1
|
Teng X, Chen H, Yang H, Liu H, Wang Y, Su Z, Tang C. Pre-clinical study of IR808 dye for cervical cancer in vitro and in vivo imaging. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03508-7. [PMID: 39367983 DOI: 10.1007/s00210-024-03508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
There is an urgent need for improved methods for early screening and rapid diagnosis of cervical cancer since current conventional screening methods are plagued by operator subjectivity and unnecessary biopsies. IR808 is a tumour-targeting near-infrared (NIR) fluorescent dye that permits NIR imaging without the requirement of chemical conjugation. Our study investigates an IR808-based strategy for real-time monitoring of the cervix in vivo and rapid assessment of cervical specimens in vitro. We investigated the uptake of IR808 in vitro using normal cervical epithelial cells and three cervical cancer cell lines. The biodistribution of IR808 was examined in vivo via intravenous injection into tumour-bearing mice. Additionally, in vitro tissues were stained with IR808 to simulate the identification of cervical tumors in the clinical setting. Biocompatibility of the dye in both cellular and animal models was also examined. IR808 exhibited significant tumour-to-background ratios in fluorescence molecular imaging of in vivo tumors in nude mice. The application of NIR fluorescent dye IR808 in specific imaging screening, safe and non-invasive real-time monitoring, and rapid identification of cervical tumors from tissue specimens is expected to improve current screening methods for cervical cancer.
Collapse
Affiliation(s)
- Xiaohui Teng
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Hongbiao Chen
- School of Medicine, Chenggong Hospital, Xiamen University, Xiamen, 361000, China
| | - Han Yang
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Hongli Liu
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Yanlong Wang
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zhiying Su
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China.
| |
Collapse
|
2
|
Kumari P, Arora S, Pan Y, Ahmed I, Kumar S, Parshad B. Tailoring Indocyanine Green J-Aggregates for Imaging, Cancer Phototherapy, and Drug Delivery: A Review. ACS APPLIED BIO MATERIALS 2024; 7:5121-5135. [PMID: 39039943 DOI: 10.1021/acsabm.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Indocyanine green J-aggregates (ICG-Jagg) have emerged as a significant subject of interest in biomedical applications due to their unique optical properties, tunable size, and excellent biocompatibility. This comprehensive review aims to provide an in-depth exploration of ICG-Jagg, with a focus on elucidating the diverse facets of their preparation and the factors that influence the preparation process. Additionally, the review discusses their applications in biomedical diagnostics, such as imaging and contrast agents, as well as their utilization in drug delivery and various phototherapeutic interventions.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Chemistry, Deenbandhu Chhoturam University of Science and Technology, Sonipat 131039, Murthal, India
| | - Smriti Arora
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Sumit Kumar
- Department of Chemistry, Deenbandhu Chhoturam University of Science and Technology, Sonipat 131039, Murthal, India
| | - Badri Parshad
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| |
Collapse
|
3
|
Lv Q, Song W, Chu J, Li G, Han Y, Marfavi Z, Zhang G, Wu Y, Lin Y, Sun K, Xu H, Tao K. An Indocyanine Green-Based Nanocluster for Imaging Orthodox Endometriosis Lesions with Negative Contrast. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25909-25922. [PMID: 38716677 DOI: 10.1021/acsami.4c04131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Indocyanine green (ICG), as the sole near-infrared dye FDA-approved, is limited in biomedical applications because of its poor photostability, lack of targeting, and rapid removal in vivo. Herein, we presented a nanoformulation of poly-l-lysine-indocyanine green-hyaluronic acid (PIH) and demonstrated that it can image orthodox endometriosis (EM) lesions with a negative contrast. The PIH nanocluster, with an average diameter of approximately 200 nm, exhibited improved fluorescence photostability and antioxidant ability compared to free ICG. In the in vivo imaging, EM lesions were visualized, featuring apparent voids and clear boundaries. After colocalizing with the green fluorescent protein, we concluded that the contrast provided by PIH peaked at 4 h postinjection and was observable for at least 8 h. The negative contrast, clear boundaries, and enhanced observable time might be due to the low permeation of PIH to lesions and the enhanced retention on the surfaces of lesions. Thus, our findings suggest an ICG-based nanoprobe with the potential to diagnose abdominal diseases.
Collapse
Affiliation(s)
- Quanjie Lv
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Weizhou Song
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P.R. China
| | - Jing Chu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Guojing Li
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P.R. China
| | - Yijun Han
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Zeinab Marfavi
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Gengxin Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yongjie Wu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yu Lin
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P.R. China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P.R. China
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
4
|
Zeting Y, Shuli M, Yue L, Haowei F, Jing S, Yueping Z, Jie W, Teng C, Wanli D, Zhang K, Peihao Y. Tissue adhesive indocyanine green-locking granular gel-mediated photothermal therapy combined with checkpoint inhibitor for preventing postsurgical recurrence and metastasis of colorectal cancer. Bioeng Transl Med 2023; 8:e10576. [PMID: 38023716 PMCID: PMC10658503 DOI: 10.1002/btm2.10576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 12/01/2023] Open
Abstract
Developing effective therapy to inhibit postoperative recurrence and metastasis of colorectal cancer (CRC) is challenging and significant to reduce mortality and morbidity. Here, a granular hydrogel, assembled from gelatin microgels by dialdehyde starch and interpenetrated with in situ polymerized poly(sulfobetaine methacrylate-co-N-isopropylacrylamide) (P(SBMA-co-NIPAM)), is prepared to load and lock Food and Drug Administration (FDA)-approved indocyanine green (ICG) with definite photothermal function and biosafety for photothermal therapy (PTT) combining with checkpoint inhibitor. The presence of P(SBMA-co-NIPAM) endows granular hydrogel with high retention to water-soluble ICG, preventing easy diffusion and rapid scavenging of ICG. The ICG-locking granular hydrogel can be spread and adhered onto the surgery site at wet state in vivo, exerting a persistent and stable PTT effect. Combined with αPD-L1 treatment, ICG-locking granular hydrogel-mediated PTT can eradicate postsurgery residual and metastatic tumors, and prevent long-term tumor recurrence. Further mechanistic studies indicate that combination treatment effectively promotes dendritic cells maturation in lymph nodes, enhances the number and infiltration of CD8+ T and CD4+ T cells in tumor tissue, and improves memory T cell number in spleen, thus activating the antitumor immune response. Overall, ICG-locking gel-mediated PTT is expected to exhibit broad clinical applications in postoperative treatment of cancers, like CRC.
Collapse
Affiliation(s)
- Yuan Zeting
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Central Laboratory, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Department of Pharmaceutics, School of PharmacyEast China University of Science and TechnologyShanghaiChina
- Shanghai Putuo Central School of Clinical MedicineAnhui Medical UniversityHefeiP. R. China
| | - Ma Shuli
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Central Laboratory, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Department of Pharmaceutics, School of PharmacyEast China University of Science and TechnologyShanghaiChina
| | - Li Yue
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Central Laboratory, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Fang Haowei
- Department of Polymer Materials, School of Materials Science and EngineeringShanghai UniversityShanghaiP. R. China
| | - Shang Jing
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Central Laboratory, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Shanghai Putuo Central School of Clinical MedicineAnhui Medical UniversityHefeiP. R. China
| | - Zhan Yueping
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Central Laboratory, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Wang Jie
- Department of General Surgery, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Chen Teng
- Department of General Surgery, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Deng Wanli
- Department of Oncology, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Kunxi Zhang
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Department of Polymer Materials, School of Materials Science and EngineeringShanghai UniversityShanghaiP. R. China
| | - Yin Peihao
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Department of Pharmaceutics, School of PharmacyEast China University of Science and TechnologyShanghaiChina
- Department of General Surgery, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| |
Collapse
|
5
|
Mahmut Z, Zhang C, Ruan F, Shi N, Zhang X, Wang Y, Zheng X, Tang Z, Dong B, Gao D, Sun J. Medical Applications and Advancement of Near Infrared Photosensitive Indocyanine Green Molecules. Molecules 2023; 28:6085. [PMID: 37630337 PMCID: PMC10459369 DOI: 10.3390/molecules28166085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Indocyanine green (ICG) is an important kind of near infrared (NIR) photosensitive molecules for PTT/PDT therapy as well as imaging. When exposed to NIR light, ICG can produce reactive oxygen species (ROS), which can kill cancer cells and pathogenic bacteria. Moreover, the absorbed light can also be converted into heat by ICG molecules to eliminate cancer cells. In addition, it performs exceptionally well in optical imaging-guided tumor therapy and antimicrobial therapy due to its deeper tissue penetration and low photobleaching properties in the near-infrared region compared to other dyes. In order to solve the problems of water and optical stability and multi-function problem of ICG molecules, composite nanomaterials based on ICG have been designed and widely used, especially in the fields of tumors and sterilization. So far, ICG molecules and their composite materials have become one of the most famous infrared sensitive materials. However, there have been no corresponding review articles focused on ICG molecules. In this review, the molecular structure and properties of ICG, composite material design, and near-infrared light- triggered anti-tumor, and antibacterial, and clinical applications are reviewed in detail, which of great significance for related research.
Collapse
Affiliation(s)
- Zulpya Mahmut
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China; (Z.M.); (C.Z.); (X.Z.); (Y.W.); (X.Z.)
| | - Chunmei Zhang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China; (Z.M.); (C.Z.); (X.Z.); (Y.W.); (X.Z.)
| | - Fei Ruan
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (F.R.); (Z.T.)
| | - Nan Shi
- Department of Respiratory Medicine, No. 964 Hospital of People’s Liberation Army, 4799 Xi’an Road, Changchun 130062, China;
| | - Xinyao Zhang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China; (Z.M.); (C.Z.); (X.Z.); (Y.W.); (X.Z.)
| | - Yuda Wang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China; (Z.M.); (C.Z.); (X.Z.); (Y.W.); (X.Z.)
| | - Xianhong Zheng
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China; (Z.M.); (C.Z.); (X.Z.); (Y.W.); (X.Z.)
| | - Zixin Tang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (F.R.); (Z.T.)
