1
|
Karthik CS, Skorjanc T, Shetty D. Fluorescent covalent organic frameworks - promising bioimaging materials. MATERIALS HORIZONS 2024; 11:2077-2094. [PMID: 38436072 DOI: 10.1039/d3mh01698f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Fluorescent covalent organic frameworks (COFs) have emerged as promising candidates for imaging living cells due to their unique properties and adjustable fluorescence. In this mini-review, we provide an overview of recent advancements in fluorescent COFs for bioimaging applications. We discuss the strategies used to design COFs with desirable properties such as high photostability, excellent biocompatibility, and pH sensitivity. Additionally, we explore the various ways in which fluorescent COFs are utilized in bioimaging, including cellular imaging, targeting specific organelles, and tracking biomolecules. We delve into their applications in sensing intracellular pH, reactive oxygen species (ROS), and specific biomarkers. Furthermore, we examine how functionalization techniques enhance the targeting and imaging capabilities of fluorescent COFs. Finally, we discuss the challenges and prospects in the field of fluorescent COFs for bioimaging in living cells, urging further research in this exciting area.
Collapse
Affiliation(s)
- Chimatahalli Santhakumar Karthik
- Department of Chemistry, SJCE, JSS Science and Technology University, Karnataka, 570 006, Mysore, India
- Department of Chemistry, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
- Center for Catalysis and Separations (CeCaS), Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Tina Skorjanc
- The Materials Research Laboratory, University of Nova Gorica, Vipavska 11c, 5270, Ajdovscina, Slovenia
| | - Dinesh Shetty
- Department of Chemistry, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
- Center for Catalysis and Separations (CeCaS), Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Safhi AY, Albariqi AH, Sabei FY, Alsalhi A, Khalil FMA, Waheed A, Arbi FM, White A, Anthony S, Alissa M. Journey into tomorrow: cardiovascular wellbeing transformed by nano-scale innovations. Curr Probl Cardiol 2024; 49:102428. [PMID: 38311274 DOI: 10.1016/j.cpcardiol.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Worldwide, cardiovascular diseases (CVDs) account for the vast majority of deaths and place enormous financial strains on healthcare systems. Gold nanoparticles, quantum dots, polymeric nanoparticles, carbon nanotubes, and lipids are innovative nanomaterials promising in tackling CVDs. In the setting of CVDs, these nanomaterials actively impact cellular responses due to their distinctive properties, including surface energy and topographies. Opportunities to more precisely target CVDs have arisen due to recent developments in nanomaterial science, which have introduced fresh approaches. An in-depth familiarity with the illness and its targeted mechanisms is necessary to use nanomaterials in CVDs effectively. We support the academic community's efforts to prioritize Nano-technological techniques in addressing risk factors linked with cardiovascular diseases, acknowledging the far-reaching effects of these conditions. The significant impact of nanotechnology on the early detection and treatment of cardiovascular diseases highlights the critical need for novel approaches to this pressing health problem, which is affecting people worldwide.
Collapse
Affiliation(s)
- Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Ahmed H Albariqi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fahad Y Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fatma Mohamed Ameen Khalil
- King Khalid University, Collage of Science and Art, Department of Biology, Mohayil Asir Abha 61421, Saudi Arabia
| | | | - Fawad Mueen Arbi
- Quaid-e-Azam Medical College, Bahawalpur, Punjab 63100, Pakistan
| | - Alexandra White
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China, PR China
| | - Stefan Anthony
- Cardiovascular Center of Excellence at Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
3
|
Ullah A, Ullah M, Lim SI. Recent advancements in nanotechnology based drug delivery for the management of cardiovascular disease. Curr Probl Cardiol 2024; 49:102396. [PMID: 38266693 DOI: 10.1016/j.cpcardiol.2024.102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Cardiovascular diseases (CVDs) constitute a predominant cause of both global mortality and morbidity. To address the challenges in the early diagnosis and management of CVDs, there is growing interest in the field of nanotechnology and nanomaterials to develop innovative diagnostic and therapeutic approaches. This review focuses on the recent advancements in nanotechnology-based diagnostic techniques, including cardiac immunoassays (CIA), cardiac circulating biomarkers, cardiac exosomal biomarkers, and molecular Imaging (MOI). Moreover, the article delves into the exciting developments in nanoparticles (NPs), biomimetic NPs, nanofibers, nanogels, and nanopatchs for cardiovascular applications. And discuss how these nanoscale technologies can improve the precision, sensitivity, and speed of CVD diagnosis and management. While highlighting their vast potential, we also address the limitations and challenges that must be overcome to harness these innovations successfully. Furthermore, this review focuses on the emerging opportunities for personalized and effective cardiovascular care through the integration of nanotechnology, ultimately aiming to reduce the global burden of CVDs.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Engineering Bldg#1, Rm1108, Busan 48513, Republic of Korea
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Engineering Bldg#1, Rm1108, Busan 48513, Republic of Korea.
| |
Collapse
|
4
|
Kim J, Lee S, Lee YK, Seong B, Kim HM, Kyeong S, Kim W, Ham K, Pham XH, Hahm E, Mun JY, Safaa MA, Lee YS, Jun BH, Park HS. In Vitro Tracking of Human Umbilical Vein Endothelial Cells Using Ultra-Sensitive Quantum Dot-Embedded Silica Nanoparticles. Int J Mol Sci 2023; 24:ijms24065794. [PMID: 36982869 PMCID: PMC10052325 DOI: 10.3390/ijms24065794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The nanoscale spatiotemporal resolution of single-particle tracking (SPT) renders it a powerful method for exploring single-molecule dynamics in living cells or tissues, despite the disadvantages of using traditional organic fluorescence probes, such as the weak fluorescent signal against the strong cellular autofluorescence background coupled with a fast-photobleaching rate. Quantum dots (QDs), which enable tracking targets in multiple colors, have been proposed as an alternative to traditional organic fluorescence dyes; however, they are not ideally suitable for applying SPT due to their hydrophobicity, cytotoxicity, and blinking problems. This study reports an improved SPT method using silica-coated QD-embedded silica nanoparticles (QD2), which represent brighter fluorescence and are less toxic than single QDs. After treatment of QD2 in 10 μg/mL, the label was retained for 96 h with 83.76% of labeling efficiency, without impaired cell function such as angiogenesis. The improved stability of QD2 facilitates the visualization of in situ endothelial vessel formation without real-time staining. Cells retain QD2 fluorescence signal for 15 days at 4 °C without significant photobleaching, indicating that QD2 has overcome the limitations of SPT enabling long-term intracellular tracking. These results proved that QD2 could be used for SPT as a substitute for traditional organic fluorophores or single quantum dots, with its photostability, biocompatibility, and superior brightness.
Collapse
Affiliation(s)
- Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Sunray Lee
- Stem Cell Niche Division, CEFO Research Center, Seoul 03150, Republic of Korea
| | - Yeon Kyung Lee
- Stem Cell Niche Division, CEFO Research Center, Seoul 03150, Republic of Korea
| | - Bomi Seong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyung-Mo Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - San Kyeong
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Wooyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyeongmin Ham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji Yeon Mun
- Stem Cell Niche Division, CEFO Research Center, Seoul 03150, Republic of Korea
| | | | - Yoon-Sik Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Sook Park
- Stem Cell Niche Division, CEFO Research Center, Seoul 03150, Republic of Korea
| |
Collapse
|
5
|
Saeed S, Ud Din SR, Khan SU, Gul R, Kiani FA, Wahab A, Zhong M. Nanoparticle: A Promising Player in Nanomedicine and its Theranostic Applications for the Treatment of Cardiovascular Diseases. Curr Probl Cardiol 2023; 48:101599. [PMID: 36681209 DOI: 10.1016/j.cpcardiol.2023.101599] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death around the world, a trend that will progressively grow over the next decade. Recently, with the advancement of nanotechnology, innovative nanoparticles (NPs) have been efficiently utilized in disease diagnosis and theranostic applications. In this review, we highlighted the benchmark summary of the recently synthesized NPs that are handy for imaging, diagnosis, and treatment of CVDs. NPs are the carrier of drug-delivery payloads actively reaching more areas of the heart and arteries, allowing them novel therapeutic agents for CVDs. Herein, due to the limited availability of literature, we only focused on NPs mechanism in the cardiovascular system and various treatment-based approaches that opens a new window for future research and versatile approach in the field of medical and clinical applications. Moreover, current challenges and limitations for the detection of CVDs has also discussed.
Collapse
Affiliation(s)
- Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Syed Riaz Ud Din
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, P.R China.
| | - Shahid Ullah Khan
- Women Medical and Dental College, Khyber Medical University, Khyber Pakhtunkhwa, Pakistan
| | - Rukhsana Gul
- Department of Chemistry, Kohat University of Science and Technology, Khyber Pakhtunkhwa, Pakistan
| | - Faisal Ayub Kiani
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakariyah University, Multan, 60800, Pakistan.
