1
|
Tao L, Zhang J, Lan W, Liu H, Wu Q, Yang S, Song S, Yu L, Bi Y. Neutral oligosaccharides from ginseng (Panax ginseng) residues vs. neutral ginseng polysaccharides: A comparative study of structure elucidation and biological activity. Food Chem 2025; 464:141674. [PMID: 39426268 DOI: 10.1016/j.foodchem.2024.141674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
This study aimed to compare the structural and biological activities of neutral ginseng residue oligosaccharides (GRO-N) and neutral ginseng polysaccharides (GP-N). Their structures of GRO-N and GP-N were established based on their molecular weight (Mw), monosaccharide composition, Fourier-transform infrared spectroscopy, methylation, and nuclear magnetic resonance analyses. The Mws of GRO-N and GP-N were 1121.0 Da and 12,791.0 Da, respectively. Both had major chain structures comprising α-D-Glcp-(1→, →4)-α-D-Glcp-(1→, and →4)-α/β-D-Glcp, with branch points at →4,6)-α-D-Glcp-(1→. Moreover, the branched chain of GRO-N was α-D-Glcp-(1→ and →6)-α-D-Glcp-(1→. The branched chain of GP-N was α-D-Glcp-(1→ and →4)-α-D-Glcp-(1→. GRO-N, with a lower Mw and more diverse glycosidic bonds, exhibited higher antioxidant, hypoglycemic, and immune activities than GP-N. Cell viability peaked (202.81 ± 4.80 %) at a GRO-N concentration of 200 μg/mL. These findings provide a theoretical basis for further utilization of ginseng residual saccharides.
Collapse
Affiliation(s)
- Li Tao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jingwei Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Wenfei Lan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - He Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Qi Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Shenglong Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Shixin Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Lei Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, China.
| | - Yunfeng Bi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
Ji X, Chen S, Wu Q, Ling M, Tong J, Tong H, Wang G, Gong J. An acid polysaccharide from Mentha haplocalyx exerts the antifatigue effect via activating AMPK. Int J Biol Macromol 2025; 300:140235. [PMID: 39864693 DOI: 10.1016/j.ijbiomac.2025.140235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Fatigue is a pathological state that can impair physical and cognitive performance, making the development of effective therapeutic strategies crucial. In this study, an acid polysaccharide (MHa) was isolated from Mentha haplocalyx. Structural analysis showed that MHa (40.7 kDa) has a backbone consisting of 4-α-GalAp, 6-α-Galp, and 4,6-α-Galp, with branches at the C6 of 4,6-α-Galp linked to four distinct side chains, including 4-α-Galp, 3,6-β-Manp, t-α-Araf, t-α-Rhap, t-α-Glcp, and t-β-Rhap. MHa possesses a triple-helix conformation with a sheet-like appearance, which may contribute to its biological stability and activity. Functionally, MHa exhibited significant antifatigue effects, with the 400 mg/kg dose showing the most potent activity. Compared to the model group, treatment with 400 mg/kg of MHa increased the exhaustive swimming time by 1.89-fold in fatigued mice, reduced blood lactate and urea nitrogen levels by 24.21 % and 35.57 %, respectively, and enhanced liver glycogen, muscle glycogen, and ATP levels by 20.08 %, 46.52 %, and 50.43 %, respectively. MHa improved the activities of Ca2+-Mg2+-ATPase and Na+-K+-ATPase, while also enhancing antioxidant defense. Mechanistically, MHa promotes mitochondrial biogenesis and enhances oxidative defense via activating AMPK. These findings highlight the potential of MHa as a promising candidate for developing antifatigue supplements, offering a novel strategy to mitigate fatigue.
Collapse
Affiliation(s)
- Xiang Ji
- Department of Chinese Osteo-traumatology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Shenghua Chen
- Department of Chinese Osteo-traumatology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Qifang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Menglai Ling
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Jingyang Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
| | - Guanhua Wang
- Department of Spine Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou 325003, China.
| | - Jiancheng Gong
- Department of Chinese Osteo-traumatology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
3
|
Bao A, Wei Z, Bai M, Liu S, Wang S, Li L, Song S, Kong W, Zhang J, Wang T, Wang J. Covalent Modification of Selenium in Polysaccharide Enhances Immunoregulation Activity via the TLR4-Mediated MAPK/NF-κB Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1874-1891. [PMID: 39740202 DOI: 10.1021/acs.jafc.4c06364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Selenium (Se) is a crucial trace element that demonstrates significant immunomodulatory effects, which are attributed to the variability in its valence states and metabolic pathways. To investigate the Se-related immunoregulatory effects, locust bean gum (LBG), a typical galactomannan, was selenized by employing deep eutectic solvents (DESs) as high-efficiency solvents to obtain Se-covalent modified LBG (SeLBGs) with similar molecular mass and different Se contents (SeLBGL, 1049.57 and SeLBGH, 4926.54 μg/g). After introducing selenite into LBG, SeLBGs display greater immunomodulatory activities by activating MAPKs and NF-κB signaling pathways compared with LBG and Se compounds (Se-Met, Na2SeO3, and SeNPs) at the same Se equivalent, which are confirmed by their higher cell viability, phagocytic activity, secretion of cytokines, and protein expression. In addition, molecular docking and molecular dynamics suggest that SeLBG has the potential to induce dimerization of subunits and activate toll-like receptors (TLRs). By employing the specific receptor inhibitors strategy, it is confirmed that the combination of Se and LBG enhances TLR2/4 recognition according to the results of cytokine secretion and MAPKs/NF-κB pathway-related protein expression. These findings underscore the role of Se in pattern receptor recognition and the potential of Se-enriched ingredients in various functions.
Collapse
Affiliation(s)
- Aijuan Bao
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Zhangkun Wei
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Meiting Bai
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Shuang Liu
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Shiping Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Li Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
- Gansu Provincial Hospital, Lanzhou 730000, People's Republic of China
| | - Shen Song
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
- Functional Food Technology Innovation Center of Gansu Province, Lanzhou 730070, People's Republic of China
| | - Weibao Kong
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
- Functional Food Technology Innovation Center of Gansu Province, Lanzhou 730070, People's Republic of China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
- Functional Food Technology Innovation Center of Gansu Province, Lanzhou 730070, People's Republic of China
| | - Tao Wang
- Gansu Provincial Academic Institute for Medical Research, Lanzhou 730050, People's Republic of China
- Sun Yat-sen University Cancer Center Gansu Hospital, Lanzhou 730050, People's Republic of China
| | - Junlong Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
- Functional Food Technology Innovation Center of Gansu Province, Lanzhou 730070, People's Republic of China
| |
Collapse
|
4
|
Guo Y, Xu M, Hu X, Cen L, Pei D, Zhang D, Xu J, Shi P, Yang L, Cui H. Extraction, purification, and mechanism of immunomodulatory peptides obtained from silkworm pupa protein hydrolysate. Int J Biol Macromol 2024; 283:137863. [PMID: 39566776 DOI: 10.1016/j.ijbiomac.2024.137863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Silkworm pupa, a by-product of silk reeling, is rich in protein; however, it has traditionally been used as animal feed. This study isolated and purified peptides from the enzymatic hydrolysates of silkworm pupa protein, thus effectively enhancing its utilization. The immune activity of these peptides was evaluated in macrophages, and 609 peptides were identified using LC-MS/MS. These active peptides were screened based on their toxicity, allergenic, and biological activity, and their interactions with TLR2 and TLR4/MD-2 were predicted via molecular docking. Results indicated that APFAPAPL, YLPPFNSF, and FIPNEAFAGRPF could strongly bind to TLR2 and TLR4/MD-2 through hydrogen bonding and hydrophobic interactions. These peptides were synthesized using solid-phase synthesis, and their immune activity was verified by proliferation, NO, ROS and TNF-α secretion assays. All three peptides promoted the proliferation, phagocytosis, and secretion of ROS and TNF-α by macrophages. Western blot analysis showed that the peptides activated RAW 264.7 cells via the NF-κB and MAPK signaling pathways, mediated by TLR2 and TLR4/MD-2 receptors. Therefore, this study provides a new understanding of the immunomodulatory activity of silkworm pupa proteins, implying their potential use as functional food ingredients.
Collapse
Affiliation(s)
- Yan Guo
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Man Xu
- Jinfeng Laboratory, Chongqing 401329, China
| | - Xin Hu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Liang Cen
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Dakun Pei
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Dandan Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Jie Xu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Pengfei Shi
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Liqun Yang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| |
Collapse
|
5
|
Bai W, Zhang L, Lin X, Zhao W, Liu G, Qian M, Li X, Wang H. Structural characterization, antioxidant and immunomodulatory activities of a polysaccharide from a traditional Chinese rice wine, Guangdong Hakka Huangjiu. Int J Biol Macromol 2024; 281:136523. [PMID: 39401636 DOI: 10.1016/j.ijbiomac.2024.136523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Hakka Huangjiu, a traditional Chinese rice wine, boasts a rich history and is known for its immunomodulatory, antibacterial, anti-aging and anti-fatigue effects. However, there is limited research on the primary active components and molecular mechanism of the bioactivity of Hakka Huangjiu. To address this gap, this study assessed the structural characteristics, antioxidant, and immunomodulatory activities of the polysaccharide-1 of Guangdong Hakka Huangjiu (HP1). Structural analysis revealed that HP1 had a low molecular weight polysaccharide of 5550 Da, primarily consisting of glucose (93.2 %), with smaller amounts of xylose, mannuronic acid and galactose. Methylation and NMR analysis suggested that the main glycosidic linkages present in HP1 are α-D-Glcp-(1→, →4)-α-D-Glcp-(1 → and →6) -α-D-Glcp-(1→. Furthermore, HP1 exhibited dose-dependent DPPH·, ABTS+ and OH· scavenging activity. HP1 exhibited significant protection of HepG2 cells from H2O2 damage. Additionally, HP1 induced the release of NO, TNF-α, IL-6 and iNOS in RAW264.7 cells. HP1 treatment significantly increased mRNA expression of TNF-α, IL-6, iNOS, COX-2, IL-1β and TGF-β1. These results suggested that polysaccharides HP1 may have potential as a novel natural antioxidant and immunomodulatory product for use in nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Weidong Bai
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lin Zhang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaohui Lin
- School of Biosystems and Food Engineering, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Wenhong Zhao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Gongliang Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Min Qian
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiangluan Li
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
6
|
Chen W, Zhu X, Xin X, Zhang M. Effect of the immunoregulation activity of a pectin polysaccharide from Saussurea laniceps petals on macrophage polarization. Int J Biol Macromol 2024; 278:134757. [PMID: 39151871 DOI: 10.1016/j.ijbiomac.2024.134757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/19/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Saussurea laniceps is a traditional medicinal herb. In our previous study, a pectin polysaccharide, SLP-4, was isolated from the petals of S. laniceps. In this study, the immunomodulatory activity of SLP-4 was studied by analyzing its effects on macrophage (RAW 264.7 cells) polarization. The immunomodulatory activity assays indicated that SLP-4 could significantly enhance the pinocytic and phagocytic capacity and promote the expression and secretion of cytotoxic molecules (nitric oxide, increased by 6.4 times when the SLP-4 concentration was 800 μg/mL) and cytokines (tumor necrosis factor-α and interleukin-6 increased by 7.7 and 11.9 times, respectively) in original macrophage. The possible mechanism could be attributed to the activation of the mitogen-activated protein kinase and nuclear factor-κB signaling pathways through Toll-like receptors 2 and 4. Moreover, SLP-4 significantly induced M1 polarization of original macrophages and transferred macrophages from M2 to M1, but had little effect on the conversion of M1 macrophages into M2 phenotype. Overall, these results demonstrate the potential of SLP-4 as an attractive immunomodulating functional supplement.