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (F.R.); (Z.T.)
| | - Donghui Gao
- Department of Anesthesiology and Operating Room, School and Hospital of Stomatology, Jilin University, Changchun 130012, China
| | - Jiao Sun
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China; (Z.M.); (C.Z.); (X.Z.); (Y.W.); (X.Z.)
| |
Collapse
|
6
|
Park JS, Park S, Park SJ, Kim SK. Synergistic effects of concurrent photodynamic therapy with indocyanine green and chemotherapy in hepatocellular carcinoma cell lines and mouse models. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 239:112642. [PMID: 36623346 DOI: 10.1016/j.jphotobiol.2022.112642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) using an 808 nm laser irradiation with indocyanine green (ICG) has shown tumoricidal effects in a hepatocellular (HCC) orthotopic xenograft model. Recently, combining PDT with concurrent chemotherapy has shown synergistic outcomes and a better therapeutic effect for cancer treatment. In the present study, we utilized a combination of chemotherapy drugs and PDT using ICG in vitro and in vivo in a patient-derived orthotopic xenograft (PDoX) model. METHOD We independently performed PDT and chemotherapy with sorafenib or doxorubicin in the Huh-7 and Hep3b cell lines by increasing the sorafenib or doxorubicin concentration and increasing the total energy of 808 nm light. Subsequently, we combined the two treatments to confirm the effects on cell viability. The combination index (CI) was evaluated in vitro, and thereafter, in the HCC PDoX mouse model, 808 nm laser irradiation with intravenously injected ICG and chemotherapy using doxorubicin were performed for twelve days. RESULT The viability of the Huh-7 and Hep3B cell lines decreased rapidly as the concentration of sorafenib or doxorubicin increased and as the total energy of 808 nm light increased. The cell viability of the Huh-7 and Hep3b cell lines with combined PDT and chemotherapy was less than that with PDT or chemotherapy alone. The CI was <1 in the sorafenib- or doxorubicin-treated Huh-7 and Hep3b cell lines. In the HCC PDoX mouse model, tumor size was markedly decreased, and complete remission achieved compared to that of the single chemotherapy or PDT and control groups. CONCLUSION The synergistic effect of concurrent PDT and chemotherapy in the HCC cell line and PDoX model was confirmed with no definite adverse effect. Concurrent PDT and chemotherapy could be applied in further preclinical studies.
Collapse
Affiliation(s)
- Jae Sun Park
- Division of Convergence Technology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea
| | - Sohyun Park
- Division of Convergence Technology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea; Department of Nuclear Medicine, Hospital, National Cancer Center, Goyang-si 10408, Republic of Korea
| | - Sang-Jae Park
- Division of Precision Medicine, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Seok-Ki Kim
- Division of Convergence Technology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea; Department of Nuclear Medicine, Hospital, National Cancer Center, Goyang-si 10408, Republic of Korea.
| |
Collapse
|
7
|
Wu PY, Shen ZC, Jiang JL, Zhang BC, Zhang WZ, Zou JJ, Lin JF, Li C, Shao JW. A multifunctional theranostics nanosystem featuring self-assembly of alcohol-abuse drug and photosensitizers for synergistic cancer therapy. Biomater Sci 2022; 10:6267-6281. [PMID: 36128848 DOI: 10.1039/d2bm00803c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Conventional treatments for cancer, such as chemotherapy, surgical resection, and radiotherapy, have shown limited therapeutic efficacy, with severe side effects, lack of targeting and drug resistance for monotherapies, which limit their clinical application. Therefore, combinatorial strategies have been widely investigated in the battle against cancer. Herein, we fabricated a dual-targeted nanoscale drug delivery system based on EpCAM aptamer- and lactic acid-modified low-polyamidoamine dendrimers to co-deliver the FDA-approved agent disulfiram and photosensitizer indocyanine green, combining the imaging and therapeutic functions in a single platform. The multifunctional nanoparticles with uniform size had high drug-loading payload, sustained release, as well as excellent photothermal conversion. The integrated nanoplatform showed a superior synergistic effect in vitro and possessed precise spatial delivery to HepG2 cells with the dual-targeting nanocarrier. Intriguingly, a robust anticancer response of chemo-phototherapy was achieved; chemotherapy combined with the efficacy of phototherapy to cause cellular apoptosis of HepG2 cells (>35%) and inhibit the regrowth of damaged cells. Furthermore, the theranostic nanosystem displayed fluorescence imaging in vivo, attributed to its splendid accumulation in the tumor site, and it provided exceptional tumor inhibition rate against liver cancer cells (>76%). Overall, our research presents a promising multifunctional theranostic nanoplatform for the development of synergistic therapeutics for tumors in further applications.
Collapse
Affiliation(s)
- Peng-Yu Wu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Zhi-Chun Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Jia-Li Jiang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Bing-Chen Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Wen-Zhong Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Jun-Jie Zou
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Juan-Fang Lin
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Chao Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
8
|
Du Z, Ma R, Chen S, Fan H, Heng Y, Yan T, Alimu G, Zhu L, Zhang X, Alifu N, Ma C. A highly efficient polydopamine encapsulated clinical ICG theranostic nanoplatform for enhanced photothermal therapy of cervical cancer. NANOSCALE ADVANCES 2022; 4:4016-4024. [PMID: 36133329 PMCID: PMC9470054 DOI: 10.1039/d2na00341d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
Photothermal therapy (PTT) is a safe and efficient anti-tumor treatment. A photothermal agent (PTA) with good biocompatibility and strong photothermal properties is of great importance for PTT. In this study, near-infrared (NIR) excitable clinical indocyanine green (ICG) was utilized as a PTA and further encapsulated by another PTA polydopamine (PDA) to form highly stable and efficient ICG@PDA nanoparticles (NPs). Then the ICG@PDA NPs were modified with methoxy polyethylene glycol amine (mPEG2000-NH2) to form biocompatible ICG@PDA@PEG NPs. ICG@PDA@PEG NPs showed good water solubility and a spherical shape with an average size of 140 nm. Furthermore, the photothermal properties of ICG@PDA@PEG NPs were studied and excellent photothermal performance with a photothermal conversion efficiency of 43.7% under 808 nm laser irradiation was achieved. Then, the PTT properties of ICG@PDA@PEG NPs were confirmed on HeLa cells with an efficiency of 86.1%. Meanwhile, the in vivo biocompatibility and toxicity of ICG@PDA@PEG NPs were evaluated. No apparent in vivo toxicity was observed in 24 hours and 7 days. Next, in vivo PTT analysis was conducted for cervical tumor-bearing nude mice under 808 nm laser excitation. It showed a good anti-tumor effect in vivo. Thus, ICG@PDA@PEG NPs exhibited great potential for safe and efficient photothermal therapy in anti-tumor therapy.
Collapse
Affiliation(s)
- Zhong Du
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia Urumqi 830054 China
| | - Rong Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia Urumqi 830054 China
| | - Shuang Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia Urumqi 830054 China
| | - Huimin Fan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University Urumqi 830011 China
| | - Youqiang Heng
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia Urumqi 830054 China
| | - Ting Yan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University Urumqi 830011 China
| | - Gulinigaer Alimu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University Urumqi 830011 China
| | - Lijun Zhu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University Urumqi 830011 China
| | - Xueliang Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University Urumqi 830011 China
| | - Nuernisha Alifu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University Urumqi 830011 China
| | - Cailing Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia Urumqi 830054 China
| |
Collapse
|
9
|
Géczi T, Simonka Z, Lantos J, Wetzel M, Szabó Z, Lázár G, Furák J. Near-infrared fluorescence guided surgery: State of the evidence from a health technology assessment perspective. Front Surg 2022; 9:919739. [PMID: 35959120 PMCID: PMC9360526 DOI: 10.3389/fsurg.2022.919739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Different applications of near-infrared fluorescence-guided surgery are very promising, and techniques that help surgeons in intraoperative guidance have been developed, thereby bridging the gap between preoperative imaging and intraoperative visualization and palpation. Thus, these techniques are advantageous in terms of being faster, safer, less invasive, and cheaper. There are a few fluorescent dyes available, but the most commonly used dye is indocyanine green. It can be used in its natural form, but different nanocapsulated and targeted modifications are possible, making this dye more stable and specific. A new active tumor-targeting strategy is the conjugation of indocyanine green nanoparticles with antibodies, making this dye targeted and highly selective to various tumor proteins. In this mini-review, we discuss the application of near-infrared fluorescence-guided techniques in thoracic surgery. During lung surgery, it can help find small, non-palpable, or additional tumor nodules, it is also useful for finding the sentinel lymph node and identifying the proper intersegmental plane for segmentectomies. Furthermore, it can help visualize the thoracic duct, smaller bullae of the lung, phrenic nerve, or pleural nodules. We summarize current applications and provide a framework for future applications and development.
