1
|
Yuan J, Wang J, Song M, Zhao Y, Shi Y, Zhao L. Brain-targeting biomimetic disguised manganese dioxide nanoparticles via hybridization of tumor cell membrane and bacteria vesicles for synergistic chemotherapy/chemodynamic therapy of glioma. J Colloid Interface Sci 2024; 676:378-395. [PMID: 39032420 DOI: 10.1016/j.jcis.2024.07.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Glioma is a prevalent brain malignancy associated with poor prognosis. Although chemotherapy serves as the primary treatment for brain tumors, its effectiveness is hindered by the limited ability of drugs to traverse the blood-brain barrier (BBB) and the development of drug resistance linked to tumor hypoxia. Herein, we report the creation of hybrid camouflaged multifunctional nanovesicles comprising membranes of tumor C6 cells (mT) and bacterial outer membrane vesicles (OMVs) and co-loaded with manganese dioxide nanoparticles (MnO2 NPs) and doxorubicin (DOX) to synergistically enhance the chemotherapy/chemodynamic therapy (CDT) of glioma. Owing to OMV-mediated BBB penetration and mT-inherited tumor-homing properties, MnO2-DOX@mT/OMVs can penetrate the BBB and enhance the tumor cell-specific uptake of DOX via "proton sponge effect"-mediated lysosomal escape. This enhances the apoptotic effect induced by DOX and minimizing DOX-associated cardiotoxicity by facilitating the accumulation of DOX at the tumor site. Furthermore, the MnO2 NPs in MnO2-DOX@mT/OMVs can generate potent CDT by accelerating the Fenton-like reaction with DOX-generated H2O2 and achieving glutathione (GSH)-depletion-induced glutathione peroxidase 4 (GPX4) inactivation. These results showed that MnO2-DOX@mT/OMVs, designed for brain tumor targeting, significantly inhibited tumor growth and exhibited favorable biological safety. This innovative approach offers the augmentation of anticancer treatment efficacy via a potential combination of chemotherapy and CDT.
Collapse
Affiliation(s)
- Jiayu Yuan
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China.
| | - Jingchen Wang
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China.
| | - Mingzhu Song
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China.
| | - Yuting Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China.
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China.
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China; Collaborative Innovation Center for Age-related Disease, Jinzhou Medical University, Jinzhou 121001, Liaoning, China.
| |
Collapse
|
2
|
Singh A, Wu M, Ye TT, Brown AC, Wittenberg NJ. Engineering Planar Gram-Negative Outer Membrane Mimics Using Bacterial Outer Membrane Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23289-23300. [PMID: 39453730 PMCID: PMC11542184 DOI: 10.1021/acs.langmuir.4c02632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/27/2024]
Abstract
Antibiotic resistance is a major challenge in modern medicine. The unique double membrane structure of Gram-negative bacteria limits the efficacy of many existing antibiotics and adds complexity to antibiotic development by limiting transport of antibiotics to the bacterial cytosol. New methods to mimic this barrier would enable high-throughput studies for antibiotic development. In this study, we introduce an innovative approach to modify outer membrane vesicles (OMVs) from Aggregatibacter actinomycetemcomitans, to generate planar supported lipid bilayer membranes. Our method first involves the incorporation of synthetic lipids into OMVs using a rapid freeze-thaw technique to form outer membrane hybrid vesicles (OM-Hybrids). Subsequently, these OM-Hybrids can spontaneously rupture when in contact with SiO2 surfaces to form a planar outer membrane supported bilayer (OM-SB). We assessed the formation of OM-Hybrids using dynamic light scattering and a fluorescence quenching assay. To analyze the formation of OM-SBs from OM-Hybrids we used quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence recovery after photobleaching (FRAP). Additionally, we conducted assays to detect surface-associated DNA and proteins on OM-SBs. The interaction of an antimicrobial peptide, polymyxin B, with the OM-SBs was also assessed. These findings emphasize the capability of our platform to produce planar surfaces of bacterial outer membranes, which in turn, could function as a valuable tool for streamlining the development of antibiotics.
Collapse
Affiliation(s)
- Aarshi
N. Singh
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Meishan Wu
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Tiffany T. Ye
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Angela C. Brown
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Nathan J. Wittenberg
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
3
|
Zong R, Wang R, Wu M, Ruan H, Ou W, Dong W, Zhang P, Fan S, Li J. Enhancement of the anticancer potential and biosafety of BSA-modified, bacterial membrane-coated curcumin nanoparticles. Colloids Surf B Biointerfaces 2024; 243:114156. [PMID: 39137532 DOI: 10.1016/j.colsurfb.2024.114156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Bacteria and bacterial components have been widely used as bionanocarriers to deliver drugs to treat tumors. In this study, we isolated bacterial outer membrane vesicles (OMVs) with good stability and high yield for macrophage polarization and cell recruitment. Using ultrasound baths, these bacterial OMVs were combined with curcumin nanoparticles (OMV CUR NPs), following which these nanoparticles were modified with bovine serum albumin (BSA) to achieve high biosafety and tumor-targeting effects. The particle size, PDI, and zeta potential of the BSA-OMV CUR NPs were 157.9 nm, 0.233, and -15.1 mV, respectively. The BSA-OMV CUR NPs exhibited high storage stability, low cytotoxicity, sustained release, enhanced cellular uptake of CUR, induction of tumor cell apoptosis, and inhibition of tumor cell proliferation and migration. By determining the survival rate, body length, heart rate, head size, eye size, and pericardium size of the zebrafish, we found that the BSA-OMV CUR NPs were safe for application in vivo. Moreover, an increase in antiproliferation, antiangiogenic and antimetastatic effects of BSA-OMV CUR NPs was demonstrated in wild-type and transgenic tumor-transplanted zebrafish embryos.
Collapse
Affiliation(s)
- Rui Zong
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Rui Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Mengting Wu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Hainan Ruan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Wanqing Ou
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Weiyu Dong
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Peng Zhang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Shaohua Fan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Jun Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| |
Collapse
|
4
|
Cao H, Jiang J, Chen L, Gao L. Mimicomes: Mimicking Multienzyme System by Artificial Design. Adv Healthc Mater 2024:e2402372. [PMID: 39380346 DOI: 10.1002/adhm.202402372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Enzymes are widely distributed in organelles of cells, which are capable of carrying out specific catalytic reactions. In general, several enzymes collaborate to facilitate complex reactions and engage in vital biochemical processes within cells, which are also called cascade systems. The cascade systems are highly efficient, and their dysfunction is associated with a multitude of endogenous diseases. The advent of nanotechnology makes it possible to mimic these cascade systems in nature and realize partial functions of natural biological processes both in vitro and in vivo. To emphasize the significance of artificial cascade systems, mimicomes is first proposed, a new concept that refers to the artificial cascade catalytic systems. Typically, mimicomes are able to mimic specific natural biochemical catalytic processes or facilitate the overall catalytic efficiency of cascade systems. Subsequently, the evolution and development of different types of mimicomes in recent decades are elucidated exhaustedly, from the natural enzyme-based mimicomes (immobilized enzyme and vesicle mimicomes) to the nanozyme-based mimicomes and enzyme-nanozyme hybrid mimicomes. In conclusion, the remaining challenges in the design of multifunctional mimicomes and their potential applications are summarized, offering insights into their future prospects.
Collapse
Affiliation(s)
- Haolin Cao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Chen
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
5
|
Bai Z, Wang X, Liang T, Xu G, Cai J, Xu W, Yang K, Hu L, Pei P. Harnessing Bacterial Membrane Components for Tumor Vaccines: Strategies and Perspectives. Adv Healthc Mater 2024; 13:e2401615. [PMID: 38935934 DOI: 10.1002/adhm.202401615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Tumor vaccines stand at the vanguard of tumor immunotherapy, demonstrating significant potential and promise in recent years. While tumor vaccines have achieved breakthroughs in the treatment of cancer, they still encounter numerous challenges, including improving the immunogenicity of vaccines and expanding the scope of vaccine application. As natural immune activators, bacterial components offer inherent advantages in tumor vaccines. Bacterial membrane components, with their safer profile, easy extraction, purification, and engineering, along with their diverse array of immune components, activate the immune system and improve tumor vaccine efficacy. This review systematically summarizes the mechanism of action and therapeutic effects of bacterial membranes and its derivatives (including bacterial membrane vesicles and hybrid membrane biomaterials) in tumor vaccines. Subsequently, the authors delve into the preparation and advantages of tumor vaccines based on bacterial membranes and hybrid membrane biomaterials. Following this, the immune effects of tumor vaccines based on bacterial outer membrane vesicles are elucidated, and their mechanisms are explained. Moreover, their advantages in tumor combination therapy are analyzed. Last, the challenges and trends in this field are discussed. This comprehensive analysis aims to offer a more informed reference and scientific foundation for the design and implementation of bacterial membrane-based tumor vaccines.
Collapse
Affiliation(s)
- Zhenxin Bai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xuanyu Wang
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | - Tianming Liang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, P.R. China
| | - Guangyu Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jinzhou Cai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, P.R. China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Pei Pei
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| |
Collapse
|
6
|
Luo Z, Cheng X, Feng B, Fan D, Liu X, Xie R, Luo T, Wegner SV, Ma D, Chen F, Zeng W. Engineering Versatile Bacteria-Derived Outer Membrane Vesicles: An Adaptable Platform for Advancing Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400049. [PMID: 38952055 PMCID: PMC11434149 DOI: 10.1002/advs.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/13/2024] [Indexed: 07/03/2024]
Abstract
In recent years, cancer immunotherapy has undergone a transformative shift toward personalized and targeted therapeutic strategies. Bacteria-derived outer membrane vesicles (OMVs) have emerged as a promising and adaptable platform for cancer immunotherapy due to their unique properties, including natural immunogenicity and the ability to be engineered for specific therapeutic purposes. In this review, a comprehensive overview is provided of state-of-the-art techniques and methodologies employed in the engineering of versatile OMVs for cancer immunotherapy. Beginning by exploring the biogenesis and composition of OMVs, unveiling their intrinsic immunogenic properties for therapeutic appeal. Subsequently, innovative approaches employed to engineer OMVs are delved into, ranging from the genetic engineering of parent bacteria to the incorporation of functional molecules. The importance of rational design strategies is highlighted to enhance the immunogenicity and specificity of OMVs, allowing tailoring for diverse cancer types. Furthermore, insights into clinical studies and potential challenges utilizing OMVs as cancer vaccines or adjuvants are also provided, offering a comprehensive assessment of the current landscape and future prospects. Overall, this review provides valuable insights for researchers involved in the rapidly evolving field of cancer immunotherapy, offering a roadmap for harnessing the full potential of OMVs as a versatile and adaptable platform for cancer treatment.
