1
|
Ponce-de-León C, Lorite P, López-Casado MÁ, Mora P, Palomeque T, Torres MI. Expression of Elafin and CD200 as Immune Checkpoint Molecules Involved in Celiac Disease. Int J Mol Sci 2024; 25:852. [PMID: 38255930 PMCID: PMC10815464 DOI: 10.3390/ijms25020852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/31/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
We comprehensively evaluated the expression of therapeutically targetable immune checkpoint molecules involved in celiac disease (CD). We have focused on the alteration of the CD200/CD200R pathway and Elafin expression in celiac disease and discussed their roles in regulating the immune response. There are limited data related to the expression or function of these molecules in celiac disease. This finding could significantly contribute to the understanding of the clinical manifestation of CD. CD200, CD200R and Elafin distributions were determined by ELISA and immunohistochemistry analyses in serum and biopsies of CD patients. Analyses of Th1 and Th17 cytokines were determined. PCR amplification of a fragment of the PI3 gene was carried out using genomic DNA isolated from whole blood samples of the study subjects. Different aliquots of the PCR reaction product were subjected to RFLP analysis for SNP genotyping and detection. We characterized the expression and function of the CD200-CD200R axis and PI3 in celiac disease. A significantly higher level of soluble CD200 and CD200R and lower expression of PI3 in serum of CD patients was observed compared to healthy controls. Consistent with our results, CD200 expression is regulated by IFN-gamma. Interaction of CD200/CD200R leads to production of type-Th1 and -Th17 cytokines. Regarding the PI3 genotype, the CT genotype proportion SNP rs1733103 and the GG genotype SNP rs41282752 were predominant in CD patients. SNP rs1733103 showed a significant association between the SNP variables and CD. In celiac disease the immune checkpoint is compromised or dysregulated, which can contribute to inflammation and the autoimmunity process. The study of these checkpoint points will lead to the development of targeted therapies aimed at restoring immunological balance in CD. Specific coding regions of the PI3 gene-splice variants predispose the Elafin protein, both at the transcriptional and post-translational levels, to modify its expression and function, resulting in reduced differential functional protein levels in patients with active celiac disease.
Collapse
Affiliation(s)
- Candelaria Ponce-de-León
- Department of Experimental Biology, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain; (C.P.-d.-L.); (P.L.); (P.M.); (T.P.)
| | - Pedro Lorite
- Department of Experimental Biology, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain; (C.P.-d.-L.); (P.L.); (P.M.); (T.P.)
| | | | - Pablo Mora
- Department of Experimental Biology, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain; (C.P.-d.-L.); (P.L.); (P.M.); (T.P.)
| | - Teresa Palomeque
- Department of Experimental Biology, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain; (C.P.-d.-L.); (P.L.); (P.M.); (T.P.)
| | - María Isabel Torres
- Department of Experimental Biology, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain; (C.P.-d.-L.); (P.L.); (P.M.); (T.P.)
| |
Collapse
|
2
|
Amar Y, Rogner D, Silva RL, Foesel BU, Ud-Dean M, Lagkouvardos I, Steimle-Grauer SA, Niedermeier S, Kublik S, Jargosch M, Heinig M, Thomas J, Eyerich S, Wikström JD, Schloter M, Eyerich K, Biedermann T, Köberle M. Darier's disease exhibits a unique cutaneous microbial dysbiosis associated with inflammation and body malodour. MICROBIOME 2023; 11:162. [PMID: 37496039 PMCID: PMC10369845 DOI: 10.1186/s40168-023-01587-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/01/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Darier's disease (DD) is a genodermatosis caused by mutations of the ATP2A2 gene leading to disrupted keratinocyte adhesion. Recurrent episodes of skin inflammation and infections with a typical malodour in DD indicate a role for microbial dysbiosis. Here, for the first time, we investigated the DD skin microbiome using a metabarcoding approach of 115 skin swabs from 14 patients and 14 healthy volunteers. Furthermore, we analyzed its changes in the context of DD malodour and the cutaneous DD transcriptome. RESULTS We identified a disease-specific cutaneous microbiome with a loss of microbial diversity and of potentially beneficial commensals. Expansion of inflammation-associated microbes such as Staphylococcus aureus and Staphylococcus warneri strongly correlated with disease severity. DD dysbiosis was further characterized by abundant species belonging to Corynebacteria, Staphylococci and Streptococci groups displaying strong associations with malodour intensity. Transcriptome analyses showed marked upregulation of epidermal repair, inflammatory and immune defence pathways reflecting epithelial and immune response mechanisms to DD dysbiotic microbiome. In contrast, barrier genes including claudin-4 and cadherin-4 were downregulated. CONCLUSIONS These findings allow a better understanding of Darier exacerbations, highlighting the role of cutaneous dysbiosis in DD inflammation and associated malodour. Our data also suggest potential biomarkers and targets of intervention for DD. Video Abstract.
Collapse
Affiliation(s)
- Yacine Amar
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Danielle Rogner
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Rafaela L Silva
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Bärbel U Foesel
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), 85764, Neuherberg, Germany
| | - Minhaz Ud-Dean
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Ilias Lagkouvardos
- Core Facility Microbiome, Technical University of Munich, 85354, Freising, Germany
| | - Susanne A Steimle-Grauer
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Sebastian Niedermeier
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Susanne Kublik
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), 85764, Neuherberg, Germany
| | - Manja Jargosch
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Matthias Heinig
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Jenny Thomas
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Stefanie Eyerich
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Jakob D Wikström
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), 85764, Neuherberg, Germany
| | - Kilian Eyerich
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany.
| | - Martin Köberle
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany
| |
Collapse
|
3
|
Ou W, Lei K, Wang H, Ma H, Deng X, He P, Zhao L, Lv Y, Tang G, Zhang B, Li J. Development of a blood proteins-based model for bronchopulmonary dysplasia prediction in premature infants. BMC Pediatr 2023; 23:304. [PMID: 37330491 PMCID: PMC10276448 DOI: 10.1186/s12887-023-04065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/10/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is the most common chronic pulmonary disease in premature infants. Blood proteins may be early predictors of the development of this disease. METHODS In this study, protein expression profiles (blood samples during their first week of life) and clinical data of the GSE121097 was downloaded from the Gene Expression Omnibus. Weighted gene co-expression network analysis (WGCNA) and differential protein analysis were carried out for variable dimensionality reduction and feature selection. Least absolute shrinkage and selection operator (LASSO) were conducted for BPD prediction model development. The performance of the model was evaluated by the receiver operating characteristic (ROC) curve, calibration curve, and decision curve. RESULTS The results showed that black module, magenta module and turquoise module, which included 270 proteins, were significantly correlated with the occurrence of BPD. 59 proteins overlapped between differential analysis results and above three modules. These proteins were significantly enriched in 253 GO terms and 11 KEGG signaling pathways. Then, 59 proteins were reduced to 8 proteins by LASSO analysis in the training cohort. The proteins model showed good BPD predictive performance, with an AUC of 1.00 (95% CI 0.99-1.00) and 0.96 (95% CI 0.90-1.00) in training cohort and test cohort, respectively. CONCLUSION Our study established a reliable blood-protein based model for early prediction of BPD in premature infants. This may help elucidate pathways to target in lessening the burden or severity of BPD.
Collapse
Affiliation(s)
- Wanting Ou
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - KeJing Lei
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Huanhuan Wang
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Hongmei Ma
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Xiaojuan Deng
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Pengcheng He
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Liping Zhao
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Youdao Lv
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Guohong Tang
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Benjin Zhang
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China.
| | - Jie Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China.
| |
Collapse
|
4
|
Deraison C, Bonnart C, Langella P, Roget K, Vergnolle N. Elafin and its precursor trappin-2: What is their therapeutic potential for intestinal diseases? Br J Pharmacol 2023; 180:144-160. [PMID: 36355635 PMCID: PMC10098471 DOI: 10.1111/bph.15985] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/22/2022] [Accepted: 05/07/2022] [Indexed: 11/12/2022] Open
Abstract
Elafin and its precursor trappin-2 are known for their contribution to the physiological mucosal shield against luminal microbes. Such a contribution seems to be particularly relevant in the gut, where the exposure of host tissues to heavy loads of microbes is constant and contributes to mucosa-associated pathologies. The expression of trappin-2/elafin has been shown to be differentially regulated in diseases associated with gut inflammation. Accumulating evidence has demonstrated the protective effects of trappin-2/elafin in gut intestinal disorders associated with acute or chronic inflammation, or with gluten sensitization disorders. The protective effects of trappin-2/elafin in the gut are discussed in terms of their pleiotropic modes of action: acting as protease inhibitors, transglutaminase substrates, antimicrobial peptides or as a regulator of pro-inflammatory transcription factors. Further, the question of the therapeutic potential of trappin-2/elafin delivery at the intestinal mucosa surface is raised. Whether trappin-2/elafin mucosal delivery should be considered to ensure intestinal tissue repair is also discussed.
Collapse
Affiliation(s)
- Céline Deraison
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Chrystelle Bonnart
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Philippe Langella
- Université Paris-Saclay, AgroParisTech, Micalis Institute, INRAE, Jouy-en-Josas, France
| | | | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Vermeersch AS, Geldhof P, Ducatelle R, Gansemans Y, Van Nieuwerburgh F, Deforce D, Opsomer G. Continuous activation of the IL-17F driven inflammatory pathway in acute and chronic digital dermatitis lesions in dairy cattle. Sci Rep 2022; 12:14070. [PMID: 35982087 PMCID: PMC9388621 DOI: 10.1038/s41598-022-17111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
Objectives of the present study were to get a deeper insight into the course of the inflammatory pathways of digital dermatitis lesions in dairy cattle by investigating the gene expression patterns throughout the different clinical stages (M0 to M4.1) of the disease. Normal skin samples (M0) were used as a reference for comparing the gene expression levels in the other M-stages through RNA Seq-technology. Principal component analysis revealed a distinct gene expression pattern associated with digital dermatitis lesions in comparison to healthy skin with a further clustering of the acute M1, M2 and M4.1 stages versus the chronic M3 and M4 stages. The majority of the up-and downregulated genes in the acute and chronic stages can be placed into a common 'core' set of genes involved in inflammation, such as A2ML1, PI3, CCL11 and elafin-like protein, whereas the most downregulated genes included keratins and anti-inflammatory molecules such as SCGB1D and MGC151921. Pathway analysis indicated the activation of the pro-inflammatory IL-17 signaling pathway in all the M stages through the upregulation of IL-17F. These results indicate that digital dermatitis is associated with an excessive inflammatory immune response concomitant with a disrupted skin barrier and impaired wound repair mechanism. Importantly, despite their macroscopically healed appearance, a significant inflammatory response (Padj < 0.05) was still measurable in the M3 and M4 lesions, potentially explaining the frequent re-activation of such lesions.
