necessary to transfer the proton polarization to a heteronucleus (usually 13C) which has a longer spin lifetime. Adiabatic ultralow magnetic field manipulations can be used to induce the polarization transfer, but this is necessarily a slow process, which is undesirable since the spins continually relax back to thermal equilibrium. Here we demonstrate two constant-adiabaticity field sweep methods, one in which the field passes through zero, and one in which the field is swept from zero, for optimal polarization transfer on a model AA'X spin system, [1-13C]fumarate. We introduce a method for calculating the constant-adiabaticity magnetic field sweeps, and demonstrate that they enable approximately one order of magnitude faster spin-order conversion compared to linear sweeps. The present method can thus be utilized to manipulate nonthermal order in heteronuclear spin systems.
Collapse
Affiliation(s)
- Bogdan A Rodin
- International Tomography Center SB RAS, Novosibirsk, Russia
| | | | | | | | | | | |
Collapse
|
25
|
Svyatova A, Kozinenko VP, Chukanov NV, Burueva DB, Chekmenev EY, Chen YW, Hwang DW, Kovtunov KV, Koptyug IV. PHIP hyperpolarized [1- 13C]pyruvate and [1- 13C]acetate esters via PH-INEPT polarization transfer monitored by 13C NMR and MRI. Sci Rep 2021; 11:5646. [PMID: 33707497 PMCID: PMC7952547 DOI: 10.1038/s41598-021-85136-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/18/2021] [Indexed: 01/31/2023] Open
Abstract
Parahydrogen-induced polarization of 13C nuclei by side-arm hydrogenation (PHIP-SAH) for [1-13C]acetate and [1-13C]pyruvate esters with application of PH-INEPT-type pulse sequences for 1H to 13C polarization transfer is reported, and its efficiency is compared with that of polarization transfer based on magnetic field cycling (MFC). The pulse-sequence transfer approach may have its merits in some applications because the entire hyperpolarization procedure is implemented directly in an NMR or MRI instrument, whereas MFC requires a controlled field variation at low magnetic fields. Optimization of the PH-INEPT-type transfer sequences resulted in 13C polarization values of 0.66 ± 0.04% and 0.19 ± 0.02% for allyl [1-13C]pyruvate and ethyl [1-13C]acetate, respectively, which is lower than the corresponding polarization levels obtained with MFC for 1H to 13C polarization transfer (3.95 ± 0.05% and 0.65 ± 0.05% for allyl [1-13C]pyruvate and ethyl [1-13C]acetate, respectively). Nevertheless, a significant 13C NMR signal enhancement with respect to thermal polarization allowed us to perform 13C MR imaging of both biologically relevant hyperpolarized molecules which can be used to produce useful contrast agents for the in vivo imaging applications.
Collapse
Affiliation(s)
- Alexandra Svyatova
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090 ,grid.4605.70000000121896553Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia 630090 ,grid.418953.2Institute of Cytology and Genetics SB RAS, 10 Ac. Lavrentieva Ave., Novosibirsk, Russia 630090
| | - Vitaly P. Kozinenko
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090 ,grid.4605.70000000121896553Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia 630090
| | - Nikita V. Chukanov
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090 ,grid.4605.70000000121896553Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia 630090
| | - Dudari B. Burueva
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090 ,grid.4605.70000000121896553Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia 630090
| | - Eduard Y. Chekmenev
- grid.254444.70000 0001 1456 7807Department of Chemistry, Wayne State University, Detroit, MI 48201 USA ,grid.254444.70000 0001 1456 7807Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201 USA ,grid.254444.70000 0001 1456 7807Integrative Biosciences, Wayne State University, Detroit, MI 48201 USA ,grid.4886.20000 0001 2192 9124Russian Academy of Sciences, Moscow, Russia 119991
| | - Yu-Wen Chen
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan (Republic of China)
| | - Dennis W. Hwang
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan (Republic of China)
| | - Kirill V. Kovtunov
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090 ,grid.4605.70000000121896553Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia 630090
| | - Igor V. Koptyug
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090
| |
Collapse
|
26
|
Birchall JR, Irwin RK, Chowdhury MRH, Nikolaou P, Goodson BM, Barlow MJ, Shcherbakov A, Chekmenev EY. Automated Low-Cost In Situ IR and NMR Spectroscopy Characterization of Clinical-Scale 129Xe Spin-Exchange Optical Pumping. Anal Chem 2021; 93:3883-3888. [PMID: 33591160 DOI: 10.1021/acs.analchem.0c04545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present on the utility of in situ nuclear magnetic resonance (NMR) and near-infrared (NIR) spectroscopic techniques for automated advanced analysis of the 129Xe hyperpolarization process during spin-exchange optical pumping (SEOP). The developed software protocol, written in the MATLAB programming language, facilitates detailed characterization of hyperpolarized contrast agent production efficiency based on determination of key performance indicators, including the maximum achievable 129Xe polarization, steady-state Rb-129Xe spin-exchange and 129Xe polarization build-up rates, 129Xe spin-relaxation rates, and estimates of steady-state Rb electron polarization. Mapping the dynamics of 129Xe polarization and relaxation as a function of SEOP temperature enables systematic optimization of the batch-mode SEOP process. The automated analysis of a typical experimental data set, encompassing ∼300 raw NMR and NIR spectra combined across six different SEOP temperatures, can be performed in under 5 min on a laptop computer. The protocol is designed to be robust in operation on any batch-mode SEOP hyperpolarizer device. In particular, we demonstrate the implementation of a combination of low-cost NIR and low-frequency NMR spectrometers (∼$1,100 and ∼$300 respectively, ca. 2020) for use in the described protocols. The demonstrated methodology will aid in the characterization of NMR hyperpolarization hardware in the context of SEOP and other hyperpolarization techniques for more robust and less expensive clinical production of HP 129Xe and other contrast agents.