Collapse
Affiliation(s)
- Ziheng Luo
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Xiang Cheng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Bin Feng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Duoyang Fan
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Xiaohui Liu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Ruyan Xie
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Ting Luo
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Seraphine V. Wegner
- Institute of Physiological Chemistry and PathobiochemistryUniversity of Münster48149MünsterGermany
| | - Dayou Ma
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Fei Chen
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| |
Collapse
|
7
|
Singh AN, Wu M, Ye TT, Brown AC, Wittenberg NJ. Engineering Planar Gram-Negative Outer Membrane Mimics Using Bacterial Outer Membrane Vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.11.570829. [PMID: 39229024 PMCID: PMC11370475 DOI: 10.1101/2023.12.11.570829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Antibiotic resistance is a major challenge in modern medicine. The unique double membrane structure of gram-negative bacteria limits the efficacy of many existing antibiotics and adds complexity to antibiotic development by limiting transport of antibiotics to the bacterial cytosol. New methods to mimic this barrier would enable high-throughput studies for antibiotic development. In this study, we introduce an innovative approach to modify outer membrane vesicles (OMVs) from Aggregatibacter actinomycetemcomitans, to generate planar supported lipid bilayer membranes. Our method first involves the incorporation of synthetic lipids into OMVs using a rapid freeze-thaw technique to form outer membrane hybrid vesicles (OM-Hybrids). Subsequently, these OM-Hybrids can spontaneously rupture when in contact with SiO2 surfaces to form a planar outer membrane supported bilayer (OM-SB). We assessed the formation of OM-Hybrids using dynamic light scattering and a fluorescence quenching assay. To analyze the formation of OM-SBs from OM-Hybrids we used quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence recovery after photobleaching (FRAP). Additionally, we conducted assays to detect surface-associated DNA and proteins on OM-SBs. The interaction of an antimicrobial peptide, polymyxin B, with the OM-SBs was also assessed. These findings emphasize the capability of our platform to produce planar surfaces of bacterial outer membranes, which in turn, could function as a valuable tool for streamlining the development of antibiotics.
Collapse
Affiliation(s)
- Aarshi N. Singh
- Department of Chemistry, Lehigh University, Bethlehem, PA, USA
| | - Meishan Wu
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Tiffany T. Ye
- Department of Chemistry, Lehigh University, Bethlehem, PA, USA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | | |
Collapse
|
8
|
Liu K, Du S, Yang J, Li J, Wang S, Zhang Z, Luo W, Chen C, Yang J, Han X. Engineered bacterial membrane vesicle as safe and efficient nano-heaters to reprogram tumor microenvironment for enhanced immunotherapy. J Control Release 2024; 374:127-139. [PMID: 39122216 DOI: 10.1016/j.jconrel.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The immunosuppressive tumor microenvironment (TME) in solid tumors often impedes the efficacy of immunotherapy. Bacterial outer membrane vesicles (OMVs), as a promising cancer vaccine that can potently stimulate immune responses, have garnered interest as a potential platform for cancer therapy. However, the low yield of OMVs limits their utilization. To address this limitation, we developed a novel approach to synthesize OMV-like multifunctional synthetic bacterial vesicles (SBVs) by pretreating bacteria with ampicillin and lysing them through sonication. Compared to OMVs, the yield of SBVs increased by 40 times. Additionally, the unique synthesis process of SBVs allows for the encapsulation of bacterial intracellular contents, endowing SBVs with the capability of delivering catalase (CAT) for tumor hypoxia relief and activating the host cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) signaling pathway. To overcome the toxicity of lipopolysaccharide (LPS) on the SBVs surface, we decorated SBVs with a biocompatible polydopamine (PDA) shell, which allowed TME reprogramming using SBVs to be conducted without adverse side effects. Additionally, the photosensitizer indocyanine green (ICG) was loaded into the PDA shell to induce immunogenic cell death and further improve the efficacy of immunotherapy. In summary, the SBVs-based therapeutic platform SBV@PDA/ICG (SBV@P/I) can synergistically elicit safe and potent tumor-specific antitumor responses through combined immunotherapy and phototherapy.
Collapse
Affiliation(s)
- Kunguo Liu
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shiyu Du
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Jiawei Yang
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Juanjuan Li
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shijie Wang
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhibin Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Wen Luo
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Chao Chen
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jingjing Yang
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xin Han
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
9
|
Meng Y, Kong C, Ma Y, Sun J, Zhang G. Bacterial outer membrane vesicles in the fight against cancer. Chin Med J (Engl) 2024:00029330-990000000-01174. [PMID: 39118214 PMCID: PMC11407815 DOI: 10.1097/cm9.0000000000003234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 08/10/2024] Open
Abstract
ABSTRACT Bacterial outer membrane vesicles (OMVs) are diminutive vesicles naturally released by Gram-negative bacteria. These vesicles possess distinctive characteristics that attract attention for their potential use in drug administration and immunotherapy in cancer treatment. Therapeutic medicines may be delivered via OMVs directly to the tumor sites, thereby minimizing exposure to healthy cells and lowering the risk of systemic toxicity. Furthermore, the activation of the immune system by OMVs has been demonstrated to facilitate the recognition and elimination of cancer cells, which makes them a desirable tool for immunotherapy. They can also be genetically modified to carry specific antigens, immunomodulatory compounds, and small interfering RNAs, enhancing the immune response to cancerous cells and silencing genes associated with disease progression. Combining OMVs with other cancer treatments like chemotherapy and radiation has shown promising synergistic effects. This review highlights the crucial role of bacterial OMVs in cancer, emphasizing their potential as vectors for novel cancer targeted therapies. As researchers delve deeper into the complexities of these vesicles and their interactions with tumors, there is a growing sense of optimism that this avenue of study will bring positive outcomes and renewed hope to cancer patients in the foreseeable future.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Cuicui Kong
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yushu Ma
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| |
Collapse
|
10
|
Lin X, Jiao R, Cui H, Yan X, Zhang K. Physiochemically and Genetically Engineered Bacteria: Instructive Design Principles and Diverse Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403156. [PMID: 38864372 PMCID: PMC11321697 DOI: 10.1002/advs.202403156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/18/2024] [Indexed: 06/13/2024]
Abstract
With the comprehensive understanding of microorganisms and the rapid advances of physiochemical engineering and bioengineering technologies, scientists are advancing rationally-engineered bacteria as emerging drugs for treating various diseases in clinical disease management. Engineered bacteria specifically refer to advanced physiochemical or genetic technologies in combination with cutting edge nanotechnology or physical technologies, which have been validated to play significant roles in lysing tumors, regulating immunity, influencing the metabolic pathways, etc. However, there has no specific reviews that concurrently cover physiochemically- and genetically-engineered bacteria and their derivatives yet, let alone their distinctive design principles and various functions and applications. Herein, the applications of physiochemically and genetically-engineered bacteria, and classify and discuss significant breakthroughs with an emphasis on their specific design principles and engineering methods objective to different specific uses and diseases beyond cancer is described. The combined strategies for developing in vivo biotherapeutic agents based on these physiochemically- and genetically-engineered bacteria or bacterial derivatives, and elucidated how they repress cancer and other diseases is also underlined. Additionally, the challenges faced by clinical translation and the future development directions are discussed. This review is expected to provide an overall impression on physiochemically- and genetically-engineered bacteria and enlighten more researchers.
Collapse
Affiliation(s)
- Xia Lin
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| | - Rong Jiao
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| | - Haowen Cui
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| | - Xuebing Yan
- Department of OncologyAffiliated Hospital of Yangzhou University. No.368Hanjiang Road, Hanjiang DistrictYangzhouJiangsu Province225012China
| | - Kun Zhang
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| |
Collapse
|
11
|
Ma Y, Yi J, Ruan J, Ma J, Yang Q, Zhang K, Zhang M, Zeng G, Jin L, Huang X, Li J, Yang H, Wu W, Sun D. Engineered Cell Membrane-Coated Nanoparticles: New Strategies in Glioma Targeted Therapy and Immune Modulation. Adv Healthc Mater 2024; 13:e2400514. [PMID: 38652681 DOI: 10.1002/adhm.202400514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Gliomas, the most prevalent primary brain tumors, pose considerable challenges due to their heterogeneity, intricate tumor microenvironment (TME), and blood-brain barrier (BBB), which restrict the effectiveness of traditional treatments like surgery and chemotherapy. This review provides an overview of engineered cell membrane technologies in glioma therapy, with a specific emphasis on targeted drug delivery and modulation of the immune microenvironment. This study investigates the progress in engineered cell membranes, encompassing physical, chemical, and genetic alterations, to improve drug delivery across the BBB and effectively target gliomas. The examination focuses on the interaction of engineered cell membrane-coated nanoparticles (ECM-NPs) with the TME in gliomas, emphasizing their potential to modulate glioma cell behavior and TME to enhance therapeutic efficacy. The review further explores the involvement of ECM-NPs in immunomodulation techniques, highlighting their impact on immune reactions. While facing obstacles related to membrane stability and manufacturing scalability, the review outlines forthcoming research directions focused on enhancing membrane performance. This review underscores the promise of ECM-NPs in surpassing conventional therapeutic constraints, proposing novel approaches for efficacious glioma treatment.
Collapse
Affiliation(s)
- Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou, 325035, China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jing Ruan
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Kun Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Maolan Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Guoming Zeng
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou, 325035, China
| | - Xiaobei Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Haifeng Yang
- JinFeng Laboratory, Chongqing, 401329, China
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, 400044, China
| | - Wei Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou, 325035, China
- JinFeng Laboratory, Chongqing, 401329, China
| |
Collapse
|
12
|
Liu T, Yao W, Sun W, Yuan Y, Liu C, Liu X, Wang X, Jiang H. Components, Formulations, Deliveries, and Combinations of Tumor Vaccines. ACS NANO 2024; 18:18801-18833. [PMID: 38979917 DOI: 10.1021/acsnano.4c05065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tumor vaccines, an important part of immunotherapy, prevent cancer or kill existing tumor cells by activating or restoring the body's own immune system. Currently, various formulations of tumor vaccines have been developed, including cell vaccines, tumor cell membrane vaccines, tumor DNA vaccines, tumor mRNA vaccines, tumor polypeptide vaccines, virus-vectored tumor vaccines, and tumor-in-situ vaccines. There are also multiple delivery systems for tumor vaccines, such as liposomes, cell membrane vesicles, viruses, exosomes, and emulsions. In addition, to decrease the risk of tumor immune escape and immune tolerance that may exist with a single tumor vaccine, combination therapy of tumor vaccines with radiotherapy, chemotherapy, immune checkpoint inhibitors, cytokines, CAR-T therapy, or photoimmunotherapy is an effective strategy. Given the critical role of tumor vaccines in immunotherapy, here, we look back to the history of tumor vaccines, and we discuss the antigens, adjuvants, formulations, delivery systems, mechanisms, combination therapy, and future directions of tumor vaccines.