Collapse
Affiliation(s)
- Anne-Sofie Vermeersch
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Peter Geldhof
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Geert Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| |
Collapse
|
6
|
Transglutaminase 2 moderates the expansion of mouse abdominal aortic aneurysms. JVS Vasc Sci 2021; 2:95-109. [PMID: 34617062 PMCID: PMC8489235 DOI: 10.1016/j.jvssci.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/01/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Previously published work has indicated that transcripts encoding transglutaminase 2 (TG2) increase markedly in a rat model of abdominal aortic aneurysm. This study determines whether TG2 and the related TG, factor XIII-A (FXIII-A), protect against aortic aneurysm development in mice. Methods C57BL/6J wild-type, Tgm2 -/- knockout, F13a1 -/- knockout, and Tgm2 -/- /F13a1 -/- double knockout mice were subjected to laparotomy and periaortic application of CaCl2. Results Tgm2 -/- mice showed slightly greater aortic dilatation at 6 weeks after treatment when compared with wild type. However, vessels from Tgm2 -/- mice, but not wild-type mice, continued to dilate up to 6 months after injury and by 24 weeks, a greater number of Tgm2 -/- mice had developed aneurysms (16/17 vs 10/19; P = .008). Laparotomy resulted in a high death rate in F13a1 -/- knockout mice, more frequently from cardiac complications than from hemorrhage, but among F13a1 -/- mice that survived for 6 weeks after CaCl2 treatment, abdominal aortic aneurysm diameter was unaltered relative to wild-type mice. Laparotomy resulted in a higher death rate among Tgm2 -/- /F13a1 -/- double knockout mice, owing to an increased frequency of delayed bleeding. Surprisingly, Tgm2 -/- /F13a1 -/- double knockout mice showed a trend toward decreased dilatation of the aorta 6 weeks after injury, and this finding was replicated in Tgm2 -/- /F13a1 -/- mice subjected to carotid artery injury. Levels of transcripts encoding TG2 were not increased in the aortas of injured wild-type or F13a1 -/- knockout mice relative to uninjured mice, although changes in the levels of other transcripts accorded with previous descriptions of the CaCl2 aneurysm model in mice. Conclusions Knockout of Tgm2, but not F13a1 exacerbates aortic dilatation, suggesting that TG2 confers protection. However, levels of TG2 messenger RNA are not acutely elevated after injury. FXIII-A plays a role in preventing postoperative damage after laparotomy, confirming previous reports that it prevents distal organ damage after trauma. TG2 promotes wound healing after surgery and, in its absence, the bleeding diathesis associated with FXIII-A deficiency is further exposed.
Collapse
|
7
|
Cunningham SJ, Feng L, Allen TK, Reddy TE. Functional Genomics of Healthy and Pathological Fetal Membranes. Front Physiol 2020; 11:687. [PMID: 32655414 PMCID: PMC7325962 DOI: 10.3389/fphys.2020.00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/27/2020] [Indexed: 11/23/2022] Open
Abstract
Premature preterm rupture of membranes (PPROM), rupture of fetal membranes before 37 weeks of gestation, is the leading identifiable cause of spontaneous preterm births. Often there is no obvious cause that is identified in a patient who presents with PPROM. Identifying the upstream molecular events that lead to fetal membrane weakening presents potentially actionable mechanisms which could lead to the identification of at-risk patients and to the development of new therapeutic interventions. Functional genomic studies have transformed understanding of the role of gene regulation in diverse cells and tissues involved health and disease. Here, we review the results of those studies in the context of fetal membranes. We will highlight relevant results from major coordinated functional genomics efforts and from targeted studies focused on individual cell or tissue models. Studies comparing gene expression and DNA methylation between healthy and pathological fetal membranes have found differential regulation between labor and quiescent tissue as well as in preterm births, preeclampsia, and recurrent pregnancy loss. Whole genome and exome sequencing studies have identified common and rare fetal variants associated with preterm births. However, few fetal membrane tissue studies have modeled the response to stimuli relevant to pregnancy. Fetal membranes are readily adaptable to cell culture and relevant cellular phenotypes are readily observable. For these reasons, this is now an unrealized opportunity for genomic studies isolating the effect of cell signaling cascades and mapping the fetal membrane responses that lead to PPROM and other pregnancy complications.
Collapse
Affiliation(s)
- Sarah J Cunningham
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States.,University Program in Genetics and Genomics, Duke University, Durham, NC, United States.,Center for Genomic and Computational Biology, Duke University, Durham, NC, United States.,Center for Advanced Genomic Technologies, Duke University, Durham, NC, United States
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, United States
| | - Terrence K Allen
- Department of Anesthesiology, Duke University Hospital, Durham, NC, United States
| | - Timothy E Reddy
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States.,University Program in Genetics and Genomics, Duke University, Durham, NC, United States.,Center for Genomic and Computational Biology, Duke University, Durham, NC, United States.,Center for Advanced Genomic Technologies, Duke University, Durham, NC, United States
| |
Collapse
|
8
|
Stapels DAC, Woehl JL, Milder FJ, Tromp AT, van Batenburg AA, de Graaf WC, Broll SC, White NM, Rooijakkers SHM, Geisbrecht BV. Evidence for multiple modes of neutrophil serine protease recognition by the EAP family of Staphylococcal innate immune evasion proteins. Protein Sci 2017; 27:509-522. [PMID: 29114958 DOI: 10.1002/pro.3342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022]
Abstract
Neutrophils contain high levels of chymotrypsin-like serine proteases (NSPs) within their azurophilic granules that have a multitude of functions within the immune system. In response, the pathogen Staphylococcus aureus has evolved three potent inhibitors (Eap, EapH1, and EapH2) that protect the bacterium as well as several of its secreted virulence factors from the degradative action of NSPs. We previously showed that these so-called EAP domain proteins represent a novel class of NSP inhibitors characterized by a non-covalent inhibitory mechanism and a distinct target specificity profile. Based upon high levels of structural homology amongst the EAP proteins and the NSPs, as well as supporting biochemical data, we predicted that the inhibited complex would be similar for all EAP/NSP pairs. However, we present here evidence that EapH1 and EapH2 bind the canonical NSP, Neutrophil Elastase (NE), in distinct orientations. We discovered that alteration of EapH1 residues at the EapH1/NE interface caused a dramatic loss of affinity and inhibition of NE, while mutation of equivalent positions in EapH2 had no effect on NE binding or inhibition. Surprisingly, mutation of residues in an altogether different region of EapH2 severely impacted both the NE binding and inhibitory properties of EapH2. Even though EapH1 and EapH2 bind and inhibit NE and a second NSP, Cathepsin G, equally well, neither of these proteins interacts with the structurally related, but non-proteolytic granule protein, azurocidin. These studies expand our understanding of EAP/NSP interactions and suggest that members of this immune evasion protein family are capable of diverse target recognition modes.
Collapse
Affiliation(s)
- Daphne A C Stapels
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Jordan L Woehl
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Fin J Milder
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Angelino T Tromp
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Aernoud A van Batenburg
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Wilco C de Graaf
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Samuel C Broll
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Natalie M White
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| |
Collapse
|
9
|
Recombinant human elafin promotes alveologenesis in newborn mice exposed to chronic hyperoxia. Int J Biochem Cell Biol 2017; 92:173-182. [DOI: 10.1016/j.biocel.2017.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 01/20/2023]
|
10
|
Small DM, Doherty DF, Dougan CM, Weldon S, Taggart CC. The role of whey acidic protein four-disulfide-core proteins in respiratory health and disease. Biol Chem 2017; 398:425-440. [PMID: 27930359 DOI: 10.1515/hsz-2016-0262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/13/2016] [Indexed: 11/15/2022]
Abstract
Members of the whey acidic protein (WAP) or WAP four-disulfide-core (WFDC) family of proteins are a relatively under-explored family of low molecular weight proteins. The two most prominent WFDC proteins, secretory leukocyte protease inhibitor (SLPI) and elafin (or the precursor, trappin-2), have been shown to possess multiple functions including anti-protease, anti-bacterial, anti-viral and anti-inflammatory properties. It is therefore of no surprise that both SLPI and elafin/trappin-2 have been developed as potential therapeutics. Given the abundance of SLPI and elafin/trappin-2 in the human lung, most work in the area of WFDC research has focused on the role of WFDC proteins in protecting the lung from proteolytic attack. In this review, we will outline the current evidence regarding the expanding role of WFDC protein function with a focus on WFDC activity in lung disease as well as emerging data regarding the function of some of the more recently described WFDC proteins.
Collapse
|
11
|
Wang B, Wang D, Wu X, Cai J, Liu M, Huang X, Wu J, Liu J, Guan L. Effects of dietary physical or nutritional factors on morphology of rumen papillae and transcriptome changes in lactating dairy cows based on three different forage-based diets. BMC Genomics 2017; 18:353. [PMID: 28477620 PMCID: PMC5420399 DOI: 10.1186/s12864-017-3726-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 04/26/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Rumen epithelial tissue plays an important role in nutrient absorption and rumen health. However, whether forage quality and particle size impact the rumen epithelial morphology is unclear. The current study was conducted to elucidate the effects of forage quality and forage particle size on rumen epithelial morphology and to identify potential underlying molecular mechanisms by analyzing the transcriptome of the rumen epithelium (RE). To achieve these objectives, 18 mid-lactation dairy cows were allocated to three groups (6 cows per group), and were fed with one of three different forage-based diets, alfalfa hay (AH), corn stover (CS), and rice straw (RS) for 14 weeks, respectively. Ruminal volatile fatty acids (VFAs) and epithelial thickness were determined, and RNA-sequencing was conducted to identify the transcriptomic changes of rumen epithelial under different forage-based diets. RESULTS The RS diet exhibited greater particle size but low quality, the AH diet was high nutritional value but small particle size, and CS diet was low quality and small particle size. The ruminal total VFA concentration was greater in AH compared with those in CS or RS. The width of the rumen papillae was greater in RS-fed cows than in cows fed AH or CS. In total, 31, 40, and 28 differentially expressed (DE, fold change > 2, FDR < 0.05) genes were identified via pair-wise comparisons including AH vs. CS, AH vs. RS, and RS vs. CS, respectively. Functional classification analysis of DE genes revealed dynamic changes in ion binding (such as DSG1) between AH and CS, proliferation and apoptotic processes (such as BAG3, HLA-DQA1, and UGT2B17) and complement activation (such as C7) between AH or RS and CS. The expression of HLA-DQA1 was down-regulated in RS compared with AH and CS, and the expression of UGT2B17 was down-regulated in RS compared with CS, with positive (R = 0.94) and negative (R = -0.96) correlation with the width of rumen epithelial papillae (P < 0.05), respectively. CONCLUSION Our results suggest that both nutrients (VFAs) and particle sizes can alter expression of genes involved in cell proliferation/apoptosis process and complement complex. Our results suggest that particle size may be more important in regulating rumen epithelial morphology when animals are fed with low-quality forage diets and the identified DE genes may affect the RE nutrient absorption or morphology of RE. Our findings provide insights into the effects of the dietary particle size in the future management of dairy cow feeding, that when cows were fed with low-quality forage (such as rice straw), smaller particle size may be beneficial for nutrients absorption and milk production.
Collapse
Affiliation(s)
- Bing Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China.,Current address: Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Diming Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Xuehui Wu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jie Cai
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Mei Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Xinbei Huang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jiusheng Wu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianxin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China. .,MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China.
| | - Leluo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
12
|
Plaza K, Kalinska M, Bochenska O, Meyer-Hoffert U, Wu Z, Fischer J, Falkowski K, Sasiadek L, Bielecka E, Potempa B, Kozik A, Potempa J, Kantyka T. Gingipains of Porphyromonas gingivalis Affect the Stability and Function of Serine Protease Inhibitor of Kazal-type 6 (SPINK6), a Tissue Inhibitor of Human Kallikreins. J Biol Chem 2016; 291:18753-64. [PMID: 27354280 DOI: 10.1074/jbc.m116.722942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 12/15/2022] Open
Abstract
Periodontitis, a chronic inflammation driven by dysbiotic subgingival bacterial flora, is linked on clinical levels to the development of a number of systemic diseases and to the development of oral and gastric tract tumors. A key pathogen, Porphyromonas gingivalis, secretes gingipains, cysteine proteases implicated as the main factors in the development of periodontitis. Here we hypothesize that gingipains may be linked to systemic pathologies through the deregulation of kallikrein-like proteinase (KLK) family members. KLKs are implicated in cancer development and are clinically utilized as tumor progression markers. In tissues, KLK activity is strictly controlled by a limited number of tissue-specific inhibitors, including SPINK6, an inhibitor of these proteases in skin and oral epithelium. Here we identify gingipains as the only P. gingivalis proteases responsible for SPINK6 degradation. We further show that gingipains, even at low nanomolar concentrations, cleaved SPINK6 in concentration- and time-dependent manner. The proteolysis was accompanied by loss of inhibition against KLK13. We also mapped the cleavage by Arg-specific gingipains to the reactive site loop of the SPINK6 inhibitor. Moreover, we identified a significant fraction of SPINK6-sensitive proteases in healthy saliva and confirmed the ability of gingipains to inactivate SPINK6 under ex vivo conditions. Finally, we demonstrate the double-edge action of gingipains, which, in addition, can activate KLKs because of gingipain K-mediated proteolytic processing of the zymogenic proform of KLK13. Altogether, the results indicate the potential of P. gingivalis to disrupt the control system of KLKs, providing a possible mechanistic link between periodontal disease and tumor development.
