1
|
Song H, Szymczak NK. Lewis Acid-Tethered (cAAC)-Copper Complexes: Reactivity for Hydride Transfer and Catalytic CO 2 Hydrogenation. Angew Chem Int Ed Engl 2024; 63:e202411099. [PMID: 38967599 DOI: 10.1002/anie.202411099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/06/2024]
Abstract
We present a series of borane-tethered cyclic (alkyl)(amino)carbene (cAAC)-copper complexes, including a borane-capped Cu(I) hydride. This hydride is unusually hydridic and reacts rapidly with both CO2 and 2,6-dimethylphenol at room temperature. Its reactivity is distinct from variants without a tethered borane, and the underlying principles governing the enhanced hydricity were evaluated experimentally and theoretically. These stoichiometric results were extended to catalytic CO2 hydrogenation, and the borane-tethered (intramolecular) system exhibits ~3-fold enhancement relative to an intermolecular system.
Collapse
Affiliation(s)
- Hayoung Song
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Nathaniel K Szymczak
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| |
Collapse
|
2
|
Wang S, Chen K, Niu J, Guo X, Yuan X, Yin J, Zhu B, Shi D, Guan W, Xiong T, Zhang Q. Copper-Catalyzed Regiodivergent Asymmetric Difunctionalization of Terminal Alkynes. Angew Chem Int Ed Engl 2024; 63:e202410833. [PMID: 38923633 DOI: 10.1002/anie.202410833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
We herein describe the first example of ligand-controlled, copper-catalyzed regiodivergent asymmetric difunctionalization of terminal alkynes through a cascade hydroboration and hydroallylation process. The catalytic system, consisting of (R)-DTBM-Segphos and CuBr, could efficiently achieve asymmetric 1,1-difunctionalization of aryl terminal alkynes, while ligand switching to (S,S)-Ph-BPE could result in asymmetric 1,2-difunctionalization exclusively. In addition, alkyl substituted terminal alkynes, especially industrially relevant acetylene and propyne, were also valid feedstocks for asymmetric 1,1-difunctionalization. This protocol is characterized by good functional group tolerance, a broad scope of substrates (>150 examples), and mild reaction conditions. We also showcase the value of this method in the late-stage functionalization of complicated bioactive molecules and simplifying the synthetic routes toward the key intermediacy of natural product (bruguierol A). Mechanistic studies combined with DFT calculations provide insight into the mechanism and origins of this ligand-controlled regio- and stereoselectivity.
Collapse
Affiliation(s)
- Simin Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Kexin Chen
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Junbo Niu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xiaobing Guo
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jianjun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Bo Zhu
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Dazhen Shi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wei Guan
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
3
|
Fu B, Wang L, Chen K, Yuan X, Yin J, Wang S, Shi D, Zhu B, Guan W, Zhang Q, Xiong T. Enantioselective Copper-Catalyzed Sequential Hydrosilylation of Arylmethylenecyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202407391. [PMID: 39023320 DOI: 10.1002/anie.202407391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Despite impressive advances in the construction of enantioenriched silacarbocycles featuring silicon-stereogenic centers via a selection of well-defined sila-synthons, the development of a more convenient and economic method with readily available starting materials is significantly less explored and remains a considerable challenge. Herein, we report the first example of copper-catalyzed sequential hydrosilylation of readily accessible methylenecyclopropanes (MCPs) and primary silanes, affording an efficient and convenient route to a wide range of chiral silacyclopentanes bearing consecutive silicon- and carbon-stereogenic centers with excellent enantio- and diastereoselectivities (generally ≥98 % ee, >25 : 1 dr). Mechanistic studies reveal that these reactions combine copper-catalyzed intermolecular ring-opening hydrosilylation of aryl MCPs and intramolecular asymmetric hydrosilylation of the resultant Z/E mixture of homoallylic silanes.
Collapse
Affiliation(s)
- Bin Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130024, China
| | - Lianghua Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Kexin Chen
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jianjun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Simin Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Dazhen Shi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Bo Zhu
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wei Guan
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
4
|
Baguli S, Nath S, Kundu A, Menon H, Adhikari D, Mukherjee D. (CAAC)CuCl: A Competent Precatalyst for Carbonyl and Ester Hydrosilylation. Inorg Chem 2024; 63:18552-18562. [PMID: 39319868 DOI: 10.1021/acs.inorgchem.4c01624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Cu-catalyzed carbonyl hydrosilylation involves a ligated "[(L)CuH]" as the active catalyst, where the ligand L has a crucial role toward the stability, stereoselectivity, and enhancement of the hydridicity. Strongly σ-donating N-heterocyclic carbenes (NHCs), their ring-expanded form, and an abnormal NHC as ligands have yielded robust and efficient Cu catalysts. However, cyclic(alkyl)(amino)carbenes (CAACs), despite being stronger σ-donors than NHCs and already having a salient Cu(I) chemistry, are yet to be reported as a similar ligand platform for this purpose. We establish here the familiar [(Me2CAAC)CuCl] as a powerful precatalyst in this regard. Additionally, it also catalyzes the more challenging ester hydrosilylation, which is a rare feat for a Cu catalyst. Apart from the stronger σ-donating ability, the more steric "openness" of CAACs than bulky NHCs also seems to be advantageous. To corroborate, three new (CAAC)CuCl complexes [(ArCH2,MeCAAC)CuCl] (Ar = Ph, 1-naphthyl, and 1-prenyl) are devised, where the effective steric around the copper is practically unaltered from the case of [(Me2CAAC)CuCl]. All three are equally active in carbonyl and ester hydrosilylation as [(Me2CAAC)CuCl]. Computation suggests the carbonyl insertion into a "(CAAC)Cu-H" as the rate-limiting step. To elucidate the involvement of a "(CAAC)CuH", "(PhCH2,MeCAAC)CuH" is generated in situ and is trapped as its BH3 adduct (PhCH2,MeCAAC)CuBH4.
Collapse
Affiliation(s)
- Sudip Baguli
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Soumajit Nath
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Abhishek Kundu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Manauli 140306, Punjab, India
| | - Harikrishna Menon
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Manauli 140306, Punjab, India
| | - Debabrata Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
5
|
Wang Q, Murphy RP, Gau MR, Carroll PJ, Tomson NC. Controlling the Size of Molecular Copper Clusters Supported by a Multinucleating Macrocycle. Inorg Chem 2024; 63:18332-18344. [PMID: 39292545 DOI: 10.1021/acs.inorgchem.4c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The use of a nonrigid, pyridyldialdimine-derived macrocyclic ligand (3PDAI2) enabled the synthesis of well-defined mono-, di-, tri-, and tetra-nuclear Cu(I) complexes in good yields through rational synthetic means. Starting from mono- and diargentous 3PDAI2 complexes, transmetalation to Cu(I) proceeded smoothly with formation of AgX (X = Cl, I) salts to generate mono-, di-, and trinuclear copper complexes. Monodentate supporting ligands (MeCN, xylNC, PMe3, PPh3) were found to either transmetallate with or bind various di- and trinuclear clusters. The solution-phase dynamic behaviors of these species were studied through NMR spectroscopic investigations, and an in-depth study of the trinuclear systems revealed a rate dependence on the identity of the supporting ligand, indicating that ligand dissociation reactions were involved in the dynamic exchange processes. Synthetic investigations further found methods for the purposeful interconversion between the di- and trinuclear systems as well as the synthesis of a pseudotetrahedral tetracopper complex with two μ-Ph supporting ligands.