Collapse
Affiliation(s)
- Tengfei Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyan Yao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyu Sun
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yihan Yuan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Chen Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
13
|
Cheng Z, Fobian SF, Gurrieri E, Amin M, D'Agostino VG, Falahati M, Zalba S, Debets R, Garrido MJ, Saeed M, Seynhaeve ALB, Balcioglu HE, Ten Hagen TLM. Lipid-based nanosystems: the next generation of cancer immune therapy. J Hematol Oncol 2024; 17:53. [PMID: 39030582 PMCID: PMC11265205 DOI: 10.1186/s13045-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Immunotherapy has become an important part of the oncotherapy arsenal. Its applicability in various cancer types is impressive, as well as its use of endogenous mechanisms to achieve desired ends. However, off-target or on-target-off-tumor toxicity, limited activity, lack of control in combination treatments and, especially for solid tumors, low local accumulation, have collectively limited clinical use thereof. These limitations are partially alleviated by delivery systems. Lipid-based nanoparticles (NPs) have emerged as revolutionary carriers due to favorable physicochemical characteristics, with specific applications and strengths particularly useful in immunotherapeutic agent delivery. The aim of this review is to highlight the challenges faced by immunotherapy and how lipid-based NPs have been, and may be further utilized to address such challenges. We discuss recent fundamental and clinical applications of NPs in a range of areas and provide a detailed discussion of the main obstacles in immune checkpoint inhibition therapies, adoptive cellular therapies, and cytokine therapies. We highlight how lipid-based nanosystems could address these through either delivery, direct modulation of the immune system, or targeting of the immunosuppressive tumor microenvironment. We explore advanced and emerging liposomal and lipid nanoparticle (LNP) systems for nucleic acid delivery, intrinsic and extrinsic stimulus-responsive formulations, and biomimetic lipid-based nanosystems in immunotherapy. Finally, we discuss the key challenges relating to the clinical use of lipid-based NP immunotherapies, suggesting future research directions for the near term to realize the potential of these innovative lipid-based nanosystems, as they become the crucial steppingstone towards the necessary enhancement of the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ziyun Cheng
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Seth-Frerich Fobian
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Elena Gurrieri
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mohamadreza Amin
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vito Giuseppe D'Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sara Zalba
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - María J Garrido
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain
| | - Mesha Saeed
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ann L B Seynhaeve
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hayri E Balcioglu
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
14
|
Peng X, Yang L, Yuan P, Ding X. Hybrid Cell Membrane-Based Nanoplatforms for Enhanced Immunotherapy against Cancer and Infectious Diseases. Adv Healthc Mater 2024; 13:e2304477. [PMID: 38709914 DOI: 10.1002/adhm.202304477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/20/2024] [Indexed: 05/08/2024]
Abstract
Immunotherapy based on nanoplatforms is a promising approach to treat cancer and infectious diseases, and it has achieved considerable progress in clinical practices. Cell membrane-based nanoplatforms endow nanoparticles with versatile characteristics, such as half-life extension, targeting ability, and immune-system regulation. However, monotypic cell membrane usually fails to provoke strong immune response for immunotherapy while maintaining good biosafety. The integration of different cell-membrane types provides a promising approach to construct multifunctional nanoplatforms for improved immunotherapeutic efficacy by enhancing immunogenicity or targeting function, evading immune clearance, or combining with other therapeutic modalities. In this review, the design principles, preparation strategies, and applications of hybrid cell membrane-based nanoplatforms for cancer and infection immunotherapy are first discussed. Furthermore, the challenges and prospects for the potential clinical translation of hybrid cell membrane-based nanoplatforms are discussed.
Collapse
Affiliation(s)
- Xinran Peng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Li Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xin Ding
- School of Medicine, Sun Yat-sen University, Shenzhen, 518107, China
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
15
|
Kong Q, Zhu Z, Xu Q, Yu F, Wang Q, Gu Z, Xia K, Jiang D, Kong H. Nature-Inspired Thylakoid-Based Photosynthetic Nanoarchitectures for Biomedical Applications. SMALL METHODS 2024; 8:e2301143. [PMID: 38040986 DOI: 10.1002/smtd.202301143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Indexed: 12/03/2023]
Abstract
"Drawing inspiration from nature" offers a wealth of creative possibilities for designing cutting-edge materials with improved properties and performance. Nature-inspired thylakoid-based nanoarchitectures, seamlessly integrate the inherent structures and functions of natural components with the diverse and controllable characteristics of nanotechnology. These innovative biomaterials have garnered significant attention for their potential in various biomedical applications. Thylakoids possess fundamental traits such as light harvesting, oxygen evolution, and photosynthesis. Through the integration of artificially fabricated nanostructures with distinct physical and chemical properties, novel photosynthetic nanoarchitectures can be catalytically generated, offering versatile functionalities for diverse biomedical applications. In this article, an overview of the properties and extraction methods of thylakoids are provided. Additionally, the recent advancements in the design, preparation, functions, and biomedical applications of a range of thylakoid-based photosynthetic nanoarchitectures are reviewed. Finally, the foreseeable challenges and future prospects in this field is discussed.
Collapse
Affiliation(s)
- Qunshou Kong
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Zhimin Zhu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Qisheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zhihua Gu
- Shanghai Pudong TCM Hospital, Shanghai, 201205, China
| | - Kai Xia
- Shanghai Frontier Innovation Research Institute, Shanghai, 201108, China
- Xiangfu Laboratory, Jiashan, 314102, China
- Shanghai Stomatological Hospital, Fudan University, Shanghai, 200031, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Huating Kong
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| |
Collapse
|
16
|
Pan Y, Cheng J, Zhu Y, Zhang J, Fan W, Chen X. Immunological nanomaterials to combat cancer metastasis. Chem Soc Rev 2024; 53:6399-6444. [PMID: 38745455 DOI: 10.1039/d2cs00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Metastasis causes greater than 90% of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of cancer due to its high heterogeneity and widespread dissemination to various organs. Therefore, it is imperative to combat cancer metastasis, which is the key to achieving complete cancer eradication. Immunotherapy as a systemic approach has shown promising potential to combat metastasis. However, current clinical immunotherapies are not effective for all patients or all types of cancer metastases owing to insufficient immune responses. In recent years, immunological nanomaterials with intrinsic immunogenicity or immunomodulatory agents with efficient loading have been shown to enhance immune responses to eliminate metastasis. In this review, we would like to summarize various types of immunological nanomaterials against metastasis. Moreover, this review will summarize a series of immunological nanomaterial-mediated immunotherapy strategies to combat metastasis, including immunogenic cell death, regulation of chemokines and cytokines, improving the immunosuppressive tumour microenvironment, activation of the STING pathway, enhancing cytotoxic natural killer cell activity, enhancing antigen presentation of dendritic cells, and enhancing chimeric antigen receptor T cell therapy. Furthermore, the synergistic anti-metastasis strategies based on the combinational use of immunotherapy and other therapeutic modalities will also be introduced. In addition, the nanomaterial-mediated imaging techniques (e.g., optical imaging, magnetic resonance imaging, computed tomography, photoacoustic imaging, surface-enhanced Raman scattering, radionuclide imaging, etc.) for detecting metastasis and monitoring anti-metastasis efficacy are also summarized. Finally, the current challenges and future prospects of immunological nanomaterial-based anti-metastasis are also elucidated with the intention to accelerate its clinical translation.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Junjie Cheng
- Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| |
Collapse
|
17
|
Wang J, Liang S, Chen S, Ma T, Chen M, Niu C, Leng Y, Wang L. Bacterial outer membrane vesicle-cancer cell hybrid membrane-coated nanoparticles for sonodynamic therapy in the treatment of breast cancer bone metastasis. J Nanobiotechnology 2024; 22:328. [PMID: 38858780 PMCID: PMC11165797 DOI: 10.1186/s12951-024-02619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
Breast cancer bone metastasis is a terminal-stage disease and is typically treated with radiotherapy and chemotherapy, which causes severe side effects and limited effectiveness. To improve this, Sonodynamic therapy may be a more safe and effective approach in the future. Bacterial outer membrane vesicles (OMV) have excellent immune-regulating properties, including modulating macrophage polarization, promoting DC cell maturation, and enhancing anti-tumor effects. Combining OMV with Sonodynamic therapy can result in synergetic anti-tumor effects. Therefore, we constructed multifunctional nanoparticles for treating breast cancer bone metastasis. We fused breast cancer cell membranes and bacterial outer membrane vesicles to form a hybrid membrane (HM) and then encapsulated IR780-loaded PLGA with HM to produce the nanoparticles, IR780@PLGA@HM, which had tumor targeting, immune regulating, and Sonodynamic abilities. Experiments showed that the IR780@PLGA@HM nanoparticles had good biocompatibility, effectively targeted to 4T1 tumors, promoted macrophage type I polarization and DC cells activation, strengthened anti-tumor inflammatory factors expression, and presented the ability to effectively kill tumors both in vitro and in vivo, which showed a promising therapeutic effect on breast cancer bone metastasis. Therefore, the nanoparticles we constructed provided a new strategy for effectively treating breast cancer bone metastasis.
Collapse
Affiliation(s)
- Jiahao Wang
- The School of Medicine, Nankai University, Tianjin, 300071, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuailong Liang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Sijie Chen
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, Changsha, China
| | - Tianliang Ma
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mingyu Chen
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengcheng Niu
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Leng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha, China
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, 410008, China.
| |
Collapse
|
18
|
Chen W, Tang C, Chen G, Li J, Li N, Zhang H, Di L, Wang R. Boosting Checkpoint Immunotherapy with Biomimetic Nanodrug Delivery Systems. Adv Healthc Mater 2024; 13:e2304284. [PMID: 38319961 DOI: 10.1002/adhm.202304284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/26/2024] [Indexed: 02/08/2024]
Abstract
Immune checkpoint blockade (ICB) has achieved unprecedented progress in tumor immunotherapy by blocking specific immune checkpoint molecules. However, the high biodistribution of the drug prevents it from specifically targeting tumor tissues, leading to immune-related adverse events. Biomimetic nanodrug delivery systems (BNDSs) readily applicable to ICB therapy have been widely developed at the preclinical stage to avoid immune-related adverse events. By exploiting or mimicking complex biological structures, the constructed BNDS as a novel drug delivery system has good biocompatibility and certain tumor-targeting properties. Herein, the latest findings regarding the aforementioned therapies associated with ICB therapy are highlighted. Simultaneously, prospective bioinspired engineering strategies can be designed to overcome the four-level barriers to drug entry into lesion sites. In future clinical translation, BNDS-based ICB combination therapy represents a promising avenue for cancer treatment.
Collapse
Affiliation(s)
- Wenjing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Chenlu Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Guijin Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Jiale Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Nengjin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Hanwen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| |
Collapse
|
19
|
Luo S, Yang Y, Chen L, Kannan PR, Yang W, Zhang Y, Zhao R, Liu X, Li Y, Kong X. Outer membrane vesicle-wrapped manganese nanoreactor for augmenting cancer metalloimmunotherapy through hypoxia attenuation and immune stimulation. Acta Biomater 2024; 181:402-414. [PMID: 38734282 DOI: 10.1016/j.actbio.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/15/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Tumor hypoxia, high oxidative stress, and low immunogenic create a deep-rooted immunosuppressive microenvironment, posing a major challenge to the therapeutic efficiency of cancer immunotherapy for solid tumor. Herein, an intelligent nanoplatform responsive to the tumor microenvironment (TME) capable of hypoxia relief and immune stimulation has been engineered for efficient solid tumor immunotherapy. The MnO2@OxA@OMV nanoreactor, enclosing bacterial-derived outer membrane vesicles (OMVs)-wrapped MnO2 nanoenzyme and the immunogenic cell death inducer oxaliplatin (OxA), demonstrated intrinsic catalase-like activity within the TME, which effectively catalyzed the endogenous H2O2 into O2 to enable a prolonged oxygen supply, thereby alleviating the tumor's oxidative stress and hypoxic TME, and expediting OxA release. The combinational action of OxA-caused ICD effect and Mn2+ from nanoreactor enabled the motivation of the cGAS-STING pathway to significantly improve the activation of STING and dendritic cells (DCs) maturation, resulting in metalloimmunotherapy. Furthermore, the immunostimulant OMVs played a crucial role in promoting the infiltration of activated CD8+T cells into the solid tumor. Overall, the nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy. STATEMENT OF SIGNIFICANCE: A tailor-made nanoreactor was fabricated by enclosing bacterial-derived outer membrane vesicles (OMVs) onto MnO2 nanoenzyme and loading with immunogenic cell death inducer oxaliplatin (OxA) for tumor metalloimmunotherapy. The nanoreactor possesses intrinsic catalase-like activity within the tumor microenvironment, which effectively enabled a prolonged oxygen supply by catalyzing the conversion of endogenous H2O2 into O2, thereby alleviating tumor hypoxia and expediting OxA release. Furthermore, the TME-responsive release of nutritional Mn2+ sensitized the cGAS-STING pathway and collaborated with OxA-induced immunogenic cell death (ICD). Combing with immunostimulatory OMVs enhances the uptake of nanoreactors by DCs and promotes the infiltration of activated CD8+T cells. This nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy.