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan.
| | - Mintao Zhong
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, P.R China.
| |
Collapse
|
6
|
Chopra H, Bibi S, Mishra AK, Tirth V, Yerramsetty SV, Murali SV, Ahmad SU, Mohanta YK, Attia MS, Algahtani A, Islam F, Hayee A, Islam S, Baig AA, Emran TB. Nanomaterials: A Promising Therapeutic Approach for Cardiovascular Diseases. JOURNAL OF NANOMATERIALS 2022; 2022:1-25. [DOI: 10.1155/2022/4155729] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Cardiovascular diseases (CVDs) are a primary cause of death globally. A few classic and hybrid treatments exist to treat CVDs. However, they lack in both safety and effectiveness. Thus, innovative nanomaterials for disease diagnosis and treatment are urgently required. The tiny size of nanomaterials allows them to reach more areas of the heart and arteries, making them ideal for CVDs. Atherosclerosis causes arterial stenosis and reduced blood flow. The most common treatment is medication and surgery to stabilize the disease. Nanotechnologies are crucial in treating vascular disease. Nanomaterials may be able to deliver medications to lesion sites after being infused into the circulation. Newer point-of-care devices have also been considered together with nanomaterials. For example, this study will look at the use of nanomaterials in imaging, diagnosing, and treating CVDs.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091 Yunnan, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, 650091 Yunnan, China
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421 Asir, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, Abha, 61413 Asir, P.O. Box No. 9004, Saudi Arabia
| | - Sree Vandana Yerramsetty
- Department of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613402, India
| | - Sree Varshini Murali
- Department of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613402, India
| | - Syed Umair Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Yugal Kishore Mohanta
- Department of Applied Biology, University of Science and Technology Meghalaya, Ri-Bhoi 793101, India
| | - Mohamed S. Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ali Algahtani
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421 Asir, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, Abha, 61413 Asir, P.O. Box No. 9004, Saudi Arabia
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdul Hayee
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha, 61421 Asir, Saudi Arabia
| | - Atif Amin Baig
- Unit of Biochemistry, Faculty of Medicine, Universiti Sultan Zainal Abidin, Malaysia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
7
|
Ailuno G, Zuccari G, Baldassari S, Lai F, Caviglioli G. Anti-Vascular Cell Adhesion Molecule-1 Nanosystems: A Promising Strategy Against Inflammatory Based Diseases. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2793-2807. [PMID: 33653444 DOI: 10.1166/jnn.2021.19065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inflammation underlays the onset and supports the development of several worldwide diffused pathologies, therefore in the last decades inflammatory markers have attracted a great deal of interest as diagnostic and therapeutic targets. Adhesion molecules are membrane proteins expressed by endotheliocytes and leukocytes, acting as mediators in the process of tethering, rolling, firm adhesion and diapedesis that leads the immune cells to reach an inflamed tissue. Among them, the adhesion molecule VCAM-1 has been investigated as a potential target because of its low constitutive expression and easy accessibility on the endothelium. Moreover, VCAM-1 is involved in the early stages of development of several pathologies like, among others, atherosclerosis, cancer, Alzheimer's and Parkinson's diseases, so a diagnostic or therapeutic tool directed to this protein would allow specific detection and efficacious intervention. The availability of monoclonal antibodies against VCAM-1 has recently fostered the development of various targeting technologies potentially suitable for imaging and drug delivery in VCAM-1 overexpressing pathologies. In this review we initially focus on the structure and functions of VCAM-1, giving also a brief overview of antibodies origin, structure and function; then, we summarize some of the VCAM-1 targeting nanosystems based on antibodies, gathered according to the carrier used, for diagnosis or therapeutic treatment of different inflammatory based pathologies.
Collapse
Affiliation(s)
- Giorgia Ailuno
- Department of Pharmacy, Università di Genova, 16147 Genova, Italy
| | | | - Sara Baldassari
- Department of Pharmacy, Università di Genova, 16147 Genova, Italy
| | - Francesco Lai
- Department of Life and Environmental Sciences (DiSVA), Università di Cagliari, 09124 Cagliari, Italy
| | | |
Collapse
|
8
|
Abstract
Cardiovascular diseases (CVDs) are the world’s leading cause of mortality and represent a large contributor to the costs of medical care. Although tremendous progress has been made for the diagnosis of CVDs, there is an important need for more effective early diagnosis and the design of novel diagnostic methods. The diagnosis of CVDs generally relies on signs and symptoms depending on molecular imaging (MI) or on CVD-associated biomarkers. For early-stage CVDs, however, the reliability, specificity, and accuracy of the analysis is still problematic. Because of their unique chemical and physical properties, nanomaterial systems have been recognized as potential candidates to enhance the functional use of diagnostic instruments. Nanomaterials such as gold nanoparticles, carbon nanotubes, quantum dots, lipids, and polymeric nanoparticles represent novel sources to target CVDs. The special properties of nanomaterials including surface energy and topographies actively enhance the cellular response within CVDs. The availability of newly advanced techniques in nanomaterial science opens new avenues for the targeting of CVDs. The successful application of nanomaterials for CVDs needs a detailed understanding of both the disease and targeting moieties.
Collapse
|
9
|
Soomro T, Shah N, Niestrata-Ortiz M, Yap T, Normando EM, Cordeiro MF. Recent advances in imaging technologies for assessment of retinal diseases. Expert Rev Med Devices 2020; 17:1095-1108. [PMID: 32885710 DOI: 10.1080/17434440.2020.1816167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Retinal imaging is a key investigation in ophthalmology. New devices continue to be created to keep up with the demand for better imaging modalities in this field. This review looks to highlight current trends and the future of retinal imaging. AREAS COVERED This review looks at the advances in topographical imaging, photoacoustic microscopy, optical coherence tomography and molecular imaging. There is future scoping on further advances in retinal imaging. EXPERT OPINION Retinal imaging continues to develop at a rapid pace to improve diagnosis and management of patients. We will see the development of big data to gain powerful insights and new technologies such as teleophthalmology mature in the future.
Collapse
Affiliation(s)
- Taha Soomro
- Imperial College Ophthalmology Research Group, Western Eye Hospital , 153-173 Marylebone Road, London, UK
| | - Neil Shah
- Imperial College Ophthalmology Research Group, Western Eye Hospital , 153-173 Marylebone Road, London, UK
| | - Magdalena Niestrata-Ortiz
- Imperial College Ophthalmology Research Group, Western Eye Hospital , 153-173 Marylebone Road, London, UK
| | - Timothy Yap
- Imperial College Ophthalmology Research Group, Western Eye Hospital , 153-173 Marylebone Road, London, UK
| | - Eduardo M Normando
- Imperial College Ophthalmology Research Group, Western Eye Hospital , 153-173 Marylebone Road, London, UK
| | - M Francesca Cordeiro
- Imperial College Ophthalmology Research Group, Western Eye Hospital , 153-173 Marylebone Road, London, UK
| |
Collapse
|
10
|
Abstract
The term "nanotechnology" was coined by Norio Taniguchi in the 1970s to describe the manipulation of materials at the nano (10-9) scale, and the term "nanomedicine" was put forward by Eric Drexler and Robert Freitas Jr. in the 1990s to signify the application of nanotechnology in medicine. Nanomedicine encompasses a variety of systems including nanoparticles, nanofibers, surface nano-patterning, nanoporous matrices, and nanoscale coatings. Of these, nanoparticle-based applications in drug formulations and delivery have emerged as the most utilized nanomedicine system. This review aims to present a comprehensive assessment of nanomedicine approaches in vascular diseases, emphasizing particle designs, therapeutic effects, and current state-of-the-art. The expected advantages of utilizing nanoparticles for drug delivery stem from the particle's ability to (1) protect the drug from plasma-induced deactivation; (2) optimize drug pharmacokinetics and biodistribution; (3) enhance drug delivery to the disease site via passive and active mechanisms; (4) modulate drug release mechanisms via diffusion, degradation, and other unique stimuli-triggered processes; and (5) biodegrade or get eliminated safely from the body. Several nanoparticle systems encapsulating a variety of payloads have shown these advantages in vascular drug delivery applications in preclinical evaluation. At the same time, new challenges have emerged regarding discrepancy between expected and actual fate of nanoparticles in vivo, manufacturing barriers of complex nanoparticle designs, and issues of toxicity and immune response, which have limited successful clinical translation of vascular nanomedicine systems. In this context, this review will discuss challenges and opportunities to advance the field of vascular nanomedicine.