Collapse
Affiliation(s)
- Qiuran Wang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ryan P Murphy
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Neil C Tomson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Gao H, Kwon S, Kwon HY, Irran E, Klare HFT, Baik MH, Oestreich M. Cationic Bis(hydrosilane)-Coinage-Metal Complexes: Synthesis, Characterization, and Use as Catalysts for Outer-Sphere C=O Hydrosilylation Not Involving Metal Hydrides. Angew Chem Int Ed Engl 2024; 63:e202409582. [PMID: 38923659 DOI: 10.1002/anie.202409582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The preparation of cationic bis(hydrosilane)-coinage-metal complexes by chloride abstraction from the neutral metal chloride precursors with Na[BArF 4] is described. Unlike previously reported hydrosilane-stabilized copper and silver complexes, the presented complexes are cationic and feature two bidentate (ortho-silylphenyl)phosphine ligands. These complexes were fully characterized by NMR spectroscopy and X-ray diffraction analysis, revealing that both Si-H bonds are activated by the Lewis acidic cationic metal center. The new complexes were found to be effective in catalytic carbonyl hydrosilylation, leading to the corresponding silyl ethers under mild conditions without the addition of an external base. Combined mechanistic control experiments and quantum chemical calculations support an ionic outer-sphere mechanism, in which a neutral metal alkoxide species instead of a metal hydride is the key intermediate that interacts with the silylcarboxonium ion to generate the silyl ether.
Collapse
Affiliation(s)
- Haopeng Gao
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Seongyeon Kwon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) & Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyuk-Yong Kwon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) & Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Elisabeth Irran
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Hendrik F T Klare
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) & Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| |
Collapse
|
7
|
Yuan Y, Zhang Y, Wu XF. Enantioselective synthesis of γ-chiral amides via copper-catalyzed reductive relay hydroaminocarbonylation. Nat Commun 2024; 15:6705. [PMID: 39112513 PMCID: PMC11306323 DOI: 10.1038/s41467-024-51048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Chiral amides are common and effective structural motifs found in many pharmaceuticals and biologically active molecules. Despite their importance, existing synthetic methods are predominantly employed for the synthesis of α-amides and β-amides. The synthesis of remote chiral amides, characterized by distal stereocenters, typically requires intricate synthetic steps conducted under demanding conditions. Here, we present a general procedure for the copper-catalyzed enantioselective synthesis of γ-chiral amides, employing a reductive relay hydroaminocarbonylation strategy with trisubstituted allylic benzoates and hydroxylamine electrophiles. This approach demonstrates a wide substrate scope with excellent enantioselectivity and regioselectivity, thus providing access to challenging enantioenriched γ-chiral amides.
Collapse
Affiliation(s)
- Yang Yuan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
| | - Youcan Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 201620, Shanghai, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China.
- Leibniz-Institut für Katalyse e.V., 18059, Rostock, Germany.
| |
Collapse
|
8
|
Davis CW, Zhang Y, Li Y, Martinelli M, Zhang J, Ungarean C, Galer P, Liu P, Sarlah D. Copper-Catalyzed Dearomative 1,2-Hydroamination. Angew Chem Int Ed Engl 2024; 63:e202407281. [PMID: 38779787 DOI: 10.1002/anie.202407281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Catalytic olefin hydroamination reactions are some of the most atom-economical transformations that bridge readily available starting materials-olefins and high-value-added amines. Despite significant advances in this field over the last two decades, the formal hydroamination of nonactivated aromatic compounds remains an unsolved challenge. Herein, we report the extension of olefin hydroamination to aromatic π-systems by using arenophile-mediated dearomatization and Cu-catalysis to perform 1,2-hydroamination on nonactivated arenes. This strategy was applied to a variety of substituted arenes and heteroarenes to provide general access to structurally complex amines. We conducted DFT calculations to inform mechanistic understanding and rationalize unexpected selectivity trends. Furthermore, we developed a practical, scalable desymmetrization to deliver enantioenriched dearomatized products and enable downstream synthetic applications. We ultimately used this dearomative strategy to efficiently synthesize a collection of densely functionalized small molecules.
Collapse
Affiliation(s)
| | - Yu Zhang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yanrong Li
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | | | - Jingyang Zhang
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Chad Ungarean
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Petra Galer
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - David Sarlah
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
- Department of Chemistry, University of Pavia, Pavia, LOM 27100, IT
| |
Collapse
|
9
|
Huai M, Chen L, Dong W, Wang W, Qin Z, Dai K, Li Y, Zhang X, Tao C. Copper-catalyzed syn-hydroformylation of alkynes with silanes and N, N-dimethylformamide dimethylacetal. Org Biomol Chem 2024; 22:5385-5392. [PMID: 38869462 DOI: 10.1039/d4ob00724g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
A copper-catalyzed syn-hydrocarbonization of internal alkynes with N,N-dimethylformamide dimethylacetal and silanes has been disclosed that offers an efficient and expedient access to (E)-α,β-unsaturated aldehydes. This highly selective process, which can be performed at gram-scale, enjoys operational simplicity, as well as syngas-free conditions.
Collapse
Affiliation(s)
- Menglin Huai
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Long Chen
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Wei Dong
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Weijie Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Zhen Qin
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Kaifeng Dai
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Yuan Li
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Xiulian Zhang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Chuanzhou Tao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
- Jiangsu Province Engineering Research Center of Visible Light Catalytic Materials, Lianyungang Technical College, Lianyungang 222000, China
| |
Collapse
|
10
|
Iwasaki T, Nozaki K. Counterintuitive chemoselectivity in the reduction of carbonyl compounds. Nat Rev Chem 2024; 8:518-534. [PMID: 38831138 DOI: 10.1038/s41570-024-00608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 06/05/2024]
Abstract
The reactivity of carbonyl functional groups largely depends on the substituents on the carbon atom. Reversal of the commonly accepted order of reactivity of different carbonyl compounds requires novel synthetic approaches. Achieving selective reduction will enable the transformation of carbon resources such as plastic waste, carbon dioxide and biomass into valuable chemicals. In this Review, we explore the reduction of less reactive carbonyl groups in the presence of those typically considered more reactive. We discuss reductions, including the controlled reduction of ureas, amides and esters to aldehydes, as well as chemoselective reductions of carbonyl groups, including the reduction of ureas over carbamates, amides and esters; the reduction of amides over esters, ketones and aldehydes; and the reduction of ketones over aldehydes.
Collapse
Affiliation(s)
- Takanori Iwasaki
- Department of Chemistry and Biotechnology, The University of Tokyo, Tokyo, Japan.
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Kumar R, Maurya V, Avinash A, Appayee C. Nonsilyl Bicyclic Secondary Amine Catalysts for the Asymmetric Transfer Hydrogenation of α,β-Unsaturated Aldehydes. J Org Chem 2024; 89:8586-8600. [PMID: 38836633 DOI: 10.1021/acs.joc.4c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The first chiral synthesis of nonsilyl bicyclic secondary amine organocatalysts and their application to the asymmetric transfer hydrogenation of α,β-unsaturated aldehydes are disclosed. A lower catalytic loading (5 mol %) is demonstrated for the reduction of a wide range of α,β-unsaturated aldehydes (up to 97% yield and up to 99% ee). The application of this scalable methodology is showcased for the asymmetric synthesis of bioactive molecules such as phenoxanol, citronellol, ramelteon, and terikalant.