Collapse
Affiliation(s)
- Tibor Géczi
- Department of Surgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Correspondence: Tibor Géczi
| | - Zsolt Simonka
- Department of Surgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Judit Lantos
- Department of Neurology, Bács-Kiskun County Hospital, Kecskemét, Hungary
| | - Melinda Wetzel
- Department of Anesthesiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Szabó
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - György Lázár
- Department of Surgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - József Furák
- Department of Surgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
10
|
Liu Y, Han Y, Chen S, Liu J, Wang D, Huang Y. Liposome-based multifunctional nanoplatform as effective therapeutics for the treatment of retinoblastoma. Acta Pharm Sin B 2022; 12:2731-2739. [PMID: 35755292 PMCID: PMC9214327 DOI: 10.1016/j.apsb.2021.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 02/01/2023] Open
|
11
|
Yang L, Huang B, Hu S, An Y, Sheng J, Li Y, Wang Y, Gu N. Indocyanine green assembled free oxygen-nanobubbles towards enhanced near-infrared induced photodynamic therapy. NANO RESEARCH 2022; 15:4285-4293. [PMID: 35126878 PMCID: PMC8800431 DOI: 10.1007/s12274-022-4085-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 05/03/2023]
Abstract
UNLABELLED Photodynamic therapy (PDT) has shown a promising capability for cancer treatment with minimal side effects. Indocyanine green (ICG), the only clinically approved near-infrared (NIR) fluorophore, has been used as a photosensitizer for PDT in clinical application. However, the main obstacle of directly utilizing ICG in the clinic lies in its low singlet oxygen (1O2) quantum yield (QY) and instability in aqueous solution. To improve the PDT efficacy of ICG, free ICG molecules were assembled with free oxygen nanobubbles (NBs-O2) to fabricate ICG-NBs-O2 by hydrophilic-hydrophobe interactions on the gas-liquid interface. Interestingly, 1O2 QY of ICG-NBs-O2 solution was significantly increased to 1.6%, which was estimated to be 8 times as high as that of free ICG solution. Meanwhile, ICG-NBs-O2 exhibited better aqueous solution stability compared with free ICG. Furthermore, through establishing tumor models in nude mice, the therapeutic efficacy of ICG-NBs-O2 was also assessed in the PDT treatment of oral cancer. The tumor volume in ICG-NBs-O2 treated group on day 14 decreased to 0.56 of the initial tumor size on day 1, while the tumor volume in free ICG treated group increased to 2.4 times. The results demonstrated that ICG-NBs-O2 showed excellent tumor ablation in vivo. Therefore, this facile method provided an effective strategy for enhanced PDT treatment of ICG and showed great potential in clinical application. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (measurements of the singlet oxygen quantum yield of ICG-NBs-O2, time-dependent temperature changes during the laser irradiation, photographs of Cal27 tumor-bearing nude mice and complete blood count of health male balb/c mice analysis) is available in the online version of this article at 10.1007/s12274-022-4085-0.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Bin Huang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
- College of Life Sciences and Chemistry, Jiangsu Second Normal University, Nanjing, 210013 China
| | - Shiqi Hu
- Nanjing Stomatology Hospital, Nanjing, 210008 China
| | - Yuan An
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Jingyi Sheng
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Yan Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Yuxin Wang
- Nanjing Stomatology Hospital, Nanjing, 210008 China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| |
Collapse
|
12
|
Wei M, Rao H, Niu Z, Xue X, Luo M, Zhang X, Huang H, Xue Z, Lu X. Breaking the time and space limitation of point-of-care testing strategies: Photothermometric sensors based on different photothermal agents and materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Yang X, Gao L, Wei Y, Tan B, Wu Y, Yi C, Liao J. Photothermal hydrogel platform for prevention of post-surgical tumor recurrence and improving breast reconstruction. J Nanobiotechnology 2021; 19:307. [PMID: 34620160 PMCID: PMC8499550 DOI: 10.1186/s12951-021-01041-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
Background As one of the leading threats for health among women worldwide, breast cancer has high morbidity and mortality. Surgical resection is the major clinical intervention for primary breast tumor, nevertheless high local recurrence risk and breast tissue defect remain two main clinical dilemmas, seriously affecting survival and quality of life of patients. Experimental We developed a thermoresponsive and injectable hybrid hydrogel platform (IR820/Mgel) by integration of co-loaded porous microspheres (MPs) and IR820 for preventing postoperative recurrence of breast cancer via photothermal therapy and promoting subsequent breast reconstruction. Results Our results suggested that IR820/Mgel could quickly heated to more than 50.0 ℃ under NIR irradiation, enabling killing effect on 4T1 cells in vitro and prevention effect on post-surgical tumor recurrence in vivo. In addition, the hydrogel platform was promising for its minimal invasion and capability of filling irregularly shaped defects after surgery, and the encapsulated MPs could help to increase the strength of gel to realize a long-term in situ function in vivo, and promoted the attachment and anchorage property of normal breast cells and adipose stem cells. Conclusions This photothermal hydrogel platform provides a practice paradigm for preventing locally recurrence of breast cancer and a potential option for reconstruction of breast defects. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01041-w.
Collapse
Affiliation(s)
- Xi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ling Gao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.,Department of Health Ward, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, 510095, China
| | - Yuanfeng Wei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bowen Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Wang Y, Zhang X, Wan K, Zhou N, Wei G, Su Z. Supramolecular peptide nano-assemblies for cancer diagnosis and therapy: from molecular design to material synthesis and function-specific applications. J Nanobiotechnology 2021; 19:253. [PMID: 34425823 PMCID: PMC8381530 DOI: 10.1186/s12951-021-00999-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/15/2021] [Indexed: 01/10/2023] Open
Abstract
Peptide molecule has high bioactivity, good biocompatibility, and excellent biodegradability. In addition, it has adjustable amino acid structure and sequence, which can be flexible designed and tailored to form supramolecular nano-assemblies with specific biomimicking, recognition, and targeting properties via molecular self-assembly. These unique properties of peptide nano-assemblies made it possible for utilizing them for biomedical and tissue engineering applications. In this review, we summarize recent progress on the motif design, self-assembly synthesis, and functional tailoring of peptide nano-assemblies for both cancer diagnosis and therapy. For this aim, firstly we demonstrate the methodologies on the synthesis of various functional pure and hybrid peptide nano-assemblies, by which the structural and functional tailoring of peptide nano-assemblies are introduced and discussed in detail. Secondly, we present the applications of peptide nano-assemblies for cancer diagnosis applications, including optical and magnetic imaging as well as biosensing of cancer cells. Thirdly, the design of peptide nano-assemblies for enzyme-mediated killing, chemo-therapy, photothermal therapy, and multi-therapy of cancer cells are introduced. Finally, the challenges and perspectives in this promising topic are discussed. This work will be useful for readers to understand the methodologies on peptide design and functional tailoring for highly effective, specific, and targeted diagnosis and therapy of cancers, and at the same time it will promote the development of cancer diagnosis and therapy by linking those knowledges in biological science, nanotechnology, biomedicine, tissue engineering, and analytical science.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, People's Republic of China
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Keming Wan
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, People's Republic of China
| | - Nan Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, People's Republic of China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China.
| |
Collapse
|
15
|
Gowsalya K, Yasothamani V, Vivek R. Emerging indocyanine green-integrated nanocarriers for multimodal cancer therapy: a review. NANOSCALE ADVANCES 2021; 3:3332-3352. [PMID: 36133722 PMCID: PMC9418715 DOI: 10.1039/d1na00059d] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/03/2021] [Indexed: 05/17/2023]
Abstract
Nanotechnology is a branch of science dealing with the development of new types of nanomaterials by several methods. In the biomedical field, nanotechnology is widely used in the form of nanotherapeutics. Therefore, the current biomedical research pays much attention to nanotechnology for the development of efficient cancer treatment. Indocyanine green (ICG) is a near-infrared tricarbocyanine dye approved by the Food and Drug Administration (FDA) for human clinical use. ICG is a biologically safe photosensitizer and it can kill tumor cells by producing singlet oxygen species and photothermal heat upon NIR irradiation. ICG has some limitations such as easy aggregation, rapid aqueous degradation, and a short half-life. To address these limitations, ICG is further formulated with nanoparticles. Therefore, ICG is integrated with organic nanomaterials (polymers, micelles, liposomes, dendrimers and protein), inorganic nanomaterials (magnetic, gold, mesoporous, calcium, and LDH based), and hybrid nanomaterials. The combination of ICG with nanomaterials provides highly efficient therapeutic effects. Nowadays, ICG is used for various biomedical applications, especially in cancer therapeutics. In this review, we mainly focus on ICG-based combined cancer nanotherapeutics for advanced cancer treatment.
Collapse
Affiliation(s)
- Karunanidhi Gowsalya
- Bio-Nano Therapeutics Research Laboratory, Cancer Research Program (CRP), School of Life Sciences, Department of Zoology, Bharathiar University Coimbatore-641 046 India
| | - Vellingiri Yasothamani
- Bio-Nano Therapeutics Research Laboratory, Cancer Research Program (CRP), School of Life Sciences, Department of Zoology, Bharathiar University Coimbatore-641 046 India
| | - Raju Vivek
- Bio-Nano Therapeutics Research Laboratory, Cancer Research Program (CRP), School of Life Sciences, Department of Zoology, Bharathiar University Coimbatore-641 046 India
| |
Collapse
|
16
|
Burns JM, Shafer E, Vankayala R, Kundra V, Anvari B. Near Infrared Fluorescence Imaging of Intraperitoneal Ovarian Tumors in Mice Using Erythrocyte-Derived Optical Nanoparticles and Spatially-Modulated Illumination. Cancers (Basel) 2021; 13:cancers13112544. [PMID: 34067308 PMCID: PMC8196853 DOI: 10.3390/cancers13112544] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Ovarian cancer has a greater mortality rate than all gynecological malignancies combined. While cytoreductive surgery remains the primary therapeutic approach, its success is limited by the inability to visualize all tumor nodules for resection. We developed light activated nano-sized particles derived from red blood cells as potential imaging probes for near infrared fluorescence imaging of tumors during cytoreductive surgery. We present the first demonstration of the use of these nanoparticles in conjunction a spatially-modulated illumination (SMI) modality to image ovarian intraperitoneal tumors in mice. Our findings indicate that, at 24 h post-administration, these nanoparticles accumulated at higher levels in tumors as compared to organs, and that use of SMI enhances the image contrast. Abstract Ovarian cancer is the deadliest gynecological cancer. Cytoreductive surgery to remove primary and intraperitoneal tumor deposits remains as the standard therapeutic approach. However, lack of an intraoperative image-guided approach to enable the visualization of all tumors can result in incomplete cytoreduction and recurrence. We engineered nano-sized particles derived from erythrocytes that encapsulate the near infrared (NIR) fluorochrome, indocyanine green, as potential imaging probes for tumor visualization during cytoreductive surgery. Herein, we present the first demonstration of the use of these nanoparticles in conjunction with spatially-modulated illumination (SMI), at spatial frequencies in the range of 0–0.5 mm−1, to fluorescently image intraperitoneal ovarian tumors in mice. Results of our animal studies suggest that the nanoparticles accumulated at higher levels within tumors 24 h post-intraperitoneal injection as compared to various other organs. We demonstrate that, under the imaging specifications reported here, use of these nanoparticles in conjunction with SMI enhances the fluorescence image contrast between intraperitoneal tumors and liver, and between intraperitoneal tumors and spleen by nearly 2.1, and 3.0 times, respectively, at the spatial frequency of 0.2 mm−1 as compared to the contrast values at spatially-uniform (non-modulated) illumination. These results suggest that the combination of erythrocyte-derived NIR nanoparticles and structured illumination provides a promising approach for intraoperative fluorescence imaging of ovarian tumor nodules at enhanced contrast.