Collapse
Affiliation(s)
| | | | - Oliwia Bochenska
- Analytical Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, and
| | - Ulf Meyer-Hoffert
- the Department of Dermatology, University Clinic Schleswig-Holstein, 24105 Kiel, Germany, and
| | - Zhihong Wu
- the Department of Dermatology, University Clinic Schleswig-Holstein, 24105 Kiel, Germany, and
| | - Jan Fischer
- the Department of Dermatology, University Clinic Schleswig-Holstein, 24105 Kiel, Germany, and
| | | | | | | | - Barbara Potempa
- the Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky 40202
| | - Andrzej Kozik
- Analytical Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, and
| | - Jan Potempa
- From the Departments of Microbiology and the Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky 40202
| | - Tomasz Kantyka
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
13
|
Cathepsin-L and transglutaminase dependent processing of ps20: A novel mechanism for ps20 regulation via ECM cross-linking. Biochem Biophys Rep 2016; 7:328-337. [PMID: 28955923 PMCID: PMC5613349 DOI: 10.1016/j.bbrep.2016.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 05/16/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022] Open
Abstract
Whey-acidic-protein (WAP) four-disulphide core (WFDC) proteins have important roles in the regulation of innate immunity, anti-microbial function, and the inhibition of inflammatory proteases at mucosal surfaces. It was recently demonstrated that the WFDC protein, prostate stromal 20 (ps20), encoded by the WFDC1 gene, is a potent growth inhibitory factor, and shares with other WFDC proteins the ability to modulate wound healing processes and immune responses to viral infections. However, ps20 remains relatively uncharacterised at the protein level. Using a panel of ps20 antibodies for western-blotting (WB), ELISA and immunoaffinity purification, we isolated, biochemically characterised and tested ps20 preparations for three biological properties: (i) interactions with glycosaminoglycans (GAG) (ii) inhibition of cell proliferation, and (iii) transglutaminase2 (TG2) mediated crosslinking of ps20 to fibronectin, a process implicated in wound healing. We show herein that ps20 preparations contain multiple molecular forms including full-length ps20 (resolving at ≈27 kDa), an exon 3 truncated form (≈22 kDa) that lacks aa113-140, and variable amounts of a putatively cleaved lower MW (≈15-17 kDa) species. Untagged purified ps20 preparations containing a mixture of these forms are biologically active in significantly suppressing prostate cell proliferation. We show that one mechanism by which lower LMW forms of ps20 arise is through cathepsin L (CL) cleavage, and confirm that CL cleaves ps20 at the C-terminus, but this does not inhibit its growth inhibitory function. However, CL cleavage abrogated the interaction between ps20 and solid-phase fibronectin. Therefore, we demonstrate for the first time that LMW forms of ps20 that lack a C-terminal immunogenic epitope can arise through CL cleavage and this cleavage impairs multimerisation and potential capacity to cross-link to ECM, but not the capacity of ps20 to inhibit cell proliferation. We propose that ps20 like other WFDC proteins can become associated with GAGs and the ECM. Furthermore, we suggest post-translational processing and cleavage of ps20 is required to generate functional protein species, and TG2 mediated crosslinking and CL cleavage form components of a ps20 regulatory apparatus.
Collapse
Key Words
- CL, cathepsin L
- CM, conditioned media
- CV, column volume
- Cathepsin
- ECM, extracellular matrix
- FL, full length
- GAG, glycosaminoglycan
- Glycosaminoglycan
- HMW, high molecular weight
- LMW, low molecular weight
- MW, molecular weight
- Prostate cancer
- Ps20
- TR, truncated
- Transglutaminase
- WB, western blot
- WFDC1, whey acidic protein four disulphide core 1
- Whey-four-disulphide core
- ps20, prostate stromal 20
- rps20, recombinant ps20
Collapse
|
14
|
Muto J, Fujimoto N, Ono K, Kobayashi T, Chen KR, Suzuki S, Wachi H, Tajima S. Deposition of elafin in the involved vascular wall of neutrophil-mediated cutaneous vasculitis. J Eur Acad Dermatol Venereol 2016; 30:1544-9. [PMID: 27060697 DOI: 10.1111/jdv.13650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/15/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Neutrophil elastase plays an important role in skin inflammation induced by neutrophil infiltration. Elafin is an inducible elastase inhibitor expressed by keratinocytes, and is known to be involved in pathogenesis of neutrophilic skin disorders such as psoriasis. METHODS Immunohistochemical studies of elafin expression in the cases of vasculitis were performed. Induction of elafin expression in cultured vascular cells and its effect on neutrophil migration were studied in vitro. RESULTS A positive immunoreactivity was detected in polyarteritis nodosa, giant cell arteritis and Schönlein-Henoch purpura, but no immunoreactivity was found in Churg-Strauss syndrome. Elafin expression in cultured venous endothelial cells and arterial smooth muscle cells was undetectable, but induced by interleukin-1β (IL-1β) and IL-8. Elafin inhibited the elastin peptide-induced neutrophil chemotaxis at the concentration of 10(-8) -10(-5) mol/L. CONCLUSION Elafin deposition induced by cytokines (IL-1β or IL-8) will be an important regulator for the progress of leucocytoclastic vasculitis by functioning as an inhibitor for neutrophil chemotaxis as well as for vascular elastin degradation.
Collapse
Affiliation(s)
- J Muto
- Department of Dermatology, National Defense Medical College, Saitama, Japan
| | - N Fujimoto
- Department of Dermatology, National Defense Medical College, Saitama, Japan
| | - K Ono
- Department of Dermatology, National Defense Medical College, Saitama, Japan
| | - T Kobayashi
- Department of Dermatology, National Defense Medical College, Saitama, Japan
| | - K R Chen
- Department of Dermatology, Saiseikai Central Hospital, Tokyo, Japan
| | - S Suzuki
- Department of Medicine, National Defense Medical College, Saitama, Japan
| | - H Wachi
- Department of Clinical Chemistry, Hoshi College of Pharmacy, Tokyo, Japan
| | - S Tajima
- Department of Dermatology, National Defense Medical College, Saitama, Japan
| |
Collapse
|
15
|
The Role of Serine Proteases and Antiproteases in the Cystic Fibrosis Lung. Mediators Inflamm 2015; 2015:293053. [PMID: 26185359 PMCID: PMC4491392 DOI: 10.1155/2015/293053] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/08/2015] [Indexed: 12/05/2022] Open
Abstract
Cystic fibrosis (CF) lung disease is an inherited condition with an incidence rate of approximately 1 in 2500 new born babies. CF is characterized as chronic infection of the lung which leads to inflammation of the airway. Sputum from CF patients contains elevated levels of neutrophils and subsequently elevated levels of neutrophil serine proteases. In a healthy individual these proteases aid in the phagocytic process by degrading microbial peptides and are kept in homeostatic balance by cognate antiproteases. Due to the heavy neutrophil burden associated with CF the high concentration of neutrophil derived proteases overwhelms cognate antiproteases. The general effects of this protease/antiprotease imbalance are impaired mucus clearance, increased and self-perpetuating inflammation, and impaired immune responses and tissue. To restore this balance antiproteases have been suggested as potential therapeutics or therapeutic targets. As such a number of both endogenous and synthetic antiproteases have been trialed with mixed success as therapeutics for CF lung disease.
Collapse
|
16
|
Glasgow AMA, Small DM, Scott A, McLean DT, Camper N, Hamid U, Hegarty S, Parekh D, O'Kane C, Lundy FT, McNally P, Elborn JS, McAuley DF, Weldon S, Taggart CC. A role for whey acidic protein four-disulfide-core 12 (WFDC12) in the regulation of the inflammatory response in the lung. Thorax 2015; 70:426-32. [PMID: 25770093 DOI: 10.1136/thoraxjnl-2014-206488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/10/2015] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Secretory leucocyte protease inhibitor and elafin are members of the whey acidic protein (WAP), or WAP four disulfide-core (WFDC), family of proteins and have multiple contributions to innate defence including inhibition of neutrophil serine proteases and inhibition of the inflammatory response to lipopolysaccharide (LPS). This study aimed to explore potential activities of WFDC12, a previously uncharacterised WFDC protein expressed in the lung. METHODS Recombinant expression and purification of WFDC12 were optimised in Escherichia coli. Antiprotease, antibacterial and immunomodulatory activities of recombinant WFDC12 were evaluated and levels of endogenous WFDC12 protein were characterised by immunostaining and ELISA. RESULTS Recombinant WFDC12 inhibited cathepsin G, but not elastase or proteinase-3 activity. Monocytic cells pretreated with recombinant WFDC12 before LPS stimulation produced significantly lower levels of the pro-inflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared with cells stimulated with LPS alone. Recombinant WFDC12 became conjugated to fibronectin in a transglutaminase-mediated reaction and retained antiprotease activity. In vivo WFDC12 expression was confirmed by immunostaining of human lung tissue sections. WFDC12 levels in human bronchoalveolar lavage fluid from healthy and lung-injured patients were quantitatively compared, showing WFDC12 to be elevated in both patients with acute respiratory distress syndrome and healthy subjects treated with LPS, relative to healthy controls. CONCLUSIONS Together, these results suggest a role for this lesser known WFDC protein in the regulation of lung inflammation.
Collapse
Affiliation(s)
- Arlene M A Glasgow
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Donna M Small
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Aaron Scott
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Denise T McLean
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Nicolas Camper
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Umar Hamid
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Shauna Hegarty
- Department of Pathology, Royal Victoria Hospital, Belfast, UK
| | - Dhruv Parekh
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Cecilia O'Kane
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Fionnuala T Lundy
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Paul McNally
- Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - J Stuart Elborn
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Danny F McAuley
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Sinéad Weldon
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Clifford C Taggart
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| |
Collapse
|
17
|
Yarbrough VL, Winkle S, Herbst-Kralovetz MM. Antimicrobial peptides in the female reproductive tract: a critical component of the mucosal immune barrier with physiological and clinical implications. Hum Reprod Update 2014; 21:353-77. [PMID: 25547201 DOI: 10.1093/humupd/dmu065] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/10/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND At the interface of the external environment and the mucosal surface of the female reproductive tract (FRT) lies a first-line defense against pathogen invasion that includes antimicrobial peptides (AMP). Comprised of a unique class of multifunctional, amphipathic molecules, AMP employ a wide range of functions to limit microbial invasion and replication within host cells as well as independently modulate the immune system, dampen inflammation and maintain tissue homeostasis. The role of AMP in barrier defense at the level of the skin and gut has received much attention as of late. Given the far reaching implications for women's health, maternal and fetal morbidity and mortality, and sexually transmissible and polymicrobial diseases, we herein review the distribution and function of key AMP throughout the female reproductive mucosa and assess their role as an essential immunological barrier to microbial invasion throughout the reproductive cycle of a woman's lifetime. METHODS A comprehensive search in PubMed/Medline was conducted related to AMP general structure, function, signaling, expression, distribution and barrier function of AMP in the FRT, hormone regulation of AMP, the microbiome of the FRT, and AMP in relation to implantation, pregnancy, fertility, pelvic inflammatory disease, complications of pregnancy and assisted reproductive technology. RESULTS AMP are amphipathic peptides that target microbes for destruction and have been conserved throughout all living organisms. In the FRT, several major classes of AMP are expressed constitutively and others are inducible at the mucosal epithelium and by immune cells. AMP expression is also under the influence of sex hormones, varying throughout the menstrual cycle, and dependent on the vaginal microbiome. AMP can prevent infection with sexually transmissible and opportunistic pathogens of the female reproductive tissues, although emerging understanding of vaginal dysbiosis suggests induction of a unique AMP profile with increased susceptibility to these pathogens. During pregnancy, AMP are key immune effectors of the fetal membranes and placenta and are dysregulated in states of intrauterine infection and other complications of pregnancy. CONCLUSIONS At the level of the FRT, AMP serve to inhibit infection by sexually and vertically transmissible as well as by opportunistic bacteria, fungi, viruses, and protozoa and must do so throughout the hormone flux of menses and pregnancy. Guarding the exclusive site of reproduction, AMP modulate the vaginal microbiome of the lower FRT to aid in preventing ascending microbes into the upper FRT. Evolving in parallel with, and in response to, pathogenic insults, AMP are relatively immune to the resistance mechanisms employed by rapidly evolving pathogens and play a key role in barrier function and host defense throughout the FRT.
