1
|
Ramaraju H, Garcia-Gomez E, McAtee AM, Verga AS, Hollister SJ. Shape memory cycle conditions impact human bone marrow stromal cell binding to RGD- and YIGSR-conjugated poly (glycerol dodecanedioate). Acta Biomater 2024; 186:246-259. [PMID: 39111679 DOI: 10.1016/j.actbio.2024.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
Bioresorbable shape memory polymers (SMP) are an emerging class of polymers that can help address several challenges associated with minimally invasive surgery by providing a solution for structural tissue repair. Like most synthetic polymer networks, SMPs require additional biorelevance and modification for biomedical applications. Methodologies used to incorporate bioactive ligands must preserve SMP thermomechanics and ensure biofunctionality following in vivo delivery. We have previously described the development of a novel thermoresponsive bioresorbable SMP, poly (glycerol dodecanedioate) (PGD). In this study, cell-adhesive peptide sequences RGD and YIGSR were conjugated with PGD. We investigated 1) the impact of conjugated peptides on the fixity (Rf), recovery (Rr), and recovery rate (dRr/dT), 2) the impact of conjugated peptides on cell binding, and 3) the impact of the shape memory cycle (Tprog) on conjugated peptide functionality towards binding human bone marrow stromal cells (BMSC). Peptide conjugation conditions impact fixity but not the recovery or recovery rate (p < 0.01). Peptide-conjugated substrates increased cell attachment and proliferation compared with controls (p < 0.001). Using complementary integrin binding cell-adhesive peptides increased proliferation compared with using single peptides (p < 0.05). Peptides bound to PGD substrates exhibited specificity to their respective integrin targets. Following the shape memory cycle, peptides maintained functionality and specificity depending on the shape memory cycle conditions (p < 0.001). The dissipation of strain energy during recovery can drive differential arrangement of conjugated sequences impacting functionality, an important design consideration for functionalized SMPs. STATEMENT OF SIGNIFICANCE: Shape memory elastomers are an emerging class of polymers that are well-suited for minimally invasive repair of soft tissues. Tissue engineering approaches commonly utilize biodegradable scaffolds to deliver instructive cues, including cells and bioactive signals. Delivering these instructive cues on biodegradable shape memory elastomers requires modification with bioactive ligands. Furthermore, it is necessary to ensure the specificity of the ligands to their biological targets when conjugated to the polymer. Moreover, the bioactive ligand functionality must be conserved after completing the shape memory cycle, for applications in tissue engineering.
Collapse
Affiliation(s)
- Harsha Ramaraju
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.
| | - Elisa Garcia-Gomez
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Annabel M McAtee
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Adam S Verga
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Scott J Hollister
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
2
|
Liu F, Lin Q, Shen S, Li Z, Xie X, Cheng Q, Wang L, Long Y, Wang J, Liu L. Secretion of WNT7A by UC-MSCs assist in promoting the endometrial epithelial regeneration. iScience 2024; 27:109888. [PMID: 38947517 PMCID: PMC11214297 DOI: 10.1016/j.isci.2024.109888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 07/02/2024] Open
Abstract
Stem cell therapy for intrauterine adhesions (IUAs) has been widely used in clinical treatment. However, intravenous injection lacks sufficient targeting capabilities, while in situ injection poses challenges in ensuring the effective survival of stem cells. Furthermore, the mechanism underlying the interaction between stem cells and endometrial cells in vivo remains poorly understood, and there is a lack of suitable in vitro models for studying these problems. Here, we designed an extracellular matrix (ECM)-adhesion mimic hydrogel for intrauterine administration, which was more effective than direct injection in treating IUAs. Additionally, we analyzed the epithelial-mesenchymal transition (EMT) and confirmed that the activation of endometrial epithelial stem cells is pivotal. Our findings demonstrated that umbilical cord mesenchymal stem cells (UC-MSCs) secrete WNT7A to activate endometrial epithelial stem cells, thereby accelerating regeneration of the endometrial epithelium. Concurrently, under transforming growth factor alpha (TGFA) stimulation secreted by the EMT epithelium, UC-MSCs upregulate E-cadherin while partially implanting into the endometrial epithelium.
Collapse
Affiliation(s)
- Fangbo Liu
- Shanghai Drugability Biomass Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, No. 285 Gebaini Road, Shanghai 201203, China
| | - Qin Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Shaolei Shen
- Shanghai Drugability Biomass Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, No. 285 Gebaini Road, Shanghai 201203, China
| | - Zhihong Li
- Shanghai Drugability Biomass Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, No. 285 Gebaini Road, Shanghai 201203, China
| | - Xiaorui Xie
- Shanghai Drugability Biomass Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, No. 285 Gebaini Road, Shanghai 201203, China
| | - Quan Cheng
- Shanghai Drugability Biomass Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, No. 285 Gebaini Road, Shanghai 201203, China
| | - Lan Wang
- Shanghai Drugability Biomass Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, No. 285 Gebaini Road, Shanghai 201203, China
| | - Yin Long
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Juan Wang
- Shanghai Drugability Biomass Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, No. 285 Gebaini Road, Shanghai 201203, China
| | - Li Liu
- Shanghai Drugability Biomass Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, No. 285 Gebaini Road, Shanghai 201203, China
| |
Collapse
|
3
|
Wang G, Li Z, Wang G, Sun Q, Lin P, Wang Q, Zhang H, Wang Y, Zhang T, Cui F, Zhong Z. Advances in Engineered Nanoparticles for the Treatment of Ischemic Stroke by Enhancing Angiogenesis. Int J Nanomedicine 2024; 19:4377-4409. [PMID: 38774029 PMCID: PMC11108071 DOI: 10.2147/ijn.s463333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
Angiogenesis, or the formation of new blood vessels, is a natural defensive mechanism that aids in the restoration of oxygen and nutrition delivery to injured brain tissue after an ischemic stroke. Angiogenesis, by increasing vessel development, may maintain brain perfusion, enabling neuronal survival, brain plasticity, and neurologic recovery. Induction of angiogenesis and the formation of new vessels aid in neurorepair processes such as neurogenesis and synaptogenesis. Advanced nano drug delivery systems hold promise for treatment stroke by facilitating efficient transportation across the the blood-brain barrier and maintaining optimal drug concentrations. Nanoparticle has recently been shown to greatly boost angiogenesis and decrease vascular permeability, as well as improve neuroplasticity and neurological recovery after ischemic stroke. We describe current breakthroughs in the development of nanoparticle-based treatments for better angiogenesis therapy for ischemic stroke employing polymeric nanoparticles, liposomes, inorganic nanoparticles, and biomimetic nanoparticles in this study. We outline new nanoparticles in detail, review the hurdles and strategies for conveying nanoparticle to lesions, and demonstrate the most recent advances in nanoparticle in angiogenesis for stroke treatment.
Collapse
Affiliation(s)
- Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Zhihui Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Gongchen Wang
- Department of Vascular Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Qixu Sun
- Department of Gastroenterology, Penglai People’s Hospital, Yantai, Shandong, 265600, People’s Republic of China
| | - Peng Lin
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Qian Wang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Huishu Zhang
- Teaching Center of Biotechnology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Yanyan Wang
- Teaching Center of Morphology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Tongshuai Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Feiyun Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Zhaohua Zhong
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| |
Collapse
|
4
|
Lupu A, Gradinaru LM, Gradinaru VR, Bercea M. Diversity of Bioinspired Hydrogels: From Structure to Applications. Gels 2023; 9:gels9050376. [PMID: 37232968 DOI: 10.3390/gels9050376] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels are three-dimensional networks with a variety of structures and functions that have a remarkable ability to absorb huge amounts of water or biological fluids. They can incorporate active compounds and release them in a controlled manner. Hydrogels can also be designed to be sensitive to external stimuli: temperature, pH, ionic strength, electrical or magnetic stimuli, specific molecules, etc. Alternative methods for the development of various hydrogels have been outlined in the literature over time. Some hydrogels are toxic and therefore are avoided when obtaining biomaterials, pharmaceuticals, or therapeutic products. Nature is a permanent source of inspiration for new structures and new functionalities of more and more competitive materials. Natural compounds present a series of physico-chemical and biological characteristics suitable for biomaterials, such as biocompatibility, antimicrobial properties, biodegradability, and nontoxicity. Thus, they can generate microenvironments comparable to the intracellular or extracellular matrices in the human body. This paper discusses the main advantages of the presence of biomolecules (polysaccharides, proteins, and polypeptides) in hydrogels. Structural aspects induced by natural compounds and their specific properties are emphasized. The most suitable applications will be highlighted, including drug delivery, self-healing materials for regenerative medicine, cell culture, wound dressings, 3D bioprinting, foods, etc.
Collapse
Affiliation(s)
- Alexandra Lupu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Luiza Madalina Gradinaru
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Vasile Robert Gradinaru
- Faculty of Chemistry, "Alexandru Ioan Cuza" University, 11 Carol I Bd., 700506 Iasi, Romania
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
5
|
Hu Y, Shi H, Ma X, Xia T, Wu Y, Chen L, Ren Z, Lei L, Jiang J, Wang J, Li X. Highly stable fibronectin-mimetic-peptide-based supramolecular hydrogel to accelerate corneal wound healing. Acta Biomater 2023; 159:128-139. [PMID: 36708851 DOI: 10.1016/j.actbio.2023.01.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
Without timely treatment, poor wound healing in corneal injuries can seriously impair vision and lead to blindness. Thus, it is vital to develop a therapeutic strategy to accelerate corneal re-epithelialization. The conjugation of self-assembled motifs with a fibronectin-mimetic peptide sequence (PHSRN) drastically improves the chemical stability of PHSRN against protease hydrolysis and minimally affects its biological activity to promote the migration of corneal epithelial cells. The optimized Nap-FFPHSRN self-assembled into bioactive supramolecular hydrogels increases cell motility by remolding F-actin and boosts the tight junction of the corneal epithelium by increasing the expression of zonula occludens-1 (ZO-1). An in vivo experiment showed that a Nap-FFPHSRN hydrogel provided extended precorneal retention with good ocular tolerance after topical instillation. An animal model of corneal scrape showed that a single daily dose of Nap-FFPHSRN hydrogel had a superior therapeutic effect in facilitating corneal re-epithelialization with complete morphological and architectural recovery. With a rational approach to mimic bioactive proteins, this study presents a new strategy to demonstrate the potential of peptide-based supramolecular hydrogels for use in clinical treatment of corneal injury. STATEMENT OF SIGNIFICANCE: Here we systematically investigate the self-assembly behavior and chemical stability of designed peptide amphiphiles (Nap-FPHRSN, Nap-FFPHSRN and Nap-FFFPHSRN). The introduction of self-assembled motifs (Nap-F, Nap-FF and Nap-FFF) drastically enhances the chemical stability of fibronectin-mimetic peptide (PHSRN). Moreover, topical instillation of Nap-FFPHSRN hydrogel once daily, exhibits a better in vivo effect than PHSRN and the same in vivo effect as fibronectin, both of which are instilled three times daily, for promoting full morphological and architectural recovery after corneal re-epithelialization. As a rational design of conjugating bioactive peptides with self-assembled motifs to mimic bioactive proteins, this work may lead to a new approach that improves the in vivo therapeutic effect for treating corneal injury in clinic settings.