Collapse
Affiliation(s)
- Joshua M. Burns
- Department of Bioengineering, University of California, 900 University Ave., Riverside, CA 92521, USA; (J.M.B.); (E.S.); (R.V.)
| | - Elise Shafer
- Department of Bioengineering, University of California, 900 University Ave., Riverside, CA 92521, USA; (J.M.B.); (E.S.); (R.V.)
| | - Raviraj Vankayala
- Department of Bioengineering, University of California, 900 University Ave., Riverside, CA 92521, USA; (J.M.B.); (E.S.); (R.V.)
- Radoptics, LLC, 1002 Health Science Rd. E., Suite P214, Irvine, CA 92612, USA
| | - Vikas Kundra
- Department of Cancer Systems Imaging and Department of Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, #57, Houston, TX 77030, USA;
| | - Bahman Anvari
- Department of Bioengineering, University of California, 900 University Ave., Riverside, CA 92521, USA; (J.M.B.); (E.S.); (R.V.)
- Correspondence:
| |
Collapse
|
17
|
Picchio ML, Bergueiro J, Wedepohl S, Minari RJ, Alvarez Igarzabal CI, Gugliotta LM, Cuggino JC, Calderón M. Exploiting cyanine dye J-aggregates/monomer equilibrium in hydrophobic protein pockets for efficient multi-step phototherapy: an innovative concept for smart nanotheranostics. NANOSCALE 2021; 13:8909-8921. [PMID: 33954311 DOI: 10.1039/d0nr09058a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
After several decades of development in the field of near-infrared (NIR) dyes for photothermal therapy (PTT), indocyanine green (ICG) still remains the only FDA-approved NIR contrast agent. However, upon NIR light irradiation ICG can react with molecular oxygen to form reactive oxygen species and degrade the ICG core, losing the convenient dye properties. In this work, we introduce a new approach for expanding the application of ICG in nanotheranostics, which relies on the confinement of self-organized J-type aggregates in hydrophobic protein domains acting as monomer depots. Upon the fast photobleaching, while the dye is irradiated, this strategy permits the equilibrium-driven monomer replacement after each irradiation cycle that radically increases the systems' effectivity and applicability. Gadolinium-doped casein micelles were designed to prove this novel concept at the same time as endowing the nanosystems with further magnetic resonance imaging (MRI) ability for dual-modal imaging-guided PTT. By teaching a new trick to a very old dog, the clinical prospect of ICG will undoubtedly be boosted laying the foundation for novel therapeutics. It is anticipated that future research could be expanded to other relevant J-aggregates-forming cyanine dyes or nanocrystal formulations of poorly water-soluble photosensitizers.
Collapse
Affiliation(s)
- Matías L Picchio
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, IPQA, CONICET-UNC, Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, X5000 HUA, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
18
|
RAO HH, LIU HX, LUO MY, XUE X, Ming-Ming W, XUE ZH. Progress of Simple Signal Readout-based Point-of-Care Testing. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(20)60069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Li H, Zeng Y, Zhang H, Gu Z, Gong Q, Luo K. Functional gadolinium-based nanoscale systems for cancer theranostics. J Control Release 2020; 329:482-512. [PMID: 32898594 DOI: 10.1016/j.jconrel.2020.08.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer theranostics is a new strategy for combating cancer that integrates cancer imaging and treatment through theranostic agents to provide an efficient and safe way to improve cancer prognosis. Design and synthesis of these cancer theranostic agents are crucial since these agents are required to be biocompatible, tumor-specific, imaging distinguishable and therapeutically efficacious. In this regard, several types of gadolinium (Gd)-based nanomaterials have been introduced to combine different therapeutic agents with Gd to enhance the efficacy of therapeutic agents. At the same time, the entire treatment procedure could be monitored via imaging tools due to incorporation of Gd ions, Gd chelates and Gd/other imaging probes in the theranostic agents. This review aims to overview recent advances in the Gd-based nanomaterials for cancer theranostics and perspectives for Gd nanomaterial-based cancer theranostics are provided.
Collapse
Affiliation(s)
- Haonan Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
20
|
Georgilis E, Abdelghani M, Pille J, Aydinlioglu E, van Hest JC, Lecommandoux S, Garanger E. Nanoparticles based on natural, engineered or synthetic proteins and polypeptides for drug delivery applications. Int J Pharm 2020; 586:119537. [DOI: 10.1016/j.ijpharm.2020.119537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
|
21
|
Tarvirdipour S, Huang X, Mihali V, Schoenenberger CA, Palivan CG. Peptide-Based Nanoassemblies in Gene Therapy and Diagnosis: Paving the Way for Clinical Application. Molecules 2020; 25:E3482. [PMID: 32751865 PMCID: PMC7435460 DOI: 10.3390/molecules25153482] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022] Open
Abstract
Nanotechnology approaches play an important role in developing novel and efficient carriers for biomedical applications. Peptides are particularly appealing to generate such nanocarriers because they can be rationally designed to serve as building blocks for self-assembling nanoscale structures with great potential as therapeutic or diagnostic delivery vehicles. In this review, we describe peptide-based nanoassemblies and highlight features that make them particularly attractive for the delivery of nucleic acids to host cells or improve the specificity and sensitivity of probes in diagnostic imaging. We outline the current state in the design of peptides and peptide-conjugates and the paradigms of their self-assembly into well-defined nanostructures, as well as the co-assembly of nucleic acids to form less structured nanoparticles. Various recent examples of engineered peptides and peptide-conjugates promoting self-assembly and providing the structures with wanted functionalities are presented. The advantages of peptides are not only their biocompatibility and biodegradability, but the possibility of sheer limitless combinations and modifications of amino acid residues to induce the assembly of modular, multiplexed delivery systems. Moreover, functions that nature encoded in peptides, such as their ability to target molecular recognition sites, can be emulated repeatedly in nanoassemblies. Finally, we present recent examples where self-assembled peptide-based assemblies with "smart" activity are used in vivo. Gene delivery and diagnostic imaging in mouse tumor models exemplify the great potential of peptide nanoassemblies for future clinical applications.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
- Department of Biosystem Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Xinan Huang
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| | - Voichita Mihali
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| |
Collapse
|
22
|
Lee S, Pham TC, Bae C, Choi Y, Kim YK, Yoon J. Nano theranostics platforms that utilize proteins. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213258] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Leitão MM, de Melo‐Diogo D, Alves CG, Lima‐Sousa R, Correia IJ. Prototypic Heptamethine Cyanine Incorporating Nanomaterials for Cancer Phototheragnostic. Adv Healthc Mater 2020; 9:e1901665. [PMID: 31994354 DOI: 10.1002/adhm.201901665] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Developing technologies that allow the simultaneous diagnosis and treatment of cancer (theragnostic) has been the quest of numerous interdisciplinary research teams. In this context, nanomaterials incorporating prototypic near infrared (NIR)-light responsive heptamethine cyanines have been showing very promising results for cancer theragnostic. The precisely engineered features of these nanomaterials endow them with the ability to achieve a high tumor accumulation, enabling a tumor's visualization by NIR fluorescence and photoacoustic imaging modalities. Upon interaction with NIR light, the tumor-homed heptamethine cyanine-incorporating nanomaterials can also produce a photothermal/photodynamic effect with a high spatio-temporal resolution and minimal side effects, leading to an improved therapeutic outcome. This progress report analyses the application of nanomaterials incorporating prototypic NIR-light responsive heptamethine cyanines (IR775, IR780, IR783, IR797, IR806, IR808, IR820, IR825, IRDye 800CW, and Cypate) for cancer photothermal therapy, photodynamic therapy, and imaging. Overall, the continuous development of nanomaterials incorporating the prototypic NIR absorbing heptamethine cyanines will cement their phototheragnostic capabilities.
Collapse
Affiliation(s)
- Miguel M. Leitão
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Duarte de Melo‐Diogo
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Cátia G. Alves
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Rita Lima‐Sousa
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Ilídio J. Correia
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
- CIEPQPF‐Departamento de Engenharia QuímicaUniversidade de CoimbraRua Sílvio Lima 3030‐790 Coimbra Portugal
| |
Collapse
|
24
|
Huang TY, Huang GL, Zhang CY, Zhuang BW, Liu BX, Su LY, Ye JY, Xu M, Kuang M, Xie XY. Supramolecular Photothermal Nanomedicine Mediated Distant Tumor Inhibition via PD-1 and TIM-3 Blockage. Front Chem 2020; 8:1. [PMID: 32117862 PMCID: PMC7034522 DOI: 10.3389/fchem.2020.00001] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/01/2020] [Indexed: 01/03/2023] Open
Abstract
Supramolecular nanoparticles for photothermal therapy (PTT) have shown promising therapeutic efficacy in the primary tumor and great potential for turning the whole-body immune microenvironment from "cold" to "hot," which allows for the simultaneous treatment of the primary tumor and the metastatic site. In this work, we develop a liposome-based PTT nanoparticle through the self-assembly of FDA-approved intravenous injectable lipids and a photothermal agent, indocyanine green (ICG). The obtained ICG-liposome shows long-term storage stability, high ICG encapsulation efficiency (>95%), and enhanced near-infrared (NIR) light-triggered photothermal reaction both in vitro and in vivo. The ICG-liposome efficiently eradicated the primary tumor upon laser irradiation in two colon cancer animal models (CT26 and MC38) and promoted the infiltration of CD8 T cells to distant tumors. However, PTT from ICG-liposome shows only a minimal effect on the inhibition of distant tumor growth in long-term monitoring, predicting other immunosuppressive mechanisms that exist in the distant tumor. By immune-profiling of the tumor microenvironment, we find that the distant tumor growth after PTT highly correlates to compensatory upregulation of immune checkpoint biomarkers, including program death-1 (PD-1), T-cell immunoglobulin, and mucin domain-containing protein 3 (TIM-3), in tumor-infiltrating CD8 T cells. Based on this mechanism, we combine dual PD-1 and TIM-3 blockade with PTT in an MC38 tumor model. This combo successfully clears the primary tumor, generates a systemic immune response, and inhibits the growth of the distant tumor. The ICG-liposome-combined PD-1/TIM-3 blockade strategy sheds light on the future clinical use of supramolecular PTT for cancer immunotherapy.
