1
|
Skoulas D, Ojo OM, Thalhammer A, Kochovski Z, Schlaad H. Solution Behavior of Glyco-Copoly(l-Glutamic Acid)s in Dilute Saline Solution. Biomacromolecules 2024; 25:3724-3730. [PMID: 38743032 PMCID: PMC11170941 DOI: 10.1021/acs.biomac.4c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
A small series of copoly(α,l-glutamic acid/dl-allylglycine)s with the same chain length and allylglycine content (∼10 mol %) but different spatial distribution of allylglycine units was synthesized and subsequently glycosylated via thiol-ene chemistry. Dilute aqueous copolypeptide solutions (0.1 wt %, physiological saline) were analyzed by circular dichroism spectroscopy, dynamic light scattering, and cryogenic transmission electron microscopy. The copolypeptides adopted a random coil or α-helix conformation, depending on solution pH, and the glycosylated residues either distorted or enhanced the folding into an α-helix depending on their location and spatial distribution along the chain. However, regardless of their secondary structure and degree of charging, all partially glycosylated copolypeptides self-assembled into 3D spherical structures, supposedly driven by a hydrophilic effect promoting microphase separation into glucose-rich and glutamate-rich domains.
Collapse
Affiliation(s)
- Dimitrios Skoulas
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Olusola Mary Ojo
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Anja Thalhammer
- Institute
of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Zdravko Kochovski
- Institute
for Electrochemical Energy Storage, Helmholtz-Zentrum
Berlin, Hahn-Meitner Platz
1, 14109 Berlin, Germany
| | - Helmut Schlaad
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
2
|
Detwiler RE, Kramer JR. Preparation and applications of artificial mucins in biomedicine. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2022; 26:101031. [PMID: 37283850 PMCID: PMC10243510 DOI: 10.1016/j.cossms.2022.101031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Mucus is an essential barrier material that separates organisms from the outside world. This slippery material regulates the transport of nutrients, drugs, gases, and pathogens toward the cell surface. The surface of the cell itself is coated in a mucus-like barrier of glycoproteins and glycolipids. Mucin glycoproteins are the primary component of mucus and the epithelial glycocalyx. Aberrant mucin production is implicated in diverse disease states from cancer and inflammation to pre-term birth and infection. Biological mucins are inherently heterogenous in structure, which has challenged understanding their molecular functions as a barrier and as biochemically active proteins. Therefore, many synthetic materials have been developed as artificial mucins with precisely tunable structures. This review highlights advances in design and synthesis of artificial mucins and their application in biomedical studies of mucin chemistry, biology, and physics.
Collapse
Affiliation(s)
- Rachel E. Detwiler
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch
Dr., Salt Lake City, UT 84112, USA
| | - Jessica R. Kramer
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch
Dr., Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Kohout VR, Wardzala CL, Kramer JR. Synthesis and biomedical applications of mucin mimic materials. Adv Drug Deliv Rev 2022; 191:114540. [PMID: 36228896 PMCID: PMC10066857 DOI: 10.1016/j.addr.2022.114540] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 02/09/2023]
Abstract
Mucin glycoproteins are the major component of mucus and coat epithelial cell surfaces forming the glycocalyx. The glycocalyx and mucus are involved in the transport of nutrients, drugs, gases, and pathogens toward the cell surface. Mucins are also involved in diverse diseases such as cystic fibrosis and cancer. Due to inherent heterogeneity in native mucin structure, many synthetic materials have been designed to probe mucin chemistry, biology, and physics. Such materials include various glycopolymers, low molecular weight glycopeptides, glycopolypeptides, polysaccharides, and polysaccharide-protein conjugates. This review highlights advances in the area of design and synthesis of mucin mimic materials, and their biomedical applications in glycan binding, epithelial models of infection, therapeutic delivery, vaccine formulation, and beyond.
Collapse
Affiliation(s)
- Victoria R Kohout
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT 84112, USA
| | - Casia L Wardzala
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT 84112, USA
| | - Jessica R Kramer
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT 84112, USA.
| |
Collapse
|
4
|
Riley NM, Wen RM, Bertozzi CR, Brooks JD, Pitteri SJ. Measuring the multifaceted roles of mucin-domain glycoproteins in cancer. Adv Cancer Res 2022; 157:83-121. [PMID: 36725114 PMCID: PMC10582998 DOI: 10.1016/bs.acr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mucin-domain glycoproteins are highly O-glycosylated cell surface and secreted proteins that serve as both biochemical and biophysical modulators. Aberrant expression and glycosylation of mucins are known hallmarks in numerous malignancies, yet mucin-domain glycoproteins remain enigmatic in the broad landscape of cancer glycobiology. Here we review the multifaceted roles of mucins in cancer through the lens of the analytical and biochemical methods used to study them. We also describe a collection of emerging tools that are specifically equipped to characterize mucin-domain glycoproteins in complex biological backgrounds. These approaches are poised to further elucidate how mucin biology can be understood and subsequently targeted for the next generation of cancer therapeutics.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, United States.
| | - Ru M Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA, United States
| | - Carolyn R Bertozzi
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, United States; Howard Hughes Medical Institute, Stanford, CA, United States
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, United States; Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, United States.
| |
Collapse
|
5
|
Zashikhina N, Levit M, Dobrodumov A, Gladnev S, Lavrentieva A, Tennikova T, Korzhikova-Vlakh E. Biocompatible Nanoparticles Based on Amphiphilic Random Polypeptides and Glycopolymers as Drug Delivery Systems. Polymers (Basel) 2022; 14:polym14091677. [PMID: 35566847 PMCID: PMC9104652 DOI: 10.3390/polym14091677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
In this research, the development and investigation of novel nanoobjects based on biodegradable random polypeptides and synthetic non-degradable glycopolymer poly(2-deoxy-2-methacrylamido-d-glucose) were proposed as drug delivery systems. Two different approaches have been applied for preparation of such nanomaterials. The first one includes the synthesis of block-random copolymers consisting of polypeptide and glycopolymer and capable of self-assembly into polymer particles. The synthesis of copolymers was performed using sequential reversible addition-fragmentation chain transfer (RAFT) and ring-opening polymerization (ROP) techniques. Amphiphilic poly(2-deoxy-2-methacrylamido-d-glucose)-b-poly(l-lysine-co-l-phenylalanine) (PMAG-b-P(Lys-co-Phe)) copolymers were then used for preparation of self-assembled nanoparticles. Another approach for the formation of polypeptide-glycopolymer particles was based on the post-modification of preformed polypeptide particles with an oxidized glycopolymer. The conjugation of the polysaccharide on the surface of the particles was achieved by the interaction of the aldehyde groups of the oxidized glycopolymer with the amino groups of the polymer on particle surface, followed by the reduction of the formed Schiff base with sodium borohydride. A comparative study of polymer nanoparticles developed with its cationic analogues based on random P(Lys-co-d-Phe), as well as an anionic one—P(Lys-co-d-Phe) covered with heparin––was carried out. In vitro antitumor activity of novel paclitaxel-loaded PMAG-b-P(Lys-co-Phe)-based particles towards A549 (human lung carcinoma) and MCF-7 (human breast adenocarcinoma) cells was comparable to the commercially available Paclitaxel-LANS.