Collapse
Affiliation(s)
- Rohtash Kumar
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Vidyasagar Maurya
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Avinash Avinash
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Chandrakumar Appayee
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| |
Collapse
|
12
|
Kojima Y, Nishii Y, Hirano K. Asymmetric Synthesis of SCF 3-Substituted Alkylboronates by Copper-Catalyzed Hydroboration of 1-Trifluoromethylthioalkenes. Angew Chem Int Ed Engl 2024; 63:e202403337. [PMID: 38472112 DOI: 10.1002/anie.202403337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
A synthetic method for preparation of optically active trifluoromethylthio (SCF3) compounds by a copper-catalyzed regio- and enantioselective hydroboration of 1-trifluoromethylthioalkenes with H-Bpin has been developed. The enantioselective hydrocupration of an in situ generated CuH species and subsequent boration reaction generate a chiral SCF3-containing alkylboronate, of which Bpin moiety can be further transformed to deliver various optically active SCF3 molecules. Computational studies suggest that the SCF3 group successfully controls the regioselectivity in the reaction.
Collapse
Affiliation(s)
- Yuki Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
13
|
Tang J, Li Z, Meng Q, Liu L, Huang T, Li C, Li Q, Chen T. CuH-Catalyzed Reductive Coupling of Nitroarenes with Phosphine Oxides for the Direct Synthesis of Phosphamides. J Org Chem 2024. [PMID: 38809686 DOI: 10.1021/acs.joc.4c00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A CuH-catalyzed reductive coupling of nitroarenes with phosphine oxides is developed, which produces a series of phosphamides in moderate to excellent yields with good functional group tolerance. Gram-scale synthesis and late-stage modification of nitro-aromatic functional molecule niclosamide are also successfully conducted. The mechanism study shows that the nitro group is transformed after being reduced to nitroso and a nucleophilic addition procedure is involved during the reaction.
Collapse
Affiliation(s)
- Jie Tang
- Hainan Provincial Key Laboratory of Fine Chemical, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Zhiyou Li
- Hainan Provincial Key Laboratory of Fine Chemical, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Qi Meng
- Hainan Provincial Key Laboratory of Fine Chemical, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Long Liu
- Hainan Provincial Key Laboratory of Fine Chemical, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Tianzeng Huang
- Hainan Provincial Key Laboratory of Fine Chemical, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Chunya Li
- Hainan Provincial Key Laboratory of Fine Chemical, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Qiang Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Street, Liaocheng, Shandong 252000, China
| | - Tieqiao Chen
- Hainan Provincial Key Laboratory of Fine Chemical, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
14
|
Tobisch S. Copper-catalysed electrophilic carboamination of terminal alkynes with benzyne looked at through the computational lens. Dalton Trans 2024; 53:8154-8167. [PMID: 38536069 DOI: 10.1039/d3dt04301k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
A detailed computational mechanistic study of the copper-catalysed three-component-type electrophilic carboamination of terminal alkynes with benzyne and an archetypal O-benzoylhydroxylamine electrophile is presented. Probing various plausible pathways for relevant elementary steps and scrutinising performance degradation pathways, with the aid of a reliable computational protocol applied to a realistic catalyst model combined with kinetic analysis, identified the pathways preferably traversed in productive catalysis. It entails rapid alkynylcupration of in situ generated benzyne to deliver the arylcopper nucleophile that undergoes amination with the O-benzoylhydroxylamine electrophile to afford copper benzoate. Umpolung-enabled electrophilic amination favours a multistep SN2-type oxidative addition/N-C bond-forming reductive elimination sequence involving a short-lived formal {P^P}CuIII carboxylate amido aryl intermediate. SN2-type displacement of the benzoate leaving group at the arylcopper nucleophile, which represents the catalyst resting state, is predicted to be the turnover limiting step. Alkynolysis transforms copper benzoate back to catalytically competent alkynylcopper. The computational probe of a wider range of substrates reveals that only severely ring-strained C6-arynes, C6-cycloalkynes and electron-deficient cyclopropenes featuring a highly reactive C≡C linkage could replace benzyne. Moreover, strict control of stationary benzyne concentration is indispensable for electrophilic carboamination to ever become achievable.
Collapse
Affiliation(s)
- Sven Tobisch
- University of St Andrews, School of Chemistry, Purdie Building, North Haugh, St Andrews, KY16 9ST, UK.
| |
Collapse
|
15
|
Cheng S, Yu T, Li J, Liang Y, Luo S, Zhu Q. Copper/Chiral Phosphoric-Acid-Catalyzed Intramolecular Reductive Isocyanide-Alkene (1 + 2) Cycloaddition: Enantioselective Construction of 2-Azabicyclo[3.1.0]hexanes. J Am Chem Soc 2024; 146:7956-7962. [PMID: 38471146 DOI: 10.1021/jacs.4c00989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Enantioenriched 2-azabicyclo[3.1.0]hexanes are accessed from readily available allyl substituted α-isocyanoesters by intramolecular (1 + 2) cycloaddition with the olefinic moiety and isocyano carbon as the respective C2 and C1 units. Cyclopropanation is initiated by 1,1-hydrocupration of isocyanide followed by formimidoylcopper to copper α-aminocarbenoid equilibration and subsequent (1 + 2) cycloaddition. The unprecedented copper/chiral phosphoric acid (CPA) catalytic system can be operated in the presence of water under air, delivering a variety of 2-azabicyclo[3.1.0]hexanes containing an angular all-carbon quaternary stereocenter in good to excellent yields and enantioselectivity.
Collapse
Affiliation(s)
- Sidi Cheng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Ting Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yingxiang Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| |
Collapse
|
16
|
Bae H, Park J, Yoon R, Lee S, Son J. Copper-catalyzed synthesis of primary amides through reductive N-O cleavage of dioxazolones. RSC Adv 2024; 14:9440-9444. [PMID: 38516159 PMCID: PMC10951817 DOI: 10.1039/d4ra00320a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
A new method for the synthesis of primary amides is developed, in which dioxazolones are treated with a copper catalyst under mild reaction conditions. A broad scope of dioxazolones is exhibited as well as dioxazolones containing biologically active structural motifs. These robust and mild reaction conditions allow the transformation of dioxazolones to primary amides, in which sensitive functional groups such as hydroxyl, aldehyde, trialkylsilyl, and unsaturated carbon units are tolerated with excellent chemoselectivity.
Collapse
Affiliation(s)
- Hyeonwoong Bae
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
- Department of Chemistry, Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
| | - Jinhwan Park
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
- Department of Chemistry, Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
| | - Rahyun Yoon
- Department of Chemistry, Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
| | - Seunghoon Lee
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
- Department of Chemistry, Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
| | - Jongwoo Son
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
- Department of Chemistry, Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
| |
Collapse
|
17
|
Baumann JE, Chung CP, Lalic G. Stereoselective Copper-Catalyzed Olefination of Imines. Angew Chem Int Ed Engl 2024; 63:e202316521. [PMID: 38100274 PMCID: PMC10977923 DOI: 10.1002/anie.202316521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Alkenes are an important class of organic molecules found among synthetic intermediates and bioactive compounds. They are commonly synthesized through stoichiometric Wittig-type olefination of carbonyls and imines, using ylides or their equivalents. Despite the importance of Wittig-type olefination reactions, their catalytic variants remain underdeveloped. We explored the use of transition metal catalysis to form ylide equivalents from readily available starting materials. Our investigation led to a new copper-catalyzed olefination of imines with alkenyl boronate esters as coupling partners. We identified a heterobimetallic complex, obtained by hydrocupration of the alkenyl boronate esters, as the key catalytic intermediate that serves as an ylide equivalent. The high E-selectivity observed in the reaction is due to the stereoselective addition of this intermediate to an imine, followed by stereospecific anti-elimination.