Collapse
Affiliation(s)
- Tong-Yi Huang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guang-Liang Huang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chun-Yang Zhang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bo-Wen Zhuang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bao-Xian Liu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li-Ya Su
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jie-Yi Ye
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ming Xu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ming Kuang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Liver Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Yan Xie
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
25
|
Kumari A, Kumari K, Gupta S. Protease Responsive Essential Amino-Acid Based Nanocarriers for Near-Infrared Imaging. Sci Rep 2019; 9:20334. [PMID: 31889129 PMCID: PMC6937316 DOI: 10.1038/s41598-019-56871-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 12/18/2019] [Indexed: 11/09/2022] Open
Abstract
Delivery of the theranostic agents with effective concentration to the desired sites inside the body is a major challenge in disease management. Nanotechnology has gained attention for the delivery of theranostic agents to the targeted location. The use of essential amino-acid based homopolymers for the synthesis of biocompatible and biodegradable nanoparticles (NPs) could serve as a nanocarrier for delivery applications. In this study, poly-l-lysine (PLL) and salts were used to fabricate the NPs for the delivery of exogenous contrast agents. Here, indocyanine green (ICG) was encapsulated within these NPs, and a simple two-step green chemistry-based self-assembly process was used for the fabrication. The morphological and biochemical characterizations confirm the formation of ICG encapsulating spherical PLL NPs with an average diameter of ~225 nm. Further, a detailed study has been carried out to understand the role of constituents in the assembly mechanism of PLL NPs. Our results show a controlled release of the ICG from PLL NPs in the presence of the proteolytic enzyme. In-vitro cellular studies suggest that the PLL NPs were readily taken up by the cells showing their superior delivery efficiency of ICG in comparison to the free-form of the ICG.
Collapse
Affiliation(s)
- Anshu Kumari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Kalpana Kumari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Sharad Gupta
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
- Metallurgical Engineering and Material Science, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
26
|
Li Z, Chen Y, Yang Y, Yu Y, Zhang Y, Zhu D, Yu X, Ouyang X, Xie Z, Zhao Y, Li L. Recent Advances in Nanomaterials-Based Chemo-Photothermal Combination Therapy for Improving Cancer Treatment. Front Bioeng Biotechnol 2019; 7:293. [PMID: 31696114 PMCID: PMC6817476 DOI: 10.3389/fbioe.2019.00293] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/09/2019] [Indexed: 01/04/2023] Open
Abstract
Conventional chemotherapy for cancer treatment is usually compromised by shortcomings such as insufficient therapeutic outcome and undesired side effects. The past decade has witnessed the rapid development of combination therapy by integrating chemotherapy with hyperthermia for enhanced therapeutic efficacy. Near-infrared (NIR) light-mediated photothermal therapy, which has advantages such as great capacity of heat ablation and minimally invasive manner, has emerged as a powerful approach for cancer treatment. A variety of nanomaterials absorbing NIR light to generate heat have been developed to simultaneously act as carriers for chemotherapeutic drugs, contributing as heat trigger for drug release and/or inducing hyperthermia for synergistic effects. This review aims to summarize the recent development of advanced nanomaterials in chemo-photothermal combination therapy, including metal-, carbon-based nanomaterials and particularly organic nanomaterials. The potential challenges and perspectives for the future development of nanomaterials-based chemo-photothermal therapy were also discussed.
Collapse
Affiliation(s)
- Zuhong Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangjun Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Yu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanhong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopeng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxi Ouyang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongyang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yalei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
Egloff-Juras C, Bezdetnaya L, Dolivet G, Lassalle HP. NIR fluorescence-guided tumor surgery: new strategies for the use of indocyanine green. Int J Nanomedicine 2019; 14:7823-7838. [PMID: 31576126 PMCID: PMC6768149 DOI: 10.2147/ijn.s207486] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/27/2019] [Indexed: 12/15/2022] Open
Abstract
Surgery is the frontline treatment for a large number of cancers. The objective of these excisional surgeries is the complete removal of the primary tumor with sufficient safety margins. Removal of the entire tumor is essential to improve the chances of a full recovery. To help surgeons achieve this objective, near-infrared fluorescence-guided surgical techniques are of great interest. The concomitant use of fluorescence and indocyanine green (ICG) has proved effective in the identification and characterization of tumors. Moreover, ICG is authorized by the Food and Drug Administration and the European Medicines Agency and is therefore the subject of a large number of studies. ICG is one of the most commonly used fluorophores in near-infrared fluorescence-guided techniques. However, it also has some disadvantages, such as limited photostability, a moderate fluorescence quantum yield, a high plasma protein binding rate, and undesired aggregation in aqueous solution. In addition, ICG does not specifically target tumor cells. One way to exploit the capabilities of ICG while offsetting these drawbacks is to develop high-performance near-infrared nanocomplexes formulated with ICG (with high selectivity for tumors, high tumor-to-background ratios, and minimal toxicity). In this review article, we focus on recent developments in ICG complexation strategies to improve near-infrared fluorescence-guided tumor surgery. We describe targeted and nontargeted ICG nanoparticle models and ICG complexation with targeting agents.
Collapse
Affiliation(s)
- Claire Egloff-Juras
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Université de Lorraine, CHRU-Nancy, Institut de Cancérologie de Lorraine, Nancy F-54000, France
| | - Lina Bezdetnaya
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Institut de Cancérologie de Lorraine, Nancy F-54000, France
| | - Gilles Dolivet
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Institut de Cancérologie de Lorraine, Nancy F-54000, France
| | - Henri-Pierre Lassalle
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Institut de Cancérologie de Lorraine, Nancy F-54000, France
| |
Collapse
|
28
|
Tang J, Li B, Howard CB, Mahler SM, Thurecht KJ, Wu Y, Huang L, Xu ZP. Multifunctional lipid-coated calcium phosphate nanoplatforms for complete inhibition of large triple negative breast cancer via targeted combined therapy. Biomaterials 2019; 216:119232. [DOI: 10.1016/j.biomaterials.2019.119232] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 11/25/2022]
|
29
|
Wu M, Li Z, Yao J, Shao Z, Chen X. Pea Protein/Gold Nanocluster/Indocyanine Green Ternary Hybrid for Near-Infrared Fluorescence/Computed Tomography Dual-Modal Imaging and Synergistic Photodynamic/Photothermal Therapy. ACS Biomater Sci Eng 2019; 5:4799-4807. [DOI: 10.1021/acsbiomaterials.9b00794] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People’s Republic of China
| | - Zhao Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People’s Republic of China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People’s Republic of China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People’s Republic of China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People’s Republic of China
| |
Collapse
|
30
|
Chang R, Zou Q, Xing R, Yan X. Peptide‐Based Supramolecular Nanodrugs as a New Generation of Therapeutic Toolboxes against Cancer. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900048] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Rui Chang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
- School of Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Qianli Zou
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| | - Ruirui Xing
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| | - Xuehai Yan
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
- School of Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
- Center for MesoscienceInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
31
|
Ryplida B, Lee G, In I, Park SY. Zwitterionic carbon dot-encapsulating pH-responsive mesoporous silica nanoparticles for NIR light-triggered photothermal therapy through pH-controllable release. Biomater Sci 2019; 7:2600-2610. [DOI: 10.1039/c9bm00160c] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here, we designed a pH-responsive Indocyanine Green (ICG)-loaded zwitterionic fluorescent carbon dot (CD)-encapsulating mesoporous silica nanoparticle (MSN) for pH-tunable image-guided photothermal therapy.
Collapse
Affiliation(s)
- Benny Ryplida
- Department of IT Convergence
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Gibaek Lee
- Department of Chemical and Biological Engineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Insik In
- Department of IT Convergence
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
- Department of Polymer Science and Engineering
| | - Sung Young Park
- Department of IT Convergence
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
- Department of Chemical and Biological Engineering
| |
Collapse
|
32
|
Burns JM, Jia W, Nelson JS, Majaron B, Anvari B. Photothermal treatment of port-wine stains using erythrocyte-derived particles doped with indocyanine green: a theoretical study. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-10. [PMID: 30499264 PMCID: PMC6318811 DOI: 10.1117/1.jbo.23.12.121616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/02/2018] [Indexed: 05/20/2023]
Abstract
Pulsed dye laser irradiation in the wavelength range of 585 to 600 nm is currently the gold standard for treatment of port-wine stains (PWSs). However, this treatment method is often ineffective for deeply seated blood vessels and in individuals with moderate to heavy pigmentation. Use of optical particles doped with the FDA-approved near-infrared (NIR) absorber, indocyanine green (ICG), can potentially provide an effective method to overcome these limitations. Herein, we theoretically investigate the effectiveness of particles derived from erythrocytes, which contain ICG, in mediating photothermal destruction of PWS blood vessels. We refer to these particles as NIR erythrocyte-derived transducers (NETs). Our theoretical model consists of a Monte Carlo algorithm to estimate the volumetric energy deposition, a finite elements approach to solve the heat diffusion equation, and a damage integral based on an Arrhenius relationship to quantify tissue damage. The model geometries include simulated PWS blood vessels as well as actual human PWS blood vessels plexus obtained by the optical coherence tomography. Our simulation results indicate that blood vessels containing micron- or nano-sized NETs and irradiated at 755 nm have higher levels of photothermal damage as compared to blood vessels without NETs irradiated at 585 nm. Blood vessels containing micron-sized NETs also showed higher photothermal damage than blood vessels containing nano-sized NETs. The theoretical model presented can be used in guiding the fabrication of NETs with patient-specific optical properties to allow for personalized treatment based on the depth and size of blood vessels as well as the pigmentation of the individual's skin.
