1
|
Ilakiyalakshmi M, Dhanasekaran K, Napoleon AA. A Review on Recent Development of Phenothiazine-Based Chromogenic and Fluorogenic Sensors for the Detection of Cations, Anions, and Neutral Analytes. Top Curr Chem (Cham) 2024; 382:29. [PMID: 39237745 DOI: 10.1007/s41061-024-00474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
This review provides an in-depth examination of recent progress in the development of chemosensors, with a particular emphasis on colorimetric and fluorescent probes. It systematically explores various sensing mechanisms, including metal-to-ligand charge transfer (MLCT), ligand-to-metal charge transfer (LMCT), photoinduced electron transfer (PET), intramolecular charge transfer (ICT), and fluorescence resonance energy transfer (FRET), and elucidates the mechanism of action for cation and anion chemosensors. Special attention is given to phenothiazine-based fluorescence probes, highlighting their exceptional sensitivity and rapid detection abilities for a broad spectrum of analytes, including cations, anions, and small molecules. Phenothiazine chemosensors have emerged as versatile tools widely employed in a multitude of applications, spanning environmental and biomedical fields. Furthermore, it addresses existing challenges and offers insights into future research directions, aiming to facilitate the continued advancement of phenothiazine-based fluorescent probes.
Collapse
Affiliation(s)
- Mohan Ilakiyalakshmi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Kumudhavalli Dhanasekaran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ayyakannu Arumugam Napoleon
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
2
|
Tang R, Wang C, Zhou X, Feng M, Li Z, Wang Y, Chen G. An aggregation induced emission chalcone fluorescent probe with large Stokes shift for biothiols detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122870. [PMID: 37216722 DOI: 10.1016/j.saa.2023.122870] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
The homeostasis of biothiols is closely related to the health of organisms. In view of the important role of biothiols, a fluorescent probe (7HIN-D) for the detection of intracellular biothiols was developed based on a simple chalcone fluorophore 7HIN with "ESIPT + AIE" characteristics. The probe 7HIN-D was obtained by introducing a biothiols specific DNBS (2,4-dinitrobenzenesulfonyl) unit as a fluorescence quencher to the fluorophore 7HIN. The nucleophilic substitution reaction between biothiols and probe 7HIN-D will release the DNBS unit and the fluorophore 7HIN, which exhibits a "turn on" AIE fluorescence with a large Stokes shift of 113 nm. The probe 7HIN-D displays high sensitivity and good selectivity to biothiols, and the detection limits value of probe 7HIN-D for GSH, Cys and Hcy were 0.384 μmol/L, 0.471 μmol/L and 0.638 μmol/L, respectively. In addition, the probe has been successfully used for fluorescence detection of endogenous biothiols in living cells due to its excellent performance, good biocompatibility and low cytotoxicity.
Collapse
Affiliation(s)
- Rong Tang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chao Wang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xuan Zhou
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Mengxiang Feng
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zefei Li
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yihan Wang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guang Chen
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
3
|
Lu X, Zhan Y, He W. Recent development of small-molecule fluorescent probes based on phenothiazine and its derivates. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112528. [PMID: 35907277 DOI: 10.1016/j.jphotobiol.2022.112528] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 05/20/2023]
Abstract
Fluorescence probes, as analytical tools with the ability to perform rapid and sensitive detection of target analytes, have made outstanding contributions to environmental analysis and bioassays. Considering the expanding developments in these areas, fluorophores play a key role in the de-sign of fluorescence probes. Compared to classical fluorophores, phenothiazines with elec-tron-rich characteristics have been widely applied to construct electron donor-acceptor dyes, which exhibit outstanding performance in both fluorimetric and colorimetric analysis. In addition, these probes also exhibit the pronounced ability in both solution and solid-state, achieving portable detection for environmental analysis. In this review, we summarize recent advances in the performance of phenothiazine-based fluorescent probes for detecting various analytes, especially in cations, anions, ROS/RSS, enzyme and other small molecules. The general design rules, response mechanisms and practical applications of the probes are analyzed, followed by a discussion of exiting challenges and future research perspectives. It is hoped that this review will provide a few strategies for the development of phenothiazine-based fluorescent probes.
Collapse
Affiliation(s)
- Xianlin Lu
- School of Pharmacy, The Air Force Medical University, Xi'an 710032, PR China
| | - Yu Zhan
- School of Pharmacy, The Air Force Medical University, Xi'an 710032, PR China
| | - Wei He
- School of Pharmacy, The Air Force Medical University, Xi'an 710032, PR China.
| |
Collapse
|
4
|
Wu M, Zhang Z, Yong J, Schenk PM, Tian D, Xu ZP, Zhang R. Determination and Imaging of Small Biomolecules and Ions Using Ruthenium(II) Complex-Based Chemosensors. Top Curr Chem (Cham) 2022; 380:29. [PMID: 35695976 PMCID: PMC9192387 DOI: 10.1007/s41061-022-00392-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/27/2022] [Indexed: 01/13/2023]
Abstract
Luminescence chemosensors are one of the most useful tools for the determination and imaging of small biomolecules and ions in situ in real time. Based on the unique photo-physical/-chemical properties of ruthenium(II) (Ru(II)) complexes, the development of Ru(II) complex-based chemosensors has attracted increasing attention in recent years, and thus many Ru(II) complexes have been designed and synthesized for the detection of ions and small biomolecules in biological and environmental samples. In this work, we summarize the research advances in the development of Ru(II) complex-based chemosensors for the determination of ions and small biomolecules, including anions, metal ions, reactive biomolecules and amino acids, with a particular focus on binding/reaction-based chemosensors for the investigation of intracellular analytes' evolution through luminescence analysis and imaging. The advances, challenges and future research directions in the development of Ru(II) complex-based chemosensors are also discussed.