Collapse
Affiliation(s)
- Jonathan R Birchall
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Robert K Irwin
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Md Raduanul H Chowdhury
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | | | | | - Michael J Barlow
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Anton Shcherbakov
- Smart-A, Perm, Perm Region 614000, Russia.,Custom Medical Systems (CMS) LTD, Nicosia 2312, Cyprus
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States.,Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| |
Collapse
|
27
|
Stewart NJ, Matsumoto S. Biomedical Applications of the Dynamic Nuclear Polarization and Parahydrogen Induced Polarization Techniques for Hyperpolarized 13C MR Imaging. Magn Reson Med Sci 2021; 20:1-17. [PMID: 31902907 PMCID: PMC7952198 DOI: 10.2463/mrms.rev.2019-0094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022] Open
Abstract
Since the first pioneering report of hyperpolarized [1-13C]pyruvate magnetic resonance imaging (MRI) of the Warburg effect in prostate cancer patients, clinical dissemination of the technique has been rapid; close to 10 sites worldwide now possess a polarizer fit for the clinic, and more than 30 clinical trials, predominantly for oncological applications, are already registered on the US and European clinical trials databases. Hyperpolarized 13C probes to study pathophysiological processes beyond the Warburg effect, including tricarboxylic acid cycle metabolism, intra-cellular pH and cellular necrosis have also been demonstrated in the preclinical arena and are pending clinical translation, and the simultaneous injection of multiple co-polarized agents is opening the door to high-sensitivity, multi-functional molecular MRI with a single dose. Here, we review the biomedical applications to date of the two polarization methods that have been used for in vivo hyperpolarized 13C molecular MRI; namely, dissolution dynamic nuclear polarization and parahydrogen-induced polarization. The basic concept of hyperpolarization and the fundamental theory underpinning these two key 13C hyperpolarization methods, along with recent technological advances that have facilitated biomedical realization, are also covered.
Collapse
Affiliation(s)
- Neil J. Stewart
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, Japan
| | - Shingo Matsumoto
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
28
|
Nantogma S, Joalland B, Wilkens K, Chekmenev EY. Clinical-Scale Production of Nearly Pure (>98.5%) Parahydrogen and Quantification by Benchtop NMR Spectroscopy. Anal Chem 2021; 93:3594-3601. [PMID: 33539068 PMCID: PMC8011325 DOI: 10.1021/acs.analchem.0c05129] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Because of the extensive chemical, physical, and biomedical applications of parahydrogen, the need exists for the development of highly enriched parahydrogen in a robust and efficient manner. Herein, we present a parahydrogen enrichment equipment which substantially improves upon the previous generators with its ability to enrich parahydrogen to >98.5% and a production rate of up to 4 standard liters per minute with the added advantage of real-time quantification. Our generator employs a pulsed injection system with a 3/16 in. outside diameter copper spiral tubing filled with iron-oxide catalyst. This tubing is mated to a custom-made copper attachment to provide efficient thermal coupling to the cold head. This device allows for robust operation at high pressures up to 34 atm. Real-time quantification by benchtop NMR spectroscopy is made possible by direct coupling of the p-H2 outlet from the generator to a 1.4 T NMR spectrometer using a regular 5 mm NMR tube that is continuously refilled with the exiting parahydrogen gas at ∼8 atm pressure. The use of high hydrogen gas pressure offers two critical NMR signal detection benefits: increased concentration and line narrowing. Our work presents a comprehensive description of the apparatus for a convenient and robust parahydrogen production, distribution, and quantification system, especially for parahydrogen-based hyperpolarization NMR research.
Collapse
Affiliation(s)
- Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Detroit, Michigan, 48202, United States
| | - Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Detroit, Michigan, 48202, United States
| | - Ken Wilkens
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, Tennessee 37232-2310, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Detroit, Michigan, 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
29
|
Kondo Y, Nonaka H, Takakusagi Y, Sando S. Design of Nuclear Magnetic Resonance Molecular Probes for Hyperpolarized Bioimaging. Angew Chem Int Ed Engl 2021; 60:14779-14799. [PMID: 32372551 DOI: 10.1002/anie.201915718] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Nuclear hyperpolarization has emerged as a method to dramatically enhance the sensitivity of NMR spectroscopy. By application of this powerful tool, small molecules with stable isotopes have been used for highly sensitive biomedical molecular imaging. The recent development of molecular probes for hyperpolarized in vivo analysis has demonstrated the ability of this technique to provide unique metabolic and physiological information. This review presents a brief introduction of hyperpolarization technology, approaches to the rational design of molecular probes for hyperpolarized analysis, and examples of molecules that have met with success in vitro or in vivo.
Collapse
Affiliation(s)
- Yohei Kondo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoichi Takakusagi
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city, 263-8555, Japan.,National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city, 263-8555, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
30
|
Reineri F, Cavallari E, Carrera C, Aime S. Hydrogenative-PHIP polarized metabolites for biological studies. MAGMA (NEW YORK, N.Y.) 2021; 34:25-47. [PMID: 33527252 PMCID: PMC7910253 DOI: 10.1007/s10334-020-00904-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
ParaHydrogen induced polarization (PHIP) is an efficient and cost-effective hyperpolarization method, but its application to biological investigations has been hampered, so far, due to chemical challenges. PHIP is obtained by means of the addition of hydrogen, enriched in the para-spin isomer, to an unsaturated substrate. Both hydrogen atoms must be transferred to the same substrate, in a pairwise manner, by a suitable hydrogenation catalyst; therefore, a de-hydrogenated precursor of the target molecule is necessary. This has strongly limited the number of parahydrogen polarized substrates. The non-hydrogenative approach brilliantly circumvents this central issue, but has not been translated to in-vivo yet. Recent advancements in hydrogenative PHIP (h-PHIP) considerably widened the possibility to hyperpolarize metabolites and, in this review, we will focus on substrates that have been obtained by means of this method and used in vivo. Attention will also be paid to the requirements that must be met and on the issues that have still to be tackled to obtain further improvements and to push PHIP substrates in biological applications.
Collapse
Affiliation(s)
- Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy.
| | - Eleonora Cavallari
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy
| | - Carla Carrera
- Institute of Biostructures and Bioimaging, National Research Council, Via Nizza 52, Turin, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy
| |
Collapse
|
31
|
Salnikov OG, Chukanov NV, Svyatova A, Trofimov IA, Kabir MSH, Gelovani JG, Kovtunov KV, Koptyug IV, Chekmenev EY. 15 N NMR Hyperpolarization of Radiosensitizing Antibiotic Nimorazole by Reversible Parahydrogen Exchange in Microtesla Magnetic Fields. Angew Chem Int Ed Engl 2021; 60:2406-2413. [PMID: 33063407 PMCID: PMC7855180 DOI: 10.1002/anie.202011698] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 02/03/2023]
Abstract
Nimorazole belongs to the imidazole-based family of antibiotics to fight against anaerobic bacteria. Moreover, nimorazole is now in Phase 3 clinical trial in Europe for potential use as a hypoxia radiosensitizer for treatment of head and neck cancers. We envision the use of [15 N3 ]nimorazole as a theragnostic hypoxia contrast agent that can be potentially deployed in the next-generation MRI-LINAC systems. Herein, we report the first steps to create long-lasting (for tens of minutes) hyperpolarized state on three 15 N sites of [15 N3 ]nimorazole with T1 of up to ca. 6 minutes. The nuclear spin polarization was boosted by ca. 67000-fold at 1.4 T (corresponding to P15N of 3.2 %) by 15 N-15 N spin-relayed SABRE-SHEATH hyperpolarization technique, relying on simultaneous exchange of [15 N3 ]nimorazole and parahydrogen on polarization transfer Ir-IMes catalyst. The presented results pave the way to efficient spin-relayed SABRE-SHEATH hyperpolarization of a wide range of imidazole-based antibiotics and chemotherapeutics.