Collapse
Affiliation(s)
- Natalia Zashikhina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.L.); (A.D.)
| | - Mariia Levit
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.L.); (A.D.)
| | - Anatoliy Dobrodumov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.L.); (A.D.)
| | - Sergey Gladnev
- Institute of Chemistry, Saint-Petersburg State University, Universitesky pr. 26, 198504 St. Petersburg, Russia; (S.G.); (T.T.)
| | - Antonina Lavrentieva
- Institute of Technical Chemistry, Gottfried-Wilhelm-Leibniz University of Hannover, 30167 Hannover, Germany;
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitesky pr. 26, 198504 St. Petersburg, Russia; (S.G.); (T.T.)
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.L.); (A.D.)
- Correspondence:
| |
Collapse
|
6
|
Ali SZ, Budaitis BG, Fontaine DFA, Pace AL, Garwin JA, White MC. Allylic C-H amination cross-coupling furnishes tertiary amines by electrophilic metal catalysis. Science 2022; 376:276-283. [PMID: 35420962 DOI: 10.1126/science.abn8382] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intermolecular cross-coupling of terminal olefins with secondary amines to form complex tertiary amines-a common motif in pharmaceuticals-remains a major challenge in chemical synthesis. Basic amine nucleophiles in nondirected, electrophilic metal-catalyzed aminations tend to bind to and thereby inhibit metal catalysts. We reasoned that an autoregulatory mechanism coupling the release of amine nucleophiles with catalyst turnover could enable functionalization without inhibiting metal-mediated heterolytic carbon-hydrogen cleavage. Here, we report a palladium(II)-catalyzed allylic carbon-hydrogen amination cross-coupling using this strategy, featuring 48 cyclic and acyclic secondary amines (10 pharmaceutically relevant cores) and 34 terminal olefins (bearing electrophilic functionality) to furnish 81 tertiary allylic amines, including 12 drug compounds and 10 complex drug derivatives, with excellent regio- and stereoselectivity (>20:1 linear:branched, >20:1 E:Z).
Collapse
Affiliation(s)
- Siraj Z Ali
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Brenna G Budaitis
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Devon F A Fontaine
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Andria L Pace
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Jacob A Garwin
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - M Christina White
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
7
|
Mondal B, Mahadik NS, Banerjee R, Sen Gupta S. Design and Synthesis of Shikimoylated-Polypeptides for Nuclear Specific Internalization. ACS Macro Lett 2022; 11:289-295. [PMID: 35575367 DOI: 10.1021/acsmacrolett.1c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Targeted delivery of therapeutics such as small molecule drugs or nucleic acids exclusively to the nucleus of diseased mammalian cells poses a significant challenge. The development of targeting ligands that can specifically enter certain cancer cells via a specific receptor-mediated endocytosis and then traffic exclusively to the nucleus to deliver the cargo inside it can achieve this goal. We have developed an end-functionalized shikimoylated-polypeptide with pendant shikimoyl moieties that can enter mammalian cells via the mannose receptors and are then exclusively trafficked into the nucleus. The presence of the shikimoyl group in the polypeptide, which traffics it exclusively to the nucleus, contrasts with the mannosylated or galactosylated glycopolypeptides that are distributed all over the cytoplasm or the mannose-6-phosphate containing polypeptide that is exclusively trafficked to the lysosome. Using challenge experiments, we demonstrate that these polypeptides can enter both dendritic and cancer cells through mannose-receptors and subsequently enter the cell nucleus via the interaction with a nuclear pore complex (NPC) protein importin-α/β1. To the best of our knowledge, this represents the first example of a synthetic polyvalent glycopolypeptide mimic that performs the dual function of entering mammalian cells through specific receptors and subsequently traffics into the nucleus. The conjugation of these end-functionalized shikimoylated-polypeptides to other biological entities, such as recombinant anticancer drugs, DNA, RNA, and CRISPR-Cas9, may be a suitable alternative for delivery of these biological entities into cells affected by cancer and other genetic diseases.
Collapse
Affiliation(s)
- Basudeb Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur Campus, Nadia, West Bengal-741246, India
| | - Namita S. Mahadik
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana-500007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad-201002, Uttar Pradesh, India
| | - Rajkumar Banerjee
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana-500007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad-201002, Uttar Pradesh, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur Campus, Nadia, West Bengal-741246, India
| |
Collapse
|
8
|
Deleray AC, Kramer JR. Biomimetic Glycosylated Polythreonines by N-Carboxyanhydride Polymerization. Biomacromolecules 2022; 23:1453-1461. [PMID: 35104406 DOI: 10.1021/acs.biomac.2c00020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycosylated threonine (Thr) is a structural motif found in seemingly disparate natural proteins from deep-sea collagen to mucins. Synthetic mimics of these important proteins are of great interest in biomedicine. Such materials also provide ready access to probe the contributions of individual amino acids to protein structure in a controlled and tunable manner. N-Carboxyanhydride (NCA) polymerization is one major route to such biomimetic polypeptides. However, challenges in the preparation and polymerization of Thr NCAs have impeded obtaining such structures. Here, we present optimized routes to several glycosylated and acetylated Thr NCAs of high analytical purity. Transition metal catalysis produced tunable homo-, statistical, and block-polypeptides with predictable chain lengths and low dispersities. We conducted structural work to examine their aqueous conformations and found that a high content of free OH Thr induces the formation of water-insoluble β-sheets. However, glycosylation appears to induce a polyproline II-type helical conformation, which sheds light on the role of glyco-Thr in rigid proteins such as mucins and collagen.
Collapse
Affiliation(s)
- Anna C Deleray
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jessica R Kramer
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
9
|
Zhao T, Terracciano R, Becker J, Monaco A, Yilmaz G, Becer CR. Hierarchy of Complex Glycomacromolecules: From Controlled Topologies to Biomedical Applications. Biomacromolecules 2022; 23:543-575. [PMID: 34982551 DOI: 10.1021/acs.biomac.1c01294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbohydrates bearing a distinct complexity use a special code (Glycocode) to communicate with carbohydrate-binding proteins at a high precision to manipulate biological activities in complex biological environments. The level of complexity in carbohydrate-containing macromolecules controls the amount and specificity of information that can be stored in biomacromolecules. Therefore, a better understanding of the glycocode is crucial to open new areas of biomedical applications by controlling or manipulating the interaction between immune cells and pathogens in terms of trafficking and signaling, which would become a powerful tool to prevent infectious diseases. Even though a certain level of progress has been achieved over the past decade, synthetic glycomacromolecules are still lagging far behind naturally existing glycans in terms of complexity and precision because of insufficient and inefficient synthetic techniques. Currently, specific targeting at a cellular level using synthetic glycomacromolecules is still challenging. It is obvious that multidisciplinary collaborations are essential between different specialized disciplines to enhance the carbohydrate receptor-targeting paradigm for new biomedical applications. In this Perspective, recent developments in the synthesis of sophisticated glycomacromolecules are highlighted, and their biological and biomedical applications are also discussed in detail.