Collapse
Affiliation(s)
- Yuhan Hu
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Hui Shi
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Xiaohui Ma
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Tian Xia
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Yiping Wu
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Lei Chen
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Zhibin Ren
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Lei Lei
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Jun Jiang
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Jiaqing Wang
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China.
| | - Xingyi Li
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China.
| |
Collapse
|
6
|
Chen S, Huang Z, Visalakshan RM, Liu H, Bachhuka A, Wu Y, Dabare PRL, Luo P, Liu R, Gong Z, Xiao Y, Vasilev K, Chen Z, Chen Z. Plasma polymerized bio-interface directs fibronectin adsorption and functionalization to enhance "epithelial barrier structure" formation via FN-ITG β1-FAK-mTOR signaling cascade. Biomater Res 2022; 26:88. [PMID: 36572920 PMCID: PMC9791785 DOI: 10.1186/s40824-022-00323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/15/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Transepithelial medical devices are increasing utilized in clinical practices. However, the damage of continuous natural epithelial barrier has become a major risk factor for the failure of epithelium-penetrating implants. How to increase the "epithelial barrier structures" (focal adhesions, hemidesmosomes, etc.) becomes one key research aim in overcoming this difficulty. Directly targeting the in situ "epithelial barrier structures" related proteins (such as fibronectin) absorption and functionalization can be a promising way to enhance interface-epithelial integration. METHODS Herein, we fabricated three plasma polymerized bio-interfaces possessing controllable surface chemistry. Their capacity to adsorb and functionalize fibronectin (FN) from serum protein was compared by Liquid Chromatography-Tandem Mass Spectrometry. The underlying mechanisms were revealed by molecular dynamics simulation. The response of gingival epithelial cells regarding the formation of epithelial barrier structures was tested. RESULTS Plasma polymerized surfaces successfully directed distinguished protein adsorption profiles from serum protein pool, in which plasma polymerized allylamine (ppAA) surface favored adsorbing adhesion related proteins and could promote FN absorption and functionalization via electrostatic interactions and hydrogen bonds, thus subsequently activating the ITG β1-FAK-mTOR signaling and promoting gingival epithelial cells adhesion. CONCLUSION This study offers an effective perspective to overcome the current dilemma of the inferior interface-epithelial integration by in situ protein absorption and functionalization, which may advance the development of functional transepithelial biointerfaces. Tuning the surface chemistry by plasma polymerization can control the adsorption of fibronectin and functionalize it by exposing functional protein domains. The functionalized fibronectin can bind to human gingival epithelial cell membrane integrins to activate epithelial barrier structure related signaling pathway, which eventually enhances the formation of epithelial barrier structure.
Collapse
Affiliation(s)
- Shoucheng Chen
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Zhuwei Huang
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | | | - Haiwen Liu
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Akash Bachhuka
- grid.410367.70000 0001 2284 9230Department of Electronics, Electric and Automatic Engineering, Rovira i Virgili University (URV), Tarragona, 43003 Spain
| | - You Wu
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Panthihage Ruvini L. Dabare
- grid.1026.50000 0000 8994 5086Academic Unit of Science, Technology, Engineering and Mathematics (STEM), University of South Australia, Mawson Lakes, SA 5095 Australia
| | - Pu Luo
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Runheng Liu
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Zhuohong Gong
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Yin Xiao
- grid.1024.70000000089150953Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 Australia
| | - Krasimir Vasilev
- grid.1026.50000 0000 8994 5086Academic Unit of Science, Technology, Engineering and Mathematics (STEM), University of South Australia, Mawson Lakes, SA 5095 Australia
| | - Zhuofan Chen
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Zetao Chen
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| |
Collapse
|
7
|
Hendrikse SIS, Contreras-Montoya R, Ellis AV, Thordarson P, Steed JW. Biofunctionality with a twist: the importance of molecular organisation, handedness and configuration in synthetic biomaterial design. Chem Soc Rev 2021; 51:28-42. [PMID: 34846055 DOI: 10.1039/d1cs00896j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The building blocks of life - nucleotides, amino acids and saccharides - give rise to a large variety of components and make up the hierarchical structures found in Nature. Driven by chirality and non-covalent interactions, helical and highly organised structures are formed and the way in which they fold correlates with specific recognition and hence function. A great amount of effort is being put into mimicking these highly specialised biosystems as biomaterials for biomedical applications, ranging from drug discovery to regenerative medicine. However, as well as lacking the complexity found in Nature, their bio-activity is sometimes low and hierarchical ordering is missing or underdeveloped. Moreover, small differences in folding in natural biomolecules (e.g., caused by mutations) can have a catastrophic effect on the function they perform. In order to develop biomaterials that are more efficient in interacting with biomolecules, such as proteins, DNA and cells, we speculate that incorporating order and handedness into biomaterial design is necessary. In this review, we first focus on order and handedness found in Nature in peptides, nucleotides and saccharides, followed by selected examples of synthetic biomimetic systems based on these components that aim to capture some aspects of these ordered features. Computational simulations are very helpful in predicting atomic orientation and molecular organisation, and can provide invaluable information on how to further improve on biomaterial designs. In the last part of the review, a critical perspective is provided along with considerations that can be implemented in next-generation biomaterial designs.
Collapse
Affiliation(s)
- Simone I S Hendrikse
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia. .,School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | | | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Pall Thordarson
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | | |
Collapse
|
8
|
Lin S, Li J, Shao J, Zhang J, He X, Huang D, Dong L, Lin J, Weng W, Cheng K. Anisotropic magneto-mechanical stimulation on collagen coatings to accelerate osteogenesis. Colloids Surf B Biointerfaces 2021; 210:112227. [PMID: 34838419 DOI: 10.1016/j.colsurfb.2021.112227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 01/08/2023]
Abstract
Mechanical stimulation has been considered to be critical to cellular response and tissue regeneration. However, harnessing the direction of mechanical stimulation during osteogenesis still remains a challenge. In this study, we designed a series of novel magnetized collagen coatings (MCCs) (randomly or parallel-oriented collagen fibers) to exert the anisotropic mechanical stimulation using oriented magnetic actuation during osteogenesis. Strikingly, we found the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) were significantly up-regulated when the direction of magnetic actuation was parallel to the randomly-oriented collagen coating surface, in contrast to the down-regulated capacity under the perpendicular magnetic actuation. Moreover, further exerting a parallel mechanical stimulation along the parallel-oriented collagen coating, which cells have been oriented by the oriented collagens, were not only able to up-regulate the osteogenic differentiation of BMSCs but also promote the new bone formation during osteogenesis in vivo. We also demonstrated the anisotropic magneto-mechanical stimulation for the osteogenic differences might be attributed to the stretching or bending tensile status of collagen fibers controlled by the direction of magnetic actuation, driving the α5β1-dependent integrin signaling cascade. This study therefore got insight of understanding the directional mechanical stimulation on osteogenesis, and also paved a way for sustaining regulation of the biomaterials-host interface.
Collapse
Affiliation(s)
- Suya Lin
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Juan Li
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jiaqi Shao
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jiamin Zhang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Xuzhao He
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Donghua Huang
- Department of Orthopaedic Surgery, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Lingqing Dong
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jun Lin
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China; Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
9
|
Biofunctional supramolecular hydrogels fabricated from a short self-assembling peptide modified with bioactive sequences for the 3D culture of breast cancer MCF-7 cells. Bioorg Med Chem 2021; 46:116345. [PMID: 34416510 DOI: 10.1016/j.bmc.2021.116345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/24/2022]
Abstract
Self-assembling peptides are a type of molecule with promise as scaffold materials for cancer cell engineering. We have reported a short self-assembling peptide, (FFiK)2, that had a symmetric structure connected via a urea bond. In this study, we functionalized (FFiK)2 by conjugation with various bioactive sequences for the 3D culture of cancer cells. Four sequences, RGDS and PHSRN derived from fibronectin and AG73 and C16 derived from laminin, were selected as bioactive sequences to promote cell adhesion, proliferation or migration. (FFiK)2, and its derivatives could co-assemble into supramolecular nanofibers displaying bioactive sequences and form hydrogels. MCF-7 cells were encapsulated in functionalized peptide hydrogels without significant cytotoxicity. Encapsulated MCF-7 cells proliferated under 3D culture conditions. MCF-7 cells proliferated with spheroid formation in hydrogels that displayed RGDS or PHSRN sequences, which will be able to be applied to drug screening targeting cancer stem cells. On the other hand, since MCF-7 cells migrated in a 3D hydrogel that displayed AG73, we could construct the metastatic model of breast cancer cells, which is helpful for the elucidation of breast cancer cells and drug screening against cancer cells under metastatic state. Therefore, functionalized (FFiK)2 hydrogels with various bioactive sequences can be used to regulate cancer cell function for tumor engineering and drug screening.
Collapse
|
10
|
Ben Abla A, Boeuf G, Elmarjou A, Dridi C, Poirier F, Changotade S, Lutomski D, Elm’selmi A. Engineering of Bio-Adhesive Ligand Containing Recombinant RGD and PHSRN Fibronectin Cell-Binding Domains in Fusion with a Colored Multi Affinity Tag: Simple Approach for Fragment Study from Expression to Adsorption. Int J Mol Sci 2021; 22:ijms22147362. [PMID: 34298982 PMCID: PMC8303147 DOI: 10.3390/ijms22147362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 02/02/2023] Open
Abstract
Engineering of biomimetic motives have emerged as promising approaches to improving cells’ binding properties of biomaterials for tissue engineering and regenerative medicine. In this study, a bio-adhesive ligand including cell-binding domains of human fibronectin (FN) was engineered using recombinant protein technology, a major extracellular matrix (ECM) protein that interacts with a variety of integrins cell-surface’s receptors and other ECM proteins through specific binding domains. 9th and 10th fibronectin type III repeat containing Arginine-Glycine-Aspartic acid (RGD) and Pro-His-Ser-Arg-Asn (PHSRN) synergic site (FNIII9-10) were expressed in fusion with a Colored Multi Affinity Tag (CMAT) to develop a simplified production and characterization process. A recombinant fragment was produced in the bacterial system using E. coli with high yield purified protein by double affinity chromatography. Bio-adhesive surfaces were developed by passive coating of produced fragment onto non adhesive surfaces model. The recombinant fusion protein (CMAT-FNIII9/10) demonstrated an accurate monitoring capability during expression purification and adsorption assay. Finally, biological activity of recombinant FNIII9/10 was validated by cellular adhesion assay. Binding to α5β1 integrins were successfully validated using a produced fragment as a ligand. These results are robust supports to the rational development of bioactivation strategies for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Amina Ben Abla
- EBInnov, Ecole de Biologie Industrielle, 49 Avenue des Genottes, 95000 Cergy, France; (A.B.A.); (G.B.); (C.D.)
- Unité de Recherche Biomatériaux Innovants et Interfaces URB2i, Université Paris Sorbonne Nord, 74 Rue Marcel Cachin, 93017 Bobigny, France; (F.P.); (S.C.); (D.L.)
| | - Guilhem Boeuf
- EBInnov, Ecole de Biologie Industrielle, 49 Avenue des Genottes, 95000 Cergy, France; (A.B.A.); (G.B.); (C.D.)
| | - Ahmed Elmarjou
- Plateforme de Production D’Anticorps et de Protéines Recombinantes, Institut Curie/CNRS UMR144, 75248 Paris, France;
| | - Cyrine Dridi
- EBInnov, Ecole de Biologie Industrielle, 49 Avenue des Genottes, 95000 Cergy, France; (A.B.A.); (G.B.); (C.D.)