Collapse
Affiliation(s)
- Oleg G Salnikov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Nikita V Chukanov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Alexandra Svyatova
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Ivan A Trofimov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Mohammad S H Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
| | - Juri G Gelovani
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
- Russian Academy of Sciences (RAS), 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|
32
|
Berner S, Schmidt AB, Ellermann F, Korchak S, Chekmenev EY, Glöggler S, von Elverfeldt D, Hennig J, Hövener JB. High field parahydrogen induced polarization of succinate and phospholactate. Phys Chem Chem Phys 2021; 23:2320-2330. [PMID: 33449978 DOI: 10.1039/d0cp06281b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The signal enhancement provided by the hyperpolarization of nuclear spins of metabolites is a promising technique for diagnostic magnetic resonance imaging (MRI). To date, most 13C-contrast agents are hyperpolarized utilizing a complex or cost-intensive polarizer. Recently, the in situ parahydrogen-induced 13C hyperpolarization was demonstrated. Hydrogenation, spin order transfer (SOT) by a pulsed NMR sequence, in vivo administration, and detection was achieved within the magnet bore of a 7 Tesla MRI system. So far, the hyperpolarization of the xenobiotic molecule 1-13C-hydroxyethylpropionate (HEP) and the biomolecule 1-13C-succinate (SUC) through the PH-INEPT+ sequence and a SOT scheme proposed by Goldman et al., respectively, was shown. Here, we investigate further the hyperpolarization of SUC at 7 Tesla and study the performance of two additional SOT sequences. Moreover, we present first results of the hyperpolarization at high magnetic field of 1-13C-phospholactate (PLAC), a derivate to obtain the metabolite lactate, employing the PH-INEPT+ sequence. For SUC and PLAC, 13C polarizations of about 1-2% were achieved within seconds and with minimal equipment. Effects that potentially may explain loss of 13C polarization have been identified, i.e. low hydrogenation yield, fast T1/T2 relaxation and the rarely considered 13C isotope labeling effect.
Collapse
Affiliation(s)
- Stephan Berner
- Department of Radiology, Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Otal EH, Kim ML, Dietrich S, Takada R, Nakaya S, Kimura M. Open-Source Portable Device for the Determination of Fluoride in Drinking Water. ACS Sens 2021; 6:259-266. [PMID: 33415970 DOI: 10.1021/acssensors.0c02273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The prolonged exposure to fluorides results in the development of several diseases, from dental fluorosis to crippling deformities of the spine and major joints. The population exposed to high fluoride concentration is located in developing countries where the assurance of water quality is difficult to perform. Addressing this challenge, an open-source system for the determination of fluoride in natural water was developed using the equilibrium between the red Fe-SCN complex and the colorless Fe-F. The reaction develops in cotton substrates to reduce the manipulation of liquid reagents and reduce the errors by nontrained operators. The system was optimized by image analysis and implemented in an open-source Arduino-based device and data was acquired through the serial port of a cell phone, which is also used as a power source, avoiding the use of a battery and reducing production costs. The device showed a detection limit of 0.7 mg L-1 and a linear range of up to 8 mg L-1. This extended detection limit makes the device useful for the application in regions where the fluoride concentration in drinking water is far higher than the United Nations limit (1.5 mg L-1), e.g., the United Republic of Tanzania, where the upper limit of F- was extended to 4 mg L-1 or in USA, where the Environmental Protection Agency established the Maximum Contaminant Level of F- in drinking water at 4 mg L-1. The method was tested with natural waters from the Arusha region in the northeast of Tanzania and validated against the results from ion chromatography showing a good correlation. The developed device exhibits chemical stability of 5 days, allowing it to be manufactured and distributed in local areas and, also, modified according to the requirements of the water composition due to Industry 4.0 concepts used in the design.
Collapse
Affiliation(s)
- Eugenio H. Otal
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
- Unidad de Investigación y Desarrollo de las Ingenierías (UIDI), CONICET, FRBA-UTN, Medrano 951, C1179AAQ Buenos Aires, Argentina
| | - Manuela Leticia Kim
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
- Unidad de Investigación y Desarrollo de las Ingenierías (UIDI), CONICET, FRBA-UTN, Medrano 951, C1179AAQ Buenos Aires, Argentina
| | - Steffen Dietrich
- Fritz & Dietrich GbR, FRIDIE Interactive, Immenhofer Straße. 17, 70180 Stuttgart, Germany
| | - Ryogo Takada
- Department of Water Environment and Civil Engineering, Shinshu University, Nagano 380-8553, Japan
| | - Shinji Nakaya
- Department of Water Environment and Civil Engineering, Shinshu University, Nagano 380-8553, Japan
| | - Mutsumi Kimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
- COI Aqua-Innovation Center, Shinshu University, Ueda 386-8567, Japan
- Research Initiative for Supra-Materials, Shinshu University, Ueda 386-8567, Japan
| |
Collapse
|
34
|
Salnikov OG, Chukanov NV, Svyatova A, Trofimov IA, Kabir MSH, Gelovani JG, Kovtunov KV, Koptyug IV, Chekmenev EY. 15
N NMR Hyperpolarization of Radiosensitizing Antibiotic Nimorazole by Reversible Parahydrogen Exchange in Microtesla Magnetic Fields. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Oleg G. Salnikov
- Boreskov Institute of Catalysis SB RAS 5 Acad. Lavrentiev Pr. 630090 Novosibirsk Russia
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Alexandra Svyatova
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Ivan A. Trofimov
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Mohammad S. H. Kabir
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
| | - Juri G. Gelovani
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
- College of Medicine and Health Sciences United Arab Emirates University Al Ain United Arab Emirates
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Eduard Y. Chekmenev
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
- Russian Academy of Sciences (RAS) 14 Leninskiy Prospekt 119991 Moscow Russia
| |
Collapse
|
35
|
Bussandri S, Buljubasich L, Acosta RH. Diffusion measurements with continuous hydrogenation in PHIP. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 320:106833. [PMID: 33032245 DOI: 10.1016/j.jmr.2020.106833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
DOSY is a powerful spectroscopic NMR technique that resolves components in mixtures through the evaluation of different diffusion coefficients. The application of DOSY to dilute mixtures is hampered by the low signal to noise ratios (SNR), leading to long acquisition times. The use of PHIP may resolve this issue as long as reproducible signals are obtained in order to perform 2D experiments. Here we show that the use of hollow membranes and adequate gas flow produce constant polarization for a time-span that enables the acquisition of 2D experiments. A pressure gradient is evidenced by the presence of convection, which is accounted for by using a DPGSE sequence. The influence of J-coupling evolution during the sequence is studied both numerically and experimentally, to determine the optimum echo-time. The applicability of the method for samples with poor SNR is explored by setting the reaction rate to achieve a low intensity of polarized signals.