Collapse
Affiliation(s)
- Tieshuai Zhao
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Roberto Terracciano
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Jonas Becker
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Alessandra Monaco
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Gokhan Yilmaz
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - C Remzi Becer
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
10
|
Chen M, Wang H, Guo H, Zhang Y, Chen L. Systematic Investigation of Biocompatible Cationic Polymeric Nucleic Acid Carriers for Immunotherapy of Hepatocellular Carcinoma. Cancers (Basel) 2021; 14:85. [PMID: 35008249 PMCID: PMC8750096 DOI: 10.3390/cancers14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third-largest cause of cancer death worldwide, while immunotherapy is rapidly being developed to fight HCC with great potential. Nucleic acid drugs are the most important modulators in HCC immunotherapy. To boost the efficacy of therapeutics and amplify the efficiency of genetic materials, biocompatible polymers are commonly used. However, under the strong need of a summary for current developments of biocompatible polymeric nucleic acid carriers for immunotherapy of HCC, there is rare review article specific to this topic to our best knowledge. In this article, we will discuss the current progress of immunotherapy for HCC, biocompatible cationic polymers (BCPs) as nucleic acid carriers used (or potential) to fight HCC, the roles of biocompatible polymeric carriers for nucleic acid delivery, and nucleic acid delivery by biocompatible polymers for immunotherapy. At the end, we will conclude the review and discuss future perspectives. This article discusses biocompatible polymeric nucleic acid carriers for immunotherapy of HCC from multidiscipline perspectives and provides a new insight in this domain. We believe this review will be interesting to polymer chemists, pharmacists, clinic doctors, and PhD students in related disciplines.
Collapse
Affiliation(s)
- Mingsheng Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Hao Wang
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Hongying Guo
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Ying Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Liang Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| |
Collapse
|
11
|
Clauss ZS, Wardzala CL, Schlirf AE, Wright NS, Saini SS, Onoa B, Bustamante C, Kramer JR. Tunable, biodegradable grafting-from glycopolypeptide bottlebrush polymers. Nat Commun 2021; 12:6472. [PMID: 34753949 PMCID: PMC8578664 DOI: 10.1038/s41467-021-26808-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/01/2021] [Indexed: 11/09/2022] Open
Abstract
The cellular glycocalyx and extracellular matrix are rich in glycoproteins and proteoglycans that play essential physical and biochemical roles in all life. Synthetic mimics of these natural bottlebrush polymers have wide applications in biomedicine, yet preparation has been challenged by their high grafting and glycosylation densities. Using one-pot dual-catalysis polymerization of glycan-bearing α-amino acid N-carboxyanhydrides, we report grafting-from glycopolypeptide brushes. The materials are chemically and conformationally tunable where backbone and sidechain lengths were precisely altered, grafting density modulated up to 100%, and glycan density and identity tuned by monomer feed ratios. The glycobrushes are composed entirely of sugars and amino acids, are non-toxic to cells, and are degradable by natural proteases. Inspired by native lipid-anchored proteoglycans, cholesterol-modified glycobrushes were displayed on the surface of live human cells. Our materials overcome long-standing challenges in glycobrush polymer synthesis and offer new opportunities to examine glycan presentation and multivalency from chemically defined scaffolds. Synthetic mimics of glycoproteins and proteoglycans have wide applications in biomedicine, yet preparation has been challenged by their high grafting and glycosylation densities. Here the authors show one-pot dual-catalysis polymerization of glycan-bearing α-amino acid N-carboxyanhydrides to form glycopolypeptide brushes.
Collapse
Affiliation(s)
- Zachary S Clauss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Casia L Wardzala
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Austin E Schlirf
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Nathaniel S Wright
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Simranpreet S Saini
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Bibiana Onoa
- Howard Hughes Medical Institute University of California Berkeley, Berkeley, CA, 94720, USA
| | - Carlos Bustamante
- Howard Hughes Medical Institute University of California Berkeley, Berkeley, CA, 94720, USA.,Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA.,Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Physics, University of California Berkeley, Berkeley, CA, 94720, USA.,Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Jessica R Kramer
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA. .,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, 84102, USA.
| |
Collapse
|
12
|
Pelras T, Loos K. Strategies for the synthesis of sequence-controlled glycopolymers and their potential for advanced applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Geng C, Wang S, Wang H. Recent Advances in Thermoresponsive OEGylated Poly(amino acid)s. Polymers (Basel) 2021; 13:1813. [PMID: 34072769 PMCID: PMC8198699 DOI: 10.3390/polym13111813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/15/2021] [Accepted: 05/25/2021] [Indexed: 12/23/2022] Open
Abstract
Thermoresponsive polymers have been widely studied in the past decades due to their potential applications in biomedicine, nanotechnology, and so on. As is known, poly(N-isopropylacrylamide) (PNIPAM) and poly(oligo(ethylene glycol)methacrylates) (POEGMAs) are the most popular thermoresponsive polymers, and have been studied extensively. However, more advanced thermoresponsive polymers with excellent biocompatibility, biodegradability, and bioactivity also need to be developed for biomedical applications. OEGylated poly(amino acid)s are a kind of novel polymer which are synthesized by attaching one or multiple oligo(ethylene glycol) (OEG) chains to poly(amino acid) (PAA).These polymers combine the great solubility of OEG, and the excellent biocompatibility, biodegradability and well defined secondary structures of PAA. These advantages allow them to have great application prospects in the field of biomedicine. Therefore, the study of OEGylated poly(amino acid)s has attracted more attention recently. In this review, we summarized the development of thermoresponsive OEGylated poly(amino acid)s in recent years, including the synthesis method (such as ring-opening polymerization, post-polymerization modification, and Ugi reaction), stimuli-response behavior study, and secondary structure study. We hope that this periodical summary will be more conducive to design, synthesis and application of OEGylated poly(amino acid)s in the future.
Collapse
Affiliation(s)
| | - Shixue Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin 130022, China; (C.G.); (H.W.)
| | | |
Collapse
|
14
|
Ge C, Ye H, Wu F, Zhu J, Song Z, Liu Y, Yin L. Biological applications of water-soluble polypeptides with ordered secondary structures. J Mater Chem B 2021; 8:6530-6547. [PMID: 32567639 DOI: 10.1039/d0tb00902d] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Water-soluble polypeptides are a class of synthetic polymers with peptide bond frameworks imitating natural proteins and have broad prospects in biological applications. The regulation and dynamic transition of the secondary structures of water-soluble polypeptides have a great impact on their physio-chemical properties and biological functions. In this review article, we briefly introduce the current strategies to synthesize polypeptides and modulate their secondary structures. We then discuss the factors affecting the conformational stability/transition of polypeptides and the potential impact of side-chain functionalization on the ordered secondary structures, such as α-helix and β-sheet. We then summarize the biological applications of water-soluble polypeptides such as cell penetration, gene delivery, and antimicrobial treatment, highlighting the important roles of ordered secondary structures therein.