Collapse
Affiliation(s)
- Joshua M. Burns
- University of California, Riverside, Department of Bioengineering, Riverside, California, United States
| | - Wangcun Jia
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - J. Stuart Nelson
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Boris Majaron
- Jožef Stefan Institute, Department of Complex Matter, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia
| | - Bahman Anvari
- University of California, Riverside, Department of Bioengineering, Riverside, California, United States
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| |
Collapse
|
33
|
Bhavane R, Starosolski Z, Stupin I, Ghaghada KB, Annapragada A. NIR-II fluorescence imaging using indocyanine green nanoparticles. Sci Rep 2018; 8:14455. [PMID: 30262808 PMCID: PMC6160486 DOI: 10.1038/s41598-018-32754-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/12/2018] [Indexed: 01/11/2023] Open
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II) holds promise for real-time deep tissue imaging. In this work, we investigated the NIR-II fluorescence properties of a liposomal formulation of indocyanine green (ICG), a FDA-approved dye that was recently shown to exhibit NIR-II fluorescence. Fluorescence spectra of liposomal-ICG were collected in phosphate-buffered saline (PBS) and plasma. Imaging studies in an Intralipid® phantom were performed to determine penetration depth. In vivo imaging studies were performed to test real-time visualization of vascular structures in the hind limb and intracranial regions. Free ICG, NIR-I imaging, and cross-sectional imaging modalities (MRI and CT) were used as comparators. Fluorescence spectra demonstrated the strong NIR-II fluorescence of liposomal-ICG, similar to free ICG in plasma. In vitro studies demonstrated superior performance of liposomal-ICG over free ICG for NIR-II imaging of deep (≥4 mm) vascular mimicking structures. In vivo, NIR-II fluorescence imaging using liposomal-ICG resulted in significantly (p < 0.05) higher contrast-to-noise ratio compared to free ICG for extended periods of time, allowing visualization of hind limb and intracranial vasculature for up to 4 hours post-injection. In vivo comparisons demonstrated higher vessel conspicuity with liposomal-ICG-enhanced NIR-II imaging compared to NIR-I imaging.
Collapse
Affiliation(s)
- Rohan Bhavane
- Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Zbigniew Starosolski
- Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Igor Stupin
- Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Ketan B Ghaghada
- Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, 77030, USA.
| | - Ananth Annapragada
- Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, 77030, USA
| |
Collapse
|
34
|
Mindt S, Karampinis I, John M, Neumaier M, Nowak K. Stability and degradation of indocyanine green in plasma, aqueous solution and whole blood. Photochem Photobiol Sci 2018; 17:1189-1196. [PMID: 30028469 DOI: 10.1039/c8pp00064f] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fluorescence-based imaging has evolved into an important technology during recent years. Specifically indocyanine green (ICG) has invaded most fields of diagnostic and interventional medicine. Considering the numerous advantages of the substance like the rapid degradation and rare adverse reactions, ICG is currently the most commonly used fluorescing agent. High-performance liquid chromatography (HPLC) was used for measuring absorbance and fluorescence of ICG and its potential degradation compounds. Stability and degradation were evaluated under light exposure or in darkness at various temperatures. Under these conditions, degradation of ICG was evaluated over a period of 11 days. Additional, stability measurements of ICG were performed in EDTA whole blood samples at 37 °C incubation temperature while monitoring. Furthermore, we used mass spectrometric (MS) and nuclear magnetic resonance (NMR) analyses for the identification of supposed ICG degradation compound. Potential quenching effect of ICG was examined in aqueous and plasma solutions at concentrations ranging from 0.01-100 μg ml-1. When diluted in water and stored at 4 °C in the dark, ICG is stable for three days with only 20% of fluorescence intensity lost in this time-span. ICG incubated at 37 °C in whole blood under light exposure is stable for 5 h. In our study we observed the degradation of ICG into two degradation compounds with a mass of m/z 785.32 and m/z 1501.57, respectively. Based on our observations we suggest that ICG should be used within one or two days after preparation, if the ICG solution is stored at 4 °C.
Collapse
Affiliation(s)
- Sonani Mindt
- Institut for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | | | | | | | | |
Collapse
|
35
|
Zhu H, Cheng P, Chen P, Pu K. Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics. Biomater Sci 2018; 6:746-765. [PMID: 29485662 DOI: 10.1039/c7bm01210a] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phototherapies including photothermal therapy (PTT) and photodynamic therapy (PDT) have gained considerable attention due to their high tumor ablation efficiency, excellent spatial resolution and minimal side effects on normal tissue. In contrast to inorganic nanoparticles, near-infrared (NIR) absorbing organic nanoparticles bypass the issue of metal-ion induced toxicity and thus are generally considered to be more biocompatible. Moreover, with the guidance of different kinds of imaging methods, the efficacy of cancer phototherapy based on organic nanoparticles has shown to be optimizable. In this review, we summarize the synthesis and application of NIR-absorbing organic nanoparticles as phototherapeutic nanoagents for cancer phototherapy. The chemistry, optical properties and therapeutic efficacies of organic nanoparticles are firstly described. Their phototherapy applications are then surveyed in terms of therapeutic modalities, which include PTT, PDT and PTT/PDT combined therapy. Finally, the present challenges and potential of imaging guided PTT/PDT are discussed.
Collapse
Affiliation(s)
- Houjuan Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore.
| | | | | | | |
Collapse
|
36
|
Burns JM, Vankayala R, Mac JT, Anvari B. Erythrocyte-Derived Theranostic Nanoplatforms for Near Infrared Fluorescence Imaging and Photodestruction of Tumors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27621-27630. [PMID: 30036031 PMCID: PMC6526021 DOI: 10.1021/acsami.8b08005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanoparticles activated by near-infrared (NIR) excitation provide a capability for optical imaging and photodestruction of tumors. We have engineered optical nanoconstructs derived from erythrocytes, which are doped with the FDA-approved NIR dye, indocyanine green (ICG). We refer to these constructs as NIR erythrocyte-mimicking transducers (NETs). Herein, we investigate the phototheranostic capabilities of NETs for fluorescence imaging and photodestruction of SKBR3 breast cancer cells and subcutaneous xenograft tumors in mice. Our cellular studies demonstrate that NETs are internalized by these cancer cells and localized to their lysosomes. As evidenced by NIR fluorescence imaging and in vivo laser irradiation studies, NETs remain available within tumors at 24 h postintravenous injection. In response to continuous wave 808 nm laser irradiation at intensity of 680 mW/cm2 for 10-15 min, NETs mediate the destruction of cancer cells and tumors in mice through synergistic photochemical and photothermal effects. We demonstrate that NETs are effective in mediating photoactivation of Caspase-3 to induce tumor apoptosis. Our results provide support for the effectiveness of NETs as theranostic agents for fluorescence imaging and photodestruction of tumors and their role in photoinduced apoptosis initiated by their localization to lysosomes.
Collapse
Affiliation(s)
- Joshua M. Burns
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Raviraj Vankayala
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Jenny T. Mac
- Department of Biochemistry, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Biochemistry, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
- Corresponding Author:
| |
Collapse
|
37
|
Li Z, Li D, Zhang W, Zhang P, Kan Q, Sun J. Insight into the preformed albumin corona on in vitro and in vivo performances of albumin-selective nanoparticles. Asian J Pharm Sci 2018; 14:52-62. [PMID: 32104438 PMCID: PMC7032257 DOI: 10.1016/j.ajps.2018.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/26/2018] [Accepted: 07/25/2018] [Indexed: 11/13/2022] Open
Abstract
Preformed albumin corona of albumin-nonselective nanoparticles (NPs) is widely exploited to inhibit the unavoidable protein adsorption upon intravenous administration. However, very few studies have concerned the preformed albumin corona of albumin-selective NPs. Herein, we report a novel type of albumin-selective NPs by decorating 6-maleimidocaproyl polyethylene glycol stearate (SA) onto PLGA NPs (SP NPs) surface, taking albumin-nonselective PLGA NPs as control. PLGA NPs and SP NPs were prepared by emulsion-solvent evaporation method and the resultant NPs were in spherical shape with an average diameter around 180 nm. The corresponding albumin-coating PLGA NPs (PLGA@BSA NPs) and albumin-coating SP NPs (SP@BSA NPs) were formulated by incubating SP NPs or PLGA NPs with bovine serum albumin solution, respectively. The impact of albumin corona on particle characteristics, stability, photothermal effect, cytotoxicity, cell uptake, spheroid penetration and pharmacokinetics was investigated. In line with previous findings of preformed albumin coating, PLGA@BSA NPs exhibited higher stability, cytotoxicity, cell internalization and spheroid penetration performances in vitro, and longer blood circulation time in vivo than those of albumin-nonselective PLGA NPs, but albumin-selective SP NPs is capable of achieving a comparable in vitro and in vivo performances with both SP@BSA NPs and PLGA@BSA NPs. Our results demonstrate that SA decorated albumin-selective NPs pave a versatile avenue for optimizing nanoparticulate delivery without preformed albumin corona.
Collapse
Affiliation(s)
- Zhenbao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China.,The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Dan Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China
| | - Wenjuan Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China
| | - Peng Zhang
- Department of Pharmacy, Shenyang Pharmaceutical University, China
| | - Qiming Kan
- Department of Pharmacology, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China
| |
Collapse
|
38
|
Ban Q, Bai T, Duan X, Kong J. Noninvasive photothermal cancer therapy nanoplatforms via integrating nanomaterials and functional polymers. Biomater Sci 2018; 5:190-210. [PMID: 27990534 DOI: 10.1039/c6bm00600k] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the cutting-edge field of cancer therapy, noninvasive photothermal therapy (PTT) has received great attention because it is considered to overcome the drawbacks of conventional surgery, radiotherapy and chemotherapy of severe body injuries and side effects on the immune system. The construction of PTT therapeutic and theranostic nanoplatforms is the key issue in achieving tumor targeting, imaging and therapy in a synergetic manner. In this review, we focus on the recent advances in constructing PTT therapeutic and theranostic nanoplatforms by integrating nanomaterials and functional polymers. The noninvasive photothermal cancer therapy mechanism and achievement strategies of PTT therapeutic and theranostic nanoplatforms are presented as well as the innovative construction strategies and perspectives for the future. Owing to their high tumor ablation efficiency, biological availability and low- or non-toxicity, PTT therapeutic and theranostic nanoplatforms are promising and emerging in medicine and clinical applications.