Collapse
Affiliation(s)
- Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zexi Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jiaxi Yong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peer M Schenk
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dihua Tian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
5
|
Han J, Cheng SC, Yiu SM, Tse MK, Ko CC. Luminescent monomeric and dimeric Ru(ii) acyclic carbene complexes as selective sensors for NH 3/amine vapor and humidity. Chem Sci 2021; 12:14103-14110. [PMID: 34760194 PMCID: PMC8565393 DOI: 10.1039/d1sc04074j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/02/2021] [Indexed: 11/30/2022] Open
Abstract
A new class of luminescent bis(bipyridyl) Ru(ii) pyridyl acyclic carbene complexes with environmentally-sensitive dimerization equilibrium have been developed. Owing to the involvement of the orbitals of the diaminocarbene ligand in the emissive excited state, the phosphorescence properties of these complexes are strongly affected by H-bonding interactions with various H-bonding donor/acceptor molecules. With the remarkable differences in the emission properties of the monomer, dimer, and H-bonded amine adducts together with the change of the dimerization equilibrium, these complexes can be used as luminescent gas sensors for humidity, ammonia, and amine vapors. With the responses to amines and humidity and the corresponding change in the luminescence properties, a proof-of-principle for binary optical data storage with a reversible concealment process has been described.
Collapse
Affiliation(s)
- Jingqi Han
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Shun-Cheung Cheng
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Man-Kit Tse
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Chi-Chiu Ko
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| |
Collapse
|
6
|
Xiao L, Zhang D, Zhang J, Pu S. A iridium(III) complex-based ‘turn-on’ fluorescent probe with two recognition site for rapid detection of thiophenol and its application in water samples and human serum. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
A highly sensitive ‘turn-on’ phosphorescence probe based on iridium(III) complex with polyether segment subunits for rapid detection of thiophenol. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Tian L, Feng H, Dai Z, Zhang R. Resorufin-based responsive probes for fluorescence and colorimetric analysis. J Mater Chem B 2020; 9:53-79. [PMID: 33226060 DOI: 10.1039/d0tb01628d] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The fluorescence imaging technique has attracted increasing attention in the detection of various biological molecules in situ and in real-time owing to its inherent advantages including high selectivity and sensitivity, outstanding spatiotemporal resolution and fast feedback. In the past few decades, a number of fluorescent probes have been developed for bioassays and imaging by exploiting different fluorophores. Among various fluorophores, resorufin exhibits a high fluorescence quantum yield, long excitation/emission wavelength and pronounced ability in both fluorescence and colorimetric analysis. This fluorophore has been widely utilized in the design of responsive probes specific for various bioactive species. In this review, we summarize the advances in the development of resorufin-based fluorescent probes for detecting various analytes, such as cations, anions, reactive (redox-active) sulfur species, small molecules and biological macromolecules. The chemical structures of probes, response mechanisms, detection limits and practical applications are investigated, which is followed by the discussion of recent challenges and future research perspectives. This review article is expected to promote the further development of resorufin-based responsive fluorescent probes and their biological applications.
Collapse
Affiliation(s)
- Lu Tian
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China.
| | | | | | | |
Collapse
|
9
|
Zhang Y, Hao Y, Ma X, Chen S, Xu M. A dicyanoisophorone-based highly sensitive and selective near-infrared fluorescent probe for sensing thiophenol in water samples and living cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114958. [PMID: 32544786 DOI: 10.1016/j.envpol.2020.114958] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/17/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Thiophenol (PhSH) is an important sulfhydryl compound in organic synthesis, but it is also a volatile environmental pollutant with high toxicity to organisms. Herein, we reported a novel near-infrared (NIR) probe (1) for turn-on fluorescence detection of PhSH. The probe was prepared by coupling 2,4-dinitrophenyl (DNP) to a dicyanoisophorone-based fluorophore (2). PhSH can specifically perform a nucleophilic aromatic substitution on probe 1 and result in the release of fluorophore 2, thus achieving a turn-on fluorescence response (λem = 693 nm). A dramatic color change from red (λabs = 525 nm) to blue (λabs = 668 nm) was also observed. This fluorescent assay displayed a large Stokes shift (∼133 nm) and a high sensitivity for PhSH, as well as a low detection limit (34 nM). Moreover, probe 1 was successfully applied to monitor PhSH in real water samples and image PhSH in living cells.