Collapse
Affiliation(s)
- James E Baumann
- Department of Chemistry, University of Washington, 109 Bagley Hall, 98195, Seattle, WA, USA
| | - Crystal P Chung
- Department of Chemistry, University of Washington, 109 Bagley Hall, 98195, Seattle, WA, USA
| | - Gojko Lalic
- Department of Chemistry, University of Washington, 109 Bagley Hall, 98195, Seattle, WA, USA
| |
Collapse
|
18
|
Lyu MY, Morais GN, Chen S, Brown MK. Ni-Catalyzed 1,1- and 1,3-Aminoboration of Unactivated Alkenes. J Am Chem Soc 2023; 145:27254-27261. [PMID: 38078874 PMCID: PMC11078560 DOI: 10.1021/jacs.3c12770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Alkene borylfunctionalization reactions have emerged as useful methods for chemical synthesis. While much progress has been made on 1,2-borylamination reactions, the related 1,1- and 1,3-borylaminations have not been reported. Herein, a Ni-catalyzed 1,1-borylamination of 1,1-disubstituted and monosubstituted alkenes and a 1,3-borylamination of cyclic alkenes are presented. Key to development of these reactions was the identification of an alkyllithium activator in combination with Mg salts. The utility of the products and the mechanistic details are discussed.
Collapse
Affiliation(s)
- Mao-Yun Lyu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Gabriel N Morais
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St, Oberlin, Ohio 44074, United States
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St, Oberlin, Ohio 44074, United States
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| |
Collapse
|
19
|
Zhao T, Xu H, Tian Y, Tang X, Dang Y, Ge S, Ma J, Zhang F. Copper-Catalyzed Regio- and Enantioselective Hydroboration of Difluoroalkyl-Substituted Internal Alkenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304194. [PMID: 37880870 PMCID: PMC10724385 DOI: 10.1002/advs.202304194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/28/2023] [Indexed: 10/27/2023]
Abstract
Catalytic asymmetric hydroboration of fluoroalkyl-substituted alkenes is a straightforward approach to access chiral small molecules possessing both fluorine and boron atoms. However, enantioselective hydroboration of fluoroalkyl-substituted alkenes without fluorine elimination has been a long-standing challenge in this field. Herein, a copper-catalyzed hydroboration of difluoroalkyl-substituted internal alkenes with high levels of regio- and enantioselectivities is reported. The native carbonyl directing group, copper hydride system, and bisphosphine ligand play crucial roles in suppressing the undesired fluoride elimination. This atom-economic protocol provides a practical synthetic platform to obtain a wide scope of enantioenriched secondary boronates bearing the difluoromethylene moieties under mild conditions. Synthetic applications including functionalization of biorelevant molecules, versatile functional group interconversions, and preparation of difluoroalkylated Terfenadine derivative are also demonstrated.
Collapse
Affiliation(s)
- Tao‐Qian Zhao
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207P. R. China
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Hui Xu
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| | - Yu‐Chen Tian
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207P. R. China
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| | - Xiaodong Tang
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207P. R. China
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| | - Yanfeng Dang
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| | - Shaozhong Ge
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Jun‐An Ma
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207P. R. China
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| | - Fa‐Guang Zhang
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| |
Collapse
|
20
|
Grasruck A, Parla G, Lou L, Langer J, Neiß C, Herrera A, Frieß S, Görling A, Schmid G, Dorta R. Trapping of soluble, KCl-stabilized Cu(I) hydrides with CO 2 gives crystalline formates. Chem Commun (Camb) 2023; 59:13879-13882. [PMID: 37933531 DOI: 10.1039/d3cc03033d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Cu(I)-Hydrido complexes supported by dibenzo[b,f]azepinyl P-alkene hybrid ligands and stabilized by electrostatic interactions in a Cu-H⋯KCl⋯BR3 arrangement can be trapped with CO2 at low temperature to afford Cu(I)-formates. The complexes are isolable with and without a pendant BEt3 group and show strong Cu-O and weak B-O interactions.
Collapse
Affiliation(s)
- Alexander Grasruck
- Department Chemie und Pharmazie, Anorganische und Allgemeine Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Giorgio Parla
- Department Chemie und Pharmazie, Anorganische und Allgemeine Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Lisha Lou
- Department Chemie und Pharmazie, Anorganische und Allgemeine Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Jens Langer
- Department Chemie und Pharmazie, Anorganische und Allgemeine Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Christian Neiß
- Department Chemie und Pharmazie, Theoretische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Alberto Herrera
- Department Chemie und Pharmazie, Anorganische und Allgemeine Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Sybille Frieß
- Department Chemie und Pharmazie, Anorganische und Allgemeine Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Andreas Görling
- Department Chemie und Pharmazie, Theoretische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Günter Schmid
- Siemens Energy Global GmbH & Co. KG, New Energy Business - Technology & Products, Freyeslebenstraße 1, 91058 Erlangen, Germany
| | - Romano Dorta
- Department Chemie und Pharmazie, Anorganische und Allgemeine Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| |
Collapse
|
21
|
Hussein AA, Ariffin A. Remote Steric and Electronic Effects of N-Heterocyclic Carbene Ligands on Alkene Reactivity and Regioselectivity toward Hydrocupration Reactions: The Role of Expanded-Ring N-Heterocyclic Carbenes. J Org Chem 2023; 88:13009-13021. [PMID: 37649423 DOI: 10.1021/acs.joc.3c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The remote groups in N-heterocyclic carbene (NHC) ligands have a significant influence on metal-catalyzed reactions. We examine how remote bulkiness, electronic groups, and expanded-ring NHCs (ER-NHCs) influence alkene reactivity and regioselectivity toward hydrocupration using density functional theory calculations. The impact of remote steric bulkiness on the Cu-H insertion rate is analyzed, revealing a strong correlation between the steric substituent constant and rate ratio, where a bulky group increases the rate due to reduced steric effects in the transition state (TS). The steric properties of the examined catalysts (with a remote group R2 = CPh3, CHPh2, CH2Ph, CH3, and H) and their corresponding TSs are found to be modulated greatly by the remote steric substitution group and the ring size of the NHC ligand. Enhanced bulkiness enhances the nucleophilic Cu-H moiety. The remote electronic groups have a smaller impact on insertion barrier compared to that of steric hindrance. Furthermore, ER-NHC exploration indicates that NHCs with over five-membered rings have a significantly negative influence on the reaction rate. Finally, with a highly bulky group (R2 = CPh3), anti-Markovnikov insertion preference is attributed to high interaction energy and improved steric properties. Overall, our findings here provide valuable insights for the development of a more effective catalyst in metal-catalyzed reactions.