Collapse
Affiliation(s)
- Qingfu Ban
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Ting Bai
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Xiao Duan
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Jie Kong
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| |
Collapse
|
39
|
Mac JT, Vankayala R, Patel DK, Wueste S, Anvari B. Erythrocyte-Derived Optical Nanoprobes Doped with Indocyanine Green-Bound Albumin: Material Characteristics and Evaluation for Cancer Cell Imaging. ACS Biomater Sci Eng 2018; 4:3055-3062. [PMID: 33435025 DOI: 10.1021/acsbiomaterials.8b00621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanosize structures activated by near-infrared (NIR) photoexcitation can provide an optical platform for the image-guided removal of small tumor nodules. We have engineered nanoparticles derived from erythrocytes that can be doped with NIR fluorophore indocyanine green (ICG). We refer to these constructs as NIR erythrocyte-derived transducers (NETs). The objective of this study was to determine if ICG-bound albumin (IbA), as the doping material, could enhance the fluorescence emission of NETs, and evaluate the capability of these nanoprobes in imaging cancer cells. Erythrocytes were isolated from bovine whole blood and depleted of hemoglobin to form erythrocyte ghosts (EGs). EGs were then extruded through nanosize porous membranes in the presence of 10-100 μm ICG or Iba (1:1 molar ratio) to form ICG- or IbA-doped NETs. The resulting nanosize constructs were characterized for their diameters, zeta-potentials, absorption, and fluorescence emission spectra. We used fluorescence microscopic imaging to evaluate the capability of the constructs in imaging SKOV3 ovarian cancer cells. Based on dynamic light-scattering measurements, ICG- and IbA-doped NETs had similar diameter distributions (Z-average diameter of 236 and 238 nm, respectively) in phosphate-buffered saline supplemented with 10% fetal bovine serum, which remained nearly constant over the course of 2 h at 37 °C. Despite a much-lower loading efficiency of IbA (∼0.7-8%) as compared to ICG (10-45%), the integrated normalized fluorescence emission of IbA-NETs was 2- to 6-fold higher than ICG-doped NETs. IbA-NETs also demonstrated an enhanced capability in fluorescence imaging of SKOV3 ovarian cancer cells, and can serve as potentially effective nanoprobes for the fluorescence imaging of cancerous cells.
Collapse
|
40
|
Cancer-specific pro-oxidant therapy using low-toxic polypeptide micelles encapsulating piperlongumine. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.01.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Han YH, Kankala RK, Wang SB, Chen AZ. Leveraging Engineering of Indocyanine Green-Encapsulated Polymeric Nanocomposites for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E360. [PMID: 29882932 PMCID: PMC6027497 DOI: 10.3390/nano8060360] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 01/09/2023]
Abstract
In recent times, photo-induced therapeutics have attracted enormous interest from researchers due to such attractive properties as preferential localization, excellent tissue penetration, high therapeutic efficacy, and minimal invasiveness, among others. Numerous photosensitizers have been considered in combination with light to realize significant progress in therapeutics. Along this line, indocyanine green (ICG), a Food and Drug Administration (FDA)-approved near-infrared (NIR, >750 nm) fluorescent dye, has been utilized in various biomedical applications such as drug delivery, imaging, and diagnosis, due to its attractive physicochemical properties, high sensitivity, and better imaging view field. However, ICG still suffers from certain limitations for its utilization as a molecular imaging probe in vivo, such as concentration-dependent aggregation, poor in vitro aqueous stability and photodegradation due to various physicochemical attributes. To overcome these limitations, much research has been dedicated to engineering numerous multifunctional polymeric composites for potential biomedical applications. In this review, we aim to discuss ICG-encapsulated polymeric nanoconstructs, which are of particular interest in various biomedical applications. First, we emphasize some attractive properties of ICG (including physicochemical characteristics, optical properties, metabolic features, and other aspects) and some of its current limitations. Next, we aim to provide a comprehensive overview highlighting recent reports on various polymeric nanoparticles that carry ICG for light-induced therapeutics with a set of examples. Finally, we summarize with perspectives highlighting the significant outcome, and current challenges of these nanocomposites.
Collapse
Affiliation(s)
- Ya-Hui Han
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China.
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China.
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China.
| |
Collapse
|
42
|
Zhang C, Wu D, Lu L, Duan X, Liu J, Xie X, Shuai X, Shen J, Cao Z. Multifunctional Hybrid Liposome as a Theranostic Platform for Magnetic Resonance Imaging Guided Photothermal Therapy. ACS Biomater Sci Eng 2018; 4:2597-2605. [PMID: 33435122 DOI: 10.1021/acsbiomaterials.8b00176] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chunyang Zhang
- School of Biomedical Engineering, Sun Yat-sen University, No. 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Dan Wu
- School of Biomedical Engineering, Sun Yat-sen University, No. 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Liejing Lu
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou 510120, China
| | - Xiaohui Duan
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou 510120, China
| | - Jie Liu
- School of Biomedical Engineering, Sun Yat-sen University, No. 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Xiaoyan Xie
- Department of Medical Ultrasound, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, No. 135 West Xingang Road, Guangzhou 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou 510120, China
| | - Zhong Cao
- School of Biomedical Engineering, Sun Yat-sen University, No. 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| |
Collapse
|
43
|
Chien YY, Wang TY, Liao PW, Wu WC, Chen CY. Folate-Conjugated and Dual Stimuli-Responsive Mixed Micelles Loading Indocyanine Green for Photothermal and Photodynamic Therapy. Macromol Biosci 2018; 18:e1700409. [PMID: 29733551 DOI: 10.1002/mabi.201700409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/05/2018] [Indexed: 11/05/2022]
Abstract
A folic acid targeted mixed micelle system based on co-assembly of poly(ε-caprolactone)-b-poly(methoxytri(ethylene glycol) methacrylate-co-N-(2-methacrylamido)ethyl folatic amide) and poly(ε-caprolactone)-b-poly(diethylene glycol monomethyl ether methacrylate) is developed to encapsulate indocyanine green (ICG) for photothermal therapy and photodynamic therapy. In this study, the use of folic acid is not only for specific cancer cell recognition, but also in virtue of the carboxylic acid on folic acid to regulate the pH-dependent thermal phase transition of polymeric micelles for controlled drug release. The prepared ICG-loaded mixed micelles possess several superior properties such as a preferable thermoresponsive behavior, excellent storage stability, and good local hyperthermia and reactive oxygen species generation under near-infrared (NIR) irradiation. The photototoxicity induced by the ICG-loaded micelles has efficiently suppressed the growth of HeLa cells (folate receptor positive cells) under NIR irradiation compared to that of HT-29, which has low folate receptor expression. Hence, this new type of mixed micelles with excellent features could be a promising delivery system for controlled drug release, effective cancer cell targeting, and photoactivated therapy.
Collapse
Affiliation(s)
- Yu-Ying Chien
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi County, 621, Taiwan
| | - Tung-Yun Wang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi County, 621, Taiwan
| | - Po-Wen Liao
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wen-Chung Wu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ching-Yi Chen
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi County, 621, Taiwan
| |
Collapse
|
44
|
Fu G, Sanjay ST, Zhou W, Brekken RA, Kirken RA, Li X. Exploration of Nanoparticle-Mediated Photothermal Effect of TMB-H 2O 2 Colorimetric System and Its Application in a Visual Quantitative Photothermal Immunoassay. Anal Chem 2018; 90:5930-5937. [PMID: 29641893 PMCID: PMC6177380 DOI: 10.1021/acs.analchem.8b00842] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The exploration of new physical and chemical properties of materials and their innovative application in different fields are of great importance to advance analytical chemistry, material science, and other important fields. Herein, we, for the first time, discovered the photothermal effect of an iron oxide nanoparticles (NPs)-mediated TMB (3,3',5,5'-tetramethylbenzidine)-H2O2 colorimetric system, and applied it toward the development of a new NP-mediated photothermal immunoassay platform for visual quantitative biomolecule detection using a thermometer as the signal reader. Using a sandwich-type proof-of-concept immunoassay, we found that the charge transfer complex of the iron oxide NPs-mediated one-electron oxidation product of TMB (oxidized TMB) exhibited not only color changes, but also a strong near-infrared (NIR) laser-driven photothermal effect. Hence, oxidized TMB was explored as a new sensitive photothermal probe to convert the immunoassay signal into heat through the near-infrared laser-driven photothermal effect, enabling simple photothermal immunoassay using a thermometer. Based on the new iron oxide NPs-mediated TMB-H2O2 photothermal immunoassay platform, prostate-specific antigen (PSA) as a model biomarker can be detected at a concentration as low as 1.0 ng·mL-1 in normal human serum. The discovered photothermal effect of the colorimetric system and the developed new photothermal immunoassay platform open up a new horizon for affordable detection of disease biomarkers and have great potential for other important material and biomedical applications of interest.