- Unité de Recherche Biomatériaux Innovants et Interfaces URB2i, Université Paris Sorbonne Nord, 74 Rue Marcel Cachin, 93017 Bobigny, France; (F.P.); (S.C.); (D.L.)
| | - Florence Poirier
- Unité de Recherche Biomatériaux Innovants et Interfaces URB2i, Université Paris Sorbonne Nord, 74 Rue Marcel Cachin, 93017 Bobigny, France; (F.P.); (S.C.); (D.L.)
| | - Sylvie Changotade
- Unité de Recherche Biomatériaux Innovants et Interfaces URB2i, Université Paris Sorbonne Nord, 74 Rue Marcel Cachin, 93017 Bobigny, France; (F.P.); (S.C.); (D.L.)
| | - Didier Lutomski
- Unité de Recherche Biomatériaux Innovants et Interfaces URB2i, Université Paris Sorbonne Nord, 74 Rue Marcel Cachin, 93017 Bobigny, France; (F.P.); (S.C.); (D.L.)
| | - Abdellatif Elm’selmi
- EBInnov, Ecole de Biologie Industrielle, 49 Avenue des Genottes, 95000 Cergy, France; (A.B.A.); (G.B.); (C.D.)
- Correspondence: ; Tel.: +33-1-85-76-66-90 or +33-1-85-76-67-16
| |
Collapse
|
11
|
Yamaguchi S, Ohashi N, Minamihata K, Nagamune T. Photodegradable avidin-biotinylated polymer conjugate hydrogels for cell manipulation. Biomater Sci 2021; 9:6416-6424. [PMID: 34195701 DOI: 10.1039/d1bm00585e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein-synthetic polymer hybrid hydrogels crosslinked via protein-ligand binding are promising materials for the three-dimensional culture of various cells, while photo-responsive hydrogels have been widely used for the spatio-temporal control of cell functions and patterning. Photo-responsive protein-polymer hybrid hydrogels are therefore attractive candidates for use in cell and artificial tissue fabrication; however, no examples combining these properties have been reported to date. Herein, a photodegradable hydrogel consisting of avidin and biotinylated polyethylene glycol (PEG) was developed as a multi-functional matrix for cell culture and sorting. A four-branched PEG with a biotinylated photocleavable group at the end of each chain was crosslinked with avidin to produce a photodegradable hydrogel. A cytokine-dependent immunocyte was successfully cultured in the hydrogel by supplying cytokine from a medium layered on the hydrogel. Additionally, the adhesion and survival of fibroblasts could be controlled by decorating the hydrogel with a biotinylated cell-adhesive peptide. Cells embedded in the hydrogels could be recovered without cell damage as a result of light-induced hydrogel degradation. Moreover, model target cells expressing red fluorescent protein were selectively liberated from a hydrogel containing cells of different colors by irradiating with a targeted light. Owing to both the selective biotin-binding ability of avidin and the photocleavable properties of the synthetic polymer, the hydrogels were easy to prepare and decorate with functional molecules; they provided an internal structure suitable for cell culture, and allowed light-guided cell manipulation. The hydrogels are therefore expected to contribute to various cell fabrication processes as useful cell engineering and sorting tools.
Collapse
Affiliation(s)
- Satoshi Yamaguchi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan. and PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 351-0198, Japan
| | - Noriyuki Ohashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan
| | - Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
12
|
Abstract
Fibronectin (FN) circulating in the blood and produced by cells provides the basis of the extracellular matrix (ECM) formed in healing acute wounds. The time-dependent deposition of FN by macrophages, its synthesis by fibroblasts and myofibroblasts, and later degradation in the remodeled granulation tissue are a prerequisite for successful healing of wounds. However, the pattern of FN expression and deposition in skin lesions is disturbed. The degradation of the ECM components including FN in varicose veins prevails over ECM synthesis and deposition. FN is inconspicuous in the fibrotic lesions in lipodermatosclerosis, while tenascin-C containing FN-like peptide sequences are prominent. FN is produced in large amounts by fibroblasts at the edge of venous ulcers but FN deposition at the wound bed is impaired. Both the proteolytic environment in the wounds and the changed function of the ulcer fibroblasts may be responsible for the poor healing of venous ulcers. The aim of this review is to describe the current knowledge of FN pathophysiology in chronic venous diseases. In view of the fact that FN plays a crucial role in organizing the ECM, further research focused on FN metabolism in venous diseases may bring results applicable to the treatment of the diseases.
Collapse
Affiliation(s)
- Jiri Kanta
- Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Anna Zavadakova
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| |
Collapse
|
13
|
Edwards DN, Salmeron K, Lukins DE, Trout AL, Fraser JF, Bix GJ. Integrin α5β1 inhibition by ATN-161 reduces neuroinflammation and is neuroprotective in ischemic stroke. J Cereb Blood Flow Metab 2020; 40:1695-1708. [PMID: 31575337 PMCID: PMC7370357 DOI: 10.1177/0271678x19880161] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Stroke remains a leading cause of death and disability with limited therapeutic options. Endothelial cell β1 integrin receptors play a direct role in blood-brain barrier (BBB) dysfunction through regulation of tight junction proteins and infiltrating leukocytes, potentially mediated by β1 integrins. Following tandem transient common carotid artery/middle cerebral artery occlusion on wild-type mice, we administered the integrin a5b1 inhibitor, ATN-161, intraperitoneal (IP) injection at 1 mg/kg acutely after reperfusion, on post-stroke day (PSD)1 and PSD2. Systemic changes (heart rate, pulse distension, and body temperature) were determined. Additionally, infarct volume and edema were determined by 2,3-triphenyltetrazolium chloride and magnetic resonance imaging, while neurological changes were evaluated using an 11-point Neuroscore. Brain immunohistochemistry was performed for claudin-5, α5β1, IgG, and CD45 + cells, and quantitative polymerase chain reaction (qPCR) was performed for matrix metalloproteinase-9 (MMP-9), interleukin (IL)-1β, collagen IV, and CXCL12. ATN-161 significantly reduced integrin α5β1 expression in the surrounding peri-infarct region with no systemic changes. Infarct volume, edema, and functional deficit were significantly reduced in ATN-161-treated mice. Furthermore, ATN-161 treatment reduced IgG extravasation into the parenchyma through conserved claudin-5, collagen IV, CXCL12 while reducing MMP-9 transcription. Additionally, IL-1β and CD45 + cells were reduced in the ipsilateral cortex following ATN-161 administration. Collectively, ATN-161 may be a promising novel stroke therapy by reducing post-stroke inflammation and BBB permeability.
Collapse
Affiliation(s)
| | - Kathleen Salmeron
- Department of Neuroscience, University of Kentucky, Lexington, USA.,Department of Physiology, University of Kentucky, Lexington, USA
| | | | - Amanda L Trout
- Department of Neurology, University of Kentucky, Lexington, USA
| | - Justin F Fraser
- Department of Neuroscience, University of Kentucky, Lexington, USA.,Department of Radiology, University of Kentucky, Lexington, USA.,Department of Neurology, University of Kentucky, Lexington, USA.,Department of Neurosurgery, University of Kentucky, Lexington, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, USA
| | - Gregory J Bix
- Department of Neuroscience, University of Kentucky, Lexington, USA.,Department of Neurology, University of Kentucky, Lexington, USA.,Department of Neurosurgery, University of Kentucky, Lexington, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, USA
| |
Collapse
|
14
|
Hernandez-Gordillo V, Kassis T, Lampejo A, Choi G, Gamboa ME, Gnecco JS, Brown A, Breault DT, Carrier R, Griffith LG. Fully synthetic matrices for in vitro culture of primary human intestinal enteroids and endometrial organoids. Biomaterials 2020; 254:120125. [PMID: 32502894 DOI: 10.1016/j.biomaterials.2020.120125] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022]
Abstract
Epithelial organoids derived from human donor tissues are important tools in fields ranging from regenerative medicine to drug discovery. Organoid culture requires expansion of stem/progenitor cells in Matrigel, a tumor-derived extracellular matrix (ECM). An alternative completely synthetic ECM could improve reproducibility, clarify mechanistic phenomena, and enable human implantation of organoids. We designed synthetic ECMs with tunable biomolecular and biophysical properties to identify gel compositions supporting human tissue-derived stem/progenitor epithelial cells as enteroids and organoids starting with single cells rather than tissue fragments. The synthetic ECMs consist of 8-arm PEG-macromers modified with ECM-binding peptides and different combinations of integrin-binding peptides, crosslinked with peptides susceptible to matrix metalloprotease (MMP) degradation, and tuned to exhibit a range of biophysical properties. A gel containing an α2β1 integrin-binding peptide (GFOGER) and matrix binder peptides grafted to a 20 kDa 8-arm PEG macromer showed the most robust support of human duodenal and colon enteroids and endometrial organoids. In this synthetic ECM, human intestinal enteroids and endometrial organoids emerge from single cells and show cell-specific and apicobasal polarity markers upon differentiation. Intestinal enteroids, in addition, retain their proliferative capacity, are functionally responsive to basolateral stimulation, express canonical markers of intestinal crypt cells including Paneth cells, and can be serially passaged. The success of this synthetic ECM in supporting human postnatal organoid culture from multiple different donors and from both the intestine and endometrium suggests it may be broadly useful for other epithelial organoid culture.
Collapse
Affiliation(s)
- Victor Hernandez-Gordillo
- Center for Gynepathology Research and Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02138, USA
| | - Timothy Kassis
- Center for Gynepathology Research and Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02138, USA
| | - Arinola Lampejo
- Center for Gynepathology Research and Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02138, USA
| | - GiHun Choi
- Center for Gynepathology Research and Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02138, USA
| | - Mario E Gamboa
- Center for Gynepathology Research and Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02138, USA
| | - Juan S Gnecco
- Center for Gynepathology Research and Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02138, USA
| | - Alexander Brown
- Center for Gynepathology Research and Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02138, USA
| | - David T Breault
- Deparment of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Rebecca Carrier
- Department of Chemical Engineering, Northeastern University, 208 Lake Hall, Boston, MA, 02115, USA
| | - Linda G Griffith
- Center for Gynepathology Research and Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02138, USA.
| |
Collapse
|
15
|
de Castro Brás LE, Frangogiannis NG. Extracellular matrix-derived peptides in tissue remodeling and fibrosis. Matrix Biol 2020; 91-92:176-187. [PMID: 32438055 DOI: 10.1016/j.matbio.2020.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/26/2022]
Abstract
Alterations in the composition of the extracellular matrix (ECM) critically regulate the cellular responses in tissue repair, remodeling, and fibrosis. After injury, proteolytic degradation of ECM generates bioactive ECM fragments, named matricryptins, exposing cryptic sites with actions distinct from the parent molecule. Matricryptins contribute to the regulation of inflammatory, reparative, and fibrogenic cascades through effects on several different cell types both in acute and chronic settings. Fibroblasts play a major role in matricryptin generation not only as the main cellular source of ECM proteins, but also as producers of matrix-degrading proteases. Moreover, several matricryptins exert fibrogenic or reparative actions by modulating fibroblast phenotype and function. This review manuscript focuses on the mechanisms of matricyptin generation in injured and remodeling tissues with an emphasis on fibroblast-matricryptin interactions.