Collapse
Affiliation(s)
- Victoria L Yarbrough
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, , Phoenix, AZ 85004-2157, USA
| | - Sean Winkle
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, , Phoenix, AZ 85004-2157, USA
| | - Melissa M Herbst-Kralovetz
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, , Phoenix, AZ 85004-2157, USA
| |
Collapse
|
18
|
Tejera P, O'Mahony DS, Owen CA, Wei Y, Wang Z, Gupta K, Su L, Villar J, Wurfel M, Christiani DC. Functional characterization of polymorphisms in the peptidase inhibitor 3 (elafin) gene and validation of their contribution to risk of acute respiratory distress syndrome. Am J Respir Cell Mol Biol 2014; 51:262-72. [PMID: 24617927 DOI: 10.1165/rcmb.2013-0238oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Elafin (peptidase inhibitor 3 [PI3]) and its biologically active precursor, pre-elafin, are neutrophil serine proteinase inhibitors with an important role in preventing excessive tissue injury during inflammatory events. Recently, we reported an association between single-nucleotide polymorphism (SNP) rs2664581 in the PI3 gene, increased risk of acute respiratory distress syndrome (ARDS) and pre-elafin circulating levels. This study aims to validate the legitimacy of this association by using a cohort of patients who met the criteria for systemic inflammatory response syndrome and were at risk of developing ARDS (n = 840). A comprehensive functional study of SNPs in PI3 gene was also performed. Luciferase assays and electrophoretic mobility shift assays were conducted to determine the functional relevance of promoter region variants. The effect of the coding SNP rs2664581 on the neutrophil elastase inhibitory activity and transglutaminase binding properties of pre-elafin was also investigated. The variant allele of rs2664581 (C) was significantly associated with increased ARDS risk, mainly among subjects with sepsis (odds ratio = 1.44; 95% confidence interval = 1.04-1.99; P = 0.0276, adjusted by age, sex, and Acute Physiology and Chronic Health Evaluation III). Pre-elafin recombinant protein carrying the amino acid change associated with rs2664581 (Thr34Pro, mutant protein [MT]) had greater capacity to undergo transglutaminase-mediated cross-linking to immobilized fibronectin than wild-type protein in vitro (P < 0.003). No differences were observed in the neutrophil elastase inhibitory activities of wild-type versus MT proteins. In addition, the risk allele-promoter construct had significantly lower cytokine-induced transcriptional activity. Electrophoretic mobility shift assay results indicated a differential binding of nuclear proteins to the G and A alleles of SNP -338G > A. Our results confirm the association between SNP rs2664581 and enhanced risk of ARDS, further supporting the role of PI3 in ARDS development. SNPs in the PI3 locus may act synergistically by regulating PI3 gene expression and pre-elafin biological functions.
Collapse
Affiliation(s)
- Paula Tejera
- 1 Harvard School of Public Health, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Small DM, Zani ML, Quinn DJ, Dallet-Choisy S, Glasgow AMA, O'Kane C, McAuley DF, McNally P, Weldon S, Moreau T, Taggart CC. A functional variant of elafin with improved anti-inflammatory activity for pulmonary inflammation. Mol Ther 2014; 23:24-31. [PMID: 25189740 DOI: 10.1038/mt.2014.162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 08/22/2014] [Indexed: 12/25/2022] Open
Abstract
Elafin is a serine protease inhibitor produced by epithelial and immune cells with anti-inflammatory properties. Research has shown that dysregulated protease activity may elicit proteolytic cleavage of elafin, thereby impairing the innate immune function of the protein. The aim of this study was to generate variants of elafin (GG- and QQ-elafin) that exhibit increased protease resistance while retaining the biological properties of wild-type (WT) elafin. Similar to WT-elafin, GG- and QQ-elafin variants retained antiprotease activity and susceptibility to transglutaminase-mediated fibronectin cross-linking. However, in contrast to WT-elafin, GG- and QQ-elafin displayed significantly enhanced resistance to degradation when incubated with bronchoalveolar lavage fluid from patients with cystic fibrosis. Intriguingly, both variants, particularly GG-elafin, demonstrated improved lipopolysaccharide (LPS) neutralization properties in vitro. In addition, GG-elafin showed improved anti-inflammatory activity in a mouse model of LPS-induced acute lung inflammation. Inflammatory cell infiltration into the lung was reduced in lungs of mice treated with GG-elafin, predominantly neutrophilic infiltration. A reduction in MCP-1 levels in GG-elafin treated mice compared to the LPS alone treatment group was also demonstrated. GG-elafin showed increased functionality when compared to WT-elafin and may be of future therapeutic relevance in the treatment of lung diseases characterized by a protease burden.
Collapse
Affiliation(s)
- Donna M Small
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | | - Derek J Quinn
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | | - Arlene M A Glasgow
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Cecilia O'Kane
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Danny F McAuley
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Paul McNally
- 1] Our Lady's Hospital for Sick Children, Dublin, Ireland [2] National Children's Research Centre, Crumlin, Dublin, Ireland
| | - Sinéad Weldon
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Thierry Moreau
- CEPR, INSERM U1100/EA6305, University of Tours, Tours, France
| | - Clifford C Taggart
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
20
|
Novel role of the serine protease inhibitor elafin in gluten-related disorders. Am J Gastroenterol 2014; 109:748-56. [PMID: 24710505 PMCID: PMC4219532 DOI: 10.1038/ajg.2014.48] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/02/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Elafin, an endogenous serine protease inhibitor, modulates colonic inflammation. We investigated the role of elafin in celiac disease (CD) using human small intestinal tissues and in vitro assays of gliadin deamidation. We also investigated the potential beneficial effects of elafin in a mouse model of gluten sensitivity. METHODS Epithelial elafin expression in the small intestine of patients with active CD, treated CD, and controls without CD was determined by immunofluorescence. Interaction of elafin with human tissue transglutaminase-2 (TG-2) was investigated in vitro. The 33-mer peptide, a highly immunogenic gliadin peptide, was incubated with TG-2 and elafin at different concentrations. The degree of deamidation of the 33-mer peptide was analyzed by liquid chromatography-mass spectrometry. Elafin was delivered to the intestine of gluten-sensitive mice using a recombinant Lactococcus lactis vector. Small intestinal barrier function, inflammation, proteolytic activity, and zonula occludens-1 (ZO-1) expression were assessed. RESULTS Elafin expression in the small intestinal epithelium was lower in patients with active CD compared with control patients. In vitro, elafin significantly slowed the kinetics of the deamidation of the 33-mer peptide to its more immunogenic form. Treatment of gluten-sensitive mice with elafin delivered by the L. lactis vector normalized inflammation, improved permeability, and maintained ZO-1 expression. CONCLUSIONS The decreased elafin expression in the small intestine of patients with active CD, the reduction of 33-mer peptide deamidation by elafin, coupled to the barrier enhancing and anti-inflammatory effects observed in gluten-sensitive mice, suggest that this molecule may have pathophysiological and therapeutic importance in gluten-related disorders.
Collapse
|
21
|
Xue X, Zheng Q, Wu H, Zou L, Li P. Different responses to mechanical injury in neonatal and adult ovine articular cartilage. Biomed Eng Online 2013; 12:53. [PMID: 23773399 PMCID: PMC3691644 DOI: 10.1186/1475-925x-12-53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/10/2013] [Indexed: 12/25/2022] Open
Abstract
Background Articular cartilage injury remains a major challenge in orthopedic surgery. This study aimed to identify differences in gene expression and molecular responses between neonatal and adult articular cartilage during the healing of an injury. Methods An established in vitro model was used to compare the transcriptional response to cartilage injury in neonatal and adult sheep by microarray analysis of gene expression. Total RNA was isolated from tissue samples, linearly amplified, and 15,208 ovine probes were applied to cDNA microarray. Validation for selected genes was obtained by real-time quantitative polymerase chain reaction (RT-qPCR). Results We found 1,075 (11.6%) differentially expressed probe sets in adult injured cartilage relative to normal cartilage. A total of 1,016 (11.0%) probe sets were differentially expressed in neonatal injured cartilage relative to normal cartilage. A total of 1,492 (16.1%) probe sets were differentially expressed in adult normal cartilage relative to neonatal normal cartilage. A total of 1,411 (15.3%) probe sets were differentially expressed in adult injured cartilage relative to neonatal injured cartilage. Significant functional clusters included genes associated with wound healing, articular protection, inflammation, and energy metabolism. Selected genes (PPARG, LDH, TOM, HIF1A, SMAD7, and NF-κB) were also found and validated by RT-qPCR. Conclusions There are significant differences in gene expression between neonatal and adult ovine articular cartilage following acute injury. They are partly due to intrinsic differences in the process of development, and partly to different biological responses to mechanical trauma between neonatal and adult articular cartilage.
Collapse
Affiliation(s)
- Xuhong Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | | | | | | | | |
Collapse
|
22
|
Antiviral activity of trappin-2 and elafin in vitro and in vivo against genital herpes. J Virol 2013; 87:7526-38. [PMID: 23637403 DOI: 10.1128/jvi.02243-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Serine protease inhibitor elafin (E) and its precursor, trappin-2 (Tr), have been associated with mucosal resistance to HIV-1 infection. We recently showed that Tr/E are among principal anti-HIV-1 molecules in cervicovaginal lavage (CVL) fluid, that E is ∼130 times more potent than Tr against HIV-1, and that Tr/E inhibited HIV-1 attachment and transcytosis across human genital epithelial cells (ECs). Since herpes simplex virus 2 (HSV-2) is a major sexually transmitted infection and risk factor for HIV-1 infection and transmission, we assessed Tr/E contribution to defense against HSV-2. Our in vitro studies demonstrated that pretreatment of endometrial (HEC-1A) and endocervical (End1/E6E7) ECs with human Tr-expressing adenovirus (Ad/Tr) or recombinant Tr/E proteins before or after HSV-2 infection resulted in significantly reduced virus titers compared to those of controls. Interestingly, E was ∼7 times more potent against HSV-2 infection than Tr. Conversely, knockdown of endogenous Tr/E by small interfering RNA (siRNA) significantly increased HSV-2 replication in genital ECs. Recombinant Tr and E reduced viral attachment to genital ECs by acting indirectly on cells. Further, lower viral replication was associated with reduced secretion of proinflammatory interleukin 8 (IL-8) and tumor necrosis factor alpha (TNF-α) and decreased NF-κB nuclear translocation. Additionally, protected Ad/Tr-treated ECs demonstrated enhanced interferon regulatory factor 3 (IRF3) nuclear translocation and increased antiviral IFN-β in response to HSV-2. Lastly, in vivo studies of intravaginal HSV-2 infection in Tr-transgenic mice (Etg) showed that despite similar virus replication in the genital tract, Etg mice had reduced viral load and TNF-α in the central nervous system compared to controls. Collectively, this is the first experimental evidence highlighting anti-HSV-2 activity of Tr/E in female genital mucosa.