Collapse
Affiliation(s)
- S Bussandri
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba, Argentina; CONICET, Instituto de Física Enrique Gaviola (IFEG), Córdoba, Argentina
| | - L Buljubasich
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba, Argentina; CONICET, Instituto de Física Enrique Gaviola (IFEG), Córdoba, Argentina.
| | - R H Acosta
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba, Argentina; CONICET, Instituto de Física Enrique Gaviola (IFEG), Córdoba, Argentina
| |
Collapse
|
36
|
Korchak S, Jagtap AP, Glöggler S. Signal-enhanced real-time magnetic resonance of enzymatic reactions at millitesla fields. Chem Sci 2020; 12:314-319. [PMID: 34163599 PMCID: PMC8178804 DOI: 10.1039/d0sc04884d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The phenomenon of nuclear magnetic resonance (NMR) is widely applied in biomedical and biological science to study structures and dynamics of proteins and their reactions. Despite its impact, NMR is an inherently insensitive phenomenon and has driven the field to construct spectrometers with increasingly higher magnetic fields leading to more detection sensitivity. Here, we are demonstrating that enzymatic reactions can be followed in real-time at millitesla fields, three orders of magnitude lower than the field of state-of-the-art NMR spectrometers. This requires signal-enhancing samples via hyperpolarization. Within seconds, we have enhanced the signals of 2-13C-pyruvate, an important metabolite to probe cancer metabolism, in 22 mM concentrations (up to 10.1% ± 0.1% polarization) and show that such a large signal allows for the real-time detection of enzymatic conversion of pyruvate to lactate at 24 mT. This development paves the pathways for biological studies in portable and affordable NMR systems with a potential for medical diagnostics. We demonstrate that metabolism can be monitored in real-time with magnetic resonance at milli-tesla fields that are 1000 fold lower than state-of-the-art high field spectrometers.![]()
Collapse
Affiliation(s)
- Sergey Korchak
- NMR Signal Enhancement Group, Max-Planck-Insitute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany .,Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Anil P Jagtap
- NMR Signal Enhancement Group, Max-Planck-Insitute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany .,Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max-Planck-Insitute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany .,Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A 37075 Göttingen Germany
| |
Collapse
|
37
|
Joalland B, Ariyasingha NM, Lehmkuhl S, Theis T, Appelt S, Chekmenev EY. Parahydrogen-Induced Radio Amplification by Stimulated Emission of Radiation. Angew Chem Int Ed Engl 2020; 59:8654-8660. [PMID: 32207871 PMCID: PMC7437572 DOI: 10.1002/anie.201916597] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Indexed: 01/03/2023]
Abstract
Radio amplification by stimulated emission of radiation (RASER) was recently discovered in a low-field NMR spectrometer incorporating a highly specialized radio-frequency resonator, where a high degree of proton-spin polarization was achieved by reversible parahydrogen exchange. RASER activity, which results from the coherent coupling between the nuclear spins and the inductive detector, can overcome the limits of frequency resolution in NMR. Here we show that this phenomenon is not limited to low magnetic fields or the use of resonators with high-quality factors. We use a commercial bench-top 1.4 T NMR spectrometer in conjunction with pairwise parahydrogen addition producing proton-hyperpolarized molecules in the Earth's magnetic field (ALTADENA condition) or in a high magnetic field (PASADENA condition) to induce RASER without any radio-frequency excitation pulses. The results demonstrate that RASER activity can be observed on virtually any NMR spectrometer and measures most of the important NMR parameters with high precision.
Collapse
Affiliation(s)
- Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
| | - Nuwandi M Ariyasingha
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
| | - Sören Lehmkuhl
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Stephan Appelt
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, 52056, Aachen, Germany
- Central Institute for Engineering, Electronics and Analytics-, Electronic Systems (ZEA 2), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
38
|
Joalland B, Ariyasingha NM, Lehmkuhl S, Theis T, Appelt S, Chekmenev EY. Parahydrogen‐Induced Radio Amplification by Stimulated Emission of Radiation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916597] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Baptiste Joalland
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
| | - Nuwandi M. Ariyasingha
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
| | - Sören Lehmkuhl
- Department of Chemistry North Carolina State University Raleigh NC 27695-8204 USA
| | - Thomas Theis
- Department of Chemistry North Carolina State University Raleigh NC 27695-8204 USA
| | - Stephan Appelt
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University 52056 Aachen Germany
- Central Institute for Engineering, Electronics and Analytics—, Electronic Systems (ZEA 2) Forschungszentrum Jülich GmbH 52425 Jülich Germany
| | - Eduard Y. Chekmenev
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
- Russian Academy of Sciences Leninskiy Prospekt 14 Moscow 119991 Russia
| |
Collapse
|
39
|
Joalland B, Schmidt AB, Kabir MSH, Chukanov NV, Kovtunov KV, Koptyug IV, Hennig J, Hövener JB, Chekmenev EY. Pulse-Programmable Magnetic Field Sweeping of Parahydrogen-Induced Polarization by Side Arm Hydrogenation. Anal Chem 2020; 92:1340-1345. [PMID: 31800220 PMCID: PMC7436199 DOI: 10.1021/acs.analchem.9b04501] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Among the hyperpolarization techniques geared toward in vivo magnetic resonance imaging, parahydrogen-induced polarization (PHIP) shows promise due to its low cost and fast speed of contrast agent preparation. The synthesis of 13C-labeled, unsaturated precursors to perform PHIP by side arm hydrogenation has recently opened new possibilities for metabolic imaging owing to the biological compatibility of the reaction products, although the polarization transfer between the parahydrogen-derived protons and the 13C heteronucleus must yet be better understood, characterized, and eventually optimized. In this realm, a new experimental strategy incorporating pulse-programmable magnetic field sweeping and in situ detection has been developed. The approach is evaluated by measuring the 13C polarization of ethyl acetate-1-13C, i.e., the product of pairwise addition of parahydrogen to vinyl acetate-1-13C, resulting from zero-crossing magnetic field ramps of various durations, amplitudes, and step sizes. The results demonstrate (i) the profound effect these parameters have on the 1H to 13C polarization transfer efficiency and (ii) the high reproducibility of the technique.