Collapse
Affiliation(s)
- Lisandra E de Castro Brás
- The Brody School of Medicine, East Carolina University, Department of Physiology, Greenville 27858 North Carolina.
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
16
|
Abstract
Treatment strategies in clinics have been shifting from small molecules to protein drugs due to the promising results of a highly specific mechanism of action and reduced toxicity. Despite their prominent roles in disease treatment, delivery of the protein therapeutics is challenging due to chemical instability, immunogenicity and biological barriers. Peptide hydrogels with spatiotemporally tunable properties have shown an outstanding potential to deliver complex protein therapeutics, maintain drug efficacy and stability over time, mimicking the extracellular matrix, and responding to external stimuli. In this review, we present recent advances in peptide hydrogel design strategies, protein release kinetics and mechanisms for protein drug delivery in cellular engineering, tissue engineering, immunotherapy and disease treatments.
Collapse
|
17
|
Jurczak P, Witkowska J, Rodziewicz-Motowidło S, Lach S. Proteins, peptides and peptidomimetics as active agents in implant surface functionalization. Adv Colloid Interface Sci 2020; 276:102083. [PMID: 31887572 DOI: 10.1016/j.cis.2019.102083] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
The recent impact of implants on improving the human life quality has been enormous. During the past two decades we witnessed major advancements in both material and structural development of implants. They were driven mainly by the increasing patients' demand and the need to address the major issues that come along with the initially underestimated complexity of the bone-implant interface. While both, the materials and design of implants reached a certain, balanced state, recent years brought a shift in focus towards the bone-implant interface as the weakest link in the increasing implant long-term usability. As a result, several approaches were developed. They aimed at influencing and enhancing the implant osseointegration and its proper behavior when under load and stress. With this review, we would like to discuss the recent advancements in the field of implant surface modifications, emphasizing the importance of chemical methods, focusing on proteins, peptides and peptidomimetics as promising agents for titanium surface coatings.
Collapse
|
18
|
Dayem AA, Won J, Goo HG, Yang GM, Seo DS, Jeon BM, Choi HY, Park SE, Lim KM, Jang SH, Lee SB, Choi SB, Kim K, Kang GH, Yeon GB, Kim DS, Cho SG. The immobilization of fibronectin- and fibroblast growth factor 2-derived peptides on a culture plate supports the attachment and proliferation of human pluripotent stem cells. Stem Cell Res 2020; 43:101700. [PMID: 31981882 DOI: 10.1016/j.scr.2020.101700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
Pluripotent stem cells (PSCs) offer a promising tool for regenerative medicine. The clinical application of PSCs inevitably requires a large-scale culture in a highly defined environment. The present study aimed to devise defined coating materials for the efficient adhesion and proliferation of human PSCs (hPSCs). We tested the activity of seven fibronectin-derived peptides and three laminin-derived peptides for the attachment and proliferation of hPSCs through their immobilization on the bottom of culture dishes by creating a fusion protein with the mussel adhesion protein. Among the extracellular matrix (ECM) mimetics tested, one fibronectin-derived peptide, PHSRN-GRGDSP, significantly promoted adhesion, enhanced alkaline phosphatase activity, and increased pluripotency-related gene expression in hPSCs compared to Matrigel. Furthermore, co-immobilization of a particular canofin peptide derived from fibroblast growth factor 2 increased pluripotency marker expression, which may offer the possibility of culture without growth factor supplementation. Our findings afford a novel defined condition for the efficient culture of hPSCs and may be utilized in future clinical applications.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jihye Won
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; AMOGREENTECH, 91, Gimpo-daero 1950 beon-gil, Tongjin-eup, Gimpo-si, Gyeonggi-do 10014, Republic of Korea
| | - Hui-Gwan Goo
- AMOGREENTECH, 91, Gimpo-daero 1950 beon-gil, Tongjin-eup, Gimpo-si, Gyeonggi-do 10014, Republic of Korea
| | - Gwang-Mo Yang
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Dong Sik Seo
- AMOGREENTECH, 91, Gimpo-daero 1950 beon-gil, Tongjin-eup, Gimpo-si, Gyeonggi-do 10014, Republic of Korea
| | - Byeong-Min Jeon
- Department of Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hye Yeon Choi
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang Eun Park
- AMOGREENTECH, 91, Gimpo-daero 1950 beon-gil, Tongjin-eup, Gimpo-si, Gyeonggi-do 10014, Republic of Korea
| | - Kyung Min Lim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seon-Ho Jang
- AMOGREENTECH, 91, Gimpo-daero 1950 beon-gil, Tongjin-eup, Gimpo-si, Gyeonggi-do 10014, Republic of Korea
| | - Soo Bin Lee
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang Baek Choi
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Geun-Ho Kang
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Gyu-Bum Yeon
- Department of Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dae-Sung Kim
- Department of Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Pediatrics, Korea University College of Medicine, Guro Hospital, 97 Gurodong-gil, Guro-gu, Seoul 08308, Republic of Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
19
|
Synergistic Adhesiveness of Fibronectin with PHSRN Peptide in Gelatin Mixture Promotes the Therapeutic Potential of Human ES-Derived MSCs. Cell Mol Bioeng 2019; 13:73-86. [PMID: 32030109 DOI: 10.1007/s12195-019-00604-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) are promising candidates for cell therapy owing to their therapeutic effect in various diseases. In general, MSCs grow efficiently in serum-containing culture media, indicating an essential role of adhesion in their mesenchymal lineage-specific propagation. Nevertheless, the use of non-human supplements in culture (xeno-free issue) in addition to the lack of control over unknown factors in the serum hampers the clinical transition of MSCs. Methods In this study, embryonic stem cell derived mesenchymal stem cells (ES-MSCs) were used owing to their scalable production, and they expressed a series of MSC markers same as adipose-derived MSCs. The affinity of the culture matrix was increased by combining fibronectin coating with its adjuvant peptide, gelatin, or both (FNGP) on tissue culture polystyrene to compare the regenerative, therapeutic activities of ES-MSCs with a cell binding plate as a commercial control. Results The FNGP culture plate promoted pivotal therapeutic functions of ES-MSCs as evidenced by their increased stemness as well as anti-inflammatory and proangiogenic effects in vitro. Indeed, after culturing on the FNGP plates, ES-MSCs efficiently rescued the necrotic damages in mouse ischemic hindlimb model. Conclusions This study suggests a potential solution by promoting the surface affinity of culture plates using a mixture of human fibronectin and its adjuvant PHSRN peptide in gelatin. The FNGP plate is expected to serve as an effective alternative for serum-free MSC expansion for bench to clinical transition.
Collapse
|
20
|
Kirsch M, Birnstein L, Pepelanova I, Handke W, Rach J, Seltsam A, Scheper T, Lavrentieva A. Gelatin-Methacryloyl (GelMA) Formulated with Human Platelet Lysate Supports Mesenchymal Stem Cell Proliferation and Differentiation and Enhances the Hydrogel's Mechanical Properties. Bioengineering (Basel) 2019; 6:E76. [PMID: 31466260 PMCID: PMC6784140 DOI: 10.3390/bioengineering6030076] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/19/2019] [Accepted: 08/24/2019] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional (3D) cell culture is a major focus of current research, since cultivation under physiological conditions provides more reliable information about in vivo cell behavior. 3D cell cultures are used in basic research to better understand intercellular and cell-matrix interactions. However, 3D cell culture plays an increasingly important role in the in vitro testing of bioactive substances and tissue engineering. Gelatin-methacryloyl (GelMA) hydrogels of different degrees of functionalization (DoFs) are a versatile tool for 3D cell culture and related applications such as bioprinting. Human platelet lysate (hPL) has already demonstrated positive effects on 2D cell cultures of different cell types and has proven a valuable alternative to fetal calf serum (FCS). Traditionally, all hydrogels are formulated using buffers. In this study, we supplemented GelMA hydrogels of different DoF with hPL during adipose tissue-derived mesenchymal stem cell (AD-MSCs) encapsulation. We studied the effect of hPL supplementation on the spreading, proliferation, and osteogenic differentiation of AD-MSCs. In addition, the influence of hPL on hydrogel properties was also investigated. We demonstrate that the addition of hPL enhanced AD-MSC spreading, proliferation, and osteogenic differentiation in a concentration-dependent manner. Moreover, the addition of hPL also increased GelMA viscosity and stiffness.
Collapse
Affiliation(s)
- Marline Kirsch
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Luise Birnstein
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Iliyana Pepelanova
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Wiebke Handke
- German Red Cross Blood Service NSTOB, 31832 Springe, Germany
| | - Jessica Rach
- German Red Cross Blood Service NSTOB, 31832 Springe, Germany
| | - Axel Seltsam
- German Red Cross Blood Service NSTOB, 31832 Springe, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Antonina Lavrentieva
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, 30167 Hannover, Germany.
| |
Collapse
|
21
|
Hosoyama K, Lazurko C, Muñoz M, McTiernan CD, Alarcon EI. Peptide-Based Functional Biomaterials for Soft-Tissue Repair. Front Bioeng Biotechnol 2019; 7:205. [PMID: 31508416 PMCID: PMC6716508 DOI: 10.3389/fbioe.2019.00205] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/09/2019] [Indexed: 11/15/2022] Open
Abstract
Synthetically derived peptide-based biomaterials are in many instances capable of mimicking the structure and function of their full-length endogenous counterparts. Combine this with the fact that short mimetic peptides are easier to produce when compared to full length proteins, show enhanced processability and ease of modification, and have the ability to be prepared under well-defined and controlled conditions; it becomes obvious why there has been a recent push to develop regenerative biomaterials from these molecules. There is increasing evidence that the incorporation of peptides within regenerative scaffolds can result in the generation of structural recognition motifs that can enhance cell attachment or induce cell signaling pathways, improving cell infiltration or promote a variety of other modulatory biochemical responses. By highlighting the current approaches in the design and application of short mimetic peptides, we hope to demonstrate their potential in soft-tissue healing while at the same time drawing attention to the advances made to date and the problems which need to be overcome to advance these materials to the clinic for applications in heart, skin, and cornea repair.