Collapse
|
23
|
Cross-linking of SPINK6 by transglutaminases protects from epidermal proteases. J Invest Dermatol 2013; 133:1170-7. [PMID: 23303447 DOI: 10.1038/jid.2012.482] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular kallikrein-related peptidases (KLKs) are involved in the desquamation process and the initiation of epidermal inflammation by different mechanisms. Their action is tightly controlled by specific protease inhibitors. Recently, we have identified the serine protease inhibitor of Kazal-type (SPINK) 6 as a selective inhibitor of KLKs in human stratum corneum extracts. As SPINK6 is expressed in the same localization as transglutaminases (TGM) and contains TGM substrate motifs, SPINK6 was tested to be cross-linked in the epidermis. Recombinant SPINK6 was shown to be cross-linked to fibronectin (FN) by TGM1 by western blot analyses. Moreover, SPINK6 was cross-linked in epidermal extracts and cultured keratinocytes by immunoblotting analyses. The use of TGM1 and TGM3 resulted in different immunoreactivities in western blot analyses of SPINK6 and epidermal extracts, suggesting substrate specifities of different TGMs for SPINK6 cross-linking in the epidermis. Conjugated SPINK6 exhibited protease inhibitory activity in keratinocytes and stratum corneum extracts; cross-linked SPINK6 protected FN from KLK5-mediated cleavage, whereas a lower KLK-inhibiting SPINK6-GM mutation did not. In conclusion, we demonstrated that SPINK6 is cross-linked in keratinocytes and human epidermis and remains inhibitory active. Thus, cross-linked SPINK6 might protect specific substrates such as FN from KLK cleavage and contributes to the regulation of proteases in the epidermis.
Collapse
|
24
|
Drannik AG, Nag K, Yao XD, Henrick BM, Ball TB, Plummer FA, Wachihi C, Kimani J, Rosenthal KL. Anti-HIV-1 activity of elafin depends on its nuclear localization and altered innate immune activation in female genital epithelial cells. PLoS One 2012; 7:e52738. [PMID: 23300756 PMCID: PMC3531372 DOI: 10.1371/journal.pone.0052738] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 11/21/2012] [Indexed: 11/18/2022] Open
Abstract
Elafin (E) and its precursor trappin-2 (Tr) are alarm antiproteases with antimicrobial and immunomodulatory activities. Tr and E (Tr/E) have been associated with HIV-1 resistance. We recently showed that Tr/E reduced IL-8 secretion and NF-κB activation in response to a mimic of viral dsRNA and contributed to anti-HIV activity of cervicovaginal lavage fluid (CVL) of HIV-resistant (HIV-R) commercial sex workers (CSWs). Additionally, Tr, and more so E, were found to inhibit attachment/entry and transcytosis of HIV-1 in human endometrial HEC-1A cells, acting through virus or cells. Given their immunomodulatory activity, we hypothesized that Tr/E could exert anti-HIV-1 activity at multiple levels. Here, using tagged and untagged Tr/E proteins, we comparatively evaluated their protease inhibitory, anti-HIV-1, and immunomodulatory activities, and cellular distribution. E appeared to function as an autocrine/paracrine factor in HEC-1A cells, and anti-HIV-1 activity of E depended on its unmodified N-terminus and altered cellular innate activation, but not its antiprotease activity. Specifically, exogenously added N-terminus-unmodified E was able to enter the nucleus and to reduce viral attachment/entry and transcytosis, preferentially affecting R5-HIV-1(ADA), but not X4-HIV-1(IIIB). Further, anti-HIV-1 activity of E was associated with significantly decreased HIV-1-triggered IL-8 release, attenuated NF-κB/p65 nuclear translocation, and significantly modulated mRNA expression of innate sensors TLR3 and RIG-I in HEC-1A cells. Most importantly, we found that elevated Tr/E in CVLs of HIV-R CSWs were associated with lower mRNA levels of TLRs 2, 3, 4 and RIG-I in the genital ECs from this cohort, suggesting a link between Tr/E, HIV-1 resistance and modulated innate viral recognition in the female genital mucosa. Collectively, our data indicate that unmodified N-terminus is critical for intranuclear localization and anti-HIV-1 activity of E. We also propose that E-mediated altered cellular innate activation most likely contributes to the HIV-R phenotype of these subjects.
Collapse
Affiliation(s)
- Anna G. Drannik
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Kakon Nag
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Xiao-Dan Yao
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Bethany M. Henrick
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - T. Blake Ball
- Department of Medical Microbiology, University of Manitoba and Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Francis A. Plummer
- Department of Medical Microbiology, University of Manitoba and Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Charles Wachihi
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Joshua Kimani
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Kenneth L. Rosenthal
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
25
|
Motta JP, Bermudez-Humaran LG, Deraison C, Martin L, Rolland C, Rousset P, Boue J, Dietrich G, Chapman K, Kharrat P, Vinel JP, Alric L, Mas E, Sallenave JM, Langella P, Vergnolle N. Food-Grade Bacteria Expressing Elafin Protect Against Inflammation and Restore Colon Homeostasis. Sci Transl Med 2012; 4:158ra144. [DOI: 10.1126/scitranslmed.3004212] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Hilgendorff A, Parai K, Ertsey R, Juliana Rey-Parra G, Thébaud B, Tamosiuniene R, Jain N, Navarro EF, Starcher BC, Nicolls MR, Rabinovitch M, Bland RD. Neonatal mice genetically modified to express the elastase inhibitor elafin are protected against the adverse effects of mechanical ventilation on lung growth. Am J Physiol Lung Cell Mol Physiol 2012; 303:L215-27. [PMID: 22683569 DOI: 10.1152/ajplung.00405.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical ventilation (MV) with O(2)-rich gas (MV-O(2)) offers life-saving treatment for newborn infants with respiratory failure, but it also can promote lung injury, which in neonates translates to defective alveolar formation and disordered lung elastin, a key determinant of lung growth and repair. Prior studies in preterm sheep and neonatal mice showed that MV-O(2) stimulated lung elastase activity, causing degradation and remodeling of matrix elastin. These changes yielded an inflammatory response, with TGF-β activation, scattered elastic fibers, and increased apoptosis, culminating in defective alveolar septation and arrested lung growth. To see whether sustained inhibition of elastase activity would prevent these adverse pulmonary effects of MV-O(2), we did studies comparing wild-type (WT) and mutant neonatal mice genetically modified to express in their vascular endothelium the human serine elastase inhibitor elafin (Eexp). Five-day-old WT and Eexp mice received MV with 40% O(2) (MV-O(2)) for 24-36 h. WT and Eexp controls breathed 40% O(2) without MV. MV-O(2) increased lung elastase and MMP-9 activity, resulting in elastin degradation (urine desmosine doubled), TGF-β activation (pSmad-2 increased 6-fold), apoptosis (cleaved-caspase-3 increased 10-fold), and inflammation (NF-κB activation, influx of neutrophils and monocytes) in lungs of WT vs. unventilated controls. These changes were blocked or blunted during MV-O(2) of Eexp mice. Scattered lung elastin and emphysematous alveoli observed in WT mice after 36 h of MV-O(2) were attenuated in Eexp mice. Both WT and Eexp mice showed defective VEGF signaling (decreased lung VEGF-R2 protein) and loss of pulmonary microvessels after lengthy MV-O(2), suggesting that elafin's beneficial effects during MV-O(2) derived primarily from preserving matrix elastin and suppressing lung inflammation, thereby enabling alveolar formation during MV-O(2). These results suggest that degradation and remodeling of lung elastin can contribute to defective lung growth in response to MV-O(2) and might be targeted therapeutically to prevent ventilator-induced neonatal lung injury.
Collapse
Affiliation(s)
- Anne Hilgendorff
- Department of Pediatrics, Stanford University, Stanford, California 94305-5162, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tanga A, Saidi A, Jourdan ML, Dallet-Choisy S, Zani ML, Moreau T. Protection of lung epithelial cells from protease-mediated injury by trappin-2 A62L, an engineered inhibitor of neutrophil serine proteases. Biochem Pharmacol 2012; 83:1663-73. [DOI: 10.1016/j.bcp.2012.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 12/31/2022]
|
28
|
Drannik AG, Nag K, Yao XD, Henrick BM, Sallenave JM, Rosenthal KL. Trappin-2/elafin modulate innate immune responses of human endometrial epithelial cells to PolyI:C. PLoS One 2012; 7:e35866. [PMID: 22545145 PMCID: PMC3335805 DOI: 10.1371/journal.pone.0035866] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 03/27/2012] [Indexed: 12/24/2022] Open
Abstract
Background Upon viral recognition, innate and adaptive antiviral immune responses are initiated by genital epithelial cells (ECs) to eradicate or contain viral infection. Such responses, however, are often accompanied by inflammation that contributes to acquisition and progression of sexually transmitted infections (STIs). Hence, interventions/factors enhancing antiviral protection while reducing inflammation may prove beneficial in controlling the spread of STIs. Serine antiprotease trappin-2 (Tr) and its cleaved form, elafin (E), are alarm antimicrobials secreted by multiple cells, including genital epithelia. Methodology and Principal Findings We investigated whether and how each Tr and E (Tr/E) contribute to antiviral defenses against a synthetic mimic of viral dsRNA, polyinosine-polycytidylic acid (polyI∶C) and vesicular stomatitis virus. We show that delivery of a replication-deficient adenovector expressing Tr gene (Ad/Tr) to human endometrial epithelial cells, HEC-1A, resulted in secretion of functional Tr, whereas both Tr/E were detected in response to polyI∶C. Moreover, Tr/E were found to significantly reduce viral replication by either acting directly on virus or through enhancing polyI∶C-driven antiviral protection. The latter was associated with reduced levels of pro-inflammatory factors IL-8, IL-6, TNFα, lowered expression of RIG-I, MDA5 and attenuated NF-κB activation. Interestingly, enhanced polyI∶C-driven antiviral protection of HEC-Ad/Tr cells was partially mediated through IRF3 activation, but not associated with higher induction of IFNβ, suggesting multiple antiviral mechanisms of Tr/E and the involvement of alternative factors or pathways. Conclusions and Significance This is the first evidence of both Tr/E altering viral binding/entry, innate recognition and mounting of antiviral and inflammatory responses in genital ECs that could have significant implications for homeostasis of the female genital tract.