Collapse
Affiliation(s)
- Siyuan Luo
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China
| | - Yueyan Yang
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liuting Chen
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China
| | - Perumal Ramesh Kannan
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weili Yang
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China
| | - Yongjia Zhang
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ruibo Zhao
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoli Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yao Li
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China.
| | - Xiangdong Kong
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
20
|
Ma Y, Chen Y, Li Z, Zhao Y. Rational Design of Lipid-Based Vectors for Advanced Therapeutic Vaccines. Vaccines (Basel) 2024; 12:603. [PMID: 38932332 PMCID: PMC11209477 DOI: 10.3390/vaccines12060603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Recent advancements in vaccine delivery systems have seen the utilization of various materials, including lipids, polymers, peptides, metals, and inorganic substances, for constructing non-viral vectors. Among these, lipid-based nanoparticles, composed of natural, synthetic, or physiological lipid/phospholipid materials, offer significant advantages such as biocompatibility, biodegradability, and safety, making them ideal for vaccine delivery. These lipid-based vectors can protect encapsulated antigens and/or mRNA from degradation, precisely tune chemical and physical properties to mimic viruses, facilitate targeted delivery to specific immune cells, and enable efficient endosomal escape for robust immune activation. Notably, lipid-based vaccines, exemplified by those developed by BioNTech/Pfizer and Moderna against COVID-19, have gained approval for human use. This review highlights rational design strategies for vaccine delivery, emphasizing lymphoid organ targeting and effective endosomal escape. It also discusses the importance of rational formulation design and structure-activity relationships, along with reviewing components and potential applications of lipid-based vectors. Additionally, it addresses current challenges and future prospects in translating lipid-based vaccine therapies for cancer and infectious diseases into clinical practice.
Collapse
Affiliation(s)
- Yufei Ma
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Yiang Chen
- College of Chemistry, Nankai University, Tianjin 300071, China;
| | - Zilu Li
- College of Chemistry, Nankai University, Tianjin 300071, China;
| | - Yu Zhao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
21
|
Zheng P, He J, Fu Y, Yang Y, Li S, Duan B, Yang Y, Hu Y, Yang Z, Wang M, Liu Q, Zheng X, Hua L, Li W, Li D, Ding Y, Yang X, Bai H, Long Q, Huang W, Ma Y. Engineered Bacterial Biomimetic Vesicles Reprogram Tumor-Associated Macrophages and Remodel Tumor Microenvironment to Promote Innate and Adaptive Antitumor Immune Responses. ACS NANO 2024; 18:6863-6886. [PMID: 38386537 DOI: 10.1021/acsnano.3c06987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Tumor-associated macrophages (TAMs) are among the most abundant infiltrating leukocytes in the tumor microenvironment (TME). Reprogramming TAMs from protumor M2 to antitumor M1 phenotype is a promising strategy for remodeling the TME and promoting antitumor immunity; however, the development of an efficient strategy remains challenging. Here, a genetically modified bacterial biomimetic vesicle (BBV) with IFN-γ exposed on the surface in a nanoassembling membrane pore structure was constructed. The engineered IFN-γ BBV featured a nanoscale structure of protein and lipid vesicle, the existence of rich pattern-associated molecular patterns (PAMPs), and the costimulation of introduced IFN-γ molecules. In vitro, IFN-γ BBV reprogrammed M2 macrophages to M1, possibly through NF-κB and JAK-STAT signaling pathways, releasing nitric oxide (NO) and inflammatory cytokines IL-1β, IL-6, and TNF-α and increasing the expression of IL-12 and iNOS. In tumor-bearing mice, IFN-γ BBV demonstrated a targeted enrichment in tumors and successfully reprogrammed TAMs into the M1 phenotype; notably, the response of antigen-specific cytotoxic T lymphocyte (CTL) in TME was promoted while the immunosuppressive myeloid-derived suppressor cell (MDSC) was suppressed. The tumor growth was found to be significantly inhibited in both a TC-1 tumor and a CT26 tumor. It was indicated that the antitumor effects of IFN-γ BBV were macrophage-dependent. Further, the modulation of TME by IFN-γ BBV produced synergistic effects against tumor growth and metastasis with an immune checkpoint inhibitor in an orthotopic 4T1 breast cancer model which was insensitive to anti-PD-1 mAb alone. In conclusion, IFN-γ-modified BBV demonstrated a strong capability of efficiently targeting tumor and tuning a cold tumor hot through reprogramming TAMs, providing a potent approach for tumor immunotherapy.
Collapse
Affiliation(s)
- Peng Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Jinrong He
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Yuting Fu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Ying Yang
- Cell Biology & Molecular Biology Laboratory of Experimental Teaching Center, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Shuqin Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Kunming Medical University, Kunming 650500, People's Republic of China
| | - Biao Duan
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Kunming Medical University, Kunming 650500, People's Republic of China
| | - Ying Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Yongmao Hu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhongqian Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Mengzhen Wang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Qingwen Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Kunming Medical University, Kunming 650500, People's Republic of China
| | - Xiao Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Liangqun Hua
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Weiran Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Duo Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centers for Disease Control and Prevention, Kunming 530112, People's Republic of China
| | - Yiting Ding
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Xu Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Hongmei Bai
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Qiong Long
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Weiwei Huang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| |
Collapse
|
22
|
Liu J, You Q, Liang F, Ma L, Zhu L, Wang C, Yang Y. Ultrasound-nanovesicles interplay for theranostics. Adv Drug Deliv Rev 2024; 205:115176. [PMID: 38199256 DOI: 10.1016/j.addr.2023.115176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/04/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Nanovesicles (NVs) are widely used in the treatment and diagnosis of diseases due to their excellent vascular permeability, good biocompatibility, high loading capacity, and easy functionalization. However, their yield and in vivo penetration depth limitations and their complex preparation processes still constrain their application and development. Ultrasound, as a fundamental external stimulus with deep tissue penetration, concentrated energy sources, and good safety, has been proven to be a patient-friendly and highly efficient strategy to overcome the restrictions of traditional clinical medicine. Recent research has shown that ultrasound can drive the generation of NVs, increase their yield, simplify their preparation process, and provide direct therapeutic effects and intelligent control to enhance the therapeutic effect of NVs. In addition, NVs, as excellent drug carriers, can enhance the targeting efficiency of ultrasound-based sonodynamic therapy or sonogenetic regulation and improve the accuracy of ultrasound imaging. This review provides a detailed introduction to the classification, generation, and modification strategies of NVs, emphasizing the impact of ultrasound on the formation of NVs and summarizing the enhanced treatment and diagnostic effects of NVs combined with ultrasound for various diseases.
Collapse
Affiliation(s)
- Jingyi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing You
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fuming Liang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lilusi Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Li F, Wang Y, Chen D, Du Y. Nanoparticle-Based Immunotherapy for Reversing T-Cell Exhaustion. Int J Mol Sci 2024; 25:1396. [PMID: 38338674 PMCID: PMC10855737 DOI: 10.3390/ijms25031396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
T-cell exhaustion refers to a state of T-cell dysfunction commonly observed in chronic infections and cancer. Immune checkpoint molecules blockading using PD-1 and TIM-3 antibodies have shown promising results in reversing exhaustion, but this approach has several limitations. The treatment of T-cell exhaustion is still facing great challenges, making it imperative to explore new therapeutic strategies. With the development of nanotechnology, nanoparticles have successfully been applied as drug carriers and delivery systems in the treatment of cancer and infectious diseases. Furthermore, nanoparticle-based immunotherapy has emerged as a crucial approach to reverse exhaustion. Here, we have compiled the latest advances in T-cell exhaustion, with a particular focus on the characteristics of exhaustion that can be targeted. Additionally, the emerging nanoparticle-based delivery systems were also reviewed. Moreover, we have discussed, in detail, nanoparticle-based immunotherapies that aim to reverse exhaustion, including targeting immune checkpoint blockades, remodeling the tumor microenvironment, and targeting the metabolism of exhausted T cells, etc. These data could aid in comprehending the immunopathogenesis of exhaustion and accomplishing the objective of preventing and treating chronic diseases or cancer.
Collapse
Affiliation(s)
- Fei Li
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Yahong Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (Y.W.); (D.C.)
| | - Dandan Chen
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (Y.W.); (D.C.)
| | - Yunjie Du
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China;
| |
Collapse
|
24
|
Nie W, Jiang A, Ou X, Zhou J, Li Z, Liang C, Huang LL, Wu G, Xie HY. Metal-polyphenol "prison" attenuated bacterial outer membrane vesicle for chemodynamics promoted in situ tumor vaccines. Biomaterials 2024; 304:122396. [PMID: 38043464 DOI: 10.1016/j.biomaterials.2023.122396] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023]
Abstract
As natural adjuvants, the bacterial outer membrane vesicles (OMV) hold great potential in cancer vaccines. However, the inherent immunotoxicity of OMV and the rarity of tumor-specific antigens seriously hamper the clinical translation of OMV-based cancer vaccines. Herein, metal-phenolic networks (MPNs) are used to attenuate the toxicity of OMV, meanwhile, provide tumor antigens via the chemodynamic effect induced immunogenic cell death (ICD). Specifically, MPNs are assembled on the OMV surface through the coordination reaction between ferric ions and tannic acid. The iron-based "prison" is locally collapsed in the tumor microenvironment (TME) with both low pH and high ATP features, and thus the systemic toxicity of OMV is significantly attenuated. The released ferric ions in TME promote the ICD of cancer cells through Fenton reaction and then the generation of abundant tumor antigens, which can be used to fabricate in-situ vaccines by converging with OMV. Together with the immunomodulatory effect of OMV, potent tumor repression on a bilateral tumor model is achieved with good biosafety.
Collapse
Affiliation(s)
- Weidong Nie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Anqi Jiang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xu Ou
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jiaxin Zhou
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zijin Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Li-Li Huang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Guanghao Wu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
25
|
Xiao Y, Wu M, Xue C, Wang Y. Recent Advances in the Development of Membrane-derived Vesicles for Cancer Immunotherapy. Curr Drug Deliv 2024; 21:403-420. [PMID: 37143265 DOI: 10.2174/1567201820666230504120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
The surface proteins on cell membranes enable the cells to have different properties, such as high biocompatibility, surface modifiability, and homologous targeting ability. Cell-membrane-derived vesicles have features identical to those of their parental cells, which makes them one of the most promising materials for drug delivery. Recently, as a result of the impressive effects of immunotherapy in cancer treatment, an increasing number of researchers have used cell-membrane-derived vesicles to enhance immune responses. To be more specific, the membrane vesicles derived from immune cells, tumor cells, bacteria, or engineered cells have the antigen presentation capacity and can trigger strong anti-tumor effects of the immune system. In this review, we first indicated a brief description of the vesicles and then introduced the detection technology and drug-loading methods for them. Secondly, we concluded the characteristics and applications of vesicles derived from different sources in cancer immunotherapy.