Collapse
Affiliation(s)
- Katsuhiro Hosoyama
- Division of Cardiac Surgery Research, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Caitlin Lazurko
- Division of Cardiac Surgery Research, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Biochemistry, Microbiology and Immunology Department, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Marcelo Muñoz
- Division of Cardiac Surgery Research, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Christopher D McTiernan
- Division of Cardiac Surgery Research, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Emilio I Alarcon
- Division of Cardiac Surgery Research, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Biochemistry, Microbiology and Immunology Department, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
22
|
Ramaraju H, Kohn DH. Cell and Material-Specific Phage Display Peptides Increase iPS-MSC Mediated Bone and Vasculature Formation In Vivo. Adv Healthc Mater 2019; 8:e1801356. [PMID: 30835955 DOI: 10.1002/adhm.201801356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/04/2019] [Indexed: 01/27/2023]
Abstract
Biomimetically designed materials matching the chemical and mechanical properties of tissue support higher mesenchymal stem cell (MSC) adhesion. However, directing cell-specific attachment and ensuring uniform cell distribution within the interior of 3D biomaterials remain key challenges in healing critical sized defects. Previously, a phage display derived MSC-specific peptide (DPIYALSWSGMA, DPI) was combined with a mineral binding sequence (VTKHLNQISQSY, VTK) to increase the magnitude and specificity of MSC attachment to calcium-phosphate biomaterials in 2D. This study investigates how DPI-VTK influences quantity and uniformity of iPS-MSC mediated bone and vasculature formation in vivo. There is greater bone formation in vivo when iPS-MSCs are transplanted on bone-like mineral (BLM) constructs coated with DPI-VTK compared to VTK (p < 0.002), uncoated BLM (p < 0.037), acellular BLM/DPI-VTK (p < 0.003), and acellular BLM controls (p < 0.01). This study demonstrates, for the first time, the ability of non-native phage-display designed peptides to spatially control uniform cell distribution on 3D scaffolds and increase the magnitude and uniformity of bone and vasculature formation in vivo. Taken together, the study validates phage display as a novel technology platform to engineer non-native peptides with the ability to drive cell specific attachment on biomaterials, direct bone regeneration, and engineer uniform vasculature in vivo.
Collapse
Affiliation(s)
- Harsha Ramaraju
- Department of Biologic and Material SciencesDepartment of Biomedical EngineeringUniversity of Michigan 1011 N. University Ave, Room 2213 Ann Arbor MI 48109‐1078 USA
| | - David H. Kohn
- Department of Biologic and Material SciencesDepartment of Biomedical EngineeringUniversity of Michigan 1011 N. University Ave, Room 2213 Ann Arbor MI 48109‐1078 USA
| |
Collapse
|
23
|
Gao C, Lee V, Hammer DA. Enhanced Cell Killing by Paclitaxel-Loaded Recombinant Protein Micelles Bearing Integrin-Binding and Cell-Penetrating Peptides. Bioconjug Chem 2019:acs.bioconjchem.8b00748. [PMID: 30777745 DOI: 10.1021/acs.bioconjchem.8b00748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peptide ligands are effective and specific vectors that can target cell surface receptors, and have shown great potential for targeting drug delivery vehicles. Often, materials used as drug delivery matrices are chemically synthesized and difficult to functionalize, which compromises their development as smart drug carriers. Here, we assemble carriers from a recombinant protein as a novel approach to overcome these limitations. We have previously shown that oleosin, a natural surfactant protein, can be engineered to self-assemble into spherical micelles, and that functionalizing oleosin with RGDS can increase cellular uptake in integrin bearing cells. Here, we investigated whether we could further enhance cellular by incorporating either a RGDS synergy peptide PHSRN or a cell-penetrating Tat peptide derived from human immunodeficiency virus (HIV). The resulting modified oleosins self-assemble into spherical micelles in aqueous environments. Spherical micelles made from oleosin can effectively encapsulate the hydrophobic chemotherapeutic drug paclitaxel (PX). After 15 hours, 350 nM PX loaded oleosin micelles equipped with both RGDS and Tat increased cell killing by twofold compared to free paclitaxel, and 1.2-fold compared to micelles made from RGD-oleosin alone. Micelles equipped with PHSRN alone does not facilitate cell killing compared to free paclitaxel, whereas micelles equipped with both PHSRN and RGDS increased cell killing by 1.1 fold compared to micelles with RGDS alone in 15 hours. Therefore, incorporating multiple motifs into oleosin is an approach for candidate for making a versatile drug delivery carrier.
Collapse
|
24
|
Munisso MC, Yamaoka T. Peptide with endothelial cell affinity and antiplatelet adhesion property to improve hemocompatibility of blood‐contacting biomaterials. Pept Sci (Hoboken) 2019. [DOI: 10.1002/pep2.24114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maria Chiara Munisso
- Department of Biomedical EngineeringNational Cerebral and Cardiovascular Center Research Institute Suita Osaka Japan
| | - Tetsuji Yamaoka
- Department of Biomedical EngineeringNational Cerebral and Cardiovascular Center Research Institute Suita Osaka Japan
| |
Collapse
|
25
|
Aye SSS, Li R, Boyd-Moss M, Long B, Pavuluri S, Bruggeman K, Wang Y, Barrow CR, Nisbet DR, Williams RJ. Scaffolds Formed via the Non-Equilibrium Supramolecular Assembly of the Synergistic ECM Peptides RGD and PHSRN Demonstrate Improved Cell Attachment in 3D. Polymers (Basel) 2018; 10:E690. [PMID: 30960615 PMCID: PMC6404015 DOI: 10.3390/polym10070690] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 01/15/2023] Open
Abstract
Self-assembling peptides (SAPs) are a relatively new class of low molecular weight gelators which immobilize their solvent through the spontaneous formation of (fibrillar) nanoarchitectures. As peptides are derived from proteins, these hydrogels are ideal for use as biocompatible scaffolds for regenerative medicine. Importantly, due to the propensity of peptide sequences to act as signals in nature, they are easily functionalized to be cell instructive via the inclusion of bioactive epitopes. In nature, the fibronectin peptide sequence, arginine-glycine-aspartic acid (RGD) synergistically promotes the integrin α₅β₁ mediated cell adhesion with another epitope, proline-histidine-serine-arginine-asparagine (PHSRN); however most functionalization strategies focus on RGD alone. Here, for the first time, we discuss the biomimetic inclusion of both these sequences within a self-assembled minimalistic peptide hydrogel. Here, based on our work with Fmoc-FRGDF (N-flourenylmethyloxycarbonyl phenylalanine-arginine-glycine-aspartic acid-phenylalanine), we show it is possible to present two epitopes simultaneously via the assembly of the epitopes by the coassembly of two SAPs, and compare this to the effectiveness of the signals in a single peptide; Fmoc-FRGDF: Fmoc-PHSRN (N-flourenylmethyloxycarbonyl-proline-histidine-serine-arginine-asparagine) and Fmoc-FRGDFPHSRN (N-flourenylmethyloxycarbonyl-phenylalanine-arginine-glycine-asparticacid-phenylalanine-proline-histidine-serine-arginine-asparagine). We show both produced self-supporting hydrogel underpinned by entangled nanofibrils, however, the stiffness of coassembled hydrogel was over two orders of magnitude higher than either Fmoc-FRGDF or Fmoc-FRGDFPHSRN alone. In-vitro three-dimensional cell culture of human mammary fibroblasts on the hydrogel mixed peptide showed dramatically improved adhesion, spreading and proliferation over Fmoc-FRGDF. However, the long peptide did not provide effective cell attachment. The results demonstrated the selective synergy effect of PHSRN with RGD is an effective way to augment the robustness and functionality of self-assembled bioscaffolds.
Collapse
Affiliation(s)
- San-Seint S Aye
- Center for Chemistry and Biotechnology, Deakin University, Waurn Ponds, VIC 3217, Australia.
| | - Rui Li
- Center for Chemistry and Biotechnology, Deakin University, Waurn Ponds, VIC 3217, Australia.
| | - Mitchell Boyd-Moss
- School of Engineering, RMIT University, Bundoora, VIC 3083, Australia.
- Biofab3D, St. Vincents' Hospital, Fitzroy, VIC 3000, Australia.
| | - Benjamin Long
- Center for Chemistry and Biotechnology, Deakin University, Waurn Ponds, VIC 3217, Australia.
- Faculty of Science and Technology, Federation University, Mt. Helen, VIC 3350, Australia.
| | - Sivapriya Pavuluri
- School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia.
| | - Kiara Bruggeman
- Research School of Engineering, Australian National University, Canberra, ACT 0200, Australia.
| | - Yi Wang
- Research School of Engineering, Australian National University, Canberra, ACT 0200, Australia.
| | - Colin R Barrow
- Center for Chemistry and Biotechnology, Deakin University, Waurn Ponds, VIC 3217, Australia.
| | - David R Nisbet
- Biofab3D, St. Vincents' Hospital, Fitzroy, VIC 3000, Australia.
- Research School of Engineering, Australian National University, Canberra, ACT 0200, Australia.
| | - Richard J Williams
- School of Engineering, RMIT University, Bundoora, VIC 3083, Australia.
- Biofab3D, St. Vincents' Hospital, Fitzroy, VIC 3000, Australia.
| |
Collapse
|
26
|
Ovadia EM, Colby DW, Kloxin AM. Designing well-defined photopolymerized synthetic matrices for three-dimensional culture and differentiation of induced pluripotent stem cells. Biomater Sci 2018; 6:1358-1370. [PMID: 29675520 PMCID: PMC6126667 DOI: 10.1039/c8bm00099a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are of interest for the study of disease, where these cells can be derived from patients and have the potential to be differentiated into any cell type; however, three-dimensional (3D) culture and differentiation of iPSCs within well-defined synthetic matrices for these applications remains limited. Here, we aimed to establish synthetic cell-degradable hydrogels that allow precise presentation of specific biochemical cues for 3D culture of iPSCs with relevance for hypothesis testing and lineage-specific differentiation. We synthesized poly(ethylene glycol)-(PEG)-peptide-based hydrogels by photoinitiated step growth polymerization and used them to test the hypothesis that the viability of iPSCs within these matrices could be rescued with appropriate biochemical cues inspired by proteins and integrins important for iPSC culture on Matrigel. Specifically, we selected a range of motifs inspired by iPSC binding to Matrigel, including laminin-derived IKVAV and YIGSR, α5β1-binding PHSRNG10RGDS, αvβ5-binding KKQRFRHRNRKG, and RGDS that is known to bind a variety of integrins for generally promoting cell adhesion. YIGSR and PHSRNG10RGDS resulted in the highest iPSC viability, where binding of β1 integrin was key, and these permissive compositions also allowed iPSC differentiation into neural progenitor cells (NPCs) (decreased oct4 expression and increased pax6 expression) in response to soluble factors. The resulting NPCs formed clusters of different sizes in response to each peptide, suggesting that matrix biochemical cues affect iPSC proliferation and clustering in 3D culture. In summary, we have established photopolymerizable synthetic matrices for the encapsulation, culture, and differentiation of iPSCs for studies of cell-matrix interactions and deployment in disease models.