Collapse
Affiliation(s)
- Anna G. Drannik
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Kakon Nag
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Xiao-Dan Yao
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Bethany M. Henrick
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Jean-Michel Sallenave
- Unité de Défense Innée et Inflammation, Institut Pasteur, Paris, France
- Unité U874 INSERM, Paris, France
- Université Paris 7-Denis Diderot, Paris, France
| | - Kenneth L. Rosenthal
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
29
|
|
30
|
Anti-HIV-1 activity of elafin is more potent than its precursor's, trappin-2, in genital epithelial cells. J Virol 2012; 86:4599-610. [PMID: 22345469 DOI: 10.1128/jvi.06561-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cervicovaginal lavage fluid (CVL) is a natural source of anti-HIV-1 factors; however, molecular characterization of the anti-HIV-1 activity of CVL remains elusive. In this study, we confirmed that CVLs from HIV-1-resistant (HIV-R) compared to HIV-1-susceptible (HIV-S) commercial sex workers (CSWs) contain significantly larger amounts of serine antiprotease trappin-2 (Tr) and its processed form, elafin (E). We assessed anti-HIV-1 activity of CVLs of CSWs and recombinant E and Tr on genital epithelial cells (ECs) that possess (TZM-bl) or lack (HEC-1A) canonical HIV-1 receptors. Our results showed that immunodepletion of 30% of Tr/E from CVL accounted for up to 60% of total anti-HIV-1 activity of CVL. Knockdown of endogenous Tr/E in HEC-1A cells resulted in significantly increased shedding of infectious R5 and X4 HIV-1. Pretreatment of R5, but not X4 HIV-1, with either Tr or E led to inhibition of HIV-1 infection of TZM-bl cells. Interestingly, when either HIV-1 or cells lacking canonical HIV-1 receptors were pretreated with Tr or E, HIV-1 attachment and transcytosis were significantly reduced, and decreased attachment was not associated with altered expression of syndecan-1 or CXCR4. Determination of 50% inhibitory concentrations (IC(50)) of Tr and E anti-HIV-1 activity indicated that E is ∼130 times more potent than its precursor, Tr, despite their equipotent antiprotease activities. This study provides the first experimental evidence that (i) Tr and E are among the principal anti-HIV-1 molecules of CVL; (ii) Tr and E affect cell attachment and transcytosis of HIV-1; (iii) E is more efficient than Tr regarding anti-HIV-1 activity; and (iv) the anti-HIV-1 effect of Tr and E is contextual.
Collapse
|
31
|
SLPI and trappin-2 as therapeutic agents to target airway serine proteases in inflammatory lung diseases: current and future directions. Biochem Soc Trans 2012; 39:1441-6. [PMID: 21936830 DOI: 10.1042/bst0391441] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is now clear that NSPs (neutrophil serine proteases), including elastase, Pr3 (proteinase 3) and CatG (cathepsin G) are major pathogenic determinants in chronic inflammatory disorders of the lungs. Two unglycosylated natural protease inhibitors, SLPI (secretory leucocyte protease inhibitor) and elafin, and its precursor trappin-2 that are found in the lungs, have therapeutic potential for reducing the protease-induced inflammatory response. This review examines the multifaceted roles of SLPI and elafin/trappin-2 in the context of their possible use as inhaled drugs for treating chronic lung diseases such as CF (cystic fibrosis) and COPD (chronic obstructive pulmonary disease).
Collapse
|
32
|
War and peace between WAP and HIV: role of SLPI, trappin-2, elafin and ps20 in susceptibility to HIV infection. Biochem Soc Trans 2012; 39:1427-32. [PMID: 21936827 DOI: 10.1042/bst0391427] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite tremendous advances in our understanding of HIV/AIDS since the first cases were reported 30 years ago, we are still a long way from understanding critical steps of HIV acquisition, pathogenesis and correlates of protection. Our new understanding of the importance of the mucosa as a target for HIV infection, as well as our recent observations showing that altered expression and responses of innate pattern recognition receptors are significantly associated with pathogenesis and resistance to HIV infection, indicate that correlates of immunity to HIV are more likely to be associated with mucosal and innate responses. Most of the heterosexual encounters do not result in productive HIV infection, suggesting that the female genital tract is protected against HIV by innate defence molecules, such as antiproteases, secreted mucosally. The present review highlights the role and significance of the serine protease inhibitors SLPI (secretory leucocyte protease inhibitor), trappin-2, elafin and ps20 (prostate stromal protein 20 kDa) in HIV susceptibility and infection. Interestingly, in contrast with SLPI, trappin-2 and elafin, ps20 has been shown to enhance HIV infectivity. Thus understanding the balance and interaction of these factors in mucosal fluids may significantly influence HIV infection.
Collapse
|
33
|
Laugisch O, Schacht M, Guentsch A, Kantyka T, Sroka A, Stennicke HR, Pfister W, Sculean A, Potempa J, Eick S. Periodontal pathogens affect the level of protease inhibitors in gingival crevicular fluid. Mol Oral Microbiol 2011; 27:45-56. [PMID: 22230465 DOI: 10.1111/j.2041-1014.2011.00631.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In periodontitis, an effective host-response is primarily related to neutrophils loaded with serine proteases, including elastase (NE) and protease 3 (PR3), the extracellular activity of which is tightly controlled by endogenous inhibitors. In vitro these inhibitors are degraded by gingipains, cysteine proteases produced by Porphyromonas gingivalis. The purpose of this study was to determine the level of selected protease inhibitors in gingival crevicular fluid (GCF) in relation to periodontal infection. The GCF collected from 31 subjects (nine healthy controls, seven with gingivitis, five with aggressive periodontitis and 10 with chronic periodontitis) was analyzed for the levels of elafin and secretory leukocyte protease inhibitor (SLPI), two main tissue-derived inhibitors of neutrophil serine proteases. In parallel, activity of NE, PR3 and arginine-specific gingipains (Rgps) in GCF was measured. Finally loads of P. gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola were determined. The highest values of elafin were found in aggressive periodontitis and the lowest in controls. The quantity of elafin correlated positively with the load of P. gingivalis, Ta. forsythia and Tr. denticola, as well as with Rgps activity. In addition, NE activity was positively associated with the counts of those bacterial species, but not with the amount of elafin. In contrast, the highest concentrations of SLPI were found in periodontally healthy subjects whereas amounts of this inhibitor were significantly decreased in patients infected with P. gingivalis. Periodontopathogenic bacteria stimulate the release of NE and PR3, which activities escape the control through degradation of locally produced inhibitors (SLPI and elafin) by host-derived and bacteria-derived proteases.
Collapse
Affiliation(s)
- O Laugisch
- Department of Periodontology, Dental School, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hilgendorff A, Parai K, Ertsey R, Jain N, Navarro EF, Peterson JL, Tamosiuniene R, Nicolls MR, Starcher BC, Rabinovitch M, Bland RD. Inhibiting lung elastase activity enables lung growth in mechanically ventilated newborn mice. Am J Respir Crit Care Med 2011; 184:537-46. [PMID: 21562133 DOI: 10.1164/rccm.201012-2010oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RATIONALE Mechanical ventilation with O₂-rich gas (MV-O₂) offers life-saving treatment for respiratory failure, but also promotes lung injury. We previously reported that MV-O2 of newborn mice increased lung elastase activity, causing elastin degradation and redistribution of elastic fibers from septal tips to alveolar walls. These changes were associated with transforming growth factor (TGF)-β activation and increased apoptosis leading to defective alveolarization and lung growth arrest, as seen in neonatal chronic lung disease. OBJECTIVES To determine if intratracheal treatment of newborn mice with the serine elastase inhibitor elafin would prevent MV-O₂-induced lung elastin degradation and the ensuing cascade of events causing lung growth arrest. METHODS Five-day-old mice were treated via tracheotomy with recombinant human elafin or vehicle (lactated-Ringer solution), followed by MV with 40% O₂ for 8-24 hours; control animals breathed 40% O₂ without MV. At study's end, lungs were harvested to assess key variables noted below. MEASUREMENTS AND MAIN RESULTS MV-O₂ of vehicle-treated pups increased lung elastase and matrix metalloproteinase-9 activity when compared with unventilated control animals, causing elastin degradation (urine desmosine doubled), TGF-β activation (pSmad-2 tripled), and apoptosis (cleaved-caspase-3 increased 10-fold). Quantitative lung histology showed larger and fewer alveoli, greater inflammation, and scattered elastic fibers. Elafin blocked these MV-O₂-induced changes. CONCLUSIONS Intratracheal elafin, by blocking lung protease activity, prevented MV-O₂-induced elastin degradation, TGF-β activation, apoptosis, and dispersion of matrix elastin, and attenuated lung structural abnormalities noted in vehicle-treated mice after 24 hours of MV-O₂. These findings suggest that elastin breakdown contributes to defective lung growth in response to MV-O₂ and might be targeted therapeutically to prevent MV-O₂-induced lung injury.
Collapse
Affiliation(s)
- Anne Hilgendorff
- Department of Pediatrics, Stanford University, Stanford, California 94305-5162, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Elafin is an endogenous human protein composed of an N-terminal transglutaminase substrate motif and a C-terminal WAP (whey acidic protein)-domain with antiproteolytic properties. Elafin is expressed predominantly in epithelial tissue and potently inhibits the neutrophil-derived serine proteases elastase and proteinase-3 by a competitive tight-binding mechanism. Furthermore, it inhibits EVE (endogenous vascular elastase). Studies on several animal models show that antiprotease augmentation with human elafin is an effective strategy in the treatment of inflammatory vascular, systemic and pulmonary diseases and of inflammation triggered by reperfusion injury. This raises the possibility that elafin might be effective in the treatment of a variety of human inflammatory diseases. In a Phase I clinical trial, elafin was well tolerated. Phase II trials are underway to investigate the therapeutic effects of elafin on post-operative inflammation and the clinical consequences of major surgery. Of particular interest is the reduction of post-operative morbidity after oesophagus cancer surgery, coronary artery bypass surgery and kidney transplantation.
Collapse
|
36
|
Baranger K, Zani ML, Labas V, Dallet-Choisy S, Moreau T. Secretory leukocyte protease inhibitor (SLPI) is, like its homologue trappin-2 (pre-elafin), a transglutaminase substrate. PLoS One 2011; 6:e20976. [PMID: 21687692 PMCID: PMC3110255 DOI: 10.1371/journal.pone.0020976] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/16/2011] [Indexed: 11/18/2022] Open
Abstract
Human lungs contain secretory leukocyte protease inhibitor (SLPI), elafin and its biologically active precursor trappin-2 (pre-elafin). These important low-molecular weight inhibitors are involved in controlling the potentially deleterious proteolytic activities of neutrophil serine proteases including elastase, proteinase 3 and cathepsin G. We have shown previously that trappin-2, and to a lesser extent, elafin can be linked covalently to various extracellular matrix proteins by tissue transglutaminases and remain potent protease inhibitors. SLPI is composed of two distinct domains, each of which is about 40% identical to elafin, but it lacks consensus transglutaminase sequence(s), unlike trappin-2 and elafin. We investigated the actions of type 2 tissue transglutaminase and plasma transglutaminase activated factor XIII on SLPI. It was readily covalently bound to fibronectin or elastin by both transglutaminases but did not compete with trappin-2 cross-linking. Cross-linked SLPI still inhibited its target proteases, elastase and cathepsin G. We have also identified the transglutamination sites within SLPI, elafin and trappin-2 by mass spectrometry analysis of tryptic digests of inhibitors cross-linked to mono-dansyl cadaverin or to a fibronectin-derived glutamine-rich peptide. Most of the reactive lysine and glutamine residues in SLPI are located in its first N-terminal elafin-like domain, while in trappin-2, they are located in both the N-terminal cementoin domain and the elafin moiety. We have also demonstrated that the transglutamination substrate status of the cementoin domain of trappin-2 can be transferred from one protein to another, suggesting that it may provide transglutaminase-dependent attachment properties for engineered proteins. We have thus added to the corpus of knowledge on the biology of these potential therapeutic inhibitors of airway proteases.