Collapse
Affiliation(s)
- Wenbo Chen
- School of Food Science & Chemical Engineering, Zhengzhou University of Technology, Zhengzhou, He'nan 450044, China
| | - Xiaolu Zhu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, He'nan 450001, China
| | - Xuan Xin
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Mengmeng Zhang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| |
Collapse
|
7
|
Wei J, Dai Y, Zhang N, Wang Z, Tian X, Yan T, Jin X, Jiang S. Natural plant-derived polysaccharides targeting macrophage polarization: a promising strategy for cancer immunotherapy. Front Immunol 2024; 15:1408377. [PMID: 39351237 PMCID: PMC11439661 DOI: 10.3389/fimmu.2024.1408377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Tumor associated macrophages (TAMs) are the predominant innate immune cells in the tumor microenvironment (TME). Cytokines induce the differentiation of macrophages into distinct types of TAMs, primarily characterized by two phenotypes: M1-polarized and M2-polarized. Cancer growth is suppressed by M1-polarized macrophages and promoted by M2-polarized macrophages. The regulation of macrophage M1 polarization has emerged as a promising strategy for cancer immunotherapy. Polysaccharides are important bioactive substances found in numerous plants, manifesting a wide range of noteworthy biological actions, such as immunomodulation, anti-tumor effects, antioxidant capabilities, and antiviral functions. In recent years, there has been a significant increase in interest regarding the immunomodulatory and anti-tumor properties of polysaccharides derived from plants. The regulatory impact of polysaccharides on the immune system is mainly associated with the natural immune response, especially with the regulation of macrophages. This review provides a thorough analysis of the regulatory effects and mechanisms of plant polysaccharides on TAMs. Additionally, an analysis of potential opportunities for clinical translation of plant polysaccharides as immune adjuvants is presented. These insights have greatly advanced the research of plant polysaccharides for immunotherapy in tumor-related applications.
Collapse
Affiliation(s)
- Jingyang Wei
- Second college of clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanpeng Dai
- Institute of Chinese Medicine Processing, Shandong Academy of Chinese Medicine, Jinan, China
| | - Ni Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zijian Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining No.1 People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaohan Jin
- Center for Post-Doctoral Studies, Shandong University of Traditional Chinese Medicine, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining, China
| | - Shulong Jiang
- Second college of clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining, China
| |
Collapse
|
8
|
Li F, Sun X, Gao X, Zhao S, Tavakoli S, Du Z, Wei Y. Anti-colorectal cancer activity of mannatide from spent brewer's yeast by regulating immune cells and immune function in the tumor microenvironment. Int J Biol Macromol 2024; 280:135531. [PMID: 39270895 DOI: 10.1016/j.ijbiomac.2024.135531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Chemotherapy and radiotherapy are generally accompanied by adverse effects, which reduce tolerance to cancer therapies. Immunonutrition improves the clinical outcomes of cancer patients. Hence, natural immunomodulator is therefore considered as a favorable alternative. This study aimed to elucidate the anti-colorectal cancer (CRC) effect of mannatide (MTE) from the immunostimulatory perspective. MTE (concentrations≥1200 μg/mL) significantly inhibited HT-29 cells viabilities compared with the 5-fluorouracil (5-FU) group and all predetermined concentrations of MTE promoted the proliferation of RAW264.7 (p < 0.01). Moreover, MTE treatment suppressed tumor growth, decreased leukocyte and platelet count, and regulated immune organ indexes compared with the model group. In comparison of Model and 5-FU groups, MTE treatment reshaped tumor-associated macrophages (TAMs) from alternatively activated macrophages (M2)-like into classical activated macrophages (M1)-like phenotype. Also, it increased the proportion of CD8+ and CD4+ T cells accompanied by secreting pro-inflammatory cytokines (interferon (IFN)-γ and tumor necrosis factor (TNF)-α) and decreasing pro-inflammatory cytokines (interleukin (IL)-4, interleukin (IL)-6, arginine (Arg)-1, and cyclooxygenase (COX)-2) to reduce immunosuppression. Moreover, MTE-administrated alleviated intestinal mucositis and improved the prognostic indexes compared with the 5-FU group. Notably, the ability of low-dose MTE to regulate immune cells and the function of the tumor microenvironment was higher than that of high-dose. Generally, MTE as an immunomodulator presents great potential to strengthen anti-CRC activity.
Collapse
Affiliation(s)
- Fei Li
- College of Life Science, Qingdao University, Qingdao 266071, China; Shandong Luhua Group Co., Ltd., Laiyang 265200, China
| | - Xiaopeng Sun
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Xiang Gao
- College of Life Science, Qingdao University, Qingdao 266071, China.
| | - Shuang Zhao
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Samad Tavakoli
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zubo Du
- Shandong Luhua Group Co., Ltd., Laiyang 265200, China.
| | - Yuxi Wei
- College of Life Science, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
9
|
Sun L, Yang B, Lin Y, Gao M, Yang Y, Cui X, Hao Q, Liu Y, Wang C. Dynamic bond crosslinked maca polysaccharide hydrogels with reactive oxygen species scavenging and antibacterial effects on infected wound healing. Int J Biol Macromol 2024; 276:133471. [PMID: 38942406 DOI: 10.1016/j.ijbiomac.2024.133471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
In this study, a polysaccharide fragment with antioxidant and reactive oxygen species (ROS) scavenging activities was extracted from Maca (Lepidium meyenii Walp.) and subjected to structural analyses. The fragment, characterized by the α-D-Glcp-(1 → terminal group of the main chain linked to the →4)-Glcp-(1 → end unit through an O-6 bond and the O-3 bond of 1-3-4Glcp, was modified by introducing dialdehyde structures on its glucose units. It was then crosslinked with N-carboxymethyl chitosan via the Schiff base reaction to create a multifunctional hydrogel with antibacterial and ROS scavenging properties. Polyvinyl alcohol was incorporated to form a double crosslinked gel network, and the addition of silver nanoparticles enhanced its antibacterial efficacy. This gel system can scavenge excess ROS, mitigate wound inflammation, eradicate harmful bacteria, and aid in the restoration of skin microecology. The multifunctional maca polysaccharide hydrogel shows significant potential as a medical dressing for the treatment of infected wounds.
Collapse
Affiliation(s)
- Liangliang Sun
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Boyuan Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yameng Lin
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Mingju Gao
- Wenshan University, Wenshan 663099, China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qian Hao
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yuan Liu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
10
|
Zhang Z, Yan H, Hussain H, Chen X, Park JH, Kwon SW, Xie L, Zheng B, Xu X, Wang D, Duan J. Structural analysis, anti-inflammatory activity of the main water-soluble acidic polysaccharides (AGBP-A3) from Panax quinquefolius L berry. J Ginseng Res 2024; 48:454-463. [PMID: 39263308 PMCID: PMC11385391 DOI: 10.1016/j.jgr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 09/13/2024] Open
Abstract
Background Panax quinquefolius L, widely recognized for its valuable contributions to medicine, has aroused considerable attention globally. Different from the extensive research has been dedicated to the root of P. quinquefolius, its berry has received relatively scant focus. Given its promising medicinal properties, this study was focused on the structural characterizations and anti-inflammatory potential of acidic polysaccharides from the P. quinquefolius berry. Materials and methods P. quinquefolius berry was extracted with hot water, precipitated by alcohol, separated by DEAE-52-cellulose column to give a series of fractions. One of these fractions was further purified via Sephadex G-200 column to give three fractions. Then, the main fraction named as AGBP-A3 was characterized by methylation analysis, NMR spectroscopy, etc. Its anti-inflammatory activity was assessed by RAW 264.7 cell model, zebrafish model and molecular docking. Results The main chain comprised of α-L-Rhap, α-D-GalAp and β-D-Galp, while the branch consisted mainly of α-L-Araf, β-D-Glcp, α-D-GalAp, β-D-Galp. The RAW264.7 cell assay results showed that the inhibition rates against IL-6 and IL-1β secretion at the concentration of 625 ng/mL were 24.83 %, 11.84 %, while the inhibition rate against IL-10 secretion was 70.17 % at the concentration of 312 ng/mL. In the zebrafish assay, the migrating neutrophils were significantly reduced in number, and their migration to inflammatory tissues was inhibited. Molecular docking predictions correlated well with the results of the anti-inflammatory assay. Conclusion The present study demonstrated the structure of acidic polysaccharides of P. quinquefolius berry and their effect on inflammation, providing a reference for screening anti-inflammatory drugs.