Collapse
Affiliation(s)
- Elisa M Ovadia
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| | | | | |
Collapse
|
27
|
Independent control of matrix adhesiveness and stiffness within a 3D self-assembling peptide hydrogel. Acta Biomater 2018; 70:110-119. [PMID: 29410241 DOI: 10.1016/j.actbio.2018.01.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 12/30/2022]
Abstract
A cell's insoluble microenvironment has increasingly been shown to exert influence on its function. In particular, matrix stiffness and adhesiveness strongly impact behaviors such as cell spreading and differentiation, but materials that allow for independent control of these parameters within a fibrous, stromal-like microenvironment are very limited. In the current work, we devise a self-assembling peptide (SAP) system that facilitates user-friendly control of matrix stiffness and RGD (Arg-Gly-Asp) concentration within a hydrogel possessing a microarchitecture similar to stromal extracellular matrix. In this system, the RGD-modified SAP sequence KFE-RGD and the scrambled sequence KFE-RDG can be directly swapped for one another to change RGD concentration at a given matrix stiffness and total peptide concentration. Stiffness is controlled by altering total peptide concentration, and the unmodified base peptide KFE-8 can be included to further increase this stiffness range due to its higher modulus. With this tunable system, we demonstrate that human mesenchymal stem cell morphology and differentiation are influenced by both gel stiffness and the presence of functional cell binding sites in 3D culture. Specifically, cells 24 hours after encapsulation were only able to spread out in stiffer matrices containing KFE-RGD. Upon addition of soluble adipogenic factors, soft gels facilitated the greatest adipogenesis as determined by the presence of lipid vacuoles and PPARγ-2 expression, while increasing KFE-RGD concentration at a given stiffness had a negative effect on adipogenesis. This three-component hydrogel system thus allows for systematic investigation of matrix stiffness and RGD concentration on cell behavior within a fibrous, three-dimensional matrix. STATEMENT OF SIGNIFICANCE Physical cues from a cell's surrounding environment-such as the density of cell binding sites and the stiffness of the surrounding material-are increasingly being recognized as key regulators of cell function. Currently, most synthetic biomaterials used to independently tune these parameters lack the fibrous structure characteristic of stromal extracellular matrix, which can be important to cells naturally residing within stromal tissues. In this manuscript, we describe a 3D hydrogel encapsulation system that provides user-friendly control over matrix stiffness and binding site concentration within the context of a stromal-like microarchitecture. Binding site concentration and gel stiffness both influenced cell spreading and differentiation, highlighting the utility of this system to study the independent effects of these material properties on cell function.
Collapse
|
28
|
|
29
|
Pacelli S, Basu S, Whitlow J, Chakravarti A, Acosta F, Varshney A, Modaresi S, Berkland C, Paul A. Strategies to develop endogenous stem cell-recruiting bioactive materials for tissue repair and regeneration. Adv Drug Deliv Rev 2017; 120:50-70. [PMID: 28734899 PMCID: PMC5705585 DOI: 10.1016/j.addr.2017.07.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/05/2017] [Accepted: 07/16/2017] [Indexed: 02/07/2023]
Abstract
A leading strategy in tissue engineering is the design of biomimetic scaffolds that stimulate the body's repair mechanisms through the recruitment of endogenous stem cells to sites of injury. Approaches that employ the use of chemoattractant gradients to guide tissue regeneration without external cell sources are favored over traditional cell-based therapies that have limited potential for clinical translation. Following this concept, bioactive scaffolds can be engineered to provide a temporally and spatially controlled release of biological cues, with the possibility to mimic the complex signaling patterns of endogenous tissue regeneration. Another effective way to regulate stem cell activity is to leverage the inherent chemotactic properties of extracellular matrix (ECM)-based materials to build versatile cell-instructive platforms. This review introduces the concept of endogenous stem cell recruitment, and provides a comprehensive overview of the strategies available to achieve effective cardiovascular and bone tissue regeneration.
Collapse
Affiliation(s)
- Settimio Pacelli
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Sayantani Basu
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Jonathan Whitlow
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Aparna Chakravarti
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Francisca Acosta
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Arushi Varshney
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| | - Saman Modaresi
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Cory Berkland
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA.
| | - Arghya Paul
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
30
|
Ramaraju H, Miller SJ, Kohn DH. Dual-functioning peptides discovered by phage display increase the magnitude and specificity of BMSC attachment to mineralized biomaterials. Biomaterials 2017; 134:1-12. [PMID: 28453953 DOI: 10.1016/j.biomaterials.2017.04.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/17/2017] [Indexed: 02/09/2023]
Abstract
Design of biomaterials for cell-based therapies requires presentation of specific physical and chemical cues to cells, analogous to cues provided by native extracellular matrices (ECM). We previously identified a peptide sequence with high affinity towards apatite (VTKHLNQISQSY, VTK) using phage display. The aims of this study were to identify a human MSC-specific peptide sequence through phage display, combine it with the apatite-specific sequence, and verify the specificity of the combined dual-functioning peptide to both apatite and human bone marrow stromal cells. In this study, a combinatorial phage display identified the cell binding sequence (DPIYALSWSGMA, DPI) which was combined with the mineral binding sequence to generate the dual peptide DPI-VTK. DPI-VTK demonstrated significantly greater binding affinity (1/KD) to apatite surfaces compared to VTK, phosphorylated VTK (VTKphos), DPI-VTKphos, RGD-VTK, and peptide-free apatite surfaces (p < 0.01), while significantly increasing hBMSC adhesion strength (τ50, p < 0.01). MSCs demonstrated significantly greater adhesion strength to DPI-VTK compared to other cell types, while attachment of MC3T3 pre-osteoblasts and murine fibroblasts was limited (p < 0.01). MSCs on DPI-VTK coated surfaces also demonstrated increased spreading compared to pre-osteoblasts and fibroblasts. MSCs cultured on DPI-VTK coated apatite films exhibited significantly greater proliferation compared to controls (p < 0.001). Moreover, early and late stage osteogenic differentiation markers were elevated on DPI-VTK coated apatite films compared to controls. Taken together, phage display can identify non-obvious cell and material specific peptides to increase human MSC adhesion strength to specific biomaterial surfaces and subsequently increase cell proliferation and differentiation. These new peptides expand biomaterial design methodology for cell-based regeneration of bone defects. This strategy of combining cell and material binding phage display derived peptides is broadly applicable to a variety of systems requiring targeted adhesion of specific cell populations, and may be generalized to the engineering of any adhesion surface.
Collapse
Affiliation(s)
- Harsha Ramaraju
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sharon J Miller
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - David H Kohn
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Biologic and Material Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
Cabezas M, Mirkin CA, Mrksich M. Nanopatterned Extracellular Matrices Enable Cell-Based Assays with a Mass Spectrometric Readout. NANO LETTERS 2017; 17:1373-1377. [PMID: 28120616 PMCID: PMC5501326 DOI: 10.1021/acs.nanolett.6b04176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/24/2017] [Indexed: 05/27/2023]
Abstract
Cell-based assays are finding wider use in evaluating compounds in primary screens for drug development, yet it is still challenging to measure enzymatic activities as an end point in a cell-based assay. This paper reports a strategy that combines state-of-the-art cantilever free polymer pen lithography (PPL) with self-assembled monolayer laser desorption-ionization (SAMDI) mass spectrometry to guide cell localization and measure cellular enzymatic activities. Experiments are conducted with a 384 spot array, in which each spot is composed of ∼400 nanoarrays and each array has a 10 × 10 arrangement of 750 nm features that present extracellular matrix (ECM) proteins surrounded by an immobilized phosphopeptide. Cells attach to the individual nanoarrays, where they can be cultured and treated with small molecules, after which the media is removed and the cells are lysed. Phosphatase enzymes in the proximal lysate can then act on the immobilized phosphopeptide substrate to convert it to the dephosphorylated form. After the lysate is removed, the array is analyzed by SAMDI mass spectrometry to identify the extent of dephosphorylation and, therefore, the amount of enzyme activity in the cell. This novel approach of using nanopatterning to mediate cell adhesion and SAMDI to record enzyme activities in the proximal lysate will enable a broad range of cellular assays for applications in drug discovery and research not possible with conventional strategies.
Collapse
Affiliation(s)
- Maria
D. Cabezas
- Department of Chemistry and International Institute for Nanotechnology and Department of Biomedical
Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A. Mirkin
- Department of Chemistry and International Institute for Nanotechnology and Department of Biomedical
Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Milan Mrksich
- Department of Chemistry and International Institute for Nanotechnology and Department of Biomedical
Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department
of Cell and Molecular Biology, Feinberg
School of Medicine, 303
East Chicago Avenue, Chicago, Illinois 60611, United
States
| |
Collapse
|
32
|
Kobayashi J, Yamato M, Okano T. On-off affinity binding modulation on thermoresponsive polymer-grafted surfaces for capture and release of proteins and cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:939-957. [DOI: 10.1080/09205063.2017.1295508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jun Kobayashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), Tokyo, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), Tokyo, Japan
| |
Collapse
|
33
|
Munisso MC, Yamaoka T. Novel peptides for small-caliber graft functionalization selected by a phage display of endothelial-positive/platelet-negative combined selection. J Mater Chem B 2017; 5:9354-9364. [DOI: 10.1039/c7tb02652h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new protocol to identify peptides with EPCs high affinity and at the same time the ability to suppress the interaction with platelets was presented.
Collapse
Affiliation(s)
- Maria Chiara Munisso
- Department of Biomedical Engineering
- National Cerebral and Cardiovascular Center Research Institute
- Suita
- Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering
- National Cerebral and Cardiovascular Center Research Institute
- Suita
- Japan
| |
Collapse
|
34
|
Poly(Lactic Acid) Nanoparticles Targeting α5β1 Integrin as Vaccine Delivery Vehicle, a Prospective Study. PLoS One 2016; 11:e0167663. [PMID: 27973577 PMCID: PMC5156357 DOI: 10.1371/journal.pone.0167663] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/17/2016] [Indexed: 12/12/2022] Open
Abstract
Biodegradable polymeric nanoparticles are vehicles of choice for drug delivery and have the ability to encapsulate and present at their surface different molecules of interest. Among these bio-nanocarriers, poly(lactic acid) (PLA) nanoparticles have been used as adjuvant and vehicle for enhanced vaccine efficacy. In order to develop an approach to efficient vaccine delivery, we developed nanoparticles to target α5β1 positive cells. We first overproduced, in bacteria, human fibronectin FNIII9/10 recombinant proteins possessing an integrin α5β1 binding site, the RGDS sequence, or a mutated form of this site. After having confirmed the integrin binding properties of these recombinant proteins in cell culture assays, we were able to formulate PLA nanoparticles with these FNIII9/10 proteins at their surface. We then confirmed, by fluorescence and confocal microscopy, an enhanced cellular uptake by α5β1+ cells of RGDS-FNIII9/10 coated PLA nanoparticles, in comparison to KGES-FNIII9/10 coated or non-coated controls. As a first vaccination approach, we prepared PLA nanoparticles co-coated with p24 (an HIV antigen), and RGDS- or KGES-FNIII9/10 proteins, followed by subcutaneous vaccine administration, in mice. Although we did not detect improvements in the apparent humoral response to p24 antigen in the serum of RGDS/p24 nanoparticle-treated mice, the presence of the FNIII proteins increased significantly the avidity index of anti-p24 antibodies compared to p24-nanoparticle-injected control mice. Future developments of this innovative targeted vaccine are discussed.