Collapse
Affiliation(s)
- Michael Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
11
|
Abstract
Purpose: The aim of the current review was to summarize the current applications, the latest advances and importantly, highlight research gaps in the use of quantum dots in the eye. Quantum dots are nanoscale semiconductor crystals with characteristic size and tunable optical properties, which deliver bright and stable fluorescence suitable for bioimaging and labelling. Methods: A systematic search was conducted following the PRISMA guidelines. This review systematically searched published data to summarize the characteristics and applications of quantum dots in ophthalmology. Two hundred and eighty published articles were initially selected for this review following searches using the criteria quantum dots AND nanoparticles AND ophthalmology in the databases PubMed, MEDLINE, Scopus, Embase and Web of Science. Results: After duplicates were removed, a total of 22 eligible articles were included for the review. Quantum dots potentially provide a range of diagnostic and therapeutic applications in ophthalmology. Quantum dots offer visible and near-infrared emission, which is highly desirable for bioimaging, due to reduced light scattering and low tissue absorption. Their applications include in vivo bioimaging, labelling of cells and tissues, delivery of genes or drugs and as antimicrobial composites. Conclusion: Quantum dots have been used in ophthalmology for bioimaging, electrical stimulation and tracking of gene/stems cells, and ocular lymphatics. However, there is no detailed description of their desirable characteristics for use in ophthalmology, and there is limited information about their cytotoxicity to ocular cells and tissues.
Collapse
Affiliation(s)
- Sidra Sarwat
- School of Optometry and Vision Science, University of New South Wales (UNSW) , Sydney , Australia
| | - Fiona Stapleton
- School of Optometry and Vision Science, University of New South Wales (UNSW) , Sydney , Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales (UNSW) , Sydney , Australia
| | - Maitreyee Roy
- School of Optometry and Vision Science, University of New South Wales (UNSW) , Sydney , Australia
| |
Collapse
|
12
|
Feenstra DJ, Seleci M, Denk N, Fauser S, Drawnel FM, Jayagopal A. Indocyanine green molecular angiography of choroidal neovascularization. Exp Eye Res 2018; 180:122-128. [PMID: 30582913 DOI: 10.1016/j.exer.2018.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 11/17/2022]
Abstract
Retinal diseases such as proliferative diabetic retinopathy and neovascular AMD are characterized by the formation of new blood vessels. Current imaging techniques such as fluorescein and ICG angiography help to identify areas of vascular leakage but are limited in their applicability due to their nonspecific nature. However, as new treatment paradigms emerge in an effort to have patient specific treatments, the development of new imaging techniques that are capable of identifying patient specific biomarkers will become crucial for the success of these approaches. In this study, we create and characterize an endoglin (CD105) targeted imaging probe that can be used for indocyanine green (ICG) molecular angiography. This anti-endoglin-ICG bioconjugate has a self-quenching "off-on" capacity to enable high contrast imaging of proliferative blood vessels at a molecular level in vivo. Using the laser CNV mouse model we demonstrate an approximate 3-fold increase in lesion visualization compared to non-targeting controls.
Collapse
Affiliation(s)
- Derrick J Feenstra
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Muharrem Seleci
- Institute of Technical Chemistry, Leibniz University of Hanover, Hanover, Germany
| | - Nora Denk
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Sascha Fauser
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Faye M Drawnel
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Ashwath Jayagopal
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland.
| |
Collapse
|
13
|
Pittet MJ, Garris CS, Arlauckas SP, Weissleder R. Recording the wild lives of immune cells. Sci Immunol 2018; 3:eaaq0491. [PMID: 30194240 PMCID: PMC6771424 DOI: 10.1126/sciimmunol.aaq0491] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Intravital microscopic imaging can uncover fundamental aspects of immune cell behavior in real time in both healthy and pathological states. Here, we discuss approaches for single-cell imaging of adaptive and innate immune cells to explore how they migrate, communicate, and mediate regulatory or effector functions in various tissues throughout the body. We further review how intravital single-cell imaging can be used to study drug effects on immune cells.
Collapse
Affiliation(s)
- Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA.
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christopher S Garris
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
- Graduate Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Sean P Arlauckas
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
14
|
Chen T, Li L, Xu G, Wang X, Wang J, Chen Y, Jiang W, Yang Z, Lin G. Cytotoxicity of InP/ZnS Quantum Dots With Different Surface Functional Groups Toward Two Lung-Derived Cell Lines. Front Pharmacol 2018; 9:763. [PMID: 30057549 PMCID: PMC6053512 DOI: 10.3389/fphar.2018.00763] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/22/2018] [Indexed: 01/14/2023] Open
Abstract
Although InP/ZnS quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based QDs, their toxicity has not been fully understood. In this work, we report the cytotoxicity of InP/ZnS QDs with different surface groups (NH2, COOH, OH) toward two lung-derived cell lines. The diameter and the spectra of InP/ZnS QDs were characterized and the hydrodynamic size of QDs in aqueous solution was compared. The confocal laser scanning microscopy was applied to visualize the labeling of QDs for human lung cancer cell HCC-15 and Alveolar type II epithelial cell RLE-6TN. The flow cytometry was used to confirm qualitatively the uptake efficiency of QDs, the cell apoptosis and ROS generation, respectively. The results showed that in deionized water, InP/ZnS-OH QDs were easier to aggregate, and the hydrodynamic size was much greater than the other InP/ZnS QDs. All these InP/ZnS QDs were able to enter the cells, with higher uptake efficiency for InP/ZnS-COOH and InP/ZnS-NH2 at low concentration. High doses of InP/ZnS QDs caused the cell viability to decrease, and InP/ZnS-COOH QDs and InP/ZnS-NH2 QDs appeared to be more toxic than InP/ZnS-OH QDs. In addition, all these InP/ZnS QDs promoted cell apoptosis and intracellular ROS generation after co-cultured with cells. These results suggested that appropriate concentration and surface functional groups should be optimized when InP/ZnS QDs are utilized for biological imaging and therapeutic purpose in the future.
Collapse
Affiliation(s)
- Ting Chen
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, China.,Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Li Li
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, China.,Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Gaixia Xu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Xiaomei Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, China
| | - Jie Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, China
| | - Yajing Chen
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, China
| | - Wenxiao Jiang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, China
| | - Zhiwen Yang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, China
| | - Guimiao Lin
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, China
| |
Collapse
|
15
|
Abstract
Purpose of review Progress in stem cell research for blinding diseases over the past decade is now being applied to patients with retinal degenerative diseases and soon perhaps, glaucoma. However, the field still has much to learn about the conversion of stem cells into various retinal cell types, and the potential delivery methods that will be required to optimize the clinical efficacy of stem cells delivered into the eye. Recent findings Recent groundbreaking human clinical trials have demonstrated both the opportunities and current limitations of stem cell transplantation for retinal diseases. New progress in developing in vitro retinal organoids, coupled with the maturation of bio-printing technology, and non-invasive high-resolution imaging have created new possibilities for repairing and regenerating the diseased retina and rigorously validating its clinical impact in vivo. Summary While promising progress is being made, meticulous clinical trials with cells derived using good manufacturing practice, novel surgical methods, and improved methods to derive all of the neuronal cell types present in the retina will be indispensable for developing stem cell transplantation as a paradigm shift for the treatment of blinding diseases.
Collapse
|
16
|
Zhao Y, Zhang Y, Qin G, Cheng J, Zeng W, Liu S, Kong H, Wang X, Wang Q, Qu H. In vivo biodistribution and behavior of CdTe/ZnS quantum dots. Int J Nanomedicine 2017; 12:1927-1939. [PMID: 28331316 PMCID: PMC5352250 DOI: 10.2147/ijn.s121075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The unique features of quantum dots (QDs) make them desirable fluorescent tags for cell and developmental biology applications that require long-term, multitarget, and highly sensitive imaging. In this work, we imaged fluorescent cadmium telluride/zinc sulfide (CdTe/ZnS) QDs in organs, tissues, and cells, and analyzed the mechanism of their lymphatic uptake and cellular distribution. We observed that the fluorescent CdTe/ZnS QDs were internalized by lymph nodes in four cell lines from different tissue sources. We obtained the fluorescence intensity–QD concentrations curve by quantitative analysis. Our results demonstrate that cells containing QDs can complete mitosis normally and that distribution of QDs was uniform across cell types and involved the vesicular transport system, including the endoplasmic reticulum. This capacity for CdTe/ZnS QD targeting provides insights into the applicability and limitations of fluorescent QDs for imaging biological specimens.
Collapse
Affiliation(s)
- Yan Zhao
- School of Basic Medical Sciences
| | | | | | | | | | | | - Hui Kong
- School of Basic Medical Sciences
| | | | | | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
17
|
Cadmium-containing quantum dots: properties, applications, and toxicity. Appl Microbiol Biotechnol 2017; 101:2713-2733. [PMID: 28251268 DOI: 10.1007/s00253-017-8140-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 01/20/2023]
Abstract
The marriage of biology with nanomaterials has significantly accelerated advancement of biological techniques, profoundly facilitating practical applications in biomedical fields. With unique optical properties (e.g., tunable broad excitation, narrow emission spectra, robust photostability, and high quantum yield), fluorescent quantum dots (QDs) have been reasonably functionalized with controllable interfaces and extensively used as a new class of optical probe in biological researches. In this review, we summarize the recent progress in synthesis and properties of QDs. Moreover, we provide an overview of the outstanding potential of QDs for biomedical research and innovative methods of drug delivery. Specifically, the applications of QDs as novel fluorescent nanomaterials for biomedical sensing and imaging have been detailedly highlighted and discussed. In addition, recent concerns on potential toxicity of QDs are also introduced, ranging from cell researches to animal models.