Collapse
Affiliation(s)
- Zhihao Zhang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, China
| | - Huijiao Yan
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Xiangfeng Chen
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jeong Hill Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Lei Xie
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Bowen Zheng
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, China
| | - Xiaohui Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong, China
| | - Daijie Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Wu ZW, Peng XR, Liu XC, Wen L, Tao XY, Al-Romaima A, Wu MY, Qiu MH. The structures of two polysaccharides from Lepidium meyenii and their immunomodulatory effects via activating NF-κB signaling pathway. Int J Biol Macromol 2024; 269:131761. [PMID: 38663705 DOI: 10.1016/j.ijbiomac.2024.131761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/09/2024]
Abstract
Lepidium meyenii Walp., also known as the "Peruvian national treasure", is a popular functional food in the daily lives of Peruvian people due to its bioactive with main polysaccharides. However, studies on polysaccharides isolated from Lepidium meyenii were few. Two new highly heterogeneous polysaccharides, MCP-1a and MCP-2b, were isolated and purified from the tuber of Lepidium meyenii. The structure characterization revealed that MCP-1a primarily consisted of D-Glc and had a molecular weight of 6.6 kDa. Its backbone was composed of 1,4,6-α-D-Glc, while branches feature T-α-L-Ara, 1,5-α-L-Ara, and T-α-D-Glc attached to the O-6 positions. MCP-2b was a rare arabinogalactan with a molecular weight of 49.4 kDa. Interestingly, the backbone of MCP-2b was composed of 1,6-β-D-Gal, 1,3,6-β-D-Gal with a few 1,3-β-D-GlcpA-4-OMe units inserted. Side chains of MCP-2b were mainly composed of 1,3-β-D-Gal, T-β-D-Gal, T-α-L-Ara, 1,5-α-L-Ara, with trace amounts of 1,4-β-D-Glc and T-β-D-Glc. The bioactivity assay results revealed that MCP-1a and MCP-2b increased the release of NO, IL-1β, TNF-α, and IL-6 from RAW 264.7 cells at concentrations ranging from 50 μg/mL to 400 μg/mL. Furthermore, MCP-1a and MCP-2b could promote the expression of key transcription factors (IκB-α, p-IκB-α, p65, and p-p65) in the NF-κB pathway, indicating that MCP-1a and MCP-2b had potential immunomodulatory activities.
Collapse
Affiliation(s)
- Zhou-Wei Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiao-Cui Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Luan Wen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xin-Yu Tao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Abdulbaset Al-Romaima
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming-Yi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
12
|
Zhang X, Zhang X, Wang Z, Quan B, Bai X, Wu Z, Meng Y, Wei Z, Xia T, Zheng Y, Wang M. Melanoidin-like carbohydrate-containing macromolecules from Shanxi aged vinegar exert immunoenhancing effects on macrophage RAW264.7 cells. Int J Biol Macromol 2024; 264:130088. [PMID: 38354936 DOI: 10.1016/j.ijbiomac.2024.130088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Bioactive macromolecule mining is important for the functional chemome analysis of traditional Chinese vinegar. In this study, we isolated and characterized carbohydrate-containing macromolecules from Shanxi aged vinegar (CCMSAV) and evaluated their immunomodulatory activity. The isolation process involved ethanol precipitation, deproteinization, decolorization, and DEAE-650 M column chromatography, resulting in the acquisition of four sub-fractions. All sub-fractions exhibited a molecular weight range of 6.92 to 16.71 kDa and were composed of 10 types of monosaccharides. Comparative analysis of these sub-fractions with two melanoidins exhibited similarities in elemental composition, spectral signature, and pyrolytic characteristics. Immunological assays confirmed the significantly enhanced cell viability, phagocytic activity, and secretion of nitric oxide, tumor necrosis factor (TNF)-α and interleukin (IL)-6 in RAW264.7 cells by all four sub-fractions. Further investigation of the immunomodulatory mechanism revealed that SAV-RP70-X, the most potent purified sub-fraction, enhanced aerobic glycolysis in macrophages and activated Toll-like receptor 2 (TLR2), TLR4, mannose receptor (MR), scavenger receptor (SR), and the dendritic cell-associated C-type lectin-1 receptor (Dectin-1). Furthermore, the activation of macrophages was associated with the MyD88/PI3K/Akt/NF-κB signaling pathway. Methylation analysis revealed that 1,4-Xylp was the most abundant glycosidic linkage in SAV-RP70-X.
Collapse
Affiliation(s)
- Xianglong Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaodong Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhisong Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Bingyan Quan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaoli Bai
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zihang Wu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuan Meng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zixiang Wei
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ting Xia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
13
|
Peng Y, Zhu X, Yang G, Zhang J, Wang R, Shen Y, Li H, Gatasheh MK, Abbasi AM, Yang X. Ultrasonic extraction of Moringa oleifera seeds polysaccharides: Optimization, purification, and anti-inflammatory activities. Int J Biol Macromol 2024; 258:128833. [PMID: 38128806 DOI: 10.1016/j.ijbiomac.2023.128833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Natural polysaccharides exhibit numerous beneficial properties, such as antioxidant, antitumor, hypoglycemic, and hypolipidemic activities. Moringa oleifera seeds are of high dietary and therapeutic value which drew a lot of attention. However, the regulation effect on anti-inflammatory activity of polysaccharides remains to be studied. Herein, novel bioactive polysaccharides (MOSP-1) were extracted from Moringa oleifera seeds, and the anti-inflammatory properties of MOSP-1 were uncovered. Ultrasound-assisted extraction (UAE) was used to prepare the polysaccharides with optimized conditions (70 °C, 43 min, and liquid-solid-ratio 15 mL/g). Then, DEAE-Sepharose Fast Flow columns were applied to isolate and purify MOSP-1. Rhamnose, arabinose, galactose, and glucose were identified as the monosaccharide constituents of MOSP-1, with a molecular weight of 5.697 kDa. Their proportion in molarity was 1:0.183:0.108:0.860 and 8 types of glycosidic linkages were discovered. Bioactive assays showed that MOSP-1 possessed scavenging activities against DPPH and ABTS radicals, confirming its potential antioxidation efficacy. In vitro experiments revealed that MOSP-1 could reduce the expression of inflammation-related cytokines, inhibit the activation of ERK, JNK, and p38 (the MAPK signaling pathway), and enhance phagocytic functions. This study indicates that polysaccharides (MOSP-1) from Moringa oleifera seeds with anti-inflammatory properties may be used for functional food and pharmaceutical product development.
Collapse
Affiliation(s)
- Yao Peng
- School of Life Sciences, Guangzhou University, Guangzhou 510405, China.
| | - Xucheng Zhu
- School of Life Sciences, Guangzhou University, Guangzhou 510405, China.
| | - Guiyan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Junjia Zhang
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Rui Wang
- International Education College, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Yingbin Shen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Haimei Li
- School of Life Sciences, Guangzhou University, Guangzhou 510405, China.
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan.
| | - Xinquan Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
14
|
Bi S, Jing Y, Cui X, Gong Y, Zhang J, Feng X, Shi Z, Zheng Q, Li D. A novel polysaccharide isolated from Coriolus versicolor polarizes M2 macrophages into an M1 phenotype and reversesits immunosuppressive effect on tumor microenvironment. Int J Biol Macromol 2024; 259:129352. [PMID: 38218293 DOI: 10.1016/j.ijbiomac.2024.129352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/18/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Converting M2 macrophages into an M1 phenotype in the tumor microenvironment, provides a new direction for tumor treatment. Here, we further report CVPW-1, a new polysaccharide of 1.03 × 106 Da that was isolated from Coriolus versicolor. Its monosaccharide was composed of mannose, glucose, and galactose at a ratio of 1.00:8.73:1.68. The backbone of CVPW-1 was composed of (1 → 3)-linked α-D-Glcp residues and (1 → 3,6)-linked α-D-Glcp residues that branched at O-6. The branch consisted of (1 → 6)-linked α-D-Glcp residues and (1 → 4)-linked α-D-Glap, and some branches were terminated with (1→)-linked β-D-Manp residues according to the results of HPLC, FT-IR, GC-MS, 1D and 2D NMR. Meanwhile, CVPW-1 could polarize M2 macrophages to M1 phenotypein vitro by binding to TLR4 and inducing the activation of Akt, JNK and NF-κB. This process involved reversing the functional inhibition of CD8+ T lymphocytes by inhibiting the expression of TREM2 in M2 macrophages. The in vivo experiments showed that oral administration of CVPW-1 could inhibit the growth of tumor in mice and polarize TAMs to M1 phenotype. Thus, the novel polysaccharide CVPW-1 from Coriolus versicolor might activate a variety of immune cells and then play an anti-tumor role. These results demonstrated that CVPW-1 could be developed as a potential immuno-oncology treatment reagent.
Collapse
Affiliation(s)
- Sixue Bi
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, PR China
| | - Xuehui Cui
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Yitong Gong
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Junli Zhang
- Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai 264100, Shandong, PR China
| | - Xiaofei Feng
- Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai 264100, Shandong, PR China
| | - Zhen Shi
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China.
| |
Collapse
|
15
|
Yu Y, Zhu Z, Xu Y, Wu J, Yu Y. Effects of Lactobacillus plantarum FM 17 fermentation on jackfruit polysaccharides: Physicochemical, structural, and bioactive properties. Int J Biol Macromol 2024; 258:128988. [PMID: 38158071 DOI: 10.1016/j.ijbiomac.2023.128988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Fermentation is a novel technology for modifying polysaccharides in fruits and improving their bioactivities. In this work, we introduced Lactobacillus plantarum FM 17 to ferment jackfruit pulp and subsequently purified polysaccharides from unfermented (JP) and fermented jackfruit pulp (JP-F). Furthermore, the physicochemical, structural, and bioactive properties of JP and JP-F were investigated. Results showed fermentation dropped the glucuronic acid, molecular weight, and particle size of JP-F by 15.62 %, 23.92 %, and 39.43 %, respectively, compared with those of JP. JP-F showed higher solubility than JP but lower apparent viscosity and thermal stability. Additionally, FT-IR spectra and X-ray diffraction analysis showed that fermentation did not alter the different types of glycosidic bonds and the fundamental polysaccharide structure. Moreover, JP-F exhibited stronger DPPH and ABTS free radical scavenging properties than JP and stronger stimulation on macrophage secretion of NO and IL-6 in RAW 264.7 cells. Therefore, using L. plantarum FM 17 for fermentation can alter physical and chemical properties of jackfruit pulp polysaccharides, enhancing their bioactivities.