Collapse
Affiliation(s)
- Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Andreas B. Schmidt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department or Radiology and Neuroradiology, Section Biomedical Imaging, MOIN CC, University Medical Center Schleswig-Holstein, University of Kiel, Germany
| | - Mohammad S. H. Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Nikita V. Chukanov
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan-Bernd Hövener
- Department or Radiology and Neuroradiology, Section Biomedical Imaging, MOIN CC, University Medical Center Schleswig-Holstein, University of Kiel, Germany
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| |
Collapse
|
40
|
Eills J, Cavallari E, Carrera C, Budker D, Aime S, Reineri F. Real-Time Nuclear Magnetic Resonance Detection of Fumarase Activity Using Parahydrogen-Hyperpolarized [1-13C]Fumarate. J Am Chem Soc 2019; 141:20209-20214. [DOI: 10.1021/jacs.9b10094] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- James Eills
- Helmholtz Institute, Johannes Gutenberg University of Mainz, Mainz 55099, Germany
| | - Eleonora Cavallari
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10124, Italy
| | - Carla Carrera
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Turin 10126, Italy
| | - Dmitry Budker
- Helmholtz Institute, Johannes Gutenberg University of Mainz, Mainz 55099, Germany
- Department of Physics, University of California, Berkeley, California 94720, United States
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10124, Italy
| | - Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10124, Italy
| |
Collapse
|
41
|
Gemeinhardt ME, Limbach MN, Gebhardt TR, Eriksson CW, Eriksson SL, Lindale JR, Goodson EA, Warren WS, Chekmenev EY, Goodson BM. “Direct”
13
C Hyperpolarization of
13
C‐Acetate by MicroTesla NMR Signal Amplification by Reversible Exchange (SABRE). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Max E. Gemeinhardt
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
| | - Miranda N. Limbach
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
| | - Thomas R. Gebhardt
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
| | - Clark W. Eriksson
- Department of Biomedical Engineering University of Virginia Charlottesville VA USA
| | - Shannon L. Eriksson
- Department of Chemistry Duke University Durham NC USA
- School of Medicine Duke University Durham NC USA
| | | | | | - Warren S. Warren
- Department of Chemistry Duke University Durham NC USA
- James B. Duke Professor, Physics Chemistry, Radiology, and Biomedical Engineering; Director Center for Molecular and Biomolecular Imaging Duke University Durham NC USA
| | - Eduard Y. Chekmenev
- Department of Chemistry Karmanos Cancer Institute (KCI) Integrative Biosciences (Ibio) Wayne State University Detroit MI 48202 USA
- Russian Academy of Sciences (RAS) Moscow 119991 Russia
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
- Materials Technology Center Southern Illinois University Carbondale IL 62901 USA
| |
Collapse
|
42
|
Gemeinhardt ME, Limbach MN, Gebhardt TR, Eriksson CW, Eriksson SL, Lindale JR, Goodson EA, Warren WS, Chekmenev EY, Goodson BM. "Direct" 13 C Hyperpolarization of 13 C-Acetate by MicroTesla NMR Signal Amplification by Reversible Exchange (SABRE). Angew Chem Int Ed Engl 2019; 59:418-423. [PMID: 31661580 DOI: 10.1002/anie.201910506] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/16/2019] [Indexed: 01/06/2023]
Abstract
Herein, we demonstrate "direct" 13 C hyperpolarization of 13 C-acetate via signal amplification by reversible exchange (SABRE). The standard SABRE homogeneous catalyst [Ir-IMes; [IrCl(COD)(IMes)], (IMes=1,3-bis(2,4,6-trimethylphenyl), imidazole-2-ylidene; COD=cyclooctadiene)] was first activated in the presence of an auxiliary substrate (pyridine) in alcohol. Following addition of sodium 1-13 C-acetate, parahydrogen bubbling within a microtesla magnetic field (i.e. under conditions of SABRE in shield enables alignment transfer to heteronuclei, SABRE-SHEATH) resulted in positive enhancements of up to ≈100-fold in the 13 C NMR signal compared to thermal equilibrium at 9.4 T. The present results are consistent with a mechanism of "direct" transfer of spin order from parahydrogen to 13 C spins of acetate weakly bound to the catalyst, under conditions of fast exchange with respect to the 13 C acetate resonance, but we find that relaxation dynamics at microtesla fields alter the optimal matching from the traditional SABRE-SHEATH picture. Further development of this approach could lead to new ways to rapidly, cheaply, and simply hyperpolarize a broad range of substrates (e.g. metabolites with carboxyl groups) for various applications, including biomedical NMR and MRI of cellular and in vivo metabolism.