Collapse
Affiliation(s)
- Chenglong Ge
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Dharmayanti C, Gillam TA, Klingler-Hoffmann M, Albrecht H, Blencowe A. Strategies for the Development of pH-Responsive Synthetic Polypeptides and Polymer-Peptide Hybrids: Recent Advancements. Polymers (Basel) 2021; 13:624. [PMID: 33669548 PMCID: PMC7921987 DOI: 10.3390/polym13040624] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Synthetic polypeptides and polymer-peptide hybrid materials have been successfully implemented in an array of biomedical applications owing to their biocompatibility, biodegradability and ability to mimic natural proteins. In addition, these materials have the capacity to form complex supramolecular structures, facilitate specific biological interactions, and incorporate a diverse selection of functional groups that can be used as the basis for further synthetic modification. Like conventional synthetic polymers, polypeptide-based materials can be designed to respond to external stimuli (e.g., light and temperature) or changes in the environmental conditions (e.g., redox reactions and pH). In particular, pH-responsive polypeptide-based systems represent an interesting avenue for the preparation of novel drug delivery systems that can exploit physiological or pathological pH variations within the body, such as those that arise in the extracellular tumour microenvironment, intracellularly within endosomes/lysosomes, or during tissue inflammation. Here, we review the significant progress made in advancing pH-responsive polypeptides and polymer-peptide hybrid materials during the last five years, with a particular emphasis on the manipulation of ionisable functional groups, pH-labile linkages, pH-sensitive changes to secondary structure, and supramolecular interactions.
Collapse
Affiliation(s)
- Cintya Dharmayanti
- Applied Chemistry and Translational Biomaterials Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (C.D.); (T.A.G.)
| | - Todd A. Gillam
- Applied Chemistry and Translational Biomaterials Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (C.D.); (T.A.G.)
- Surface Interactions and Soft Matter Group, Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | | | - Hugo Albrecht
- Drug Discovery and Development Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (C.D.); (T.A.G.)
| |
Collapse
|
16
|
Biagiotti G, Purić E, Urbančič I, Krišelj A, Weiss M, Mravljak J, Gellini C, Lay L, Chiodo F, Anderluh M, Cicchi S, Richichi B. Combining cross-coupling reaction and Knoevenagel condensation in the synthesis of glyco-BODIPY probes for DC-SIGN super-resolution bioimaging. Bioorg Chem 2021; 109:104730. [PMID: 33621778 DOI: 10.1016/j.bioorg.2021.104730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/11/2022]
Abstract
Lectins are involved in a wide range of carbohydrate mediated recognition processes. Therefore, the availability of highly performant fluorescent tools tailored for lectin targeting and able to efficiently track events related to such key targets is in high demand. We report here on the synthesis of the glyco-BODIPYs 1 and 2, based on the efficient combination of a Heck-like cross coupling and a Knoevenagel condensation, which revealed efficient in addressing lectins. In particular, glyco-BODIPY 1 has two glycosidase stable C-mannose residues, which act as DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) targeting modules. By using live-cell fluorescence microscopy, we proved that BODIPY-mannose 1 was efficiently taken up by immune cells expressing DC-SIGN receptors. Super-resolution stimulated emission depletion (STED) microscopy further revealed that the internalized 1 localized in membranes of endosomes, proving that 1 is a reliable tool also in STED applications. Of note, glyco-BODIPY 1 contains an aryl-azido group, which allows further functionalization of the glycoprobe with bioactive molecules, thus paving the way for the use of 1 for tracking lectin-mediated cell internalization in diverse biological settings.
Collapse
Affiliation(s)
- Giacomo Biagiotti
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 3/13, 50019 Sesto Fiorentino FI, Italy
| | - Edvin Purić
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics, Department Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Ana Krišelj
- Laboratory of Biophysics, Condensed Matter Physics, Department Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Matjaž Weiss
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Janez Mravljak
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Cristina Gellini
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 3/13, 50019 Sesto Fiorentino FI, Italy
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, via Golgi 19, 20133 Milan, Italy
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands; Institute of Biomolecular Chemistry (ICB), Italian National Research Council (CNR), Pozzuoli, NA, Italy
| | - Marko Anderluh
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Stefano Cicchi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 3/13, 50019 Sesto Fiorentino FI, Italy.
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 3/13, 50019 Sesto Fiorentino FI, Italy.
| |
Collapse
|
17
|
Clauss ZS, Kramer JR. Design, synthesis and biological applications of glycopolypeptides. Adv Drug Deliv Rev 2021; 169:152-167. [PMID: 33352223 DOI: 10.1016/j.addr.2020.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/12/2020] [Accepted: 12/12/2020] [Indexed: 12/15/2022]
Abstract
Carbohydrates play essential structural and biochemical roles in all living organisms. Glycopolymers are attractive as well-defined biomimetic analogs to study carbohydrate-dependent processes, and are widely applicable biocompatible materials in their own right. Glycopolypeptides have shown great promise in this area since they are closer structural mimics of natural glycoproteins than other synthetic glycopolymers and can serve as carriers for biologically active carbohydrates. This review highlights advances in the area of design and synthesis of such materials, and their biomedical applications in therapeutic delivery, tissue engineering, and beyond.
Collapse
|
18
|
Cerullo AR, Lai TY, Allam B, Baer A, Barnes WJP, Barrientos Z, Deheyn DD, Fudge DS, Gould J, Harrington MJ, Holford M, Hung CS, Jain G, Mayer G, Medina M, Monge-Nájera J, Napolitano T, Espinosa EP, Schmidt S, Thompson EM, Braunschweig AB. Comparative Animal Mucomics: Inspiration for Functional Materials from Ubiquitous and Understudied Biopolymers. ACS Biomater Sci Eng 2020; 6:5377-5398. [DOI: 10.1021/acsbiomaterials.0c00713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Antonio R. Cerullo
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Tsoi Ying Lai
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Alexander Baer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - W. Jon P. Barnes
- Centre for Cell Engineering, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Zaidett Barrientos
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Dimitri D. Deheyn
- Marine Biology Research Division-0202, Scripps Institute of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Douglas S. Fudge
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - John Gould
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | - Matthew J. Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Mandë Holford
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- Department of Invertebrate Zoology, The American Museum of Natural History, New York, New York 10024, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The PhD Program in Biology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Chia-Suei Hung
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Gaurav Jain
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802, United States
| | - Julian Monge-Nájera
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Tanya Napolitano
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Eric M. Thompson
- Sars Centre for Marine Molecular Biology, Thormøhlensgt. 55, 5020 Bergen, Norway
- Department of Biological Sciences, University of Bergen, N-5006 Bergen, Norway
| | - Adam B. Braunschweig
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
19
|
Shi Z, Zhang X, Wang X, Yang F, Yu Z, Ling Y, Lu H, Luan S, Tang H. Synthesis and Properties of Mono- or Diamine-Initiated Imidazolium-Based Cationic Polypeptides. Biomacromolecules 2020; 21:3468-3478. [DOI: 10.1021/acs.biomac.0c00953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zuowen Shi
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaodan Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fangping Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Zikun Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Ying Ling
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Haoyu Tang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| |
Collapse
|
20
|
Reintjens NRM, Koemans TS, Zilverschoon N, Castelli R, Cordfunke RA, Drijfhout JW, Meeuwenoord NJ, Overkleeft HS, Filippov DV, Marel GA, Codée JDC. Synthesis of
C
‐Glycosyl Amino Acid Building Blocks Suitable for the Solid‐Phase Synthesis of Multivalent Glycopeptide Mimics. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Niels R. M. Reintjens
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Tony S. Koemans
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Nick Zilverschoon
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Riccardo Castelli
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Robert A. Cordfunke
- Dept. of Immunohematology and Blood Transfusion Leiden University Medical Center Leiden University Albinusdreef 2 2333 ZA Leiden The Netherlands
| | - Jan Wouter Drijfhout
- Dept. of Immunohematology and Blood Transfusion Leiden University Medical Center Leiden University Albinusdreef 2 2333 ZA Leiden The Netherlands
| | - Nico J. Meeuwenoord
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Dmitri V. Filippov
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gijsbert A. Marel
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
21
|
Functional Glycopolypeptides: Synthesis and Biomedical Applications. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/6052078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Employing natural-based renewable sugar and saccharide resources to construct functional biopolymer mimics is a promising research frontier for green chemistry and sustainable biotechnology. As the mimics/analogues of natural glycoproteins, synthetic glycopolypeptides attracted great attention in the field of biomaterials and nanobiotechnology. This review describes the synthetic strategies and methods of glycopolypeptides and their analogues, the functional self-assemblies of the synthesized glycopolypeptides, and their biological applications such as biomolecular recognition, drug/gene delivery, and cell adhesion and targeting, as well as cell culture and tissue engineering. Future outlook of the synthetic glycopolypeptides was also discussed.