Collapse
Affiliation(s)
- Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China; Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Xiaohua Ma
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China; College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
10
|
Xia XL, Zhang DB, Zhang JL, Pu SZ. Highly sensitive ruthenium complex-based fluorescent probe for copper ion detection. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Zhang R, Yuan J. Responsive Metal Complex Probes for Time-Gated Luminescence Biosensing and Imaging. Acc Chem Res 2020; 53:1316-1329. [PMID: 32574043 DOI: 10.1021/acs.accounts.0c00172] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of reliable bioanalytical probes for selective and sensitive detection of particular analytes in biological systems is essential for better understanding the roles of the analytes in their native contexts. In the last two decades, luminescent metal complexes have greatly contributed to the development of such probes for biosensing and imaging due to their unique spectral and temporal properties, controllable cell membrane permeability, and cytotoxicity. Conjugating an analyte-activatable moiety to the metal complex luminophores allows the production of responsive metal complex probes for this analyte detection. Owing to their long-lifetime emissions, the responsive metal complex probes are accessible to the technique of time-gated luminescence (TGL) detection and imaging. With a delay time after pulsed excitation, the TGL technique allows for collection of only long-lived luminescence from responsive metal complex probes, while filtering out short-lived background autofluorescence, providing a background-free approach for the detection and imaging of the analyte at subcellular and/or molecular levels. Responsive metal complex probes, therefore, have emerged as complementary sensing and imaging tools of organic dye-based fluorescent probes for the in situ detection of analytes in complicated biological environments.In this Account, we describe the advances in the development of metal complex probes and their applications for TGL bioassays with particular focus on our efforts made in this field. We first introduce the photophysical/-chemical properties of luminescent metal complexes, including lanthanide (europium and terbium) and transition metal (ruthenium and iridium) complexes. The luminescence lifetimes (τ) of lanthanide and transition metal complexes are at micro/millisecond (μs/ms) and hundreds/thousands nanosecond (ns) levels, respectively. The emission lifetimes are significantly longer than the autofluorescence lifetime (τ < 10 ns) of biological samples. Such long-lived luminescence of these metal complexes enables our research on demonstrating responsive probes for background-free TGL detection of some reactive biomolecules, such as reactive oxygen/nitrogen species (ROS/RNS) and biothiols.We conclude this Account by outlining the future directions to further develop new generation responsive TGL probes for promoting their practical applications. The responsive TGL probes are expected to be translated for biomedical and/or (pre)clinical investigations of biomolecules in situ. Reversibility, lower toxicity, ability of excitation at longer wavelength, and potential to be translated are key criteria for the development of next-generation probes. We also anticipate that further development of responsive TGL probes will contribute to the bioassay in more challenging biological systems, such as plants that have significant higher background autofluorescence than animals.
Collapse
Affiliation(s)
- Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
12
|
Abel AS, Zenkov IS, Averin AD, Cheprakov AV, Bessmertnykh-Lemeune AG, Orlinson BS, Beletskaya IP. Tuning the Luminescent Properties of Ruthenium(II) Amino-1,10-Phenanthroline Complexes by Varying the Position of the Amino Group on the Heterocycle. Chempluschem 2020; 84:498-503. [PMID: 31943904 DOI: 10.1002/cplu.201900206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/24/2019] [Indexed: 01/29/2023]
Abstract
Eight 1,10-phenanthrolines bearing one or two 2-(1-adamantyloxy)ethylamino substituents attached to different positions of the heterocyclic core were prepared according to SN Ar or palladium-catalyzed amination reactions. Their reaction with cis-Ru(bpy)2 Cl2 (bpy=2,2'-bipyridine) was investigated and Ru(bpy)2 (L)(PF6 )2 (phen=1,10-phenanthroline) (L=amino-substituted 1,10-phenanthroline) complexes were obtained in good yields. The electronic structure and emissive properties of these complexes are strongly dependent on the position of the amino substituent in the heterocycle. Emission bands of the complexes bearing 2- and 4-substituted 1,10-phenanthroline ligands are red-shifted (up to 56 nm) and less intense compared to that of the parent [Ru(phen)(bpy)2 ](PF6 )2 . In contrast, the introduction of the substituent in 3- or 5-position of 1,10-phenanthroline ring induces only small decrease of luminescence and the brightness of the complex with the 3-substituted ligand is comparable to that of the parent complex.
Collapse
Affiliation(s)
- Anton S Abel
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1-3 Leninskie gory, Moscow, 119991, Russia
| | - Ilya S Zenkov
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1-3 Leninskie gory, Moscow, 119991, Russia
| | - Alexei D Averin
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1-3 Leninskie gory, Moscow, 119991, Russia.,Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry, Leninsky Pr. 31, Moscow, 119071, Russia
| | - Andrey V Cheprakov
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1-3 Leninskie gory, Moscow, 119991, Russia
| | | | - Boris S Orlinson
- Volgograd State Technical University, Prosp. Lenina, 28, Volgograd, 400131, Russia
| | - Irina P Beletskaya
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1-3 Leninskie gory, Moscow, 119991, Russia.,Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry, Leninsky Pr. 31, Moscow, 119071, Russia
| |
Collapse
|
13
|
Recent advances in the development of responsive probes for selective detection of cysteine. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213182] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Yang L, Li L, Li Y, Zheng H, Song H, Zhang H, Yang N, Ji L, Ma N, He G. A highly sensitive Ru( ii) complex-based phosphorescent probe for thiophenol detection with aggregation-induced emission characteristics. NEW J CHEM 2020. [DOI: 10.1039/c9nj05093k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel AIEE-active Ru(ii) based phosphorescent probe was designed for the detection of thiophenol in aqueous solution and on test paper.
Collapse
|
15
|
Hao Y, Yin Q, Zhang Y, Xu M, Chen S. Recent Progress in the Development of Fluorescent Probes for Thiophenol. Molecules 2019; 24:E3716. [PMID: 31623065 PMCID: PMC6832550 DOI: 10.3390/molecules24203716] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
Thiophenol (PhSH) belongs to a class of highly reactive and toxic aromatic thiols with widespread applications in the chemical industry for preparing pesticides, polymers, and pharmaceuticals. In this review, we comprehensively summarize recent progress in the development of fluorescent probes for detecting and imaging PhSH. These probes are classified according to recognition moieties and are detailed on the basis of their structures and sensing performances. In addition, prospects for future research are also discussed.
Collapse
Affiliation(s)
- Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China.
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Qianye Yin
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China.
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China.