Collapse
Affiliation(s)
- Kévin Baranger
- Inserm U618 “Protéases et Vectorisation Pulmonaires”, IFR 135 Imagerie Fonctionnelle, University of Tours, Tours, France
| | - Marie-Louise Zani
- Inserm U618 “Protéases et Vectorisation Pulmonaires”, IFR 135 Imagerie Fonctionnelle, University of Tours, Tours, France
| | - Valérie Labas
- Laboratoire de spectrométrie de masse, Plateau d'analyse intégrative des biomarqueurs cellulaires et moléculaires, INRA, Tours-Nouzilly, France
| | - Sandrine Dallet-Choisy
- Inserm U618 “Protéases et Vectorisation Pulmonaires”, IFR 135 Imagerie Fonctionnelle, University of Tours, Tours, France
| | - Thierry Moreau
- Inserm U618 “Protéases et Vectorisation Pulmonaires”, IFR 135 Imagerie Fonctionnelle, University of Tours, Tours, France
- * E-mail:
| |
Collapse
|
37
|
Guyot N, Bergsson G, Butler MW, Greene CM, Weldon S, Kessler E, Levine RL, O'Neill SJ, Taggart CC, McElvaney NG. Functional study of elafin cleaved by Pseudomonas aeruginosa metalloproteinases. Biol Chem 2010; 391:705-16. [PMID: 20370321 DOI: 10.1515/bc.2010.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Elafin is a 6-kDa innate immune protein present at several epithelial surfaces including the pulmonary epithelium. It is a canonical protease inhibitor of two neutrophil serine proteases [neutrophil elastase (NE) and proteinase 3] with the capacity to covalently bind extracellular matrix proteins by transglutamination. In addition to these properties, elafin also possesses antimicrobial and immunomodulatory activities. The aim of the present study was to investigate the effect of Pseudomonas aeruginosa proteases on elafin function. We found that P. aeruginosa PAO1-conditioned medium and two purified Pseudomonas metalloproteases, pseudolysin (elastase) and aeruginolysin (alkaline protease), are able to cleave recombinant elafin. Pseudolysin was shown to inactivate the anti-NE activity of elafin by cleaving its protease-binding loop. Interestingly, antibacterial properties of elafin against PAO1 were found to be unaffected after pseudolysin treatment. In contrast to pseudolysin, aeruginolysin failed to inactivate the inhibitory properties of elafin against NE. Aeruginolysin cleaves elafin at the amino-terminal Lys6-Gly7 peptide bond, resulting in a decreased ability to covalently bind purified fibronectin following transglutaminase activity. In conclusion, this study provides evidence that elafin is susceptible to proteolytic cleavage at alternative sites by P. aeruginosa metalloproteinases, which can affect different biological functions of elafin.
Collapse
Affiliation(s)
- Nicolas Guyot
- Department of Medicine, Pulmonary Research Division, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sallenave JM. Secretory leukocyte protease inhibitor and elafin/trappin-2: versatile mucosal antimicrobials and regulators of immunity. Am J Respir Cell Mol Biol 2010; 42:635-43. [PMID: 20395631 DOI: 10.1165/rcmb.2010-0095rt] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Elafin and secretory leukocyte protease inhibitor (SLPI) are pleiotropic molecules chiefly synthesized at the mucosal surface that have a fundamental role in the surveillance against microbial infections. Their initial discovery as anti-proteases present in the inflammatory milieu in chronic pathologies such as those of the lung suggested that they may play a role in keeping in check extracellular proteases released during the excessive activation of innate immune cells such as neutrophils. This soon proved to be a simplistic explanation, as other functions were also soon ascribed to these molecules (antimicrobial, modulation of innate and adaptive immunity, regulation of tissue repair). Data emanating from patients with chronic pathologies (in the lung and elsewhere) have shown that SLPI and elafin are often inactivated in inflammatory secretions, either through the action of host or microbial products, justifying attempts at antiprotease supplementation in clinical protocols. Although these have been sparse, proof of principle has been demonstrated, and future challenges will undoubtedly rest with improvements in methods of delivery in the context of tissue inflammation and in careful selection of patients more likely to benefit from SLPI/elafin augmentation.
Collapse
|
39
|
Marischen L, Wesch D, Schröder JM, Wiedow O, Kabelitz D. Human gammadelta T cells produce the protease inhibitor and antimicrobial peptide elafin. Scand J Immunol 2009; 70:547-52. [PMID: 19906197 DOI: 10.1111/j.1365-3083.2009.02337.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human gammadelta T cells rapidly secrete pro-inflammatory cytokines in response to T cell receptor-dependent recognition of pyrophosphates produced by many bacteria and parasites. In further support of an important role of gammadelta T cells in the immune defence against infection, human gammadelta T cells have been shown to produce the antimicrobial peptide LL37/cathelicidin. In this study, we have investigated whether gammadelta T cells can produce additional antimicrobial peptides. To this end, we have screened human gammadelta T cell clones by RT-PCR for mRNA expression of a broad range of antimicrobial peptides. While alpha-defensins were absent and beta-defensins (HBD1) present only in rare gammadelta T cell clones, elafin mRNA was induced by supernatant of Pseudomonas aeruginosa grown under static conditions. Elafin is a protease inhibitor that also displays antimicrobial activity. Constitutive intracellular expression of elafin was demonstrated by flow cytometry and Western blot analysis. Furthermore, trappin-2 (pre-elafin) could be immunoprecipitated in cell lysates but also in the supernatant of gammadelta T cells stimulated by Ps. aeruginosa supernatant. Taken together, our studies reveal a novel effector function of gammadelta T cells which might be important for local immune defence.
Collapse
Affiliation(s)
- L Marischen
- Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | | | | | | | | |
Collapse
|
40
|
Li Q, Zhou XD, Xu XY, Yang J. Recombinant human elafin protects airway epithelium integrity during inflammation. Mol Biol Rep 2009; 37:2981-8. [DOI: 10.1007/s11033-009-9865-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
|
41
|
Zani ML, Baranger K, Guyot N, Dallet-Choisy S, Moreau T. Protease inhibitors derived from elafin and SLPI and engineered to have enhanced specificity towards neutrophil serine proteases. Protein Sci 2009; 18:579-94. [PMID: 19241385 DOI: 10.1002/pro.64] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The secretory leukocyte protease inhibitor (SLPI), elafin, and its biologically active precursor trappin-2 are endogeneous low-molecular weight inhibitors of the chelonianin family that control the enzymatic activity of neutrophil serine proteases (NSPs) like elastase, proteinase 3, and cathepsin G. These inhibitors may be of therapeutic value, since unregulated NSP activities are linked to inflammatory lung diseases. However SLPI inhibits elastase and cathepsin G but not proteinase 3, while elafin targets elastase and proteinase 3 but not cathepsin G. We have used two strategies to design polyvalent inhibitors of NSPs that target all three NSPs and may be used in the aerosol-based treatment of inflammatory lung diseases. First, we fused the elafin domain with the second inhibitory domain of SLPI to produce recombinant chimeras that had the inhibitory properties of both parent molecules. Second, we generated the trappin-2 variant, trappin-2 A62L, in which the P1 residue Ala is replaced by Leu, as in the corresponding position in SLPI domain 2. The chimera inhibitors and trappin-2 A62L are tight-binding inhibitors of all three NSPs with subnanomolar K(i)s, similar to those of the parent molecules for their respective target proteases. We have also shown that these molecules inhibit the neutrophil membrane-bound forms of all three NSPs. The trappin-2 A62L and elafin-SLPI chimeras, like wild-type elafin and trappin-2, can be covalently cross-linked to fibronectin or elastin by a tissue transglutaminase, while retaining their polypotent inhibition of NSPs. Therefore, the inhibitors described herein have the appropriate properties to be further evaluated as therapeutic anti-inflammatory agents.
Collapse
Affiliation(s)
- Marie-Louise Zani
- Inserm U618 Protéases et Vectorisation Pulmonaires, IFR 135 Imagerie Fonctionnelle, University of Tours, France
| | | | | | | | | |
Collapse
|
42
|
Tejera P, Wang Z, Zhai R, Su L, Sheu CC, Taylor DM, Chen F, Gong MN, Thompson BT, Christiani DC. Genetic polymorphisms of peptidase inhibitor 3 (elafin) are associated with acute respiratory distress syndrome. Am J Respir Cell Mol Biol 2009; 41:696-704. [PMID: 19251943 DOI: 10.1165/rcmb.2008-0410oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Peptidase inhibitor 3 (PI3, elafin) is a protease inhibitor produced locally in the lung, where it plays a central role in controlling excessive activity of neutrophil elastase. Our previous study revealed that PI3 gene expression is down-regulated during the acute stage of acute respiratory distress syndrome (ARDS). We conducted a case-control study to investigate whether genetic variants in PI3 gene are associated with ARDS development. Based on resequencing data from 29 unrelated white subjects, three tagging single-nucleotide polymorphisms were selected and genotyped in a prospective cohort consisting of 449 white patients with ARDS (cases) and 1,031 critically ill patients (at-risk control subjects). We found that the variant allele of rs2664581 (T34P) was significantly associated with increased ARDS risk (odds ratio [OR], 1.35; 95% confidence interval [CI], 1.09-1.67; P = 0.006; false discovery rate adjusted P = 0.018). Moreover, this association was stronger among subjects with extrapulmonary injury. The common haplotype Hap2 (TTC), containing the variant allele of rs2664581, was also identified as a risk haplotype for ARDS (OR, 1.31; 95% CI, 1.05-1.64; P = 0.015). Furthermore, the rs2664581 polymorphism was associated with circulating PI3 levels in multivariate analyses. Patients with ARDS homozygous for the wild-type A allele of rs2664581 showed significant lower PI3 plasma level (P = 0.019) at ARDS onset as compared with those homozygous or heterozygous for the variant C allele. Our data suggest that polymorphisms in PI3 gene are significantly associated with ARDS risk and with circulating PI3 levels.
Collapse
Affiliation(s)
- Paula Tejera
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Room I-1407, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Plasma neutrophil elastase and elafin imbalance is associated with acute respiratory distress syndrome (ARDS) development. PLoS One 2009. [PMID: 19197381 DOI: 10.1371/journal.pone.0004380.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We conducted an exploratory study of genome-wide gene expression in whole blood and found that the expression of neutrophil elastase inhibitor (PI3, elafin) was down-regulated during the early phase of ARDS. Further analyses of plasma PI3 levels revealed a rapid decrease during early ARDS development. PI3 and secretory leukocyte proteinase inhibitor (SLPI) are important low-molecular-weight proteinase inhibitors produced locally at neutrophil infiltration site in the lung. In this study, we tested the hypothesis that an imbalance between neutrophil elastase (HNE) and its inhibitors in blood is related to the development of ARDS. METHODOLOGY/PRINCIPAL FINDINGS PI3, SLPI, and HNE were measured in plasma samples collected from 148 ARDS patients and 63 critical ill patients at risk for ARDS (controls). Compared with the controls, the ARDS patients had higher HNE, but lower PI3, at the onset of ARDS, resulting in increased HNE/PI3 ratio (mean = 14.5; 95% CI, 10.9-19.4, P<0.0001), whereas plasma SLPI was not associated with the risk of ARDS development. Although the controls had elevated plasma PI3 and HNE, their HNE/PI3 ratio (mean = 6.5; 95% CI, 4.9-8.8) was not significantly different from the healthy individuals (mean = 3.9; 95% CI, 2.7-5.9). Before the onset (7-days period prior to ARDS diagnosis), we only observed significantly elevated HNE, but the HNE-PI3 balance remained normal. With the progress from prior to the onset of ARDS, the plasma level of PI3 declined, whereas HNE was maintained at a higher level, tilting the balance toward more HNE in the circulation as characterized by an increased HNE/PI3 ratio. In contrast, three days after ICU admission, there was a significant drop of HNE/PI3 ratio in the at-risk controls. CONCLUSIONS/SIGNIFICANCE Plasma profiles of PI3, HNE, and HNE/PI3 may be useful clinical biomarkers in monitoring the development of ARDS.