Collapse
|
22
|
Leigh T, Fernandez-Trillo P. Helical polymers for biological and medical applications. Nat Rev Chem 2020; 4:291-310. [PMID: 37127955 DOI: 10.1038/s41570-020-0180-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Helices are the most prevalent secondary structure in biomolecules and play vital roles in their activity. Chemists have been fascinated with mimicking this molecular conformation with synthetic materials. Research has now been devoted to the synthesis and characterization of helical materials, and to understand the design principles behind this molecular architecture. In parallel, work has been done to develop synthetic polymers for biological and medical applications. We now have access to materials with controlled size, molecular conformation, multivalency or functionality. As a result, synthetic polymers are being investigated in areas such as drug and gene delivery, tissue engineering, imaging and sensing, or as polymer therapeutics. Here, we provide a critical view of where these two fields, helical polymers and polymers for biological and medical applications, overlap. We have selected relevant polymer families and examples to illustrate the range of applications that can be targeted and the impact of the helical conformation on the performance. For each family of polymers, we briefly describe how they can be prepared, what helical conformations are observed and what parameters control helicity. We close this Review with an outlook of the challenges ahead, including the characterization of helicity through the process and the identification of biocompatibility.
Collapse
|
23
|
Seifried BM, Qi W, Yang YJ, Mai DJ, Puryear WB, Runstadler JA, Chen G, Olsen BD. Glycoprotein Mimics with Tunable Functionalization through Global Amino Acid Substitution and Copper Click Chemistry. Bioconjug Chem 2020; 31:554-566. [PMID: 32078297 DOI: 10.1021/acs.bioconjchem.9b00601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glycoproteins and their mimics are challenging to produce because of their large number of polysaccharide side chains that form a densely grafted protein-polysaccharide brush architecture. Herein a new approach to protein bioconjugate synthesis is demonstrated that can approach the functionalization densities of natural glycoproteins through oligosaccharide grafting. Global amino acid substitution is used to replace the methionine residues in a methionine-enriched elastin-like polypeptide with homopropargylglycine (HPG); the substitution was found to replace 93% of the 41 methionines in the protein sequence as well as broaden and increase the thermoresponsive transition. A series of saccharides were conjugated to the recombinant protein backbones through copper(I)-catalyzed alkyne-azide cycloaddition to determine reactivity trends, with 83-100% glycosylation of HPGs. Only an acetyl-protected sialyllactose moiety showed a lower level of 42% HPG glycosylation that is attributed to steric hindrance. The recombinant glycoproteins reproduced the key biofunctional properties of their natural counterparts such as viral inhibition and lectin binding.
Collapse
Affiliation(s)
- Brian M Seifried
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wenjing Qi
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200000, China
| | - Yun Jung Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Danielle J Mai
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wendy B Puryear
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts 01536, United States
| | - Jonathan A Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts 01536, United States
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200000, China
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Macromolecular Science, Fudan University, Shanghai 200000, China
| |
Collapse
|
24
|
Rasines Mazo A, Allison-Logan S, Karimi F, Chan NJA, Qiu W, Duan W, O’Brien-Simpson NM, Qiao GG. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem Soc Rev 2020; 49:4737-4834. [DOI: 10.1039/c9cs00738e] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides a comprehensive overview of the latest advances in the synthesis, architectural design and biomedical applications of polypeptides and their hybrids.
Collapse
Affiliation(s)
- Alicia Rasines Mazo
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Stephanie Allison-Logan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Fatemeh Karimi
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Nicholas Jun-An Chan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wenlian Qiu
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wei Duan
- School of Medicine
- Deakin University
- Geelong
- Australia
| | - Neil M. O’Brien-Simpson
- Centre for Oral Health Research
- Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology
- University of Melbourne
- Parkville
- Australia
| | - Greg G. Qiao
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| |
Collapse
|
25
|
Song Z, Tan Z, Cheng J. Recent Advances and Future Perspectives of Synthetic Polypeptides from N-Carboxyanhydrides. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01450] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zhengzhong Tan
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
26
|
Chen H, Zhang E, Yang G, Li L, Wu L, Zhang Y, Liu Y, Chen G, Jiang M. Aggregation-Induced Emission Luminogen Assisted Self-Assembly and Morphology Transition of Amphiphilic Glycopolypeptide with Bioimaging Application. ACS Macro Lett 2019; 8:893-898. [PMID: 35619495 DOI: 10.1021/acsmacrolett.9b00383] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recently, fluorescent macromolecules with AIE effect have attracted considerable attentions due to their remarkable optical properties. In particular, designing novel tetraphenylethylene (TPE)-based bioconjugates to construct various self-assembled nanostructures and to expand the applications have aroused great interests. Herein, we report the self-assembly of TPE-based amphiphilic glycopolypeptide bioconjugate for bioimaging and tracing of live cells. The resultant amphiphilic fluorescent glycopolypeptide P1tM-TPE could self-assemble into different nanostructures, including vesicles, spindles and porous nanosheets, which mainly depends on the water fraction in DMSO/water mixture. At the same time, the vesicles can transform to spindles when increasing the water fractions. Both the vesicles and spindles are prone to be effectively internalized by macrophages, and all of them performed outstanding intracellular fluorescent retention properties. As far as we know, this is the first report on self-assembly and applications of glycopolypeptide-TPE bioconjugate, which will deepen our understanding on the self-assembly mechanism of TPE-based bioconjugates and provide a new way for fabricating functional fluorescent materials to monitor various biological processes.