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
16
|
Huang R, Huang CH, Shao J, Zhu BZ. Enantioselective and Differential Fluorescence Lifetime Imaging of Nucleus and Nucleolus by the Two Enantiomers of Chiral Os(II) Polypyridyl Complex. J Phys Chem Lett 2019; 10:5909-5916. [PMID: 31538789 DOI: 10.1021/acs.jpclett.9b02075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The nucleolus is an important subnuclear structure, but very few dyes are available for nucleolar imaging. Here we show that the Λ-enantiomer of [Os(phen)2(dppz)]Cl2 can differentially distinguish the nucleolus from nucleus in living cells with tetrachlorophenolate as counteranion, while the Δ-enantiomer can do so in fixed cells by FLIM imaging. Further studies with three specific metabolic inhibitors for nucleolar protein synthesis found that the lifetime changes of the two enantiomers in the nucleolus can reflect the alteration of the cellular microenvironment, which is related to the general pathological status of the nucleolus. We then observed dynamical architecture changes of the nucleolus, chromosome and spindle apparatus during cell differentiation by these two enantiomers. The chiral Os(II) complex shows many advantages as compared to the commercially available nucleolus dye Syto 9: it displays a much larger Stokes shift value with a near-red emission and a longer lifetime, it can image spindle apparatus during mitosis, and more importantly, it is enantioselective.
Collapse
Affiliation(s)
- Rong Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
- Linus Pauling Institute , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
17
|
Affiliation(s)
- Run Zhang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane QLD 4072, Australia.
| | - Mingqian Tan
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, PR China.
| |
Collapse
|
18
|
A Novel Ruthenium-based Molecular Sensor to Detect Endothelial Nitric Oxide. Sci Rep 2019; 9:1720. [PMID: 30737439 PMCID: PMC6368587 DOI: 10.1038/s41598-019-39123-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
Nitric oxide (NO) is a key regulator of endothelial cell and vascular function. The direct measurement of NO is challenging due to its short half-life, and as such surrogate measurements are typically used to approximate its relative concentrations. Here we demonstrate that ruthenium-based [Ru(bpy)2(dabpy)]2+ is a potent sensor for NO in its irreversible, NO-bound active form, [Ru(bpy)2(T-bpy)]2+. Using spectrophotometry we established the sensor’s ability to detect and measure soluble NO in a concentration-dependent manner in cell-free media. Endothelial cells cultured with acetylcholine or hydrogen peroxide to induce endogenous NO production showed modest increases of 7.3 ± 7.1% and 36.3 ± 25.0% respectively in fluorescence signal from baseline state, while addition of exogenous NO increased their fluorescence by 5.2-fold. The changes in fluorescence signal were proportionate and comparable against conventional NO assays. Rabbit blood samples immediately exposed to [Ru(bpy)2(dabpy)]2+ displayed 8-fold higher mean fluorescence, relative to blood without sensor. Approximately 14% of the observed signal was NO/NO adduct-specific. Optimal readings were obtained when sensor was added to freshly collected blood, remaining stable during subsequent freeze-thaw cycles. Clinical studies are now required to test the utility of [Ru(bpy)2(dabpy)]2+ as a sensor to detect changes in NO from human blood samples in cardiovascular health and disease.
Collapse
|
19
|
Transition metal complexes based aptamers as optical diagnostic tools for disease proteins and biomolecules. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Shum J, Leung PKK, Lo KKW. Luminescent Ruthenium(II) Polypyridine Complexes for a Wide Variety of Biomolecular and Cellular Applications. Inorg Chem 2019; 58:2231-2247. [DOI: 10.1021/acs.inorgchem.8b02979] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Kim KR, Kim HJ, Hong JI. Electrogenerated Chemiluminescent Chemodosimeter Based on a Cyclometalated Iridium(III) Complex for Sensitive Detection of Thiophenol. Anal Chem 2018; 91:1353-1359. [DOI: 10.1021/acs.analchem.8b03445] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kyoung-Rok Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hoon Jun Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-In Hong
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
22
|
Mede T, Jäger M, Schubert US. "Chemistry-on-the-complex": functional Ru II polypyridyl-type sensitizers as divergent building blocks. Chem Soc Rev 2018; 47:7577-7627. [PMID: 30246196 DOI: 10.1039/c8cs00096d] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ruthenium polypyridyl type complexes are potent photoactive compounds, and have found - among others - a broad range of important applications in the fields of biomedical diagnosis and phototherapy, energy conversion schemes such as dye-sensitized solar cells (DSSCs) and molecular assemblies for tailored photo-initiated processes. In this regard, the linkage of RuII polypyridyl-type complexes with specific functional moieties is highly desirable to enhance their inherent photophysical properties, e.g., with a targeting function to achieve cell selectivity, or with a dye or redox-active subunits for energy- and electron-transfer. However, the classical approach of performing ligand syntheses first and the formation of Ru complexes in the last steps imposes synthetic limitations with regard to tolerating functional groups or moieties as well as requiring lengthy convergent routes. Alternatively, the diversification of Ru complexes after coordination (termed "chemistry-on-the-complex") provides an elegant complementary approach. In addition to the Click chemistry concept, the rapidly developing synthesis and purification methodologies permit the preparation of Ru conjugates via amidation, alkylation and cross-coupling reactions. In this regard, recent developments in chromatography shifted the limits of purification, e.g., by using new commercialized surface-modified silica gels and automated instrumentation. This review provides detailed insights into applying the "chemistry-on-the-complex" concept, which is believed to stimulate the modular preparation of unpreceded molecular assemblies as well as functional materials based on Ru-based building blocks, including combinatorial approaches.