Collapse
Affiliation(s)
- Aqeel A Hussein
- Department of Medical Laboratory Science, College of Science, Komar University of Science and Technology, Sulaymaniyah, Kurdistan Region 46001, Iraq
- Department of Biology, College of Science, Al-Qasim Green University, Al-Qassim, Babylon 51013, Iraq
| | - Azhar Ariffin
- Department of Chemistry, Faculty of Science, University Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
22
|
Liao JH, Brocha Silalahi RP, Chiu TH, Liu CW. Locating Interstitial Hydrides in MH 2@Cu 14 (M = Cu, Ag) Clusters by Single-Crystal X-ray Diffraction. ACS OMEGA 2023; 8:31541-31547. [PMID: 37663474 PMCID: PMC10468881 DOI: 10.1021/acsomega.3c04758] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023]
Abstract
Two structures, [Cu15H2(S2CNnBu2)6(C≡CPh)6][CuCl2] (1) and [AgH2Cu14{S2P(OiPr)2}6(C≡CPh)6][PF6] (2), are characterized by X-ray crystallography with high-quality single crystals. The position of interstitial hydrides can be accurately located. In addition, the refinement of the hydrides with anisotropic displacement parameters (ADPs) was successful. The distances between the central atom and copper atoms, as well as the distances within the metal cages surrounding the hydrides, are analyzed and compared with similar MH2@Cu14 (M = Cu, Ag, Pd) compounds. This work provides a thoughtful and accurate assessment of the considerations and challenges associated with anisotropic refinement for H atoms, particularly in X-ray data collection.
Collapse
Affiliation(s)
- Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan (Republic of China)
| | - Rhone P. Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan (Republic of China)
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan (Republic of China)
| | - C. W. Liu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan (Republic of China)
| |
Collapse
|
23
|
Abstract
Heteroatom-centered diradical(oid)s have been in the focus of molecular main group chemistry for nearly 30 years. During this time, the diradical concept has evolved and the focus has shifted to the rational design of diradical(oid)s for specific applications. This review article begins with some important theoretical considerations of the diradical and tetraradical concept. Based on these theoretical considerations, the design of diradical(oid)s in terms of ligand choice, steric, symmetry, electronic situation, element choice, and reactivity is highlighted with examples. In particular, heteroatom-centered diradical reactions are discussed and compared with closed-shell reactions such as pericyclic additions. The comparison between closed-shell reactivity, which proceeds in a concerted manner, and open-shell reactivity, which proceeds in a stepwise fashion, along with considerations of diradical(oid) design, provides a rational understanding of this interesting and unusual class of compounds. The application of diradical(oid)s, for example in small molecule activation or as molecular switches, is also highlighted. The final part of this review begins with application-related details of the spectroscopy of diradical(oid)s, followed by an update of the heteroatom-centered diradical(oid)s and tetraradical(oid)s published in the last 10 years since 2013.
Collapse
Affiliation(s)
- Alexander Hinz
- Institut für Anorganische Chemie (AOC), Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Jonas Bresien
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| | - Frank Breher
- Institut für Anorganische Chemie (AOC), Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Axel Schulz
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| |
Collapse
|
24
|
Wang D, Lang W, Wang W, Zou Q, Yang C, Liu F, Zhao T. CuH-Catalyzed Selective N-Methylation of Amines Using Paraformaldehyde as a C1 Source. ACS OMEGA 2023; 8:30640-30645. [PMID: 37636962 PMCID: PMC10448681 DOI: 10.1021/acsomega.3c04332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Copper hydride (CuH) complexes have been proposed as key intermediates in synthesis and catalysis. Herein, we developed a highly efficient strategy for CuH-catalyzed N-methylation of aromatic and aliphatic amines using paraformaldehyde and polymethylhydrosiloxane (PMHS) under mild reaction conditions. The reaction proceeded smoothly without additives to furnish the corresponding N-methylated products using cyclic(alkyl)(amino)carbene (CAAC)CuH as a reaction intermediate, which results from a reaction between PMHS and (CAAC)CuCl.
Collapse
Affiliation(s)
- Diedie Wang
- Key Laboratory of Green Chemical and
Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Wanglv Lang
- Key Laboratory of Green Chemical and
Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Wan Wang
- Key Laboratory of Green Chemical and
Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Qizhuang Zou
- Key Laboratory of Green Chemical and
Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Chunliang Yang
- Key Laboratory of Green Chemical and
Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Fei Liu
- Key Laboratory of Green Chemical and
Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Tianxiang Zhao
- Key Laboratory of Green Chemical and
Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
25
|
Sarkar S, Ghosh S, Kurandina D, Noffel Y, Gevorgyan V. Enhanced Excited-State Hydricity of Pd-H Allows for Unusual Head-to-Tail Hydroalkenylation of Alkenes. J Am Chem Soc 2023; 145:12224-12232. [PMID: 37224263 PMCID: PMC10750326 DOI: 10.1021/jacs.3c02410] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Photoinduced enhancement of hydricity of palladium hydride species enables unprecedented hydride addition-like ("hydridic") hydropalladation of electron-deficient alkenes, which allows for chemoselective head-to-tail cross-hydroalkenylation of electron-deficient and electron-rich alkenes. This mild and general protocol works with a wide range of densely functionalized and complex alkenes. Notably, this approach also allows for highly challenging cross-dimerization of electronically diverse vinyl arenes and heteroarenes.
Collapse
Affiliation(s)
- Sumon Sarkar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Soumen Ghosh
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Daria Kurandina
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Yusuf Noffel
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
26
|
Kaghad A, Panagopoulos D, Caballero-García G, Zhai H, Britton R. An α-chloroaldehyde-based formal synthesis of eribulin. Nat Commun 2023; 14:1904. [PMID: 37019928 PMCID: PMC10076431 DOI: 10.1038/s41467-023-37346-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Eribulin (Halaven) is the most structurally complex non-peptidic drug made by total synthesis and has challenged preconceptions of synthetic feasibility in drug discovery and development. However, despite decades of research, the synthesis and manufacture of eribulin remains a daunting task. Here, we report syntheses of the most complex fragment of eribulin (C14-C35) used in two distinct industrial routes to this important anticancer drug. Our convergent strategy relies on a doubly diastereoselective Corey-Chaykovsky reaction to affect the union of two tetrahydrofuran-containing subunits. Notably, this process relies exclusively on enantiomerically enriched α-chloroaldehydes as building blocks for constructing the three densely functionalized oxygen heterocycles found in the C14-C35 fragment and all associated stereocenters. Overall, eribulin can now be produced in a total of 52 steps, which is a significant reduction from that reported in both academic and industrial syntheses.
Collapse
Affiliation(s)
- Anissa Kaghad
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Dimitrios Panagopoulos
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | | | - Huimin Zhai
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
27
|
Rao GN, Sekar G. Chemo- and Enantioselective Reduction of α-Keto Amides to α-Hydroxy Amides using Reusable CuO-Nanoparticles as Catalyst. J Org Chem 2023; 88:4008-4016. [PMID: 36882934 DOI: 10.1021/acs.joc.3c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
An efficient, commercially available, and reusable copper-oxide nanoparticle (CuO-NPs) and (R)-(-)-DTBM SEGPHOS catalyzed chemo- and enantioselective reduction of α-keto amides to α-hydroxy amides has been developed. The scope of the reaction has been studied with various α-keto amides containing electron-donating and electron-withdrawing groups affording the enantiomerically enriched α-hydroxy amides in good yields with excellent enantioselectivity. The CuO-NPs catalyst has been recovered and reused up to four catalytic cycles without any significant change in particle size, reactivity, and enantioselectivity.