Collapse
Affiliation(s)
- Huaijun Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Ensong Zhang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Guang Yang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Libin Wu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yufei Zhang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yijiang Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Ming Jiang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
27
|
Wollenberg AL, Perlin P, Deming TJ. Versatile N-Methylaminooxy-Functionalized Polypeptides for Preparation of Neoglycoconjugates. Biomacromolecules 2019; 20:1756-1764. [DOI: 10.1021/acs.biomac.9b00138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Yang Z, Bai T, Ling J, Shen Y. Hydroxyl-tolerated polymerization of N-phenoxycarbonyl α-amino acids: A simple way to polypeptides bearing hydroxyl groups. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhening Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
29
|
Pandey B, Patil NG, Bhosle GS, Ambade AV, Gupta SS. Amphiphilic Glycopolypeptide Star Copolymer-Based Cross-Linked Nanocarriers for Targeted and Dual-Stimuli-Responsive Drug Delivery. Bioconjug Chem 2018; 30:633-646. [DOI: 10.1021/acs.bioconjchem.8b00831] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bhawana Pandey
- Academy of Scientific and Innovative Research, (AcSIR), New Delhi 110025, India
| | - Naganath G. Patil
- Academy of Scientific and Innovative Research, (AcSIR), New Delhi 110025, India
| | - Govind S. Bhosle
- Academy of Scientific and Innovative Research, (AcSIR), New Delhi 110025, India
| | - Ashootosh V. Ambade
- Academy of Scientific and Innovative Research, (AcSIR), New Delhi 110025, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata 741246, India
| |
Collapse
|
30
|
Xu D, Liu M, Huang Q, Chen J, Huang H, Deng F, Wen Y, Tian J, Zhang X, Wei Y. One-step synthesis of europium complexes containing polyamino acids through ring-opening polymerization and their potential for biological imaging applications. Talanta 2018; 188:1-6. [DOI: 10.1016/j.talanta.2018.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/25/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022]
|
31
|
Nguyen M, Stigliani JL, Bijani C, Verhaeghe P, Pratviel G, Bonduelle C. Ionic Polypeptide Polymers with Unusual β-Sheet Stability. Biomacromolecules 2018; 19:4068-4074. [DOI: 10.1021/acs.biomac.8b01084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Michel Nguyen
- Laboratoire de Chimie de Coordination, UPR CNRS 8241. 205 route de Narbonne, 31077 Toulouse cedex 04, France
- Université de Toulouse; Université Paul Sabatier, Toulouse, France
| | - Jean-Luc Stigliani
- Laboratoire de Chimie de Coordination, UPR CNRS 8241. 205 route de Narbonne, 31077 Toulouse cedex 04, France
- Université de Toulouse; Université Paul Sabatier, Toulouse, France
| | - Christian Bijani
- Laboratoire de Chimie de Coordination, UPR CNRS 8241. 205 route de Narbonne, 31077 Toulouse cedex 04, France
- Université de Toulouse; Université Paul Sabatier, Toulouse, France
| | - Pierre Verhaeghe
- Laboratoire de Chimie de Coordination, UPR CNRS 8241. 205 route de Narbonne, 31077 Toulouse cedex 04, France
- Université de Toulouse; Université Paul Sabatier, Toulouse, France
| | - Genevieve Pratviel
- Laboratoire de Chimie de Coordination, UPR CNRS 8241. 205 route de Narbonne, 31077 Toulouse cedex 04, France
- Université de Toulouse; Université Paul Sabatier, Toulouse, France
| | - Colin Bonduelle
- Laboratoire de Chimie de Coordination, UPR CNRS 8241. 205 route de Narbonne, 31077 Toulouse cedex 04, France
- Université de Toulouse; Université Paul Sabatier, Toulouse, France
| |
Collapse
|
32
|
Seifried BM, Cao J, Olsen BD. Multifunctional, High Molecular Weight, Post-Translationally Modified Proteins through Oxidative Cysteine Coupling and Tyrosine Modification. Bioconjug Chem 2018; 29:1876-1884. [DOI: 10.1021/acs.bioconjchem.7b00834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Brian M. Seifried
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - James Cao
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
33
|
Johnson S, Bagdi AK, Tanaka F. C-Glycosidation of Unprotected Di- and Trisaccharide Aldopyranoses with Ketones Using Pyrrolidine-Boric Acid Catalysis. J Org Chem 2018; 83:4581-4597. [DOI: 10.1021/acs.joc.8b00340] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sherida Johnson
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Avik Kumar Bagdi
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
34
|
Tao W, He Z. ROS-responsive drug delivery systems for biomedical applications. Asian J Pharm Sci 2018; 13:101-112. [PMID: 32104383 PMCID: PMC7032079 DOI: 10.1016/j.ajps.2017.11.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023] Open
Abstract
In the field of biomedicine, stimuli-responsive drug delivery systems (DDSs) have become increasingly popular due to their site-specific release ability in response to a certain physiological stimulus, which may result in both enhanced treatment outcome and reduced side effects. Reactive oxygen species (ROS) are the unavoidable consequence of cell oxidative metabolism. ROS play a crucial part in regulating biological and physiological processes, whereas excessive intracellular ROS usually lead to the oxidation stress which has implications in several typical diseases such as cancer, inflammation and atherosclerosis. Therefore, ROS-responsive DDSs have elicited widespread popularity for their promising applications in a series of biomedical research because the payload is only released in targeted cells or tissues that overproduce ROS. According to the design of ROS-responsive DDSs, the main release mechanisms of therapeutic agents can be ascribed to ROS-induced carrier solubility change, ROS-induced carrier cleavage or ROS-induced prodrug linker cleavage. This review summarized the latest development and novel design of ROS-responsive DDSs and discussed their design concepts and the applications in the biomedical field.
Collapse
Affiliation(s)
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
35
|
Bonduelle C, Oliveira H, Gauche C, Huang J, Heise A, Lecommandoux S. Multivalent effect of glycopolypeptide based nanoparticles for galectin binding. Chem Commun (Camb) 2018; 52:11251-11254. [PMID: 27711440 DOI: 10.1039/c6cc06437j] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthetic glycopolypeptides are versatile glycopolymers used to conceive bioinspired nanoassemblies. In this work, novel amphiphilic glycopolypeptides were designed to incorporate lactose or galactan in order to prepare polymeric nanoassemblies with sizes below 50 nm. The bioactivity of the two different outer surface sugar units was evaluated by defining glycan relative binding affinities to human galectins 1 and 3. A specific multivalent effect was found only for polymeric nanoparticles displaying galactan with a significant increase of the binding activity as compared to free glycan in solution. Such synthetic designs present great potential as therapeutic tools to address galectin related pathologies.