Collapse
Affiliation(s)
- Yuai Xiao
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Minliang Wu
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chunyu Xue
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuchong Wang
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
26
|
Qin YT, Liu XH, An JX, Liang JL, Li CX, Jin XK, Ji P, Zhang XZ. Dendritic Cell-Based In Situ Nanovaccine for Reprogramming Lipid Metabolism to Boost Tumor Immunotherapy. ACS NANO 2023; 17:24947-24960. [PMID: 38055727 DOI: 10.1021/acsnano.3c06784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Cancer vaccines have been considered to be an alternative therapeutic strategy for tumor therapy in the past decade. However, the popularity and efficacy of cancer vaccines were hampered by tumor antigen heterogeneity and the impaired function of cross-presentation in the tumor-infiltrating dendritic cells (TIDCs). To overcome these challenges, we engineered an in situ nanovaccine (named as TPOP) based on lipid metabolism-regulating and innate immune-stimulated nanoparticles. TPOP could capture tumor antigens and induce specific recognition by TIDCs to be taken up. Meanwhile, TPOP could manipulate TIDC lipid metabolism and inhibit de novo synthesis of fatty acids, thus improving the ability of TIDCs to cross-present by reducing their lipid accumulation. Significantly, intratumoral injection of TPOP combined with pretreatment with doxorubicin showed a considerable therapeutic effect in the subcutaneous mouse colorectal cancer model and melanoma model. Moreover, in combination with immune checkpoint inhibitors, such TPOP could markedly inhibit the growth of distant tumors by systemic antitumor immune responses. This work provides a safe and promising strategy for improving the function of immune cells by manipulating their metabolism and activating the immune system effectively for in situ cancer vaccines.
Collapse
Affiliation(s)
- You-Teng Qin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jia-Xin An
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jun-Long Liang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xiao-Kang Jin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ping Ji
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
27
|
Li J, Zeng H, Li L, Yang Q, He L, Dong M. Advanced Generation Therapeutics: Biomimetic Nanodelivery System for Tumor Immunotherapy. ACS NANO 2023; 17:24593-24618. [PMID: 38055350 DOI: 10.1021/acsnano.3c10212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Tumor immunotherapy is a safe and effective strategy for precision medicine. However, immunotherapy for most cancer cases still ends in failure, with the root causes of the immunosuppressive and extraordinary heterogeneity of the solid tumors microenvironment. The emerging biomimetic nanodelivery system provides a promising tactic to improve the immunotherapy effect while reducing the adverse reactions on nontarget cells. Herein, we summarize the relationship between tumor occurrence and tumor immune microenvironment, mechanism of tumor immune escape, immunotherapy classification (including adoptive cellular therapy, cytokines, cancer vaccines, and immune checkpoint inhibitors) and recommend target cells for immunotherapy first, and then emphatically introduce the recent advances and applications of the latest biomimetic nanodelivery systems (e.g., immune cells, erythrocytes, tumor cells, platelets, bacteria) in tumor immunotherapy. Meanwhile, we separately summarize the application of tumor vaccines. Finally, the predictable challenges and perspectives in a forward exploration of biomimetic nanodelivery systems for tumor immunotherapy are also discussed.
Collapse
Affiliation(s)
- Jie Li
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611135, Sichuan, China
- Cancer Prevention and Institute of Chengdu, Department of Oncology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611130, Sichuan, China
| | - Huamin Zeng
- Department of Pathology, Chengdu Fifth People's Hospital (The Second Clinical Medical Colloge, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611130, Sichuan, China
| | - Luwei Li
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Qiu Yang
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611135, Sichuan, China
| | - Lang He
- Cancer Prevention and Institute of Chengdu, Department of Oncology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611130, Sichuan, China
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611135, Sichuan, China
| |
Collapse
|
28
|
An X, Zeng Y, Liu C, Liu G. Cellular-Membrane-Derived Vesicles for Cancer Immunotherapy. Pharmaceutics 2023; 16:22. [PMID: 38258033 PMCID: PMC10820497 DOI: 10.3390/pharmaceutics16010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
The medical community is constantly searching for new and innovative ways to treat cancer, and cellular-membrane-derived artificial vesicles are emerging as a promising avenue for cancer immunotherapy. These vesicles, which are derived from mammal and bacteria cell membranes, offer a range of benefits, including compatibility with living organisms, minimal immune response, and prolonged circulation. By modifying their surface, manipulating their genes, combining them with other substances, stimulating them externally, and even enclosing drugs within them, cellular vesicles have the potential to be a powerful tool in fighting cancer. The ability to merge drugs with diverse compositions and functionalities in a localized area is particularly exciting, as it offers a way to combine different immunotherapy treatments for maximum impact. This review contains information on the various sources of these vesicles and discusses some recent developments in cancer immunotherapy using this promising technology. While there are still obstacles to overcome, the possibilities for cellular vesicles in cancer treatment are truly exciting.
Collapse
Affiliation(s)
- Xiaoyu An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China;
- State Key Laboratory of Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yun Zeng
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China;
| | - Chao Liu
- State Key Laboratory of Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China;
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
29
|
Ma G, Li F, Wang X, Li Q, Hong Y, Wei Q, Gao F, Zhang W, Guo Y, Ma X, Hu Z. A Bionic Yeast Tumor Vaccine Using the Co-Loading Strategy to Prevent Post-Operative Tumor Recurrence. ACS NANO 2023; 17:21394-21410. [PMID: 37870500 DOI: 10.1021/acsnano.3c06115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Immunotherapy is an effective adjunct to surgery for preventing tumor recurrence and metastasis in postoperative tumor patients. Although mimicking microbial invasion and immune activation pathways can effectively stimulate the immune system, the limited capacity of microbial components to bind antigens and adjuvants restricts the development of this system. Here, we construct bionic yeast carriers (BYCs) by in situ polymerization of mesoporous silica nanoparticles (MSNs) within the yeast capsules (YCs). BYCs can mimic the yeast infection pathway while utilizing the loading capacity of MSNs for multiple substances. Pore size and hydrophobicity-modified BYC can be loaded with both antigen and adjuvant R848. Oral or subcutaneous injection uptake of coloaded BYCs demonstrated positive therapeutic effects as a tumor therapeutic vaccine in both the transplantation tumor model and the metastasis tumor model. 57% of initial 400 mm3 tumor recurrence models are completely cured with coloaded BYCs via combination therapy with surgery, utilizing surgically resected tumors as antigens. The BYCs construction and coloading strategy will provide insights and optimistic approaches for the development of effective and controllable cancer vaccine carriers.
Collapse
Affiliation(s)
- Guanglei Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials. School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Fang Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials. School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Xin Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials. School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Qing Li
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Youyou Hong
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials. School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Qingcong Wei
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials. School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Fangli Gao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials. School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Weiwei Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials. School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Yuming Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials. School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Xiaoming Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials. School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Zhiguo Hu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials. School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
30
|
Zheng T, Hao H, Liu Q, Li J, Yao Y, Liu Y, Zhang T, Zhang Z, Yi H. Effect of Extracelluar Vesicles Derived from Akkermansia muciniphila on Intestinal Barrier in Colitis Mice. Nutrients 2023; 15:4722. [PMID: 38004116 PMCID: PMC10674789 DOI: 10.3390/nu15224722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent disease. It has been observed that the incidence and prevalence of IBD are increasing, which consequently raises the risk of developing colon cancer. Recently, the regulation of the intestinal barrier by probiotics has become an effective treatment for colitis. Akkermansia muciniphila-derived extracellular vesicles (Akk EVs) are nano-vesicles that contain multiple bioactive macromolecules with the potential to modulate the intestinal barrier. In this study, we used ultrafiltration in conjunction with high-speed centrifugation to extract Akk EVs. A lipopolysaccharide (LPS)-induced RAW264.7 cell model was established to assess the anti-inflammatory effects of Akk EVs. It was found that Akk EVs were able to be absorbed by RAW264.7 cells and significantly reduce the expression of nitric oxide (NO), TNF-α, and IL-1β (p < 0.05). We explored the preventative effects on colitis and the regulating effects on the intestinal barrier using a mouse colitis model caused by dextran sulfate sodium (DSS). The findings demonstrated that Akk EVs effectively prevented colitis symptoms and reduced colonic tissue injury. Additionally, Akk EVs significantly enhanced the effectiveness of the intestinal barrier by elevating the expression of MUC2 (0.53 ± 0.07), improving mucus integrity, and reducing intestinal permeability (p < 0.05). Moreover, Akk EVs increased the proportion of the beneficial bacteria Firmicutes (33.01 ± 0.09%) and downregulated the proportion of the harmful bacteria Proteobacteria (0.32 ± 0.27%). These findings suggest that Akk EVs possess the ability to regulate immune responses, protect intestinal barriers, and modulate the gut microbiota. The research presents a potential intervention approach for Akk EVs to prevent colitis.
Collapse
Affiliation(s)
- Ting Zheng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Haining Hao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Qiqi Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Jiankun Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yukun Yao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yisuo Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Tai Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Zhe Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
| | - Huaxi Yi
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
31
|
Sun M, Yang J, Fan Y, Zhang Y, Sun J, Hu M, Sun K, Zhang J. Beyond Extracellular Vesicles: Hybrid Membrane Nanovesicles as Emerging Advanced Tools for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303617. [PMID: 37749882 PMCID: PMC10646251 DOI: 10.1002/advs.202303617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/02/2023] [Indexed: 09/27/2023]
Abstract
Extracellular vesicles (EVs), involved in essential physiological and pathological processes of the organism, have emerged as powerful tools for disease treatment owing to their unique natural biological characteristics and artificially acquired advantages. However, the limited targeting ability, insufficient production yield, and low drug-loading capability of natural simplex EVs have greatly hindered their development in clinical translation. Therefore, the establishment of multifunctional hybrid membrane nanovesicles (HMNVs) with favorable adaptability and flexibility has become the key to expanding the practical application of EVs. This timely review summarizes the current progress of HMNVs for biomedical applications. Different HMNVs preparation strategies including physical, chemical, and chimera approaches are first discussed. This review then individually describes the diverse types of HMNVs based on homologous or heterologous cell membrane substances, a fusion of cell membrane and liposome, as well as a fusion of cell membrane and bacterial membrane. Subsequently, a specific emphasis is placed on the highlight of biological applications of the HMNVs toward various diseases with representative examples. Finally, ongoing challenges and prospects of the currently developed HMNVs in clinical translational applications are briefly presented. This review will not only stimulate broad interest among researchers from diverse disciplines but also provide valuable insights for the development of promising nanoplatforms in precision medicine.