Collapse
|
35
|
Wang Z, Zhang F, Wang Z, Liu Y, Fu X, Jin A, Yung BC, Chen W, Fan J, Yang X, Niu G, Chen X. Hierarchical Assembly of Bioactive Amphiphilic Molecule Pairs into Supramolecular Nanofibril Self-Supportive Scaffolds for Stem Cell Differentiation. J Am Chem Soc 2016; 138:15027-15034. [PMID: 27775895 PMCID: PMC8204449 DOI: 10.1021/jacs.6b09014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular design of biomaterials with unique features recapitulating nature's niche to influence biological activities has been a prolific area of investigation in chemistry and material science. The extracellular matrix (ECM) provides a wealth of bioactive molecules in supporting cell proliferation, migration, and differentiation. The well-patterned fibril and intertwining architecture of the ECM profoundly influences cell behavior and development. Inspired by those features from the ECM, we attempted to integrate essential biological factors from the ECM to design bioactive molecules to construct artificial self-supportive ECM mimics to advance stem cell culture. The synthesized biomimic molecules are able to hierarchically self-assemble into nanofibril hydrogels in physiological buffer driven by cooperative effects of electrostatic interaction, van der Waals forces, and intermolecular hydrogen bonds. In addition, the hydrogel is designed to be degradable during cell culture, generating extra space to facilitate cell migration, expansion, and differentiation. We exploited the bioactive hydrogel as a growth-factor-free scaffold to support and accelerate neural stem cell adhesion, proliferation, and differentiation into functional neurons. Our study is a successful attempt to entirely use bioactive molecules for bottom-up self-assembly of new biomaterials mimicking the ECM to directly impact cell behaviors. Our strategy provides a new avenue in biomaterial design to advance tissue engineering and cell delivery.
Collapse
Affiliation(s)
- Zhe Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiao Fu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Albert Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bryant C. Yung
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Wei Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jing Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiangyu Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
36
|
Pramono S, Pugdee K, Suwanprateep J, Koontongkaew S. Sandblasting and fibronectin-derived peptide immobilization on titanium surface increase adhesion and differentiation of osteoblast-like cells (MC3T3-E1). J Dent Sci 2016; 11:427-436. [PMID: 30895008 PMCID: PMC6395237 DOI: 10.1016/j.jds.2016.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/19/2016] [Indexed: 11/23/2022] Open
Abstract
Background/purpose Various chemical titanium (Ti) surface modifications have been reported for enhancing cellular activities that promote early osseointegration. The purpose of this study was to determine if sandblasted Ti coated with or without fibronectin (FN) or FN-derived peptides stimulated osteoblast-like cell adhesion, spreading, proliferation, and differentiation. Materials and methods Osteoblast-like cells (MC3T3-E1) were cultured on sandblasted Ti disks immobilized with FN or FN-derived peptides [GRGDSP (Gly-Arg-Gly-Asp-Ser), PHSRN (Pro-His-Ser-Arg-Asn), or GRGDSP/PHSRN]. Surface topography, cell morphology, cell adhesion, cell proliferation, analysis of osteogenesis-related genes and protein expression, alkaline phosphatase, and alizarin red staining of mineralization were evaluated. Results The sandblasted Ti coated with FN or FN-derived peptides enhanced cell adhesion and cell proliferation. However, the Ti coated with FN or FN-derived peptides groups were similar in cell spreading. Osteogenic differentiation was observed in the peptide-modified Ti surface groups, compared with that of the noncoated Ti group. FN and GRGDSP/PHSRN coating enhanced the gene and protein expression of Runx2, osteocalcin, and bone sialoprotein. Alkaline phosphatase activity and matrix mineralization were also markedly enhanced in the Ti coated groups. Conclusion The sandblasted Ti coated with FN or FN-derived peptides (GRGDSP/PHSRN) markedly enhance adhesion, proliferation, and differentiation of osteoblast-like cells compared with uncoated sandblasted Ti.
Collapse
Affiliation(s)
- Samdharu Pramono
- Faculty of Dentistry, Thammasat University, Patholyothin Road, Klongluang, Prathumtani 12121, Thailand.,Department of Prosthodontics, Faculty of Dentistry, Trisakti University, Jakarta, Indonesia
| | - Kamolparn Pugdee
- Faculty of Dentistry, Thammasat University, Patholyothin Road, Klongluang, Prathumtani 12121, Thailand
| | - Jintamai Suwanprateep
- Biomedical Engineering Research Unit, National Metal and Materials Technology Center, Ministry of Science and Technology, Patholyothin Road, Klongluang, Prathumtani 12121, Thailand
| | - Sittichai Koontongkaew
- Faculty of Dentistry, Thammasat University, Patholyothin Road, Klongluang, Prathumtani 12121, Thailand
| |
Collapse
|
37
|
Chang Y, Liu Z, Zhang Y, Galior K, Yang J, Salaita K. A General Approach for Generating Fluorescent Probes to Visualize Piconewton Forces at the Cell Surface. J Am Chem Soc 2016; 138:2901-4. [PMID: 26871302 DOI: 10.1021/jacs.5b11602] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mechanical forces between cells and their extracellular matrix (ECM) are mediated by dozens of different receptors. These biophysical interactions play fundamental roles in processes ranging from cellular development to tumor progression. However, mapping the spatial and temporal dynamics of tension among various receptor-ligand pairs remains a significant challenge. To address this issue, we have developed a synthetic strategy to generate modular tension probes combining the native chemical ligation (NCL) reaction with solid phase peptide synthesis (SPPS). In principle, this approach accommodates virtually any peptide or expressed protein amenable to NCL. We generated a small library of tension probes displaying different ligands, flexible linkers, and fluorescent reporters, enabling the mapping of integrin and cadherin tension, and demonstrating the first example of long-term (∼3 days) molecular tension imaging. This approach provides a toolset to better understand mechanotransduction events fundamental to cell biology.
Collapse
Affiliation(s)
- Yuan Chang
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia, United States
| | - Zheng Liu
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia, United States
| | - Yun Zhang
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia, United States
| | - Kornelia Galior
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia, United States
| | - Jeffery Yang
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia, United States
| |
Collapse
|
38
|
Akhmanova M, Osidak E, Domogatsky S, Rodin S, Domogatskaya A. Physical, Spatial, and Molecular Aspects of Extracellular Matrix of In Vivo Niches and Artificial Scaffolds Relevant to Stem Cells Research. Stem Cells Int 2015; 2015:167025. [PMID: 26351461 PMCID: PMC4553184 DOI: 10.1155/2015/167025] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/07/2015] [Accepted: 06/24/2015] [Indexed: 12/27/2022] Open
Abstract
Extracellular matrix can influence stem cell choices, such as self-renewal, quiescence, migration, proliferation, phenotype maintenance, differentiation, or apoptosis. Three aspects of extracellular matrix were extensively studied during the last decade: physical properties, spatial presentation of adhesive epitopes, and molecular complexity. Over 15 different parameters have been shown to influence stem cell choices. Physical aspects include stiffness (or elasticity), viscoelasticity, pore size, porosity, amplitude and frequency of static and dynamic deformations applied to the matrix. Spatial aspects include scaffold dimensionality (2D or 3D) and thickness; cell polarity; area, shape, and microscale topography of cell adhesion surface; epitope concentration, epitope clustering characteristics (number of epitopes per cluster, spacing between epitopes within cluster, spacing between separate clusters, cluster patterns, and level of disorder in epitope arrangement), and nanotopography. Biochemical characteristics of natural extracellular matrix molecules regard diversity and structural complexity of matrix molecules, affinity and specificity of epitope interaction with cell receptors, role of non-affinity domains, complexity of supramolecular organization, and co-signaling by growth factors or matrix epitopes. Synergy between several matrix aspects enables stem cells to retain their function in vivo and may be a key to generation of long-term, robust, and effective in vitro stem cell culture systems.
Collapse
Affiliation(s)
| | - Egor Osidak
- Imtek Limited, 3 Cherepkovskaya 15, Moscow 21552, Russia
- Gamaleya Research Institute of Epidemiology and Microbiology Federal State Budgetary Institution, Ministry of Health of the Russian Federation, Gamalei 18, Moscow 123098, Russia
| | - Sergey Domogatsky
- Imtek Limited, 3 Cherepkovskaya 15, Moscow 21552, Russia
- Russian Cardiology Research and Production Center Federal State Budgetary Institution, Ministry of Health of the Russian Federation, 3 Cherepkovskaya 15, Moscow 21552, Russia
| | - Sergey Rodin
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Anna Domogatskaya
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| |
Collapse
|
39
|
Jun I, Lee YB, Choi YS, Engler AJ, Park H, Shin H. Transfer stamping of human mesenchymal stem cell patches using thermally expandable hydrogels with tunable cell-adhesive properties. Biomaterials 2015; 54:44-54. [DOI: 10.1016/j.biomaterials.2015.03.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/05/2015] [Accepted: 03/09/2015] [Indexed: 01/08/2023]
|
40
|
Fibroblast adhesion on ECM-derived peptide modified poly(2-hydroxyethyl methacrylate) brushes: ligand co-presentation and 3D-localization. Biomaterials 2015; 44:24-35. [PMID: 25617123 DOI: 10.1016/j.biomaterials.2014.12.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/28/2014] [Accepted: 12/16/2014] [Indexed: 11/23/2022]
Abstract
Polymer brushes prepared via surface-initiated polymerization of 2-hydroxyethyl methacrylate are powerful platforms for the fabrication of model biointerfaces to study cell-substrate interactions. In this manuscript, the versatility of surface-initiated polymerization and the poly(2-hydroxyethyl methacrylate) (PHEMA) polymer brush platform are used to address two fundamental questions, viz. the effects of ligand co-presentation and of the 3D localization of biochemical cues on cell behavior. Using a series of PHEMA brushes that present RGD and PHSRN ligands in various relative surface concentrations, the present study unequivocally demonstrates that: (i) co-presentation of PHSRN cues on an RGD functionalized substrate enhances cell adhesion and (ii) this synergetic effect is highest when the two ligands are presented at equal surface concentrations. In the second part of this study, adhesion of 3T3 fibroblasts on a series of PHEMA brushes that present the RGD ligand at a distance of 12, 23 or 42 nm away from the cell substrate interface is investigated. While cells were found to adhere to surfaces that presented the cell adhesive peptides at distances up to 23 nm from the interface, polymer brushes that contained the RGD ligands 42 nm away from the interface did not support cell adhesion.
Collapse
|
41
|
Jin ZH, Furukawa T, Kumata K, Xie L, Yui J, Wakizaka H, Fujibayashi Y, Zhang MR, Saga T. Development of the Fibronectin–Mimetic Peptide KSSPHSRN(SG) 5RGDSP as a Novel Radioprobe for Molecular Imaging of the Cancer Biomarker α 5β 1 Integrin. Biol Pharm Bull 2015; 38:1722-31. [DOI: 10.1248/bpb.b15-00344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zhao-Hui Jin
- Molecular Imaging Center, National Institute of Radiological Sciences
| | - Takako Furukawa
- Molecular Imaging Center, National Institute of Radiological Sciences
| | - Katsushi Kumata
- Molecular Imaging Center, National Institute of Radiological Sciences
| | - Lin Xie
- Molecular Imaging Center, National Institute of Radiological Sciences
| | - Joji Yui
- Molecular Imaging Center, National Institute of Radiological Sciences
| | | | | | - Ming-Rong Zhang
- Molecular Imaging Center, National Institute of Radiological Sciences
| | - Tsuneo Saga
- Molecular Imaging Center, National Institute of Radiological Sciences
| |
Collapse
|
42
|
Pulsipher A, Park S, Dutta D, Luo W, Yousaf MN. In situ modulation of cell behavior via smart dual-ligand surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13656-66. [PMID: 25373713 PMCID: PMC4334223 DOI: 10.1021/la503521x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Due to the highly complex nature of the extracellular matrix (ECM), the design and implementation of dynamic, stimuli-responsive surfaces that present well-defined ligands and serve as model ECM substrates have been of tremendous interest to biomaterials, biosensor, and cell biology communities. Such tools provide strategies for identifying specific ligand-receptor interactions that induce vital biological consequences. Herein, we report a novel dual-ligand-presenting surface methodology that modulates dynamic ECM properties to investigate various cell behaviors. Peptides PHSRN, cRGD, and KKKTTK, which mimic the cell- and heparan sulfate-binding domains of fibronectin, and carbohydrates Gal and Man were combined with cell adhesive RGD to survey possible synergistic or antagonist ligand effects on cell adhesion, spreading, growth, and migration. Soluble molecule and enzymatic inhibition assays were also performed, and the levels of focal adhesion kinase in cells subjected to different ligand combinations were quantified. A redox-responsive trigger was incorporated into this surface strategy to spontaneously release ligands in the presence of adhered cells, and cell spreading, growth, and migration responses were measured and compared. The identity and nature of the dual-ligand combination directly influenced cell behavior.