Collapse
|
18
|
Purohit R, Vallabani NVS, Shukla RK, Kumar A, Singh S. Effect of gold nanoparticle size and surface coating on human red blood cells. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2016. [DOI: 10.1680/jbibn.15.00018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
This paper reports the impact of bovine serum albumin (BSA) coating on gold (Au) nanoparticles (NPs) with sizes of 15, 30, 50 and 70 nm on cellular uptake and haemolysis of human red blood cells (RBCs). BSA coating on gold NPs imparts extra stability in high-glutathione-containing medium, which is a major prerequisite for NPs being developed for delivery applications. BSA coating on gold NPs was characterised by Fourier transform infrared spectroscopy, whereas cellular uptake was estimated by ultraviolet–visible spectrophotometry and flow cytometry. The cellular uptake results show that the internalisation of bare gold NPs is size dependent; however, upon BSA conjugation, uptake becomes independent of particle size. Cytocompatibility of bare and BSA-coated gold NPs was assessed by MTT assay, a common method to evaluate the biocompatibility of nanomaterials, and found non-toxic. However, when bare gold NPs were exposed to human RBCs, the NPs exerted significant haemolysis, which suggests that bare gold NPs which are considered as non-toxic to mammalian cells, can be harmful to RBCs. Interestingly, BSA-coated gold NPs showed significantly lower haemolysis at similar concentrations, suggesting that BSA-coated gold NPs could be of great importance in biomedical applications.
Collapse
Affiliation(s)
- Rahul Purohit
- Institute of Life Sciences, School of Science and Technology, Ahmedabad University, Ahmedabad, India
| | - NV Srikanth Vallabani
- Institute of Life Sciences, School of Science and Technology, Ahmedabad University, Ahmedabad, India
| | - Ritesh K. Shukla
- Institute of Life Sciences, School of Science and Technology, Ahmedabad University, Ahmedabad, India
| | - Ashutosh Kumar
- Institute of Life Sciences, School of Science and Technology, Ahmedabad University, Ahmedabad, India
| | - Sanjay Singh
- Institute of Life Sciences, School of Science and Technology, Ahmedabad University, Ahmedabad, India
| |
Collapse
|
19
|
You S, Luo J, Grossniklaus HE, Gou ML, Meng K, Zhang Q. Nanomedicine in the application of uveal melanoma. Int J Ophthalmol 2016; 9:1215-25. [PMID: 27588278 DOI: 10.18240/ijo.2016.08.20] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/16/2016] [Indexed: 12/28/2022] Open
Abstract
Rapid advances in nanomedicine have significantly changed many aspects of nanoparticle application to the eye including areas of diagnosis, imaging and more importantly drug delivery. The nanoparticle-based drug delivery systems has provided a solution to various drug solubility-related problems in ophthalmology treatment. Nanostructured compounds could be used to achieve local ocular delivery with minimal unwanted systematic side effects produced by taking advantage of the phagocyte system. In addition, the in vivo control release by nanomaterials encapsulated drugs provides prolong exposure of the compound in the body. Furthermore, certain nanoparticles can overcome important body barriers including the blood-retinal barrier as well as the corneal-retinal barrier of the eye for effective delivery of the drug. In summary, the nanotechnology based drug delivery system may serve as an important tool for uveal melanoma treatment.
Collapse
Affiliation(s)
- Shuo You
- Department of Endocrinology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China; Winship Cancer Institute, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Jing Luo
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Hans E Grossniklaus
- Winship Cancer Institute, School of Medicine, Emory University, Atlanta, Georgia 30322, USA; Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA; Department of Pathology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Ma-Ling Gou
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ke Meng
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qing Zhang
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China; Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
20
|
Gao P, Pinkston KL, Wilganowski N, Robinson H, Azhdarinia A, Zhu B, Sevick-Muraca EM, Harvey BR. Deglycosylation of mAb by EndoS for improved molecular imaging. Mol Imaging Biol 2015; 17:195-203. [PMID: 25135058 DOI: 10.1007/s11307-014-0781-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Monoclonal antibodies (mAbs) have been shown preclinically as reliable targeting moieties for antigen imaging using near-infrared fluorescence (NIRF) molecular imaging. However, crystallizable fragment-gamma receptor (FcγRs) expressed on immune cells also bind mAbs through defined epitopes on the constant fragment (Fc) of IgG. Herein, we evaluate the potential impact Fc interactions have on mAb agent imaging specificity. PROCEDURE Through the removal of conserved glycans within the Fc domain, shown to have Fc/FcγR interactions, we evaluate their impact on non-specific binding/accumulation of a NIRF-labeled mAb-based imaging agent in lymph nodes (LNs) in inflamed animals and in an orthotopic prostate cancer animal model of LN metastasis. RESULTS Deglycosylation of a murine mAb against the human epithelial cell adhesion marker using endoglycosidase EndoS significantly reduced non-specific binding in the LNs of inflamed animals and in cancer-negative LNs of tumor-bearing animals. Sensitivity remained unchanged while improvement in imaging specificity increased imaging accuracy. CONCLUSION The reduction of non-specific binding through deglycosylation of a mAb-based imaging agent shows that reducing Fc/FcγR interactions can improve imaging accuracy.
Collapse
Affiliation(s)
- Peng Gao
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, 1825 Pressler Street, Houston, TX, 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Rodriguez-Torres MR, Velez C, Zayas B, Rivera O, Arslan Z, Gonzalez-Vega MN, Diaz-Diestra D, Beltran-Huarac J, Morell G, Primera-Pedrozo OM. Cytocompatibility of direct water synthesized cadmium selenide quantum dots in colo-205 cells. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2015; 17:266. [PMID: 26949369 PMCID: PMC4777355 DOI: 10.1007/s11051-015-3064-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cadmium selenide quantum dots (CdSe QDs), inorganic semiconducting nanocrystals, are alluring increased attraction due to their highly refined chemistry, availability, and super tunable optical properties suitable for many applications in different research areas, such as photovoltaics, light-emitting devices, environmental sciences, and nanomedicine. Specifically, they are being widely used in bio-imaging in contrast to organic dyes due to their high brightness and improved photo-stability, and their ability to tune their absorption and emission spectra upon changing the crystal size. The production of CdSe QDs is mostly assisted by trioctylphosphine oxide compound, which acts as solvent or solubilizing agent and renders the QDs soluble in organic compounds (such as toluene, chloroform, and hexane) that are highly toxic. To circumvent the toxicity-related factor in CdSe QDs, we report the synthesis of CdSe QDs capped with thioglycolic acid (TGA) in an aqueous medium, and their biocompatibility in colo-205 cancer cells. In this study, the [Cd2+]/[TGA] ratio was adjusted to 11:1 and the Se concentration (10 and 15 mM) was monitored in order to evaluate its influence on the optical properties and cytocompatibility. QDs resulted to be quite stable in water (after purification) and RPMI cell medium and no precipitation was observed for long contact times, making them appealing for in vitro experiments. The spectroscopy analysis, advanced electron microscopy, and X-ray diffractometry studies indicate that the final products were successfully formed exhibiting an improved optical response. Colo-205 cells being exposed to different concentrations of TGA-capped CdSe QDs for 12, 24, and 48 h with doses ranging from 0.5 to 2.0 mM show high tolerance reaching cell viabilities as high as 93 %. No evidence of cellular apoptotic pathways was observed as pointed out by our Annexin V assays at higher concentrations. Moreover, confocal microscopy analysis conducted to evaluate the intracellular uptake of TGA-CdSe QDs reveal that the TGA-CdSe QDs were uniformly distributed within the cytosolic side of cell membranes. Our results also suggest that under controlled conditions, direct water-soluble TGA-CdSe QDs can be potentially employed for bio-imaging colo-205 cancer cells with minimal adverse effects.