Collapse
Affiliation(s)
- Colin Bonduelle
- Université de Bordeaux, LCPO, CNRS, UMR 5629, F-33600, Pessac, France. and CNRS, LCC (Laboratoire de Chimie de Coordination (UPR8241)), 205 route de Narbonne, F-31077 Toulouse, France.
| | - Hugo Oliveira
- Université de Bordeaux, LCPO, CNRS, UMR 5629, F-33600, Pessac, France. and Inserm, U1026, Tissue Bioengineering, University of Bordeaux, Bordeaux Cedex, 33076, France
| | - Cony Gauche
- Université de Bordeaux, LCPO, CNRS, UMR 5629, F-33600, Pessac, France.
| | - Jin Huang
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Andreas Heise
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland and Polymer Chemistry and Biomaterials Laboratory, Department of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | |
Collapse
|
36
|
Exploring functional pairing between surface glycoconjugates and human galectins using programmable glycodendrimersomes. Proc Natl Acad Sci U S A 2018; 115:E2509-E2518. [PMID: 29382751 PMCID: PMC5856548 DOI: 10.1073/pnas.1720055115] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cells are decorated with charged and uncharged carbohydrate ligands known as glycans, which are responsible for several key functions, including their interactions with proteins known as lectins. Here, a platform consisting of synthetic nanoscale vesicles, known as glycodendrimersomes, which can be programmed with cell surface-like structural and topological complexity, is employed to dissect design aspects of glycan presentation, with specificity for lectin-mediated bridging. Aggregation assays reveal the extent of cross-linking of these biomimetic nanoscale vesicles—presenting both anionic and neutral ligands in a bioactive manner—with disease-related human and other galectins, thus offering the possibility of unraveling the nature of these fundamental interactions. Precise translation of glycan-encoded information into cellular activity depends critically on highly specific functional pairing between glycans and their human lectin counter receptors. Sulfoglycolipids, such as sulfatides, are important glycolipid components of the biological membranes found in the nervous and immune systems. The optimal molecular and spatial design aspects of sulfated and nonsulfated glycans with high specificity for lectin-mediated bridging are unknown. To elucidate how different molecular and spatial aspects combine to ensure the high specificity of lectin-mediated bridging, a bottom-up toolbox is devised. To this end, negatively surface-charged glycodendrimersomes (GDSs), of different nanoscale dimensions, containing sulfo-lactose groups are self-assembled in buffer from a synthetic sulfatide mimic: Janus glycodendrimer (JGD) containing a 3′-O-sulfo-lactose headgroup. Also prepared for comparative analysis are GDSs with nonsulfated lactose, a common epitope of human membranes. These self-assembled GDSs are employed in aggregation assays with 15 galectins, comprising disease-related human galectins, and other natural and engineered variants from four families, having homodimeric, heterodimeric, and chimera architectures. There are pronounced differences in aggregation capacity between human homodimeric and heterodimeric galectins, and also with respect to their responsiveness to the charge of carbohydrate-derived ligand. Assays reveal strong differential impact of ligand surface charge and density, as well as lectin concentration and structure, on the extent of surface cross-linking. These findings demonstrate how synthetic JGD-headgroup tailoring teamed with protein engineering and network assays can help explain how molecular matchmaking operates in the cellular context of glycan and lectin complexity.
Collapse
|
37
|
Abstract
Synthetic peptide-based polymers can fold into different secondary structures in the same way as do proteins. This review article presents how tuning the polypeptide secondary structure could be a key step to modulate various properties in advanced polymeric materials (size, rigidity, self-assembly,etc.).
Collapse
Affiliation(s)
- Colin Bonduelle
- CNRS
- LCC (Laboratoire de Chimie de Coordination (UPR8241))
- F-31077 Toulouse
- France
- Université de Toulouse
| |
Collapse
|
38
|
Song Z, Fu H, Wang R, Pacheco LA, Wang X, Lin Y, Cheng J. Secondary structures in synthetic polypeptides from N-carboxyanhydrides: design, modulation, association, and material applications. Chem Soc Rev 2018; 47:7401-7425. [DOI: 10.1039/c8cs00095f] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This article highlights the conformation-specific properties and functions of synthetic polypeptides derived from N-carboxyanhydrides.
Collapse
Affiliation(s)
- Ziyuan Song
- Department of Materials Science and Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Hailin Fu
- Department of Chemistry and Polymer Program at the Institute of Materials Science
- University of Connecticut
- Storrs
- USA
| | - Ruibo Wang
- Department of Materials Science and Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Lazaro A. Pacheco
- Department of Materials Science and Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Xu Wang
- Department of Materials Science and Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
| | - Yao Lin
- Department of Chemistry and Polymer Program at the Institute of Materials Science
- University of Connecticut
- Storrs
- USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| |
Collapse
|
39
|
Tsai YL, Tseng YC, Chen YM, Wen TC, Jan JS. Zwitterionic polypeptides bearing carboxybetaine and sulfobetaine: synthesis, self-assembly, and their interactions with proteins. Polym Chem 2018. [DOI: 10.1039/c7py01167a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Zwitterionic polypeptides bearing carboxybetaine and sulfobetaine were synthesized and their self-assembly and protein interactions were evaluated.
Collapse
Affiliation(s)
- Yu-Lin Tsai
- Department of Chemical Engineering
- National Cheng Kung University
- Tainan City 70101
- Taiwan
| | - Yu-Chao Tseng
- Department of Chemical Engineering
- National Cheng Kung University
- Tainan City 70101
- Taiwan
| | - Yan-Miao Chen
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung City 80708
- Taiwan
| | - Tain-Ching Wen
- Department of Chemical Engineering
- National Cheng Kung University
- Tainan City 70101
- Taiwan
| | - Jeng-Shiung Jan
- Department of Chemical Engineering
- National Cheng Kung University
- Tainan City 70101
- Taiwan
| |
Collapse
|
40
|
Kaneko T, Ali MA, Captain I, Perlin P, Deming TJ. Polypeptide gels incorporating the exotic functional aromatic amino acid 4-amino-l-phenylalanine. Polym Chem 2018. [DOI: 10.1039/c8py00427g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
High-molecular-weight polypeptides with functional aromatic side chains, poly(4-amino-l-phenylalanine), were prepared by the metal-initiated polymerization of the Nα-carboxyanhydride of the corresponding amino acid, which is a microbial derivative of phenylalanine.
Collapse
Affiliation(s)
- Tatsuo Kaneko
- Graduate School of Advanced Science and Technology
- Energy and Environment Area
- Japan Advanced Institute of Science and Technologies
- Nomi
- Japan
| | - Mohammad Asif Ali
- Graduate School of Advanced Science and Technology
- Energy and Environment Area
- Japan Advanced Institute of Science and Technologies
- Nomi
- Japan
| | - Ilya Captain
- Departments of Bioengineering and Chemistry and Biochemistry
- University of California
- Los Angeles
- USA
| | - Pesach Perlin
- Departments of Bioengineering and Chemistry and Biochemistry
- University of California
- Los Angeles
- USA
| | - Timothy J. Deming
- Departments of Bioengineering and Chemistry and Biochemistry
- University of California
- Los Angeles
- USA
| |
Collapse
|
41
|
Bauri K, Nandi M, De P. Amino acid-derived stimuli-responsive polymers and their applications. Polym Chem 2018. [DOI: 10.1039/c7py02014g] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recent advances achieved in the study of various stimuli-responsive polymers derived from natural amino acids have been reviewed.