Collapse
Affiliation(s)
- Meng Sun
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Jiani Yang
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yueyun Fan
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yinfeng Zhang
- International Medical CenterBeijing Friendship HospitalCapital Medical UniversityBeijing100050P. R. China
| | - Jian Sun
- Department of Hepatobiliary SurgeryJinan University First Affiliated HospitalGuangzhou510630P. R. China
| | - Min Hu
- Department of Hepatobiliary SurgeryJinan University First Affiliated HospitalGuangzhou510630P. R. China
| | - Ke Sun
- Department of Urinary surgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
32
|
Zong R, Ruan H, Liu C, Fan S, Li J. Bacteria and Bacterial Components as Natural Bio-Nanocarriers for Drug and Gene Delivery Systems in Cancer Therapy. Pharmaceutics 2023; 15:2490. [PMID: 37896250 PMCID: PMC10610331 DOI: 10.3390/pharmaceutics15102490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Bacteria and bacterial components possess multifunctional properties, making them attractive natural bio-nanocarriers for cancer diagnosis and targeted treatment. The inherent tropic and motile nature of bacteria allows them to grow and colonize in hypoxic tumor microenvironments more readily than conventional therapeutic agents and other nanomedicines. However, concerns over biosafety, limited antitumor efficiency, and unclear tumor-targeting mechanisms have restricted the clinical translation and application of natural bio-nanocarriers based on bacteria and bacterial components. Fortunately, bacterial therapies combined with engineering strategies and nanotechnology may be able to reverse a number of challenges for bacterial/bacterial component-based cancer biotherapies. Meanwhile, the combined strategies tend to enhance the versatility of bionanoplasmic nanoplatforms to improve biosafety and inhibit tumorigenesis and metastasis. This review summarizes the advantages and challenges of bacteria and bacterial components in cancer therapy, outlines combinatorial strategies for nanocarriers and bacterial/bacterial components, and discusses their clinical applications.
Collapse
Affiliation(s)
| | | | | | - Shaohua Fan
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jun Li
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
33
|
Chen Z, Yue Z, Yang K, Shen C, Cheng Z, Zhou X, Li S. Four Ounces Can Move a Thousand Pounds: The Enormous Value of Nanomaterials in Tumor Immunotherapy. Adv Healthc Mater 2023; 12:e2300882. [PMID: 37539730 DOI: 10.1002/adhm.202300882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/17/2023] [Indexed: 08/05/2023]
Abstract
The application of nanomaterials in healthcare has emerged as a promising strategy due to their unique structural diversity, surface properties, and compositional diversity. In particular, nanomaterials have found a significant role in improving drug delivery and inhibiting the growth and metastasis of tumor cells. Moreover, recent studies have highlighted their potential in modulating the tumor microenvironment (TME) and enhancing the activity of immune cells to improve tumor therapy efficacy. Various types of nanomaterials are currently utilized as drug carriers, immunosuppressants, immune activators, immunoassay reagents, and more for tumor immunotherapy. Necessarily, nanomaterials used for tumor immunotherapy can be grouped into two categories: organic and inorganic nanomaterials. Though both have shown the ability to achieve the purpose of tumor immunotherapy, their composition and structural properties result in differences in their mechanisms and modes of action. Organic nanomaterials can be further divided into organic polymers, cell membranes, nanoemulsion-modified, and hydrogel forms. At the same time, inorganic nanomaterials can be broadly classified as nonmetallic and metallic nanomaterials. The current work aims to explore the mechanisms of action of these different types of nanomaterials and their prospects for promoting tumor immunotherapy.
Collapse
Affiliation(s)
- Ziyin Chen
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Ziqi Yue
- Department of Forensic Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Kaiqi Yang
- Clinical Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Congrong Shen
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Zhe Cheng
- Department of Forensic Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Xiaofeng Zhou
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 110042, Shenyang, P. R. China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, 110042, China
| |
Collapse
|
34
|
Nie X, Shi C, Chen X, Yu C, Jiang Z, Xu G, Lin Y, Tang M, Luan Y. A single-shot prophylactic tumor vaccine enabled by an injectable biomembrane hydrogel. Acta Biomater 2023; 169:306-316. [PMID: 37574158 DOI: 10.1016/j.actbio.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Prophylactic tumor vaccines hold great promise against tumor occurrence. However, their clinical efficacy remains low due to inadequate activation of strong-sustainable immunity. Herein, a biomembrane hydrogel was designed as a powerful single-shot prophylactic tumor vaccine. Mannose-decorated hybrid biomembrane (MHCM) modified with oxidized sodium alginate (OSA) was designed as a gelator (O-MHCM), where the hybrid biomembrane (HCM) is a hybridization of bacterial outer membrane vesicles (OMV) and tumor cell membranes (TCM). The O-MHCM enables quick gelation subcutaneously where the cysteine protease inhibitor E64 is encapsulated in hydrogel micropores. After a single vaccination of E64@O-MHCM hydrogel, MHCM and E64 are released sustainably due to OSA moiety degradation. The MHCM enables active targeting to dendritic cells (DC) and effective DC maturation. Meanwhile, the E64 enables sufficient antigen availability for subsequent cross presentation. Ultimately, strong and sustainable T lymphocyte-mediated immunity was elicited, demonstrating a strong prophylactic effect against breast tumors. This study provides a long-lasting platform to prevent tumor occurrence, opening an innovative avenue for the design of a single-shot prophylactic tumor vaccine. STATEMENT OF SIGNIFICANCE: Developing a single-shot prophylactic tumor vaccine to elicit strong-sustainable immunity is of great interest clinically. Here, a prophylactic tumor vaccine was designed using an injectable biomembrane hydrogel for achieving strong-sustainable immunity. The mannose-tailored hybrid biomembrane was modified with oxidized sodium alginate to result in a gelator, which enabled the formation of the hydrogel after subcutaneous injection. Cysteine protease inhibitor E64 was incorporated into the micropores of the hydrogel. The hydrogel induced strong-sustainable immunity through the continuous release of active components. This was facilitated by the mannose moiety, which enabled active targeting, as well as the antigen and adjuvant function of biomembrane, and the E64-enabled suppression of antigen degradation. The biomembrane hydrogel demonstrated powerful prevention of 4T1 breast tumors. This study offers an attractive strategy for designing a single-shot prophylactic tumor vaccine.
Collapse
Affiliation(s)
- Xinxin Nie
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chunhuan Shi
- Department of Pharmacy, Dongying People's Hospital, Dongying, 257091, China
| | - Xiangwu Chen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Cancan Yu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zeyu Jiang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Guixiang Xu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yang Lin
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Mingtan Tang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Yuxia Luan
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
35
|
Chen L, Ma X, Liu W, Hu Q, Yang H. Targeting Pyroptosis through Lipopolysaccharide-Triggered Noncanonical Pathway for Safe and Efficient Cancer Immunotherapy. NANO LETTERS 2023; 23:8725-8733. [PMID: 37695255 DOI: 10.1021/acs.nanolett.3c02728] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Inducing pyroptosis in cancer cells holds great potential in cancer immunotherapy. Lipopolysaccharide (LPS)-sensing noncanonical pathways are an important mechanism of pyroptosis to eliminate damaged cells, which has not yet been explored for cancer immunotherapy. Here, we utilize bacterial outer membrane vesicles (OMVs) as a natural LPS carrier to trigger a noncanonical pyroptosis pathway for immunotherapy. To address the concern of systemic toxicity, molecule engineered OMVs were designed by equipping DNA aptamers on the OMVs (Apt-OMVs). In addition to improving capacity to target tumors, Apt-OMVs also took advantage of the spherical nucleic acid structure to shield OMVs against nonspecific immune recognition and evade immunogenicity. The selective pyroptosis enhanced tumor immunogenicity, not only promoting the infiltration of effector T cells but also reducing the amount of immunosuppressive regulatory T cells, which remarkably suppressed tumor growth. This work reports the first pyroptosis inducer by the noncanonical pathway, offering inspiration for safe and efficient pyroptosis-mediated immunotherapy.
Collapse
Affiliation(s)
- Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xin Ma
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wenjun Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qianqian Hu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
36
|
Liu Q, Hu Y, Zheng P, Yang Y, Fu Y, Yang Y, Duan B, Wang M, Li D, Li W, He J, Zheng X, Long Q, Ma Y. Exploiting immunostimulatory mechanisms of immunogenic cell death to develop membrane-encapsulated nanoparticles as a potent tumor vaccine. J Nanobiotechnology 2023; 21:326. [PMID: 37684628 PMCID: PMC10492316 DOI: 10.1186/s12951-023-02031-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/28/2023] [Indexed: 09/10/2023] Open
Abstract
Vaccine is one of the most promising strategies for cancer immunotherapy; however, there are no therapeutic cancer vaccine achieving significant clinical efficacy till now. The main limiting factors include the immune suppression and escape mechanisms developed by tumor and not enough capacity of vaccines to induce a vigorous anti-tumor immunity. This study aimed to develop a strategy of membrane-based biomimetic nanovaccine and investigate the immunological outcomes of utilizing the unique immunostimulatory mechanisms derived of immunogenic cell death (ICD) and of fulfilling a simultaneous nanoscale delivery of a highlighted tumor antigen and broad membrane-associated tumor antigens in the vaccine design. TC-1 tumor cells were treated in vitro with a mixture of mitoxantrone and curcumin for ICD induction, and then chitosan (CS)-coated polylactic co-glycolic acid (PLGA) nanoparticles loaded with HPV16 E744-62 peptides were decorated with the prepared ICD tumor cell membrane (IM); further, the IM-decorated nanoparticles along with adenosine triphosphate (ATP) were embedded with sodium alginate (ALG) hydrogel, And then, the immunological features and therapeutic potency were evaluated in vitro and in vivo. The nanovaccine significantly stimulated the migration, antigen uptake, and maturation of DCs in vitro, improved antigen lysosome escape, and promoted the retention at injection site and accumulation in LNs of the tumor antigen in vivo. In a subcutaneously grafted TC-1 tumor model, the therapeutic immunization of nanovaccine elicited a dramatical antitumor immunity. This study provides a strategy for the development of tumor vaccines.
Collapse
Affiliation(s)
- Qingwen Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
- Institute of Medical Biology, Kunming Medical University, Kunming, 650500, China
| | - Yongmao Hu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Peng Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Ying Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Yuting Fu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Ying Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
- Institute of Medical Biology, Kunming Medical University, Kunming, 650500, China
| | - Biao Duan
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
- Institute of Medical Biology, Kunming Medical University, Kunming, 650500, China
| | - Mengzhen Wang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Duo Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Weiran Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Jinrong He
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Xiao Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Qiong Long
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.
- Institute of Medical Biology, Kunming Medical University, Kunming, 650500, China.
- School of Life Sciences, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
37
|
Li D, Zhu L, Wang Y, Zhou X, Li Y. Bacterial outer membrane vesicles in cancer: Biogenesis, pathogenesis, and clinical application. Biomed Pharmacother 2023; 165:115120. [PMID: 37442066 DOI: 10.1016/j.biopha.2023.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Outer membrane vesicles (OMVs) are spherical, nano-sized particles of bilayer lipid structure secreted by Gram-negative bacteria. They contain a series of cargos from bacteria and are important messengers for communication between bacteria and their environment. OMVs play multiple roles in bacterial survival and adaptation and can affect host physiological functions and disease development by acting on host cell membranes and altering host cell signaling pathways. This paper summarizes the mechanisms of OMV genesis and the multiple roles of OMVs in the tumor microenvironment. Also, this paper discusses the prospects of OMVs for a wide range of applications in drug delivery, tumor diagnosis, and therapy.