Collapse
Affiliation(s)
- Yangyang Yu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zongshuai Zhu
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yujuan Xu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Jijun Wu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yuanshan Yu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
16
|
Chen SK, Wang X, Guo YQ, Song XX, Yin JY, Nie SP. Exploring the partial degradation of polysaccharides: Structure, mechanism, bioactivities, and perspectives. Compr Rev Food Sci Food Saf 2023; 22:4831-4870. [PMID: 37755239 DOI: 10.1111/1541-4337.13244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
Polysaccharides are promising biomolecules with lowtoxicity and diverse bioactivities in food processing and clinical drug development. However, an essential prerequisite for their applications is the fine structure characterization. Due to the complexity of polysaccharide structure, partial degradation is a powerful tool for fine structure analysis, which can effectively provide valid information on the structure of backbone and branching glycosidic fragments of complex polysaccharides. This review aims to conclude current methods of partial degradation employed for polysaccharide structural characterization, discuss the molecular mechanisms, and describe the molecular structure and solution properties of degraded polysaccharides. In addition, the effects of polysaccharide degradation on the conformational relationships between the molecular structure and bioactivities, such as antioxidant, antitumor, and immunomodulatory activities, are also discussed. Finally, we summarize the prospects and current challenges for the partial degradation of polysaccharides. This review will be of great value for the scientific elucidation of polysaccharide fine structures and potential applications.
Collapse
Affiliation(s)
- Shi-Kang Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Yu-Qing Guo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
17
|
Chen D, Li J, Gao Q, Kang Z, Chen H, Fu P. Structural characterization of polysaccharide fractions in areca (Areca catechu L.) inflorescence and study of its immunological enhancement activity in vitro and in vivo. Food Res Int 2023; 171:113006. [PMID: 37330846 DOI: 10.1016/j.foodres.2023.113006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/19/2023]
Abstract
To obtain the structure-function relationship of the polysaccharides derived from areca (Areca catechu L.) inflorescences in the aspect of its immunomodulatory ability, the plant-based polysaccharide was isolated and purified on column chromatography. The purity, primary structure and immune activity of four polysaccharide fractions (AFP, AFP1, AFP2 and AFP2a) were characterized comprehensively. The main chain of AFP2a was confirmed to be composed of → 3,6)-β-D-Galp-(1→, with branch chains linked to the O-3 position on the main chain. The immunomodulatory activity of the polysaccharides was evaluated using the RAW264.7 cells and immunosuppression mice model. It was observed that AFP2a enabled greater NO release (49.72 μmol/L) than other fractions, significantly promoted the phagocytic activity of macrophages, and improved splenocyte proliferation and T lymphocyte phenotype in mice. The present results may shine a light on a new research direction in immunoenhancers and provide a theoretical foundation for the development and application of areca inflorescence.
Collapse
Affiliation(s)
- Di Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jin Li
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Qian Gao
- Huachuang Institute of Areca Research-Hainan, Haikou 570228, China
| | - Zonghua Kang
- Hunan Kouweiwang Group Co., Ltd, Yiyang 413499, China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, China; Huachuang Institute of Areca Research-Hainan, Haikou 570228, China.
| | - Pengcheng Fu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| |
Collapse
|
18
|
Huang C, Tu W, Zhang M, Peng D, Guo Z, Huang W, Zhu J, Yu R, Song L, Wang Y. A novel heteropolysaccharide isolated from custard apple pulp and its immunomodulatory activity in mouse macrophages and dendritic cells. Heliyon 2023; 9:e18521. [PMID: 37554813 PMCID: PMC10404978 DOI: 10.1016/j.heliyon.2023.e18521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
In this study, a novel heteropolysaccharide (ASPA80-1) with an average molecular weight of 5.48 × 104 Da was isolated and structurally elucidated from custard apple pulp (Annona squamosa) through DEAE-cellulose, Sephadex G-100 and Sephacryl S-300 HR chromatography and spectral analysis. ASPA80-1 is a water-soluble polysaccharide and it is a polymer consisting of predominant amounts of (1 → 3)-linked-L-arabinose (Ara) residues, small amounts of (1 → 6)-linked-D-galactose (Gal), (1 → 3,5)-linked-L-arabinose (Ara) residues and terminal linked-L-arabinose (Ara) residues, trace amount of (1 → 4)-linked-D-glucose (Glc) residues and (1 → 2)-linked-L-rhamnose (Rham) residues. ASPA80-1 showed significant effect on antigen-presenting cells (APCs) activation. On the one hand, ASPA80-1 activated RAW264.7 macrophage cells by inducing morphology change, enhancing phagocytic ability, increasing nitric oxide (NO) secretion and promoting expression of major histocompatibility complex class II (MHC II) and cluster of differentiation 86 (CD 86). On the other hand, ASPA80-1 promoted the maturation of dendritic cells (DCs) by inducing longer dendrites, decreasing phagocytic ability and increasing MHC II and CD86 expression. Furthermore, mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathways were activated after the intervention of ASPA80-1 on RAW264.7 cells or DCs. Thus, the novel heteropolysaccharide ASPA80-1 has the potential to be used as an immunoenhancing component in functional foods.
Collapse
Affiliation(s)
- Chunhua Huang
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Wensong Tu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Man Zhang
- Department of Natural Product Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Dan Peng
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhongyi Guo
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Weijuan Huang
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- Department of Natural Product Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Liyan Song
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yurong Wang
- Department of Chinese Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
19
|
Wen L, Wu ZW, Lin LW, Al-Romaima A, Peng XR, Qiu MH. Structural characterizations and α-glucosidase inhibitory activities of four Lepidium meyenii polysaccharides with different molecular weights. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:18. [PMID: 37278859 DOI: 10.1007/s13659-023-00384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Four polysaccharides (MCPa, MCPb, MCPc, MCPd) were obtained from Lepidium meyenii Walp. Their structures were characterized by chemical and instrumental methods including total sugar, uronic acid and protein content determination, UV, IR and NMR spectroscopy, as well as monosaccharide composition determination and methylation analyses. Four polysaccharides were a group of glucans with different molecular weights ranging from 3.12 to 14.4 kDa, and shared a similar backbone chain consisting of (1→4)-glucose linkages with branches attached to C-3 and C-6. Furthermore, bioactivity assay showed that MCPs had concentration-dependent inhibitory activity on α-glucosidase. MCPb (Mw = 10.1 kDa) and MCPc (Mw = 5.62 kDa) with moderate molecular weights exhibited higher inhibitory activity compared with MCPa and MCPd.
Collapse
Affiliation(s)
- Luan Wen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhou-Wei Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Li-Wu Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Abdulbaset Al-Romaima
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
20
|
Cao F, Zhang H, Yan Y, Chang Y, Ma J. Extraction of polysaccharides from Maca enhances the treatment effect of 5-FU by regulating CD4 +T cells. Heliyon 2023; 9:e16495. [PMID: 37274637 PMCID: PMC10238885 DOI: 10.1016/j.heliyon.2023.e16495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
In our previous studies, we used a graded alcohol precipitation method to extract four maca polysaccharide components (MCP1, MCP2, MCP3, and MCP4) from maca with various molecular weights. Compared to other three components, MCP2 had stronger immunoregulatory abilities on CD4+T cells. To avoid the immunosuppressive effect of 5-fluorouracil (5-FU), maca polysaccharides in combination with 5-FU treatment were investigated in this study. The results show that 500 mg/kg and 1000 mg/kg MCP2 could significantly delay the growth of tumor and enhance the anti-tumor effect of 5-FU in vivo. Furthermore, MCP2 can partly recover the proliferation of CD4+T cells after being suppressed by 5-FU in vitro. Additionally, in order to explore the mechanism in which MCP2 acts on CD4+T cells, the MCP2 is marked with FITC fluorescence and synthesis MCP2-Tyr-FITC for the first time. Confocal microscope results show that MCP2-Tyr-FITC can directly bind to the surface of CD4+T cells. Together, our work demonstrates that maca polysaccharides could enhance the anti-tumor effect when combined with 5-FU by regulating CD4+T cells, suggesting a novel potential immunomodulator in tumor therapy.
Collapse
Affiliation(s)
- Fenghua Cao
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang 212000, China
| | - Hanyuan Zhang
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang 212000, China
| | - Ying Yan
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yi Chang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jie Ma
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
21
|
Zheng M, Ma M, Yang Y, Liu Z, Liu S, Hong T, Ni H, Jiang Z. Structural characterization and antioxidant activity of polysaccharides extracted from Porphyra haitanensis by different methods. Int J Biol Macromol 2023; 242:125003. [PMID: 37217048 DOI: 10.1016/j.ijbiomac.2023.125003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
This study was to investigate the structure and antioxidant activity of Porphyra haitanensis polysaccharides (PHPs) extracted by different methods, including water extraction (PHP), ultra-high pressure (UHP-PHP), ultrasonic (US-PHP) and microwave assisted water extraction (M-PHP). Compared with water extraction, the total sugar, sulfate and uronic acid contents of PHPs was enhanced by ultra-high pressure, ultrasonic and microwave assisted treatments, especially those of UHP-PHP were increased by 24.35 %, 12.84 % and 27.51 %, respectively (p < 0.05). Meanwhile, these assisted treatments affected the monosaccharide ratio of polysaccharides and significantly reduced the protein content, molecular weight as well as particle size of PHPs (p < 0.05), and resulted in a loose microstructure with more porosity and fragments. PHP, UHP-PHP, US-PHP, and M-PHP all possessed in vitro antioxidant capacity. Among them, UHP-PHP had the strongest oxygen radical absorbance capacity, DPPH and ·OH radicals scavenging capacity, which increased by 48.46 %, 116.24 %, and 14.98 % respectively. Moreover, PHPs particularly UHP-PHP effectively increased the cell viability and reduced ROS levels of H2O2 induced RAW264.7 cells (p < 0.05), indicating their good effects against cell oxidative damage. The findings suggested that PHPs with ultra-high pressure assisted treatments has the better potential to develop natural antioxidant.
Collapse
Affiliation(s)
- Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen, Fujian 361000, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Menghan Ma
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Yuanfan Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen, Fujian 361000, China
| | - Shuji Liu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen, Fujian 361000, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Xiamen Ocean Vocational College, Xiamen 361021, Fujian, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China.
| |
Collapse
|
22
|
Murphy EJ, Fehrenbach GW, Abidin IZ, Buckley C, Montgomery T, Pogue R, Murray P, Major I, Rezoagli E. Polysaccharides-Naturally Occurring Immune Modulators. Polymers (Basel) 2023; 15:polym15102373. [PMID: 37242947 DOI: 10.3390/polym15102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The prevention of disease and infection requires immune systems that operate effectively. This is accomplished by the elimination of infections and abnormal cells. Immune or biological therapy treats disease by either stimulating or inhibiting the immune system, dependent upon the circumstances. In plants, animals, and microbes, polysaccharides are abundant biomacromolecules. Due to the intricacy of their structure, polysaccharides may interact with and impact the immune response; hence, they play a crucial role in the treatment of several human illnesses. There is an urgent need for the identification of natural biomolecules that may prevent infection and treat chronic disease. This article addresses some of the naturally occurring polysaccharides of known therapeutic potential that have already been identified. This article also discusses extraction methods and immunological modulatory capabilities.