Collapse
Affiliation(s)
- Kamal Bauri
- Department of Chemistry
- Raghunathpur College
- India
| | - Mridula Nandi
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| |
Collapse
|
42
|
Jana S, Biswas Y, Mandal TK. Methionine-based cationic polypeptide/polypeptide block copolymer with triple-stimuli responsiveness: DNA polyplexation and phototriggered release. Polym Chem 2018. [DOI: 10.1039/c8py00178b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This work describes the synthesis of a multi-stimuli responsive methionine-based cationic polypeptide and its polypeptide block copolymer, followed by subsequent DNA polyplexation and phototriggered release.
Collapse
Affiliation(s)
- Somdeb Jana
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Yajnaseni Biswas
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Tarun K. Mandal
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| |
Collapse
|
43
|
González-Henríquez CM, Sarabia-Vallejos MA, Rodríguez-Hernández J. Strategies to Fabricate Polypeptide-Based Structures via Ring-Opening Polymerization of N-Carboxyanhydrides. Polymers (Basel) 2017; 9:E551. [PMID: 30965855 PMCID: PMC6418556 DOI: 10.3390/polym9110551] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022] Open
Abstract
In this review, we provide a general and clear overview about the different alternatives reported to fabricate a myriad of polypeptide architectures based on the ring-opening polymerization of N-carbonyanhydrides (ROP NCAs). First of all, the strategies for the preparation of NCA monomers directly from natural occurring or from modified amino acids are analyzed. The synthetic alternatives to prepare non-functionalized and functionalized NCAs are presented. Protection/deprotection protocols, as well as other functionalization chemistries are discussed in this section. Later on, the mechanisms involved in the ROP NCA polymerization, as well as the strategies developed to reduce the eventually occurring side reactions are presented. Finally, a general overview of the synthetic strategies described in the literature to fabricate different polypeptide architectures is provided. This part of the review is organized depending on the complexity of the macromolecular topology prepared. Therefore, linear homopolypeptides, random and block copolypeptides are described first. The next sections include cyclic and branched polymers such as star polypeptides, polymer brushes and highly branched structures including arborescent or dendrigraft structures.
Collapse
Affiliation(s)
- Carmen M González-Henríquez
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, P.O. Box 9845, Correo 21, Santiago 7800003, Chile.
| | - Mauricio A Sarabia-Vallejos
- Departamento de Ingeniería Estructural y Geotecnia, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, P.O. Box 306, Correo 22, Santiago 7820436, Chile.
| | - Juan Rodríguez-Hernández
- Departamento de Química y Propiedades de Polímeros, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
44
|
Affiliation(s)
- You Yang
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Biao Yu
- State
Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
45
|
Toraskar S, Gade M, Sangabathuni S, Thulasiram HV, Kikkeri R. Exploring the Influence of Shapes and Heterogeneity of Glyco-Gold Nanoparticles on Bacterial Binding for Preventing Infections. ChemMedChem 2017; 12:1116-1124. [DOI: 10.1002/cmdc.201700218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/20/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Suraj Toraskar
- Department of Chemistry; Indian Institute of Science Education and Research, Dr. Homi Bhabha Road; Pune 411008 India
| | - Madhuri Gade
- Department of Chemistry; Indian Institute of Science Education and Research, Dr. Homi Bhabha Road; Pune 411008 India
| | - Sivakoti Sangabathuni
- Department of Chemistry; Indian Institute of Science Education and Research, Dr. Homi Bhabha Road; Pune 411008 India
| | - Hirekodathakallu V. Thulasiram
- Chemical Biology Unit, Division of Organic Chemistry; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune 411008 India
| | - Raghavendra Kikkeri
- Department of Chemistry; Indian Institute of Science Education and Research, Dr. Homi Bhabha Road; Pune 411008 India
| |
Collapse
|
46
|
Abtew E, Domb AJ, Basu A. Synthesis of glycopeptides from glucosaminic acid. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ester Abtew
- Institute of Drug Research; School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem; Jerusalem 91120 Israel
| | - Abraham J. Domb
- Institute of Drug Research; School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem; Jerusalem 91120 Israel
| | - Arijit Basu
- Institute of Drug Research; School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem; Jerusalem 91120 Israel
| |
Collapse
|
47
|
Lavilla C, Yilmaz G, Uzunova V, Napier R, Becer CR, Heise A. Block-Sequence-Specific Glycopolypeptides with Selective Lectin Binding Properties. Biomacromolecules 2017; 18:1928-1936. [DOI: 10.1021/acs.biomac.7b00356] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cristina Lavilla
- Department
of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612AZ Eindhoven, The Netherlands
| | - Gokhan Yilmaz
- Polymer
Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Veselina Uzunova
- Life
Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Richard Napier
- Life
Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - C. Remzi Becer
- Polymer
Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Andreas Heise
- Department
of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612AZ Eindhoven, The Netherlands
- Department
of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| |
Collapse
|
48
|
Sherman SE, Xiao Q, Percec V. Mimicking Complex Biological Membranes and Their Programmable Glycan Ligands with Dendrimersomes and Glycodendrimersomes. Chem Rev 2017; 117:6538-6631. [PMID: 28417638 DOI: 10.1021/acs.chemrev.7b00097] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Synthetic vesicles have been assembled and coassembled from phospholipids, their modified versions, and other single amphiphiles into liposomes, and from block copolymers into polymersomes. Their time-consuming synthesis and preparation as stable, monodisperse, and biocompatible liposomes and polymersomes called for the elaboration of new synthetic methodologies. Amphiphilic Janus dendrimers (JDs) and glycodendrimers (JGDs) represent the most recent self-assembling amphiphiles capable of forming monodisperse, stable, and multifunctional unilamellar and multilamellar onion-like vesicles denoted dendrimersomes (DSs) and glycodendrimersomes (GDSs), dendrimercubosomes (DCs), glycodendrimercubosomes (GDCs), and other complex architectures. Amphiphilic JDs consist of hydrophobic dendrons connected to hydrophilic dendrons and can be thought of as monodisperse oligomers of a single amphiphile. They can be functionalized with a variety of molecules such as dyes, and, in the case of JGDs, with carbohydrates. Their iterative modular synthesis provides efficient access to sequence control at the molecular level, resulting in topologies with specific epitope sequence and density. DSs, GDSs, and other architectures from JDs and JGDs serve as powerful tools for mimicking biological membranes and for biomedical applications such as targeted drug and gene delivery and theranostics. This Review covers all aspects of the synthesis of JDs and JGDs and their biological activity and applications after assembly in aqueous media.
Collapse
Affiliation(s)
- Samuel E Sherman
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
49
|
Preparation and thermoresponsive properties of UCST-type glycopolypeptide bearing mannose pendants and 3-methyl-1,2,3-triazolium linkages in ethanol or ethanol/water solvent mixtures. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4064-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Jiang Z, Chen J, Ding J, Zhuang X, Chen X. Controlled Syntheses of Functional Polypeptides. ACS SYMPOSIUM SERIES 2017. [DOI: 10.1021/bk-2017-1252.ch008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhongyu Jiang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Jinjin Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|