Collapse
Affiliation(s)
- Max E Gemeinhardt
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Miranda N Limbach
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Thomas R Gebhardt
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Clark W Eriksson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Shannon L Eriksson
- Department of Chemistry, Duke University, Durham, NC, USA.,School of Medicine, Duke University, Durham, NC, USA
| | | | | | - Warren S Warren
- Department of Chemistry, Duke University, Durham, NC, USA.,James B. Duke Professor, Physics, Chemistry, Radiology, and Biomedical Engineering; Director, Center for Molecular and Biomolecular Imaging, Duke University, Durham, NC, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences (Ibio), Wayne State University, Detroit, MI, 48202, USA.,Russian Academy of Sciences (RAS), Moscow, 119991, Russia
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA.,Materials Technology Center, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
43
|
Hill-Casey F, Sakho A, Mohammed A, Rossetto M, Ahwal F, Duckett SB, John RO, Richardson PM, Virgo R, Halse ME. In Situ SABRE Hyperpolarization with Earth's Field NMR Detection. Molecules 2019; 24:molecules24224126. [PMID: 31739621 PMCID: PMC6891519 DOI: 10.3390/molecules24224126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/17/2022] Open
Abstract
Hyperpolarization methods, which increase the sensitivity of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI), have the potential to expand the range of applications of these powerful analytical techniques and to enable the use of smaller and cheaper devices. The signal amplification by reversible exchange (SABRE) method is of particular interest because it is relatively low-cost, straight-forward to implement, produces high-levels of renewable signal enhancement, and can be interfaced with low-cost and portable NMR detectors. In this work, we demonstrate an in situ approach to SABRE hyperpolarization that can be achieved using a simple, commercially-available Earth’s field NMR detector to provide 1H polarization levels of up to 3.3%. This corresponds to a signal enhancement over the Earth’s magnetic field by a factor of ε > 2 × 108. The key benefit of our approach is that it can be used to directly probe the polarization transfer process at the heart of the SABRE technique. In particular, we demonstrate the use of in situ hyperpolarization to observe the activation of the SABRE catalyst, the build-up of signal in the polarization transfer field (PTF), the dependence of the hyperpolarization level on the strength of the PTF, and the rate of decay of the hyperpolarization in the ultra-low-field regime.
Collapse
Affiliation(s)
- Fraser Hill-Casey
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK; (F.H.-C.); (A.S.); (A.M.); (M.R.); (P.M.R.); (R.V.)
| | - Aminata Sakho
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK; (F.H.-C.); (A.S.); (A.M.); (M.R.); (P.M.R.); (R.V.)
- Centre for Hyperpolarisation in Magnetic Resonance, University of York, Heslington, York YO10 5NY, UK; (F.A.); (S.B.D.); (R.O.J.)
| | - Ahmed Mohammed
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK; (F.H.-C.); (A.S.); (A.M.); (M.R.); (P.M.R.); (R.V.)
- Centre for Hyperpolarisation in Magnetic Resonance, University of York, Heslington, York YO10 5NY, UK; (F.A.); (S.B.D.); (R.O.J.)
| | - Matheus Rossetto
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK; (F.H.-C.); (A.S.); (A.M.); (M.R.); (P.M.R.); (R.V.)
| | - Fadi Ahwal
- Centre for Hyperpolarisation in Magnetic Resonance, University of York, Heslington, York YO10 5NY, UK; (F.A.); (S.B.D.); (R.O.J.)
| | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, University of York, Heslington, York YO10 5NY, UK; (F.A.); (S.B.D.); (R.O.J.)
| | - Richard O. John
- Centre for Hyperpolarisation in Magnetic Resonance, University of York, Heslington, York YO10 5NY, UK; (F.A.); (S.B.D.); (R.O.J.)
| | - Peter M. Richardson
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK; (F.H.-C.); (A.S.); (A.M.); (M.R.); (P.M.R.); (R.V.)
- Centre for Hyperpolarisation in Magnetic Resonance, University of York, Heslington, York YO10 5NY, UK; (F.A.); (S.B.D.); (R.O.J.)
| | - Robin Virgo
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK; (F.H.-C.); (A.S.); (A.M.); (M.R.); (P.M.R.); (R.V.)
- Centre for Hyperpolarisation in Magnetic Resonance, University of York, Heslington, York YO10 5NY, UK; (F.A.); (S.B.D.); (R.O.J.)
| | - Meghan E. Halse
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK; (F.H.-C.); (A.S.); (A.M.); (M.R.); (P.M.R.); (R.V.)
- Correspondence: ; Tel.: +44-1904-322853
| |
Collapse
|
44
|
Chukanov NV, Kidd BM, Kovtunova LM, Bukhtiyarov VI, Shchepin RV, Chekmenev EY, Goodson BM, Kovtunov KV, Koptyug IV. A versatile synthetic route to the preparation of 15 N heterocycles. J Labelled Comp Radiopharm 2019; 62:892-902. [PMID: 30537260 PMCID: PMC6559877 DOI: 10.1002/jlcr.3699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 12/11/2022]
Abstract
A robust medium-scale (approximately 3 g) synthetic method for 15 N labeling of pyridine (15 N-Py) is reported based on the Zincke reaction. 15 N enrichment in excess of 81% was achieved with approximately 33% yield. 15 N-Py serves as a standard substrate in a wide range of studies employing a hyperpolarization technique for efficient polarization transfer from parahydrogen to heteronuclei; this technique, called SABRE (signal amplification by reversible exchange), employs a simultaneous chemical exchange of parahydrogen and a to-be-hyperpolarized substrate (e.g., pyridine) on metal centers. In studies aimed at the development of hyperpolarized contrast agents for in vivo molecular imaging, pyridine is often employed either as a model substrate (for hyperpolarization technique development, quality assurance, and phantom imaging studies) or as a co-substrate to facilitate more efficient hyperpolarization of a wide range of emerging contrast agents (e.g., nicotinamide). Here, the produced 15 N-Py was used for the feasibility study of spontaneous 15 N hyperpolarization at high magnetic (HF) fields (7 T and 9.4 T) of an NMR spectrometer and an MRI scanner. SABRE hyperpolarization enabled acquisition of 2D MRI imaging of catalyst-bound 15 N-pyridine with 75 × 75 mm2 field of view (FOV), 32 × 32 matrix size, demonstrating the feasibility of 15 N HF-SABRE molecular imaging with 2.4 × 2.4 mm2 spatial resolution.
Collapse
Affiliation(s)
- Nikita V. Chukanov
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Bryce M. Kidd
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA
| | - Larisa M. Kovtunova
- Novosibirsk State University, Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis SB RAS, Novosibirsk, 630090, Russia
| | | | - Roman V. Shchepin
- Department of Biomedical Engineering and Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eduard Y. Chekmenev
- Department of Biomedical Engineering and Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Russian Academy of Sciences, Moscow, 119991, Russia
- Ibio, Department of Chemistry, Wayne State University, Karmanos Cancer Center, Detroit, MI 48083, USA
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA
- Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
45
|
Schmidt AB, Wörner J, Pravdivtsev A, Knecht S, Scherer H, Weber S, Hennig J, von Elverfeldt D, Hövener J. Lifetime of Parahydrogen in Aqueous Solutions and Human Blood. Chemphyschem 2019; 20:2408-2412. [PMID: 31479580 PMCID: PMC7687157 DOI: 10.1002/cphc.201900670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/16/2019] [Indexed: 02/03/2023]
Abstract
Molecular hydrogen has unique nuclear spin properties. Its nuclear spin isomer, parahydrogen (pH2 ), was instrumental in the early days of quantum mechanics and allows to boost the NMR signal by several orders of magnitude. pH2- induced polarization (PHIP) is based on the survival of pH2 spin order in solution, yet its lifetime has not been investigated in aqueous or biological media required for in vivo applications. Herein, we report longitudinal relaxation times (T1 ) and lifetimes of pH2 ( τ P O C ) in methanol and water, with or without O2 , NaCl, rhodium-catalyst or human blood. Furthermore, we present a relaxation model that uses T1 and τ P O C for more precise theoretical predictions of the H2 spin state in PHIP experiments. All measured T1 values were in the range of 1.4-2 s and τ P O C values were of the order of 10-300 minutes. These relatively long lifetimes hold great promise for emerging in vivo implementations and applications of PHIP.