Collapse
|
44
|
Wang Z, Chen F, Zhai R, Zhang L, Su L, Lin X, Thompson T, Christiani DC. Plasma neutrophil elastase and elafin imbalance is associated with acute respiratory distress syndrome (ARDS) development. PLoS One 2009; 4:e4380. [PMID: 19197381 PMCID: PMC2633615 DOI: 10.1371/journal.pone.0004380] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 12/19/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We conducted an exploratory study of genome-wide gene expression in whole blood and found that the expression of neutrophil elastase inhibitor (PI3, elafin) was down-regulated during the early phase of ARDS. Further analyses of plasma PI3 levels revealed a rapid decrease during early ARDS development. PI3 and secretory leukocyte proteinase inhibitor (SLPI) are important low-molecular-weight proteinase inhibitors produced locally at neutrophil infiltration site in the lung. In this study, we tested the hypothesis that an imbalance between neutrophil elastase (HNE) and its inhibitors in blood is related to the development of ARDS. METHODOLOGY/PRINCIPAL FINDINGS PI3, SLPI, and HNE were measured in plasma samples collected from 148 ARDS patients and 63 critical ill patients at risk for ARDS (controls). Compared with the controls, the ARDS patients had higher HNE, but lower PI3, at the onset of ARDS, resulting in increased HNE/PI3 ratio (mean = 14.5; 95% CI, 10.9-19.4, P<0.0001), whereas plasma SLPI was not associated with the risk of ARDS development. Although the controls had elevated plasma PI3 and HNE, their HNE/PI3 ratio (mean = 6.5; 95% CI, 4.9-8.8) was not significantly different from the healthy individuals (mean = 3.9; 95% CI, 2.7-5.9). Before the onset (7-days period prior to ARDS diagnosis), we only observed significantly elevated HNE, but the HNE-PI3 balance remained normal. With the progress from prior to the onset of ARDS, the plasma level of PI3 declined, whereas HNE was maintained at a higher level, tilting the balance toward more HNE in the circulation as characterized by an increased HNE/PI3 ratio. In contrast, three days after ICU admission, there was a significant drop of HNE/PI3 ratio in the at-risk controls. CONCLUSIONS/SIGNIFICANCE Plasma profiles of PI3, HNE, and HNE/PI3 may be useful clinical biomarkers in monitoring the development of ARDS.
Collapse
Affiliation(s)
- Zhaoxi Wang
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Guyot N, Butler MW, McNally P, Weldon S, Greene CM, Levine RL, O'Neill SJ, Taggart CC, McElvaney NG. Elafin, an elastase-specific inhibitor, is cleaved by its cognate enzyme neutrophil elastase in sputum from individuals with cystic fibrosis. J Biol Chem 2008; 283:32377-85. [PMID: 18799464 PMCID: PMC2583315 DOI: 10.1074/jbc.m803707200] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/19/2008] [Indexed: 12/15/2022] Open
Abstract
Elafin is a neutrophil serine protease inhibitor expressed in lung and displaying anti-inflammatory and anti-bacterial properties. Previous studies demonstrated that some innate host defense molecules of the cystic fibrosis (CF) and chronic obstructive pulmonary disease airways are impaired due to increased proteolytic degradation observed during lung inflammation. In light of these findings, we thus focused on the status of elafin in CF lung. We showed in the present study that elafin is cleaved in sputum from individuals with CF. Pseudomonas aeruginosa-positive CF sputum, which was found to contain lower elafin levels and higher neutrophil elastase (NE) activity compared with P. aeruginosa-negative samples, was particularly effective in cleaving recombinant elafin. NE plays a pivotal role in the process as only NE inhibitors are able to inhibit elafin degradation. Further in vitro studies demonstrated that incubation of recombinant elafin with excess of NE leads to the rapid cleavage of the inhibitor. Two cleavage sites were identified at the N-terminal extremity of elafin (Val-5-Lys-6 and Val-9-Ser-10). Interestingly, purified fragments of the inhibitor (Lys-6-Gln-57 and Ser-10-Gln-57) were shown to still be active for inhibiting NE. However, NE in excess was shown to strongly diminish the ability of elafin to bind lipopolysaccharide (LPS) and its capacity to be immobilized by transglutamination. In conclusion, this study provides evidence that elafin is cleaved by its cognate enzyme NE present at excessive concentration in CF sputum and that P. aeruginosa infection promotes this effect. Such cleavage may have repercussions on the innate immune function of elafin.
Collapse
Affiliation(s)
- Nicolas Guyot
- Pulmonary Research Division, Department of Medicine, The Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lee HC, Kioi M, Han J, Puri RK, Goodman JL. Anaplasma phagocytophilum-induced gene expression in both human neutrophils and HL-60 cells. Genomics 2008; 92:144-51. [PMID: 18603403 DOI: 10.1016/j.ygeno.2008.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 04/07/2008] [Accepted: 05/09/2008] [Indexed: 12/01/2022]
Abstract
Anaplasma phagocytophilum (Ap), the etiologic agent of the tick-borne disease human granulocytic anaplasmosis, is an obligate intracellular pathogen unique in its ability to target and replicate within neutrophils. We define and compare the spectra of host gene expression in response to Ap infection of human neutrophils and of HL-60 cells using long (70-mer)-oligonucleotide array technology. In addition to apoptosis-related genes, genes involved in signaling pathways, transcriptional regulation, immune response, host defense, cell adhesion, and cytoskeleton were modulated in neutrophils infected with Ap. Ap infection affected the same pathways in HL-60 cells but transcriptional changes occurred more slowly and in a reduced spectrum of genes. Gene expression changes detected by microarray were confirmed for randomly selected genes by QRT-PCR and Western blot studies. These studies demonstrate for the first time that the ERK pathway is activated in Ap-infected neutrophils and also define multiple pathways that are activated during intracellular Ap infection, which together serve to prolong the cell survival that is needed to allow bacterial replication and survival in neutrophils, which otherwise would rapidly apoptose.
Collapse
Affiliation(s)
- Hin C Lee
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
47
|
Roghanian A, Sallenave JM. Neutrophil elastase (NE) and NE inhibitors: canonical and noncanonical functions in lung chronic inflammatory diseases (cystic fibrosis and chronic obstructive pulmonary disease). J Aerosol Med Pulm Drug Deliv 2008; 21:125-44. [PMID: 18518838 DOI: 10.1089/jamp.2007.0653] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proteases and antiproteases have multiple important roles both in normal homeostasis and during inflammation. Antiprotease molecules may have developed in a parallel network, consisting of "alarm" and "systemic" inhibitors. Their primary function was thought until recently to mainly prevent the potential injurious effects of excess release of proteolytic enzymes, such as neutrophil elastase (NE), from inflammatory cells. However, recently, new potential roles have been ascribed to these antiproteases. We will review "canonical" and new "noncanonical" functions for these molecules, and more particularly, those pertaining to their role in innate and adaptive immunity (antibacterial activity and biasing of the adaptive immune response).
Collapse
Affiliation(s)
- Ali Roghanian
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh University Medical School, Edinburgh, United Kingdom
| | | |
Collapse
|
48
|
Baranger K, Zani ML, Chandenier J, Dallet-Choisy S, Moreau T. The antibacterial and antifungal properties of trappin-2 (pre-elafin) do not depend on its protease inhibitory function. FEBS J 2008; 275:2008-20. [PMID: 18341586 DOI: 10.1111/j.1742-4658.2008.06355.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Trappin-2 (also known as pre-elafin) is an endogenous inhibitor of neutrophil serine proteases and is involved in the control of excess proteolysis, especially in inflammatory events, along with the structurally related secretory leucocyte proteinase inhibitor. Secretory leucocyte proteinase inhibitor has been shown to have antibacterial and antifungal properties, whereas recent data indicate that trappin-2 has antimicrobial activity against Pseudomonas aeruginosa and Staphylococcus aureus. In the present study, we tested the antibacterial properties of trappin-2 towards other respiratory pathogens. We found that trappin-2, at concentrations of 5-20 microm, has significant activity against Klebsiella pneumoniae, Haemophilus influenzae, Streptococcus pneumoniae, Branhamella catarrhalis and the pathogenic fungi Aspergillus fumigatus and Candida albicans, in addition to P. aeruginosa and S. aureus. A similar antimicrobial activity was observed with trappin-2 A62D/M63L, a trappin-2 variant that has lost its antiprotease properties, indicating that trappin-2 exerts its antibacterial effects through mechanisms independent from its intrinsic antiprotease capacity. Furthermore, the antibacterial and antifungal activities of trappin-2 were sensitive to NaCl and heparin, demonstrating that its mechanism of action is most probably dependent on its cationic nature. This enables trappin-2 to interact with the membranes of target organisms and disrupt them, as shown by our scanning electron microscopy analyses. Thus, trappin-2 not only provides an antiprotease shield, but also may play an important role in the innate defense of the human lungs and mucosae against pathogenic microorganisms.
Collapse
Affiliation(s)
- Kévin Baranger
- INSERM U618, Université François Rabelais, Tours, France
| | | | | | | | | |
Collapse
|
49
|
Kelly E, Greene CM, McElvaney NG. Targeting neutrophil elastase in cystic fibrosis. Expert Opin Ther Targets 2008; 12:145-57. [PMID: 18208364 DOI: 10.1517/14728222.12.2.145] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) is a lethal hereditary disease characterised by neutrophil-dominated lung inflammation. These abundant neutrophils produce neutrophil elastase (NE), a destructive serine protease that has direct actions on extracellular matrix proteins and has a role in the host response to inflammation and infection. OBJECTIVE This review examines the prospect of developing novel therapies for CF by targeting NE. The authors explore the functions of NE and of naturally-occurring and synthetic NE inhibitors. METHODS A literature search was conducted exploring the functions of NE and inhibitors of NE; naturally occurring and synthetic. CONCLUSIONS Targeting NE in CF offers therapeutic potential, but optimal inhibitors that can be delivered safely and effectively to the lung are still under development.
Collapse
Affiliation(s)
- Emer Kelly
- Beaumont Hospital, Department of Respiratory Research, RCSI Smurfit Building, Beaumont, Dublin 9, Ireland.
| | | | | |
Collapse
|
50
|
Wang Z, Beach D, Su L, Zhai R, Christiani DC. A genome-wide expression analysis in blood identifies pre-elafin as a biomarker in ARDS. Am J Respir Cell Mol Biol 2008; 38:724-32. [PMID: 18203972 DOI: 10.1165/rcmb.2007-0354oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previous microarray-based studies of acute respiratory distress syndrome (ARDS) were performed using various models to mimic disease pathogenesis. The complexity of the pathophysiologic response to direct or indirect lung injury in ARDS is difficult to reconstruct in experimental conditions. Thus, direct analysis of ARDS patient blood may provide valuable information. We investigated genome-wide gene expression profiles in paired whole blood samples from patients with ARDS (n = 8) during the acute stage (within 3 d of diagnosis) and recovery stage of ARDS (around ICU discharge). Among 126 differentially expressed genes, peptidase inhibitor 3 (PI3, encoding elafin, a potent neutrophil elastase inhibitor) had the largest fold-change (-3-fold changes, acute stage/recovery stage) in expression, indicating down-regulation during the acute stage of ARDS. We further examined plasma PI3 levels in 40 patients with ARDS and 23 at-risk control subjects from the same cohort. There was a coincidence of the microarray findings of lower PI3 gene expression with the lower plasma PI3 during the acute-stage. The plasma PI3 levels were statistically significant different among pre-diagnosis, day of diagnosis, and post-diagnosis groups (ANOVA, P = 0.001), with a trend of decreasing from pre- to post-diagnosis group. The time course of plasma PI3 decrease is well correlated with the course of early ARDS development (Pearson correlation coefficient: -0.52, P = 0.0006). Considering that PI3 can covalently binding to extracellular matrix in lung, circulating PI3 may provide a useful clinical marker for monitoring the early development of ARDS and may have implications for ARDS treatment.
Collapse
Affiliation(s)
- Zhaoxi Wang
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|