Collapse
Affiliation(s)
- Tina Mede
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | | | | |
Collapse
|
23
|
Chang S, Xiang K, Ming W, Cheng X, Han C, Zhang Z, Tian B, Zhang J. Ultrasensitive dicyanoisophorone-based near-infrared fluorescent probe for rapid and specific detection of thiophenols in river water. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3448-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Zhang R, Song B, Yuan J. Bioanalytical methods for hypochlorous acid detection: Recent advances and challenges. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.015] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Zhang M, Leng T, Shen Y, Wang C. Reaction-based fluorescent probe for the selective and sensitive detection of thiophenols with a large Stokes shift and its application in water samples. Analyst 2018; 143:756-760. [DOI: 10.1039/c7an01994g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although widely used in organic synthesis, pharmaceuticals and agrochemicals, thiophenol has brought about a series of ecological problems due to its high toxicity.
Collapse
Affiliation(s)
- Mengzhao Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| | - Taohua Leng
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| | - Yongjia Shen
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| | - Chengyun Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| |
Collapse
|
26
|
Highly selective SCN− fluorescent sensing by a Ru(II) complex containing functionalized polypyridine. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Gao Q, Zhang W, Song B, Zhang R, Guo W, Yuan J. Development of a Novel Lysosome-Targeted Ruthenium(II) Complex for Phosphorescence/Time-Gated Luminescence Assay of Biothiols. Anal Chem 2017; 89:4517-4524. [DOI: 10.1021/acs.analchem.6b04925] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Quankun Gao
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wenzhu Zhang
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Run Zhang
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Weihua Guo
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jingli Yuan
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
28
|
Zhang W, Zhang F, Wang YL, Song B, Zhang R, Yuan J. Red-Emitting Ruthenium(II) and Iridium(III) Complexes as Phosphorescent Probes for Methylglyoxal in Vitro and in Vivo. Inorg Chem 2017; 56:1309-1318. [DOI: 10.1021/acs.inorgchem.6b02443] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wenzhu Zhang
- State Key Laboratory
of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Feiyue Zhang
- State Key Laboratory
of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yong-Lei Wang
- Applied Physical Chemistry, Department
of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Bo Song
- State Key Laboratory
of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Run Zhang
- Australian Institute for Bioengineering
and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jingli Yuan
- State Key Laboratory
of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
29
|
A unique iridium(III) complex-based chemosensor for multi-signal detection and multi-channel imaging of hypochlorous acid in liver injury. Biosens Bioelectron 2017; 87:1005-1011. [DOI: 10.1016/j.bios.2016.09.067] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/09/2016] [Accepted: 09/19/2016] [Indexed: 11/19/2022]
|
30
|
Yin G, Yu T, Niu T, Yin P, Chen H, Zhang Y, Li H, Yao S. A novel fluorescence turn-on probe for the selective detection of thiophenols by caged benzooxazolidinoindocyanine. RSC Adv 2017. [DOI: 10.1039/c7ra08707a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Based on a strategy involving 2,4-dinitrophenyl ether and functionalized caged benzooxazolidinoindocyanine, a fluorescence turn-on probe for the selective detection of thiophenols was developed.
Collapse
Affiliation(s)
- Guoxing Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- China
| | - Ting Yu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- China
| | - Tingting Niu
- Key Laboratory of Marine Biotechnology of Zhejiang Province
- Ningbo University
- Ningbo
- China
| | - Peng Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- China
| | - Haimin Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province
- Ningbo University
- Ningbo
- China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- China
| |
Collapse
|
31
|
Xiong L, Yang L, Luo S, Huang Y, Lu Z. Highly sensitive iridium(iii) complex-based phosphorescent probe for thiophenol detection. Dalton Trans 2017; 46:13456-13462. [DOI: 10.1039/c7dt02263h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An iridium(iii) complex could serve as a highly sensitive, long-lifetime phosphorescence thiophenol probe, obtained through rational design.
Collapse
Affiliation(s)
- Li Xiong
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Lin Yang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Shuai Luo
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Yan Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Zhiyun Lu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
32
|
Cheng F, Ren M, He C, Yin H. Luminescent chemosensor for Hg2+ ion based on a dinuclear Ru(II) complex containing open chain azacrown ether. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.05.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Li SPY, Yip AMH, Liu HW, Lo KKW. Installing an additional emission quenching pathway in the design of iridium(III)-based phosphorogenic biomaterials for bioorthogonal labelling and imaging. Biomaterials 2016; 103:305-313. [PMID: 27429251 DOI: 10.1016/j.biomaterials.2016.06.065] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/17/2016] [Accepted: 06/29/2016] [Indexed: 12/20/2022]
Abstract
We report the synthesis, characterization, photophysical and electrochemical behaviour and biological labelling applications of new phosphorogenic bioorthogonal probes derived from iridium(III) polypyridine complexes containing a 1,2,4,5-tetrazine moiety. In contrast to common luminescent cyclometallated iridium(III) polypyridine complexes, these tetrazine complexes are almost non-emissive due to effective Förster resonance energy transfer (FRET) and/or photoinduced electron transfer (PET) from the excited iridium(III) polypyridine unit to the appended tetrazine moiety. However, they exhibited significant emission enhancement upon reacting with (1R,8S,9s)-bicyclo[6.1.0]non-4-yn-9-ylmethanol (BCN-OH) (ca. 19.5-121.9 fold) and BCN-modified bovine serum albumin (BCN-BSA) (ca. 140.8-1133.7 fold) as a result of the conversion of the tetrazine unit to a non-quenching pyridazine derivative. The complexes were applied to image azide-modified glycans in live cells using a homobifunctional crosslinker, 1,13-bis((1R,8S,9s)-bicyclo[6.1.0]non-4-yn-9-ylmethyloxycarbonylamino)-4,7,10-trioxatridecane (bis-BCN).