Collapse
Affiliation(s)
- Deming Li
- Anesthesia Department, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Lisi Zhu
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Yuxiao Wang
- Anesthesia Department, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Xiangyu Zhou
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China.
| | - Yan Li
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
38
|
Zhang Y, Liu F, Tan L, Li X, Dai Z, Cheng Q, Liu J, Wang Y, Huang L, Wang L, Wang Z. LncRNA-edited biomimetic nanovaccines combined with anti-TIM-3 for augmented immune checkpoint blockade immunotherapy. J Control Release 2023; 361:671-680. [PMID: 37591462 DOI: 10.1016/j.jconrel.2023.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
T-cell immunoglobulin mucin (TIM)-3 blockade ameliorates T cell exhaustion and triggers dendritic cell (DC) inflammasome activation, showing great potential in immune checkpoint blockade (ICB) immunotherapy. However, pharmacokinetic profile and T cell/DC infiltration in tumor microenvironment is still undesired. Here, we develop a long noncoding RNA (lncRNA)-edited biomimetic nanovaccine combined with anti-TIM-3 to mediate dual-effect antigen cross-presentation and dampen T cell immunosuppression for reinforced ICB immunotherapy. LncRNA inducing major histocompatibility complex I and immunogenicity of tumor (LIMIT)-edited tumor cell membrane is used to encapsulate anti-TIM-3, formulating LCCT. Afterward, LCCT nanoparticles are embedded into an alginate-based hydrogel for suppressing post-surgical tumor relapse. LCCT retains TIM-3 blockade efficacy of anti-TIM-3 in both DCs and CD8+ T cells (beyond 75%). Moreover, the integrated anti-TIM-3 augments endocytosis of LCCT in DCs (1.5-fold), amplifying inflammasome activation and antigen cross-presentation. Furthermore, such DC activation synergistic with LCCT-induced CD8+ T-cell dampened immunosuppression and direct cross-presentation stimulates effector and memory-precursor CD8+ T cells against tumors. This lncRNA-edited biomimetic nanovaccine strategy brings a new sight to improve current ICB immunotherapy.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lulu Tan
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng Dai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Cheng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Huang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
39
|
Jiang X, Wu L, Zhang M, Zhang T, Chen C, Wu Y, Yin C, Gao J. Biomembrane nanostructures: Multifunctional platform to enhance tumor chemoimmunotherapy via effective drug delivery. J Control Release 2023; 361:510-533. [PMID: 37567505 DOI: 10.1016/j.jconrel.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Chemotherapeutic drugs have been found to activate the immune response against tumors by inducing immunogenic cell death, in addition to their direct cytotoxic effects toward tumors, therefore broadening the application of chemotherapy in tumor immunotherapy. The combination of other therapeutic strategies, such as phototherapy or radiotherapy, could further strengthen the therapeutic effects of immunotherapy. Nanostructures can facilitate multimodal tumor therapy by integrating various active agents and combining multiple types of therapeutics in a single nanostructure. Biomembrane nanostructures (e.g., exosomes and cell membrane-derived nanostructures), characterized by superior biocompatibility, intrinsic targeting ability, intelligent responsiveness and immune-modulating properties, could realize superior chemoimmunotherapy and represent next-generation nanostructures for tumor immunotherapy. This review summarizes recent advances in biomembrane nanostructures in tumor chemoimmunotherapy and highlights different types of engineering approaches and therapeutic mechanisms. A series of engineering strategies for combining different biomembrane nanostructures, including liposomes, exosomes, cell membranes and bacterial membranes, are summarized. The combination strategy can greatly enhance the targeting, intelligence and functionality of biomembrane nanostructures for chemoimmunotherapy, thereby serving as a stronger tumor therapeutic method. The challenges associated with the clinical translation of biomembrane nanostructures for chemoimmunotherapy and their future perspectives are also discussed.
Collapse
Affiliation(s)
- Xianghe Jiang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China; College of Life Science, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Lili Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Mengya Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Cuimin Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang 157011, China.
| | - Chuan Yin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
40
|
Diao L, Liu M. Rethinking Antigen Source: Cancer Vaccines Based on Whole Tumor Cell/tissue Lysate or Whole Tumor Cell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300121. [PMID: 37254712 PMCID: PMC10401146 DOI: 10.1002/advs.202300121] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/29/2023] [Indexed: 06/01/2023]
Abstract
Cancer immunotherapies have improved human health, and one among the important technologies for cancer immunotherapy is cancer vaccine. Antigens are the most important components in cancer vaccines. Generally, antigens in cancer vaccines can be divided into two categories: pre-defined antigens and unidentified antigens. Although, cancer vaccines loaded with predefined antigens are commonly used, cancer vaccine loaded with mixed unidentified antigens, especially whole cancer cells or cancer cell lysates, is a very promising approach, and such vaccine can obviate some limitations in cancer vaccines. Their advantages include, but are not limited to, the inclusion of pan-spectra (all or most kinds of) antigens, inducing pan-clones specific T cells, and overcoming the heterogeneity of cancer cells. In this review, the recent advances in cancer vaccines based on whole-tumor antigens, either based on whole cancer cells or whole cancer cell lysates, are summarized. In terms of whole cancer cell lysates, the focus is on applying whole water-soluble cell lysates as antigens. Recently, utilizing the whole cancer cell lysates as antigens in cancer vaccines has become feasible. Considering that pre-determined antigen-based cancer vaccines (mainly peptide-based or mRNA-based) have various limitations, developing cancer vaccines based on whole-tumor antigens is a promising alternative.
Collapse
Affiliation(s)
- Lu Diao
- Department of PharmaceuticsCollege of Pharmaceutical Sciences, Soochow University199 of Ren ai RoadSuzhouJiangsu215123P. R. China
- Kunshan Hospital of Traditional Chinese MedicineKunshanJiangsu215300P. R. China
- Suzhou Ersheng Biopharmaceutical Co., Ltd.Suzhou215123P. R. China
| | - Mi Liu
- Department of PharmaceuticsCollege of Pharmaceutical Sciences, Soochow University199 of Ren ai RoadSuzhouJiangsu215123P. R. China
- Kunshan Hospital of Traditional Chinese MedicineKunshanJiangsu215300P. R. China
- Suzhou Ersheng Biopharmaceutical Co., Ltd.Suzhou215123P. R. China
| |
Collapse
|
41
|
Song P, Han X, Li X, Cong Y, Wu Y, Yan J, Wang Y, Wang X, Mu Z, Wang L, Li X, Zhang H. Bacteria engineered with intracellular and extracellular nanomaterials for hierarchical modulation of antitumor immune responses. MATERIALS HORIZONS 2023; 10:2927-2935. [PMID: 37158992 DOI: 10.1039/d3mh00249g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Induction of immunogenic cell death (ICD) by hyperthermia can initiate adaptive immune responses, emerging as an attractive strategy for tumor immunotherapy. However, ICD can induce proinflammatory factor interferon-γ (IFN-γ) production, leading to indoleamine 2,3-dioxygenase 1 (IDO-1) activation and an immunosuppressive tumor microenvironment, which dramatically reduces the ICD-triggered immunotherapeutic efficacy. Herein, we developed a bacteria-nanomaterial hybrid system (CuSVNP20009NB) to systematically modulate the tumor immune microenvironment and improve tumor immunotherapy. Attenuated Salmonella typhimurium (VNP20009) that can chemotactically migrate to the hypoxic area of the tumor and repolarize tumor-associated macrophages (TAMs) was employed to intracellularly biosynthesize copper sulfide nanomaterials (CuS NMs) and extracellularly hitchhike NLG919-embedded and glutathione (GSH)-responsive albumin nanoparticles (NB NPs), forming CuSVNP20009NB. After intravenous injection into B16F1 tumor-bearing mice, CuSVNP20009NB could accumulate in tumor tissues and repolarize TAMs from the immunosuppressive M2 to immunostimulatory M1 phenotype and release NLG919 from extracellular NB NPs to inhibit IDO-1 activity. Under further near infrared laser irradiation, intracellular CuS NMs of CuSVNP20009NB could photothermally induce ICD including calreticulin (CRT) expression and high mobility group box 1 (HMGB-1) release, promoting intratumoral infiltration of cytotoxic T lymphocytes. Finally, CuSVNP20009NB with excellent biocompatibility could systematically augment immune responses and significantly inhibit tumor growth, holding great promise for tumor therapy.
Collapse
Affiliation(s)
- Panpan Song
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xiaoqing Han
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
| | - Xiumin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, China
| | - Yalin Cong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, China
| | - Yunyun Wu
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, China.
| | - Jiao Yan
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
| | - Yanjing Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xingbo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Zhengzhi Mu
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Xi Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, China.
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|
42
|
Dong X, Wu W, Pan P, Zhang XZ. Engineered Living Materials for Advanced Diseases Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304963. [PMID: 37436776 DOI: 10.1002/adma.202304963] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Natural living materials serving as biotherapeutics exhibit great potential for treating various diseases owing to their immunoactivity, tissue targeting, and other biological activities. In this review, the recent developments in engineered living materials, including mammalian cells, bacteria, viruses, fungi, microalgae, plants, and their active derivatives that are used for treating various diseases are summarized. Further, the future perspectives and challenges of such engineered living material-based biotherapeutics are discussed to provide considerations for future advances in biomedical applications.
Collapse
Affiliation(s)
- Xue Dong
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Wei Wu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Pei Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
43
|
Wang QT, Liu YX, Wang J, Wang H. Advances in Cancer Nanovaccines: Harnessing Nanotechnology for Broadening Cancer Immune Response. ChemMedChem 2023; 18:e202200673. [PMID: 37088719 DOI: 10.1002/cmdc.202200673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Many advances have been made recently in the field of cancer immunotherapy, particularly with the development of treatments such as immune checkpoint inhibitors and adoptive cellular immunotherapy. The efficacy of immunotherapy is limited, however, owing to high levels of tumor heterogeneity and the immunosuppressive environments of advanced malignant tumors. Therefore, therapeutic anticancer vaccines have gradually become powerful tools for inducing valid antitumor immune responses and regulating the immune microenvironment. Tumor vaccines loaded in nanocarriers have become an indispensable delivery platform for tumor treatment because of their enhanced stability, targeting capability, and high level of safety. Through a unique design, cancer nanovaccines activate innate immunity and tumor-specific immunity simultaneously. For example, the design of cancer vaccines can incorporate strategies such as enhancing the stability and targeting of tumor antigens, combining effective adjuvants, cytokines, and immune microenvironment regulators, and promoting the maturation and cross-presentation of antigen-presenting cells (APCs). In this review, we discuss the design and preparation of nanovaccines for remodeling tumor antigen immunogenicity and regulating the immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Qian-Ting Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Yi-Xuan Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- University of the Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Jie Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| |
Collapse
|
44
|
Xiao M, Tang Q, Zeng S, Yang Q, Yang X, Tong X, Zhu G, Lei L, Li S. Emerging biomaterials for tumor immunotherapy. Biomater Res 2023; 27:47. [PMID: 37194085 DOI: 10.1186/s40824-023-00369-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/23/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND The immune system interacts with cancer cells in various intricate ways that can protect the individual from overproliferation of cancer cells; however, these interactions can also lead to malignancy. There has been a dramatic increase in the application of cancer immunotherapy in the last decade. However, low immunogenicity, poor specificity, weak presentation efficiency, and off-target side effects still limit its widespread application. Fortunately, advanced biomaterials effectively contribute immunotherapy and play an important role in cancer treatment, making it a research hotspot in the biomedical field. MAIN BODY This review discusses immunotherapies and the development of related biomaterials for application in the field. The review first summarizes the various types of tumor immunotherapy applicable in clinical practice as well as their underlying mechanisms. Further, it focuses on the types of biomaterials applied in immunotherapy and related research on metal nanomaterials, silicon nanoparticles, carbon nanotubes, polymer nanoparticles, and cell membrane nanocarriers. Moreover, we introduce the preparation and processing technologies of these biomaterials (liposomes, microspheres, microneedles, and hydrogels) and summarize their mechanisms when applied to tumor immunotherapy. Finally, we discuss future advancements and shortcomings related to the application of biomaterials in tumor immunotherapy. CONCLUSION Research on biomaterial-based tumor immunotherapy is booming; however, several challenges remain to be overcome to transition from experimental research to clinical application. Biomaterials have been optimized continuously and nanotechnology has achieved continuous progression, ensuring the development of more efficient biomaterials, thereby providing a platform and opportunity for breakthroughs in tumor immunotherapy.