Collapse
Affiliation(s)
- Emma J Murphy
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- LIFE-Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Gustavo Waltzer Fehrenbach
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Ismin Zainol Abidin
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Ciara Buckley
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Therese Montgomery
- School of Science and Computing, Atlantic Technological University, H91 T8NW Galway, Ireland
| | - Robert Pogue
- Universidade Católica de Brasilia, QS 7 LOTE 1-Taguatinga, Brasília 71680-613, DF, Brazil
| | - Patrick Murray
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- LIFE-Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
| | - Ian Major
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Emanuele Rezoagli
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
23
|
Zhang Z, Cui Y, Ouyang H, Zhu W, Feng Y, Yao M, Yang S. Radix Pueraria lobata polysaccharide relieved DSS-induced ulcerative colitis through modulating PI3K signaling. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
24
|
A pH-sensitive hydrogel based on carboxymethylated konjac glucomannan crosslinked by sodium trimetaphosphate: Synthesis, characterization, swelling behavior and controlled drug release. Int J Biol Macromol 2023; 232:123392. [PMID: 36702219 DOI: 10.1016/j.ijbiomac.2023.123392] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
The pH-sensitive hydrogel consisting of carboxymethylated konjac glucomannan (CMKGM) and sodium trimetaphosphate (STMP) was prepared for a potential intestinal targeted delivery system. Both the CMKGM and the CMKGM hydrogel were characterized by FT-IR spectra, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The Congo red and atomic force microscope (AFM) results showed a coil-to-helix transition of CMKGM in alkaline conditions with the degree of substitution (DS) increased from 0.20 to 0.49. Rheological measurements indicated that the DS and the STMP content collectively influence the mechanical stiffness and swelling properties of the obtained hydrogels. In addition, the swelling behavior of the hydrogels revealed that they were sensitive to pH value changes and were following a Korsmeyer-Peppas gastrointestinal release behavior, indicating that the release was controlled by non-Fickian diffusion. Furthermore, all the results suggested that the prepared pH-sensitive hydrogel may serve as a potential biomaterial for the intestine-targeted delivery system.
Collapse
|
25
|
Zhao L, Miao Y, Shan B, Zhao C, Peng C, Gong J. Theabrownin Isolated from Pu-Erh Tea Enhances the Innate Immune and Anti-Inflammatory Effects of RAW264.7 Macrophages via the TLR2/4-Mediated Signaling Pathway. Foods 2023; 12:foods12071468. [PMID: 37048289 PMCID: PMC10094067 DOI: 10.3390/foods12071468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Theabrownin (TB) is a tea pigment extracted from Pu-erh Tea. The effects of TB on innate immunity and inflammation are not well understood. Herein, the effects of TB on innate immunity are investigated using RAW264.7 macrophages. We found that TB promoted the proliferation of RAW264.7 macrophages, altered their morphology, enhanced their pinocytic and phagocytic ability, and significantly increased their secretion of nitric oxide (NO) and cytokines, all of which enhanced the immune response. Additionally, TB inhibited the release of inflammatory signals in RAW264.7 macrophages primed with lipopolysaccharide (LPS), implying that TB modulates the excessive inflammation induced by bacterial infection. A Western blot showed that TB could activate the toll-like receptor (TLR)2/4-mediated myeloid differentiation factor 88 (MyD88)-dependent mitogen activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathway and the TLR2-mediated phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, enhancing the immune functions of RAW264.7 macrophages. TB also inhibited the phosphorylation of core proteins in the MAPK/NF-κB/PI3K-AKT signaling pathway induced by LPS. In addition, we analyzed the transcriptomes of RAW264.7 macrophages, and a Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis revealed that TB modulated thetoll-like receptor signal pathway. A gene ontology (GO) enrichment analysis indicated that TB treatment strongly modulated the immune response and inflammation. As a result, TB-enhanced innate immunity and modulated inflammation via the TLR2/4 signaling pathway.
Collapse
Affiliation(s)
- Lei Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yue Miao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Bo Shan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| |
Collapse
|
26
|
Yang J, Cho H, Gil M, Kim KE. Anti-Inflammation and Anti-Melanogenic Effects of Maca Root Extracts Fermented Using Lactobacillus Strains. Antioxidants (Basel) 2023; 12:antiox12040798. [PMID: 37107174 PMCID: PMC10135397 DOI: 10.3390/antiox12040798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Maca is a well-known biennial herb with various physiological properties, such as antioxidant activity and immune response regulation. In this study, the antioxidant, anti-inflammatory, and anti-melanogenic effects of fermented maca root extracts were investigated. The fermentation was carried out using Lactobacillus strains, such as Lactiplantibacillus plantarum subsp. plantarum, Lacticaseibacillus rhamnosus, Lacticaseibacillus casei, and Lactobacillus gasseri. In RAW 264.7 cells, the non-fermented maca root extracts increased the secretion of nitric oxide (NO), an inflammatory mediator, in a dose-dependent manner. In contrast, the fermented extracts showed considerably lower NO secretion than the non-fermented extracts at concentrations of 5% and 10%. This indicates the effective anti-inflammatory effects of fermented maca. The fermented maca root extracts also inhibited tyrosinase activity, melanin synthesis, and melanogenesis by suppressing MITF-related mechanisms. These results show that fermented maca root extracts exhibit higher anti-inflammatory and anti-melanogenesis effects than non-fermented maca root extracts. Thus, maca root extracts fermented using Lactobacillus strains have the potential to be used as an effective cosmeceutical raw material.
Collapse
|
27
|
Wang S, Yang Y, Xiao D, Zheng X, Ai B, Zheng L, Sheng Z. Polysaccharides from banana (Musa spp.) blossoms: Isolation, identification and anti-glycation effects. Int J Biol Macromol 2023; 236:123957. [PMID: 36907309 DOI: 10.1016/j.ijbiomac.2023.123957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/23/2023] [Accepted: 03/04/2023] [Indexed: 03/13/2023]
Abstract
Musa spp. (banana) is consumed globally as a healthy fruit and improves the immune system. Banana blossoms are a by-product of banana harvesting rich in active substances such as polysaccharides and phenolic compounds; however, these blossoms are typically discarded as waste. In this report, a polysaccharide, MSBP11, was extracted, purified and identified from banana blossoms. MSBP11 is a neutral homogeneous polysaccharide with a molecular mass of ∼214.43 kDa and composed of arabinose and galactose at a ratio of 0.303:0.697. MSBP11 exhibited potent antioxidant and anti-glycation activities in a dose-dependent manner and can be used as a potential natural antioxidant and inhibitor of advanced glycosylation end products (AGEs). In addition, banana blossoms have been shown to decrease the levels of AGEs in chocolate brownies, which might possibly be developed as functional foods for diabetic patients. This study provides a scientific basis to further research the potential application of banana blossoms in functional foods.
Collapse
Affiliation(s)
- Shenwan Wang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yang Yang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Dao Xiao
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiaoyan Zheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Binling Ai
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Lili Zheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Zhanwu Sheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
28
|
Wu H, Zhang H, Li X, Secundo F, Mao X. Preparation and characterization of phosphatidyl-agar oligosaccharide liposomes for astaxanthin encapsulation. Food Chem 2023; 404:134601. [DOI: 10.1016/j.foodchem.2022.134601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/03/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
29
|
Lai LH, Zong MH, Huang Z, Ni ZF, Xu P, Lou WY. Purification, structural elucidation and biological activities of exopolysaccharide produced by the endophytic Penicillium javanicum from Millettia speciosa Champ. J Biotechnol 2023; 362:54-62. [PMID: 36592666 DOI: 10.1016/j.jbiotec.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
An acid polysaccharide, named HP, was produced by endophytic Penicillium javanicum MSC-R1 isolated from southern medicine Millettia speciosa Champ. The molecular weight of HP was 37.8 kDa and consisted of Ara f, Galр, Glcр, Manр, and GlcрA with a molar ratio of 1.09: 3.47: 68.48: 16.59: 8.85. The glycosidic linkage of HP was proven to be →3, 4)-α-D-Glcр-(1→6)-α-D-Manр-(1→, →3, 4)-α-D-Glcр-(1→4)-α-D-Glcр-(1→, →3), →6)-α-D-Manр-(1→4)-α-D-Glcр-(1→, →3), β-D-Galр-(1→3)-α-D-Glcр-(1→, →4), →5)-α-L-Ara f -(1→3)-α-D-Glcр-(1→, →4), →6)-α-D-Manр-(1→4)-α-D-GlcAр-(1→ and →4)-α-D-GlcAр-(1→4)-α-D-Glcр-(1→, →3). Additionally, 250 μg/mL of HP possessed nontoxicity to RAW 264.7 cells and exhibited anti-inflammation activity. HP could significantly restrain the amount of tumor necrosis factor-α, interleukin-6 and NO release in RAW264.7, which property is possibly associated with its abundant glucosidic linkage. These results indicated that HP could be regarded as a ponderable ingredient for the health-beneficial functional foods.
Collapse
Affiliation(s)
- Lin-Hao Lai
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Min-Hua Zong
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Zhi Huang
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Zi-Fu Ni
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Pei Xu
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China.
| | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China.
| |
Collapse
|
30
|
Medicinal Plants in Peru as a Source of Immunomodulatory Drugs Potentially Useful Against COVID-19. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2023; 33:237-258. [PMID: 36855527 PMCID: PMC9948797 DOI: 10.1007/s43450-023-00367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 01/23/2023] [Indexed: 02/25/2023]
Abstract
The current COVID-19 pandemic, characterized by a highly contagious severe acute respiratory syndrome, led us to look for medicinal plants as an alternative to obtain new drugs, especially those with immunomodulatory abilities, capable of acting against the pulmonary infection caused by coronavirus 2 (SARS-CoV-2). Despite medical advances with COVID-19 drugs and vaccines, plant-based compounds could provide an array of suitable candidates to test against this virus, or at the very least, to alleviate some symptoms. Therefore, this review explores some plants widely used in Peru that show immunomodulatory properties or, even more, contain phytoconstituents potentially useful to prevent or alleviate the COVID-19 infection. More interestingly, the present review highlights relevant information from those plants to support the development of new drugs to boost the immune system. We used three criteria to choose nine vegetal species, and a descriptive search was then conducted from 1978 to 2021 on different databases, using keywords focused on the immune system that included information such as pharmacological properties, phytochemical, botanical, ethnobotanical uses, and some clinical trials. From these literature data, our results displayed considerable immunomodulation activity along with anti-inflammatory, antiviral, antioxidant, and antitumoral activities. Noticeably, these pharmacological activities are related with a wide variety of bioactive phytoconstituents (mixtures or isolated compounds) which may be beneficial in modulating the overt inflammatory response in severe COVID-19. Further scientific research on the pharmacological activities and clinical utilization of these potential plants are warranted. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43450-023-00367-w.