Collapse
Affiliation(s)
- Steve Po-Yam Li
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Alex Man-Hei Yip
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Hua-Wei Liu
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kenneth Kam-Wing Lo
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
34
|
Wang X, Wang Y, He H, Chen X, Sun X, Sun Y, Zhou G, Xu H, Huang F. Steering graphene quantum dots in living cells: lighting up the nucleolus. J Mater Chem B 2016; 4:779-784. [DOI: 10.1039/c5tb02474a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel graphene quantum dot capable of lighting up the nucleoli of living cells has been developed.
Collapse
Affiliation(s)
- Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao 266580
- China
- Centre for Bioengineering and Biotechnology
| | - Yanan Wang
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao 266580
- China
- Centre for Bioengineering and Biotechnology
| | - Xin Chen
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Xing Sun
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao 266580
- China
- Centre for Bioengineering and Biotechnology
| | - Guangjun Zhou
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250100
- China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao 266580
- China
- Centre for Bioengineering and Biotechnology
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao 266580
- China
- Centre for Bioengineering and Biotechnology
| |
Collapse
|
35
|
Cao L, Zhang R, Zhang W, Du Z, Liu C, Ye Z, Song B, Yuan J. A ruthenium(II) complex-based lysosome-targetable multisignal chemosensor for in vivo detection of hypochlorous acid. Biomaterials 2015; 68:21-31. [DOI: 10.1016/j.biomaterials.2015.07.052] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/26/2015] [Accepted: 07/31/2015] [Indexed: 12/17/2022]
|
36
|
Lai SH, Jiang GB, Yao JH, Li W, Han BJ, Zhang C, Zeng CC, Liu YJ. Cytotoxic activity, DNA damage, cellular uptake, apoptosis and western blot analysis of ruthenium(II) polypyridyl complex against human lung decarcinoma A549 cell. J Inorg Biochem 2015; 152:1-9. [DOI: 10.1016/j.jinorgbio.2015.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/30/2015] [Accepted: 08/05/2015] [Indexed: 01/04/2023]
|
37
|
Abd-El-Aziz AS, Agatemor C, Etkin N. Functional Materials Based on Metal-Containing Polymers. FUNCTIONAL METALLOSUPRAMOLECULAR MATERIALS 2015:87-119. [DOI: 10.1039/9781782622673-00087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Since the dawn of human civilization, there has been a demand for materials that include ceramics, metals, and polymers. Increasing demand as well as the need for enhanced performance has driven material scientists to research metal-containing polymers as complements of these materials. Consequently, metal-containing polymers that integrate the excellent thermal, electronic, optical, and magnetic properties of metals with the lightweight, low cost, and in some cases, the chemical stability of organic-based polymers have been designed, and used as catalysts, sensors, ceramic precursors, magnetic materials, and electrical conductors. This chapter provides an overview of some of these functional metal-containing polymers.
Collapse
Affiliation(s)
- Alaa S. Abd-El-Aziz
- Department of Chemistry, University of Prince Edward Island 550 University Avenue Charlottetown Prince Edward Island C1A 4P3 Canada
| | - Christian Agatemor
- Department of Chemistry, University of Prince Edward Island 550 University Avenue Charlottetown Prince Edward Island C1A 4P3 Canada
| | - Nola Etkin
- Department of Chemistry, University of Prince Edward Island 550 University Avenue Charlottetown Prince Edward Island C1A 4P3 Canada
| |
Collapse
|
38
|
Ru J, Tang X, Ju Z, Zhang G, Dou W, Mi X, Wang C, Liu W. Exploitation and application of a highly sensitive Ru(II) complex-based phosphorescent chemodosimeter for Hg2+ in aqueous solutions and living cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:4247-4256. [PMID: 25668419 DOI: 10.1021/am508484q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A novel Ru(II) complex-based phosphorescent probe Rubpy-1 was designed and synthesized conveniently by incorporating of chemodosimeter into the luminophor, which exhibits good water solubility, longer excitation wavelength, and rapid turn-on phosphorescent response only toward Hg(2+) in aqueous system under physiological pH. The spectral response mechanism and Hg(2+)-promoted structure change of the chemodosimeter were analyzed in detail by theoretical calculations and electrospray ionization mass spectrometry. When time-resolved photoluminescence techniques were used, the Rubpy-1 could eliminate effectively the signal interference from the short-lived background fluorescence in complicated media, accompanied by the significant improvement of the signal-to-noise ratio and the accuracy of the detection. Furthermore, Rubpy-1 showed low cytotoxicity and excellent membrane permeability toward living cells, which was successfully applied to monitor intracellular Hg(2+) effectively by confocal luminescence imaging.