Collapse
Affiliation(s)
- Marcos R. Rodriguez-Torres
- Nanomaterials Science Laboratory, School of Science and Technology, Universidad Metropolitana, San Juan, PR, USA
| | - Christian Velez
- ChemTox Laboratory, School of Environmental Affairs, Universidad Metropolitana, San Juan, PR, USA
| | - Beatriz Zayas
- ChemTox Laboratory, School of Environmental Affairs, Universidad Metropolitana, San Juan, PR, USA
| | - Osvaldo Rivera
- Nanomaterials Science Laboratory, School of Science and Technology, Universidad Metropolitana, San Juan, PR, USA
| | - Zikri Arslan
- Department of Chemistry, Jackson State University, Jackson, MS, USA
| | - Maxine N. Gonzalez-Vega
- Nanomaterials Science Laboratory, School of Science and Technology, Universidad Metropolitana, San Juan, PR, USA
| | - Daysi Diaz-Diestra
- Molecular Science Research Center, University of Puerto Rico, San Juan, PR 00926, USA
- Department of Chemistry, University of Puerto Rico, San Juan, PR 00936, USA
| | - Juan Beltran-Huarac
- Molecular Science Research Center, University of Puerto Rico, San Juan, PR 00926, USA
- Department of Physics, University of Puerto Rico, San Juan, PR 00936, USA
| | - Gerardo Morell
- Molecular Science Research Center, University of Puerto Rico, San Juan, PR 00926, USA
- Department of Physics, University of Puerto Rico, San Juan, PR 00936, USA
| | - Oliva M. Primera-Pedrozo
- Nanomaterials Science Laboratory, School of Science and Technology, Universidad Metropolitana, San Juan, PR, USA
| |
Collapse
|
22
|
Zuidema MY, Korthuis RJ. Intravital microscopic methods to evaluate anti-inflammatory effects and signaling mechanisms evoked by hydrogen sulfide. Methods Enzymol 2015; 555:93-125. [PMID: 25747477 PMCID: PMC4722536 DOI: 10.1016/bs.mie.2014.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) is an endogenous gaseous signaling molecule with potent anti-inflammatory properties. Exogenous application of H2S donors, administered either acutely during an inflammatory response or as an antecedent preconditioning intervention that invokes the activation of anti-inflammatory cell survival programs, effectively limits leukocyte rolling, adhesion and emigration, generation of reactive oxygen species, chemokine and cell adhesion molecule expression, endothelial barrier disruption, capillary perfusion deficits, and parenchymal cell dysfunction and injury. This chapter focuses on intravital microscopic methods that can be used to assess the anti-inflammatory effects exerted by H2S, as well as to explore the cellular signaling mechanisms by which this gaseous molecule limits the aforementioned inflammatory responses. Recent advances include use of intravital multiphoton microscopy and optical biosensor technology to explore signaling mechanisms in vivo.
Collapse
Affiliation(s)
- Mozow Y Zuidema
- Harry S. Truman Veterans Administration Hospital, Cardiology, Columbia, Missouri, USA
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology, School of Medicine, One Hospital Drive, University of Missouri, Columbia, Missouri, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
23
|
Geng J, Goh CC, Qin W, Liu R, Tomczak N, Ng LG, Tang BZ, Liu B. Silica shelled and block copolymer encapsulated red-emissive AIE nanoparticles with 50% quantum yield for two-photon excited vascular imaging. Chem Commun (Camb) 2015. [DOI: 10.1039/c5cc03603h] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polymer and silica co-protection strategy has been developed to encapsulate organic fluorogens with aggregation-induced emission and charge transfer characteristics into small nanoparticles (NPs).
Collapse
Affiliation(s)
- Junlong Geng
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore Immunology Network (SIgN)
- A*STAR (Agency for Science, Technology and Research)
| | - Chi Ching Goh
- Institute of Materials Research and Engineering
- Singapore 117602
| | - Wei Qin
- Department of Chemistry
- Division of Biomedical Engineering
- The Hong Kong University of Science and Technology
- Kowloon
- China
| | - Rongrong Liu
- Singapore Immunology Network (SIgN)
- A*STAR (Agency for Science, Technology and Research)
- Singapore 138648
| | - Nikodem Tomczak
- Singapore Immunology Network (SIgN)
- A*STAR (Agency for Science, Technology and Research)
- Singapore 138648
| | - Lai Guan Ng
- Institute of Materials Research and Engineering
- Singapore 117602
| | - Ben Zhong Tang
- Department of Chemistry
- Division of Biomedical Engineering
- The Hong Kong University of Science and Technology
- Kowloon
- China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore Immunology Network (SIgN)
- A*STAR (Agency for Science, Technology and Research)
| |
Collapse
|
24
|
Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 2015; 44:4792-4834. [DOI: 10.1039/c4cs00532e] [Citation(s) in RCA: 564] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Colourful cells and tissues: semiconductor quantum dots and their versatile applications in multiplexed bioimaging research.
Collapse
Affiliation(s)
- K. David Wegner
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- 91405 Orsay Cedex
- France
| | - Niko Hildebrandt
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- 91405 Orsay Cedex
- France
| |
Collapse
|
25
|
Zhu Y, Hong H, Xu ZP, Li Z, Cai W. Quantum dot-based nanoprobes for in vivo targeted imaging. Curr Mol Med 2014; 13:1549-67. [PMID: 24206136 DOI: 10.2174/1566524013666131111121733] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 05/30/2013] [Accepted: 10/02/2013] [Indexed: 02/06/2023]
Abstract
Fluorescent semiconductor quantum dots (QDs) have attracted tremendous attention over the last decade. The superior optical properties of QDs over conventional organic dyes make them attractive labels for a wide variety of biomedical applications, whereas their potential toxicity and instability in biological environment have puzzled scientific researchers. Much research effort has been devoted to surface modification and functionalization of QDs to make them versatile probes for biomedical applications, and significant progress has been made over the last several years. This review article aims to describe the current state-of-the-art of the synthesis, modification, bioconjugation, and applications of QDs for in vivo targeted imaging. In addition, QD-based multifunctional nanoprobes are also summarized.
Collapse
Affiliation(s)
- Y Zhu
- (W. Cai) Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Room 7137, 1111 Highland Avenue, Madison, WI 53705-2275, USA.
| | | | | | | | | |
Collapse
|
26
|
Obermeyer AC, Capehart SL, Jarman JB, Francis MB. Multivalent viral capsids with internal cargo for fibrin imaging. PLoS One 2014; 9:e100678. [PMID: 24960118 PMCID: PMC4069081 DOI: 10.1371/journal.pone.0100678] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 05/30/2014] [Indexed: 12/25/2022] Open
Abstract
Thrombosis is the cause of many cardiovascular syndromes and is a significant contributor to life-threatening diseases, such as myocardial infarction and stroke. Thrombus targeted imaging agents have the capability to provide molecular information about pathological clots, potentially improving detection, risk stratification, and therapy of thrombosis-related diseases. Nanocarriers are a promising platform for the development of molecular imaging agents as they can be modified to have external targeting ligands and internal functional cargo. In this work, we report the synthesis and use of chemically functionalized bacteriophage MS2 capsids as biomolecule-based nanoparticles for fibrin imaging. The capsids were modified using an oxidative coupling reaction, conjugating ∼90 copies of a fibrin targeting peptide to the exterior of each protein shell. The ability of the multivalent, targeted capsids to bind fibrin was first demonstrated by determining the impact on thrombin-mediated clot formation. The modified capsids out-performed the free peptides and were shown to inhibit clot formation at effective concentrations over ten-fold lower than the monomeric peptide alone. The installation of near-infrared fluorophores on the interior surface of the capsids enabled optical detection of binding to fibrin clots. The targeted capsids bound to fibrin, exhibiting higher signal-to-background than control, non-targeted MS2-based nanoagents. The in vitro assessment of the capsids suggests that fibrin-targeted MS2 capsids could be used as delivery agents to thrombi for diagnostic or therapeutic applications.
Collapse
Affiliation(s)
- Allie C. Obermeyer
- Department of Chemistry, University of California, Berkeley, California, United States of America
| | - Stacy L. Capehart
- Department of Chemistry, University of California, Berkeley, California, United States of America
| | - John B. Jarman
- Department of Chemistry, University of California, Berkeley, California, United States of America
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, California, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Rowe-Rendleman CL, Durazo SA, Kompella UB, Rittenhouse KD, Di Polo A, Weiner AL, Grossniklaus HE, Naash MI, Lewin AS, Horsager A, Edelhauser HF. Drug and gene delivery to the back of the eye: from bench to bedside. Invest Ophthalmol Vis Sci 2014; 55:2714-30. [PMID: 24777644 DOI: 10.1167/iovs.13-13707] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
28
|
Bruckman M, Jiang K, Simpson EJ, Randolph LN, Luyt LG, Yu X, Steinmetz NF. Dual-modal magnetic resonance and fluorescence imaging of atherosclerotic plaques in vivo using VCAM-1 targeted tobacco mosaic virus. NANO LETTERS 2014; 14:1551-8. [PMID: 24499194 PMCID: PMC4169141 DOI: 10.1021/nl404816m] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 02/02/2014] [Indexed: 05/04/2023]
Abstract
The underlying cause of major cardiovascular events, such as myocardial infarctions and strokes, is atherosclerosis. For accurate diagnosis of this inflammatory disease, molecular imaging is required. Toward this goal, we sought to develop a nanoparticle-based, high aspect ratio, molecularly targeted magnetic resonance (MR) imaging contrast agent. Specifically, we engineered the plant viral nanoparticle platform tobacco mosaic virus (TMV) to target vascular cell adhesion molecule (VCAM)-1, which is highly expressed on activated endothelial cells at atherosclerotic plaques. To achieve dual optical and MR imaging in an atherosclerotic ApoE(-/-) mouse model, TMV was modified to carry near-infrared dyes and chelated Gd ions. Our results indicate molecular targeting of atherosclerotic plaques. On the basis of the multivalency and multifunctionality, the targeted TMV-based MR probe increased the detection limit significantly; the injected dose of Gd ions could be further reduced 400x compared to the suggested clinical use, demonstrating the utility of targeted nanoparticle cargo delivery.