Collapse
Affiliation(s)
- Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shiying Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xinying Tong
- Department of Hemodialysis, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
45
|
Huang G, Liu L, Pan H, Cai L. Biomimetic Active Materials Guided Immunogenic Cell Death for Enhanced Cancer Immunotherapy. SMALL METHODS 2023; 7:e2201412. [PMID: 36572642 DOI: 10.1002/smtd.202201412] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Indexed: 05/17/2023]
Abstract
Despite immunotherapy emerging as a vital approach to improve cancer treatment, the activation of efficient immune responses is still hampered by immunosuppression, especially due to the low tumor immunogenicity. Immunogenic cell death (ICD) is a promising strategy to reshape the tumor microenvironment (TME) for achieving high immunogenicity. Various stimuli are able to effectively initiate their specific ICD by utilizing the corresponding ICD-inducer. However, the ICD-guided antitumor immune effects are usually impaired by various biological barriers and TME-associated immune resistance. Biomimetic active materials are being extensively explored as guided agents for ICD due to their unique advantages. In this review, two major strategies are systematically introduced that have been employed to exploit biomimetic active materials guided ICD for cancer immunotherapy, mainly including naive organism-derived nanoagents and engineered bioactive platforms. This review outlines the recent advances in the field at biomimetic active materials guided physiotherapy, chemotherapy, and biotherapy for ICD induction. The advances and challenges of biomimetic active materials guided ICD for cancer immunotherapy applications are further discussed in future clinical practice. This review provides an overview of the advances of biomimetic active materials for targeting immunoregulation and treatment and can contribute to the future of advanced antitumor combination therapy.
Collapse
Affiliation(s)
- Guojun Huang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanlan Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
46
|
Li M, Zhou H, Wu N, Deng W, Dong W, Sun X, Liu H, Tian Z, Wang Y. Pathogen Recognition-Driven Dendritic Cell-Specific Gene Silencing and Editing. NANO LETTERS 2023; 23:2733-2742. [PMID: 36930562 DOI: 10.1021/acs.nanolett.3c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Dendritic cells (DCs) play an essential role in both the induction of the immune response and the maintenance of immune tolerance, with any malfunction of DCs potentially causing several diseases. While gene-based therapy for DC manipulation is a promising approach, it remains challenging due to the lack of efficient delivery systems for DC targeting. Herein, we describe a novel bacterial nanomedicine (BNM) system for pathogen recognition-mediated DCs-specific gene silencing and gene editing. BNMs contain components from bacterial outer membranes and achieve efficient DC targeting through the recognition of pathogen-associated molecular patterns by pattern recognition receptors on DCs. The targeting efficiency of BNMs is reduced in DCs lacking toll-like receptor 4, which is responsible for recognizing lipopolysaccharide, a major component of the bacterial outer membrane. As a proof-of-concept demonstration, we present gene-based therapy mediated by BNMs for enhancing antigen cross-presentation in DCs, which generates a remarkable antitumor effect.
Collapse
Affiliation(s)
- Min Li
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230001, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Han Zhou
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Namei Wu
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wuxian Deng
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wang Dong
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xun Sun
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hang Liu
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhigang Tian
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yucai Wang
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230001, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui 230601, China
| |
Collapse
|
47
|
Meng L, Teng Z, Yang S, Wang N, Guan Y, Chen X, Liu Y. Biomimetic nanoparticles for DC vaccination: a versatile approach to boost cancer immunotherapy. NANOSCALE 2023; 15:6432-6455. [PMID: 36916703 DOI: 10.1039/d2nr07071e] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cancer immunotherapy, which harnesses the immune system to fight cancer, has begun to make a breakthrough in clinical applications. Dendritic cells (DCs) are the bridge linking innate and adaptive immunity and the trigger of tumor immune response. Considering the cumbersome process and poor efficacy of classic DC vaccines, there has been interest in transferring the field of in vitro-generated DC vaccines to nanovaccines. Conventional nanoparticles have insufficient targeting ability and are easily cleared by the reticuloendothelial system. Biological components have evolved very specific functions, which are difficult to fully reproduce with synthetic materials, making people interested in using the further understanding of biological systems to prepare nanoparticles with new and enhanced functions. Biomimetic nanoparticles are semi-biological or nature-derived delivery systems comprising one or more natural materials, which have a long circulation time in vivo and excellent performance of targeting DCs, and can mimic the antigen-presenting behavior of DCs. In this review, we introduce the classification, design, preparation, and challenges of different biomimetic nanoparticles, and discuss their application in activating DCs in vivo and stimulating T cell antitumor immunity. Incorporating biomimetic nanoparticles into cancer immunotherapy has shown outstanding advantages in precisely coaxing the immune system against cancer.
Collapse
Affiliation(s)
- Lingyang Meng
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Zhuang Teng
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Shuang Yang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Na Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - YingHua Guan
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, P.R. China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| |
Collapse
|
48
|
Liu Y, Niu L, Li N, Wang Y, Liu M, Su X, Bao X, Yin B, Shen S. Bacterial-Mediated Tumor Therapy: Old Treatment in a New Context. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205641. [PMID: 36908053 PMCID: PMC10131876 DOI: 10.1002/advs.202205641] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Targeted therapy and immunotherapy have brought hopes for precision cancer treatment. However, complex physiological barriers and tumor immunosuppression result in poor efficacy, side effects, and resistance to antitumor therapies. Bacteria-mediated antitumor therapy provides new options to address these challenges. Thanks to their special characteristics, bacteria have excellent ability to destroy tumor cells from the inside and induce innate and adaptive antitumor immune responses. Furthermore, bacterial components, including bacterial vesicles, spores, toxins, metabolites, and other active substances, similarly inherit their unique targeting properties and antitumor capabilities. Bacteria and their accessory products can even be reprogrammed to produce and deliver antitumor agents according to clinical needs. This review first discusses the role of different bacteria in the development of tumorigenesis and the latest advances in bacteria-based delivery platforms and the existing obstacles for application. Moreover, the prospect and challenges of clinical transformation of engineered bacteria are also summarized.
Collapse
Affiliation(s)
- Yao Liu
- Key Laboratory of Spine and Spinal Cord Injury Repairand Regeneration of Ministry of EducationOrthopaedic Department of Tongji Hospital, The Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghai200092P. R. China
- Pharmacy Department and Center for Medical Research and InnovationShanghai Pudong HospitalFudan University Pudong Medical CenterShanghai201399China
| | - Lili Niu
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Nannan Li
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Yang Wang
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Mingyang Liu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Xiaomin Su
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Xuhui Bao
- Institute for Therapeutic Cancer VaccinesFudan University Pudong Medical CenterShanghai201399China
| | - Bo Yin
- Institute for Therapeutic Cancer Vaccines and Department of OncologyFudan University Pudong Medical CenterShanghai201399China
| | - Shun Shen
- Pharmacy Department and Center for Medical Research and InnovationShanghai Pudong HospitalFudan University Pudong Medical CenterShanghai201399China
| |
Collapse
|
49
|
Zhang Y, Jin S, Li D, Chen G, Chen Y, Xia Q, Mao Q, Li Y, Yang J, Fan X, Lin H. A Machine-Learning-Based Bibliometric Analysis of Cell Membrane-Coated Nanoparticles in Biomedical Applications over the Past Eleven Years. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200206. [PMID: 37020629 PMCID: PMC10069317 DOI: 10.1002/gch2.202200206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/04/2023] [Indexed: 06/19/2023]
Abstract
Cell membrane encapsulation is a growing concept in nanomedicine, for it achieves the purpose of camouflage nanoparticles, realizing the convenience for drug delivery, bio-imaging, and detoxification. Cell membranes are constructed by bilayer lipid phospholipid layers, which have unique properties in cellular uptake mechanism, targeting ability, immunomodulation, and regeneration. Current medical applications of cell membranes include cancers, inflammations, regenerations, and so on. In this article, a general bibliometric overview is conducted of cell membrane-coated nanoparticles covering 11 years of evolution in order to provide researchers in the field with a comprehensive view of the relevant achievements and trends. The authors analyze the data from Web of Science Core Collection database, and extract the annual publications and citations, most productive countries/regions, most influential scholars, the collaborations of journals and institutions. The authors also divided cell membranes into several subgroups to further understand the application of different cell membranes in medical scenarios. This study summarizes the current research overview in cell membrane-coated nanoparticles and intuitively provides a direction for future research.
Collapse
Affiliation(s)
- Yiyin Zhang
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016P. R. China
| | - Shengxi Jin
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016P. R. China
| | - Duguang Li
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016P. R. China
| | - Guoqiao Chen
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016P. R. China
| | - Yongle Chen
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016P. R. China
| | - Qiming Xia
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016P. R. China
| | - Qijiang Mao
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016P. R. China
| | - Yiling Li
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016P. R. China
| | - Jing Yang
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016P. R. China
| | - Xiaoxiao Fan
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016P. R. China
| | - Hui Lin
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016P. R. China
- Zhejiang Engineering Research Center of Cognitive HealthcareSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016P. R. China
| |
Collapse
|
50
|
Wang WS, Ma XY, Zheng SY, Chen S, Fan JX, Liu F, Yan GP. Nucleus-Targeting Nanoplatform Based on Dendritic Peptide for Precise Photothermal Therapy. Polymers (Basel) 2023; 15:polym15071753. [PMID: 37050365 PMCID: PMC10096676 DOI: 10.3390/polym15071753] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Photothermal therapy directly acting on the nucleus is a potential anti-tumor treatment with higher killing efficiency. However, in practical applications, it is often difficult to achieve precise nuclear photothermal therapy because agents are difficult to accurately anchor to the nucleus. Therefore, it is urgent to develop a nanoheater that can accurately locate the nucleus. Here, we designed an amphiphilic arginine-rich dendritic peptide (RDP) with the sequence CRRK(RRCG(Fmoc))2, and prepared a nucleus-targeting nanoplatform RDP/I by encapsulating the photothermal agent IR780 in RDP for precise photothermal therapy of the tumor nucleus. The hydrophobic group Fmoc of the dendritic peptide provides strong hydrophobic force to firmly encapsulate IR780, which improves the solubility and stability of IR780. Moreover, the arginine-rich structure facilitates cellular uptake of RDP/I and endows it with the ability to quickly anchor to the nucleus. The nucleus-targeting nanoplatform RDP/I showed efficient nuclear enrichment ability and a significant tumor inhibition effect.
Collapse
|