Collapse
|
31
|
Yang Y, Chen G, Zhao X, Cao X, Wang L, Mu J, Qi F, Liu L, Zhang H. Structural Characterization, Antioxidant and Antitumor Activities of the Two Novel Exopolysaccharides Produced by Debaryomyces hansenii DH-1. Int J Mol Sci 2022; 24:ijms24010335. [PMID: 36613777 PMCID: PMC9820826 DOI: 10.3390/ijms24010335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Exopolysaccharides produced by edible microorganisms exhibit excellent constructive physicochemical and significant biological activity, which provide advantages for the food or pharmaceutical industries. Two novel exopolysaccharides produced by Debaryomyces hansenii DH-1 were characterized, named S1 and S2, respectively. S1, with a molecular weight of 34.594 kDa, primarily consisted of mannose and glucose in a molar ratio of 12.19:1.00, which contained a backbone fragment of α-D-Manp-(1→4)-α-D-Manp-(1→2)-α-D-Glcp-(1→3)-α-D-Manp-(1→3)-β-D-Glcp-(1→4)-β-D-Manp-(1→. S2, with a molecular weight of 24.657 kDa, was mainly composed of mannose and galactose in a molar ratio of 4.00:1.00, which had a backbone fragment of α-D-Manp-(1→6)-β-D-Manp-(1→2)-α-D-Manp-(1→4)-α-D-Galp-(1→3)-β-D-Manp-(1→6)-α-D-Manp-(1→. Both S1 and S2 exhibited good thermal stability and potent hydroxyl radical scavenging activity, with ~98%. Moreover, S1 possessed an additional strong iron-reducing capacity. In vitro antitumor assays showed that S1 and S2 significantly inhibited the proliferation of Hela, HepG2, and PC-9 cancer cells. Moreover, PC-9 was more sensitive to S1 compared with S2. The above results indicate that S1 and S2 have great potential to be utilized as natural antioxidants and candidates for cancer treatment in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yajing Yang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Guoqiang Chen
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiaoqi Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xiaohe Cao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Lei Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Jingjiu Mu
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Fenghui Qi
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Correspondence: (F.Q.); (L.L.)
| | - Lijuan Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- Correspondence: (F.Q.); (L.L.)
| | - Haibo Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
32
|
Li Y, Liu Y, Campos de Souza S, Chao T, Dong L, Sun G, Wang C, Niu Y. Differential Foreign Body Reactions between Branched and Linear Glucomannan Scaffolds. J Funct Biomater 2022; 13:293. [PMID: 36547553 PMCID: PMC9781890 DOI: 10.3390/jfb13040293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The extent and patterns of foreign body reaction (FBR) influence the function and feasibility of biomaterials. Polysaccharides, as an important biomaterial category, have received increasing attention in diverse biomaterials design and biomedical applications due to their excellent polymeric and biocompatible characteristics. Their biological effects are usually associated with their monosaccharide composition or functional groups, yet the contribution of their glycan structure is still unknown. Herein, two glucomannans, similar in composition and molecular weight with differences in glycan structure, linear-chain (Konjac glucomannan, KGM), and branched-chain (Bletilla striata polysaccharide, BSP), were adopted to explore the host-biomaterials interaction. After acetyl modification, these polysaccharides were fabricated into electrospun scaffolds to reduce the impacts derived from the physical properties and surface morphology. According to a systematic study of their biological effects on immune cells and host response in a subcutaneous implantation model in vivo, it was revealed that acetyl KGM (acKGM) scaffolds caused a stronger FBR than acetyl BSP materials. Additionally, acKGM could stimulate macrophages to release pro-inflammatory cytokines, suggesting the influence of sugar chain arrangement on FBR and providing clues for the fine regulation of immune response and novel biomaterials design.
Collapse
Affiliation(s)
- Yuwei Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR 999078, China
| | - Yu Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR 999078, China
| | - Senio Campos de Souza
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR 999078, China
| | - Tzuwei Chao
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Guoxing Sun
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR 999078, China
- Zhuhai UM Science & Technology Research Institute (ZUMRI), Hengqin, Zhuhai 519031, China
| | - Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR 999078, China
| |
Collapse
|
33
|
Song H, Han L, Zhang Z, Li Y, Yang L, Zhu D, Wang S, He Y, Liu H. Structural properties and bioactivities of pectic polysaccharides isolated from soybean hulls. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Yang HR, Li X, Liu H, Zhao DR, Zeng YJ. Novel polysaccharide from Panax notoginseng with immunoregulation and prebiotic effects. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Jia K, Wei M, He Y, Wang Y, Wei H, Tao X. Characterization of Novel Exopolysaccharides from Enterococcus hirae WEHI01 and Its Immunomodulatory Activity. Foods 2022; 11:3538. [PMID: 36360150 PMCID: PMC9655783 DOI: 10.3390/foods11213538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2022] [Accepted: 11/04/2022] [Indexed: 09/08/2024] Open
Abstract
Exopolysaccharide (EPS) from probiotic Enterococcus hirae WEHI01 was isolated and purified by anion exchange chromatography and gel chromatography, the results of which show that the EPS consists of four fractions, namely I01-1, I01-2, I01-3, and I01-4. As the main purification components, I01-2 and I01-4 were preliminarily characterized for their structure and their immunomodulatory activity was explored. The molecular weight of I01-2 was 2.28 × 104 Da, which consists mainly of galactose, and a few other sugars including glucose, arabinose, mannose, xylose, fucose, and rhamnose, while the I01-4 was composed of galactose only and has a molecular weight of 2.59 × 104 Da. Furthermore, the results of an evaluation of immunomodulatory activity revealed that I01-2 and I01-4 could improve the viability of macrophage cells, improve phagocytosis, boost NO generation, and encourage the release of cytokines including TNF-α and IL-6 in RAW 264.7 macrophages. These results imply that I01-2 and I01-4 could improve macrophage-mediated immune responses and might be useful in the production of functional food and medications.
Collapse
Affiliation(s)
| | | | | | | | | | - Xueying Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
36
|
Wang S, Yang X, Hou X, Zhu Z. Structural characterization and protective effect on PC12 cells against H2O2-induced oxidative damage of a polysaccharide from Isaria cicadae Miquel mycelium and its zinc derivative. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Luo Y, Zhao Z, Chen H, Pan X, Li R, Wu D, Hu X, Zhang L, Wu H, Li X. Dynamic Analysis of Physicochemical Properties and Polysaccharide Composition during the Pile-Fermentation of Post-Fermented Tea. Foods 2022; 11:3376. [PMID: 36359990 PMCID: PMC9657414 DOI: 10.3390/foods11213376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 09/25/2023] Open
Abstract
Ultra-high performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry (UHPLC-Q-TOF-MS/MS) was used to study the diversity of tea polysaccharides and the dynamic changes in the physicochemical indexes of tea samples. FT-IR spectra and the free radical scavenging ability of tea polysaccharides, during pile-fermentation of post-fermented tea, were analyzed. The results showed that 23 saccharide co mponents in tea polysaccharides were identified: these belonged to 11 monosaccharides, 5 oligosaccharides, and 6 derivatives of monosaccharides and oligosaccharides. The abundance of oligosaccharides decreased gradually, while monosaccharides, and derivatives of monosaccharides and oligosaccharides increased gradually with the development of pile-fermentation. According to the differences in polysaccharide composition and their abundance, the tea polysaccharide samples extracted from different pile-fermentation stages could be clearly classed into three groups, W-0, W-1~W-4 and W-5~C-1. The pile-fermentation process affected the yield, the content of each component, FT-IR spectra, and the DPPH free radical scavenging ability of tea polysaccharides. Correlation analysis showed that microorganisms were directly related to the changes in composition and the abundance of polysaccharides extracted from different pile-fermentation stages. The study will further help to reveal the function of tea polysaccharides and promote their practical application as a functional food.
Collapse
Affiliation(s)
- Yan Luo
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Zhenjun Zhao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Hujiang Chen
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xueli Pan
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Risheng Li
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Dewen Wu
- Hubei Dongzhuang Tea Co., Ltd., Xianning 437300, China
| | - Xianchun Hu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Lingling Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Huawei Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
38
|
Hu X, Saravanakumar K, Park S, Han KS, Wang MH. Isolation, Characterization, Antioxidant, and Wound Healing Activities of Extracellular Polysaccharide from Endophytic Fungus Talaromyces purpureogenus. Appl Biochem Biotechnol 2022; 195:3822-3839. [PMID: 36260249 DOI: 10.1007/s12010-022-04187-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/02/2022]
Abstract
In this study, two extracellular polysaccharides (TEPS1 and TEPS2) were isolated from the endophytic fungus (Talaromyces purpureogenus) and purified by DEAE-Sepharose Fast Flow column using NaCl as gradient eluent. The HPLC analysis displayed that TEPS1 was composed of mannose (38.70%), ribose (25.02%), glucose (19.34%), and galactose (16.94%) while the TEPS2 composed by mannose (100%). The NMR results indicated that TEPS1 exhibited α-glycosidic configurations. The both polysaccharides, TEPS1 and TEPS2 were exhibited a good antioxidant activity in terms of DPPH, ABTS, and •OH scavenging. However, TEPS1 showed a higher antioxidant activity than TEPS2. The IC50 of TEPS1 were 32.16, 192.57, and 54.67 μg·mL-1, for DPPH, ABTS, and •OH radical scavenging, respectively. Furthermore, TEPS1 showed the high cellular antioxidant and wound healing activity in the human embryonic kidney (HEK293) cell line. Overall, these two polysaccharides were promising in antioxidant activity.