Collapse
Affiliation(s)
- Michael
A. Bruckman
- Department of Biomedical Engineering, Department of Radiology, Department of Materials
Science and Engineering, and Department of Macromolecular Engineering, Case Western Reserve University Schools of Medicine
and Engineering, 10900
Euclid Avenue, Cleveland, Ohio 44106, United
States
| | - Kai Jiang
- Department of Biomedical Engineering, Department of Radiology, Department of Materials
Science and Engineering, and Department of Macromolecular Engineering, Case Western Reserve University Schools of Medicine
and Engineering, 10900
Euclid Avenue, Cleveland, Ohio 44106, United
States
| | - Emily J. Simpson
- Departments
of Chemistry, Oncology, Medical Imaging, The University of Western Ontario, London, Ontario N6A 4L6, Canada
| | - Lauren N. Randolph
- Department of Biomedical Engineering, Department of Radiology, Department of Materials
Science and Engineering, and Department of Macromolecular Engineering, Case Western Reserve University Schools of Medicine
and Engineering, 10900
Euclid Avenue, Cleveland, Ohio 44106, United
States
| | - Leonard G. Luyt
- Departments
of Chemistry, Oncology, Medical Imaging, The University of Western Ontario, London, Ontario N6A 4L6, Canada
| | - Xin Yu
- Department of Biomedical Engineering, Department of Radiology, Department of Materials
Science and Engineering, and Department of Macromolecular Engineering, Case Western Reserve University Schools of Medicine
and Engineering, 10900
Euclid Avenue, Cleveland, Ohio 44106, United
States
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Department of Radiology, Department of Materials
Science and Engineering, and Department of Macromolecular Engineering, Case Western Reserve University Schools of Medicine
and Engineering, 10900
Euclid Avenue, Cleveland, Ohio 44106, United
States
| |
Collapse
|
29
|
Trese MT, Kashani AH. Advances in the diagnosis, management and pathophysiology of capillary nonperfusion. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.12.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Abstract
There has been a significant amount of research done on liposomes and nanoparticles as drug carriers for protein drugs. Proteins and enzymes have been used both as targeting moieties and for their therapeutic potential. High specificity and rapid reaction rates make proteins and enzymes excellent candidates for therapeutic treatment, but some limitations exist. Many of these limitations can be addressed by a well studied nanotechnology based delivery system. Such a system can provide a medium for delivery, stabilization of the drugs, and enable site specific accumulation of drugs. Nanomedicines such as these have great potential to revolutionize the pharmaceutical industry and improve healthcare worldwide.
Collapse
Affiliation(s)
- John N Barry
- Department of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, SC 29634, United States,
| | - Alexey A Vertegel
- Department of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, SC 29634, United States,
| |
Collapse
|
31
|
Abstract
Endothelial cells represent important targets for therapeutic and diagnostic interventions in many cardiovascular, pulmonary, neurological, inflammatory, and metabolic diseases. Targeted delivery of drugs (especially potent and labile biotherapeutics that require specific subcellular addressing) and imaging probes to endothelium holds promise to improve management of these maladies. In order to achieve this goal, drug cargoes or their carriers including liposomes and polymeric nanoparticles are chemically conjugated or fused using recombinant techniques with affinity ligands of endothelial surface molecules. Cell adhesion molecules, constitutively expressed on the endothelial surface and exposed on the surface of pathologically altered endothelium—selectins, VCAM-1, PECAM-1, and ICAM-1—represent good determinants for such a delivery. In particular, PECAM-1 and ICAM-1 meet criteria of accessibility, safety, and relevance to the (patho)physiological context of treatment of inflammation, ischemia, and thrombosis and offer a unique combination of targeting options including surface anchoring as well as intra- and transcellular targeting, modulated by parameters of the design of drug delivery system and local biological factors including flow and endothelial phenotype. This review includes analysis of these factors and examples of targeting selected classes of therapeutics showing promising results in animal studies, supporting translational potential of these interventions.
Collapse
|
32
|
Abstract
Atherosclerosis, a leading cause of morbidity and mortality worldwide, is characterized by the accumulation of lipid deposits inside arterial walls, leading to narrowing of the arterial lumen. A significant challenge in the development of diagnostic and therapeutic strategies is to elucidate the contribution of the various cellular participants, including macrophages, endothelial cells, and smooth muscle cells, in the initiation and progression of the atheroma. This protocol details a strategy using quantum dot nanocrystals to monitor homing and distribution of cell populations within atherosclerotic lesions with high signal to noise ratios over prolonged periods of analysis. This fluorescence-based approach enables the loading of quantum dots into cells such as macrophages without perturbing native cell functions in vivo, and has been used for the multiplexed imaging of quantum dot-labeled cells with biomarkers of atherosclerotic disease using conventional immunofluorescence techniques.
Collapse
|
33
|
Cassette E, Helle M, Bezdetnaya L, Marchal F, Dubertret B, Pons T. Design of new quantum dot materials for deep tissue infrared imaging. Adv Drug Deliv Rev 2013; 65:719-31. [PMID: 22981756 DOI: 10.1016/j.addr.2012.08.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 07/11/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
Abstract
Near infrared fluorescence offers several advantages for tissue and in vivo imaging thanks to deeper photon penetration. In this article, we review a promising class of near infrared emitting probes based on semiconductor quantum dots (QDs), which have the potential to considerably improve in vivo fluorescence imaging thanks to their high brightness and stability. We discuss in particular the different criteria to optimize the design of near infrared QDs. We present the recent developments in the synthesis of novel QD materials and their different in vivo imaging applications, including lymph node localization, vasculature imaging, tumor localization, as well as cell tracking and QD-based multimodal probes.
Collapse
|
34
|
Zern BJ, Chacko AM, Liu J, Greineder CF, Blankemeyer ER, Radhakrishnan R, Muzykantov V. Reduction of nanoparticle avidity enhances the selectivity of vascular targeting and PET detection of pulmonary inflammation. ACS NANO 2013; 7:2461-9. [PMID: 23383962 PMCID: PMC3609928 DOI: 10.1021/nn305773f] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Targeting nanoparticles (NPs) loaded with drugs and probes to precise locations in the body may improve the treatment and detection of many diseases. Generally, to achieve targeting, affinity ligands are introduced on the surface of NPs that can bind to molecules present on the cell of interest. Optimization of ligand density is a critical parameter in controlling NP binding to target cells, and a higher ligand density is not always the most effective. In this study, we investigated how NP avidity affects targeting to the pulmonary vasculature, using NPs targeted to ICAM-1. This cell adhesion molecule is expressed by quiescent endothelium at modest levels and is upregulated in a variety of pathological settings. NP avidity was controlled by ligand density, with the expected result that higher avidity NPs demonstrated greater pulmonary uptake than lower avidity NPs in both naive and pathological mice. However, in comparison with high-avidity NPs, low-avidity NPs exhibited several-fold higher selectivity of targeting to pathological endothelium. This finding was translated into a PET imaging platform that was more effective in detecting pulmonary vascular inflammation using low-avidity NPs. Furthermore, computational modeling revealed that elevated expression of ICAM-1 on the endothelium is critical for multivalent anchoring of NPs with low avidity, while high-avidity NPs anchor effectively to both quiescent and activated endothelium. These results provide a paradigm that can be used to optimize NP targeting by manipulating ligand density and may find biomedical utility for increasing detection of pathological vasculature.
Collapse
Affiliation(s)
- Blaine J. Zern
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| | - Ann-Marie Chacko
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Jin Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164
| | - Colin F. Greineder
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Vladimir Muzykantov
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
- Address correspondence to:
| |
Collapse
|
35
|
Capozzi ME, Gordon AY, Penn JS, Jayagopal A. Molecular imaging of retinal disease. J Ocul Pharmacol Ther 2013; 29:275-86. [PMID: 23421501 DOI: 10.1089/jop.2012.0279] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Imaging of the eye plays an important role in ocular therapeutic discovery and evaluation in preclinical models and patients. Advances in ophthalmic imaging instrumentation have enabled visualization of the retina at an unprecedented resolution. These developments have contributed toward early detection of the disease, monitoring of disease progression, and assessment of the therapeutic response. These powerful technologies are being further harnessed for clinical applications by configuring instrumentation to detect disease biomarkers in the retina. These biomarkers can be detected either by measuring the intrinsic imaging contrast in tissue, or by the engineering of targeted injectable contrast agents for imaging of the retina at the cellular and molecular level. Such approaches have promise in providing a window on dynamic disease processes in the retina such as inflammation and apoptosis, enabling translation of biomarkers identified in preclinical and clinical studies into useful diagnostic targets. We discuss recently reported and emerging imaging strategies for visualizing diverse cell types and molecular mediators of the retina in vivo during health and disease, and the potential for clinical translation of these approaches.