Collapse
Affiliation(s)
- Andreas B. Schmidt
- Department of Radiology, Medical Physics Albert-Ludwigs-Universität FreiburgUniversitätsklinikum FreiburgKilianstr. 5A79106FreiburgGermany.
- Department of Radiology and Neuroradiology Section Biomedical Imaging, MOIN CCUniversitätsklinikum Schleswig-Holstein, Universität KielAm Botanischen Garten 1424118KielGermany
| | - Jakob Wörner
- Institut für Physikalische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Andrey Pravdivtsev
- Department of Radiology and Neuroradiology Section Biomedical Imaging, MOIN CCUniversitätsklinikum Schleswig-Holstein, Universität KielAm Botanischen Garten 1424118KielGermany
| | - Stephan Knecht
- Department of Radiology, Medical Physics Albert-Ludwigs-Universität FreiburgUniversitätsklinikum FreiburgKilianstr. 5A79106FreiburgGermany.
- Chemie, Arbeitskreis BuntkowskyTechnische Universität DarmstadtAlarich-Weiss-Str. 864287DarmstadtGermany
| | - Harald Scherer
- Institut für Anorganische und Analytische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Stefan Weber
- Institut für Physikalische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Jürgen Hennig
- Department of Radiology, Medical Physics Albert-Ludwigs-Universität FreiburgUniversitätsklinikum FreiburgKilianstr. 5A79106FreiburgGermany.
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics Albert-Ludwigs-Universität FreiburgUniversitätsklinikum FreiburgKilianstr. 5A79106FreiburgGermany.
| | - Jan‐Bernd Hövener
- Department of Radiology and Neuroradiology Section Biomedical Imaging, MOIN CCUniversitätsklinikum Schleswig-Holstein, Universität KielAm Botanischen Garten 1424118KielGermany
| |
Collapse
|
46
|
Berner S, Schmidt AB, Zimmermann M, Pravdivtsev AN, Glöggler S, Hennig J, von Elverfeldt D, Hövener J. SAMBADENA Hyperpolarization of 13C-Succinate in an MRI: Singlet-Triplet Mixing Causes Polarization Loss. ChemistryOpen 2019; 8:728-736. [PMID: 31275794 PMCID: PMC6587320 DOI: 10.1002/open.201900139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Indexed: 12/30/2022] Open
Abstract
The signal enhancement provided by the hyperpolarization of nuclear spins of biological molecules is a highly promising technique for diagnostic imaging. To date, most 13C-contrast agents had to be polarized in an extra, complex or cost intensive polarizer. Recently, the in situ hyperpolarization of a 13C contrast agent to >20 % was demonstrated without a polarizer but within the bore of an MRI system. This approach addresses some of the challenges of MRI with hyperpolarized tracers, i. e. elevated cost, long production times, and loss of polarization during transfer to the detection site. Here, we demonstrate the first hyperpolarization of a biomolecule in aqueous solution in the bore of an MRI at field strength of 7 T within seconds. The 13C nucleus of 1-13C, 2,3-2H2-succinate was polarized to 11 % corresponding to a signal enhancement of approximately 18.000. Interesting effects during the process of the hydrogenation reaction which lead to a significant loss of polarization have been observed.
Collapse
Affiliation(s)
- Stephan Berner
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of MedicineUniversity of FreiburgKillianstraße 5a79106FreiburgGermany
- German Consortium for Cancer Research (DKTK) partner site Freiburg
- German Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Andreas B. Schmidt
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of MedicineUniversity of FreiburgKillianstraße 5a79106FreiburgGermany
- Department of Radiology and Neuroradiology, Section Biomedical Imaging, MOIN CC, University Medical Center Schleswig-HolsteinUniversity of KielAm Botanischen Garten 1424118KielGermany
| | - Mirko Zimmermann
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of MedicineUniversity of FreiburgKillianstraße 5a79106FreiburgGermany
| | - Andrey N. Pravdivtsev
- Department of Radiology and Neuroradiology, Section Biomedical Imaging, MOIN CC, University Medical Center Schleswig-HolsteinUniversity of KielAm Botanischen Garten 1424118KielGermany
| | - Stefan Glöggler
- Max Planck Institute for Biophysical Chemistry Am Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of NeurodegenerationVon-Siebold-Straße 3a37075GöttingenGermany
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of MedicineUniversity of FreiburgKillianstraße 5a79106FreiburgGermany
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of MedicineUniversity of FreiburgKillianstraße 5a79106FreiburgGermany
| | - Jan‐Bernd Hövener
- Department of Radiology and Neuroradiology, Section Biomedical Imaging, MOIN CC, University Medical Center Schleswig-HolsteinUniversity of KielAm Botanischen Garten 1424118KielGermany
| |
Collapse
|
47
|
Salnikov OG, Chukanov NV, Shchepin RV, Manzanera Esteve IV, Kovtunov KV, Koptyug IV, Chekmenev EY. Parahydrogen-Induced Polarization of 1- 13C-Acetates and 1- 13C-Pyruvates Using Sidearm Hydrogenation of Vinyl, Allyl, and Propargyl Esters. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:12827-12840. [PMID: 31363383 PMCID: PMC6664436 DOI: 10.1021/acs.jpcc.9b02041] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
13C-hyperpolarized carboxylates, such as pyruvate and acetate, are emerging molecular contrast agents for MRI visualization of various diseases, including cancer. Here we present a systematic study of 1H and 13C parahydrogen-induced polarization of acetate and pyruvate esters with ethyl, propyl and allyl alcoholic moieties. It was found that allyl pyruvate is the most efficiently hyperpolarized compound from those under study, yielding 21% and 5.4% polarization of 1H and 13C nuclei, respectively, in CD3OD solutions. Allyl pyruvate and ethyl acetate were also hyperpolarized in aqueous phase using homogeneous hydrogenation with parahydrogen over water-soluble rhodium catalyst. 13C polarization of 0.82% and 2.1% was obtained for allyl pyruvate and ethyl acetate, respectively. 13C-hyperpolarized methanolic and aqueous solutions of allyl pyruvate and ethyl acetate were employed for in vitro MRI visualization, demonstrating the prospects for translation of the presented approach to biomedical in vivo studies.