Collapse
Affiliation(s)
- Xiaowen Hu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, South Korea
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, 24341, Republic of Korea
| | - Ki-Seok Han
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, South Korea.
| |
Collapse
|
39
|
Qiao Z, Zhao Y, Wang M, Cao J, Chang M, Yun S, Cheng Y, Cheng F, Feng C. Effects of Sparassis latifolia neutral polysaccharide on immune activity via TLR4-mediated MyD88-dependent and independent signaling pathways in RAW264.7 macrophages. Front Nutr 2022; 9:994971. [PMID: 36185691 PMCID: PMC9515474 DOI: 10.3389/fnut.2022.994971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSparassis latifolia (S. latifolia) is a precious edible fungus with multiple biological activities. To date, no study has been investigated the underlying molecular mechanism of immunoregulation caused by the neutral polysaccharide of S. latifolia.Materials and methodsTo investigate immunomodulatory mechanism of S. latifolia neutral polysaccharide (SLNP), SLNP was obtained from S. latifolia and its structure, immune receptors and regulation mechanism were studied.ResultsS. latifolia neutral polysaccharide consisted of arabinose, galactose, glucose, xylose, and mannose with a molar ratio of 6:12:63:10:5. SLNP was a pyran polysaccharide with a relative molecular weight of 3.2 × 105 Da. SLNP promoted the proliferation of RAW264.7, which further induced the secretions of nitric oxide, TNF-α, IL-6, and IFN-β, and upregulated the immune receptor TLR4 expression. Moreover, SLNP increased remarkably the levels of TRAF6, IRF3, JNK, ERK, p38, and p38 mRNA and protein mediated by TLR4.ConclusionS. latifolia neutral polysaccharide regulated the immune function of RAW264.7 through MyD88-dependent and -independent signaling pathways mediated by TLR4 receptor, which suggests that SLNP is a new immunomodulator.
Collapse
|
40
|
Guo L, Kong N, Zhang X, Ma H. Multimode ultrasonic extraction of polysaccharides from maca (Lepidium meyenii): Optimization, purification, and in vitro immunoregulatory activity. ULTRASONICS SONOCHEMISTRY 2022; 88:106062. [PMID: 35751935 PMCID: PMC9240871 DOI: 10.1016/j.ultsonch.2022.106062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/29/2022] [Accepted: 06/10/2022] [Indexed: 05/09/2023]
Abstract
This study evaluates the effect of multimodal ultrasound on the extraction efficiency and immunoregulatory activity of polysaccharides from Lepidium meyenii Walp. (LMP). The separation and purification of maca polysaccharides were investigated by the DEAE-52 cellulose column, and the monosaccharide compositions were identified by HPGPC. Their immune activity was analyzed by the secretion of cytokines (TNF-α and IL-6) from RAW 264.7 macrophage. The results showed that the optimal extraction conditions were energy aggregation alternation dual-frequency ultrasound (EADU) with frequency combinations of 20/35, extraction time of 15 min, material/water ratio of 1:10 g/mL, ultrasonic power intensity of 150 W/L, intermittent time ratio of 4 s/3 s, and extraction temperature of 50 ℃. The extraction rates of purified polysaccharides (US3) increased by 44.90%. The LMP extracted by EADU contained arabinose, galactose, and glucose in the molar ratios of 2.9:2.72:5.05. In addition, US3 promoted the release of TNF-α and IL-6 from RAW 264.7 better than RS3 (purified polysaccharides extracted by hot water), which indicated that US3 exerted remarkable immune activity. It could be an excellent functional additive in food or medicine.
Collapse
Affiliation(s)
- Lina Guo
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Na Kong
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xinyan Zhang
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
41
|
A glycoprotein from mountain cultivated ginseng: Insights into their chemical characteristics and intracellular antioxidant activity. Int J Biol Macromol 2022; 217:761-774. [PMID: 35817242 DOI: 10.1016/j.ijbiomac.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022]
Abstract
A glycoprotein (MGP2) from mountain-cultivated ginseng (MCG) was purified by Tris-HCl extraction followed by DEAE-52 ion exchange chromatography and Sephadex G-100 gel filtration chromatography. The approximate molecular weight (27.0 kDa) and monomeric nature were determined by reduced and non-reduced SDS-PAGE. The structure of MGP2 was characterized by a practical and reliable "protein-polysaccharide analyzed by spectroscopy combined with chemical analysis" strategy. The results showed that MGP2 belonged to Arabinogalactan proteins (AGPs) which contained high amount of Glc (35.1 %). The hemagglutination test concluded that MGP2 was not a lectin. In addition, the MGP2 exhibited antioxidant activity by scavenging radical capacity tests and the ability to protect human erythrocytes and RAW264.7 cells from oxidative damage induced by AAPH. Therefore, these results suggested that glycoprotein MGP2 could be used as a natural antioxidant in drug and food industry.
Collapse
|
42
|
Immunomodulatory Effects of Lepidium meyenii Walp. Polysaccharides on an Immunosuppression Model Induced by Cyclophosphamide. J Immunol Res 2022; 2022:1210890. [PMID: 35832646 PMCID: PMC9273403 DOI: 10.1155/2022/1210890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 12/01/2022] Open
Abstract
Background Lepidium meyenii Walp. (Maca) has emerged as a functional plant food and traditional herb owing to its biological activities; Maca polysaccharides as an important active component of Maca have good immunomodulatory effect; however, studies on the immunomodulatory effect of Maca polysaccharides are mainly focused on macrophages; little attention has been devoted to the mechanisms and other immune cells. This study is aimed at investigating the immunomodulatory effects and mechanisms of Maca polysaccharides. Methods Sixty mice were divided into five groups, and the mice were injected with cyclophosphamide to establish an immunosuppression model except for those in the common group. The body weights were measured, as well as immune-related indices, such as organ indices, haematological parameters, lymphocyte cycle, and proliferation, cytokine, and protein expression levels. Results The weight loss and immune organ index decline caused by cyclophosphamide could be reversed by MP. Furthermore, MP increased WBC and HGB counts and reduced the ratio of G0/G1 phase obviously, increased the proportion of S phase and G2/M phase in peripheral blood lymphocytes, increased the counts of CD4+ T cells and the ratio of CD4+/CD8+, and reduced the inhibition rate of splenic lymphocytes. MP affected the production of cytokines by increasing IFN-γ, TNF-α, and IL-2 levels and by decreasing IL-4 levels. MP increased the mRNA expression of T-bet and the protein expression of Bcl-2 in the spleen and decreased the protein expression of caspase-3 and Bax. Conclusions Maca polysaccharides might be the basic material for Maca's immunomodulatory effect. The mechanism was perhaps related to inhibiting lymphocyte apoptosis and promoting the balance of Th1/Th2 cell subsets.
Collapse
|
43
|
Liao Y, Gao M, Wang Y, Liu X, Zhong C, Jia S. Structural characterization and immunomodulatory activity of exopolysaccharide from Aureobasidium pullulans CGMCC 23063. Carbohydr Polym 2022; 288:119366. [DOI: 10.1016/j.carbpol.2022.119366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 01/19/2023]
|
44
|
Gong PX, Wu YC, Chen X, Zhou ZL, Chen X, Lv SZ, You Y, Li HJ. Immunological effect of fucosylated chondroitin sulfate and its oligomers from Holothuria fuscogilva on RAW 264.7 cells. Carbohydr Polym 2022; 287:119362. [PMID: 35422306 DOI: 10.1016/j.carbpol.2022.119362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
Fucosylated chondroitin sulfate was obtained from the sea cucumber Holothuria fuscogilva (FCShf). The structure was elucidated by NMR and HILIC-FTMS analysis. FCShf contained a chondroitin core chain [→3)-β-D-GalNAc-(1 → 4)-β-D-GlcA-(1→]n, where the sulfation positions were the O-4 or O-6 of the GalNAc residues. The ratio of sulfated and non-sulfated GalNAc at O-6 was 1:2, while the ratio of GalNAc at O-4 was 1:1. 2,4-disulfated-fucose (Fuc2,4S), 4-sulfated-fucose (Fuc4S) and 3,4-disulfated-fucose (Fuc3,4S) were attached to the O-3 of GlcA with a molar ratio of 1.00: 0.62: 1.32. The FCShf could significantly promote the proliferative rate, NO production and neutral red uptake of RAW 264.7 cells within the concentration range of 10-300 μg/mL. Compared with the fucosylation and deacetylation degrees, the molecular weight of FCShf had markedly influence on the activation of RAW 264.7 cells. A decrease in molecular weight dramatically improved the immunoregulatory activities. Furthermore, FCShf activated RAW 264.7 cells through TLR-2/4-NF-κB pathway.
Collapse
Affiliation(s)
- Pi-Xian Gong
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Xiao Chen
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Ze-Lin Zhou
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Xi Chen
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Shi-Zhong Lv
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Yue You
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China; Weihai Huiankang Biotechnology Co., Ltd, Weihai 264200, PR China.
| |
Collapse
|
45
|
Structural characterization and anti-inflammatory activity of a pectin polysaccharide HBHP-3 from Houttuynia cordata. Int J Biol Macromol 2022; 210:161-171. [PMID: 35533845 DOI: 10.1016/j.ijbiomac.2022.05.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/18/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022]
Abstract
In this study, a hot buffer soluble Houttuynia cordata polysaccharide (HBHP-3) with a molecular weight of 397.4 kDa was isolated from H. cordata. HBHP-3 was composed of rhamnose, arabinose, glucose, galactose and galacturonic acid with molar ratio of 16.0:12.6:4.6:18.1:15.6. Structural analysis showed that the main chain of HBHP-3 was composed of →2)-α-L-Rhap-(1→, →4)-α-D-GalpA-(1→ and →4)-β-D-Galp-(1→. There were branched chains of α-L-Araf-(1→, →5)-α-L-Araf-(1→, →4)-α-D-Glcp-(1→, →6)-β-D-Galp-(1→, β-D-Galp-(1→ connected to the O-4 positions of →2)-α-L-Rhap-(1→. HBHP-3 effectively inhibited the secretion of NO and the mRNA expression of pro-inflammatory cytokines in a dose-dependent manner in macrophages. HBHP-3 inhibited the phosphorylation of p65 and IκBα proteins as well, illustrating that HBHP-3 exerted its anti-inflammatory activity by inhibiting the activation of NF-κB pathway.