Collapse
Affiliation(s)
- Megan E Capozzi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-8808, USA
| | | | | | | |
Collapse
|
36
|
Imaging of endothelial progenitor cell subpopulations in angiogenesis using quantum dot nanocrystals. Methods Mol Biol 2013; 1026:45-56. [PMID: 23749568 DOI: 10.1007/978-1-62703-468-5_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the last decade, research has identified a class of bone marrow-derived circulating stem cells, termed endothelial progenitor cells (EPCs), that are capable of homing to vascular lesions in the eye and contributing to pathological ocular neovascularization (NV). In preclinical and biological studies, EPCs are -frequently identified and tracked using a intracellularly loaded fluorescent tracer, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbo cyanine perchlorate-labeled acetylated LDL (DiI-acLDL). However, this method is limited by photobleaching and insufficient quantum efficiency for long-term imaging applications. We have developed a method for conjugation of high quantum efficiency, photostable, and multispectral quantum dot nanocrystals (QD) to acLDL for long-term tracking of EPCs with improved signal-to-noise ratios. Specifically, we conjugated QD to acLDL (QD-acLDL) and used this conjugated fluorophore to label a specific CD34(+) subpopulation of EPCs isolated from rat bone marrow. We then utilized this method to track CD34(+) EPCs in a rat model of laser-induced choroidal neovascularization (LCNV) to evaluate its potential for tracking EPCs in ocular angiogenesis, a critical pathologic feature of several blinding conditions.
Collapse
|
37
|
Sun M, Yang L, Jose P, Wang L, Zweit J. Functionalization of quantum dots with multidentate zwitterionic ligands: impact on cellular interactions and cytotoxicity. J Mater Chem B 2013; 1:6137-6146. [DOI: 10.1039/c3tb20894j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Pericleous P, Gazouli M, Lyberopoulou A, Rizos S, Nikiteas N, Efstathopoulos EP. Quantum dots hold promise for early cancer imaging and detection. Int J Cancer 2012; 131:519-28. [PMID: 22411309 DOI: 10.1002/ijc.27528] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 02/27/2012] [Indexed: 01/21/2023]
Abstract
Despite all major breakthroughs in recent years of research concerning the complex events that lead to cancer expression and metastasis, we are not yet able to effectively treat cancer that has spread to vital organs. The various clinical phases originating from cancer diagnosis through treatment and prognosis require a comprehensive understanding of these events, to utilise pre-symptomatic, minimally invasive and targeted cancer management techniques. Current imaging modalities such as ultrasound, computed tomography, magnetic resonance imaging and gamma scintigraphy facilitate the pre-operative study of tumours, but they have been rendered unable to visualise cancer in early stages, due to their intrinsic limitations. The semiconductor nanocrystal quantum dots (QDs) have excellent photo-physical properties, and the QDs-based probes have achieved encouraging developments in cellular (in vitro) and in vivo molecular imaging. However, the same unique physical and chemical properties which renowned QDs attractive may be associated with their potentially catastrophic effects on living cells and tissues. There are critical issues that need to be further examined to properly assess the risks associated with the manufacturing and use of QDs in cancer management. In this review, we aim to describe the current utilisation of QDs as well as their future prospective to decipher and confront cancer.
Collapse
|
39
|
Chacko AM, Hood ED, Zern BJ, Muzykantov VR. Targeted Nanocarriers for Imaging and Therapy of Vascular Inflammation. Curr Opin Colloid Interface Sci 2011; 16:215-227. [PMID: 21709761 DOI: 10.1016/j.cocis.2011.01.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular inflammation is a common, complex mechanism involved in pathogenesis of a plethora of disease conditions including ischemia-reperfusion, atherosclerosis, restenosis and stroke. Specific targeting of imaging probes and drugs to endothelial cells in inflammation sites holds promise to improve management of these conditions. Nanocarriers of diverse compositions and geometries, targeted with ligands to endothelial adhesion molecules exposed in inflammation foci are devised for this goal. Imaging modalities that employ these nanoparticle probes include radioisotope imaging, MRI and ultrasound that are translatable from animal to human studies, as well as optical imaging modalities that at the present time are more confined to animal studies. Therapeutic cargoes for these drug delivery systems include diverse anti-inflammatory agents, anti-proliferative drugs for prevention of restenosis, and antioxidants. This article reviews recent advances in the area of image-guided translation of targeted nanocarrier diagnostics and therapeutics in nanomedicine.
Collapse
Affiliation(s)
- Ann-Marie Chacko
- Department of Pharmacology and Institute for Translational Medicine and Therapeutics, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
40
|
Gupta AS. Nanomedicine approaches in vascular disease: a review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 7:763-79. [PMID: 21601009 DOI: 10.1016/j.nano.2011.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/11/2011] [Accepted: 04/05/2011] [Indexed: 01/26/2023]
Abstract
UNLABELLED Nanomedicine approaches have revolutionized the treatment of cancer and vascular diseases, where the limitations of rapid nonspecific clearance, poor biodistribution and harmful side effects associated with direct systemic drug administration can be overcome by packaging the agents within sterically stabilized, long-circulating nanovehicles that can be further surface-modified with ligands to actively target cellular/molecular components of the disease. With significant advancements in genetics, proteomics, cellular and molecular biology and biomaterials engineering, the nanomedicine strategies have become progressively refined regarding the modulation of surface and bulk chemistry of the nanovehicles, control of drug release kinetics, manipulation of nanoconstruct geometry and integration of multiple functionalities on single nanoplatforms. The current review aims to capture the various nanomedicine approaches directed specifically toward vascular diseases during the past two decades. Analysis of the promises and limitations of these approaches will help identify and optimize vascular nanomedicine systems to enhance their efficacy and clinical translation in the future. FROM THE CLINICAL EDITOR Nanomedicine-based approaches have had a major impact on the treatment and diagnosis of malignancies and vascular diseases. This review discusses various nanomedicine approaches directed specifically toward vascular diseases during the past two decades, highlighting their advantages, limitations and offering new perspectives on future applications.
Collapse
Affiliation(s)
- Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
41
|
Yan M, Zhang Y, Xu K, Fu T, Qin H, Zheng X. An in vitro study of vascular endothelial toxicity of CdTe quantum dots. Toxicology 2011; 282:94-103. [DOI: 10.1016/j.tox.2011.01.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/21/2011] [Accepted: 01/22/2011] [Indexed: 11/25/2022]
|
42
|
Megens RTA, Kemmerich K, Pyta J, Weber C, Soehnlein O. Intravital imaging of phagocyte recruitment. Thromb Haemost 2011; 105:802-10. [PMID: 21437362 DOI: 10.1160/th10-11-0735] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 03/02/2011] [Indexed: 12/28/2022]
Abstract
Extravasation of neutrophils and monocytes is a hallmark event in acute and chronic inflammation. Owing to recent improvements in optical imaging techniques, the classical leukocyte extravasation cascade has been refined with intermediate steps being added. Further studies have shown tissue specific leukocyte recruitment patterns, thus allowing for more selective targeting. Here we focus on recent advances in intravital imaging of leukocyte recruitment by means of optical imaging techniques and emphasise the translation thereof into tissue-specific recruitment to the lungs, the liver and large arteries.
Collapse
Affiliation(s)
- R T A Megens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany.
| | | | | | | | | |
Collapse
|
43
|
Swierczewska M, Lee S, Chen X. Inorganic nanoparticles for multimodal molecular imaging. Mol Imaging 2011; 10:3-16. [PMID: 21303611 PMCID: PMC3629957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
Multimodal molecular imaging can offer a synergistic improvement of diagnostic ability over a single imaging modality. Recent development of hybrid imaging systems has profoundly impacted the pool of available multimodal imaging probes. In particular, much interest has been focused on biocompatible, inorganic nanoparticle-based multimodal probes. Inorganic nanoparticles offer exceptional advantages to the field of multimodal imaging owing to their unique characteristics, such as nanometer dimensions, tunable imaging properties, and multifunctionality. Nanoparticles mainly based on iron oxide, quantum dots, gold, and silica have been applied to various imaging modalities to characterize and image specific biologic processes on a molecular level. A combination of nanoparticles and other materials such as biomolecules, polymers, and radiometals continue to increase functionality for in vivo multimodal imaging and therapeutic agents. In this review, we discuss the unique concepts, characteristics, and applications of the various multimodal imaging probes based on inorganic nanoparticles.