Collapse
Affiliation(s)
- Oleg G. Salnikov
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS),
Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- Department of Radiology, Vanderbilt University, Nashville,
Tennessee 37232-2310, United States
| | - Isaac V. Manzanera Esteve
- Vanderbilt University Institute of Imaging Science (VUIIS),
Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- Department of Radiology, Vanderbilt University, Nashville,
Tennessee 37232-2310, United States
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS),
Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- Department of Radiology, Vanderbilt University, Nashville,
Tennessee 37232-2310, United States
- Department of Biomedical Engineering, and Vanderbilt
University, Nashville, Tennessee 37232-2310, United States
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt
University, Nashville, Tennessee 37232-2310, United States
- Department of Chemistry, Integrative Biosciences (Ibio),
Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202,
United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow
119991, Russia
| |
Collapse
|
48
|
Korchak S, Emondts M, Mamone S, Blümich B, Glöggler S. Production of highly concentrated and hyperpolarized metabolites within seconds in high and low magnetic fields. Phys Chem Chem Phys 2019; 21:22849-22856. [DOI: 10.1039/c9cp05227e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We introduce two experiments that allow for the rapid production of hyperpolarized metabolites. More than 50% 13C polarization in 50 mM concentrations is achieved. This can be translated to portable low field NMR devices.
Collapse
Affiliation(s)
- Sergey Korchak
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry
- 37077 Göttingen
- Germany
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Straße 3A
- 37075 Göttingen
| | - Meike Emondts
- DWI-Leibniz Institute for Interactive Materials
- D-52056 Aachen
- Germany
- Institut für Technische Chemie und Makromolekulare Chemie
- RWTH-Aachen University
| | - Salvatore Mamone
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry
- 37077 Göttingen
- Germany
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Straße 3A
- 37075 Göttingen
| | - Bernhard Blümich
- Institut für Technische Chemie und Makromolekulare Chemie
- RWTH-Aachen University
- Worringerweg 2
- Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry
- 37077 Göttingen
- Germany
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Straße 3A
- 37075 Göttingen
| |
Collapse
|
49
|
Skinner JG, Menichetti L, Flori A, Dost A, Schmidt AB, Plaumann M, Gallagher FA, Hövener JB. Metabolic and Molecular Imaging with Hyperpolarised Tracers. Mol Imaging Biol 2018; 20:902-918. [PMID: 30120644 DOI: 10.1007/s11307-018-1265-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since reaching the clinic, magnetic resonance imaging (MRI) has become an irreplaceable radiological tool because of the macroscopic information it provides across almost all organs and soft tissues within the human body, all without the need for ionising radiation. The sensitivity of MR, however, is too low to take full advantage of the rich chemical information contained in the MR signal. Hyperpolarisation techniques have recently emerged as methods to overcome the sensitivity limitations by enhancing the MR signal by many orders of magnitude compared to the thermal equilibrium, enabling a new class of metabolic and molecular X-nuclei based MR tracers capable of reporting on metabolic processes at the cellular level. These hyperpolarised (HP) tracers have the potential to elucidate the complex metabolic processes of many organs and pathologies, with studies so far focusing on the fields of oncology and cardiology. This review presents an overview of hyperpolarisation techniques that appear most promising for clinical use today, such as dissolution dynamic nuclear polarisation (d-DNP), parahydrogen-induced hyperpolarisation (PHIP), Brute force hyperpolarisation and spin-exchange optical pumping (SEOP), before discussing methods for tracer detection, emerging metabolic tracers and applications and progress in preclinical and clinical application.
Collapse
Affiliation(s)
- Jason Graham Skinner
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - Alessandra Flori
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Anna Dost
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Benjamin Schmidt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Section Biomedical Imaging and MOIN CC, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Markus Plaumann
- Institute of Biometrics and Medical Informatics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Jan-Bernd Hövener
- Section Biomedical Imaging and MOIN CC, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany.
| |
Collapse
|
50
|
Maptue N, Jiang W, Harrison C, Funk AM, Sharma G, Malloy CR, Sherry D, Khemtong C. Esterase-Catalyzed Production of Hyperpolarized 13C-Enriched Carbon Dioxide in Tissues for Measuring pH. ACS Sens 2018; 3:2232-2236. [PMID: 30398335 DOI: 10.1021/acssensors.8b01097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
13C Magnetic resonance imaging of hyperpolarized (HP) 13C-enriched bicarbonate (H13CO3-) and carbon dioxide (13CO2) is a novel and sensitive technique for tissue pH mapping in vivo. Administration of the HP physiological buffer pair is attractive, but poor polarization and the short T1 of 13C-enriched inorganic bicarbonate salts are major drawbacks for this approach. Here, we report a new class of mixed anhydrides for esterase-catalyzed production of highly polarized 13CO2 and H13CO3- in tissue. A series of precursors with different alkoxy and acyl groups were synthesized and tested for chemical stability and T1. 13C-enriched ethyl acetyl carbonate (13C-EAC) was found to be the most suitable candidate due to the relatively long T1 and good chemical stability. Our results showed that 13C-EAC can be efficiently and rapidly polarized using BDPA. HP 13C-EAC was rapidly hydrolyzed by esterase to 13C-enriched monoacetyl carbonate (13C-MAC), which then decomposed to HP 13CO2. Equilibrium between the newly produced 13CO2 and H13CO3- was quickly established by carbonic anhydrase, producing a physiological buffer pair with 13C NMR signals that can be quantified for pH measurements. Finally, in vivo tissue pH measurements using HP 13C-EAC was successfully demonstrated in the liver of healthy rats. These results suggest that HP 13C-EAC is a novel imaging probe for in vivo pH measurements.
Collapse
Affiliation(s)
| | | | | | | | | | - Craig R. Malloy
- Veteran Affairs North Texas Health Care System, Dallas, Texas 75216, United States
| | - Dean Sherry
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | | |
Collapse
|