Collapse
Affiliation(s)
- Jiaxi Ru
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering and ‡School of Life Sciences, Lanzhou University , Lanzhou, 730000, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Cheng F, He C, Ren M, Wang F, Yang Y. Two dinuclear Ru(II) polypyridyl complexes with different photophysical and cation recognition properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 136 Pt B:845-851. [PMID: 25459607 DOI: 10.1016/j.saa.2014.09.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/21/2014] [Accepted: 09/11/2014] [Indexed: 06/04/2023]
Abstract
Two dinuclear Ru(II) polypyridyl complexes functionalized with vacant coordination sites have been designed and synthesized. Their photophysical properties and interactions with various metal ions have been investigated at room temperature. The two complexes exhibit different UV/Vis absorption and emission intensities. When titrated with various metal ions, complex [{Ru(bpy)2}2(μ2-L(1))](4+) exhibits a notable fluorescence quenching in the presence of Cu(2+) in H2O-CH3CN media (1:1, v/v); its analogous complex [{Ru(bpy)2}2(μ2-L(2))](4+) exhibits no cation selectivity, the fluorescence intensity of complex [{Ru(bpy)2}2(μ2-L(2))](4+) has been enhanced by several transition metal ions due to prevention of the photo-induced electron transfer process. The fluorescence titration spectra and Benesi-Hildebrand expression reveal the formation of a 1:1 bonding mode between [{Ru(bpy)2}2(μ2-L(1))](4+) and Cu(2+) ion with the association constant of 5.50×10(4) M(-1).
Collapse
Affiliation(s)
- Feixiang Cheng
- College of Chemistry and Chemical Engineering, Qujing Normal University, Qujing 655011, PR China.
| | - Chixian He
- College of Chemistry and Chemical Engineering, Qujing Normal University, Qujing 655011, PR China
| | - Mingli Ren
- College of Chemistry and Chemical Engineering, Qujing Normal University, Qujing 655011, PR China
| | - Fan Wang
- College of Chemistry and Chemical Engineering, Qujing Normal University, Qujing 655011, PR China
| | - Yuting Yang
- College of Chemistry and Chemical Engineering, Qujing Normal University, Qujing 655011, PR China
| |
Collapse
|
40
|
Li M, Wang Y, Yang Y, Gao Y, Zhao M, Zheng M, Peng S. Oximated ruthenium tris-bipyridyl complex: synthesis and luminescent response specifically for ClO− in water containing multiple ions. Dalton Trans 2015; 44:14071-6. [DOI: 10.1039/c5dt02097b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A novel Ru(bpy)32+ complex capable of a selective response to ClO− in pH 4–11 water in the presence of other anions and cations is reported.
Collapse
Affiliation(s)
- Minna Li
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials; College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
| | - Yuji Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials; College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
| | - Yutong Yang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials; College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
| | - Yeqing Gao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials; College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
| | - Ming Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials; College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
| | - Meiqing Zheng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials; College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
| | - Shiqi Peng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials; College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
| |
Collapse
|
41
|
Ye Z, Gao Q, An X, Song B, Yuan J. A functional ruthenium(ii) complex for imaging biothiols in living bodies. Dalton Trans 2015; 44:8278-83. [DOI: 10.1039/c5dt00290g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A functional ruthenium(ii) complex that can act as a luminescent probe for imaging biothiols in living bodies has been successfully developed.
Collapse
Affiliation(s)
- Zhiqiang Ye
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| | - Quankun Gao
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| | - Xin An
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| | - Bo Song
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
42
|
Shi W, Song B, Tan M, Ye Z, Yuan J. A novel heterobimetallic Ru(ii)–Gd(iii) complex-based magnetoluminescent agent for MR and luminescence imaging. RSC Adv 2015. [DOI: 10.1039/c5ra18544k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A novel heterobimetallic ruthenium(II)–gadolinium(III) complex, Ru–Gd, has been developed for luminescence and an vivo T1-weighted MR imaging agent.
Collapse
Affiliation(s)
- Wenbo Shi
- State Key Laboratory of Fine Chemicals
- Department of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| | - Bo Song
- State Key Laboratory of Fine Chemicals
- Department of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| | - Mingqian Tan
- Liaoning Key Laboratory of Food Biological Technology
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Zhiqiang Ye
- State Key Laboratory of Fine Chemicals
- Department of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals
- Department of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
43
|
Shao X, Kang R, Zhang Y, Huang Z, Peng F, Zhang J, Wang Y, Pan F, Zhang W, Zhao W. Highly Selective and Sensitive 1-Amino BODIPY-Based Red Fluorescent Probe for Thiophenols with High Off-to-On Contrast Ratio. Anal Chem 2014; 87:399-405. [DOI: 10.1021/ac5028947] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiangmin Shao
- Key
Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Ruixue Kang
- Key
Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Yuanlin Zhang
- Key
Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Zhentao Huang
- Key
Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Fangfang Peng
- Key
Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Jian Zhang
- School
of Pharmacy, Fudan University, Shanghai, 201203, People’s Republic of China
| | - Yue Wang
- Key
Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Fuchao Pan
- Key
Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Weijuan Zhang
- Key
Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Weili Zhao
- Key
Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, 475004, People’s Republic of China
- School
of Pharmacy, Fudan University, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
44
|
Li W, Han BJ, Wang J, Jiang GB, Xie YY, Lin GJ, Huang HL, Liu YJ. Synthesis, characterization and cytotoxic activity studies of two ruthenium(II) complexes. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
45
|
Babu E, Muthu Mareeswaran P, Singaravadivel S, Bhuvaneswari J, Rajagopal S. A selective, long-lived deep-red emissive ruthenium(II) polypyridine complexes for the detection of BSA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 130:553-60. [PMID: 24813285 DOI: 10.1016/j.saa.2014.04.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/02/2014] [Accepted: 04/10/2014] [Indexed: 05/13/2023]
Abstract
A selective, label free luminescence sensor for bovine serum albumin (BSA) is investigated using ruthenium(II) complexes over the other proteins. Interaction between BSA and ruthenium(II) complexes has been studied using absorption, emission, excited state lifetime and circular dichroism (CD) spectral techniques. The luminescence intensity of ruthenium(II) complexes (I and II), has enhanced at 602 and 613 nm with a large hypsochromic shift of 18 and 5 nm respectively upon addition of BSA. The mode of binding of ruthenium(II) complexes with BSA has analyzed using computational docking studies.