Collapse
Affiliation(s)
- Abigail Pulsipher
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Sungjin Park
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Debjit Dutta
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Wei Luo
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Department
of Chemistry and Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Muhammad N. Yousaf
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Department
of Chemistry and Biology, York University, Toronto, Ontario M3J 1P3, Canada
- E-mail: . Tel: (416) 736-2100, ext
77718
| |
Collapse
|
43
|
Abstract
A new strategy to create a dynamic scaffold for three-dimensional (3D) cell experiments based on a photo-activated cell adhesive peptide ligand is described. After polymerization, the inert matrix becomes cell adhesive by chemoselective modification through the conjugation of oxyamine-terminated ligands. Furthermore, spatial and temporal control of cell culture within the 3D matrix was achieved by the use of a biospecific photoprotected peptide and visualized by confocal microscopy.
Collapse
|
44
|
Westcott NP, Luo W, Yousaf M. Controlling cell behavior with peptide nano-patterns. J Colloid Interface Sci 2014; 430:207-13. [DOI: 10.1016/j.jcis.2014.05.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/25/2014] [Accepted: 05/27/2014] [Indexed: 01/20/2023]
|
45
|
Schenk F, Boehm H, Spatz J, Wegner SV. Dual-functionalized nanostructured biointerfaces by click chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6897-905. [PMID: 24856250 PMCID: PMC4062568 DOI: 10.1021/la500766t] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The presentation of biologically active molecules at interfaces has made it possible to investigate the responses of cells to individual molecules in their matrix at a given density and spacing. However, more sophisticated methods are needed to create model surfaces that present more than one molecule in a controlled manner in order to mimic at least partially the complexity given in natural environments. Herein, we present dual-functionalized surfaces combining quasi-hexagonally arranged gold nanoparticles with defined spacings and a newly developed PEG-alkyne coating to functionalize the glass in the intermediate space. The PEG-alkyne coating provides an inert background for cell interactions but can be modified orthogonally to the gold nanoparticles with numerous azides, including spectroscopically active molecules, peptides, and biotin at controlled densities by the copper(I)-catalyzed azide alkyne click reaction. The simultaneous presentation of cRGD on the gold nanoparticles with 100 nm spacing and synergy peptide PHSRN in the space between has a striking effect on REF cell adhesion; cells adhere, spread, and form mature focal adhesions on the dual-functionalized surfaces, whereas cells cannot adhere on either monofunctional surface. Combining these orthogonal functionalization methods creates a new platform to study precisely the crosstalk and synergy between different signaling molecules and clustering effects in ligand-receptor interactions.
Collapse
Affiliation(s)
- Franziska
C. Schenk
- Department
of New Materials and Biosystems, Max-Planck-Institute
for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, Im Neuenheimer
Feld 253, D-69120 Heidelberg, Germany
| | - Heike Boehm
- Department
of New Materials and Biosystems, Max-Planck-Institute
for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, Im Neuenheimer
Feld 253, D-69120 Heidelberg, Germany
| | - Joachim
P. Spatz
- Department
of New Materials and Biosystems, Max-Planck-Institute
for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, Im Neuenheimer
Feld 253, D-69120 Heidelberg, Germany
| | - Seraphine V. Wegner
- Department
of New Materials and Biosystems, Max-Planck-Institute
for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, Im Neuenheimer
Feld 253, D-69120 Heidelberg, Germany
- E-mail: . Phone: + 49 6221 544935
| |
Collapse
|
46
|
Gooding JJ, Parker SG, Lu Y, Gaus K. Molecularly engineered surfaces for cell biology: from static to dynamic surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3290-3302. [PMID: 24228944 DOI: 10.1021/la4037919] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Surfaces with a well-defined presentation of ligands for receptors on the cell membrane can serve as models of the extracellular matrix for studying cell adhesion or as model cell surfaces for exploring cell-cell contacts. Because such surfaces can provide exquisite control over, for example, the density of these ligands or when the ligands are presented to the cell, they provide a very precise strategy for understanding the mechanisms by which cells respond to external adhesive cues. In the present feature article, we present an overview of the basic biology of cell adhesion before discussing surfaces that have a static presentation of immobile ligands. We outline the biological information that such surfaces have given us, before progressing to recently developed switchable surfaces and surfaces that mimic the lipid bilayer, having adhesive ligands that can move around the membrane and be remodeled by the cell. Finally, the feature article closes with some of the biological information that these new types of surfaces could provide.
Collapse
Affiliation(s)
- J Justin Gooding
- The Australian Centre for NanoMedicine, ‡School of Chemistry, and §Centre for Vascular Research, The University of New South Wales , Sydney 2052, Australia
| | | | | | | |
Collapse
|
47
|
Park S, Westcott NP, Luo W, Dutta D, Yousaf MN. General chemoselective and redox-responsive ligation and release strategy. Bioconjug Chem 2014; 25:543-51. [PMID: 24559434 PMCID: PMC3983135 DOI: 10.1021/bc400565y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
We
report a switchable redox click and cleave reaction strategy for conjugating
and releasing a range of molecules on demand. This chemoselective
redox-responsive ligation (CRRL) and release strategy is based on
a redox switchable oxime linkage that is controlled by mild chemical
or electrochemical redox signals and can be performed at physiological
conditions without the use of a catalyst. Both conjugation and release
reactions are kinetically well behaved and quantitative. The CRRL
strategy is synthetically modular and easily monitored and characterized
by routine analytical techniques. We demonstrate how the CRRL strategy
can be used for the dynamic generation of cyclic peptides and the
ligation of two different peptides that are stable but can be selectively
cleaved upon changes in the redox environment. We also demonstrate
a new redox based delivery of cargoes to live cells strategy via the
CRRL methodology by synthesizing a FRET redox-responsive probe that
is selectively activated within a cellular environment. We believe
the ease of the CRRL strategy should find wide use in a range of applications
in biology, tissue engineering, nanoscience, synthetic chemistry,
and material science and will expand the suite of current conjugation
and release strategies.
Collapse
Affiliation(s)
- Sungjin Park
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | | | | | | | | |
Collapse
|
48
|
Banerjee P, Mehta A, Shanthi C. Screening for novel cell adhesive regions in bovine Achilles tendon collagen peptides. Biochem Cell Biol 2014; 92:9-22. [DOI: 10.1139/bcb-2013-0026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Collagen, a major structural protein of the ECM, is known for its high cell adherence capacity. This study was conducted to identify regions in collagen that harbour such bioactivity. Collagen from tendon was hydrolysed and the peptides fractionated using ion-exchange chromatography (IEC). Isolated peptide fractions were coated onto disposable dishes and screened for cell adherence and proliferative abilities. Active IEC fractions were further purified by chromatography, and two peptides, C2 and E1 with cell adhesion ability, were isolated. A cell adhesion assay done with different amounts of C2 coated onto disposable dishes revealed the maximum adhesion to be 94.6%, compared with 80% for collagen coated dishes and an optimum peptide coating density of 0.507 nmoles per cm2 area of the dish. Growth of cells on C2, collagen, and E1 revealed a similar pattern and a reduction in the doubling time compared with cells grown on uncoated dishes. C2 had a mass of 2.046 kDa with 22 residues, and sequence analysis revealed a higher percentage occurrence of hydrophilic residues compared with other regions in collagen. Docking studies revealed GDDGEA in C2 as the probable site of interaction with integrins α2β1 and α1β1, and stability studies proved C2 to be mostly protease-resistant.
Collapse
Affiliation(s)
- Pradipta Banerjee
- School of Bio Science and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Alka Mehta
- School of Bio Science and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - C. Shanthi
- School of Bio Science and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
49
|
Nakanishi J. Switchable substrates for analyzing and engineering cellular functions. Chem Asian J 2013; 9:406-17. [PMID: 24339448 DOI: 10.1002/asia.201301325] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Indexed: 11/09/2022]
Abstract
Cellular activity is highly dependent on the extracellular environment, which is composed of surrounding cells and extracellular matrices. This focus review summarizes recent advances in chemically and physically engineered switchable substrates designed to control such cellular microenvironments by application of an external stimulus. Special attention is given to their molecular design, switching strategies, and representative examples for bioanalytical and biomedical applications.
Collapse
Affiliation(s)
- Jun Nakanishi
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan).
| |
Collapse
|
50
|
Stoffels JMJ, Zhao C, Baron W. Fibronectin in tissue regeneration: timely disassembly of the scaffold is necessary to complete the build. Cell Mol Life Sci 2013; 70:4243-53. [PMID: 23756580 PMCID: PMC11113129 DOI: 10.1007/s00018-013-1350-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/04/2013] [Accepted: 04/22/2013] [Indexed: 12/31/2022]
Abstract
Tissue injury initiates extracellular matrix molecule expression, including fibronectin production by local cells and fibronectin leakage from plasma. To benefit tissue regeneration, fibronectin promotes opsonization of tissue debris, migration, proliferation, and contraction of cells involved in the healing process, as well as angiogenesis. When regeneration proceeds, the fibronectin matrix is fully degraded. However, in a diseased environment, fibronectin clearance is often disturbed, allowing structural variants to persist and contribute to disease progression and failure of regeneration. Here, we discuss first how fibronectin helps tissue regeneration, with a focus on normal cutaneous wound healing as an example of complete tissue recovery. Then, we continue to argue that, although the fibronectin matrix generated following cartilage and central nervous system white matter (myelin) injury initially benefits regeneration, fibronectin clearance is incomplete in chronic wounds (skin), osteoarthritis (cartilage), and multiple sclerosis (myelin). Fibronectin fragments or aggregates persist, which impair tissue regeneration. The similarities in fibronectin-mediated mechanisms of frustrated regeneration indicate that complete fibronectin clearance is a prerequisite for recovery in any tissue. Also, they provide common targets for developing therapeutic strategies in regenerative medicine.
Collapse
Affiliation(s)
- Josephine M. J. Stoffels
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Chao Zhao
- Wellcome Trust—Medical Research Council Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES UK
| | - Wia Baron
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|