Collapse
|
46
|
Zhou Y, Gong Y, Liu Z, Wang L, Ai C, Wen C, Zhu T, Song S. Digestion behavior of a polysaccharide from Cyclina sinensis: An explanation for the discrepancy in its immunostimulatory activities in vitro and in vivo. J Food Sci 2022; 87:3223-3234. [PMID: 35703576 DOI: 10.1111/1750-3841.16227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Abstract
Although numerous polysaccharides have demonstrated potential immunostimulatory activities in in vitro models, only a few of them successfully stimulate the immune system in vivo. In order to explore the possible reasons for the activity loss of polysaccharides in in vivo models, the immunostimulatory activities in vitro and in vivo and the digestion behavior of a polysaccharide from Cyclina sinensis (CSP) were investigated in the present study. CSP showed obvious immunostimulatory activity in a RAW 264.7 cell model. In in vitro experiment, CSP did not exhibit cytotoxicity at concentrations of ≤10 µg/ml, and significantly increased NO production at concentrations of 0.4-10 µg/ml, suggesting CSP processes immunostimulatory activity in vitro. Further investigation using simulated digestion model indicated that CSP could bind with the protein in the digestive fluids to form precipitate in both the stomach and small intestine, and it could be seriously degraded by amylase during the digestion in the small intestine. Furthermore, the in vivo immunostimulatory activity evaluation demonstrated CSP had no effect on immunosuppressed mice as indicated by the body weight, thymus and spleen indexes, and TNF-α, IL-1β, IL-6, and IL-10 mRNA expression. Thus, the present study indicates that the degradation and precipitation of CSP in the digestive tract are the possible reasons for the activity loss of CSP after digestion. PRACTICAL APPLICATION: Cyclina sinensis is the common aquatic shellfish in China and plays an important role in the marine aquaculture industry. Cyclina sinensis polysaccharide (CSP) is the main active component of C. sinensis. The structure characterization and immunostimulatory activity of a purified fraction of CSP (CSP-1) and the effect of digestion on CSP and its immunostimulatory activity were studied. The result of this study promotes the understanding of the nutritional function effects and provides a scientific reference for the rational development and high-value utilization of C. sinensis.
Collapse
Affiliation(s)
- Youxian Zhou
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China.,National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China
| | - Yue Gong
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China.,National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China
| | - Zhengqi Liu
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China.,National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
| | - Lilong Wang
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China.,National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China
| | - Chunqing Ai
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China.,National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China
| | - Chengrong Wen
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China.,National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China
| | - Taihai Zhu
- Jiangsu Palarich Food Co., Ltd, Xuzhou, P. R. China
| | - Shuang Song
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China.,National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
47
|
Li H, Li J, Shi H, Li C, Huang W, Zhang M, Luo Y, Song L, Yu R, Zhu J. Structural characterization and immunoregulatory activity of a novel acidic polysaccharide from Scapharca subcrenata. Int J Biol Macromol 2022; 210:439-454. [PMID: 35504419 DOI: 10.1016/j.ijbiomac.2022.04.204] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/01/2022] [Accepted: 04/27/2022] [Indexed: 01/01/2023]
Abstract
A novel acidic polysaccharide named SSPA50-1 was isolated from Scapharca subcrenata using a simulated gastric fluid extraction method. SSPA50-1 is a heteropolysaccharide with an average molecular weight of 44.7 kDa that is composed of galacturonic acid, glucose, galactose, mannose, ribose, rhamnose, fucose, xylose and arabinose at a molar ratio of 1.00:5.40:9.04:3.10:1.59:4.01:2.10:2.21:2.28. The structural characterization based on the methylation and 1D/2D NMR analyses indicated that SSPA50-1 is composed of →3)-β-L-Rhap-(1→, →3)-β-L-2-O-Me-Fucp-(1→, →2)-α-D-Xylp-(1→, →5)-α-L-Araf-(1→, →3)-β-D-Galp-(1→, →6)-α-D-Glcp-(1→, →3,4)-β-D-Manp-(1→, →3,4)-β-D-Galp-(1→, β-D-Ribf-(1→, α-D-Glcp-(1→, and α-D-GalAp6Me-(1→. Furthermore, SSPA50-1 possessed potent immunoregulatory activity by enhancing the phagocytosis and NO, iNOS, TNF-α and IL-6 secretion capacity of RAW264.7 cells. Otherwise, SSPA50-1 significantly promoted the proliferation of splenic lymphocytes and RAW264.7 macrophages. These results indicated that SSPA50-1 could be developed as a potential ingredient for immunostimulatory agents.
Collapse
Affiliation(s)
- Hang Li
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China
| | - Jianhuan Li
- Department of Pharmacology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Hui Shi
- Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Chunlei Li
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China
| | - Weijuan Huang
- Department of Pharmacology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Man Zhang
- Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yuanyuan Luo
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China
| | - Liyan Song
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China; Department of Pharmacology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China; Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China.
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China; Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China.
| |
Collapse
|
48
|
Parazzini F, Ricci E, Fedele F, Chiaffarino F, Esposito G, Cipriani S. Systematic review of the effect of D‑mannose with or without other drugs in the treatment of symptoms of urinary tract infections/cystitis (Review). Biomed Rep 2022; 17:69. [PMID: 35815191 PMCID: PMC9260159 DOI: 10.3892/br.2022.1552] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/03/2022] [Indexed: 11/06/2022] Open
Abstract
Several studies, reviews and meta-analyses have documented that D-mannose use lowers the risk of recurrent urinary tract infections (UTI), but its role in the treatment of UTI/cystitis-related symptoms is unclear. In particular, no systematic review has analyzed the role of treatment with D-mannose in acute UTI/cystitis. In this paper, we systematically reviewed the published data on the effect of D-mannose, alone or in association with other compounds, on the typical symptoms of UTI/cystitis. PubMed/Medline and EMBASE databases were searched, from 1990 to January 2022, using combinations of the following keywords: ‘urinary tract infections’, ‘cystalgia’, ‘recurrent next urinary tract infection’, ‘cystitis’, ‘mannose’, ‘mannoside’, ‘D-mannose’, ‘bacteriuria’, ‘pyuria’, ‘pyelocystitis’ with the appropriate Boolean modifiers (Limits: Human, English, full article). Studies were selected for the systematic review if they were clinical studies and reported original data, the number of patients using D-mannose alone or in association with other treatments, and the number of patients with symptoms of UTI/cystitis at trial entry and after the follow-up period. A total of seven studies were identified. D-mannose was given alone in two studies, and was associated with cranberry extract, Morinda citrifolia fruit extract, pomegranate extract, fructo-oligosaccharides, lactobacilli, and N-acetylcysteine in the others. All studies reported that symptoms decreased after treatment with D-mannose. Despite the limitations of the studies, the consistent results observed among all studies give support to the general findings that D-mannose may be useful in the treatment of UTI/cystitis symptoms.
Collapse
Affiliation(s)
- Fabio Parazzini
- Department of Clinical Sciences and Community Health, University of Milan, School of Medicine and Surgery, I‑20122 Milan, Italy
| | - Elena Ricci
- Department of Clinical Sciences and Community Health, University of Milan, School of Medicine and Surgery, I‑20122 Milan, Italy
| | - Francesco Fedele
- Department of Clinical Sciences and Community Health, University of Milan, School of Medicine and Surgery, I‑20122 Milan, Italy
| | - Francesca Chiaffarino
- Gynecology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, I‑20122 Milan, Italy
| | - Giovanna Esposito
- Department of Clinical Sciences and Community Health, University of Milan, School of Medicine and Surgery, I‑20122 Milan, Italy
| | - Sonia Cipriani
- Gynecology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, I‑20122 Milan, Italy
| |
Collapse
|
49
|
Zhu J, Tan Z, Zhang Z, Shi X. Characterization on structure and bioactivities of an exopolysaccharide from Lactobacillus curvatus SJTUF 62116. Int J Biol Macromol 2022; 210:504-517. [PMID: 35508227 DOI: 10.1016/j.ijbiomac.2022.04.203] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 12/17/2022]
Abstract
This study aimed to investigate the chemical structure, physicochemical properties, antioxidant capacity, antibacterial ability and anti-biofilm formation activity of an exopolysaccharide (EPS) produced by Lactobacillus curvatus SJTUF 62116 from the fish Gymnocypris przewalskii. The purified EPS, denoted as EPS-1, was mainly composed of glucose and mannose at a relative molar ratio of 1:1.05 with molecular weight of 31.9 kDa. The chemical structure of EPS-1 was consisted of →2)-α-D-Manp-(1→, →4)-α-D-Manp-(1→, →3,6)-α-D-Manp-(1→, T-β-D-Glcp-(1→, →6)-β-D-Glcp-(1→, and →3)-β-D-Glcp-(1→ glycosidic bonds. A sheet-like structure of dried EPS-1 was determined by scanning electron microscope (SEM), whilst a peak-shaped structure of EPS-1 was observed by atomic force microscope (AFM). The degradation temperature of EPS-1 was determined as 300.21 °C using thermogravimetric analysis (TGA). Moreover, the antioxidant capacity of EPS-1 at a concentration of 5.0 mg/mL against DPPH and ABTS was 84.50% and 92.53%, respectively. Furthermore, EPS-1 exhibited acceptable bacteriostatic efficacy against S. Enteritidis, E. coli, and S.aureus with significant inhibition of S. Enteritidis biofilm formation.
Collapse
Affiliation(s)
- Jinyu Zhu
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongfang Tan
- College of Agriculture Science, Zhengzhou University, Zhengzhou 450001, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
50
|
Alvarado AT, Navarro C, Pineda M, Villanueva L, Muñoz AM, Bendezú MR, Chávez H, García JA. Activity of Lepidium meyenii Walp (purple maca) in immunosuppressed Oryctolagus cuniculus (albino rabbits). PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e80033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Various properties are attributed to “maca”, including immunomodulatory properties due to its secondary metabolites such as macamides, glucosinolates, isothiocyanates and flavonoids. Immunosuppression, hemolytic anemia, and thymic involution were induced with cyclophosphamide. Three concentrations of doses of dehydrated hydroalcoholic extract of purple maca (EHADM) were used for 30 days, the analysis of variance and Duncan’s multiple comparisons test the results are statistically significant (p<.05) which shows immunostimulatory activity in the marrow bone (monocytes, lymphocytes and white blood cells) and antianemic (hematocrit 31%) compared to the negative control group (G-1). At 84 mg/kg and at 167 mg/kg, it shows immunomodulatory activity on the humoral response in 66.70% of the experimental animals (G-3 and G-4). It is concluded that the dehydrated hydroalcoholic extract of purple maca presents immunostimulating and immunomodulatory activity on the humoral response in 66.7% of the Oryctolagus cuniculus induced to immunodeficiency with cyclophosphamide.
Collapse
|