Collapse
Affiliation(s)
- Eththilu Babu
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India; Department of Chemistry, VV College of Engineering, Tisaiyanvilai, Tirunelveli, India
| | - Paulpandian Muthu Mareeswaran
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India; Graduate School of EEWS (WCU), Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Subramanian Singaravadivel
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Jayaraman Bhuvaneswari
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India; Department of Chemistry, SRI G.V.G Visalakshi College for Women, Udumalapet, Tamil Nadu, India
| | - Seenivasan Rajagopal
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India.
| |
Collapse
|
46
|
Wang J, Sun S, Mu D, Wang J, Sun W, Xiong X, Qiao B, Peng X. A Heterodinuclear Complex OsIr Exhibiting Near-Infrared Dual Luminescence Lights Up the Nucleoli of Living Cells. Organometallics 2014. [DOI: 10.1021/om500357x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jitao Wang
- State Key Laboratory of Fine Chemicals and ‡School of Life Science & Biotechnology, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, People’s Republic of China
| | - Shiguo Sun
- State Key Laboratory of Fine Chemicals and ‡School of Life Science & Biotechnology, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, People’s Republic of China
| | - Daozhou Mu
- State Key Laboratory of Fine Chemicals and ‡School of Life Science & Biotechnology, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, People’s Republic of China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals and ‡School of Life Science & Biotechnology, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, People’s Republic of China
| | - Wei Sun
- State Key Laboratory of Fine Chemicals and ‡School of Life Science & Biotechnology, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, People’s Republic of China
| | - Xiaoqing Xiong
- State Key Laboratory of Fine Chemicals and ‡School of Life Science & Biotechnology, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, People’s Republic of China
| | - Bo Qiao
- State Key Laboratory of Fine Chemicals and ‡School of Life Science & Biotechnology, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, People’s Republic of China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals and ‡School of Life Science & Biotechnology, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, People’s Republic of China
| |
Collapse
|
47
|
Ye Z, Zhang R, Song B, Dai Z, Jin D, Goldys EM, Yuan J. Development of a functional ruthenium(ii) complex for probing hypochlorous acid in living cells. Dalton Trans 2014; 43:8414-20. [DOI: 10.1039/c4dt00179f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
48
|
Sun S, Wang J, Mu D, Wang J, Bao Y, Qiao B, Peng X. A heterodinuclear RuIr metal complex for direct imaging of rRNA in living cells. Chem Commun (Camb) 2014; 50:9149-52. [DOI: 10.1039/c4cc04501g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel dual luminescence heterodinuclear RuIr complex for RNA detection was developed, which was successfully used to image rRNA in living cells.
Collapse
Affiliation(s)
- Shiguo Sun
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian, China
| | - Jitao Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian, China
| | - Daozhou Mu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian, China
| | - Jingyun Wang
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian, China
| | - Yongming Bao
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian, China
| | - Bo Qiao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian, China
| |
Collapse
|
49
|
Zhang R, Song B, Dai Z, Ye Z, Xiao Y, Liu Y, Yuan J. Highly sensitive and selective phosphorescent chemosensors for hypochlorous acid based on ruthenium(II) complexes. Biosens Bioelectron 2013; 50:1-7. [DOI: 10.1016/j.bios.2013.06.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/13/2013] [Accepted: 06/04/2013] [Indexed: 12/29/2022]
|
50
|
Zhang R, Ye Z, Song B, Dai Z, An X, Yuan J. Development of a ruthenium(II) complex-based luminescent probe for hypochlorous acid in living cells. Inorg Chem 2013; 52:10325-31. [PMID: 24003990 DOI: 10.1021/ic400767u] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel Ru(II) complex, [Ru(bpy)2(DNPS-bpy)](PF6)2 (bpy: 2,2'-bipyridine, DNPS-bpy: 4-(2,4-dinitrophenylthio)methylene-4'-methyl-2,2'-bipyridine), has been designed and synthesized as a highly sensitive and selective luminescence probe for the recognition and detection of hypochlorous acid (HOCl) in living cells by exploiting a "signaling moiety-recognition linker-quencher" sandwich approach. The complex possesses large stokes shift (170 nm), long emission wavelength (626 nm), and low cytotoxicity. Owing to the effective photoinduced electron transfer (PET) from Ru(II) center to the electron acceptor, 2,4-dinitrophenyl (DNP), the red-emission of bipyridine-Ru(II) complex was completely withheld. In aqueous media, HOCl can trigger an oxidation reaction to cleave the DNP moiety from the Ru(II) complex, which results in the formation of a highly luminescent bipyridine-Ru(II) complex derivative, [Ru(bpy)2(COOH-bpy)](PF6)2 (COOH-bpy: 4'-methyl-2,2'-bipyridyl-4-carboxylic acid), accompanied by a 190-fold luminescence enhancement. Cell imaging experimental results demonstrated that [Ru(bpy)2(DNPS-bpy)](PF6)2 is membrane permeable, and can be applied for capturing and visualizing the exogenous/endogenous HOCl molecules in living cell samples. The development of this Ru(II) complex probe not only provides a useful tool for monitoring HOCl in living systems, but also strengthens the application of transition metal complex-based luminescent probes for bioimaging.
Collapse
Affiliation(s)
- Run Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology , Dalian, Liaoning116012, People's Republic of China
| | | | | | | | | | | |
Collapse
|