Collapse
Affiliation(s)
| | - Govindasamy Sekar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
28
|
Hu L, Gao H, Hu Y, Wu YB, Lv X, Lu G. Origins of Regioselectivity in CuH-Catalyzed Hydrofunctionalization of Alkenes. J Org Chem 2023. [PMID: 36790843 DOI: 10.1021/acs.joc.2c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Factors controlling the regioselectivity in alkene hydrocupration were computationally investigated using energy decomposition analysis. The results demonstrate that the Markovnikov-selective hydrocupration with electronically activated mono-substituted olefins is mostly affected by the destabilizing Pauli repulsion, which is due to the electron delocalization effect. The anti-Markovnikov-selective hydrocupration with 1,1-dialkyl-substituted terminal olefins is dominated by the repulsive electrostatic interactions, which is because of the unequal π electron distribution caused by the induction effect of alkyl substituents.
Collapse
Affiliation(s)
- Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Han Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yanlei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yan-Bo Wu
- Key Lab for Materials of Energy Conversion and Storage of Shanxi Province and Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiangying Lv
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
29
|
Xie J, Zheng Z, Liu X, Zhang N, Choi S, He C, Dong G. Asymmetric Total Synthesis of (+)-Phainanoid A and Biological Evaluation of the Natural Product and Its Synthetic Analogues. J Am Chem Soc 2023; 145:4828-4852. [PMID: 36799470 DOI: 10.1021/jacs.2c13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Here, we report our detailed efforts toward the synthesis of phainanoids, a novel class of dammarane-type triterpenoids with potent immunosuppressive activities and unique structural features. Systematic model studies have been carried out, and efficient approaches have been established to construct the benzofuranone-based 4,5-spirocycle, the D/E/F tricyclic core, the [4.3.1] propellane, and the 5,5-oxaspirolactone moieties. The asymmetric synthesis of (+)-phainanoid A has been achieved through kinetic resolution of the tricyclic core followed by diastereoselective installation of the A/B/C and G/H rings and fragment coupling with the enantioenriched I/J rings. In addition, novel estrone-derived phainanoid analogues have been prepared. The immunosuppressive and cell survival assays revealed that (+)-phainanoid A and some of its synthetic analogues can specifically inhibit stimulation-induced lymphocyte proliferation but not cell survival at their effective concentrations. Preliminary structure-activity relationship information has been obtained, which could inspire future design of immunosuppressive phainanoid analogues.
Collapse
Affiliation(s)
- Jiaxin Xie
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Zhong Zheng
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Xin Liu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Nan Zhang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Shinyoung Choi
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
30
|
Zhu Q, Deng Z, Xie H, Xing M, Zhang J. Investigation of Concerted Proton–Electron Donors for Promoting the Selective Production of HCOOH in CO 2 Photoreduction. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Qiaohong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zesheng Deng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co.Ltd. Y2, Second Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen’er West Road, Xihu District, Hangzhou City, Zhejiang Province 310003, China
| | - Mingyang Xing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
31
|
Ou Y, Ye Q, Deng W, Xu Z. Mechanism and Origin of CuH‐Catalyzed Regio‐ and Enantioselective Hydrocarboxylation of Allenes. European J Org Chem 2023. [DOI: 10.1002/ejoc.202201422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Yu‐Ru Ou
- School of Chemical and Environmental Engineering Shanghai Institute of Technology Shanghai 201400 P. R. China
| | - Qi Ye
- School of Chemical and Environmental Engineering Shanghai Institute of Technology Shanghai 201400 P. R. China
| | - Wei Deng
- School of Chemical and Environmental Engineering Shanghai Institute of Technology Shanghai 201400 P. R. China
| | - Zheng‐Yang Xu
- School of Chemical and Environmental Engineering Shanghai Institute of Technology Shanghai 201400 P. R. China
| |
Collapse
|
32
|
Lonardi G, Parolin R, Licini G, Orlandi M. Catalytic Asymmetric Conjugate Reduction. Angew Chem Int Ed Engl 2023; 62:e202216649. [PMID: 36757599 DOI: 10.1002/anie.202216649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/16/2023] [Accepted: 02/09/2023] [Indexed: 02/10/2023]
Abstract
Enantioselective reduction reactions are privileged transformations for the construction of trisubstituted stereogenic centers. While these include established synthetic strategies, such as asymmetric hydrogenation, methods based on the enantioselective addition of hydridic reagents to electrophilic prochiral substrates have also gained importance. In this context, the asymmetric conjugate reduction (ACR) of α,β-unsaturated compounds has become a convenient approach for the synthesis of chiral compounds with trisubstituted stereocenters in α-, β-, or γ-position to electron-withdrawing functional groups. Because such activating groups are diverse and amenable of further derivatizations, ACRs provide a general and powerful synthetic entry towards a variety of valuable chiral building blocks. This Review provides a comprehensive collection of catalytic ACR methods involving transition-metal, organic, and enzymatic catalysis since its first versions dating back to the late 1970s.
Collapse
Affiliation(s)
- Giovanni Lonardi
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Riccardo Parolin
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Giulia Licini
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Manuel Orlandi
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| |
Collapse
|
33
|
Yan M, Zhou Q, Lu P. Collective Synthesis of Chiral Tetrasubstituted Cyclobutanes Enabled by Enantioconvergent Negishi Cross-Coupling of Cyclobutenones. Angew Chem Int Ed Engl 2023; 62:e202218008. [PMID: 36539352 DOI: 10.1002/anie.202218008] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Cyclobutenones provide a straightforward four-carbon ring platform for further structural elaborations in that every carbon atom of the ring could be potentially functionalized. We report here a nickel catalyzed enantioconvergent Negishi coupling of 4-iodocyclobutenones with an array of aryl or alkenyl zinc reagents to access enantioenriched 4-substituted cyclobutenones, from which a modular approach to the synthesis of 1,2,3,4-tetrasubstituted cyclobutanes was demonstrated.
Collapse
Affiliation(s)
- Min Yan
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, 200433, Shanghai, P. R. China
| | - Qiang Zhou
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, 200433, Shanghai, P. R. China
| | - Ping Lu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, 200433, Shanghai, P. R. China
| |
Collapse
|
34
|
Zhang M, Zhao M, Wang Y, Chen L, Li G, Liu B, You X, Sun W, Hong L. Synthesis and Biological Evaluation of Phthalideisoquinoline Derivatives. J Org Chem 2023; 88:1720-1729. [PMID: 36651751 DOI: 10.1021/acs.joc.2c02702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A photo and Cu-mediated radical-radical approach enabling the one-step synthesis of the phthalideisoquinoline skeleton has been reported. Under mild reaction conditions, a series of N-aryl phthalideisoquinolines containing various substituents were synthesized in moderate to good yields. Bioactivity data demonstrated that a new compound 4x can efficiently inhibit the growth of multiple tumor cell lines with enhancements of more than 10-fold by significantly increasing G2/M arrest compared with noscapine.