Collapse
Affiliation(s)
- Magdalena Swierczewska
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
44
|
Luminescent Quantum Dots, Making Invisibles Visible in Bioimaging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 104:53-99. [DOI: 10.1016/b978-0-12-416020-0.00002-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
45
|
Swierczewska M, Lee S, Chen X. Inorganic Nanoparticles for Multimodal Molecular Imaging. Mol Imaging 2011. [DOI: 10.2310/7290.2011.00001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Magdalena Swierczewska
- From the Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, and Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY
| | - Seulki Lee
- From the Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, and Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY
| | - Xiaoyuan Chen
- From the Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, and Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY
| |
Collapse
|
46
|
Pease LF, Feldblyum JI, Depaoli Lacaerda SH, Liu Y, Hight Walker AR, Anumolu R, Yim PB, Clarke ML, Kang HG, Hwang J. Structural analysis of soft multicomponent nanoparticle clusters. ACS NANO 2010; 4:6982-8. [PMID: 21049904 DOI: 10.1021/nn102106f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Quantitative techniques are essential to analyze the structure of soft multicomponent nanobioclusters. Here, we combine electrospray differential mobility analysis (ES-DMA), which rapidly measures the size of the entire cluster, with transmission electron microscopy (TEM), which detects the hard components, to determine the presence and composition of the softer components. Coupling analysis of TEM and ES-DMA derived data requires the creation and use of analytical models to determine the size and number of constituents in nanoparticle complexes from the difference between the two measurements. Previous ES-DMA analyses have been limited to clusters of identical spherical particles. Here, we dramatically extend the ES-DMA analysis framework to accommodate more challenging geometries, including protein corona-coated nanorods, clusters composed of heterogeneously sized nanospheres, and nanobioclusters composed of both nanospheres and nanorods. The latter is critical to determining the number of quantum dots attached to lambda (λ) phage, a key element of a rapid method to detect bacterial pathogens in environmental and clinical samples.
Collapse
Affiliation(s)
- Leonard F Pease
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Molnar M, Friberg P, Fu Y, Brisslert M, Adams M, Chen Y. Effects of Quantum Dot Labeling on Endothelial Progenitor Cell Function and Viability. CELL MEDICINE 2010; 1:105-12. [PMID: 26966634 DOI: 10.3727/215517910x451603] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Endothelial progenitor cells (EPC) play an important role in repairing damaged endothelium. An effective imaging method for in vivo tracking of EPCs is essential for understanding EPC-based cell therapy. Fluorescent quantum dots (QDs) have attractive optical characteristics such as extreme brightness and photostability. QDs are currently being investigated as probes for stem cell labeling; however, there is concern about whether QDs can be used safely. We investigated whether quantum dot (QD) labeling would influence EPC viability and function. Rat bone marrow-derived EPCs were cultured and characterized. The cells were labeled with near-infrared-emitting, carboxyl-coated QDs (8 nM) for 24 h. QD labeling efficiency was higher than 97%. Using WST-1 assay, we showed that the viability of the QD-labeled EPCs was not different from that of the control EPCs. Moreover, QD labeling did not influence the ability of EPCs to form capillary tubes on Matrigel and to migrate. The percentage of QD-positive cells decreased with time, probably due to the rapid division of EPCs. These data suggest that the carboxyl-coated QD705 can be useful for labeling EPCs without interrupting their viability and functions.
Collapse
Affiliation(s)
- Matyas Molnar
- Department of Molecular and Clinical Medicine/Clinical Physiology, The Sahlgrenska Academy and University Hospital, University of Gothenburg, Gothenburg, Sweden; †Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Peter Friberg
- Department of Molecular and Clinical Medicine/Clinical Physiology, The Sahlgrenska Academy and University Hospital, University of Gothenburg , Gothenburg , Sweden
| | - Ying Fu
- † Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology , Stockholm , Sweden
| | - Mikeal Brisslert
- ‡ Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy and University Hospital, University of Gothenburg , Gothenburg , Sweden
| | - Michael Adams
- § Department of Pharmacology and Toxicology, Queen's University , Kingston, Ontario , Canada
| | - Yun Chen
- Department of Molecular and Clinical Medicine/Clinical Physiology, The Sahlgrenska Academy and University Hospital, University of Gothenburg, Gothenburg, Sweden; †Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
48
|
Zrazhevskiy P, Sena M, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 2010; 39:4326-54. [PMID: 20697629 PMCID: PMC3212036 DOI: 10.1039/b915139g] [Citation(s) in RCA: 611] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emerging field of bionanotechnology aims at revolutionizing biomedical research and clinical practice via introduction of nanoparticle-based tools, expanding capabilities of existing investigative, diagnostic, and therapeutic techniques as well as creating novel instruments and approaches for addressing challenges faced by medicine. Quantum dots (QDs), semiconductor nanoparticles with unique photo-physical properties, have become one of the dominant classes of imaging probes as well as universal platforms for engineering of multifunctional nanodevices. Possessing versatile surface chemistry and superior optical features, QDs have found initial use in a variety of in vitro and in vivo applications. However, careful engineering of QD probes guided by application-specific design criteria is becoming increasingly important for successful transition of this technology from proof-of-concept studies towards real-life clinical applications. This review outlines the major design principles and criteria, from general ones to application-specific, governing the engineering of novel QD probes satisfying the increasing demands and requirements of nanomedicine and discusses the future directions of QD-focused bionanotechnology research (critical review, 201 references).
Collapse
Affiliation(s)
- Pavel Zrazhevskiy
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, WA, 98195, USA
| | - Mark Sena
- Department of Bioengineering, University of California, Berkeley, 306 Stanley Hall #1762, Berkeley, CA, 94720, USA
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, WA, 98195, USA
| |
Collapse
|
49
|
Elsaesser A, Taylor A, de Yanés GS, McKerr G, Kim EM, O’Hare E, Howard CV. Quantification of nanoparticle uptake by cells using microscopical and analytical techniques. Nanomedicine (Lond) 2010; 5:1447-57. [DOI: 10.2217/nnm.10.118] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Quantification of nanoparticles in biological systems (i.e., cells, tissues and organs) is becoming a vital part of nanotoxicological and nanomedical fields. Dose is a key parameter when assessing behavior and any potential risk of nanomaterials. Various techniques for nanoparticle quantification in cells and tissues already exist but will need further development in order to make measurements reliable, reproducible and intercomparable between different techniques. Microscopy allows detection and location of nanoparticles in cells and has been used extensively in recent years to characterize nanoparticles and their pathways in living systems. Besides microscopical techniques (light microscopy and electron microscopy mainly), analytical techniques such as mass spectrometry, an established technique in trace element analysis, have been used in nanoparticle research. Other techniques require ‘labeled’ particles, fluorescently, radioactively or magnetically. However, these techniques lack spatial resolution and subcellular localization is not possible. To date, only electron microscopy offers the resolving power to determine accumulation of nanoparticles in cells due to its ability to image particles individually. So-called super-resolution light microscopy techniques are emerging to provide sufficient resolution on the light microscopy level to image or ‘see’ particles as individual particles. Nevertheless, all microscopy techniques require statistically sound sampling strategies in order to provide quantitative results. Stereology is a well-known sampling technique in various areas and, in combination with electron microscopy, proves highly successful with regard to quantification of nanoparticle uptake by cells.
Collapse
Affiliation(s)
- Andreas Elsaesser
- Nano Systems Biology Group, Centre for Molecular Biosciences, University of Ulster, Coleraine, UK Centre for Molecular Biosciences, University of Ulster, Cromore Road, BT52 1SA, Coleraine, UK
| | - Ashley Taylor
- Nano Systems Biology Group, Centre for Molecular Biosciences, University of Ulster, Coleraine, UK Centre for Molecular Biosciences, University of Ulster, Cromore Road, BT52 1SA, Coleraine, UK
| | - Gesa Staats de Yanés
- Nano Systems Biology Group, Centre for Molecular Biosciences, University of Ulster, Coleraine, UK Centre for Molecular Biosciences, University of Ulster, Cromore Road, BT52 1SA, Coleraine, UK
| | - George McKerr
- Nano Systems Biology Group, Centre for Molecular Biosciences, University of Ulster, Coleraine, UK Centre for Molecular Biosciences, University of Ulster, Cromore Road, BT52 1SA, Coleraine, UK
| | - Eun-Mee Kim
- School of Psychology, University of Ulster, Coleraine, UK
| | - Eugene O’Hare
- School of Psychology, Queens University Belfast, Belfast, UK
| | | |
Collapse
|
50
|
Jayagopal A, Linton MF, Fazio S, Haselton FR. Insights into atherosclerosis using nanotechnology. Curr Atheroscler Rep 2010; 12:209-15. [PMID: 20425261 DOI: 10.1007/s11883-010-0106-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A developing forefront in vascular disease research is the application of nanotechnology, the engineering of devices at the molecular scale, for diagnostic and therapeutic applications in atherosclerosis. Promising research in this field over the past decade has resulted in the preclinical validation of nanoscale devices that target cellular and molecular components of the atherosclerotic plaque, including one of its prominent cell types, the macrophage. Nanoscale contrast agents targeting constituents of plaque biology have been adapted for application in multiple imaging modalities, leading toward more detailed diagnostic readouts, whereas nanoscale drug delivery devices can be tailored for site-specific therapeutic activity. This review highlights recent progress in utilizing nanotechnology for the clinical management of atherosclerosis, drawing upon recent preclinical studies relevant to diagnosis and treatment of the plaque and promising future applications.
Collapse
Affiliation(s)
- Ashwath Jayagopal
- Department of Chemistry, Vanderbilt University, VU Station B Box 351822, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|