Collapse
Affiliation(s)
- Guanglei Fu
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Sharma T. Sanjay
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Wan Zhou
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Rolf A. Brekken
- Hamon Center for Therapeutic Oncology Research, Departments of Surgery and Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Robert A. Kirken
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
- Biomedical Engineering, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
- Environmental Science and Engineering, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| |
Collapse
|
45
|
Zhao R, Zheng G, Fan L, Shen Z, Jiang K, Guo Y, Shao JW. Carrier-free nanodrug by co-assembly of chemotherapeutic agent and photosensitizer for cancer imaging and chemo-photo combination therapy. Acta Biomater 2018; 70:197-210. [PMID: 29408311 DOI: 10.1016/j.actbio.2018.01.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/02/2018] [Accepted: 01/21/2018] [Indexed: 11/19/2022]
Abstract
Nanosized drug delivery systems (NDDS) with photothermal therapy (PTT) and photodynamic therapy (PDT) have been extensively exploited to improve the therapeutic performance and bio-safety of chemotherapeutic drugs in cancer. In this work, a carrier-free nanodrug was developed by co-assembly of the anti-cancer agent ursolic acid (UA), an asialoglycoprotein receptor (ASGPR), which can recognize the target molecule lactobionic acid (LA), and the near-infrared (NIR) probe dye indocyanine green (ICG) to form UA-LA-ICG NPs by a simple and green self-assembly approach. The UA-LA-ICG NPs had suitable stability, showed controlled release profile of UA drugs, and exhibited preferable temperature response (∼59.4 °C) under laser irradiation (808 nm, 1 W/cm2). Compared with free ICG, the UA-LA-ICG NPs significantly enhanced the intracellular ICG uptake. Upon irradiation of the NIR laser, co-assembled nanodrugs demonstrated great performance as a reactive oxygen species (ROS) producer and exhibited more anti-proliferative activities on ASGPR-overexpressing HepG2 cells than ASGPR low-expressing HeLa cells. Meanwhile, in vivo NIR fluorescence imaging exhibited that the co-assembled nanodrugs were specifically targeted to the tumor by the active targeting property of LA, and its circulation time was much longer than that of free ICG. In addition, UA-LA-ICG NPs + NIR irradiation treatment displayed enhanced inhibitory effect on tumor growth in H22 tumor-bearing mice. Overall, the co-assembly of chemotherapeutic agent and photosensitizer by the self-assembly approach might open an alternative avenue and give inspiration to fabricate new carrier-free nanodrugs for cancer imaging and chemo-photo combination therapy. STATEMENT OF SIGNIFICANCE The present study for the first time reported carrier-free nanoparticles (NPs) by co-assembly of a natural product ursolic acid (UA), an asialoglycoprotein receptor (ASGPR)-recognized sugar molecule lactobionic acid (LA), and the near-infrared dye indocyanine green (ICG) through a simple and green approach. The preparation process of nanodrugs is simple, rapid, effective, and labor-saving. The co-assembled nanodrugs were capable of stabilizing the ICG molecules and specifically targeting to the tumor, which could increase the tumor accumulation in cancer imaging and also enhance the efficacy of chemo-phototherapy.
Collapse
Affiliation(s)
- Ruirui Zhao
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Guirong Zheng
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Lulu Fan
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Zhichun Shen
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Kai Jiang
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yan Guo
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jing-Wei Shao
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
46
|
Zhang J, Xing H, Lu Y. Translating molecular detections into a simple temperature test using a target-responsive smart thermometer. Chem Sci 2018; 9:3906-3910. [PMID: 29780521 PMCID: PMC5935027 DOI: 10.1039/c7sc05325h] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/07/2018] [Indexed: 12/15/2022] Open
Abstract
While it has been well recognized that affordable and pocket-size devices play a major role in environmental monitoring, food safety and medical diagnostics, it often takes a tremendous amount of resources to develop such devices. Devices that have been developed are often dedicated devices that can detect only one or a few targets. To overcome these limitations, we herein report a novel target-responsive smart thermometer for translating molecular detection into a temperature test. The sensor system consists of a functional DNA-phospholipase A2 (PLA2) enzyme conjugate, a liposome-encapsulated NIR dye, and a thermometer interfaced with a NIR-laser device. The sensing principle is based on the target-induced release of PLA2 from the DNA-enzyme conjugate, which catalyzes the hydrolysis of liposome to release the NIR dye inside the liposome. Upon NIR-laser irradiation, the released dye can convert excitation energy into heat, producing a temperature increase in solution, which is detectable using a thermometer. Considering the low cost and facile incorporation of the system with suitable functional DNAs to recognize many targets, the system demonstrated here makes the thermometer an affordable and pocket-size meter for the detection and quantification of a wide range of targets.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , IL 61801 , USA .
| | - Hang Xing
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , IL 61801 , USA .
| | - Yi Lu
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , IL 61801 , USA .
| |
Collapse
|
47
|
Cao J, Chen Z, Chi J, Sun Y, Sun Y. Recent progress in synergistic chemotherapy and phototherapy by targeted drug delivery systems for cancer treatment. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:817-830. [PMID: 29405791 DOI: 10.1080/21691401.2018.1436553] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although it's pharmacological effect for cancer therapy, conventional chemotherapy has been compromised by a series of shortcomings such as limited stability, nonspecific tumour targeting ability and severe toxic side effects. To overcome these limitations, multifunctional targeted drug delivery systems for combinatorial therapeutics have been widely explored as novel cancer therapy strategies, showing encouraging results in many pre-clinical animal experiments. Among them, synergistic phototherapy and chemotherapy have demonstrated their abilities to enhance therapeutic efficacies and reduce unwanted side effects via a variety of mechanisms. In this review, we will summarize the latest progress in the development of targeted drug delivery systems with combinations of phototherapy and chemotherapy and discuss the important roles of phototherapy agents involved in those non-conventional therapeutic strategies.
Collapse
Affiliation(s)
- Jie Cao
- a Department of Pharmaceutics , School of Pharmacy, Qingdao University , Qingdao , China
| | - Zuxian Chen
- a Department of Pharmaceutics , School of Pharmacy, Qingdao University , Qingdao , China
| | - Jinnan Chi
- a Department of Pharmaceutics , School of Pharmacy, Qingdao University , Qingdao , China
| | - Yalin Sun
- a Department of Pharmaceutics , School of Pharmacy, Qingdao University , Qingdao , China
| | - Yong Sun
- a Department of Pharmaceutics , School of Pharmacy, Qingdao University , Qingdao , China
| |
Collapse
|
48
|
Mery E, Golzio M, Guillermet S, Lanore D, Le Naour A, Thibault B, Tilkin-Mariamé AF, Bellard E, Delord JP, Querleu D, Ferron G, Couderc B. Fluorescence-guided surgery for cancer patients: a proof of concept study on human xenografts in mice and spontaneous tumors in pets. Oncotarget 2017; 8:109559-109574. [PMID: 29312629 PMCID: PMC5752542 DOI: 10.18632/oncotarget.22728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/28/2017] [Indexed: 12/11/2022] Open
Abstract
Surgery is often the first treatment option for patients with cancer. Patient survival essentially depends on the completeness of tumor resection. This is a major challenge, particularly in cases of peritoneal carcinomatosis, where tumors are widely disseminated in the large peritoneal cavity. Any development to help surgeons visualize these residual cells would improve the completeness of the surgery. For non-disseminated tumors, imaging could be used to ensure that the tumor margins and the draining lymph nodes are free of tumor deposits. Near-infrared fluorescence imaging has been shown to be one of the most convenient imaging modalities. Our aim was to evaluate the efficacy of a near-infrared fluorescent probe targeting the αvβ3 integrins (Angiostamp™) for intraoperative detection of tumors using the Fluobeam® device. We determined whether different human tumor nodules from various origins could be detected in xenograft mouse models using both cancer cell lines and patient-derived tumor cells. We found that xenografts could be imaged by fluorescent staining irrespective of their integrin expression levels. This suggests imaging of the associated angiogenesis of the tumor and a broader potential utilization of Angiostamp™. We therefore performed a veterinary clinical trial in cats and dogs with local tumors or with spontaneous disseminated peritoneal carcinomatosis. Our results demonstrate that the probe can specifically visualize both breast and ovarian nodules, and suggest that Angiostamp™ is a powerful fluorescent contrast agent that could be used in both human and veterinary clinical trials for intraoperative detection of tumors.
Collapse
Affiliation(s)
- Eliane Mery
- Institut Claudius Regaud -IUCT Oncopole, University Toulouse III, Toulouse, France
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Toulouse, France
| | | | | | - Augustin Le Naour
- Institut Claudius Regaud -IUCT Oncopole, University Toulouse III, Toulouse, France
| | - Benoît Thibault
- Institut Claudius Regaud -IUCT Oncopole, University Toulouse III, Toulouse, France
| | | | - Elizabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Toulouse, France
| | - Jean Pierre Delord
- Institut Claudius Regaud -IUCT Oncopole, University Toulouse III, Toulouse, France
| | - Denis Querleu
- Institut Claudius Regaud -IUCT Oncopole, University Toulouse III, Toulouse, France
| | - Gwenael Ferron
- Institut Claudius Regaud -IUCT Oncopole, University Toulouse III, Toulouse, France
| | - Bettina Couderc
- Institut Claudius Regaud -IUCT Oncopole, University Toulouse III, Toulouse, France
| |
Collapse
|
49
|
Li L, Pang X, Liu G. Near-Infrared Light-Triggered Polymeric Nanomicelles for Cancer Therapy and Imaging. ACS Biomater Sci Eng 2017; 4:1928-1941. [DOI: 10.1021/acsbiomaterials.7b00648] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Lei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xin Pang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
50
|
Development of Halofluorochromic Polymer Nanoassemblies for the Potential Detection of Liver Metastatic Colorectal Cancer Tumors Using Experimental and Computational Approaches. Pharm Res 2017; 34:2385-2402. [PMID: 28840432 DOI: 10.1007/s11095-017-2245-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/31/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE To develop polymer nanoassemblies (PNAs) modified with halofluorochromic dyes to allow for the detection of liver metastatic colorectal cancer (CRC) to improve therapeutic outcomes. METHODS We combine experimental and computational approaches to evaluate macroscopic and microscopic PNA distributions in patient-derived xenograft primary and orthotropic liver metastatic CRC tumors. Halofluorochromic and non-halofluorochromic PNAs (hfPNAs and n-hfPNAs) were prepared from poly(ethylene glycol), fluorescent dyes (Nile blue, Alexa546, and IR820), and hydrophobic groups (palmitate), all of which were covalently tethered to a cationic polymer scaffold [poly(ethylene imine) or poly(lysine)] forming particles with an average diameter < 30 nm. RESULTS Dye-conjugated PNAs showed no aggregation under opsonizing conditions for 24 h and displayed low tissue diffusion and cellular uptake. Both hfPNAs and n-hfPNAs accumulated in primary and liver metastatic CRC tumors within 12 h post intravenous injection. In comparison to n-hfPNAs, hfPNAs fluoresced strongly only in the acidic tumor microenvironment (pH < 7.0) and distinguished small metastatic CRC tumors from healthy liver stroma. Computational simulations revealed that PNAs would steadily accumulate mainly in acidic (hypoxic) interstitium of metastatic tumors, independently of the vascularization degree of the tissue surrounding the lesions. CONCLUSION The combined experimental and computational data confirms that hfPNAs detecting acidic tumor tissue can be used to identify small liver metastatic CRC tumors with improved accuracy.
Collapse
|