Collapse
Affiliation(s)
- Ming Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou510006, China
| | - Man Zhao
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen518060, China
| | - Ying Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen518060, China
| | - Lu Chen
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen518060, China
| | - Guofeng Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen518060, China
| | - Bohan Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou510006, China
| | - Xiaobin You
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou510006, China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou730000, China
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou510006, China
| |
Collapse
|
35
|
English LE, Horsley Downie TM, Lyall CL, Mahon MF, McMullin CL, Neale SE, Saunders CM, Liptrot DJ. Selective hydroboration of electron-rich isocyanates by an NHC-copper(I) alkoxide. Chem Commun (Camb) 2023; 59:1074-1077. [PMID: 36621804 DOI: 10.1039/d2cc04742j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The (IPr)CuOtBu catalysed reduction of 11 aryl and alkyl isocyanates with pinacolborane gave only the boraformamides, pinBN(R)C(O)H, in most cases. Overreduction, which hampers almost all isocyanate hydroborations, was restricted to electron poor aryl isocyanates (4-NC-C6H4NCO, 4-F3C-C6H4NCO, 3-O2N-C6H4NCO). Computational analysis showed stability of [(IPr)CuH]2, which was proposed to be the catalyst resting state, drives selectivity, suggesting an approach to prevent overreduction in future work. In the case of iPrNCO, formation of this species renders overreduction kinetically inaccessible. For 4-NC-C6H4NCO, however, the barrier height for the first step of over-reduction is much lower, even relative to [(IPr)CuH]2, resulting in unselective reduction.
Collapse
Affiliation(s)
- Laura E English
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,Centre for Sustainable and Circular Technologies, Bath, BA2 7AY, UK
| | | | | | - Mary F Mahon
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | | | - Samuel E Neale
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | | | - David J Liptrot
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
36
|
Nakamura S, Nishino S, Hirano K. Synthesis of α-Aminophosphonates by Umpolung-Enabled Cu-Catalyzed Regioselective Hydroamination. J Org Chem 2023; 88:1270-1281. [PMID: 36628565 DOI: 10.1021/acs.joc.2c02632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A copper-catalyzed regioselective hydroamination of α,β-unsaturated phosphonates has been developed to form corresponding α-aminophosphonates of interest in medicinal chemistry. The introduction of an umpolung, electrophilic amination strategy with the hydroxylamine derivative is the key to achieving the α-amination regioselectivity, which is otherwise difficult under the conventional nucleophilic hydroamination conditions with the parent amine. Asymmetric synthesis with a chiral bisphosphine ligand and application to a related silylamination reaction are also described.
Collapse
Affiliation(s)
- Shogo Nakamura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Soshi Nishino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
37
|
Lin W, You L, Yuan W, He C. Cu-Catalyzed Enantioselective Hydrogermylation: Asymmetric Synthesis of Unnatural β-Germyl α-Amino Acids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Weidong Lin
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lijun You
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wei Yuan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
38
|
Ligand-enabled Ni-catalyzed hydroarylation and hydroalkenylation of internal alkenes with organoborons. Nat Commun 2022; 13:6878. [DOI: 10.1038/s41467-022-34675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractThe transition metal-catalyzed hydrofunctionalization of alkenes offers an efficient solution for the rapid construction of complex functional molecules, and significant progress has been made during last decades. However, the hydrofunctionalization of internal alkenes remains a significant challenge due to low reactivity and the difficulties of controlling the regioselectivity. Here, we report the hydroarylation and hydroalkenylation of internal alkenes lacking a directing group with aryl and alkenyl boronic acids in the presence of a nickel catalyst, featuring a broad substrate scope and wide functional group tolerance under redox-neutral conditions. The key to achieving this reaction is the identification of a bulky 1-adamantyl β-diketone ligand, which is capable of overcoming the low reactivity of internal 1,2-disubstituted alkenes. Preliminary mechanistic studies unveiled that this reaction undergoes an Ar-Ni(II)-H initiated hydroarylation process, which is generated by the oxidative addition of alcoholic solvent with Ni(0) species and sequential transmetalation. In addition, the oxidative addition of the alcoholic solvent proves to be the turnover-limiting step.
Collapse
|
39
|
Schuppe AW, Liu Y, Gonzalez-Hurtado E, Zhao Y, Jiang X, Ibarraran S, Huang D, Wang E, Lee J, Loria JP, Dixit VD, Li X, Newhouse TR. Unified Total Synthesis of the Limonoid Alkaloids: Strategies for the De Novo Synthesis of Highly Substituted Pyridine Scaffolds. Chem 2022; 8:2856-2887. [PMID: 37396824 PMCID: PMC10311986 DOI: 10.1016/j.chempr.2022.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Highly substituted pyridine scaffolds are found in many biologically active natural products and therapeutics. Accordingly, numerous complementary de novo approaches to obtain differentially substituted pyridines have been disclosed. This article delineates the evolution of the synthetic strategies designed to assemble the demanding tetrasubstituted pyridine core present in the limonoid alkaloids isolated from Xylocarpus granatum, including xylogranatopyridine B, granatumine A and related congeners. In addition, NMR calculations suggested structural misassignment of several limonoid alkaloids, and predicted their C3-epimers as the correct structures, which was further validated unequivocally through chemical synthesis. The materials produced in this study were evaluated for cytotoxicity, anti-oxidant effects, anti-inflammatory action, PTP1B and Nlrp3 inflammasome inhibition, which led to compelling anti-inflammatory activity and anti-oxidant effects being discovered.
Collapse
Affiliation(s)
- Alexander W. Schuppe
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Yannan Liu
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Elsie Gonzalez-Hurtado
- Department of Pathology, Immunobiology, Comparative Medicine, Yale School of Medicine, 310 Cedar Street, New Haven, Connecticut 06520, United States
| | - Yizhou Zhao
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Xuefeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310018, P. R. China
| | - Sebastian Ibarraran
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - David Huang
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Emma Wang
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Jaehoo Lee
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - J. Patrick Loria
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Vishwa Deep Dixit
- Department of Pathology, Immunobiology, Comparative Medicine, Yale School of Medicine, 310 Cedar Street, New Haven, Connecticut 06520, United States
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310018, P. R. China
| | - Timothy R. Newhouse
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
- Lead contact
| |
Collapse
|
40
|
Sunada Y, Yamaguchi K, Suzuki K. “Template synthesis” of discrete metal clusters with two- or three-dimensional architectures. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Moreno González A, Nicholson K, Llopis N, Nichol GS, Langer T, Baeza A, Thomas SP. Diastereoselective, Catalytic Access to Cross-Aldol Products Directly from Esters and Lactones. Angew Chem Int Ed Engl 2022; 61:e202209584. [PMID: 35916601 PMCID: PMC9804986 DOI: 10.1002/anie.202209584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 01/09/2023]
Abstract
High oxidation-state carbonyl coupling partners including esters and lactones were reacted with enones to give aldol-type products directly using two-fold organoborane catalysis. This new retrosynthetic disconnection to aldol-type products is compatible with enolisable coupling partners, without self-condensation, and couples the high reactivity of secondary dialkylboranes with the stability of pinacolboronic esters. Excellent chemoselectivity, substrate scope (including those containing reducible functionalities and free alcohols) and diastereocontrol were achieved to access both the syn- and anti-aldol-type products. Mechanistic studies confirmed the two-fold catalytic role of the single secondary borane catalyst for boron enolate formation and formation of an aldehyde surrogate from the ester or lactone coupling partner.
Collapse
Affiliation(s)
- Adrián Moreno González
- EaStCHEM School of ChemistryUniversity of EdinburghDavid Brewster RoadEdinburghEH9 3FJUK
| | - Kieran Nicholson
- EaStCHEM School of ChemistryUniversity of EdinburghDavid Brewster RoadEdinburghEH9 3FJUK
| | - Natalia Llopis
- EaStCHEM School of ChemistryUniversity of EdinburghDavid Brewster RoadEdinburghEH9 3FJUK
| | - Gary S. Nichol
- EaStCHEM School of ChemistryUniversity of EdinburghDavid Brewster RoadEdinburghEH9 3FJUK
| | - Thomas Langer
- AstraZeneca Pharmaceutical Technology & DevelopmentChemical Development UKSilk RoadMacclesfieldSK10 2NAUK
| | - Alejandro Baeza
- Instituto de Síntesis Orgánica and Dpto. de Química OrgánicaUniversidad de AlicanteApdo. 9903080AlicanteSpain
| | - Stephen P. Thomas
- EaStCHEM School of ChemistryUniversity of EdinburghDavid Brewster RoadEdinburghEH9 3FJUK
| |
Collapse
|
42
|
Thomas S, González AM, Nicholson K, Llopis N, Nichol GS, Langer T, Baeza A. Diastereoselective, Catalytic Access to Cross‐aldol Products Directly from Esters and Lactones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stephen Thomas
- University of Edinburgh School of Chemistry Joseph Black Building,King's Buildings, West Mains Road EH9 3FJ Edinburgh UNITED KINGDOM
| | | | - Kieran Nicholson
- The University of Edinburgh School of Chemistry School of Chemistry UNITED KINGDOM
| | - Natalia Llopis
- The University of Edinburgh School of Chemistry School of Chemistry UNITED KINGDOM
| | - Gary S. Nichol
- The University of Edinburgh School of Chemistry School of Chemistry UNITED KINGDOM
| | - Thomas Langer
- AstraZeneca UK Ltd Macclesfield Chemical Development UK UNITED KINGDOM
| | - Alejandro Baeza
- Universidad de Alicante: Universitat d'Alacant Dpto. de Química Orgánica SPAIN
| |
Collapse
|
43
|
Wang Y, Yin J, Li Y, Yuan X, Xiong T, Zhang Q. Copper-Catalyzed Asymmetric Conjugate Addition of Alkene-Derived Nucleophiles to Alkenyl-Substituted Heteroarenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ying Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - JianJun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yanfei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
44
|
Carroll TG, Ryan DE, Erickson JD, Bullock RM, Tran BL. Isolation of a Cu–H Monomer Enabled by Remote Steric Substitution of a N-Heterocyclic Carbene Ligand: Stoichiometric Insertion and Catalytic Hydroboration of Internal Alkenes. J Am Chem Soc 2022; 144:13865-13873. [DOI: 10.1021/jacs.2c05376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Timothy G. Carroll
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David E. Ryan
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jeremy D. Erickson
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - R. Morris Bullock
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ba L. Tran
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
45
|
Bienenmann RLM, Schanz AJ, Ooms PL, Lutz M, Broere DLJ. A Well-Defined Anionic Dicopper(I) Monohydride Complex that Reacts like a Cluster. Angew Chem Int Ed Engl 2022; 61:e202202318. [PMID: 35412679 PMCID: PMC9400846 DOI: 10.1002/anie.202202318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 11/08/2022]
Abstract
Low-nuclearity copper hydrides are rare and few well-defined dicopper hydrides have been reported. Herein, we describe the first example of a structurally characterized anionic dicopper hydride complex. This complex does not display typical reactivity associated with low-nuclearity copper hydrides, such as alcoholysis or insertion reactions. Instead, its stoichiometric and catalytic reactivity is akin to that of copper hydride clusters. The distinct reactivity is ascribed to the robust dinuclear core that is bound tightly within the dinucleating ligand scaffold.
Collapse
Affiliation(s)
- Roel L. M. Bienenmann
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Alexandra J. Schanz
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Pascale L. Ooms
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Martin Lutz
- Structural BiochemistryBijvoet Centre for Biomolecular ResearchFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Daniël L. J. Broere
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
46
|
Bienenmann RLM, Schanz AJ, Ooms PL, Lutz M, Broere DLJ. A Well‐Defined Anionic Dicopper(I) Monohydride Complex that Reacts like a Cluster**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Roel L. M. Bienenmann
- Organic Chemistry and Catalysis Debye Institute for Nanomaterials Science Faculty of Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Alexandra J. Schanz
- Organic Chemistry and Catalysis Debye Institute for Nanomaterials Science Faculty of Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Pascale L. Ooms
- Organic Chemistry and Catalysis Debye Institute for Nanomaterials Science Faculty of Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Martin Lutz
- Structural Biochemistry Bijvoet Centre for Biomolecular Research Faculty of Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Daniël L. J. Broere
- Organic Chemistry and Catalysis Debye Institute for Nanomaterials Science Faculty of Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| |
Collapse
|
47
|
Synthesis of poly(silyl ether)s via copper-catalyzed dehydrocoupling polymerization. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Liu CY, Yuan SF, Wang S, Guan ZJ, Jiang DE, Wang QM. Structural transformation and catalytic hydrogenation activity of amidinate-protected copper hydride clusters. Nat Commun 2022; 13:2082. [PMID: 35440582 PMCID: PMC9018778 DOI: 10.1038/s41467-022-29819-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Copper hydrides are important hydrogenation catalysts, but their poor stability hinders the practical applications. Ligand engineering is an effective strategy to tackle this issue. An amidinate ligand, N,N'-Di(5-trifluoromethyl-2-pyridyl)formamidinate (Tf-dpf) with four N-donors has been applied as a protecting agent in the synthesis of stable copper hydride clusters: Cu11H3(Tf-dpf)6(OAc)2 (Cu11) with three interfacial μ5-H and [Cu12H3(Tf-dpf)6(OAc)2]·OAc (Cu12) with three interstitial μ6-H. A solvent-triggered reversible interconversion between Cu11 and Cu12 has been observed thanks to the flexibility of Tf-dpf. Cu11 shows high activity in the reduction of 4-nitrophenol to 4-aminophenol, while Cu12 displays very low activity. Deuteration experiments prove that the type of hydride is the key in dictating the catalytic activity, for the interfacial μ5-H species in Cu11 are involved in the catalytic cycle whereas the interstitial μ6-H species in Cu12 are not. This work highlights the role of hydrides with regard to catalytic hydrogenation activity.
Collapse
Affiliation(s)
- Chun-Yu Liu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, 10084, Beijing, PR China
| | - Shang-Fu Yuan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, 10084, Beijing, PR China
| | - Song Wang
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Zong-Jie Guan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, 10084, Beijing, PR China
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Quan-Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, 10084, Beijing, PR China.
| |
Collapse
|
49
|
Li ZW, An DL, Wei ZB, Li YY, Gao JX. Hydrosilylation of ketones catalyzed by novel four-coordinate copper(I) complexes under mild conditions. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Fang J, Liu Z, Xie Y, Lu X. 炔铜(I)纳米团簇的合成、结构规律与光电性质. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2021-1084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|